
Application of Dimensionality Reduction in Recommender System -- A Case Study

Badrul M. Sarwar, George Karypis, Joseph A. Konstan, John T. Riedl

GroupLens Research Group / Army HPC Research Center
Department of Computer Science and Engineering

University of Minnesota
Minneapolis, MN 55455

+1 612 625-4002
{sarwar, karypis, konstan, riedl}@cs.umn.edu

Abstract

We investigate the use of dimensionality reduction to
improve performance for a new class of data analysis
software called “recommender systems”.
Recommender systems apply knowledge discovery
techniques to the problem of making product
recommendations during a live customer interaction.
These systems are achieving widespread success in
E-commerce nowadays, especially with the advent of
the Internet. The tremendous growth of customers
and products poses three key challenges for
recommender systems in the E-commerce domain.
These are: producing high quality recommendations,
performing many recommendations per second for
millions of customers and products, and achieving
high coverage in the face of data sparsity. One
successful recommender system technology is
collaborative filtering, which works by matching
customer preferences to other customers in making
recommendations. Collaborative filtering has been
shown to produce high quality recommendations, but
the performance degrades with the number of
customers and products. New recommender system
technologies are needed that can quickly produce
high quality recommendations, even for very large-
scale problems.

This paper presents two different experiments where
we have explored one technology called Singular
Value Decomposition (SVD) to reduce the
dimensionality of recommender system databases.
Each experiment compares the quality of a
recommender system using SVD with the quality of a
recommender system using collaborative filtering.
The first experiment compares the effectiveness of
the two recommender systems at predicting consumer
preferences based on a database of explicit ratings of
products. The second experiment compares the
effectiveness of the two recommender systems at
producing Top-N lists based on a real-life customer
purchase database from an E-Commerce site. Our

experience suggests that SVD has the potential to
meet many of the challenges of recommender
systems, under certain conditions.

1 Introduction

Recommender systems have evolved in the extremely
interactive environment of the Web. They apply data
analysis techniques to the problem of helping
customers find which products they would like to
purchase at E-Commerce sites. For instance, a
recommender system on Amazon.com
(www.amazon.com) suggests books to customers
based on other books the customers have told
Amazon they like. Another recommender system on
CDnow (www.cdnow.com) helps customers choose
CDs to purchase as gifts, based on other CDs the
recipient has liked in the past. In a sense,
recommender systems are an application of a
particular type of Knowledge Discovery in Databases
(KDD) (Fayyad et al. 1996) technique. KDD
systems use many subtle data analysis techniques to
achieve two unsubtle goals. They are: i) to save
money by discovering the potential for efficiencies,
or ii) to make more money by discovering ways to
sell more products to customers. For instance,
companies are using KDD to discover which
products sell well at which times of year, so they can
manage their retail store inventory more efficiently,
potentially saving millions of dollars a year
(Brachman et al. 1996). Other companies are using
KDD to discover which customers will be most
interested in a special offer, reducing the costs of
direct mail or outbound telephone campaigns by
hundreds of thousands of dollars a year
(Bhattacharyya 1998, Ling et al. 1998). These
applications typically involve using KDD to discover
a new model, and having an analyst apply the model
to the application. However, the most direct benefit
of KDD to businesses is increasing sales of existing
products by matching customers to the products they
will be most likely to purchase. The Web presents

new opportunities for KDD, but challenges KDD
systems to perform interactively. While a customer
is at the E-Commerce site, the recommender system
must learn from the customer’s behavior, develop a
model of that behavior, and apply that model to
recommend products to the customer. Recommender
systems directly realize this benefit of KDD systems
in E-Commerce. They help consumers find the
products they wish to buy at the E-Commerce site.
Collaborative filtering is the most successful
recommender system technology to date, and is used
in many of the most successful recommender systems
on the Web, including those at Amazon.com and
CDnow.com.

The earliest implementations of collaborative
filtering, in systems such as Tapestry (Goldberg et
al., 1992), relied on the opinions of people from a
close-knit community, such as an office workgroup.
However, collaborative filtering for large

communities cannot depend on each person knowing
the others. Several systems use statistical techniques
to provide personal recommendations of documents
by finding a group of other users, known as
neighbors that have a history of agreeing with the
target user. Usually, neighborhoods are formed by

applying proximity measures such as the Pearson

correlation between the opinions of the users. These
are called nearest-neighbor techniques. Figure 1
depicts the neighborhood formation using a nearest-
neighbor technique in a very simple two dimensional
space. Notice that each user’s neighborhood is those
other users who are most similar to him, as identified
by the proximity measure. Neighborhoods need not
be symmetric. Each user has the best neighborhood
for him. Once a neighborhood of users is found,
particular products can be evaluated by forming a
weighted composite of the neighbors’ opinions of
that document.

