
Supporting Delay Tolerant Networking: A
Comparative Study of Epidemic Routing and NDN

Tianxiang Li
UCLA

tianxiang@cs.ucla.edu

Zhaoning Kong
UCLA

jonnykong@cs.ucla.edu

Lixia Zhang
UCLA

lixia@cs.ucla.edu

Abstract—Delay Tolerant Networking (DTN) is characterized
by its dynamic and intermittent connectivity, resulting in the
absence of end-to-end communication paths in general. Many
proposed solutions have been developed over the years to enhance
TCP/IP protocol stack for DTN environment; Epidemic Routing
(ER) is among the earliest and most well-known designs. Recent
years have seen both renewed interests and investigations into
Epidemic Routing for vehicular and satellite communications,
and the development of a new Internet architecture Named
Data Networking (NDN) which, due to its data-centric design,
can support DTN communications natively. In this paper, we
identify the basic functionality requirements for DTN support,
compare and contrast ER and NDN to show the commonalities
and differences in their designs. We use simulation results to
illustrate how the design differences lead to different functional-
ities and protocol performance: although ER enhances IP nodes
with data-centric features to enable packet delivery in DTN
environments, compared to NDN’s native data-centric design with
built-in security, such “patch-on” suffers from not only lower
performance with higher overhead, but more importantly the
lack of systematic security support.

Index Terms—Delay-Tolerant Network (DTN), Named Data
Networking (NDN), Epidemic Routing, Distributed Dataset Syn-
chronization

I. INTRODUCTION

Recent growth in vehicular networking, satellite communi-
cation, as well as terrestrial wireless networks drives the need
for secure and effective solutions for Delay/Disruption Toler-
ant Networking (DTN). DTN is generally characterized by a
high degree of dynamic and intermittent connectivity among
communicating nodes, defeating the conventional address-
based, infrastructure-dependent data delivery. Securing com-
munication also becomes challenging due to the lack of stable
end-to-end connectivity and stable access to the public key
infrastructure (PKI).

The DTN communication framework runs on top of the
host-centric IP architecture, and delivers bundles [1] of data
identified by the destination end point. Many IP-based DTN
routing solutions [2] have been developed to support op-
portunistic data delivery, which generally use store-carry-
forward function to let randomly encountered nodes pass
packets to each other, so that packets can eventually reach their
destinations. Among the existing solutions Epidemic Routing
(ER) [3] is a well-known one and introduces some of the
fundamental design principles for data delivery under inter-
mittent connectivity. ER enhances IP’s point-to-point, store-
forward packet delivery with data-centric features, mainly

assigning a unique identifier to each packet in addition to its
IP destination address1, so that an IP node can recognize each
stored packet to perform opportunistic packet forwarding with
random encounters, enabling store-carry-forward.

Named Data Networking (NDN) [4], a data-centric network
architecture, has been under design and development since
2010. As NDN matures over time, there have been an in-
creasing number of efforts that apply NDN to support DTN.
Due to its data-centric design, NDN can provide effective and
efficient solutions to data distribution with end-to-end security,
in the absence of end-to-end connectivity. A question naturally
arises: given the ER design enhances IP nodes with data-
centric features, are there any fundamental differences between
IP/ER and NDN’s ability in supporting DTN, which can lead
to significant differences in the functionalities and performance
each provides?

This paper aims to answer the above questions. We first
identify the basic requirements for secure delivery of data over
intermittent connectivity, explain how each protocol meets
those requirements. We then compare in detail the similarities
and differences between the designs of IP/ER and NDN,
analyze how these design variations lead to differences in
protocol performance. Finally, we summarize the important
design components to build a secure, efficient, and resilient
communication protocol in DTN.

