375

Lambda Calculus Notation with
Nameless Dummies, a Tool for

Automatic Formula Manipulation,
with Application to the
Church-Rosser Theorem*

N.G. de Bruijn

ABSTRACT

In ordinary lambda calculus the occurrences of a bound variable are made
recognizable by the use of one and the same (otherwise irrelevant) name at all
occurrences. This convention is known to cause considerable trouble in cases of
substitution. In the present paper a different notational system is developed,
where occurrences of variables are indicated by integers giving the “distance” to
the binding A instead of a name attached to that \. The system is claimed to

be efficient for automatic formula manipulation as well as for metalingual dis-

cussion. As an example the most essential part of a proof of the Church-Rosser
theorem is presented in this namefree calculus.

1. INTRODUCTION

For what lambda calculus is about, we refer to [Barendregt 71], [Church
41] or [Curry and Feys 58], although no specific knowledge will be required for
the reading of the present paper.

Manipulations in the lambda calculus are often troublesome because of the
need for re-naming bound variables. For example, if a free variable in an expres-
sion has to be replaced by a second expression, the danger arises that some free
variable of the second expression bears the same name as a bound variable in
the first one, with the effect that binding is introduced where it is not intended.
Another case of re-naming arises if we want to establish the equivalence of two

*Reprinted from: Indagationes Math. 34, 5, p. 381-392, by courtésy of the Koninklijke
Nederlandse Akademie van Wetenschappen, Amsterdam.

376 N.G. de Bruijn

expressions in those situations where the only difference lies in the names of the
bound variables (i.e. when the equivalence is so-called a-equivalence).

In particular in machine-manipulated lambda calculus this re-naming activity
involves a great deal of labour, both in machine time and in programming effort.
It seems to be worth-while to try to get rid of the re-naming, or, rather, to get
rid of names altogether.

Consider the following three criteria for a good notation:

(i) easy to write and easy to read for the human reader;
(ii) easy to handle in metalingual discussion;
(iii) easy for the computer and for the computer programmer.

The system we shall develop here is claimed to be good for (ii) and good for
(iii). It is not claimed to be very good for (i); this means that for computer
work we shall want automatic translation from one of the usual systerﬁs to our
present system at the input stage, and backwards at the output stage.

An example showing that our method is adequate for (ii) can be found in
Sections 10-12, which present the kernel of a proof for the Church-Rosser theo-
rem. This proof is essentially the one that was given in [Barendregt 71}, where
it was attributed to P. Martin-L&f (1971). Later private information by Mr.
H.P. Barendregt disclosed that the idea is due to W.W. Tait. For a survey of
proofs of the Church-Rosser theorem see [Barendregt 71] p. 16-17. An elaborate
treatment of the theorem can also be found in [Curry and Feys 58].

What is said about lambda calculus in this paper can be applied directly
to other kinds of dummy-binding in mathematics. For example, if we have an
expression like the product HZ:,; f(k,m), we can write it as H(p,q, \xf(k, m)}).
For any new quantifier we wish to use (like II here) we have to take a particular
symbol that is treated as an element of the alphabet of constants (see Section
3).

Application to Automath is explained in Section 13.

2. NOTATION IN METALINGUAL DISCUSSION

If we want to denote a string of symbols by a single (“metalingual”) symbol,
we have to be very careful, in particular if this procedure is repeated, e.g. if we
form mixed strings of lingual and metalingual symols, represent these by a new
symbol, etc.

"We shall use parentheses () for this purpose. If ® denotes a string, then
® is not the string itself. For the string itself we shall use (®). We shall say
that ® denotes the string and that (@) 4s the string. Let us consider some

“Lambda calculus notation with nameless dummies (C.2) 377

examples, where the basic lingual symbols are all'Latin letters as well as the
- hyphen. (These examples will show the use of () in nested form, and therefore
show that the simple device of using Greek letters on the metalingual level is
definitely insufficient.) We shall use the symbol p for reversing the order of a
string. That is, p(pgra) denotes argp, whence {p(pgra)) = argp. Now let @
denote the word phi, and let X denote the word sigma. Then (®) (X} is the
word phisigma, (®) — (£) = phi — sigma, (p({Z))) = amgis, and

{p((p({®))) (p(sigma)))) =
= (p(ihpamgis)) = sigmaphi = (X} () .

The { }'s of this section are not to be confused with the similar symbols we
use in Backus’ normal form of a syntax (e.g. in Section 5).