These statistical approaches, known as automated
collaborative filtering, typically rely upon ratings as
numerical expressions of user preference. Several
ratings-based automated collaborative filtering
systems have been developed. The GroupLens
Research system (Resnick et al. 1994) provides a
pseudonymous collaborative filtering solution for

Usenet news and movies. Ringo (Shardanand et al.
1995) and Video Recommender (Hill et al. 1995) are
email and web systems that generate
recommendations on music and movies respectively.
Here we present the schematic diagram of the
architecture of the GroupLens Research collaborative

filtering engine in figure 2. The user interacts with a

1

2

5
3

4

Figure 1: Illustration of the neighborhood formation process. The distance between the
target user and every other user is computed and the closest-k users are chosen as the
neighbors (for this diagram k = 5).

 Recommender
System
Engine

Customer

Dynamic
HTML
generator

 WWW
 Server

 Recomm-
 endations

Response

Request

 Correlation
 Database

Ratings
Database

Ratings Ratings

Recomm-
endations

Figure 2. Recommender System Architecture

Web interface. The Web server software
communicates with the recommender system to
choose products to suggest to the user. The
recommender system, in this case a collaborative
filtering system, uses its database of ratings of
products to form neighborhoods and make
recommendations. The Web server software displays
the recommended products to the user.

The largest Web sites operate at a scale that stresses
the direct implementation of collaborative filtering.
Model-based techniques (Fayyad et al., 1996) have
the potential to contribute to recommender systems
that can operate at the scale of these sites. However,
these techniques must be adapted to the real-time
needs of the Web, and they must be tested in realistic
problems derived from Web access patterns. The
present paper describes our experimental results in
applying a model-based technique, Latent Semantic
Indexing (LSI), that uses a dimensionality reduction
technique, Singular Value Decomposition (SVD), to
our recommender system. We use two data sets in
our experiments to test the performance of the model-
based technique: a movie dataset and an e-commerce
dataset.

The contributions of this paper are:

1. The details of how one model-based
technology, LSI/SVD, was applied to
reduce dimensionality in recommender
systems for generating predictions.

2. Using low dimensional representation
to compute neighborhood for generating
recommendations.

3. The results of our experiments with
LSI/SVD on two test data sets— our
MovieLens test-bed and customer-
product purchase data from a large E-
commerce company, which has asked to
remain anonymous.

The rest of the paper is organized as follows. The
next section describes some potential problems
associated with correlation-based collaborative
filtering models. Section 3 explores the possibilities
of leveraging the latent semantic relationship in
customer-product matrix as a basis for prediction
generation. At the same time it explains how we can
take the advantage of reduced dimensionality to form
better neighborhood of customers. The section
following that delineates our experimental test-bed,
experimental design, results and discussion about the
improvement in quality and performance. Section 5

concludes the paper and provides directions for future
research.

2 Existing Recommender Systems
Approaches and their Limitations

 Most collaborative filtering based recommender
systems build a neighborhood of likeminded
customers. The Neighborhood formation scheme
usually uses Pearson correlation or cosine similarity
as a measure of proximity (Shardanand et al. 1995,
Resnick et al. 1994). Once these systems determine
the proximity neighborhood they produce two types
of recommendations.

1. Prediction of how much a customer C will like a
product P. In case of correlation based
algorithm, prediction on product ‘P’ for
customer ‘C’ is computed by computing a
weighted sum of co-rated items between C and
all his neighbors and then by adding C's average
rating to that. This can be expressed by the
following formula (Resnick et al., 1994):

∑
∑ ∈ −

+=
J CJ

ratesJ CJ

r

rJJ
CC

pred

)(P
P

Here, rCJ denotes the correlation between user C
and neighbor J. JP is J's ratings on product P.

CJ and are J and C's average ratings. The
prediction is personalized for the customer C.
There are, however, some naive non-
personalized prediction schemes where
prediction, for example, is computed simply by
taking the average ratings of items being
predicted over all users (Herlocker et al., 1999).

2. Recommendation of a list of products for a
customer C. This is commonly known as top-N
recommendation. Once a neighborhood is
formed, the recommender system algorithm
focuses on the products rated by the neighbors
and selects a list of N products that will be liked
by the customer.

These systems have been successful in several
domains, but the algorithm is reported to have shown
some limitations, such as:

• Sparsity: Nearest neighbor algorithms rely upon
exact matches that cause the algorithms to
sacrifice recommender system coverage and
accuracy (Konstan et al., 1997. Sarwar et al.,
1998). In particular, since the correlation
coefficient is only defined between customers
who have rated at least two products in common,

many pairs of customers have no correlation at
all (Billsus et al., 1998). In practice, many
commercial recommender systems are used to
evaluate large product sets (e.g., Amazon.com
recommends books and CDnow recommends
music albums). In these systems, even active
customers may have rated well under 1% of the
products (1% of 2 million books is 20,000
books--a large set on which to have an opinion).
Accordingly, Pearson nearest neighbor
algorithms may be unable to make many product
recommendations for a particular user. This
problem is known as reduced coverage, and is
due to sparse ratings of neighbors. Furthermore,
the accuracy of recommendations may be poor
because fairly little ratings data can be included.
An example of a missed opportunity for quality
is the loss of neighbor transitivity. If customers
Paul and Sue correlate highly, and Sue also
correlates highly with Mike, it is not necessarily
true that Paul and Mike will correlate. They may
have too few ratings in common or may even
show a negative correlation due to a small
number of unusual ratings in common.

