Orbiter:
A Free Spaceesaft Simulation Tool

Martin Schweiger
Department of Computer Science
University College London ;
www.orbitersim.com- J

e =

'

!

2"d ESA Workshop on Astredynamics
Tools and Techniques

ESTEC, Noordwijk

13-15 September, 2004

Contents

Overview
Scope
Limitations
Some Orbiter features:
e Time propagation
» Gravity calculation
* Rigid-body model and superstructures
Orbiter Application Programming Interface:
» Concept
e Orbiter instrumentation
 The VESSEL interface class
New features:
» Air-breating engines: scramjet design
 Virtual cockpits
* New visual effects
Orbiter as a teaching tool
Summary and future plans
Demonstration

Overview

» Orbiter is a real-time space flight simulation for Windows PC
platforms.

Modelling of atmospheric flight (launch and reentry),
suborbital, orbital and interplanetary missions (rendezvous,
docking, transfer, swing-by etc.)

Newtonian mechanics, rigid body model of rotation, basic
atmospheric flight model.

Planet positions from public perturbation solutions. Time
Integration of state vectors or osculating elements.

Developed since 2000 as an educational and recreational
application for orbital mechanics simulation.

Written in C++, using DirectX for 3-D rendering. Public
programming interface for development of external module
plugins.

With an increasingly versatile API, development focus is
beginning to shift from the Orbiter core to 3™ party addons.

Scope

e Launch sequence from surface to orbital insertion (including
atmospheric effects: drag, pressure-dependent engine ISP ...)

Orbital manoeuvres (alignment of orbital plane, orbit-to-orbit
transfers, rendezvous)

Vessel-to-vessel approach and docking. Building of
superstructures from vessel modules (including simple rules
for updating the rigid-body model).

Release and re-capture of satellites.
Re-entry.

Interplanetary transfers (including Hohmann orbits, slingshot
manoeuvres)

Atmospheric flight (aerodynamic flight model, airfoil definition,
runway takeoff/landing, airbreathing engines)

Limitations

Stability of time propagation: numerical accuracy limited by
frame refresh rate (physics engine and graphics subsystem
competing for clock cycles)

Flight model: no native support yet for radiation pressure,
micro-drag at high altitude. Simple rigid-body model (no native
support for tethers, internal mass distribution changes ...)

Simple atmospheric flight model
No collision detection
No damage modelling

No native multi-user support

Time propagation

Real-time simulation with time acceleration up to 10* and
variable step length determined by processor speed, graphics
load, simulation complexity etc.

Method 1:
Semi-analytic perturbation solutions for celestial bodies
(VSOP87, ELP2000 ...)

Method 2:
Propagation of state vectors r(t) - r(t.,,), v(t) - v(t.,) with 4t
order Runge-Kutta.

Method 3:
Updating elements of osculating orbit from perturbations of the
primary gravitational field.

Gravity calculation

Orbiter accomodates perturbations of the radial symmetry of
gravitational potential sources in a single (polar) dimension
using a harmonic series:

=M {1 >3 F jmsinqo)}

with Legendre polynomial P, of order n, and perturbation
coefficients J.,. Number of terms N is adjusted automatically as
a function of distance r.

Earth

A W N

A full spherical harmonics

Mercury
Venus
\YETES
Jupiter
Saturn
Uranus
Neptune

N o1

N

LnLnLnLnLnNLnLnLnLnLnLn

o '

R PR NOO
O
R

N el

expansion of the field
perturbations in both polar (¢
and azimuth direction (A) is
planned for a future version.

Rigid-body model and composite structures

Orbiter uses a simplified model of
rigid body motion to construct
superstructures by connecting
vessels.

Given Euler's equation for angular
motion, assuming diagonalised
inertia tensors with PMI J,, J,, J;:

M, -(J,-J,)e,@
Jw, =M -(J,-J,)ww,
Jw,=M,-(J, -J)ow,

JXCUX =

we represent each vessel by 6

samples P.o= (£ X,0,0), p;4= (0t y,0),

= (0,0, 2) with

x=41-3,+J3,+J,]
J,=J,+J,|
JX+Jy—JZ|

The samples p, for each vessel
are transformed into a common
reference frame p/', given by the
superstructure connectivity, and
transformed PMI are constructed

J, -mZy. +7°

y=mZ>ﬁ +7°

Nk -mZx +y’

The PMI JO of the superstructure
are then given by collecting all
vessel contributions:

J(S) — J'(k)
2

No off-diagonal elements are
considered in JO,

Orbiter module design and API

Textures

v

Planet
definition file

Instrument
plugin

!