In typescript and in handwriting it is convenient to underline a formula in-
stead of putting it in ()’s. In print, however, underlining, and in particular
multi-level underlining, is awkward.

3. NAME-CARRYING EXPRESSIONS

We explain the kind of lambda calculus expressions which we want to turn
into namefree expressions. We have a set of “constants” (a,b,c, f,g,...) and a
set of “variables” (s,t,u,v,w,z,...). And there is the symbol A that can have
any variable as a suffix. Moreover we admit application, of which the following
is the interpretation. If @ denotes a function, and I" a value of the variable, then
{®) ({T')) is the value of the function at (I'). We shall use a different notation
instead: we add a symbol A to the list of constants, and we write A((®), (T))
instead of (®) ({I')). This puts it'on a par with another kind of expression we
are going to admit, viz. things like f(, ,), where f is any constant. In the
interpretations the latter kind of expression can be very close to what we have
just called application, but that does not bother us at the moment.

We shall not go into a formal definition of the syntax; the following example
(that accidentally does net contain the symbol A at all) will be clear enough.
We take the expression

Aza{Aed(z, t, f(Aualu, t, 2), Asw)), w, y) - (3.1)

4. GETTING RID OF THE NAMES OF VARIABLES

In order to facilitate the discussion, we represent the expression as a pla-
nar tree which is easier to read than (3.1) itself.

378 N.G. de Bruijn

If in (3.1) we change the names of the bound variables, e.g. z, ¢, u, s into p,
u, 8, T, we get an expression that is what is usually called a-equivalent to (3.1):

Apa(Aub(p, 4, f(Asals, u, 2), Agw)), w, y) .

We shall take the simplistic point of view that a-equivalent expressions are the
same. Formula (3.1) contains bound variables z, t, u, s and free variables z, w,
y. We shall’keep a list of letters from which the free variables are to be taken.
Let that list be, in this order, z, v, w, y; we draw the points A;, Ay, Aw, Ay
under the tree.

The variables in the tree (Figure 1) are encircled (unless they occur as a suffix
of A).

Figure 1

For every encircled letter we evaluate two integers which are indicated in the
figure, viz. the reference depth and the level. The reference depth of an encircled
letter at a certain spot, z say, is the number of \’s we encounter when running
down until we meet A, (this A, is counted as one of the encountered X’s). It is
agreed that the Ay, Aw, Ay, A, (which do not belong to the tree itself) can also
be encountered on our way down, e.g. if we run down to A, we encounter Ay,
Awy Ay Az :

Lambda calculus notation with nameless dummies (C.2) 379

The level of an encircled variable at a certain spot counts the total number
of \’s we encounter when running down the tree until we get to the root (if the
root is a X, like A, here, this one is also included in the count; the loose Ay, Ay,
As, Az are not counted this time).

Let us now erase the variables and the integers indicating the levels; we keep
. the reference depth. No information is lost: the erased letters and numbers
can be easily reconstructed. If we are not interested in the names of the bound
_variables (and honestly we should not be) we can erase the suffix in Az, At, Ay,
‘Xs. In those cases where we are interested in the names of the free variables we
have to keep the ordered list z, v, w, y in order to be able to reconstruct our
_expression. Note that a point of the tree refers to a free variable if and only if
“the reference depth exceeds the level. s

Thus the information contained in our name-carrying expression can be pre-
sented as ‘

Aa(Wb(2,1, f(ha(1,2,7),15)),3,2) (4.1)

with the free variable list z, v, w, y. This expression is called namefree.

Note that (3.1) can be represented differently if we take a different free vari-
able list. Any sequence of distinct variables may serve as a free variable list
-provided it contains z, w, y in any order. Conversely, every namefree expres-
sion can be decoded into a name-carrying one if we provide a free variable list
that is long enough. This determines the name-carrying expression up to name-
changing of the bound variables.

Instead of providing a finite free variable list we can take an infinite one (with
the effect that we need not bother whether the list is long enough). The refer-
ence depths refer to a count in the reference list from right to left, corresponding
to the fact that N’s are written in front of the formula they act on. Therefore,
such infinite variable lists have to be written as ..., Z3, 2, z1 instead of the usual
left-to-right notation of an infinite sequence.

5. THE SYNTAX FOR NAMEFREE EXPRESSIONS

We present the syntax in Backus’ normal form:
<constant> == alblc|d]...

