
NDN, Technical Report NDN-0037, 2016. http://named-data.net/techreports.html
Revision 1: January 26, 2016

Obsoletes: A. Hoque, S. O. Amin, A. Alyyan, B. Zhang, L. Zhang, and L. Wang, NLSR: Named Data Link State routing protocol, in
Proceedings of the 3rd ACM SIGCOMM Workshop on Information-Centric Networking, 2013.

A Secure Link State Routing Protocol for NDN
Vince Lehman A K M Mahmudul Hoque Yingdi Yu

vslehman@memphis.edu akmhoque@gmail.com yingdi@cs.ucla.edu
University of Memphis Amazon University of California, Los Angeles

Lan Wang Beichuan Zhang Lixia Zhang
lanwang@memphis.edu bzhang@cs.arizona.edu lixia@cs.ucla.edu
University of Memphis University of Arizona University of California, Los Angeles

Abstract—The Named-data Link State Routing protocol
(NLSR) is an intra-domain routing protocol for Named Data
Networking (NDN). It is an application level protocol similar to
many IP routing protocols, but NLSR uses NDN’s Interest/Data
packets to disseminate routing updates, directly benefiting from
NDN’s built-in data authenticity. The initial NLSR design, which
was developed in 2013, has undergone significant changes. The
new NLSR has been deployed on the NDN testbed since August
2014; its development helped drive the development of the
trust/security functionality of NDN libraries as well as a number
of features in NFD and ChronoSync. In this paper, we describe
the current design and implementation of NLSR, with emphasis
on those features that differentiate it from an IP-based link state
routing protocol – (1) naming: a hierarchical naming scheme for
routers, keys, and routing updates; (2) security: a hierarchical
trust model for routing within a single administrative domain;
(3) routing information dissemination: using ChronoSync to
disseminate routing updates; and (4) multipath routing: a simple
way to calculate and rank multiple forwarding options. Although
NLSR is designed in the context of a single domain, its design
patterns may offer a useful reference for future development of
inter-domain routing protocols.

I. INTRODUCTION

Named Data Networking (NDN) ([1]–[3]) is an information-
centric Internet architecture inspired by years of empirical
research on network usage and unsolved problems in the
existing TCP/IP Internet. NDN changes the network service
model from “delivering packets from one endpoint to another”
to “fetching named data”. Instead of carrying source and
destination IP addresses in each packet, NDN puts a data
name in each packet. A data consumer sends out an Interest
packet whose name identifies the desired data; routers forward
Interest packets based on their names; and a Data packet with
the matching name is returned to the requesting consumer. The
Data packet contains the name, the data, and a signature by
the original data producer. By explicitly naming and signing
data and by maintaining a stateful forwarding plane [4], NDN
provides several desired network functions that are difficult to
realize in IP, such as in-network caching, multicast delivery,
and multi-path forwarding.

An NDN routing protocol propagates routing updates and
computes routes to name prefixes that are hierarchically struc-
tured. NDN’s best route computation can use any of the
routing algorithms that work for IP, e.g., link-state or distance-

vector, although an NDN routing protocol must be able to offer
multiple next hops for packet forwarding to support NDN’s
multipath forwarding, where the multiple paths can be toward
either one data producer or multiple producers of the same
data. However, NDN does require a fundamentally different
routing protocol design. Besides the need to propagate the
reachability of name prefixes instead of IP address prefixes,
a native NDN routing protocol must use NDN’s Interest and
Data packets to exchange routing information instead of IP
packets. Doing so also allows the routing protocol to benefit
from NDN’s built-in routing information authentication.

This paper describes the design and implementation of
the Named-data Link State Routing protocol (NLSR), an
intra-domain routing protocol for NDN. The initial design of
NLSR was sketched out in 2013 [5], but the design has gone
through substantial revisions over the last two years as we
gain deeper understandings of both NDN and NDN application
development approaches through real implementations and
experimentation. Our goal in this paper is both to demonstrate
the feasibility and benefits of building a routing protocol using
NDN and to share our experience and observations with the
community at large.

NLSR offers the following design features and benefits.
a) Naming: NLSR uses hierarchically structured names

to identify routers, routing processes, routing data, and keys
as the relationship among them is inherently hierarchical. This
design approach not only facilitates routing security (see be-
low) but also allows NLSR to use all types of communication
channels (e.g., Ethernet, IP, TCP/UDP tunnels) in the same
way, as it has no dependency on specific types of addresses.

b) Security: Since each NLSR routing message is carried
in an NDN data packet containing a signature, a router can
verify the signature of each routing message to ensure that
it was generated by the claimed origin router and was not
tampered with during dissemination. We devised a hierarchical
trust model for routing within a single domain, based on
common management structures and operational practice in a
domain, to verify the keys used to sign the routing messages.
The names in NLSR reflect the relationship among routing
entities, enabling automatic derivation of signing key names
and the use of NDN trust schema [6] to automatically verify
received routing updates.

http://named-data.net/techreports.html


c) Multi-path forwarding: While IP uses either a single
best next-hop to forward packets or limits its forwarding to
multiple equal-cost paths in order to avoid forwarding loops,
NDN can utilize multiple paths freely because it has built-in
loop detection in the forwarding process. NLSR builds FIB
entries with multiple next hops for each name prefix, even if
the name prefix is originated by a single router.

