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Abstract  

We investigate the use of dimensionality reduction to 
improve performance for a new class of data analysis 
software called “recommender systems”. 
Recommender systems apply knowledge discovery 
techniques to the problem of making product 
recommendations during a live customer interaction. 
These systems are achieving widespread success in 
E-commerce nowadays, especially with the advent of 
the Internet. The tremendous growth of customers 
and products poses three key challenges for 
recommender systems in the E-commerce domain. 
These are: producing high quality recommendations, 
performing many recommendations per second for 
millions of customers and products, and achieving 
high coverage in the face of data sparsity.  One 
successful recommender system technology is 
collaborative filtering, which works by matching 
customer preferences to other customers in making 
recommendations.  Collaborative filtering has been 
shown to produce high quality recommendations, but 
the performance degrades with the number of 
customers and products.  New recommender system 
technologies are needed that can quickly produce 
high quality recommendations, even for very large-
scale problems.  

This paper presents two different experiments where 
we have explored one technology called Singular 
Value Decomposition (SVD) to reduce the 
dimensionality of recommender system databases. 
Each experiment compares the quality of a 
recommender system using SVD with the quality of a 
recommender system using collaborative filtering. 
The first experiment compares the effectiveness of 
the two recommender systems at predicting consumer 
preferences based on a database of explicit ratings of 
products. The second experiment compares the 
effectiveness of the two recommender systems at 
producing Top-N lists based on a real-life customer 
purchase database from an E-Commerce site. Our 

experience suggests that SVD has the potential to 
meet many of the challenges of recommender 
systems, under certain conditions. 

1 Introduction   

Recommender systems have evolved in the extremely 
interactive environment of the Web.  They apply data 
analysis techniques to the problem of helping 
customers find which products they would like to 
purchase at E-Commerce sites. For instance, a 
recommender system on Amazon.com 
(www.amazon.com) suggests books to customers 
based on other books the customers have told 
Amazon they like.  Another recommender system on 
CDnow (www.cdnow.com) helps customers choose 
CDs to purchase as gifts, based on other CDs the 
recipient has liked in the past. In a sense, 
recommender systems are an application of a 
particular type of Knowledge Discovery in Databases 
(KDD) (Fayyad et al. 1996) technique.  KDD 
systems use many subtle data analysis techniques to 
achieve two unsubtle goals. They are: i) to save 
money by discovering the potential for efficiencies, 
or ii) to make more money by discovering ways to 
sell more products to customers. For instance, 
companies are using KDD to discover which 
products sell well at which times of year, so they can 
manage their retail store inventory more efficiently, 
potentially saving millions of dollars a year 
(Brachman et al. 1996).  Other companies are using 
KDD to discover which customers will be most 
interested in a special offer, reducing the costs of 
direct mail or outbound telephone campaigns by 
hundreds of thousands of dollars a year 
(Bhattacharyya 1998, Ling et al. 1998).  These 
applications typically involve using KDD to discover 
a new model, and having an analyst apply the model 
to the application. However, the most direct benefit 
of KDD to businesses is increasing sales of existing 
products by matching customers to the products they 
will be most likely to purchase. The Web presents 



new opportunities for KDD, but challenges KDD 
systems to perform interactively.  While a customer 
is at the E-Commerce site, the recommender system 
must learn from the customer’s behavior, develop a 
model of that behavior, and apply that model to 
recommend products to the customer.  Recommender 
systems directly realize this benefit of KDD systems 
in E-Commerce. They help consumers find the 
products they wish to buy at the E-Commerce site.  
Collaborative filtering is the most successful 
recommender system technology to date, and is used 
in many of the most successful recommender systems 
on the Web, including those at Amazon.com and 
CDnow.com.   

The earliest implementations of collaborative 
filtering, in systems such as Tapestry (Goldberg et 
al., 1992), relied on the opinions of people from a 
close-knit community, such as an office workgroup.  
However, collaborative filtering for large 

communities cannot depend on each person knowing 
the others.  Several systems use statistical techniques 
to provide personal recommendations of documents 
by finding a group of other users, known as 
neighbors that have a history of agreeing with the 
target user. Usually, neighborhoods are formed by 

applying proximity measures such as the Pearson 

correlation between the opinions of the users.  These 
are called nearest-neighbor techniques.  Figure 1 
depicts the neighborhood formation using a nearest-
neighbor technique in a very simple two dimensional 
space. Notice that each user’s neighborhood is those 
other users who are most similar to him, as identified 
by the proximity measure.  Neighborhoods need not 
be symmetric.  Each user has the best neighborhood 
for him. Once a neighborhood of users is found, 
particular products can be evaluated by forming a 
weighted composite of the neighbors’ opinions of 
that document.  