II. BACKGROUND

To deliver packets over intermittent connectivity, a DTN-
capable node must be able to identify and carry received
data packets when disconnected, until it can pass them to the
next encounter. To support communication security, whoever
interested in using the received data must be able to au-
thenticate it. Achieving the above goals require the following
supports: (i) unique identifiers for each packet, so a node can
tell which ones itself, or its encountered neighbor nodes, may
be missing, in order to fetch/pass along; (ii) memory space
at each node to hold packets when disconnected; and (iii)
the ability to authenticate packets without requiring additional
communication with some centralized servers.

To provide the audience necessary information for a in-
depth comparison, in this section we first describe the basic
design of ER, then introduce the NDN architecture and NDN

1IP addresses alone do not provide enough information for packet identi-
fication, because multiple packets can have identical source and destination
addresses.

978-1-7281-7440-2/20/$31.00 ©2020 IEEE

Sync, NDN’s transport support by using the DDSN protocol
as a specific example.

A. Epidemic Routing

Epidemic Routing (ER) is a proposed solution for mes-
sage delivery in DTN environments. ER’s data propagation
design is based on the “Epidemic Algorithms” [5] designed
to synchronize updates between distributed databases. Each
site with new updates exchanges database information with a
randomly selected neighbor to resolve conflict. Through this
pair-wise exchange of updates, all the sites will eventually
reach consistency within a bounded time range. ER utilizes
this idea for data dissemination over intermittent connectivity.
Each ER node periodically broadcasts Beacon messages to
detect neighbors Opportunistically encountered ER nodes ex-
change packet set information, and fetch missing packets from
each other. Through this process, packets are passed through
intermittent connectivity with a high probability of eventually
reaching their intended destinations.

ER uses IP unicast for packet delivery. To support ER,
each IP node is enhanced with a data buffer to carry packets.
When a node comes into contact with another node, the
two synchronize their packet sets. To do so, ER assumes
that each packet is associated with a unique identifier (UID),
which can be the concatenation of the packet’s originating
node’s identifier and a locally generated number. The node’s
identifier can be generated using decentralized or centralized
mechanisms similar to network address assignment in Mobile
Ad-Hoc networks [7]; the exact approach is outside the scope
of the ER design [3]. Each ER node maintains a Summary
Vector which enumerates the UIDs of all the packets it keeps
in its memory. When two nodes A and B encounter each other,
they first exchange Summary Vectors to determine which
packets node A has but B doesn’t, and vise versa. Then each
node either requests the missing packets from the other, or
pushes packets that the other misses. This process is repeated
in a pairwise, point-to-point fashion among all the encountered
nodes. When a packet reaches its destination, the destination
may send an optional ACK message to inform other nodes
to remove the already delivered packet from their local buffer
to stop further dissemination. As one of the early protocol
designs in DTN, ER did not consider communication security.
This is also because the traditional channel based security
mechanisms such as TLS or DTLS do not apply to DTN
environments, due to the absence of E2E connections and the
lack of access to the PKI infrastructure.

B. NDN

From 10,000 feet, one might view the basic idea of NDN
as shifting HTTPs request (for a named data object) – and
–response (containing the object) semantics from the appli-
cation layer to network layer delivery. Applications gener-
ally identify data by hierarchically structured names, which
consists of a number of semantically meaningful components.
NDN uses these application-generated names to fetch data at
network layer. This design brings two benefits: (i) all data

pieces already have unique names that are meaningful to
applications and independent from network layer connectivity
(which changes dynamically in a DTN environment); and (ii)
one can secure data directly by having data producer generate
a crypto signature to bind the name and content in each NDN
data packet.