In the remainder of this paper, we first introduce basic
NDN concepts and discuss related work in Section II. We
then articulate the rationales behind our design choices on
naming, trust, LSA dissemination, and multipath routing cal-
culation (Section III). We also present implementation details
(Section IV) and experiment results (Section V), as well
as share the lessons from our development and deployment
(Section VI). Finally, Section VII concludes our work.

II. BACKGROUND AND RELATED WORK

A. Named Data Networking (NDN)

Communication in NDN is driven by receivers, i.e., data
consumers, through the exchange of two types of packets:
Interest and Data. A consumer puts the name of a desired piece
of data into an Interest packet and sends it to the network.
When a router receives the Interest, the router first checks
the Content Store (CS), which contains previously received
Data, for any matching data. If the matching Data packet is
found, it is sent back on the incoming interface on which
the Interest was received. Otherwise, the router examines the
Pending Interest Table (PIT). If there exists an entry with the
same name as the newly received Interest, the new incoming
interface is added to the interface list so that a copy of the
matching Data packet can be sent on all interfaces from which
the Interest packets arrived. Finally, if the Interest does not
have a matching PIT entry, it is forwarded to the next hop(s).
Once the Interest reaches a node that has the requested data,
the Data packet is returned. With the help of the PIT entries,
this Data packet follows the reverse path of each pending
Interest back to the requesting consumer.

Compared to IP routing, NDN’s stateful forwarding plane
changes the basic relationship between routing and forward-
ing [7] – forwarding decisions are made based on not only the
routes and route ranking produced by the routing protocol but
also a few other factors. More specifically, by maintaining
a PIT, the forwarding plane can measure the performance
(e.g., RTT) of each next hop in retrieving data. When multiple
next hops exist in a FIB entry, a module called “forwarding
strategy” decides which next hop(s) will be used in forwarding
Interests based on routing ranking, forwarding plane measure-
ments, and local policies. Note that the routing protocol’s
ranking of available next hops is still important in forwarding
the initial Interest to a name prefix before measurement results
are collected and for exploring alternative routes when the
route in use fails to retrieve data [7].

B. Evolution of NLSR

The NLSR design has evolved significantly over the last
two years since its first design sketch in 2013 [5]. The earlier

design used the Sync mechanism provided by CCNx [8] to
distribute Link State Advertisements (LSAs) between routers.
However, during extensive testing using an internal testbed
of 12 nodes, we identified several problems with the CCNx
sync/repo implementation including high memory consump-
tion, inability to delete information from the repo, and failure
to notify NLSR of routing changes when the update rate is
high. These problems prevented us from deploying NLSR on
the NDN testbed.

As a new NDN platform [9] with a new forwarder and
libraries was developed in 2014, we redesigned and reimple-
mented NLSR to work on the new platform. Several major
design changes have significantly improved the performance
of NLSR including using ChronoSync [10] to distribute LSAs,
advertising all the name prefixes originated by a router in one
name LSA, and detecting link failures using forwarding plane
notifications (see Section III-F for more information). The new
NLSR implementation [11] was released and deployed on the
inter-continental NDN testbed in August 2014.

C. Related Work

The routing protocol proposed by Dai et al. [12] looks
similar to NLSR on the surface, but it differs from NLSR
in the following important aspects. First, it is not designed
to run in an ICN/NDN network; instead, it uses IP packets to
deliver routing updates and has no support for routing security.
Second, and related, it uses OSPF as is to collect the topology
and compute shortest path while NLSR uses ChronoSync to
disseminate LSAs. Third, its multi-path forwarding function
is limited to contents announced by multiple producers only,
while NLSR can forward Interest packets along multiple paths
toward either the same producer or multiple producers of the
same data.

Several NDN/ICN routing protocols, most notably [13] and
[14], were developed after our initial NLSR design [5] was
published. The Link State Content Routing (LSCR) proto-
col [13] disseminates adjacency information in the same way
as IP link-state routing does but propagates prefix information
selectively – among multiple instances of a prefix, a router
will propagate only the nearest instance to its neighbors. The
Distance-based Content Routing (DCR) protocol [14] provides
name prefix reachability without routers knowing the complete
network topology. DCR uses distance information to calculate
paths to prefixes, and similar to LSCR, does not propagate
information about all the name prefix replicas in the network.

One potential problem in the above two protocols is that
selective forwarding of routing advertisements may cause
some data to be unreachable due to the different forwarding
semantics in NDN and IP. In NDN, announcing a name prefix
to the network simply means that the announcer possesses
some data under this name space but not necessarily all
the data under it; NDN’s adaptive forwarding plane can try
alternative paths to retrieve all desired data. In contrast, an IP
router advertising an address prefix means that it can reach all
the nodes under that address prefix. This semantic difference
means that an NDN router needs to propagate advertisements



for the same name prefix announced by different nodes to
ensure data retrieval (see Section 4.1 of [1]). Furthermore,
although [13] and [14] compared favorably with our original
NLSR design [5], which advertises each name prefix in a
separate LSA, it is questionable whether those results may
still hold true when one compares those designs against the
current NLSR, which advertises all the prefixes originated by
a router in a single LSA.