• Scalability: Nearest neighbor algorithms require
computation that grows with both the number of
customers and the number of products. With
millions of customers and products, a typical
web-based recommender system running
existing algorithms will suffer serious scalability
problems.

• Synonymy: In real life scenario, different product
names can refer to the similar objects.
Correlation based recommender systems can't
find this latent association and treat these
products differently. For example, let us consider
two customers one of them rates 10 different
recycled letter pad products as "high" and
another customer rates 10 different recycled
memo pad products "high". Correlation based
recommender systems would see no match
between product sets to compute correlation and
would be unable to discover the latent
association that both of them like recycled office
products.

3 Applying SVD for Collaborative Filtering

The weakness of Pearson nearest neighbor for large,
sparse databases led us to explore alternative
recommender system algorithms. Our first approach
attempted to bridge the sparsity by incorporating
semi-intelligent filtering agents into the system
(Sarwar et al., 1998, Good et al., 1999). These agents

evaluated and rated each product, using syntactic
features. By providing a dense ratings set, they
helped alleviate coverage and improved quality. The
filtering agent solution, however, did not address the
fundamental problem of poor relationships among
like-minded but sparse-rating customers. We
recognized that the KDD research community had
extensive experience learning from sparse databases.
After reviewing several KDD techniques, we decided
to try applying Latent Semantic Indexing (LSI) to
reduce the dimensionality of our customer-product
ratings matrix.

LSI is a dimensionality reduction technique that has
been widely used in information retrieval (IR) to
solve the problems of synonymy and polysemy
(Deerwester et al. 1990). Given a term-document-
frequency matrix, LSI is used to construct two
matrices of reduced dimensionality. In essence, these
matrices represent latent attributes of terms, as
reflected by their occurrence in documents, and of
documents, as reflected by the terms that occur
within them. We are trying to capture the
relationships among pairs of customers based on
ratings of products. By reducing the dimensionality
of the product space, we can increase density and
thereby find more ratings. Discovery of latent
relationship from the database may potentially solve
the synonymy problem in recommender systems.
LSI, which uses singular value decomposition as its
underlying matrix factorization algorithm, maps
nicely into the collaborative filtering recommender
algorithm challenge. Berry et al. (1995) point out that
the reduced orthogonal dimensions resulting from
SVD are less noisy than the original data and capture
the latent associations between the terms and
documents. Earlier work (Billsus et al. 1998) took
advantage of this semantic property to reduce the
dimensionality of feature space. The reduced feature
space was used to train a neural network to generate
predictions. The rest of this section presents the
construction of SVD-based recommender algorithm
for the purpose of generating predictions and top-N
recommendations; the following section describes
our experimental setup, evaluation metrics, and
results.

3.1 Singular Value Decomposition (SVD)

SVD is a well-known matrix factorization technique
that factors an m × n matrix R into three matrices as
the following:

Where, U and V are two orthogonal matrices of size
m × r and n × r respectively; r is the rank of the

VSUR ′⋅⋅=

matrix R. S is a diagonal matrix of size r × r having
all singular values of matrix R as its diagonal entries.
All the entries of matrix S are positive and stored in
decreasing order of their magnitude. The matrices
obtained by performing SVD are particularly useful
for our application because of the property that SVD
provides the best lower rank approximations of the
original matrix R, in terms of Frobenius norm. It is
possible to reduce the r × r matrix S to have only k
largest diagonal values to obtain a matrix Sk, k < r. If
the matrices U and V are reduced accordingly, then
the reconstructed matrix Rk = Uk.Sk.Vk′ is the closest
rank-k matrix to R. In other words, Rk minimizes the
Frobenius norm ||R- Rk|| over all rank-k matrices.

We use SVD in recommender systems to perform
two different tasks: First, we use SVD to capture
latent relationships between customers and products
that allow us to compute the predicted likeliness of a
certain product by a customer. Second, we use SVD
to produce a low-dimensional representation of the
original customer-product space and then compute
neighborhood in the reduced space. We then used
that to generate a list of top-N product
recommendations for customers. The following is a
description of our experiments.

3.1.1 Prediction Generation

We start with a customer-product ratings matrix that
is very sparse, we call this matrix R. To capture
meaningful latent relationship we first removed
sparsity by filling our customer-product ratings
matrix. We tried two different approaches: using the
average ratings for a customer and using the average
ratings for a product. We found the product average
produce a better result. We also considered two
normalization techniques: conversion of ratings to z-
scores and subtraction of customer average from each
rating. We found the latter approach to provide
better results. After normalization we obtain a filled,
normalized matrix Rnorm. Essentially, Rnorm = R+NPR,
where NPR is the fill-in matrix that provides naive
non-personalized recommendation. We factor the
matrix Rnorm and obtain a low-rank approximation
after applying the following steps described in
(Deerwester et al. 1990):

• factor Rnorm using SVD to obtain U, S and V.

