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ABSTRACT 
This paper describes the implementation of advice weaving in 
AspectJ.  The AspectJ language picks out dynamic join points in a 
program's execution with pointcuts and uses advice to change the 
behavior at those join points.  The core task of AspectJ's advice 
weaver is to statically transform a program so that at runtime it 
will behave according to the AspectJ language semantics.  This 
paper describes the 1.1 implementation which is based on 
transforming bytecode.  We describe how AspectJ’s join points 
are mapped to regions of bytecode, how these regions are 
efficiently matched by AspectJ's pointcuts, and how pieces of 
advice are efficiently implemented at these regions.  We also 
discuss both run-time and compile-time performance of this 
implementation. 

Categories and Subject Descriptors 
D.3.3 [Programming Languages]: Language Implementation and 
compilers 

General Terms 
Performance, Design, Languages 

Keywords 
Aspect-orientation, bytecode, AspectJ, compilers, weaving 

1. INTRODUCTION 
There have been three books [9],[5],[11] and numerous articles 
[7],[8] written about the AspectJ language [1], but this is the first 
discussion of the implementation concerns for AspectJ.  Every 
AOP language implementation must ensure that aspect and non-
aspect code run together in a properly coordinated fashion.  A 
central part of this coordination, advice weaving, ensures that 
advice runs at the appropriate join points as specified by the 
program.  This paper describes the implementation of advice 
weaving in AspectJ. 

We begin with an overview of the AspectJ 1.1 compiler. Then 
move on to discuss join point shadows, the process of matching 
advice to join point shadows, and the process of implementing 
advice at matched shadows.  We finish with performance results 
and benchmarks, and a discussion of related work. 

This paper does not cover the entire AspectJ compiler.  AspectJ 
contains other crosscutting features than advice, such as inter-type 
declarations, declare parents, declare soft, privileged 
aspects and non-singleton aspect instances (per* aspects).  

We do cover our implementation of declare error and 
declare warning, which are implemented through the advice 
framework. 

2. THE COMPILATION PROCESS 
The AspectJ compiler accepts both AspectJ bytecode and source 
code and produces pure Java bytecode as a result.  Internally it has 
two stages.  The front-end compiles both AspectJ and pure Java 
source code into pure Java bytecode annotated with additional 
attributes representing any non-java forms such as advice and 
pointcut declarations.  The back-end of the AspectJ compiler–the 
part that the majority of this paper covers–implements the 
transformations encoded in these attributes to produce woven 
class files.  The back-end can be run stand-alone to weave pre-
compiled aspects into pre-compiled .jar files.  In addition, the 
back-end exposes a weaving API which can be used to implement 
ClassLoaders that will weave advice into classes dynamically as 
they are loaded by the virtual machine.  This API has been used to 
implement dynamic weaving of classes within the eclipse IDE 
[13]. 

2.1  Source File Compilation 
The front-end of the AspectJ compiler is implemented as an 
extension of the Java compiler from eclipse.org [6].  The source-
file portion of the AspectJ compiler is made complicated by inter-
type declarations, declare parents, declare soft, and 
privileged aspects.  All of these constructs require considerable 
changes to the underlying compiler to modify Java’s name-
binding and static checking behavior. 

However, the compilation of advice is relatively simple.  Each 
advice declaration is compiled into a standard Java method.   The 
parameters of this new method are the parameters of the advice, 
possibly extended with thisJoinPoint reflective information as 
described in section 2.1.1.  The body of the method is the same as 
the body of the advice with special handling for proceed in 
around advice described in section 2.1.2. 
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For example, the following advice declaration 
before(String s): execution(void go(*)) && args(s) 
{ 
    System.out.println(s); 
}  

is compiled into a method encapsulating the body of the advice  
public void ajc$before$A$a9(); 
0: getstatic [java/lang/System.out] 
3: aload_1 
4: invokevirtual [java/io/PrintStream.println] 
7: return 

The method is annotated with an additional attribute to indicate 
that this corresponds to an advice declaration, to store the pointcut 
referred to by the advice, and to store additional information 
relevant to thisJoinPoint and proceed.  For example, our 
implementation of around advice needs to know if the advice’s 
body contains a call to proceed inside a nested type; the front 
end transmits that information to the back end through this 
attribute.  This attribute is encoded as a standard Java bytecode 
attribute [JVM v2 4.7] to be compatible with all JVMs. 

All of the parameters to the advice are statically typed and the 
weaving process guarantees that the advice will only be called 
with appropriate values.  This static type checking in the face of 
dynamic matching is an important property of AspectJ’s 
compilation model. 

2.1.1 thisJoinPoint and variants 
Within the body of an advice declaration, three special variables 
are exposed that can be used to reflectively discover both static 
and dynamic information about the current join point.  The most 
common use of these variables is in tracing and logging 
applications.  At compile-time, these variables are implemented 
by extending the signature of the advice method with three 
additional parameters: 
 (…, JoinPoint thisJoinPoint, 
  JoinPoint.StaticPart thisJoinPointStaticPart, 
  JoinPoint.StaticPart   
               thisEncolsingJoinPointStaticPart) 

This reflective information can be very expensive to compute. The 
most expensive part is the creation of an object array to hold the 
args, which may need to be converted from primitive values.  This 
overhead, however, need only be present when the advice requires 
the information.  So an important performance optimization the 
AspectJ compiler performs is to remove from the signature any 
special variables that are not referred to within the body of the 
advice. 