In NDN, A data consumer sends Interest containing the
name of the requested Data. To fetch Data effectively and
efficiently, each NDN node keeps three main components:
(i) Content Store (CS) to buffer received Data packets; (ii)
Pending Interest Table (PIT) to buffer each Interest that has
been forwarded but not replied, together with its incoming
and outgoing interfaces; and (iii) Forwarding Information
Base (FIB) to keep information regarding where to forward
Interests. The buffering capability for Interests (PIT) and Data
packets (CS) makes NDN nodes resilient to network discon-
nects, thus by design an NDN network can fetch individual
Data packets over intermittent connectivity. However, effective
DTN support also requires that NDN nodes have means to
learn what data a node can fetch from random encounters. This
task is performed by NDN Sync [8], NDN’s transport layer
abstraction. One may view TCP, a transport protocol in use, as
synchronizing the data reception state between two connected
communicating ends, so that the sender can retransmit any
lost data. NDN Sync enables dataset state synchronization
among multiple communicating parties in the same application
instance (we call these parties members of a sync group). In
addition to multi-party support, NDN Sync also differs from
TCP in another fundamental ways: NDN lets receivers, instead
of senders, be responsible for data delivery reliability, thus
NDN Sync only informs all members in a sync group of new
data generations, leaving data fetching as a separate step by
individual members. Furthermore, NDN Sync can function
resiliently over intermittent connectivity, thanks to PIT and
CS at each NDN node.

Each member in a sync group keeps a local view of
the dataset, called the members sync state, and the process
of synchronizing the sync state of members is called state
synchronization. A number of NDN Sync protocols had been
designed [9]–[13], with Distributed Dataset Synchronization in
Disruptive Networks (DDSN) [13] being one of them whose
design specifically takes into account network scenarios with
mobility and intermittent connectivity.

DDSN uses a shared name prefix to name a group’s dataset,
and adopts a sequential naming convention for application
generated data (e.g. “/[group-prefix]/[member-prefix]/[data-
sequence-number]”). Each producer in a group names its
newly generated data with monotonically increasing sequence
number, and DDSN encodes the dataset of a group in the
form of a State Vector, i.e. a list of (pi, seqi) pairs, where pi
is the name of ith producer and seqi the sequence number
of pi’s latest data piece. The members in the same sync
group exchange the State Vector through the transmission of
Sync Interest and Sync Reply, as shown in Figure 1. Sync
Interest contains the State Vector in its name, for example in
a chat group of three users A, B, and C, the Sync Interest

A

B

C

1. Sync Interest:
name= /<group-prefix>/<A’s-state-vector>

(a) DDSN Sync Interest

2. Sync Reply:
name = /<group-prefix>/<A’s-state-vector>

content= <B’s updated state vector>

A

B

C

(b) DDSN Sync Reply

Fig. 1. A sends a Sync Interest (a) which is received by B and C, then B
returns a Sync Reply (b), which is received by A and C.

carries a name “/ucla_chat/group5/sync/[A:3,B:1,C;6]”.
Sync Interests is generated both periodically, and event-driven:
whenever a node’s dataset state is updated, it will send
out a Sync Interest with its updated State Vector through
wireless broadcast channel, reaching all other members within
the communication range. A receiver of the Sync Interest
Is updates its sync state if Is contains new information,
and sends a Sync Reply reporting its latest State Vector. If
missing data is identified, a node sends data Interest to fetch.
Because state Vector represents the raw state information, its
processing has no dependency on the receiver’s state. This
property is particularly suited to DTN environment, where
node connectivities are short-lived, and randomly encountered
nodes may have potentially large differences between their
dataset states.

III. PROTOCOL COMPARISON

In this section, we identify the commonality and differences
between ER and DDSN. To support DTN, the two protocols
share a few common steps. First, mobile nodes need to
discover the existence of neighbors, which requires a node to
proactively send packets without knowing whether any other
node may be around. Once neighbors are discovered, nodes
exchange dataset information to identify one’s missing data,
i.e. performing state synchronization, and then fetch missing
data from each other. All the above steps require security
protection, which is especially critical for communicating with
ad hoc encounters. Below we start with a security comparison
before proceeding to comparisons of the other steps.