• reduce the matrix S to dimension k

• compute the square-root of the reduced
matrix Sk, to obtain Sk

1/2

• compute two resultant matrices: UkSk
1/2 and

Sk
1/2Vk′

These resultant matrices can now be used to compute
the recommendation score for any customer c and
product p. We observe that the dimension of UkSk

1/2
is m × k and the dimension of Sk

1/2Vk′ is k × n. To
compute the prediction we simply calculate the dot
product of the cth row of UkSk

1/2 and the pth column of
Sk

1/2Vk′ and add the customer average back using the
following:

)(.)(. PVScSUCC kkkKPpred

′⋅
′

+= .

Note that even though the Rnorm matrix is dense, the
special structure of the matrix NPR allows us to use
sparse SVD algorithms (e.g., Lanczos) whose
complexity is almost linear to the number of non-
zeros in the original matrix R.

3.1.2 Recommendation generation

In our second experiment, we look into the prospects
of using low-dimensional space as a basis for
neighborhood formation and using the neighbors’
opinions on products they purchased we recommend
a list of N products for a given customer. For this
purpose we consider customer preference data as
binary by treating each non-zero entry of the
customer-product matrix as "1". This means that we
are only interested in whether a customer consumed a
particular product but not how much he/she liked that
product.

Neighborhood formation in the reduced space:

The fact that the reduced dimensional representation
of the original space is less sparse than its high-
dimensional counterpart led us to form the
neighborhood in that space. As before, we started
with the original customer-product matrix A, and then
used SVD to produce three decomposed matrices U,
S, and V. We then reduced S by retaining only k
eigenvalues and obtained Sk. Accordingly, we
performed dimensionality reduction to obtain Uk and
Vk. Like the previous method, we finally computed
the matrix product UkSk

1/2. This m × k matrix is the k
dimensional representation of m customers. We then
performed vector similarity (cosine similarity) to
form the neighborhood in that reduced space.

Top-N Recommendation generation:

Once the neighborhood is formed we concentrate on
the neighbors of a given customer and analyze the
products they purchased to recommend N products
the target customer is most likely to purchase. After
computing the neighborhood for a given customer C,
we scan through the purchase record of each of the k
neighbors and perform a frequency count on the

products they purchased. The product list is then
sorted and most frequently purchased N items are
returned as recommendations for the target customer.
We call this scheme most frequent item
recommendation.

3.1.3 Sensitivity of Number of Dimensions k

The optimal choice of the value k is critical to high-
quality prediction generation. We are interested in a
value of k that is large enough to capture all the
important structures in the matrix yet small enough to
avoid overfitting errors. We experimentally find a
good value of k by trying several different values.

3.1.4 Performance Implications

In practice, e-commerce sites like amazon.com
experiences tremendous amount of customer visits
per day. Recommending products to these large
number of customers in real-time requires the
underlying recommendation engine to be highly
scalable. Recommendation algorithms usually divide
the prediction generation algorithm into two parts:
offline component and online component. Offline
component is the portion of the algorithm that
requires an enormous amount of computation e.g.,
the computation of customer-customer correlation in
case of correlation-based algorithm. Online
component is the portion of the algorithm that is
dynamically computed to provide predictions to
customers using data from stored offline component.
In case of SVD-based recommendation generation,
the decomposition of the customer-product matrix
and computing the reduced user and item matrices
i.e., UkSk

1/2 and Sk
1/2Vk′ can be done offline.

Offline computation is not very critical to the
performance of the recommender system. But there
are some issues with the memory and secondary
storage requirement that need to be addressed. In case
of SVD, the offline component requires more time
compared to the correlation-based algorithm. For an
m × n matrix the SVD decomposition requires a time
in the order of O((m+n)3) (Deerwester et. al., 1990).
Computation of correlation takes O(m2.n). In terms of
storage, however, SVD is more efficient, we need to
store just two reduced customer and product matrices
of size m × k and k × n respectively, a total of
O(m+n), since k is constant. But in case of the
correlation-based CF algorithm, an m × m all-to-all
correlation table must be stored requiring O(m2)
storage, which can be substantially large with
millions of customers and products.

So, we observe that as a result of dimensionality
reduction SVD based online performance is much

better than correlation based algorithms. For the same
reason, neighborhood formation is also much faster
when done in low dimensional space.

4 Experiments

4.1 Experimental Platform

4.1.1 Data sets

As mentioned before we report two different
experiments. In the first experiment we used data
from our MovieLens recommender system to
evaluate the effectiveness of our SVD-based
prediction generation algorithm. MovieLens
(www.movielens.umn.edu) is a web-based research
recommender system that debuted in Fall 1997. Each
week hundreds of users visit MovieLens to rate and
receive recommendations for movies. The site now
has over 35000 users who have expressed opinions
on 3000+ different movies.1 We randomly selected
enough users to obtain 100,000 rating-records from
the database (we only considered users that had rated
twenty or more movies). Rating-record in this context
is defined to be a triplet <customer, product, rating>.
We divided the rating-records into training set and a
test set according to different ratios. We call this
training ratio and denote it by x. A value of x=0.3
indicates that we divide the 100,000 ratings data set
into 30,000 train cases and 70,000 test cases. The
training data was converted into a user-movie matrix
R that had 943 rows (i.e., 943 users) and 1682
columns (i.e., 1682 movies that were rated by at least
one of the users). Each entry ri,j represented the
rating (from 1 to 5) of the ith user on the jth movie.