A separate optimization will determine if all uses of thisJoinPoint 
can be replaced with thisJoinPointStaticPart.  If this is true, then 
references to thisJoinPoint are replaced with references to 
thisJoinPointStaticPart to avoid the creation of a JoinPoint object 
at every matching dynamic point in the program’s execution. 

2.1.2 proceed 
Around advice in AspectJ uses the special form proceed to 
continue with the normal flow of execution at the corresponding 
join point.  In the front-end, this special form is implemented by 
generating a method which takes in all of the original arguments 
to the around method plus an additional AroundClosure object 
that encapsulates the normal flow of execution which has been 

interrupted by the advice.  The body of the proceed method will 
call a method on the AroundClosure to continue with the 
execution, passing in any parts of the state that have been 
modified by the around advice. 

2.2 Bytecode transformation 
The back-end of the AspectJ compiler instruments the code of the 
system by inserting calls to the precompiled advice methods.  It 
does this by considering that certain principled places in bytecode 
represent possible join points; these are the “static shadow” of 
those join points.  For each such static shadow, it checks each 
piece of advice in the system and determines if the advice's 
pointcut could match that static shadow.  If it could match, it 
inserts a call to the advice’s implementation method guarded by 
any dynamic testing needed to ensure the match.   

For example, consider the simple before advice in 2.1.  The 
pointcut on this advice specifies that it should be run before the 
execution of every void method named go when called with a 
single String argument.  The weaver must instrument the bytecode 
to insert calls to the before advice whenever this condition is met. 

For example, consider the following empty method: 
void go(java/lang/Object): 
0: return 

The weaver can statically determine that an execution of this 
method may match the pointcut and cause the advice to execute.  
However, a dynamic test must be inserted to check whether or not 
the type of the argument to the method is a String and only invoke 
the before advice when this condition is met.  This will produce 
the following woven code: 
void go(java/lang/Object): 
0:  aload_1     # defensive copy of first argument 
1:  astore_2    # into temporary frame location 
2:  aload_2               # check whether argument 
3:  instanceof [String]   # is actually a String 
6:  ifeq 19           # if not, skip advice 
9:  invokestatic  [A.aspectOf]        # get aspect 
12: aload_2      # load argument again 
13: checkcast [String]  # guaranteed to succeed 
16: invokevirtual [A.ajc$before$A$a3] # run advice 
19: return 

In order to achieve good performance in woven code, the weaver 
needs to eliminate these kinds of dynamic checks whenever 
possible.  For example, if the static type of go’s parameter is 
Number, the weaver can statically determine that the pointcut can 
never match this join point and no code will be woven.  On the 
other hand, if the static type of go’s parameter is String then the 
dynamic tests can be eliminated resulting in a direct call to the 
advice: 
void go(java/lang/String): 
0: invokestatic  [A.aspectOf] 
3: invokevirtual [A.ajc$before$A$a3] 
6: return 

AspectJ advice is always run in the context of an aspect 
instance—thus the advice method is non-static.  By default aspect 
instances are singletons accessed through the aspectOf static 
method.  AspectJ does allow non-singleton aspect instances 
through per* clauses, but they are beyond the scope of this paper. 

We will describe the matching and weaving processes in more 
detail in sections 4 and 5 respectively. 



3. Join point shadows 
In the AspectJ language model, a join point is a point in the 
dynamic call graph of a running program where the behavior of 
the program can be modified by advice.  Every dynamic join point 
has a corresponding static shadow in the source code or bytecode 
of the program.  The AspectJ compiler inserts code at these static 
shadows in order to modify the dynamic behavior of the program.  
The other possible implementation would be to modify the JVM 
or to use runtime hooks as provided by the debugging APIs to 
more directly match the dynamic join point model in the AspectJ 
language. 

3.1 What defines a join point shadow? 
There are 11 kinds of join point shadows in AspectJ-1.1, and 
these are all shown in Table 1.  That table also includes two join 
points that have been proposed for future versions of the language 
to show the extensibility of the model. 

Every join point shadow is defined by a kind, a signature, and a 
region of bytecode.  Each shadow also has a source location that 
is given by the SourceFile attribute of the enclosing class file 
[JVM v2 4.7.7], and whose line number is determined from the 
LineNumberTable attribute [JVM v2 4.7.8]. 

Almost all join point shadows can be clearly defined in terms of a 
bounded region of bytecode.  There are a few exceptions.  
Initialization shadows require all constructors within a method to 
be inlined in order for their bytecode segment to be correct.  This 
is done lazily only if needed.  In addition, exception-handler 
shadows do not have a clearly defined end-point. 

Each join point also exposes up to three pieces of state. 

• this – the currently executing object.  In a static context this is 
always none, and in an instance context this can always be 
found with aload_0. 

• target – the target object of the join point 

• args – the arguments to the join point 

This state can be used for matching and exposed by the pointcut 
designator language in AspectJ.  It can also be accessed through a 
reflective object which exposes only the static part of the context 
(thisJoinPointStaticPart) or all of the state including this, target 
and args (thisJoinPoint).  