A. Security

We noted earlier that the ER design has no security con-
sideration. One good reason is that today’s security solutions
require end-to-end connectivity and access to centralized cer-
tificate authorities, which do not exist in DTN environments.
NDN provides end-to-end secure support in DTN environ-
ments through the following means: i) establishing trust rela-
tions among communicating entities a prior by installing trust
anchors, certificates, and security policies into each node [14]
2; and ii) securing data directly, which allows consumers to

2These security primitives are a part of the NDN protocol architecture;
similar concepts exist at the application layer in the TCP/IP architecture, thus
their utilization depends on infrastructure connectivity.

verify received data using the established security policies,
independent from where the packets come from. There has
also been a growing trend in the IP-based DTN protocols for
securing data directly, [15] is an example of the different
efforts in this direction.

B. Data Naming and State Encoding
Although both ER’s Summary Vector and DDSN’s State

Vector encode a set of data identifiers to exchange dataset
state between neighbor nodes, the two differ significantly.
As we explained in §II-A, ER is designed to run over IP
which names nodes, and develops its own unique data packet
identifiers (UIDs) to enable neighbor nodes identify missing
packets from each other through Summary Vector exchanges;
the packet UIDs are added between application and IP, and
used for packet dissemination only. Each UID is a datagram
identifier and has no semantic relation to any other UIDs.
Consequently a Summary Vector must enumerates the UIDs of
all the packets carried by a node, which results in a large size.
Alternative encoding mechanisms, such as Bloom Filter [16],
have been proposed to reduce the size of Summary Vectors,
by increasing the overall ER complexity.

A more effective size reduction in state encoding is to utilize
structured data namespace as NDN Sync does. As described
in §II-B, DDSN uses monotonically increasing sequence num-
bers to name data, and encodes the dataset of a group in the
form of a State Vector, i.e. a list of (node, seq#) pairs. Thus
the size of a State Vector is upper-bounded by the number of
producers in a sync group.

C. Neighbor Discovery
Both ER and NDN detect neighbors through periodic broad-

casts. ER uses small size Beacon messages, which contain only
the sender’s identifier, for neighbor discovery, and exchanges
the dataset information after neighbor detection. When a node,
say B, receives a Beacon sent by node A, B first checks to
see if it has talked to A recently; if not, it sends its Summary
Vector as a response, thus A and B discover each other.

A DDSN node A broadcasts Sync Interest packets periodi-
cally to serve two purposes: neighbor discovery and dataset
state difference detection (if/when any other node receives
the Sync Interest). Upon receiving a Sync Interest, a node B
sends back a Sync Reply reporting its latest dataset state, B’s
reply indicates a neighbor’s existence, and if the reply reports
any new data that A is unaware of, A sends data Interest to
fetch. The use of Sync Interest for both neighbor discovery
and dataset difference detection saves one packet transmission
if neighbor node(s) exists, but pays the cost of a bigger Interest
packet size as it carries the state vector.

D. State Exchange
Besides the difference in the dataset state encoding between

ER and NDN, there exist two other differences, both result
from ER being a patch on node-centric IP communication
versus NDN being a native data-centric design.

ER runs over the point-to-point IP packet delivery. If we
assume four ER nodes encounter each other, six pairwise

Summary Vector exchanges will be needed among the four
nodes, despite the fact that those exchanges are over wireless
communication which is broadcast by nature. NDN nodes use
names to fetch data, thus when a node broadcasts its Sync
Interest, all other nodes within the wireless range can receive
it and process accordingly. One might argue that ER could
also broadcast UDP packets encapsulated in IP to exchange
Summary Vectors among multiple nodes. However doing so
leads to the observation that the IP addresses carried in those
packets are no longer needed. Instead, the communication
utilizes data identifiers, the packets’ UIDs.