The second experiment is designed to test the
effectiveness of “neighborhood formed in low
dimensional space”. In addition to the above movie
data, we used historical catalog purchase data from a
large e-commerce company. This data set contains
purchase information of 6,502 users on 23,554
catalog items. In total, this data set contains 97,045
purchase records. In case of the commerce data set,
each record is a triplet <customer, product, purchase
amount>. Since, purchase amount can’t be
meaningfully converted to user rating, we didn’t use
the second data set for prediction experiment. We

1 In addition to MovieLens' users, the system includes over
two million ratings from more than 45,000 EachMovie
users. The EachMovie data is based on a static collection
made available for research by Digital Equipment
Corporation's Systems Research Center.

converted all purchase amounts to “1” to make the
data set binary and then used it for recommendation
experiment. As before, we divided the data set into a
train set and a test set by using similar notion of
training ratio, x.

4.1.2 Benchmark recommender systems
To compare the performance of SVD-based
prediction we also entered the training ratings set into
a collaborative filtering recommendation engine that
employs the Pearson nearest neighbor algorithm. For
this purpose we implemented CF-Predict, a flexible
recommendation engine that implements
collaborative filtering algorithms using C. We tuned
CF-Predict to use the best published Pearson nearest
neighbor algorithm and configured it to deliver the
highest quality prediction without concern for
performance (i.e., it considered every possible
neighbor to form optimal neighborhoods). To
compare the quality of SVD neighborhood-based
recommendations, we implemented another
recommender system that uses cosine-similarity in
high dimensional space to form neighborhood and
returns top-N recommendations, we call it CF-
Recommend. We used cosine measure for building
neighborhood in both cases because in the low
dimensional space proximity is measured only by
computing the cosine.

For each of the ratings in the test data set, we
requested a prediction from CF-Predict and also
computed the same prediction from the matrices
UkSk

1/2 and Sk
1/2Vk′ and compared them. Similarly, we

compared two top-N recommendation algorithms.

4.2 Evaluation Metrics

Recommender systems research has used several
types of measures for evaluating the success of a
recommender system. We only consider the quality
of prediction or recommendation, as we're only
interested in the output of a recommender system for
the evaluation purpose. It is, however, possible to
evaluate intermediate steps (e.g., the quality of
neighborhood formation). Here we discuss two types
of metrics for evaluating predictions and top-N
recommendations respectively.

4.2.1 Prediction evaluation metrics

 To evaluate an individual item prediction researchers
use the following metrics:

§ Coverage metrics evaluate the number of
products for which the system could provide
recommendations. Overall coverage is

computed as the percentage of customer-product
pairs for which a recommendation can be made.

§ Statistical accuracy metrics evaluate the accuracy
of a system by comparing the numerical
recommendation scores against the actual
customer ratings for the customer-product pairs
in the test dataset. Mean Absolute Error (MAE),
Root Mean Squared Error (RMSE) and
Correlation between ratings and predictions are
widely used metrics. Our experience has shown
that these metrics typically track each other
closely.

§ Decision support accuracy metrics evaluate how
effective a prediction engine is at helping a user
select high-quality products from the set of all
products. These metrics assume the prediction
process as a binary operation— either products
are predicted (good) or not (bad). With this
observation, whether a product has a prediction
score of 1.5 or 2.5 on a five-point scale is
irrelevant if the customer only chooses to
consider predictions of 4 or higher. The most
commonly used decision support accuracy
metrics are reversal rate, weighted errors and
ROC sensitivity (Le et al., 1995)

We used MAE as our choice of evaluation metric to
report prediction experiments because it is most
commonly used and easiest to interpret directly. In
our previous experiments (Sarwar et al., 1999) we
have seen that MAE and ROC provide the same
ordering of different experimental schemes in terms
of prediction quality.

4.2.2 Recommendation evaluation metrics

To evaluate top-N recommendation we use two
metrics widely used in the information retrieval (IR)
community namely recall and precision. However,
we slightly modify the definition of recall and
precision as our experiment is different from standard
IR. We divide the products into two sets: the test set
and top-N set. Products that appear in both sets are
members of the hit set. We now define recall and
precision as the following:

§ Recall in the context of the recommender
system is defined as:

§ Precision is defined as:
test

top Ntest

st setsize of te
t setsize of hiRecall

I==

N

topNtest

pN setsize of to
t setsize of hi

Precision
I==

These two measures are, however, often conflicting
in nature. For instance, increasing the number N
tends to increase recall but decreases precision. The
fact that both are critical for the quality judgement
leads us to use a combination of the two. In
particular, we use the standard F1 metric (Yang et.
al., 1999) that gives equal weight to them both and is
computed as follows:

 We compute F1 for each individual customer and
calculate the average value to use as our metric.