3.2 The shadows of “hello world” 
Let's look at the bytecode for a simple hello world program: 
0: getstatic [java/lang/System.out] 
3: ldc       [String hello world] 
5: invokevirtual [java/io/PrintStream.println] 
8: return 

There are three shadows in this short program.  The previous 
section discussed the method-execution shadow which is wrapped 
around all of the code above from #0-#8.  Next is the field-get 
shadow which is represented by the single bytecode at #0.  The 
third shadow is for the method-call at #5. 

Weaving advice into this method-call shadow is straight-forward 
and very similar to weaving into a method-execution shadow as 
described before.  In this case, the inserted call must go before the 
invokevirtual instruction rather than at the beginning of the 
method, e.g. 

Table 1. Join point shadow kinds 

kind signature this target args Bytecode shadow 

Method-execution method ALOAD_0 
or none Same as this Local vars Entire code segment of method 

Method-call method ALOAD_0 
or none From stack  From stack Invokeinterface, invokespecial (only for 

privates), invokestatic, invokevirtual 

Constructor-execution constructor ALOAD_0 Same as this Local vars Code segment of <init> after call to super 

Constructor-call Constructor ALOAD_0 
or none None From stack Invokespecial (plus some extra pieces) 

Field-get Field ALOAD_0 
or none From stack none Getfield or getstatic 

Field-set Field ALOAD_0 
or none From stack From stack Putfield or putstatic 

Advice-execution None ALOAD_0 Same as this Local vars Code segment of corresponding method 

Initialization Corresponding 
constructor ALOAD_0 Same as this Complex Requires in-lining of all constructors in a 

given class into one 

Static-initialization Typename None None None Code segment of <clinit> 

Pre-initialization Corresponding 
constructor None None Local vars Code segment of <init> before call to 

super, this may require in-lining 

Exception-handler Typename of 
exception 

ALOAD_0 
or none None From stack 

Start is found from exception handler table.  
(only before advice allowed because end is 

poorly defined in bytecode) 
Exception-throws 

(not in AspectJ-1.1) 
Typename of 

exception 
ALOAD_0 

or none None From stack athrow 

Synchronized-block 
(not in AspectJ-1.1) 

Typename of 
lock object 

ALOAD_0 
or none None From stack Code between monitorenter/monitorexit 

pair 
 



 

0: getstatic [java/lang/System.out] 
3: ldc       [String hello world] 
  5: invokestatic  [A.aspectOf] 
  8: invokevirtual [A.ajc$before$A$15a] 
11: invokevirtual [java/io/PrintStream.println] 
14: return 

Here the call to the advice has been inserted just before the 
invokevirtual instruction corresponding to the shadow. 

3.2.1 Exposing state for method-call 
Exposing state at a method call is slightly more difficult because 
the target and args are sitting on the stack rather than in local 
variables.  If we need to expose this state, then we will need to 
pull this information off of the stack into temporary variables, use 
these variables to provide the state to the advice, and then push 
these variables back onto the stack to make the original call, i.e. 
0: getstatic [java/lang/System.out] 
3: ldc       [String hello world] 
  5: astore_1 
  6: astore_2 
  7: invokestatic  [A.aspectOf] 
  10: aload_2 
  11: invokevirtual [A.ajc$before$A$15a] 
  14: aload_2 
  15: aload_1 
16: invokevirtual [java/io/PrintStream.println] 
19: return 

• 5-6 – store the contents of the stack in local variables 

• 10 – load the target object for the call to the advice 

• 14-15 – push the local variables back onto the stack for the 
call 

Optimization note: The size of this code could be reduced if we 
recognized that the argument to the method is a constant value.  
This standard analysis may be worth doing in the future.  
However, this optimization would need to be very conservative.  
For example, the getstatic operation can not be moved as it has 
potential side-effects if the class the field is on has not yet been 
initialized.  Any changes from this simple model must not be 
observable without inspecting the bytecodes themselves. 

4. Matching 
Advice and other advice-like entities are represented by shadow 
munger objects.  A shadow munger performs transformations on 
join point shadows matched by its contained pointcut designator 
(PCD).  There are shadow mungers for all 5 kinds of advice, 
declare error, declare warning, declare soft, control 
flow entry and exit, and per* aspect creation. 

During the weaving process, the PCD for each shadow munger is 
matched against each join point shadow in the bytecode being 
processed.  Because the AspectJ language defines a join point as a 
dynamic point in the call graph of the running program, the 
matching process might not be completely statically resolvable.  
When the PCDs depend on the dynamic state at the join point this 
mismatch is resolved by adding a dynamic test that captures the 
dynamic part of the matching.  We call this dynamic test the 
residue of the match. 

4.1 Residues 
4.1.1 If residue 
The if PCD specifies an arbitrary expression to evaluate at each 
join point.  Static matching against this PCD is always true and 
results in nothing but a dynamic residue.  The residue is 
implemented by compiling the if expression into a static test 
method in the type declaring the PCD.  If any join point state is 
required for the test, that state is passed into the new static method 
as arguments. The PCD then resolves to a dynamic test which will 
call the corresponding method.  For example, the advice 
before(): execution(void main(*))  
          && if(Tracing.level == 1) { 
    System.out.println("got here"); 
} 

when applied to our simple hello world program will result in 
0:  invokestatic [A.ajc$if_0]  # dynamic test 
3:  ifeq 12                     
  6:  invokestatic [A.aspectOf] 
  9:  invokevirtual [Method A.ajc$before$A$a6] 
12: getstatic [java/lang/System.out] 
15: ldc ["hello world"] 
17: invokevirtual java/io/PrintStream.println] 
20: return 

An interesting area for future work would be to consider partial 
evaluation optimizations for more precise static matching. 