These statistical approaches, known as automated 
collaborative filtering, typically rely upon ratings as 
numerical expressions of user preference. Several 
ratings-based automated collaborative filtering 
systems have been developed.  The GroupLens 
Research system (Resnick et al. 1994) provides a 
pseudonymous collaborative filtering solution for 

Usenet news and movies. Ringo (Shardanand et al. 
1995) and Video Recommender (Hill et al. 1995) are 
email and web systems that generate 
recommendations on music and movies respectively.  
Here we present the schematic diagram of the 
architecture of the GroupLens Research collaborative 

filtering engine in figure 2. The user interacts with a 
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Figure 1: Illustration of the neighborhood formation process. The distance between the 
target user and every other user is computed and the closest-k users are chosen as the 
neighbors (for this diagram k = 5).  
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Web interface.  The Web server software 
communicates with the recommender system to 
choose products to suggest to the user.  The 
recommender system, in this case a collaborative 
filtering system, uses its database of ratings of 
products to form neighborhoods and make 
recommendations.  The Web server software displays 
the recommended products to the user. 

The largest Web sites operate at a scale that stresses 
the direct implementation of collaborative filtering.  
Model-based techniques (Fayyad et al., 1996) have 
the potential to contribute to recommender systems 
that can operate at the scale of these sites.  However, 
these techniques must be adapted to the real-time 
needs of the Web, and they must be tested in realistic 
problems derived from Web access patterns.  The 
present paper describes our experimental results in 
applying a model-based technique, Latent Semantic 
Indexing (LSI), that uses a dimensionality reduction 
technique, Singular Value Decomposition (SVD), to 
our recommender system.  We use two data sets in 
our experiments to test the performance of the model-
based technique: a movie dataset and an e-commerce 
dataset. 

The contributions of this paper are: 

1. The details of how one model-based 
technology, LSI/SVD, was applied to 
reduce dimensionality in recommender 
systems for generating predictions. 

2. Using low dimensional representation 
to compute neighborhood for generating 
recommendations. 

3. The results of our experiments with 
LSI/SVD on two test data sets— our 
MovieLens test-bed and customer-
product purchase data from a large E-
commerce company, which has asked to 
remain anonymous. 

The rest of the paper is organized as follows. The 
next section describes some potential problems 
associated with correlation-based collaborative 
filtering models. Section 3 explores the possibilities 
of leveraging the latent semantic relationship in 
customer-product matrix as a basis for prediction 
generation. At the same time it explains how we can 
take the advantage of reduced dimensionality to form 
better neighborhood of customers. The section 
following that delineates our experimental test-bed, 
experimental design, results and discussion about the 
improvement in quality and performance. Section 5 

concludes the paper and provides directions for future 
research. 

2 Existing Recommender Systems 
Approaches and their Limitations  

 Most collaborative filtering based recommender 
systems build a neighborhood of likeminded 
customers. The Neighborhood formation scheme 
usually uses Pearson correlation or cosine similarity 
as a measure of proximity (Shardanand et al. 1995, 
Resnick et al. 1994). Once these systems determine 
the proximity neighborhood they produce two types 
of recommendations. 

1. Prediction of how much a customer C will like a 
product P.  In case of correlation based 
algorithm, prediction on product ‘P’ for 
customer ‘C’ is computed by computing a 
weighted sum of co-rated items between C and 
all his neighbors and then by adding C's average 
rating to that. This can be expressed by the 
following formula (Resnick et al., 1994): 
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Here, rCJ  denotes the correlation between user C 
and neighbor J. JP is J's ratings on product P. 

CJ  and  are J and C's average ratings. The 
prediction is personalized for the customer C. 
There are, however, some naive non-
personalized prediction schemes where 
prediction, for example, is computed simply by 
taking the average ratings of items being 
predicted over all users (Herlocker et al., 1999). 

2. Recommendation of a list of products for a 
customer C. This is commonly known as top-N 
recommendation. Once a neighborhood is 
formed, the recommender system algorithm 
focuses on the products rated by the neighbors 
and selects a list of N products that will be liked 
by the customer.  