III. DESIGN

As a link-state protocol, NLSR’s basic functionality is
to discover adjacencies and disseminate both topology and
name prefix information. Such functionality may appear to be
straight-forward to design and implement. However, because
NLSR uses NDN’s Interest and Data packets to propagate
routing updates, the design must shift away from the familiar
concepts of pushing packets to given IP addresses (i.e., any
node can send any packet to any other node). Instead, one
must think in terms of data names and data retrieval. More
specifically, we need a systematic naming scheme for routers
and routing updates (Section III-A). We also need to retrieve
routing updates promptly without a priori knowledge of when
an update may be generated, since a topology or name prefix
change can happen any time (Section III-B). In terms of
routing functionality, NLSR distinguishes itself from previous
link-state routing protocols in two aspects: (a) providing
multiple next hops for each name prefix instead of a single
one; and (b) signing and verifying all LSAs to ensure that
each router can originate only its own prefix and connectivity
information. We present our trust model in Section III-C and
route calculation algorithm in Section III-D.

Although NLSR is designed to run in a single routing
domain with a single authority, we believe that our design and
deployment experience offers a concrete stepping stone toward
developing an NDN-based inter-domain routing protocol and
an inter-domain trust model.

A. Hierarchical Naming Scheme

Based on the current network structures and operational
practices, a hierarchical naming scheme seems best to capture
the relationship among various components in the system,
thus making it easy to identify routers belonging to the same
network as well as messages generated by a given routing
process. It also helps associate keys with their owners.

In our design, each router is named according to the network
it resides in, the specific site it belongs to, as well as an
assigned router identifier, i.e., /〈network〉/〈site〉/〈router〉. The
〈router〉 component contains two parts: a router tag and a
router label, e.g., %C1.Router/router3. For example, an
ATT router in a PoP (point of presence) in Atlanta may be
named /ATT/Atlanta/PoP1/%C1.Router/router3.
This way, we know that if two routers share the same
/〈network〉 prefix, they belong to the same network; and if
they share the same /〈network〉/〈site〉 prefix, they belong to
the same site. This naming scheme makes it easy to filter
out erroneous routing messages. The NLSR process on a

Fig. 1. LSA Format

router has the router’s name as its prefix, i.e., /〈network〉/〈site〉
/〈router〉/NLSR. This name is used in periodic info messages
between adjacent NLSR routers to detect the failure of either
links or routing processes themselves (Section III-E).

B. Format and Dissemination of LSAs

An NLSR router establishes and maintains adjacency rela-
tions with neighbor routers. Whenever it detects the failure or
recovery of any of its links or neighbor processes, it dissemi-
nates a new Adjacency LSA to the entire network. Moreover,
it advertises name prefixes from both static configuration and
dynamic registration by local data producers. Whenever any
name prefix is added or deleted, it also disseminates a new
Prefix LSA. The latest versions of the LSAs are stored in a
Link State Database (LSDB) at each node.

The LSA format is shown in Figure 1. Each LSA
has the name /〈network〉/NLSR/LSA/〈site〉/〈router〉/〈lsa-type〉
/〈version〉, where 〈lsa-type〉 can be name or adjacency.
The 〈router〉 component identifies the router that originates
the LSA. The 〈version〉 component of an LSA is increased by
1 whenever a router creates a new version of the LSA.

We consider the LSA dissemination problem as data syn-
chronization of the LSDBs. NLSR uses the ChronoSync pro-
tocol [10] to synchronize changes in the routers’ LSDBs.
ChronoSync maintains all the LSA names in each LSDB as
a name set and uses a hash of the name set as a compact
expression of the set. Routers running ChronoSync use the
hashes of their LSA name sets to detect the difference in the
sets. If a new LSA name is detected, ChronoSync notifies
NLSR to retrieve the corresponding LSA. This synchroniza-
tion approach avoids unnecessary flooding to the network –
when the network is stable, only one hash, instead of all
the LSA names, is exchanged among the nodes. Moreover,
it separates ChronoSync’s detection of new data names from
NLSR’s data retrieval, meaning that a router can request LSAs
when it has CPU cycles. Thus, it is less likely a router will
be overwhelmed by a flurry of updates.

Figure 2 shows how an LSA is disseminated in the network.
To synchronize the digest tree representing the LSAs in the
LSDB, the ChronoSync protocol on each node periodically
sends periodic Sync Interests with the hash of its LSA name
set to all the other nodes (step 1 and 2). Note that NDN
aggregates Interests with the same name into one PIT entry
and forwards only one of them, so there is at most one Sync



NLSR NLSR

1. Sync Interest: /<sync-prefix>/d1

LSDB
Digest d1

LSDB
Digest d1

2. Sync Interest: /<sync-prefix>/d1

LSA
Added

LSDB
Digest d2

3. Sync Reply: /<sync-prefix>/d1
content: /ndn/NLSR/LSA/B/...

6. LSA Interest: /ndn/NLSR/LSA/B/...

7. LSA Data: /ndn/NLSR/LSA/B/...
LSA
Added
LSDB
Digest d2

Chronosync Chronosync

4. Sync Interest: /<sync-prefix>/d2

5. Sync Interest: /<sync-prefix>/d2

Insert
Notify

Router A Router B

Fig. 2. LSA Dissemination via ChronoSync

Interest pending on each link in each direction when all the
nodes are synchronized. When an LSA is added to B’s LSDB,
the LSA name is updated in B’s LSA name set. ChronoSync
responds to the Sync Interest from A with the new LSA name
(step 3). A’s ChronoSync receives the Sync Data with the new
LSA name, notifies NLSR of the missing data, and updates
its LSA name set. Both A and B compute a new hash for the
set and send a new Sync Interest with the new hash (step 4
and 5). Since the NLSR process on A has been notified of the
missing LSA data, NLSR sends an LSA Interest to retrieve
this missing LSA (step 6). B responds to this Interest with
the requested LSA data (step 7). When A’s NLSR receives
the LSA data, it inserts the LSA into its LSDB. Now, both
routers’ LSDBs are synchronized.1