<NF expression string> ::= <NF expression> | <NF expression string>,
<NF expression>

<NF expression> 1= <constant>
| <constant> (<NF expression string>)
| <positive integer> | A <NF expression>

380

In the next sections we shall use, in an informal way, the notions “level” of an

N.G. de Bruijn

integer in an NI' expression, in the sense of Section 4. (The “reference depth”

of an integer is, of course, the integer itself.)

6. SUBSTITUTION

We shall define the effect of a substitution of a sequence of NF expressions
into a single NF expression denoted by €.

What we intend to describe is the following. Let ...,33, X9, X denote the
sequence (i right-to-left notation). (In practice only finitely many ¥4’s are
relevant, whence we need not always give the full infinite sequence.) We at-
tach a free variable list ..., z3, 25,21 to €, and one and the same free variable
- Y3, ¥2,y1 to every ¥;. That determines name-carrying expressions to be
denoted by Q* and Xf. Now replace any free z; in {{2*) by the correspond-
ing (X¥). Thus we get an expression, to be denoted by I'*, with possible free
variables ...,ys,y2,y:. With respect to this free variable list ..., ys, ¥2, %1 this
T* corresponds to the NF expression S(..., (£3), (X2), (£1); () we shall define
presently. The definition will be recursive with respect to the structure of (Q2);
Q may denote either an NF expression string or an NF expression. We follow
the syntactic classification of Section 5.

list .

()

(i)

(iii)

(iv)

If (Q) = (), (Qs) then
(S(wes (Za)y (Z2), (Zn);5 (@) = (T'1), (T2)
where T'; denotes
(S(.we) (Za), (Z2), (Z1) 5 (Q))) -
If (©) is a constant then
(S(--es (Tg), (T2), (T} () = () .

I {Q2) = (v) (1)) (whére v denotes a constant and Q; an NF expression
string) then

{S(-es (Ta)s (Z2), (T); (D)) = (1) ((S(.o, (Z3), (Sa), (Za) 5 () -

If {Q} is the positive integer k then

(S(er (Za), (B2), (21) 5 (D)) = (Zi)

. Lambda calculus notation with nameless dummies (C.2) 381

(v) If (@) = A(T) then

(S(eery (Ta), (T2}, (1) 5 (@) = A(S(ry (As), (A2), (A1), 15 (T))) (6:1)
where A; denotes

(S(.y4,3,2; (Z))) - (6.2)

~ Note that (A;) is obtained from (E;) by adding 1 to every integer in (X;) that
© refers to a free variable.

- 7. THE OPERATORS 73, AND GLOBAL DESCRIPTION OF
SUBSTITUTION

It will be convenient to use the separate notation 7,((X)) in order to ab-
breviate

S(h+3,h+2,h+1; (%) .

It means adding A (which is a positive integer) to every integer in (X) that
refers to a free variable. The special case 71((%;)) occurs in (6.2). With the aid of
this notation we can give a more global description of how (S(..., (Z3), (£2), (£1);
(Q))) is obtained: start from £, and in each case where an integer ¢ in () ex-
ceeds its level I, we replace that ¢ by (n({Z:—i)))-

In automatic formula manipulation it may be a good strategy to refrain from
evaluating such 7;((X))’s, but just to store them as pairs /, (¥}, and go into (full
or partial) evaluation only if necessary. The following formulas may come in
handy:

71 = The1; {T0({))) = ()
(S(.wes (Z3), (Za), (1) (me({D))))) =
= (S(, <Zk+3>, (Ek+2>7 (Ek+1) ; (Q))) .

The latter formula is a special case of the following result on composite substi-

tution:
If
() = (S(-..s (A2), (A1) (A)))
then
Sy (Z2), (Z1) 5 () = S(.or, (T2}, (T1) 5 (A))
where

(L) = (S(y (B2}, (B3 (A (i=1,2) -

382 N.G. de Bruijn

8. BETA REDUCTION

If we have an applicational expression A((®), (') (cf. Section 3), then the
interpretation is that (®) is a function, (T") a value of the variable in that func-
tion, and A((®), (")) is intended to represent the value of the function (®) at
the point (I'). If (®) happens to have the form A (f2), then the function value
can actually be evaluated. Roughly speaking, it comes down to substituting (T")
in (Q2) for all occurrences of the bound variable corresponding to the A in front
of ().