4.3 Experimental Steps

4.3.1 Prediction Experiment.

Each entry in our data matrix R represents a rating on
a 1-5 scale, except that in cases where the user i
didn’t rate movie j the entry ri,j is null. We then
performed the following experimental steps.

We computed the average ratings for each user and
for each movie and filled the null entries in the
matrix by replacing each null entry with the column
average for the corresponding column. Then we
normalized all entries in the matrix by replacing each
entry ri,j with (ri,j - ri), where, ri is the row average of
the ith row. Then MATLAB was used to compute the
SVD of the filled and normalized matrix R,
producing the three SVD component matrices U, S
and V'. S is the matrix that contains the singular
values of matrix R sorted in decreasing order. Sk was
computed from S by retaining only k largest singular
values and replacing the rest of the singular with 0.
We computed the square root of the reduced matrix
and computed the matrix products UkSk

1/2 and Sk
1/2V'k

as mentioned above. We then multiplied the matrices
UkSk

1/2 and Sk
1/2V'k producing a 943 x 1682 matrix, P.

Since the inner product of a row from UkSk
1/2 and a

column from Sk
1/2Vk gives us a prediction score, each

entry pij of this resultant matrix P holds the prediction
score for each user-movie pair i,j. We then de-
normalized the matrix entries by adding the user
average back into each prediction scores and loaded
the training set ratings into CF-Predict and request
prediction scores on each of the test set ratings.
Computed MAE of the SVD and the CF-Predict
prediction scores and compare the two sets of results.

We repeated the entire process for k = 2, 5-21, 25, 50
and 100, and found 14 to be the most optimum value
(Figure 3(a)). We then fixed k at 14 and varied the
train/test ratio x from 0.2 to 0.95 with an increment of
0.05 and for each point we run the experiment 10
times each time choosing different training/test sets
and take the average to generate the plots. Note that
the overall performance of the SVD-based prediction
algorithm does significantly change for a wide range
of values of k.

4.3.2 Top-N recommendation experiment:

We started with a matrix as the previous experiment
but converted the rating entries (i.e., non-zero entries)
to "1". Then we produced top-10 product
recommendations for each customer based on the
following two schemes:

§ High dimensional neighborhood: In this scheme
we built the customer neighborhood in the
original customer-product space and used most
frequent item recommendation to produce top-10
product list. We then used our F1 metric to
evaluate the quality.

§ Low dimensional neighborhood: We first reduce
the dimensionality of the original space by
applying SVD and then used UkSk

1/2 (i.e.,
representation of customers in k dimensional
space) matrix to build the neighborhood. As
before we used most frequent item
recommendation to produce top-10 list and
evaluated by using F1 metric.

In this experiment our main focus was on the E-

()PrecisionRecall
PrecsionRecall2F1

+
∗∗=

SVD as Prediction Generator
(k is fixed at 14 for SVD)

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.2 0.2
5 0.3 0.3

5 0.4 0.4
5 0.5 0.5

5 0.6 0.6
5 0.7 0.7

5 0.8 0.8
5 0.9 0.9

5

x (train/test ratio)

M
A

E

Pure-CF

SVD
SVD prediction quality variation with number of dimension

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

2 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 25 50 100

number of dimension, k

M
ea

n
ab

so
lu

te
 e

rr
or

x=0.2
x=0.5
x=0.8

Figure 3. (a) Determination of optimum value of k. (b) SVD vs. CF-Predict prediction quality

commerce data. We also report our findings when we
apply this technique on our movie preference data.

4.4 Results

4.4.1Prediction experiment results

Figure 3(b) charts our results for the prediction
experiment. The data sets were obtained from the
same sample of 100,000 ratings, by varying the sizes
of the training and test data sets, (recall that x is the

ratio between the size of the training set and the size
of the entire data set). Note that the different values
of x were used to determine the sensitivity of the
different schemes on the sparsity of the training set.

4.4.2 Top-N recommendation experiment
results

For the recommendation experiment, we first

determined the optimum x ratio for both of our data
sets in high dimensional and low dimensional cases.
At first we run the high dimensional experiment for
different x ratio and then we perform low
dimensional experiments for different x values for a
fixed dimension (k) and compute the F1 metric.
Figure 4 shows our results, we observe that optimum
x values are 0.8 and 0.6 for the movie data and the E-
commerce data respectively.

Once we obtain the best x value, we run high
dimensional experiment for that x and compute F1

metric. Then we run our low-dimensional
experiments for that x ratio, but vary the number of
dimension, k. Our results are presented in figures 5
and 6. We represent the corresponding high
dimensional results (i.e., results from CF-
recommend) in the chart by drawing vertical lines at
their corresponding values.

Top-10 recommendation
 (Movie data set)

0.22

0.222

0.224

0.226

0.228

0.23

0.232

10 20 30 40 50 60 70 80 90 100
Dimension, k

F1
 M

et
ri

c

ML Low-dim
ML High-dim

High dimensional value at x = 0.8

Figure 5. Top-10 recommendation results for the MovieLens data set.