LSAs have a broadcast name prefix /〈network〉/NLSR/LSA
that allows the Interest for an LSA to be forwarded to all
the neighbors of a node. If any of the neighbors have a copy
of the LSA in its Content Store, the neighbor will return it.
Otherwise, the Interest is further forwarded. The broadcast is
necessary as the NLSR routing protocol uses the LSAs to build
a forwarding table, so there is no existing FIB entry for the
LSAs. Since each LSA is supposed to be propagated to every
NLSR router, this broadcast should not incur extra overhead.

In order to remove obsolete LSAs caused by router crashes,
every router periodically refreshes each of its own LSAs
by generating a newer version. Every LSA has a lifetime
associated with it and will be removed from the LSDB when
the lifetime expires. Therefore, if a router crashes, its LSAs
will not persist in other routers’ LSDBs. Note that route
calculation should not be impacted by the obsolete LSAs in
NLSR – if a router crashes, its neighbors will update the status
of their LSAs so traffic will not be directed over those links.

1For details about ChronoSync (e.g., hash calculation, difference resolution,
etc.), please see the original ChronoSync paper [10].

Fig. 3. NLSR Trust Hierarchy

TABLE I
KEY NAMES

Key Owner Key Name
Network /<network>/KEY/<key>
Site /<network>/<site>/KEY/<key>
Operator /<network>/<site>/<operator>/KEY/<key>
Router /<network>/<site>/<router>/KEY/<key>
NLSR /<network>/<site>/<router>/NLSR/KEY/<key>

As such, these refreshes should be sent at a relatively long
interval, e.g., on the order of days.

C. Security

Every NDN Data packet is digitally signed and the signature
is part of the Data packet. The signature covers the name, the
content, and the metadata for signature verification. One piece
of the metadata is the key locator [15], which indicates the
name of the key used to sign the packet, thus the receiver can
fetch the key to verify the signature. In addition, the receiver
needs to verify that the key is trusted to sign the LSA, which
requires a trust model for key authentication.

1) Trust Model: NLSR models the trust management as a
five-level hierarchy reflecting the administrative structure of
an intra-domain routing protocol, as shown in Figure 3. At
the top level, there is a single authority that is responsible
for the whole network. The network consists of multiple sites,
which can be departments in an organization or PoPs in an ISP.
Each site has one or more operators who collectively manage
a number of routers belonging to a site. Each router can create
an NLSR process that produces LSAs. With this hierarchical
trust model, one can establish a chain of keys to authenticate
LSAs. Specifically, an LSA must be signed by a valid NLSR
process running on the same router where the LSA originates.
To become a valid NLSR process, the process key must be
signed by the corresponding router key, which in turn should
be signed by one of the operators of the same site. Each site
operator’s key must be signed by the site key, which must
be certified by the network authority using the network key,
which we call trust anchor.



Listing 1. Schema for LSA Validation
1security
2{
3 validator
4 {
5 rule
6 {
7 id "NSLR LSA Rule"
8 for data
9 filter

10 {
11 type name
12 regex ˆ[ˆ<NLSR><LSA>]*<NLSR><

LSA>
13 }
14 checker
15 {
16 type customized
17 sig-type rsa-sha256
18 key-locator
19 {
20 type name
21 hyper-relation
22 {
23 k-regex ˆ([ˆ<KEY><NLSR>]*)<

NLSR><KEY><ksk-.*><ID-
CERT>$

24 k-expand \\1
25 h-relation equal
26 p-regex ˆ([ˆ<NLSR><LSA>]*)<

NLSR><LSA>(<>*)<><><>$
27 p-expand \\1\\2
28 }

29 }
30 }
31 }
32

33 rule
34 {
35 id "NSLR Hierarchy Exception Rule

"
36 for data
37 filter
38 {
39 type name
40 regex ˆ[ˆ<KEY><%C1.Router>]*<%

C1.Router>[ˆ<KEY><NLSR>]*<
KEY><ksk-.*><ID-CERT><>$

41 }
42 checker
43 {
44 type customized
45 sig-type rsa-sha256
46 key-locator
47 {
48 type name
49 hyper-relation
50 {
51 k-regex ˆ([ˆ<KEY><%C1.

Operator>]*)<%C1.
Operator>[ˆ<KEY>]*<KEY
><ksk-.*><ID-CERT>$

52 k-expand \\1
53 h-relation equal
54 p-regex ˆ([ˆ<KEY><%C1.