These systems have been successful in several 
domains, but the algorithm is reported to have shown 
some limitations, such as: 

• Sparsity: Nearest neighbor algorithms rely upon 
exact matches that cause the algorithms to 
sacrifice recommender system coverage and 
accuracy (Konstan et al., 1997. Sarwar et al., 
1998). In particular, since the correlation 
coefficient is only defined between customers 
who have rated at least two products in common, 



many pairs of customers have no correlation at 
all (Billsus et al., 1998).  In practice, many 
commercial recommender systems are used to 
evaluate large product sets (e.g., Amazon.com 
recommends books and CDnow recommends 
music albums).  In these systems, even active 
customers may have rated well under 1% of the 
products (1% of 2 million books is 20,000 
books--a large set on which to have an opinion). 
Accordingly, Pearson nearest neighbor 
algorithms may be unable to make many product 
recommendations for a particular user.  This 
problem is known as reduced coverage, and is 
due to sparse ratings of neighbors.  Furthermore, 
the accuracy of recommendations may be poor 
because fairly little ratings data can be included.  
An example of a missed opportunity for quality 
is the loss of neighbor transitivity.  If customers 
Paul and Sue correlate highly, and Sue also 
correlates highly with Mike, it is not necessarily 
true that Paul and Mike will correlate.  They may 
have too few ratings in common or may even 
show a negative correlation due to a small 
number of unusual ratings in common. 

• Scalability:  Nearest neighbor algorithms require 
computation that grows with both the number of 
customers and the number of products. With 
millions of customers and products, a typical 
web-based recommender system running 
existing algorithms will suffer serious scalability 
problems.   

• Synonymy: In real life scenario, different product 
names can refer to the similar objects. 
Correlation based recommender systems can't 
find this latent association and treat these 
products differently. For example, let us consider 
two customers one of them rates 10 different 
recycled letter pad products as "high" and 
another customer rates 10 different recycled 
memo pad products "high". Correlation based 
recommender systems would see no match 
between product sets to compute correlation and 
would be unable to discover the latent 
association that both of them like recycled office 
products.     

3 Applying SVD for Collaborative Filtering   

The weakness of Pearson nearest neighbor for large, 
sparse databases led us to explore alternative 
recommender system algorithms.  Our first approach 
attempted to bridge the sparsity by incorporating 
semi-intelligent filtering agents into the system 
(Sarwar et al., 1998, Good et al., 1999). These agents 

evaluated and rated each product, using syntactic 
features.  By providing a dense ratings set, they 
helped alleviate coverage and improved quality. The 
filtering agent solution, however, did not address the 
fundamental problem of poor relationships among 
like-minded but sparse-rating customers. We 
recognized that the KDD research community had 
extensive experience learning from sparse databases.  
After reviewing several KDD techniques, we decided 
to try applying Latent Semantic Indexing (LSI) to 
reduce the dimensionality of our customer-product 
ratings matrix.  

LSI is a dimensionality reduction technique that has 
been widely used in information retrieval (IR) to 
solve the problems of synonymy and polysemy 
(Deerwester et al. 1990).  Given a term-document-
frequency matrix, LSI is used to construct two 
matrices of reduced dimensionality.  In essence, these 
matrices represent latent attributes of terms, as 
reflected by their occurrence in documents, and of 
documents, as reflected by the terms that occur 
within them. We are trying to capture the 
relationships among pairs of customers based on 
ratings of products.  By reducing the dimensionality 
of the product space, we can increase density and 
thereby find more ratings. Discovery of latent 
relationship from the database may potentially solve 
the synonymy problem in recommender systems. 
LSI, which uses singular value decomposition as its 
underlying matrix factorization algorithm, maps 
nicely into the collaborative filtering recommender 
algorithm challenge. Berry et al. (1995) point out that 
the reduced orthogonal dimensions resulting from 
SVD are less noisy than the original data and capture 
the latent associations between the terms and 
documents.  Earlier work (Billsus et al. 1998) took 
advantage of this semantic property to reduce the 
dimensionality of feature space.  The reduced feature 
space was used to train a neural network to generate 
predictions. The rest of this section presents the 
construction of SVD-based recommender algorithm 
for the purpose of generating predictions and top-N 
recommendations; the following section describes 
our experimental setup, evaluation metrics, and 
results. 