Planet
module

API callback

API request

T

Ephemeris
libraries (VSOP,
ELP2000)

Orbiter
core

Remote
Orbiter

Plugin
module

v

External links
(files, libraries,
applications

parser

API callback

API request

Meshes

v

Vessel
definition file

y

Vessel

module
API:

VESSEL class

derived class

v

vessel instance

¢ TAPI

Script
wrapper

f

Script

Orbiter iInstrumentation

Multifunctional display (MFD) concept: seamless extension of
instrumentation functionality via plugin MFD modes.

Generic instruments (selection):

NAV1 105.10kHz g

D3T CVEL

LN 169.00%

. @]
[
[
BB
o
[

@

—l‘sz|
"gEN8E6O

Surface-relative and at- Align orbital plane with Rendezvous with Line up docki
mospheric parameters. a target orbit at a node. target object. approach pat

Drop-in instruments from plugin modules:

TransX MFD mode:
interplanetary transfer
calculation with patched

MFD plugin
Orbiter Update()
cone approach.

core Redraw ()
_ (courtesy Duncan
User input () | ' Sharpe)

66888 °

Orbiter API;: The VESSEL interface

The VESSEL class is a generic interface between Orbiter and a
vessel implementation.

class VESSEL class myVessel: public VESSEL

clbkTimestep() clbkTimestep() } overloaded

callback
functions clbkSaveState O - clbkSavestate () 1(‘:1? rlllct:)t?c():rll(s

GetAltitude() local _Functions ()
API SetThrusterLevel()
get/set AddForce()

Using Orbiter's built-in flight Local calculation, bypassing
model: Orbiter's flight model:

Setup: Time step:

Define_thruster (r, d, f,, isp, ...) Get_Positions ()

Define_airfolil (r, c (...), cp(...), --.) Get_Atmospheric_data ()
(F, r) = local_Calculate_forces ()
AddForce (F, r)

The vessel designer has a choice of using built-in flight models, or
Implementing a local model (using Orbiter as a visualisation

framework only).

Air-breathing engines: scramjet (1)

Scramjet design is an example for implementing a feature entirely
externally without native support in the Orbiter core.

Ideal scramjet: temperature and pressure relationships

Diffuser: isentropic _ y=1 -
compression T4 _Tw(l"' 2 M.

Combustion chamber:
T. =max(T..,T
isobaric expansion b (Too: To)

Exhaust nozzle:

(v-Dly
: : . T.=T|—
isentropic expansion e D,

Jet engine propulsion thrust equation:

F=(m, +m)v,—myv, +(p,— P.)A

where M, and m, are the air and fuel mass rates, respectively, v,and Vv,
are the exhaust and freestream velocities, and A, is the exhaust cross
section.

Air-breathing engines: scramjet (2)

Specific thrust is given by F — (1+ D)Ve —V, Thrust vs. Mach number:

where D =m, /m, is the fuel-to-air ratio.

The amount of fuel burned in the combustion
chamber must be adjusted so that the burner
temperature limit is not exceeded. This leads
to the following expression for D:

_ Tb _Td
Q/c:Io =T,

where Q is a fuel-specific heating value and
C, Is the specific heat at constant pressure,

given by ¢, = JRI()1).

The exhaust velocity v, can be obtained from
the energy balance

—_ 2
C, T, =C, T, +Vv;/2

e Support for 3-D virtual
cockpit view

e Head rotation improves
situational awareness

e “Eye-neck” offset generates
movement parallax

e Camera reference point
and rotation ranges defined
by API calls

 Dynamic display updates

* Mouse-operated
instruments

 Viewpoint-corrected HUD
display

3-D artwork courtesy Roger Long

New visual effects (1)

* Improved rendering of
atmospheric haze from hig
altitude

« Additional configuration
parameters for colour
distribution

« Rendering of objects
through atmosphere layers
IS now additive.

EEIEE 0

New visual effects (2)

« Surface labels (launch
sites, radio transmitters,
user-defined)

« Surface shadow support for
structures and vessels

Orbiter as a teaching tool (1)

* New html-based help system (context-sensitive: scenario- and
vessel-specific). Can be extended by 3 party plugins.

* New "kiosk mode" for unsupervised use in public environments
(limited simulation run time, automatic scenario selection).