4.1.2 Instanceof residues 
The three PCD’s this, target and args all define matching 
based on the dynamic type of the state exposed at a join point.  All 
three of these potentially add a dynamic instanceof test to join 
point shadows that they matched.  As we explained in section 2.2, 
this residue is only generated when we can’t statically determine 
that a match will always or never succeed. 

4.1.3 Cflow residue 
The cflow PCD in AspectJ allows matching join points that are 
within the dynamic control-flow of other join points.  In AspectJ-
1.1 this matching is implemented entirely as a dynamic test on the 
join point.  No static analysis is performed to try to determine 
whether a cflow match is either always or never possible.  It is 
unclear that such static analysis could be useful in anything except 
the simplest examples without requiring whole-program analysis.  
And even with whole-program analysis, there are cases in the 
presence of reflective calls where static analysis of cflow is 
impossible. 

The current implementation of cflow uses a thread-local stack to 
keep track of the entries and exits of join points that match the 
predicate join point.  This stack is updated by a shadow munger 
similarly to how advice is woven, see 5.2.5.  Matching of a cflow 
PCD is then a simple matter of testing the appropriate thread-local 
stack.  If state is exposed by the cflow PCD, that state is stored in 
the same thread-local stack described above in CFlowPlusState 
objects. 

4.2 Fastmatch 
Matching every join point shadow in every class file can be a time 
consuming process.  Section 6 shows that just this matching 
process can more than double the time to compile a large system.  
This performance issue can be even more significant for load-time 
weaving where this matching overhead can be visible to the user. 



AspectJ-1.1 uses a fastmatch pass to improve matching time.  In 
this pass, every shadow munger is matched to the constant pool 
information in each class file.  This information can be computed 
very cheaply so this is an extremely fast process.  Currently, the 
only PCD for which fastmatch is implemented is within. This is 
the easiest possible case that can be determined solely from the 
fully-qualified name of the class being matched against.  This is 
an area where we expect to see significant improvements to 
dramatically reduce weaving times in future versions of AspectJ. 

Another unimplemented optimization would be to expand the 
notion of fastmatch to determine which kinds of join points could 
be matched by the valid shadow mungers.  For example, if the 
current shadow mungers can only apply to method-execution join 
points, then performance could be significantly improved by 
never considering all of the 10 other kinds of join point shadows 
that will be present in the class file. 

4.3 Synthetic methods and matching 
Compilers for the Java language generate methods and fields that 
are not in the original source code.  This is done primarily for 
assert, the .class expression, and inner class implementation.  
These synthetic constructs are not considered join points in the 
AspectJ language model.  Therefore the implementation needs to 
use the SYNTHETIC attribute in the Java bytecode [JVMS v2 
4.7.6] to recognize and exclude these potential join point 
shadows.  

There are many additional synthetic methods added by the 
AspectJ compiler that are not described in this paper.  These 
include the implementation of inter-type declarations and per* 
aspects.  These constructs are labeled with the AJ_SYNTHETIC 
attribute that may also specify an effective signature that should 
be used to represent them for the purposes of PCD matching. 

5. Weaving 
Once the weaver has matched various shadow mungers to each 
join point shadow, the mungers themselves are implemented in 
two stages.  First, any context that is needed by any of the shadow 
mungers is exposed at the join point.  Next, each shadow munger 
is applied to the shadow, changing the bytecode to implement the 
desired behavior.  There are many different kinds of shadow 
mungers, each with a different kind of expansion. 

5.1 Context exposure 
First, all the shadow mungers are queried to determine what state 
they need and the bytecode is modified to expose that state into 
local variables.  The state needs is that exposed by the this, 
target and args PCDs.  For join point shadows where this state 
is on the frame (see Table 1. Joinpoint shadow kinds) this simply 
involves making a copy of frame contents. 

When the arguments are on the stack instead, they must be 
popped into local variables and then pushed back onto the stack to 
make the original call.  An example of this transformation for a 
method-call join point is shown in section 3.2.1.  This exposure 
step results in a join point shadow equivalent to the original 
program except that all state exposed by this, target, and args 
PCDs is in frame locations. 

If any of the shadow mungers refer to thisJoinPoint, then this 
exposure step will also include the creation of a new JoinPoint 
instance for this join point.  This object will be created with all of 
the state from this, target and args. 

Note that this context exposure is done once and only once for 
each matched join point shadow, regardless of the number of 
shadow mungers that have matched it.  

5.2 Shadow Munger Implementation 
Once a shadow is transformed to expose context, each shadow 
munger that matched the shadow is implemented in turn.  Each 
shadow munger transforms the shadow by adding code inside the 
boundary of the shadow.  This means that after one shadow 
munger is implemented, the next shadow munger to be 
implemented on the same shadow will encapsulate the shadow 
including the advice; thus, pieces of advice must be woven in 
inverse precedence order.  

5.2.1 Before Advice 
The simplest application is before advice.  It is a property of a join 
point shadow that there is only one entry point to the shadow:  
shadows in switch statements do not, for example, split across 
multiple case lines.  This means that before advice is 
comparatively easy:  We simply insert the call to the advice 
method at the beginning of the shadow.  We’ve already shown 
many examples of weaving before advice in earlier sections of this 
paper. 