A precise definition in terms of NF expressions is easy to give: f Q and T
denote NF expressions, then A(X (), (T)) is an NF expression to which beta
reduction can be applied. The effect of the beta reduction is the NF expression

(S(.3,2,1,{T); () - @1

The usual beta reduction for name-carrying expressions is obtained if we use one
and the same free variable list for all four expressions A (), Iy, A, (T)
and (8.1).

'

9. ETA REDUCTION

In terms of name-carrying expressions, n-reduction means the following. If &
denotes a name-carrying expression that does not contain the variable z, then
Az () (z) (or in our notation A, A((X), z)) has the same mathematical interpre-
tation as (X) itself. The transfer from A, (Z) (z) to () is called 7-reduction.
We shall define it for NF expressions:

For any NF expression (A} we define as 7-reduction the transition of

A((1((A)));1) into (A) . (9.1

If we transform both expressions of (9.1) into name-carrying expressions by
means of one and the same free variable list, the transition (9.1) becomes the
n-reduction for name-carrying expressions.

10. MULTIPLE BETA REDUCTION

In Section 8 we considered beta reduction of an NF expression. It was re-
duction of the full expression and not the beta reduction of a subexpression
(local beta reduction) which we shall consider presently. In order to be able to
indicate where the S-reduction has to be carried out, we introduce a set of con-
stants (applicational symbols) to be used instead of the single symbol A. By the

Lambda calculus notation with nameless dummies (C.2) 383

same device we get the possibility of multiple local beta reduction: we indicate
a subset of the set of applicational symbols and we carry out beta reduction for
all symbols of that subset.

let U be a subset of the set of constants. An NF expression (X) is called
U-correct if every element of U that occurs in (I) is always followed by a string
in parentheses with the form (A(Q),(I")). In other words, each occurrence of
- each element of U is ready for local beta reduction. To be more precise, we
indicate how the syntax of Section 5 is to be changed in order to get the syntax
of the U-correct NF expressions. We have to replace the entries

<constant> | <constant> (<NF expression string>)
by
. <constant not in U> | <constant not in U> (<NF expression string>)|

<constant in U> (A <NF expression>, <NF expression>)

and, moreover, we have to write “U-correct NF” instead of “NF” throughout.
The following theorem is intuitively clear, and easily proved formally with
the aid of the recursive definition of substitution (Section 6).

Theorem 10.1. IfQ,%,%,,... denote U-correct expressions, then

(S(..., (X2}, (Z1); () is U-correct .

We shall now define the operator 8y on the set of U-correct NF expressions
recursively:

(i) If () is a single constant or a positive integer, then
{Bu((EN) = (%) .

(i) If (Z) = () ({T1), ..., (Z)), where () is a constant not in U, then

{Bu((EN) = () ((Bu((Z1))), s (Bu((Zk)))) -
(iif) If (Z) = A (%) then

(Bu((Z))) = X (Bu({Z1))) -
(iv) If (Z) = (7) (A\(Q),(T)) and (1) € U then (cf. (8.1))

{Bo((=))) = (S(..,3,2, 1, (Bu ((T))) 5 (Bu () -

384 : N.G. de Bruijn

Needless to say, the effect of By on an expression string (Z1), ..., {Sg) is to
be defined by (By((£1))), ---, (Br((Zk))).

11. THEOREMS ON MULTIPLE BETA REDUCTION

Theorem 11.1. If (Q}, (31), (Zs), ... are U-correct, then

{Bu ((S(---s (T2), (Z1); () =
= (S(-, (B ((Z2))), (Bu((Z1))) 5 (Bu((M))) -

Proof. For easier reading we shall drop the signs) and { throughout this proof.
The proof has to be read twice. The first time we deal with the proof of

BuS(....; 22, Z1; @) = S(..., BuXs, BuZi; Bufd) (11.1)

in the case that the 3; are integers. (This case is intuitively clear, but it takes
little extra trouble to derive it formally.) In the second reading the result of the
first reading can be used.

‘We apply induction with respect to the structure of Q, using the definition of
substitution as given in Section 6. (Note that in the first reading the induction
hypothesis is used only for cases belonging to the first reading.) The cases (i),
(ii), (iv) of Section 6 are very simple, and so is case (iii) if the constant v is not in
U. We concentrate on the two remaining cases, viz. 2 = A" and Q = y(\A,T)
withy e U.