Router>]*)<%C1.Router

>[ˆ<KEY>]*<KEY><ksk
-.*><ID-CERT><>$

55 p-expand \\1
56 }
57 }
58 }
59 }
60

61 rule
62 {
63 id "NSLR Hierarchical Rule"
64 for data
65 filter
66 {
67 type name
68 regex ˆ[ˆ<KEY>]*<KEY><ksk-.*><

ID-CERT><>$
69 }
70 checker
71 {
72 type hierarchical
73 sig-type rsa-sha256
74 }
75 }
76

77 trust-anchor
78 {
79 type file
80 file-name "root.cert"
81 }
82 }
83}

The name of a key explicitly expresses the role that the key
plays in the system, as shown in Table I.2 The trust relationship
between these keys can be expressed using a trust schema [6]
as shown in Listing 1, which limits the privilege of each key
to a small scope. For example, an operator can only certify
routers belonging to his own site – any other keys certified by
the operator will be treated as invalid. The restricted privilege
limits the impact of key compromise. Moreover, the multi-level
key hierarchy reduces the use of each key, further mitigating
the risk of key exposure.

2) Key Retrieval: In NDN, a public key is simply another
type of data and can be retrieved using Interest/Data exchange.
In other words, a router can express an Interest with a
key name to retrieve the key.3 Because one must be able
to retrieve keys to verify routing updates before routes are
established, NLSR lets each router retrieve keys from its
neighbors. Specifically, a router expresses an interest for a key
to all its direct neighbors. Neighbors will lookup the requested
keys in their local key storage (and Content Store) and return
the key if it is found. In case a neighbor does not have the
requested key, the neighbor can further query its neighbors
for the key. Note that such key retrieval requests resemble
broadcast, but will stop at routers who either own or cache
the requested keys. We assign a special name prefix for key
retrieval /〈network〉/broadcast/KEYS, which is prepended to
the requested key name. Each router also listens to this prefix

2To differentiate between router keys and operator keys, we use differ-
ent tags in their names – the 〈router〉 component contains a router tag,
%C1.Router, and a router label, while the 〈operator〉 component contains
an operator tag, %C1.Operator, and an operator label.

3Note that the last component of a key name is always the hash of the key,
so that the name always matches a specific key.

to receive the key request. Their response to the key request is
an encapsulated data packet whose content is the original data
packet containing the requested key. Since the authenticity of
a key depends on the signature of the inner data packet, the
signature field of the outer data packet is filled with a SHA-
256 hash for integrity checking of the packet.

Once a key is received, it can be cached for future use and
for satisfying the key request from other neighbors.

D. Multipath Calculation
Based on the information available in the Adjacency LSAs,

each NLSR node builds a network topology. It then runs the
following simple extension of Dijkstra’s algorithm to produce
multiple next hops to reach each node. It first removes all
immediately adjacent links except one and uses Dijktra’s
algorithm to calculate the cost of using that link to reach
every destination in this topology. This process is repeated
for every adjacent link. Afterwards, it ranks the next hops for
each destination based on their costs to reach the destination.
Since we know which name prefixes are associated with which
routers based on the Prefix LSAs, we can obtain a list of
next hops to reach each name prefix. Note that NLSR allows
an operator to specify the maximum number of next hops
per name prefix to insert into the FIB, so that the FIB size
can be controlled when a node has many neighbors. The
computational cost, however, is still controlled by the total
number of neighbors, since the algorithm goes through all
available next hops to produce the cost for each next hop.
We plan to investigate more efficient multipath algorithms.

E. Hello Protocol
NLSR sends periodic “info” Interests, at a default interval

of 60 seconds, to each neighboring node to detect its status.



Fig. 4. Adjacency failure and Recovery detection

If the neighbor responds to the Interest with Data and the
Data can be validated based on the trust model, the neighbor
is considered up, or ACTIVE. If an info Interest times out,
NLSR will try sending the Interest a few more times at short
intervals in case the Interest was lost. If there is no response
from the neighbor during this period, the adjacency with the
neighbor is considered down, or INACTIVE. Note that it is
impossible to determine whether the remote NLSR process
has died or the link has failed. However, this distinction is not
important since in either case the link should not be used to
forward traffic. Whenever the status of an adjacency changes,
NLSR rebuilds its Adjacency LSA and distributes it. It also
schedules a routing table calculation.

When a neighboring NLSR process or a link recovers,
NLSR will receive a response to its “info” Interest and
change the adjacency status to ACTIVE. To quickly set up an
adjacency, NLSR will also send an info Interest after receiving
an info Interest from a previously INACTIVE node instead of
waiting to send the next scheduled periodic Interest. Figure 4
illustrates how Node A detects an adjacency failure with Node
C and a recovery with Node B.

The Hello Protocol also uses face event notifications from
NFD (NDN’s Forwarding Daemon) to quickly respond to a
link failure. When an interface to an adjacency is down, NFD
will send to NLSR a Face Event Notification with a Face ID
corresponding to the interface. NLSR will use the Face ID
to find the adjacency which is reached through this interface,
mark the adjacency as INACTIVE, rebuild its Adjacency LSA,
and schedule a routing table calculation.

F. Summary of Design Changes

One of the most important changes since NLSR’s initial
design is replacing CCNSync with ChronoSync. CCNSync
was bundled with CCNx’s Repo, and all the data CCNSync
retrieved was stored in the Repo and could not be deleted.
This caused a memory problem after running NLSR for some
time. In contrast, ChronoSync simply informs NLSR of new
data names and NLSR retrieves the data using the names.
Since NLSR only cares about the latest version of an LSA, it

can discard earlier versions of the LSA which eliminates the
memory problems associated with storing all LSAs. Moreover,
ChronoSync uses a broadcast model to synchronize among
all NLSR routers which can propagate new information faster
than a hop-by-hop synchronization model used in CCNSync.