5.2.2 After Returning Advice 
After returning advice is more difficult, because there are 
potentially many exit points from a shadow.  There are two cases.  
The first is that there is exactly one exit point from the shadow, 
the fallthrough to the next instruction.  This is the case for 
shadows of the call join point, for example.  The other case is that 
there are potentially many exits, but all are return bytecodes 
(return or one of its typed variants such as ireturn).  This is 
the case for shadows of the execution join point, among others. 

After returning advice on the first case simply involves inserting 
code to possibly expose the return value, if needed, and then 
calling the advice. 

In the second, more complicated, case we first process the join 
point shadow, converting the return bytecodes into gotos 
jumping to an inserted return bytecode at the end of the shadow.  
We then insert the advice call at the single return bytecode.  This 
avoids duplicating the advice invocation code.  Figure 1 shows 
the effect of weaving a piece of after returning advice on an 
implementation of factorial with two ireturn bytecodes.  

5.2.3 After Throwing Advice 
While a join point shadow may have many exit points, for after 
throwing advice the only ones we care about are abrupt exits with 
an exception.  These are simply captured by adding a new entry to 
the enclosing method’s exception handler table for the bytecode 
region corresponding to the shadow.  The code for the handler 
contains the call to the advice and is inserted at the end of the 
shadow.  A goto is inserted to branch around the handler when 
necessary. 



5.2.4 After Finally Advice 
After finally advice represents advice that should run both after 
returning and after throwing.  In previous versions of AspectJ, this 
was implemented by a finally block that was compiled using jsr 
and ret bytecodes to avoid code duplication.  In AspectJ 1.1, 
having already abstracted the advice instructions into methods, we 
are able to implement after finally advice simply as the 
composition of after returning and after throwing advice, 
duplicating the call to the advice but not the advice itself. 

5.2.5 Control Flow entry and exit 
The implementation of the cflow pointcut requires a single 
shadow mungers for the entry and exit from a particular join 
point.  Control flow entry is implemented as if it were before 
advice and control flow exit as if it were after finally advice.  
Instead of calling an advice method, however, the action taken is 
to manipulate a control-flow stack.  Note that this must be 
implemented as a single shadow munger that performs any 
dynamic tests all at the same time before entering the join point 
and stores the result in a local boolean variable.  If the dynamic 
test was performed on both entry and exit it might have different 
results leaving the control-flow stack in an inconsistent state. 

5.2.6 Around Advice 
The most complicated advice implementation is for around 
advice.  This is because around advice must completely 
encapsulate its join point shadow into its proceed call.   

Like other kinds of advice, an around advice declaration is 
compiled into a method, taking as arguments any advice 
parameters.  In addition, though, it takes one additional argument, 
an AroundClosure object.  Any calls to proceed in the body of 
the advice are represented by calls to a run method on that 
AroundClosure.  Recall also that the front end sets an attribute as 
to whether there was a call to proceed from within a nested type.   

When around advice is woven at a particular shadow the bytecode 
for the shadow is first extracted into its own method, accepting as 
arguments any free variables from the enclosing method.  How 
that method is called depends on whether the advice had a call to 
proceed from a nested type.  

If there was a proceed call in a nested type the weaver must 
assume that the call to proceed is closed over.  Therefore we 
need to create a closure object for the proceed call.  We create a 
new subclass of AroundClosure whose run method dispatches to 
the new shadow method.  In place of the shadow is left code that 
instantiates an instance of the new subclass and passes that 
instance to the around advice (in addition to any state the around 
advice requires).    

If, however, we do not need to create a closure object, we instead 
inline the around advice.  This involves copying the code for the 
advice method replacing the call to the AroundClosure’s run 
method with a call to the extracted shadow method.  This avoids 
not only the runtime cost of storing closure state, but also the cost 
of generating a new class.  

5.2.7 Declare warning and error 
These are matched to join points in the same way as advice.  
However, instead of modifying the bytecode for the join point, 
they generate a message to the user indicating either a warning or 
an error.  There is a restriction in the language that these 
constructs can’t use any PCDs that could produce a dynamic 
residue as part of their matching process. 

5.3 Why we don’t inline advice code 
The primary performance overhead of AspectJ code is caused by 
the aspect-instance lookup and method call.  This overhead could 
be eliminated if the weaver would inline the advice code directly 
into the join point.  Previous versions of AspectJ used this 
implementation strategy. 

Inlining can be done much more effectively by a JIT than by a 
tool that has to follow Java’s access rules.  Code within an aspect 
must follow Java’s standard lexical accessibility rules.  If code 
within advice access private members on the aspect, or package-
visible members in the aspects package, these members would not 
normally be visible if the code is moved to another class in a 
different package.  In order to address this problem we would 
need to either increase the visibility of the accessed members, 
which would let anyone see them and could even break our 
inheritance hierarchy.  We could add synthetic accessor methods 
with mangled names to expose these fields; this would be very 

static int fact(int); 
0:  iload_0 
1:  ifne 8 
4:  iconst_1 
5:  goto 19 
8:  iload_0 
9:  iconst_1 
10: isub 
11: invokestatic [fact] 
14: iload_0 
15: imul 
16: goto 19 
19: dup 
20: istore_1 
21: invokestatic [A.aspectOf] 
24: iload_1 
25: invokevirtual [A.ajc$afterReturning$A$ff] 
28: ireturn 

static int fact(int); 
0:  iload_0 
1:  ifne 6 
4:  iconst_1 
5:  ireturn 
6:  iload_0 
7:  iconst_1 
8:  isub 
9:  invokestatic [fact] 
12: iload_0 
13: imul 
14: ireturn 

after() returning(int i):  
    execution(int fact(int)) 

Figure 1. After Returning Advice 



similar to the approach taken for implementing Java’s inner 
classes, except it has the additional concern that it must often 
expose members to other packages.  A more sophisticated 
authentication scheme could probably be devised with even more 
performance and implementation overhead. 