Another difference between ER and NDN is the propagation
of dataset state. When an ER node A detects a new neighbor
B that A has not communicated with recently, A exchanges
Summary Vector with B. Assuming A detects node C soon
after and fetches new packets from C, if B cannot hear
from C, A will not convey the information about C’s new
packets to B. That is, dataset state exchange is triggered by
new node encounters only. Sine DDSN takes a data-centric
approach, whenever node A detects new dataset state from
a newly received Sync Interest, A further propagates the
new information. Thus Sync Interests carrying new dataset
state information can quickly propagate through multiple hops
within connected node clusters. Furthermore, an ER node
must receive all the missing data the current neighbor can
offer before it starts Summary Vector exchange with another
neighbor, while DDSN decouples state propagation and data
fetching, as we explain next.

E. Data Fetching

In ER, data fetching is tied with the state exchange between
two specific nodes. That is, an ER node A does not know
which piece of data it may be missing, A depends on the
Summary Vector exchange with neighbor B to determine what
data it can get from B, and vice versa. After A and B exchange
Summary Vectors, each can obtain identified missing packets
from the other.

DDSN separates the state exchange and data fetching into
two independent processes. Through state exchange, each
DDSN node maintains an up-to-date state about the newest
data names available, and then fetches the missing data from
any encountered nodes. A requester does not know, and does
not care, which neighbor may have which piece of data. It
simply sends data Interests to request missing data periodically
when it is connected to some neighbors, or whenever it
discovers new neighbors.

NDN’s opportunistic caching enables a node to cache Data
packets it overhears, independent of whether those Data packet
have been requested by the local process or not. The node
can also reply to a received data Interest when the data with
matching name is found from its local CS. The local CS of
each NDN node makes it an effective data mule to carry Data
packets around, and fetching data by names makes effective
use of NDN nodes’ data muling function.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance difference
between ER and DDSN based on the same experiment set
up used in our previous work [13]. We also reuse some of
our previous results, but provide a more detailed and in-depth
exploration on the major factors that caused the performance
differences between ER and NDN/DDSN.

A. Experimental Setup

We implemented DDSN in C++ and ported into the ndnSIM
[17], an NDN network simulator based on NS-3. For com-
parison, we used an open-source implementation of ER [6],
and conducted simulation in NS-3. Our simulation topology
is a 800m×800m grid, consisting of 30 mobile nodes. Among
the 30 nodes, 20 run DDSN or ER protocol, the other 10
are pure forwarders that forward any received packets at 50%
probability. The mobile nodes follow a random-walk mobility
model: every 20sec, a node randomly changes its direction
and speed (1m/s to 20m/s). Each node generates data (100-
1024 bytes random text) for the first 800s of the simulation,
following a Poisson process at rate λ = 1/40 per second. The
results are averages of 10 experiment runs. We set the interval
for periodic Beacon transmission of ER and periodic Sync
Interest transmission of DDSN to both be 8sec.

For comparison, we mainly consider two evaluation metrics:
(i) Data Retrieval Delay: the time needed for one newly
generated data to be disseminated to members in the group;
and (ii) Overhead: the total size of all the packets transmitted
(bytes) for all the members to receive all the generated data.

B. Data Retrieval Delay

Figure 2 presents the CDF of the Data Retrieval Delay for
ER and DDSN under varying packet loss rates. ER nodes take
approximately 230s and 570s to retrieve 90% of the generated
data, under the loss rates of 0% and 30%, respectively (Fig-
ure 2(a)). In comparison, DDSN nodes retrieve 90% of the
generated data in less than 150s and 170s of delay, under
the loss rates of 0% and 30%, respectively (Figure 2(c)). In
summary, DDSN shows 34-70% lower data retrieval delays
than ER under loss rates from 0% to 30%.