Determination of the optimum x value
(Movie data set)

0.1
0.12
0.14
0.16
0.18

0.2
0.22
0.24

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

train ratio, x

F1
 M

et
ri

c

ML High-dim

ML Low-dim
Determination of the optimum x value

(Commerce data set)

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

train ratio, x

F1
 M

et
ri

c

EC High-dim

EC Low-dim

Figure 4. Determination of the optimum value of x. a) for the Movie data b) for the Commerce data

4.5 Discussion
In case of the prediction experiment, we observe that
in Figure 3(b) for x<0.5 SVD-based prediction is
better than the CF-Predict predictions. For x>0.5,
however, the CF-Predict predictions are slightly
better. This suggests that nearest-neighbor based
collaborative filtering algorithms are susceptible to
data sparsity as the neighborhood formation process
is hindered by the lack of enough training data. On
the other hand, SVD based prediction algorithms can
overcome the sparsity problem by utilizing the latent
relationships. However, as the training data is
increased both SVD and CF-Predict prediction
quality improve but the improvement in case of CF-
Predict surpasses the SVD improvement.

 From the plots of the recommender results (Figures 5
and 6), we observe that for the movie data the best
result happens in the vicinity of k=20 and in case of

the e-commerce data the recommendation quality
keeps on growing with increasing dimensions. The
movie experiment reveals that the low dimensional
results are better than the high dimensional
counterpart at all values of k. In case of the e-
commerce experiment the high dimensional result is
always better, but as more and more dimensions are
added low dimensional values improve. However, we
increased the dimension values up to 700, but the low
dimensional values were still lower than the high
dimensional value. Beyond 700 the entire process
becomes computationally very expensive. Since the
commerce data is very high dimensional
(6502x23554), probably such a small k value (up to
700) is not sufficient to provide a useful

approximation of the original space. Also another
factor to consider is the amount of sparsity in the data
sets, the movie data is 95.4% sparse (100,000
nonzero entries in 943x1,682 matrix), while the e-
commerce data is 99.996% sparse (97,045 nonzero
entries in 6,502x23,554 matrix). To test this
hypothesis we deliberately increased sparsity of our
movie data (i.e., remove nonzero entries) and
repeated the experiment and observed dramatic
reduction in F1 values!

Overall, the results are encouraging for the use of
SVD in collaborative filtering recommender systems.
The SVD algorithms fit well with the collaborative
filtering data, and they result in good quality
predictions. And SVD has potential to provide better
online performance than correlation-based systems.
In case of the top-10 recommendation experiment we
have seen even with a small fraction of dimension,
i.e., 20 out of 1682 in movie data, SVD-based

recommendation quality was better than
corresponding high dimensional scheme. It indicates
that neighborhoods formed in the reduced
dimensional space are better than their high
dimensional counterparts.2

2 We’re also working with experiments to use the reduced
dimensional neighborhood for prediction generation using
classical CF algorithm. So far, the results are encouraging.

Top-10 recommendation
(Commerce data set)

0.09

0.1

0.11

0.12

0.13
0.14

0.15

0.16

0.17

50 100 150 200 250 300 350 400 450 500 600 700

Dimension, k

F1
 M

et
ri

c

EC Low-dim
EC High-dim

High dimensional value at x = 0.6

Figure 6. Top-10 recommendation results for the E-Commerce data set.

5 Conclusions

Recommender systems are a powerful new
technology for extracting additional value for a
business from its customer databases. These systems
help customers find products they want to buy from a
business. Recommender systems benefit customers
by enabling them to find products they like.
Conversely, they help the business by generating
more sales. Recommender systems are rapidly
becoming a crucial tool in E-commerce on the Web.

Recommender systems are being stressed by the huge
volume of customer data in existing corporate
databases, and will be stressed even more by the
increasing volume of customer data available on the
Web. New technologies are needed that can
dramatically improve the scalability of recommender
systems.

Our study shows that Singular Value Decomposition
(SVD) may be such a technology in some cases. We
tried several different approaches to using SVD for
generating recommendations and predictions, and
discovered one that can dramatically reduce the
dimension of the ratings matrix from a collaborative
filtering system. The SVD-based approach was
consistently worse than traditional collaborative
filtering in se of an extremely sparse e-commerce
dataset. However, the SVD-based approach
produced results that were better than a traditional
collaborative filtering algorithm some of the time in
the denser MovieLens data set. This technique leads
to very fast online performance, requiring just a few
simple arithmetic operations for each
recommendation. Computing the SVD is expensive,
but can be done offline. Further research is needed to
understand how often a new SVD must be computed,
or whether the same quality can be achieved with
incremental SVD algorithms (Berry et. al., 1995).

Future work is required to understand exactly why
SVD works well for some recommender applications,
and less well for others. Also, there are many other
ways in which SVD could be applied to
recommender systems problems, including using
SVD for neighborhood selection, or using SVD to
create low-dimensional visualizations of the ratings
space.