We do use this inlining strategy for the default (non-closure) 
implementation of around advice; as well as for privileged aspects 
which are allowed to access other type’s members without 
respecting Java’s accessibility rules.  In many cases the 
performance overhead of these accessor methods would destroy 
any gains achieved by inlining the advice code originally. 

Given the ever-improving quality of JITs for Java, inlining 
optimizations must be carefully considered.  Without careful 
benchmarking there is as much potential for reducing the 
performance of the resulting system as for improving it. 

6. Compile time performance 
Because an AspectJ compiler (ajc) needs to do more work than a 
pure Java compiler, we expect that it will take longer to compile a 
system.  This section measures the overhead in compile time 
introduced by using ajc vs. the standard javac compiler from Sun.   

We chose to measure performance of one large system rather than 
several small ones.  Given the extreme and dynamic optimizations 
performed by modern JITs, we believe that performance 
measurements on a real application will most accurately reflect 
the performance seen by AspectJ developers in practice.  We 
chose the logging aspect as it is the most invasive of the widely 
used AspectJ aspects. 

We measure the time required to compile the xalan xslt processor 
from apache.org [16] under both ajc and several versions of the 
standard java compiler from Sun.  This system has 826 source 
files with 144,631 non-comment/non-blank lines of code.  All 
tests in this section and the next were run were run on a 1.4GHz 
Pentium-M processor with 768MB of RAM under SUN’s j2sdk-
1.4.2. 
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Figure 2. Compile time for xalan with different aspects 

The first three results show that ajc is about 62% slower than the 
1.4 javac compiler and 34% slower than the 1.3 javac compiler 
when compiling pure java code.  This extra performance overhead 
is caused by the need to analyze the generated classes to see if any 
advice might need to be woven into them.  It’s expected that this 
overhead can be reduced in future releases by straight-forward 
engineering work. 

For the next tests we add different aspects to the system.  The first 
aspect contains a single piece of advice that adds logging to 
exactly one method in xalan (LogOneA).  This advice uses the 
within PCD to make explicit the single class that it can apply to.  
Because of the efficient fastmatch code described in section 4.2, 
adding this aspect introduces barely any overhead over the 
compile with no aspects. 

In the next test, we modify the advice so that it doesn’t use the 
within PCD (LogOneB).  This advice still applies only to a 
single method in the xalan code, but because this isn’t recognized 
by the fastmatch code the advice must be matched against every 
join point shadow in xalan.  This minor change results in a major 
256% increase in compile time. 

The final two tests modify the advice to add logging to all 
methods in xalan.  They do this with either one (LogAll-1) or ten 
different (LogAll-10) pieces of advice for each method execution 
join point shadow.  These changes to actually weave advice add 
relatively small 8% and 13% additional overhead compared to the 
previous test that did minimal weaving but required matching for 
all join point shadows in the code.  This shows that the most 
important performance bottleneck in the AspectJ 1.1 weaver 
comes from collecting all of the join point shadows for matching 
against any viable shadow mungers. 

There are three main ways to improve compile-time.  Basic 
engineering work should be able to reduce all of the overheads in 
a similar way to the 21% performance gain Sun achieved from 
javac-1.3 to javac-1.4.  Clearly, improving the fastmatch 
algorithm to handle more cases could have a dramatic impact on 
the compile-time when aspects don’t affect a large fraction of the 
classes in a system.  The final approach to improving performance 
is to support incremental recompilation so that the whole system 
isn’t rebuilt every time.  AspectJ 1.1 has support for an 
incremental compilation mode, but further investigation of that 
subject is beyond the scope of this paper. 

7. Performance of woven code 
The implementation of advice weaving introduces very little 
performance overhead when compared to the same functionality 
coded by hand.  The current weaving implementation adds a static 
field lookup and a call to a final method compared to a hand-
coded implementation that would inline the advice code.  This 
section will explore the addition of an aggressive logging policy 
to a realistic system in order to assess the performance overhead 
of advice in AspectJ 1.1. 

7.1 Basic benchmark 
Logging as an aspect is frequently used as an example of the 
advantages of AOP.  A standard implementation of logging 
requires the modification of virtually every method in a system by 
hand.  AOP implementations instead capture this policy in one 
place.  On the other hand, logging is also the kind of application 
where performance overhead is most important.  Because logging 
policies affect a huge number of methods in a system, even a 
small performance impact will be noticeable in overall system 
performance. 

For this example we will use a simple but very aggressive logging 
policy to log all method entries in the xalan code base but not in 
the libraries that it uses.  We will use the standard logging API 
available in j2se-1.4 to implement the actual logging. 