If @ = AT" we apply (v) of Section 6 twice:

BuS(.os B, 813 AT) = ByAS(e, Agy Ay, 15 T) (11.2)
S("'?ﬁUEQ)ﬂUEI; /\ﬁUF) = /\3(7 37 ?[:71; ﬁUF) ’ (113)

where A; is given by (6.2), and A} = 5(...,4,3,2; SuX;).
By Section 10 (iii) and by the induction hypothesis, the right-hand side of
(11.2) equals

/\ﬁUS(v A2a A17 1 > F) = /\S("'a IBUAZ)ﬂUAla 1; ﬂUr) . (114)

In the first reading of the proof the T; and A; are integers, whence Gy%; = 2, E

and therefore A = A; = ByA;. So the right-hand sides of (11.3) and (11.4) are
equal, hence the left-hand sides of (11.2) and (11.3) are equal. In the second
reading of the proof we may use the theorem for the case that the ; are integers;
hence

Buld;: = BrS(...,4,3,2; &;) = S(...,4,3,2; Bu%;) = Af,

Lambda calculus notation with nameless dummies (C.2) 385

and the right-hand sides of (11.2) and (11.3) are equal.
The second case we have to deal with, is Q = y(AA,T) with v € U. We have

to show

BuS(.oy T2, T1; YA, T)) = S(..., Bu T, fuZi; Bur(AA,T)) - (11.5)
~ The right-hand side equals, by Section 10 (iv)

S(.or BuZ2, BuZes S(.-,3,2,1, 80T ; Buld)) -

By the formulas on composite substitution (Section 7) this is

Sy BuDa, BuL1, S(ons fuZa, Bu; Bul); Bul) - (1L6)
The left-hand side of (11.5) equals, according to 6 (iii),
Bu(S(eces B2, B1; ALY, Sy T2, 515 I)) (11.7)

" By 6 (v) we have
S(, 22, 21 3 AA) =)0
where
¢=S(...,A2,A1,1; A) s Ai=5(...,3,2; 27;) .
Applying 10 (iv) we can write for (11.7)
8(7 2, 1118US("'7 s, 1 F)) ﬁU@) . (118)
By the induction hypothesis we have
Bu® = S(..., Buhs, uAi, 1; Bul) ,

and so we can apply the formula for composite substitution (Section 7) to (11.8);
it becomes

S(...,Hz,ﬂ1; ,BUA) (11.9)
where
H1 = S(, 2, l,ﬁ(js(...,ZQ, E]_ i I‘); 1) = IBUS(-..,ZZ, 21 H P)

Hi+1 = S(, 2, 1,,6US(...,22, 21 H F) 3 ﬁUAi) (Z = 1, 2,) .

We have to show that (11.9) equals (11.6). By the induction hypothesis we
have II; = S(..., BuZe, BuL1; BuT), so it remains to show that ;11 = Bu¥s
(i=1,2..).

In the first reading of the proof the X; are positive integers. Therefore the A;
are integers > 1; it follows that BuhA; = A; > 1, whence [li41 = A—-1=5;=

BuZs.
In the second reading of the proof we may use the result of the first reading:

386 ‘ N.G. de Bruijn

ﬁUAi = ,BUS(73723 21) = S(7 3)27 ﬁUEi) 3
and the formula for II;1; now results in (cf. Section 7)

H'H—l ZS(,37251)ﬁUEZ)=ﬂUEZ . O

Theorem 11.2. Let U and V be subsets of the set of constants, and let ()
be both U-correct and V-correct. Then (By((Z))) is V-correct, (By((Z))) is U-
correct and (Bu ((Bv ((Z)))) = (Bv ({Bu ((Z))))-

Proof. Again we omit the (s and)’s. The V-correctness of By ¥ is easily proved
by recursion: use the definition of Sy of Section 10. In 10 (iv) we have to use
Theorem 10.1.

By the same recursion we shall prove By8vE = By 8uS. The only case where
the induction step is non-trivial is the case & = y(AQ,T') with v e UUV. If
7 € U we have by 10 (iv)

BvBuX = pvS(...,3,2,1,6uT; BuS) .
By Theorem 11.1 this equals

S(.+3,2,1, B BuT; By BuQ) . (11.10)
Ify¢ U, v €V we find by 10 (ii), 10 (iii)

BvBuX = Bvy(ABu, BuT) ,

and by 10 (iv) this equals (11.10). So vy € U UV implies that BvBuL equals
(11.10). On behalf of the induction hypothesis (11.10) is symmetric, whence

BvBurE = fubvx.]