Another major design change is to advertise all the name
prefixes originated by a router in one LSA. This means fewer
messages are required to collect the name prefix information.
If a router originates many name prefixes, the LSA may exceed
the default packet size in NDN. We have implemented LSA
segmentation to support large LSAs.

Furthermore, we also augmented the Hello protocol to use
face event notifications so that it can react to link failures much
faster than relying on Hello messages alone, which by default
are sent every 60 seconds.

IV. IMPLEMENTATION

The current NLSR design is implemented in C++ using the
ndn-cxx [16] library to run over NFD [17] (the initial NLSR
design was implemented in C using CCNx [5]). It is open
source [18]. Below we describe some implementation details.

a) Hello Protocol: There are three parameters in NLSR’s
configuration file that can be used to modify the behavior of
the Hello Protocol. The Hello Interval can be changed to
reduce or increase the frequency of periodic info Interests
(default is 60 seconds), the Hello Retry Amount specifies
the number of times the info Interest can be resent before
determining the adjacency as down (default is 3 times), and
the Hello Timeout Time is used to specify the info Interest
lifetime before the Interest times out (default is 1 second).

b) LSA Version Numbers: The version number for each
LSA increases by one after each change. It is represented
by a 24-bit value for the name LSA and a 20-bit value for
the Adjacency LSA. On start up, NLSR must use version
numbers that are larger than previously used for each LSA
type. Otherwise, other routers in the network will consider
the LSAs as obsolete. To solve this problem, NLSR records
the current version number for each LSA type and writes them
to a file whenever a version number changes. When NLSR is
initialized, it reads these version numbers from the file and
publishes its first LSAs with version numbers larger than the
recorded version numbers.

c) Routing Operation Delays: Two parameters in the
NLSR configuration file can be modified to balance perfor-
mance with overhead. Each of the parameters is used to control
the timing of important routing operations. The Adjacency
LSA Build Interval configures the delay after an Adjacency
LSA build has been requested until the LSA is actually built.
A longer delay allows for multiple adjacency changes to be
aggregated into one Adjacency LSA build, reducing the CPU
overhead. But, the shorter the delay, the faster the router can
build an Adjacency LSA so that the network can use paths
through its adjacencies. The default value is 5 seconds. The
Routing Calculation Interval is used to specify the delay after
a routing table calculation is scheduled until the routing table
is built. A longer wait time allows for multiple changes to



the LSDB to be aggregated into one calculation, but it also
means that the router cannot begin using updated paths until
the calculation is performed. The default value is 15 seconds.

d) Security: Each key utilized by NLSR’s trust model,
besides the NLSR process key, is created using the ndn-
cxx [16] ndnsec tools. A public/private key pair and corre-
sponding certificate are created for each key owner in the trust
model hierarchy. The certificates for each public key in the
key pairs are signed by the key owner one level higher in the
hierarchy; the network key is self-signed.

The NLSR process key is created automatically when NLSR
is initialized using the ndn-cxx security API. On initialization,
NLSR generates a key pair and gets the certificate for the
public key (signed with the router’s private key). The NLSR
process uses its private key to sign info data and LSA data.

e) Dynamic Name Prefix Advertisement and Withdrawal:
A network operator can specify a set of name prefixes to be
advertised by NLSR in the NLSR configuration file. NLSR
builds a Prefix LSA which includes the set of names and
advertises it to the network. To modify the advertised name
prefixes while the NLSR process is running, a signed com-
mand Interest can be sent to NLSR to advertise or withdraw a
specific name prefix. The command Interest’s name contains
the desired action, advertise or withdraw, as well as the name
prefix to be advertised or withdrawn. NLSR will verify that
the command Interest is signed by an operator of the router
and perform the specified action on the Prefix LSA. This new
Prefix LSA will then be disseminated to the network.

V. EVALUATION

This section presents the evaluation results of NLSR in
terms of CPU processing time, routing convergence time, and
forwarding plane performance. All of our experiments were
performed using Mini-NDN [19], an NDN network emulation
tool based on Mininet [20]. In Mini-NDN, an entire network
topology runs on a single machine, and each node in the
topology is executed in a container with its own resources.
The experiments were run on a server with a 2.7Ghz Intel
Xeon E5-2680 CPU.

A. Scenarios

Each experiment lasts 600 seconds. First, NLSR is started
on each router in the network. After 300 seconds, routers begin
to refresh their LSAs. Note that in order to test the protocol
in a short period of time, we set the refresh timer to be 300
seconds instead of on the order of days. At 480 seconds, the
most connected node in the topology is brought down and
remains failed for 60 seconds. At 540 seconds, the previously
failed node is brought back up.

B. Topologies

We run our experiments on four different topologies to
measure the performance of NLSR as topology size increases.
Our first experiment topology is a snapshot of the actual NDN
testbed topology with 22 nodes and 50 links. The routing cost
of each link is set to the delay between the two neighboring

a) Single-path Routing

b) Multipath Routing

Fig. 5. Total Network CPU Utilization for NLSR

nodes. Our larger three topologies are realistic Internet-like
topologies with an increasing number of nodes (N=41, 58, 78),
the upper limit constrained by our computational resources.
Since the AS Internet topology is self-similar [21], meaning
that its subgraphs retain all the structural properties of the
original full topology, we extract subgraphs of the AS Internet
topology of differing size N.