We measure the performance impact of these changes with the 
XSLTMark benchmark [17] that is often used to compare the 
performance of different XSLT implementations.  Our 
performance numbers measure the execution time for the entire 
XSLTMark benchmark suite with the exception of 5 test cases 
that were found to fail (dbonerow, html, xslbench1, xslbench2, 
xslbench3). 

7.1.1 Hand-coded implementation 
As a base-line, we used a standard bytecode manipulation toolkit 
to produce a version of the code corresponding to a hand-coded 
implementation of this kind of logging policy.  This 
implementation is equivalent to making the following changes to 
the code by hand. 

The following static field is added to each of the 826 classes: 
static Logger log = Logger.getLogger(“xalan”); 
 

and a call is added to the beginning of each of the 7711 methods: 
log.entering(“<ClassName>”, “<MethodName>”); 
 

The logging API promises that the Logger.entering method will 
run extremely fast in the case that logging is disabled so no guard 
method to check whether or not logging is enabled is needed and 
adding such a check does not have a noticeable impact on 
performance. 

7.1.2 A naïve AspectJ implementation 
We also wrote the simplest possible aspect that could capture this 
same logging policy.  It uses before advice to make the same 
log.entering call at the entrance to every method in the xalan 
code base. 
public aspect Trace { 
  private static Logger log = 
    Logger.getLogger(“xalan”); 
 
  pointcut traced():execution(* *(..)); 
 
  before(): traced() { 
    Signature s = 
     thisJoinPointStaticPart.getSignature(); 
 
    log.entering( 
      s.getDeclaringType().getName(), 
      s.getname()); 
  } 
} 
 

7.2 Initial Performance Overhead Results 
 

With logging enabled, there is a little more than a 600X 
performance slow-down to the application.  The AspectJ 
implementation is about 3% slower than the hand-coded 
implementation.  This difference is barely noticeable.  However, 
this is not the situation in which people are typically concerned 
about the performance overhead of a logging implementation.  
The important case is to consider the overhead when logging is 
disabled. 
With logging disabled we find a huge performance overhead for 
the naïve AspectJ implementation.  This 2900% overhead is 
equivalent to 2221 nsec per method execution.  

0

100

200

300

400

500

600

700

no logging hand-coded naïve AspectJ

L
o
g
g
in

g
 O

ve
rh

ea
d

 
Figure 3. Overhead with logging enabled 
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Figure 4. Overhead with logging disabled 

7.2.1 The performance costs of Class.getName() 
The main performance overhead in a naïve AspectJ 
implementation of tracing is the cost of calling 
Class.getName().  This was a surprising result and indicates a 
deficiency in AspectJ’s reflection API.  In AspectJ-1.2, we will 
add a method Signature.getDeclaringClassName() to work 
around this deficiency in the underlying Java reflection 
implementation. 

Because Class.getName() is a native method, its 
implementation is unavailable to most Java developers.  To better 
understand the performance issues, we implemented a very simple 
test which called the method a large number of times for classes 
whose names had varying lengths.  We discovered the following 
simple behavior, each call has a fixed overhead of 325ns with an 
additional overhead of 43ns per character in the classes name.  
This suggests that a new String object is being constructed for 
each call to this method.  We can also conclude from this that the 
average length of class name in the xalan code is about 45 
characters. 
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Figure 5. Time for one call to Class.getName() 

 



7.3 More efficient AspectJ implementations 
It’s clearly important to avoid calls to Class.getName() for an 
efficient AspectJ implementation of tracing.  We can do this by 
calling the log.loggable method before calling 
Class.getName() to prepare the arguments for the call to 
log.entering.  This one-line change will reduce the overhead 
of the AspectJ implementation from 2500% to a more reasonable 
82% compared to the hand-coded implementation. 
before(): traced() { 
    if (!log.isLoggable(Level.FINER)) return; 
    ... 
} 

Further performance improvements to the AspectJ code can be 
found by putting the log.loggable test in an if PCD.  This will 
put the check in a single static method further improving 
performance.   
pointcut traced(): execution(* *(..)) && 
  if (log.isLoggable(Level.FINER)); 

This is the fastest AspectJ implementation that doesn’t change or 
restrict the tracing policy in any way.  The performance overhead 
of this implementation is just 22% greater than the overhead 
caused by the hand-coded implementation and is unlikely to be 
noticeable in most applications. 

If the remaining performance overhead is still an issue, the 
modular implementation made possible by AspectJ makes it easy 
to consider small changes to the tracing policy that can improve 
performance considerably.  One option is to add a static enabled 
field to the aspect that must be set in addition to the normal logger 
API calls to enable logging. 
static boolean enabled; 
pointcut traced(): execution(* *(..)) && 
  if (enabled) && if(log.isLoggable(Level.FINER)); 

If this field is used, then the AspectJ implementation will perform 
better than the standard hand-coded logging implementation by a 
76% margin.  Obviously, this same test could be added to the 
hand-coded logger, but that would require modifying and 
maintaining this modification at 7700 different places in the code. 

The most extreme optimization that AspectJ makes possible is to 
completely remove the logging code from the system by not 
including the aspect in a high-performance build.  This will result 
in absolutely no performance overhead, with the consequence that 
logging can not be turned on dynamically at runtime.   
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Figure 6. Overhead of efficient AspectJ implementations 

7.4 Performance Conclusions 
The best AspectJ implementation of logging adds a 22% overhead 
relative to the hand-coded logging implementation.  This is an 
upper bound on the performance overhead for well-written advice 
because there is almost no work taking place within the body of 
the advice itself.  More complicated aspects will have 
considerably less overhead as more time is spent in the advice and 
less in the dispatch process. 