6 Acknowledgements

Funding for this research was provided in part by the
National Science Foundation under grants IIS
9613960, IIS 9734442, and IIS 9978717 with
additional funding by Net Perceptions Inc. This work

was also supported by NSF CCR-9972519, by Army
Research Office contract DA/DAAG55-98-1-0441,
by the DOE ASCI program and by Army High
Performance Computing Research Center contract
number DAAH04-95-C-0008. We thank anonymous
reviewers for their valuable comments.

References

1. Berry, M. W., Dumais, S. T., and O’Brian, G. W.
1995. “Using Linear Algebra for Intelligent
Information Retrieval”. SIAM Review, 37(4),
pp. 573-595.

2. Billsus, D., and Pazzani, M. J. 1998. “Learning
Collaborative Information Filters”. In
Proceedings of Recommender Systems
Workshop. Tech. Report WS-98-08, AAAI
Press.

3. Bhattacharyya, S. 1998. “Direct Marketing
Response Models using Genetic Algorithms.” In
Proceedings of the Fourth International
Conference on Knowledge Discovery and Data
Mining, pp. 144-148.

4. Brachman, R., J., Khabaza, T., Kloesgen, W.,
Piatetsky-Shapiro, G., and Simoudis, E. 1996.
“Mining Business Databases.” Communications
of the ACM, 39(11), pp. 42-48, November.

5. Deerwester, S., Dumais, S. T., Furnas, G. W.,
Landauer, T. K., and Harshman, R. 1990.
“Indexing by Latent Semantic Analysis”.
Journal of the American Society for Information
Science, 41(6), pp. 391-407.

6. Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P.,
and Uthurusamy, R., Eds. 1996. “Advances in
Knowledge Discovery and Data Mining”. AAAI
press/MIT press.

7. Goldberg, D., Nichols, D., Oki, B. M., and
Terry, D. 1992. “Using Collaborative Filtering to
Weave an Information Tapestry”.
Communications of the ACM. December.

8. Good, N., Schafer, B., Konstan, J., Borchers, A.,
Sarwar, B., Herlocker, J., and Riedl, J. 1999.
"Combining Collaborative Filtering With
Personal Agents for Better Recommendations."
In Proceedings of the AAAI-'99 conference, pp
439-446.

9. Heckerman, D. 1996. “Bayesian Networks for
Knowledge Discovery.” In Advances in
Knowledge Discovery and Data Mining. Fayyad,
U. M., Piatetsky-Shapiro, G., Smyth, P., and
Uthurusamy, R., Eds. AAAI press/MIT press.

10. Herlocker, J., Konstan, J., Borchers, A., and
Riedl, J. 1999. "An Algorithmic Framework for
Performing Collaborative Filtering." In
Proceedings of ACM SIGIR'99. ACM press.

11. Hill, W., Stead, L., Rosenstein, M., and Furnas,
G. 1995. “Recommending and Evaluating
Choices in a Virtual Community of Use”. In
Proceedings of CHI ’95.

12. Le, C. T., and Lindgren, B. R. 1995.
“Construction and Comparison of Two Receiver
Operating Characteristics Curves Derived from
the Same Samples”. Biom. J. 37(7), pp. 869-877.

13. Ling, C. X., and Li C. 1998. “Data Mining for
Direct Marketing: Problems and Solutions.” In
Proceedings of the 4th International Conference
on Knowledge Discovery and Data Mining, pp.
73-79.

14. Resnick, P., Iacovou, N., Suchak, M., Bergstrom,
P., and Riedl, J. 1994. “GroupLens: An Open
Architecture for Collaborative Filtering of
Netnews. In Proceedings of CSCW ’94, Chapel
Hill, NC.

15. Sarwar, B., M., Konstan, J. A., Borchers, A.,
Herlocker, J., Miller, B., and Riedl, J. 1998.
“Using Filtering Agents to Improve Prediction
Quality in the GroupLens Research
Collaborative Filtering System.” In Proceedings
of CSCW ’98, Seattle, WA.

16. Sarwar, B.M., Konstan, J.A., Borchers, A., and
Riedl, J. 1999. "Applying Knowledge from KDD
to Recommender Systems." Technical Report TR
99-013, Dept. of Computer Science, University
of Minnesota.

17. Schafer, J. B., Konstan, J., and Riedl, J. 1999.
“Recommender Systems in E-Commerce.” In
Proceedings of ACM E-Commerce 1999
conference.

18. Shardanand, U., and Maes, P. 1995. “Social
Information Filtering: Algorithms for
Automating ‘Word of Mouth’.” In Proceedings
of CHI ’95. Denver, CO.

19. Yang, Y., and Liu, X. 1999. "A Re-examination
of Text Categorization Methods." In Proceedings
of ACM SIGIR'99 conferenc, pp 42-49.

20. Zytkow, J. M. 1997. “Knowledge = Concepts: A
Harmful Equation.” In Proceedings of the Third
International Conference on Knowledge
Discovery and Data Mining.