3.1 Singular Value Decomposition (SVD) 

SVD is a well-known matrix factorization technique 
that factors an m × n matrix R into three matrices as 
the following: 

 

Where, U and V are two orthogonal matrices of size 
m × r and n × r respectively; r is the rank of the 
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matrix R.  S is a diagonal matrix of size r × r having 
all singular values of matrix R as its diagonal entries.  
All the entries of matrix S are positive and stored in 
decreasing order of their magnitude.  The matrices 
obtained by performing SVD are particularly useful 
for our application because of the property that SVD 
provides the best lower rank approximations of the 
original matrix R, in terms of Frobenius norm. It is 
possible to reduce the r × r matrix S to have only k 
largest diagonal values to obtain a matrix Sk, k < r. If 
the matrices U and V are reduced accordingly, then 
the reconstructed matrix Rk = Uk.Sk.Vk′ is the closest 
rank-k matrix to R. In other words, Rk minimizes the 
Frobenius norm ||R- Rk|| over all rank-k matrices.   

We use SVD in recommender systems to perform 
two different tasks: First, we use SVD to capture 
latent relationships between customers and products 
that allow us to compute the predicted likeliness of a 
certain product by a customer. Second, we use SVD 
to produce a low-dimensional representation of the 
original customer-product space and then compute 
neighborhood in the reduced space. We then used 
that to generate a list of top-N product 
recommendations for customers. The following is a 
description of our experiments. 

3.1.1 Prediction Generation 

We start with a customer-product ratings matrix that 
is very sparse, we call this matrix R. To capture 
meaningful latent relationship we first removed 
sparsity by filling our customer-product ratings 
matrix.  We tried two different approaches: using the 
average ratings for a customer and using the average 
ratings for a product.  We found the product average 
produce a better result.  We also considered two 
normalization techniques: conversion of ratings to z-
scores and subtraction of customer average from each 
rating.  We found the latter approach to provide 
better results. After normalization we obtain a filled, 
normalized matrix Rnorm. Essentially, Rnorm = R+NPR, 
where NPR is the fill-in matrix that provides naive 
non-personalized recommendation. We factor the 
matrix Rnorm and obtain a low-rank approximation 
after applying the following steps described in 
(Deerwester et al. 1990): 

• factor Rnorm using SVD to obtain U, S and V. 

• reduce the matrix S to dimension k 

• compute the square-root of the reduced 
matrix Sk, to obtain Sk

1/2 

• compute two resultant matrices: UkSk
1/2 and 

Sk
1/2Vk′  

These resultant matrices can now be used to compute 
the recommendation score for any customer c and 
product p.  We observe that the dimension of UkSk

1/2 
is m × k and the dimension of Sk

1/2Vk′  is k × n.  To 
compute the prediction we simply calculate the dot 
product of the cth row of UkSk

1/2 and the pth column of 
Sk

1/2Vk′  and add the customer average back using the 
following: 

)(.)(. PVScSUCC kkkKPpred
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Note that even though the Rnorm matrix is dense, the 
special structure of the matrix NPR allows us to use 
sparse SVD algorithms (e.g., Lanczos) whose 
complexity is almost linear to the number of non-
zeros in the original matrix R.  

3.1.2 Recommendation generation 

In our second experiment, we look into the prospects 
of using low-dimensional space as a basis for 
neighborhood formation and using the neighbors’ 
opinions on products they purchased we recommend 
a list of N products for a given customer. For this 
purpose we consider customer preference data as 
binary by treating each non-zero entry of the 
customer-product matrix as "1". This means that we 
are only interested in whether a customer consumed a 
particular product but not how much he/she liked that 
product.   

Neighborhood formation in the reduced space: 

The fact that the reduced dimensional representation 
of the original space is less sparse than its high-
dimensional counterpart led us to form the 
neighborhood in that space. As before, we started 
with the original customer-product matrix A, and then 
used SVD to produce three decomposed matrices U, 
S, and V. We then reduced S by retaining only k 
eigenvalues and  obtained Sk. Accordingly, we 
performed dimensionality reduction to obtain Uk  and 
Vk. Like the previous method, we finally computed 
the matrix product UkSk

1/2. This m × k matrix is the k 
dimensional representation of m customers. We then 
performed vector similarity (cosine similarity) to 
form the neighborhood in that reduced space.  