12. THE CHURCH-ROSSER THEOREM FOR BETA
REDUCTION

We consider an NF expression ¥ with a single constant A that can be used
for fB-reduction. We label all A’s in ¥ so that they become all different. Next
we take a subset U of the labelled A’s, we apply Sy and then remove the labels.
This gives an NF expression ¥'. We say that ¥’ is a multiple reduction of ¥,
and we write ¥ >,, X'. If U has only one element, and if that element has just
one occurrence in ¥, the reduction is called single, and we write 3 >, 3. »

If X1 and X, satisfy either $; >, Ty or 5 >, 31, we write X1 ~ £o. The

Church-Rosser theorem for beta reduction says: If 1 ~ g ~ ... ~ X, then :
there are Aq, ..., A; and I, ..., II;, with

Lambda calculus notation with nameless dummies {(C.2) 387

Z)1 2s Al Z5 e 25 Aka z:n >s 1—-[1 >s o 2s Hh, Ak=Hh-

- This can now be proved as follows. From Theorem 11.2 we easily obtain: if
31 2m D2, 51 >, g then there is a ¥y with Xy >, B4, U3 >, T4 Moreover
“it can be shown: If ¥ >, A then there is a sequence

28 2 By 25 0 26 Ym=A.

“(Actually, if every element of U occurs at most once in the U-correct expression
%, then we can arrange the elements of U as ug, ..., 4, in such a way that

Bfum} -+ Bius} & = BuE)

 The Church-Rosser theorem now follows by a trivial reduction argument.
~ The above proof can be easily adapted to lambda calculus with expressions
as types (see Section 13).

13. NOTATION IN AUTOMATH

The mathematical language Automath (see [de Bruijn 70a (A.2)]) haslambda
calculus with types, and these types are again expressions. That is, instead of
Ag we have things that can be visualized as A\;¢(g) (©2), where @ and Q denote
name-carrying expressions. We may think of z to be a variable of the type (®).
1t is clear that we do not want z to have any binding influence on (®). In order
to achieve this, we create a new lingual constant T (just like we added A to our
set of constants in Section 3), and we write

T({®), 2= () ' (13.1)

instead of Aeg(@) (©2). Now (13.1) can be transformed into a namefree expression
just like any other name-carrying expression.

The actual notation in Automath is different. Instead of (13.1) Automath
uses [z : (®)]{Q), and for the application A({®), (T')) Automath uses {{T')} ().

14. ALGORITHMS

An algorithm for turning an NF expression into a name-carrying one, can
be described on the basis of the recursive definition of substitution in Section
6. Let () be an NF expression. Take a free variable list ..., z3, z9, 1 consisting
of distinct letters which do not belong to our alphabet of constants. Now add
these x; to that alphabet, and evaluate

(S, 3, 22,215 () -

388) N.G. de Bruijn

This is a namefree expression; if we proclaim the z;’s to be variables again, it
becomes an intermediate expression where the free variables have names but the
bound variables are nameless. If we want to have names for the bound variables
too, we have to modify S slightly. We take an infinite store of letters g, Y2, ...
(different from the z;’s and different from the constants), and we take a modified
form of (6.1). Any time we get to apply (6.1) we take a fresh y (i.e. one that
has not been used before) and we replace the right-hand side of (6.1) by

Ay (S (Rs), {As), {Ar), 5 (T))) .

It is not very hard either to give algorithms that transform name-carrying ex-
pressions into namefree ones. This can be done if a free variable list is given
(and then it has to be checked, during the execution of the algorithm, whether
this list is adequate), but we can also write an algorithm that produces a free
variable list itself. For the case of the first-mentioned possibility we give a brief
description of the crucial steps. Let ...,x3,70, 21 be a free variable list, and
let (2) be the name-carrying expression we want to transfer into the namefree
expression (2*). If {Q) equals one of the #’s, then (€2*) is an integer, viz. the
index of that z. If () is a variable, but not one of the T’s, the answer is “free
variable list was wrong”. If (Q) = Ay (T) then we transform (T') into the name-
less expression (I"*) by means of the free variable list ..., z3,z,,2),y, and we
have (Q2*) = A (I'*). The other cases (the cases (i) (Q) = (), (Q2), (i) (Q) =
a constant, (iii) () = (8) (())) are Very easy.