1) host-centric vs data-centric state exchange: A ER node
A initiates state exchange only when it encounters a new neigh-
bor which it had not recently talked to. However, keeping track
of recently encountered nodes is not equivalent to keeping
track of their dataset state; some of them may have learned
new data after the Summary Vector change with A. Ideally,
nodes should exchange state when any of them can offer new
state, to do so requires a data-centric communication model.
DDSN nodes detect state inconsistency through carrying the
State Vector by Sync Interest packets, which can trigger a
chain of state exchange when new dataset state is detected
anywhere within a connected node cluster, minimizing the
delay in state update. For example, in figure 3, node A carries
new state and comes into contact with node B. Node B is part
of a connected cluster, where B, C, D are synchronized with
each other. In figure 3(a), ER nodes A and B exchange states,

0 50 100 150 200 250 300 350 400
Delay (s)

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

loss rate = 0%
loss rate = 10%
loss rate = 20%
loss rate = 30%

(a) ER

0 50 100 150 200 250 300 350 400
Delay (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

loss rate = 0%
loss rate = 10%
loss rate = 20%
loss rate = 30%

(b) DDSN (default)

0 50 100 150 200 250 300 350 400
Delay (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

loss rate = 0%
loss rate = 10%
loss rate = 20%
loss rate = 30%

(c) DDSN (with fast retransmit)

Fig. 2. Data Retrieval Delay

B
newcomer

A
D

C

Synchronized cluster

new
state

(a) ER State Propagation

B
newcomer

A
D

C

Synchronized cluster

new
state

(b) DDSN State Propagation

Fig. 3. State Propagation Example

but B will not propagate new states to C and D immediately,
since C and D are existing neighbors of B. This is because
two ER nodes do not exchange data more than once within a
specified period to prevent excessive traffic. In figure 3(b), the
state exchange between A and B will trigger B to immediately
propagate the new dataset state to C and D. C and D can then
further propagate states into other connected neighbors.

2) point-to-point vs multi-party communication: Generally
speaking, wireless network is broadcast by nature. However
ER is designed on top of the point-to-point communication
model of the IP architecture, where each ER node exchanges
state and data with one individual node at a time, sending
unicast packets over a broadcast wireless medium. In compar-
ison, DDSN utilizes NDN’s data-centric communication model
by using application layer data names for network layer data
fetching. An NDN packet does not target a specific destination,
and can be received by any node within one-hope wireless
range. For example in Figure 3(b), a packet transmitted by
node B can be received by both nodes C and D. The State
Vector in the Sync Interest name can be directly interpreted
by C and D to update their state. The name of a data Interest
can be understood by all the receivers, and any node which
has the matching Data packet can reply. The Data reply packet
can then be cached by any node receiving it.

3) Resilience to Loss: As shown in Figure 2, DDSN has
a much more stable performance under varying loss rates
compared to ER. This is mainly due to two reasons. First,
DDSN’s event-driven state propagation enales any lost updates
to be retransmitted whenever state difference is detected in the
network. The periodic transmission of Sync Interest provides a
periodic detection of any state mismatch in the neighborhood.
A successful transmission of a Sync Interest with new state
will trigger the dissemination of the updated state throughout
the network. This chain of events continue until all nodes in
the connected cluster reach a consistent state.

Another reason is that each DDSN node maintains a local
state of what data it is missing, and this allows each node
to fetch data persistently until all missing data are retrieved.
In ER, however, each packet is identified individually by its
UID, which makes it impossible for each ER node to learn
the existence of all the packets that have been produced in
order to know which packets it may be missing. Instead, an
ER node can only learn which packets it can fetch from an
encounter. Since data synchronization depends on successful
exchange of Summary Vectors, and then successful exchange
of data messages, any packet loss in this chain of exchanges
will cause the data fetching process to break. Consequently,
the data retrieval delay in ER worsens as loss rate increases.

4) Retransmission Strategy: By decoupling state and data
synchronization, DDSN allows nodes to adopt different re-
transmission strategies. For DDSN under 0% packet loss, 85%
of data was successfully fetched on the first request, meaning
that the sender of new dataset state is highly likely to carry
the new data as well. Thus, in addition to the default strategy
of periodically retransmitting Interests for data at a fixed
interval (Figure 2(b)), we adopted a strategy (Figure 2(c)) to
prioritize the retransmission of newly learned data names, by
retransmitting it a few times (5 in our case) with short delay,
to overcome packet loss. If no Data packet is received, the
data Interest will be retransmitted at a lower frequency, to
opportunistically request data from other encountered nodes
as the requester moves in the network. From Figure 2(c), we
can see that DDSN’s data retrieval delay remains fairly stable
under varying loss rates, with a slight increase in average
delay as loss rates increase. The difference in data retrieval
delay is much less compared to DDSN with simple periodic
retransmission (Figure 2(b)). The total number of Interests also
lowers as data Interests have a higher chance of fetching Data
packets back.