Top-N Recommendation generation: 

Once the neighborhood is formed we concentrate on 
the neighbors of a given customer and analyze the 
products they purchased to recommend N products 
the target customer is most likely to purchase. After 
computing the neighborhood for a given customer C, 
we scan through the purchase record of each of the k 
neighbors and perform a frequency count on the 



products they purchased. The product list is then 
sorted and most frequently purchased N items are 
returned as recommendations for the target customer. 
We call this scheme most frequent item 
recommendation.   

3.1.3 Sensitivity of Number of Dimensions k 

The optimal choice of the value k is critical to high-
quality prediction generation. We are interested in a 
value of k that is large enough to capture all the 
important structures in the matrix yet small enough to 
avoid overfitting errors. We experimentally find a 
good value of k by trying several different values. 

3.1.4 Performance Implications 

In practice, e-commerce sites like amazon.com 
experiences tremendous amount of customer visits 
per day. Recommending products to these large 
number of customers in real-time requires the 
underlying recommendation engine to be highly 
scalable. Recommendation algorithms usually divide 
the prediction generation algorithm into two parts: 
offline component and online component. Offline 
component is the portion of the algorithm that 
requires an enormous amount of computation e.g., 
the computation of customer-customer correlation in 
case of correlation-based algorithm. Online 
component is the portion of the algorithm that is 
dynamically computed to provide predictions to 
customers using data from stored offline component. 
In case of SVD-based recommendation generation, 
the decomposition of the customer-product matrix 
and computing the reduced user and item matrices 
i.e., UkSk

1/2 and Sk
1/2Vk′  can be done offline.  

Offline computation is not very critical to the 
performance of the recommender system. But there 
are some issues with the memory and secondary 
storage requirement that need to be addressed. In case 
of SVD, the offline component requires more time 
compared to the correlation-based algorithm. For an 
m × n matrix the SVD decomposition requires a time 
in the order of O((m+n)3)  (Deerwester et. al., 1990). 
Computation of correlation takes O(m2.n). In terms of 
storage, however, SVD is more efficient, we need to 
store just two reduced customer and product matrices 
of size m × k and k × n respectively, a total of 
O(m+n), since k is constant. But in case of the 
correlation-based CF algorithm, an m × m all-to-all 
correlation table must be stored requiring O(m2) 
storage, which can be substantially large with 
millions of customers and products.  

So, we observe that as a result of dimensionality 
reduction SVD based online performance is much 

better than correlation based algorithms. For the same 
reason, neighborhood formation is also much faster 
when done in low dimensional space.  

4 Experiments 

4.1 Experimental Platform 

4.1.1 Data sets 

As mentioned before we report two different 
experiments. In the first experiment we used data 
from our MovieLens recommender system to 
evaluate the effectiveness of our SVD-based 
prediction generation algorithm.  MovieLens 
(www.movielens.umn.edu) is a web-based research 
recommender system that debuted in Fall 1997.  Each 
week hundreds of users visit MovieLens to rate and 
receive recommendations for movies. The site now 
has over 35000 users who have expressed opinions 
on 3000+ different movies.1 We randomly selected 
enough users to obtain 100,000 rating-records from 
the database (we only considered users that had rated 
twenty or more movies). Rating-record in this context 
is defined to be a triplet <customer, product, rating>. 
We divided the rating-records into training set and a 
test set according to different ratios. We call this 
training ratio and denote it by x. A value of x=0.3 
indicates that we divide the 100,000 ratings data set 
into 30,000 train cases and 70,000 test cases.  The 
training data was converted into a user-movie matrix 
R that had 943 rows (i.e., 943 users) and 1682 
columns (i.e., 1682 movies that were rated by at least 
one of the users).  Each entry ri,j represented the 
rating (from 1 to 5) of the ith user on the jth movie.   

The second experiment is designed to test the 
effectiveness of “neighborhood formed in low 
dimensional space”. In addition to the above movie 
data, we used historical catalog purchase data from a 
large e-commerce company. This data set contains 
purchase information of 6,502 users on 23,554 
catalog items. In total, this data set contains 97,045 
purchase records. In case of the commerce data set, 
each record is a triplet <customer, product, purchase 
amount>. Since, purchase amount can’t be 
meaningfully converted to user rating, we didn’t use 
the second data set for prediction experiment. We 

                                                        
1 In addition to MovieLens' users, the system includes over 
two million ratings from more than 45,000 EachMovie 
users.  The EachMovie data is based on a static collection 
made available for research by Digital Equipment 
Corporation's Systems Research Center.   



converted all purchase amounts to “1” to make the 
data set binary and then used it for recommendation 
experiment. As before, we divided the data set into a 
train set and a test set by using similar notion of 
training ratio, x. 