C. Results

The first experiment is performed on the NDN testbed
topology to determine the CPU impact of key authentication
and multpath calculation. The maximum number of next hops
per name prefix is set to 4 for all the multipath experiments.
Figure 5 shows the CPU overhead of NLSR for all the nodes
over time with key authentication disabled and enabled; the
first figure is with single-path calculation and the second figure
is with multipath calculation.

Even with the proposed trust model, which requires verifi-
cation of multiple levels of keys, NLSR hardly incurs much
extra processing cost. During the router startup period, key
authentication adds 29% extra CPU overhead in the single
path case and 24% in multipath. This is due to the fact that
by design NDN signs and verifies all Data packets. The only
difference between the two schemes lies in the key verification,
where NLSR with the proposed trust scheme requires more
time to fetch multiple keys recursively from the network and
verify them; however, as this is only done once per new key,



a) NDN Testbed Topology

b) 78-node Topology
Fig. 6. NLSR LSDB Changes

it incurs a very low CPU cost. Figure 5 also shows that with
multipath routing, NLSR shows higher CPU usage than single
path. Since the CPU cost due to messaging is the same in the
two schemes, the difference here is mainly due to the higher
cost of multipath calculation. Multipath calculation adds 23%
and 14% CPU overhead total over the entire experiment
without and with security enabled, respectively.

To measure routing convergence time, we track the number
of LSDB changes over time – when the number reaches 0, it
means the LSDBs have been synchronized and the network
has converged. The experiment is run on all four topologies
with the default values for routing operations delay (Sec-
tion IV-0c) and with no routing operations delay. Due to space
constraint, we only show the results from the smallest and
largest topologies; the other figures are similar. Figure 6 shows
the average per-node LSDB changes each second. Without
routing operations delay, NLSR converges more quickly than
with the default delay but also has more cumulative LSDB
changes. During the startup period, the default delay generates
19% less LSDB changes than no delay in the NDN testbed
topology and 22% less in the 78-node topology. During the
LSA refresh and node failure periods, default delay and no
delay generate the same number of LSDB changes in both
topologies. After the recovery, the default delay generates
1% less LSDB changes than no delay in the NDN testbed
topology and 27% less in the 78-node topology. Comparing the
two figures, the larger topology takes longer to converge and
incurs more cumulative LSDB changes per node regardless of
whether routing operations delay is used, which is expected.

a) RTT Ratio between Single Path and MultiPath

b) Ping Loss Rate
Fig. 7. Forwarding Convergence

For example, with the default delay, the 78-node topology took
23% longer to converge than the NDN testbed topology during
router startup, 19% longer during LSA refresh, 40% longer
during failure, and 17% longer during recovery.

To understand the benefit of multipath forwarding, which is
enabled by NLSR’s multipath routing calculation, we measure
the RTT of pings in the network during the failure and
recovery events. To take advantage of the multiple next hops
per name prefix, we use a Forwarding Strategy that maintains
a smoothed RTT for each name prefix through each available
next hop. The strategy chooses the highest routing ranked next
hop to forward Interests initially and probabilistically probes
other next hops periodically to learn RTTs (the probability
is proportional to the routing ranking). When a next hop
with lower smoothed RTT is found, it switches to that next
hop. This capability is important for handling failures and
recoveries before routing converges. The experiment is run on
the NDN testbed topology with the default values for routing
operations delay. Figure 7(a) shows the RTT ratio between
single path routing and multipath routing for each pair of
nodes every second. In the case of a timeout, the RTT used
in the calculation for the timed-out packet is equal to 971ms,
the weight of the longest path in the topology. The median
of the ratios is graphed along with the 5th percentile and
95th percentile. During the failure event, the 95th percentile
is much higher due to timeouts in the single path case while
multipath is able to choose a different next hop for forwarding.
Single path is not able to remedy these timeouts until NLSR
recalculates the routing table and installs a new next hop.



Note that sometimes the ratio is slightly below 1 due to the
variations in RTTs caused by queueing and other factors. Also,
the graph’s maximum Y-value is 1.1, but the 95th percentile
extends much higher, approaching a ratio of 5 for the 20
seconds after the node failure. Figure 7(b) shows the loss rate
incurred by both single path and multipath during the failure
and recovery events. Single path experiences a loss rate higher
than multipath for the reason explained above. We can make
one more observation: the higher delay and losses in the single
path case happen only in the first 20 seconds after the node
failure. This shows that NLSR converges soon after the default
operations delay, since once the routing converges, the best
next hop in the multipath case is the same as that in the single
path case.

VI. LESSONS FROM DEVELOPMENT AND DEPLOYMENT

NLSR has provided a real use case to drive development of
several NDN features such as the security and trust schema
functionality in the ndn-cxx library, the RIB and prefix man-
agement functionality in NFD, and the sync mechanism in
ChronoSync. At the same time, these features greatly sim-
plified our protocol design and implementation. For example,
using ChronoSync to disseminate new LSA names meant that
we did not need to invent a mechanism to get notifications for
new LSAs.