C. Overhead

In terms of transmission overhead, DDSN generates 1.44
to 1.49 bytes×107 of transmission overhead under loss rates
from 0% to 30%. Comparatively, ER generates 2.48 to 2.67
bytes×107 of overhead under loss rates from 0% to 30%. In
summary, DDSN generates 40-45% lower overheads under 0-
30% loss rates compared to ER.

1) Encoding: The major contributing factor to the overhead
difference is state encoding. As mentioned in Section III-B,
DDSN’s structured namespace allows the entire group dataset

to be represented by enumerating the (producer, newest se-
quence number) pairs, so the State Vector’s size depends on
the number of producers in the sync group. ER’s Summary
Vector enumerates the UIDs of all the packets a node carries,
whose size scales with the number of packets generated. In our
simulation, the State Vector size remained to be 150-200 bytes,
while the Summary Vector size quickly increased to 1600
bytes, reaching its upper limit. When the number of generated
packets exceeds a certain threshold, some data identifiers will
be evicted from the summary vector. This could cause some
data to never be received under a high loss environment.

2) Avoiding Redundant Transmissions: Both protocols
adopted mechanisms to avoid redundant transmissions. ER
nodes maintain a list of recently communicated nodes, and
only exchange messages with newly encountered neighbors.
DDSN nodes suppress Sync Interest propagation based on
whether or not the received State Vector contains new states.
Although event-driven Sync Interest propagation triggers the
flooding of Sync Interest in the network, no duplicate Sync
Interests will be transmitted due to state based suppression.
However, the difference in the total number of packets between
ER and DDSN is much less significant compared to the size
difference of the two protocols’ state exchange messages.

V. LESSONS LEARNED

In this section we summarize the lessons learned from
conducting this comparative study of IP/ER and NDN/DDSN
on how to design an effective protocol in support of DTN.
Although NDN Sync, and DDSN in particular, is still under
active development, we believe the following basic lessons
should remain true in the future solution development.

1) What to name: IP’s model of delivering packets to desti-
nations identified by IP addresses over a connected infrastruc-
ture cannot serve DTN environments with mobile nodes under
intermittent connectivity. ER recognized the need to assign
unique packet identifiers, but its design is constrained by the
underlying IP’s point-to-point datagram delivery model. By
design NDN names and secures data directly, thus its Interest
and Data exchange (data requests and replies), both carrying
data names, can fully utilize wireless broadcast. A fundamental
gain comes from the structured namespace of NDN, which
allows nodes to identify what data is missing, support security
and trust policies, as well as efficiently utilize caching. It
is also an ongoing work in the wider area of Information-
Centric Networking (ICN) [18] to identify the benefits of using
structured namespace in DTN, and the challenges to address.

2) Security: Security support is essential when commu-
nicating with random encounters. The unfortunate fact that
many existing DTN solutions neglected security might be
partly due to overlooking its importance, and partly due to
the high challenge as the conventional channel-based solutions
do not work. There are ongoing efforts in the DTN research
area to move towards data-centric security [15]. In addition to
making communication security as a property of the data itself,
instead of data containers or communication channels, NDN
also recognizes the fact that the trust relations exist among all

communicating entities, independent from the existence of,
or lack of the channels between them. Thus NDN nodes are
equipped with pre-established trust relationships between com-
munication endpoints that can be used for data verification.