4.1.2 Benchmark recommender systems  
To compare the performance of SVD-based 
prediction we also entered the training ratings set into 
a collaborative filtering recommendation engine that 
employs the Pearson nearest neighbor algorithm. For 
this purpose we implemented CF-Predict, a flexible 
recommendation engine that implements 
collaborative filtering algorithms using C. We tuned 
CF-Predict to use the best published Pearson nearest 
neighbor algorithm and configured it to deliver the 
highest quality prediction without concern for 
performance (i.e., it considered every possible 
neighbor to form optimal neighborhoods). To 
compare the quality of SVD neighborhood-based 
recommendations, we implemented another 
recommender system that uses cosine-similarity in 
high dimensional space to form neighborhood and 
returns top-N recommendations, we call it CF-
Recommend. We used cosine measure for building 
neighborhood in both cases because in the low 
dimensional space proximity is measured only by 
computing the cosine. 

For each of the ratings in the test data set, we 
requested a prediction from CF-Predict and also 
computed the same prediction from the matrices 
UkSk

1/2 and Sk
1/2Vk′  and compared them. Similarly, we 

compared two top-N recommendation algorithms.  

4.2 Evaluation Metrics 

Recommender systems research has used several 
types of measures for evaluating the success of a 
recommender system. We only consider the quality 
of prediction or recommendation, as we're only 
interested in the output of a recommender system for 
the evaluation purpose. It is, however, possible to 
evaluate intermediate steps (e.g., the quality of 
neighborhood formation). Here we discuss two types 
of metrics for evaluating predictions and top-N 
recommendations respectively.   

4.2.1 Prediction evaluation metrics 

 To evaluate an individual item prediction researchers 
use the following metrics: 

§ Coverage metrics evaluate the number of 
products for which the system could provide 
recommendations.  Overall coverage is 

computed as the percentage of customer-product 
pairs for which a recommendation can be made.   

§ Statistical accuracy metrics evaluate the accuracy 
of a system by comparing the numerical 
recommendation scores against the actual 
customer ratings for the customer-product pairs 
in the test dataset.  Mean Absolute Error (MAE), 
Root Mean Squared Error (RMSE) and 
Correlation between ratings and predictions are 
widely used metrics. Our experience has shown 
that these metrics typically track each other 
closely.  

§ Decision support accuracy metrics evaluate how 
effective a prediction engine is at helping a user 
select high-quality products from the set of all 
products.  These metrics assume the prediction 
process as a binary operation— either products 
are predicted (good) or not (bad).  With this 
observation, whether a product has a prediction 
score of 1.5 or 2.5 on a five-point scale is 
irrelevant if the customer only chooses to 
consider predictions of 4 or higher.  The most 
commonly used decision support accuracy 
metrics are reversal rate, weighted errors and 
ROC sensitivity (Le et al., 1995)  

We used MAE as our choice of evaluation metric to 
report prediction experiments because it is most 
commonly used and easiest to interpret directly. In 
our previous experiments (Sarwar et al., 1999) we 
have seen that MAE and ROC provide the same 
ordering of different experimental schemes in terms 
of prediction quality. 

4.2.2 Recommendation evaluation metrics 

To evaluate top-N recommendation we use two 
metrics widely used in the information retrieval (IR) 
community namely recall and precision. However, 
we slightly modify the definition of recall and 
precision as our experiment is different from standard 
IR. We divide the products into two sets: the test set 
and top-N set. Products that appear in both sets are 
members of the hit set. We now define recall and 
precision as the following:  

§ Recall in the context of the recommender 
system is defined as: 

§ Precision is defined as: 
test

top Ntest
 

st setsize of te
t setsize of hiRecall

I==  

N

topNtest
 

pN setsize of to
t setsize of hi

Precision
I==   



These two measures are, however, often conflicting 
in nature. For instance, increasing the number N 
tends to increase recall but decreases precision. The 
fact that both are critical for the quality judgement 
leads us to use a combination of the two. In 
particular, we use the standard F1 metric (Yang et. 
al., 1999) that gives equal weight to them both and is 
computed as follows: 

 We compute F1 for each individual customer and 
calculate the average value to use as our metric. 