We also found that we could easily modify the AspectJ code to 
experiment with different logging designs.  This led to a design 
which incorporates an additional static boolean field.  
Implementing this change in AspectJ required changing 2 lines of 
code vs. 7700 that would be required to change in the hand-coded 
implementation.  This slightly altered logging policy has 76% less 
overhead than the hand-coded implementation.  This ability to 
quickly experiment with different designs means that systems 
built with AspectJ can often have better performance in practice 
than their less flexible hand-coded counterparts. 

The small performance overhead found in the current AspectJ 
implementation could be eliminated by performing aggressive 
inlining during weaving.  However, there are many reasons why 
we have decided not to implement this inlining in the current 
release of AspectJ.  These are discussed in section 5.3.  However, 
these sorts of optimizations will probably appear either in JIT 
improvements or in future versions of AspectJ and other AOP 
systems.  As AOP matures, the performance overhead for well-
written aspect code should fall close to zero. 

Nevertheless, our performance measurements revealed that 
AspectJ gives programmers the ability to write extremely 
inefficient code quickly and easily.  The naïve logging 
implementation showed a 2900% performance overhead. This is 
always a danger with new and powerful tools.  As is the case with 
any programming language, addressing the potential performance 
pitfalls of poorly written code will depend more on education than 
on technical improvements to the tools themselves. 

8. Related Work 
There are many different ways to implement advice for Java.  The 
two primary approaches are either to generate a transformed Java 
program with the advice semantics encoded in it or to modify the 
virtual machine to provide additional hooks at run-time. 

The Just-In-Time aspects project [15] is one of the few that 
modifies a JVM to directly implement advice semantics.  These 
approaches hold promise for very dynamic weaving support at 
some stage in the future; however, they currently require 
substantial performance overheads to be used.  The greatest 
practical performance overhead of this approach is that the 
implementations only run on research JVMs which are noticeably 
slower than the latest production machines. 

There are two main approaches to transforming a Java program to 
implement advice.  One approach is to insert generic hooks at all 
possible join point shadows at transformation-time.  This 
approach allows for specific advice to be dynamically added or 
subtracted from these points at run-time.  This is the approach 
taken in JBoss [3] and Handi-Wrap [2].  The primary drawback of 
this implementation strategy is that it adds some measurable 
overhead to every join point shadow that it exposes.  JBoss 
reduces this impact by using a coarse-grained join point model 
that only captures method and constructor executions.  However, 



this performance impact would be very substantial if used for all 
of AspectJ’s fine-grained join points. 

Hyper/J [14] was the first AOSD system to be implemented by 
transforming existing Java bytecodes. 

AspectJ’s implementation transforms a Java program in the 
presence of a particular set of advice.  The weaving process then 
only inserts code at those join point shadows that could be 
matched by some advice.  It is still possible in this system to 
enable and disable aspects efficiently at run-time.  The 
“if(enabled)” version of the logging aspect in section 7.3 is a good 
example of this. 

AspectJ’s implementations have used every form of 
transformation imaginable for a Java program.  The earliest 
versions operated as preprocessors using javac as a back-end.  The 
1.0 version of AspectJ could operate as both a preprocessor and a 
full source-code compiler.  The 1.1 version described in this paper 
operates as a bytecode transformer. 

The AspectJ story has always been one of being a language rather 
than a meta-language or transformation framework.  The current 
implementation of AspectJ, however, shares many properties with 
such frameworks and meta-languages.  One such framework is 
Jmangler [10].  AspectJ’s shadow mungers are similar to 
Jmangler’s code transformer, (and AspectJ’s type mungers—used 
to implement inter-type declarations—are similar to Jmangler’s 
interface transformations).  They have similar power, but AspectJ 
does not attempt to follow Jmangler’s automatic composition 
rules; instead, it leaves composition order in the hands of the 
programmer.  The programming framework of Javassist [4] is also 
similar to AspectJ’s implementation, with its traditional additions 
corresponding to type mungers and its new bytecode weaving 
portion corresponding to shadow mungers.  Since both of these 
are explicitly meta-programming tools and deal with code 
directly, neither of these has the notion of runtime residuals that 
AspectJ’s semantics requires.   

9. Summary 
The AspectJ compiler must fulfill two requirements of correctness 
and performance.  Correctness means that it must faithfully 
implement the AspectJ language semantics.  Performance requires 
not only that the compiler perform adequately but that the woven 
code must have roughly the same performance costs as would a 
hand-implemented cross-cutting concern. 

This paper has presented the AspectJ advice weaving 
implementation as a mirror of the AspectJ language, from the 
representation of a piece of advice as an annotated method, to the 
representation of a join point as a region of bytecode plus residue, 
to the matching and implementation rules for the application of a 
piece of advice to a join point. 

It has presented benchmarks that show the AspectJ compiler has 
performance comparable to Sun’s javac when weaving aspects 
that only affect a small number of classes.  When weaving 
concerns that crosscut the entire system it adds a significant 4x to 
the compile-time; however, this is an acceptable overhead for a 
large number of applications.  Finally, we showed that the woven 
code for a modular logging policy captured by AspectJ has 
performance comparable to a tedious and tangled by-hand 
implementation of that same policy. 
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