Furthermore, the testbed deployment helped discover po-
tential problems. For example, the key validator verifies that
received keys and certificates are not created in the future,
but if router clocks are out-of-sync, such situations can arise.
Therefore, we added measures to handle slightly out-of-sync
clocks. However, if any of the testbed machines has a very
different time than others, its LSAs may be rejected by others
or vice versa. This means that the network has to be roughly
time synchronized for the protocol to work. Another problem
is that the sequence number file where NLSR records its LSA
version numbers can become corrupted during operation or
during reboot, which can cause a router to inject LSAs with
older version numbers than the ones already distributed. In
this case, the new LSAs will be discarded by other routers,
so this router cannot become part of the topology. It is our
ongoing work to address this problem.

VII. CONCLUSION

So far, designing NLSR has served as a great learning
experience in the following aspects: (1) design of the naming
scheme to reflect the relationship among various entities in
a routing system, (2) development of a trust model for key
verification of a routing protocol, and (3) mental adjustment to
NDN’s new design patterns of using Interest-Data exchanges
to propagate routing update messages. Furthermore, the use of
named data for communication enables the concept of Sync,
which facilitates robust dataset synchronization in distributed
systems, making NLSR more resilient to losses and concep-
tually simpler.

In the near future, we plan to add more statistics collection
to facilitate debugging of the protocol in deployment and to

use ChronoSync to distribute keys similarly to how LSAs
are distributed. If keys are proactively distributed in a Sync
approach, nodes can immediately learn new keys after a key
rollover which prevents certain attacks, such as key replay
attacks. In the long term, we plan to explore new types of
routing designs to scale global routing in NDN. Since NDN’s
adaptive, multipath forwarding can handle various packet
delivery problems at the forwarding plane, the convergence
delay requirements on the routing plane are relaxed. This
opens the door to new types of routing designs that have fewer
routing updates by trading off convergence speed.

VIII. ACKNOWLEDGMENT

This work was supported by NSF Grants 1040036, 1039615,
1040868, 1344495, 1345142, and 1345318.

REFERENCES

[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proceedings of
ACM CoNEXT, 2009.

[2] L. Zhang et al., “Named data networking (NDN) project,” NDN, Tech.
Rep. NDN-0001, October 2010.

[3] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, k. claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named Data Networking,”
ACM SIGCOMM Computer Communication Review (CCR), vol. 44,
no. 3, pp. 66–73, Jul 2014.

[4] C. Yi, A. Afanasyev, I. Moiseenko, L. Wang, B. Zhang, and L. Zhang,
“A case for stateful forwarding plane,” Computer Communications,
vol. 36, no. 7, pp. 779–791, 2013, iSSN 0140-3664. [Online]. Available:
http://dx.doi.org/10.1016/j.comcom.2013.01.005

[5] A. M. Hoque, S. O. Amin, A. Alyyan, B. Zhang, L. Zhang, and L. Wang,
“NLSR: Named-data link state routing protocol,” in Proceedings of the
ACM SIGCOMM Workshop on Information-Centric Networking, 2013.

[6] Y. Yu, A. Afanasyev, D. Clark, kc Claffy, V. Jacobson, and L. Zhang,
“Schematizing and automating trust in named data networking,” in
Proceedings of the 2nd ACM ICN Conference, 2015.

[7] C. Yi, J. Abraham, A. Afanasyev, L. Wang, B. Zhang, and L. Zhang,
“On the role of routing in named data networking,” in Proceedings of
ACM SIGCOMM ICN Conference, 2014.

[8] PARC, “CCNx open srouce platform,” http://www.ccnx.org.
[9] NDN Project Team, “The NDN platform,” http://named-data.net/

codebase/platform/.
[10] Z. Zhu and A. Afanasyev, “Let’s ChronoSync: Decentralized dataset

state synchronization in Named Data Networking,” in Proceedings of
IEEE ICNP, 2013.

[11] N. P. Team, “NLSR 0.1.0,” http://named-data.net/doc/NLSR/0.1.0.
[12] H. Dai, J. Lu, Y. Wang, and B. Liu, “A two-layer intra-domain routing

scheme for Named Data Networking,” Globecom 2012 - Next Generation
Networking and Internet Symposium, December 2012.

[13] E. Hemmati and J. Garcia-Luna-Aceves, “A new approach to name-
based link-state routing for information-centric networks,” in Proceed-
ings of the 2Nd ACM ICN Conference, ser. ICN ’15. New York, NY,
USA: ACM, 2015.

[14] J. Garcia-Luna-Aceves, “Routing to multi-instantiated destinations: Prin-
ciples and applications,” in Network Protocols (ICNP), 2014 IEEE 22nd
International Conference on. IEEE, 2014, pp. 155–166.

[15] “NDN packet format specification,” http://named-data.net/doc/ndn-tlv/.
[16] N. P. Team, “ndn-cxx,” http://named-data.net/doc/ndn-cxx/.
[17] ——, “NFD - NDN forwarding daemon,” http://named-data.net/doc/

nfd/.
[18] ——, “Named data link state routing,” https://github.com/named-data/

NLSR.
[19] “Mini-NDN GitHub,” https://github.com/named-data/mini-ndn.
[20] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid

prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks, 2010.

[21] M. A. Serrano, D. Krioukov, and M. Boguñá, “Self-Similarity of
Complex Networks and Hidden Metric Spaces,” Phys Rev Lett, vol.
100, p. 78701, 2008.