4.3 Experimental Steps 

4.3.1 Prediction Experiment. 

Each entry in our data matrix R represents a rating on 
a 1-5 scale, except that in cases where the user i 
didn’t rate movie j the entry ri,j is null. We then 
performed the following experimental steps. 

We computed the average ratings for each user and 
for each movie and filled the null entries in the 
matrix by replacing each null entry with the column 
average for the corresponding column. Then we 
normalized all entries in the matrix by replacing each 
entry ri,j with (ri,j - ri ), where, ri is the row average of 
the ith row.  Then MATLAB was used to compute the 
SVD of the filled and normalized matrix R, 
producing the three SVD component matrices U, S 
and V'.  S is the matrix that contains the singular 
values of matrix R sorted in decreasing order. Sk was 
computed from S by retaining only k largest singular 
values and replacing the rest of the singular with 0. 
We computed the square root of the reduced matrix 
and computed the matrix products UkSk

1/2 and Sk
1/2V'k  

as mentioned above. We then multiplied the matrices 
UkSk

1/2 and Sk
1/2V'k  producing a 943 x 1682 matrix, P.  

Since the inner product of a row from UkSk
1/2 and a 

column from Sk
1/2Vk gives us a prediction score, each 

entry pij of this resultant matrix P holds the prediction 
score for each user-movie pair i,j. We then de-
normalized the matrix entries by adding the user 
average back into each prediction scores and loaded 
the training set ratings into CF-Predict and request 
prediction scores on each of the test set ratings. 
Computed MAE of the SVD and the CF-Predict 
prediction scores and compare the two sets of results. 

We repeated the entire process for k = 2, 5-21, 25, 50 
and 100, and found 14 to be the most optimum value 
(Figure 3(a)). We then fixed k at 14 and varied the 
train/test ratio x from 0.2 to 0.95 with an increment of 
0.05 and for each point we run the experiment 10 
times each time choosing different training/test sets 
and take the average to generate the plots. Note that 
the overall performance of the SVD-based prediction 
algorithm does significantly change for a wide range 
of values of k. 

4.3.2 Top-N recommendation experiment: 

We started with a matrix as the previous experiment 
but converted the rating entries (i.e., non-zero entries) 
to "1". Then we produced top-10 product 
recommendations for each customer based on the 
following two schemes: 

§ High dimensional neighborhood: In this scheme 
we built the customer neighborhood in the 
original customer-product space and used most 
frequent item recommendation to produce top-10 
product list. We then used our F1 metric to 
evaluate the quality. 

§ Low dimensional neighborhood: We first reduce 
the dimensionality of the original space by 
applying SVD and then used UkSk

1/2 (i.e., 
representation of customers in k dimensional 
space) matrix to build the neighborhood. As 
before we used most frequent item 
recommendation to produce top-10 list and 
evaluated by using F1 metric. 

In this experiment our main focus was on the E-
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Figure 3. (a) Determination of optimum value of k. (b) SVD vs. CF-Predict prediction quality 



commerce data. We also report our findings when we 
apply this technique on our movie preference data. 

4.4 Results  

4.4.1Prediction experiment results 

Figure 3(b) charts our results for the prediction 
experiment. The data sets were obtained from the 
same sample of 100,000 ratings, by varying the sizes 
of the training and test data sets, (recall that x is the 

ratio between the size of the training set and the size 
of the entire data set). Note that the different values 
of x were used to determine the sensitivity of the 
different schemes on the sparsity of the training set. 

4.4.2 Top-N recommendation experiment 
results 

For the recommendation experiment, we first 

determined the optimum x ratio for both of our data 
sets in high dimensional and low dimensional cases. 
At first we run the high dimensional experiment for 
different x ratio and then we perform low 
dimensional experiments for different x values for a 
fixed dimension (k) and compute the F1 metric. 
Figure 4 shows our results, we observe that optimum 
x values are 0.8 and 0.6 for the movie data and the E-
commerce data respectively.  