3) State and Data Exchange: Dataset dissemination in-
volves two steps: state synchronization and data synchroniza-
tion. In ER and other IP based solutions, because data names
are invisible at network layer, ER has to bundle the two steps
together. DDSN’s decouples the two steps, minimizes state
propagation delay, and its naming conventions allow nodes to
easily identify missing data.

4) In-network storage: DTN communications critically de-
pend on store-carry-forward mechanism, which in turn re-
quires data be identified on its own, independent from its
destinations, to facilitate data dissemination over intermittent
connectivity. Together with named, secured data, NDN’s built-
in per node caching can offer high data availability despite
heavy network losses.

REFERENCES

[1] S. Burleigh, K. Fall, and E. Birrane, “Bundle protocol version 7,” IETF
Secretariat, Internet-Draft draft-ietf-dtn-bpbis-24, 2020.

[2] C. Sobin, V. Raychoudhury, G. Marfia, and A. Singla, “A survey of
routing and data dissemination in delay tolerant networks,” Journal of
Network and Computer Applications, vol. 67, pp. 128–146, 2016.

[3] A. Vahdat, D. Becker et al., “Epidemic routing for partially connected
ad hoc networks,” 2000.

[4] L. Zhang et al., “Named Data Networking,” ACM Computer Communi-
cation Review, July 2014.

[5] A. Demers et al., “Epidemic algorithms for replicated database main-
tenance,” in Proceedings of the sixth annual ACM Symposium on
Principles of distributed computing, 1987.

[6] M. Alenazi et al., “Epidemic routing protocol implementation in ns-3,”
in Proceedings of the 2015 Workshop on ns-3, 2015, pp. 83–90.

[7] M. Al-Shurman, M. F. Al-Mistarihi, and A. Qudaimat, “Network address
assignment in mobile ad-hoc networks,” in International Congress on
Ultra Modern Telecommunications and Control Systems. IEEE, 2010.

[8] T. Li, W. Shang, A. Afanasyev, L. Wang, and L. Zhang, “A brief
introduction to ndn dataset synchronization (ndn sync),” in 2018 IEEE
Military Communications Conference (MILCOM). IEEE, 2018.

[9] Z. Zhu and A. Afanasyev, “Let’s chronosync: Decentralized dataset state
synchronization in named data networking,” in 21st IEEE International
Conference on Network Protocols (ICNP). IEEE, 2013, pp. 1–10.

[10] W. Fu, H. Ben Abraham, and P. Crowley, “isync: a high performance
and scalable data synchronization protocol for named data networking,”
in Proceedings of the 1st ACM Conference on Information-Centric
Networking. ACM, 2014, pp. 181–182.

[11] M. Zhang et al., “Scalable Name-based Data Synchronization for Named
Data Networking,” in Proceedings of the IEEE Conference on Computer
Communications (INFOCOM), May 2017.

[12] W. Shang, A. Afanasyev, and L. Zhang, “Vectorsync: distributed dataset
synchronization over named data networking,” in Proceedings of the 4th
ACM Conference on Information-Centric Networking. ACM, 2017.

[13] T. Li, Z. Kong, and S. Mastorakis, “Distributed dataset synchronization
in disruptive networks,” in 2019 IEEE 16th International Conference on
Mobile Ad Hoc and Sensor Systems (MASS). IEEE, 2019.

[14] Z. Zhang et al., “An overview of security support in named data
networking,” IEEE Communications Magazine, vol. 56, pp. 62–68.

[15] G. Selander et al., “Object security for constrained restful environments
(oscore),” Internet Requests for Comments, RFC 8613, July 2019.

[16] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[17] S. Mastorakis et al., “On the evolution of ndnsim: An open-source
simulator for ndn experimentation,” ACM SIGCOMM Computer Com-
munication Review, vol. 47, no. 3, 2017.

[18] J. Seedorf et al., “Research directions for using icn in disaster scenarios,”
IETF Secretariat, Internet-Draft draft-irtf-icnrg-disaster-10, 2020.