Once we obtain the best x value, we run high 
dimensional experiment for that x and compute F1 

metric. Then we run our low-dimensional 
experiments for that x ratio, but vary the number of 
dimension, k. Our results are presented in figures 5 
and 6. We represent the corresponding high 
dimensional results (i.e., results from CF-
recommend)  in the chart by drawing vertical lines at 
their corresponding values.  
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4.5 Discussion 
In case of the prediction experiment, we observe that 
in Figure 3(b) for x<0.5 SVD-based prediction is 
better than the CF-Predict predictions. For x>0.5, 
however, the CF-Predict predictions are slightly 
better. This suggests that nearest-neighbor based 
collaborative filtering algorithms are susceptible to 
data sparsity as the neighborhood formation process 
is hindered by the lack of enough training data. On 
the other hand, SVD based prediction algorithms can 
overcome the sparsity problem by utilizing the latent 
relationships. However, as the training data is 
increased both SVD and CF-Predict prediction 
quality improve but the improvement in case of CF-
Predict surpasses the SVD improvement.  

 From the plots of the recommender results (Figures 5 
and 6), we observe that for the movie data the best 
result happens in the vicinity of k=20 and in case of 

the e-commerce data the recommendation quality 
keeps on growing with increasing dimensions. The 
movie experiment reveals that the low dimensional 
results are better than the high dimensional 
counterpart at all values of k. In case of the e-
commerce experiment the high dimensional result is 
always better, but as more and more dimensions are 
added low dimensional values improve. However, we 
increased the dimension values up to 700, but the low 
dimensional values were still lower than the high 
dimensional value. Beyond 700 the entire process 
becomes computationally very expensive. Since the 
commerce data is very high dimensional 
(6502x23554), probably such a small k value (up to 
700) is not sufficient to provide a useful 

approximation of the original space. Also another 
factor to consider is the amount of sparsity in the data 
sets, the movie data is 95.4% sparse (100,000 
nonzero entries in 943x1,682 matrix), while the e-
commerce data is 99.996% sparse (97,045 nonzero 
entries in 6,502x23,554 matrix). To test this 
hypothesis we deliberately increased sparsity of our 
movie data (i.e., remove nonzero entries) and 
repeated the experiment and observed dramatic 
reduction in F1 values!  

Overall, the results are encouraging for the use of 
SVD in collaborative filtering recommender systems.  
The SVD algorithms fit well with the collaborative 
filtering data, and they result in good quality 
predictions. And SVD has potential to provide better 
online performance than correlation-based systems. 
In case of the top-10 recommendation experiment we 
have seen even with a small fraction of dimension, 
i.e., 20 out of 1682 in movie data, SVD-based 

recommendation quality was better than 
corresponding high dimensional scheme. It indicates 
that neighborhoods formed in the reduced 
dimensional space are better than their high 
dimensional counterparts.2  

                                                        
2 We’re also working with experiments to use the reduced 
dimensional neighborhood for prediction generation using 
classical CF algorithm. So far, the results are encouraging. 
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5 Conclusions 

Recommender systems are a powerful new 
technology for extracting additional value for a 
business from its customer databases.  These systems 
help customers find products they want to buy from a 
business.  Recommender systems benefit customers 
by enabling them to find products they like.  
Conversely, they help the business by generating 
more sales.  Recommender systems are rapidly 
becoming a crucial tool in E-commerce on the Web.   

Recommender systems are being stressed by the huge 
volume of customer data in existing corporate 
databases, and will be stressed even more by the 
increasing volume of customer data available on the 
Web.  New technologies are needed that can 
dramatically improve the scalability of recommender 
systems.  

Our study shows that Singular Value Decomposition 
(SVD) may be such a technology in some cases.  We 
tried several different approaches to using SVD for 
generating recommendations and predictions, and 
discovered one that can dramatically reduce the 
dimension of the ratings matrix from a collaborative 
filtering system. The SVD-based approach was 
consistently worse than traditional collaborative 
filtering in se of an extremely sparse e-commerce 
dataset.  However, the SVD-based approach 
produced results that were better than a traditional 
collaborative filtering algorithm some of the time in 
the denser MovieLens data set.  This technique leads 
to very fast online performance, requiring just a few 
simple arithmetic operations for each 
recommendation. Computing the SVD is expensive, 
but can be done offline. Further research is needed to 
understand how often a new SVD must be computed, 
or whether the same quality can be achieved with 
incremental SVD algorithms (Berry et. al., 1995).  

Future work is required to understand exactly why 
SVD works well for some recommender applications, 
and less well for others.  Also, there are many other 
ways in which SVD could be applied to 
recommender systems problems, including using 
SVD for neighborhood selection, or using SVD to 
create low-dimensional visualizations of the ratings 
space.   
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