Orbiter Help

&

Crhic: Eartch EQU

——TALRGET--

ZMa 6.736M

SMi 6.73EH

Pel A.7Z5H

. - ApD A.743M

J to 100% thrust. You Rad 6.736M
urmpac =l T 0onodi0

Help system: scenario Help system: Help system: orbital
Instructions instrument layout and mechanics primer
documentation

Orbiter as a teaching tool (2)

Data logging: flight data can be extracted for analysis by:

» Using built-in flight data logging facilities

» Writing custom data extraction modules using the API interface
* New: Using DDE (dynamic data exchange) protocol

Orbiter | # [Figure No. 1

altitude [m]

@ Eile Edit !iew|erug Tools Window Help

Del| =28 &2 &%

CERENERENELLS | ‘

ch = ddeinit('orbhiter!','data');

560 GO0 B50
het = ones(l,n) * ddereqgich, ' simcime');
alt = ohes(l,n) * dderegich,'saltitude'];

spd = ones(l,n) * dderegich, ' sirspeed'); airspeed [mis]

while 1==1
t = [t(2:n) ddereg(ch,'simtime')];
alt = [alt{2:n) ddereq(ch,'altitude')];
subploti(2,1,1), plotit,alt), title('altitude [w]'):
spd = [spd(2:n) dderegich, 'airspesd')];
subplot(Z,1,2), plotit,spd), title('airspesd [m/=]');
pause (1.0)

end

@ orb'rter_data....l

Ready

DDE support: exporting fli

Summary

Orbiter is an accessible tool for atmospheric, orbital and
iInterplanetary space flight simulation.

Combining a (moderately) accurate physics engine with 3-D
rendering, its main application is as an educational or
recreational tool.

The programming interface (API) is a versatile way to extend
the core Orbiter functionality. Features not natively supported
by the core can be added by external plugins.

The API interface includes
 state vector updates for celestial bodies
e spacecraft implementations
* instrumentation

Development of the core module is ongoing, and a growing
set of 3rd party contributions is available.

Future developments

Some of the features planned for future releases include:

* Improvements of the flight model (stability of time integration,
micro-drag, radiation pressure, atmospheric flight model).

« Damage and collision modelling.

e Multi-user support (simulation running on server continuously,
clients connect temporarily).

« Elevation modelling of celestial bodies.

Acknowledgements

Trajectory code Duncan Sharpe (TransX transfer trajectory plugi

Vessel code Radu Poenaru, Robert Conley

3-D Modelling Roger Long, Andrew Farnaby, Don Gallagher,
Damir Gulesich, David Sundstrom, Jason
Benson, Valerio Oss

Planet textures James Hastings-Trew, Bjorn Jonsson, Dean
Scott, Philip Stooke, Constantine Thomas,
Robert Stettner, James Williams, Seth
Hollingsead

The beta test team
The addon developer base

The sponsors M6.net, avsim.com

Resources

Orbiter main site (includes download links and related sites):
www.medphys.ucl.ac.uk/~martins/orbit/orbit.htmi
WWW . O rb Ite rSi m . CO m orhimr—Asace flight simulator - mﬁiiﬁWWWWWWWW‘EEm

Contact: e
martins@medphys.ucl.ac.uk Space Flight Simulator

.About ORBITER

ORBITER is a free flight simulator that goes heyond the confines of Earth's
atmosphere. Launch the Space Shuttle from Kennedy Space Center to deploy
a satellite, rendezwous with the International Space Station or take the
futuristic Delta-glicder for a tour through the solar system - the choice is yaurs.
BEut make no mistake - ORBITER is nat a space shodter. The emphasis 1s
firmly on realism, and the learning curve can be steep. Be prepared to invest
LR . = some time and effort to brush up on yaur arbital mechanics background. &
gaod starting point is JPL's Space Flight Learners' Workbook - ar yau could
rl I q u e y S u g g eS I O n S tap into the accumulated knowledge base of the Orhiter community to get

advice

and collaborations are o M e

In time to celebrate 100 years of powered flight (and 3+ years of Orhiter) |

I have released a new patch which fixes a number of recently reparted bugs
Ve r We CO I I I e and adds some new features, including cloud shadows on planetary
& surfaces. Get your copy from one of the download mirrars. {If you already
have the 031105 wersion installed, please download the patch, not the full
Orbiter is free - but it #EfS/000)
you like it, you can
sppreciate the work thatFOF more details, check the Change Log
s gone into creating it
by making a donation. Howvember 6, 2003: New release 031105

It has been a while in the making, but the |atest ORBITER version has finally
been released. Here are a few of the highlights

Cheers! & completely re-warked atmospheric Mlight model provides more realism
during atmospheric ascents and descents. Spacecraft can now define (and
animate) agradynamic cantrol sufaces, so Shuttle landings are now a lot
more realistic,

- Sita!
Support for paricle systems for more realistic engine exhaust and reentry
rendering

Higher planetary texture resolutions: Orhiter now supports "resolution level 9"
with an effective equatorial resolution of 16384 x 81532 pixels! A tile manager
tool bundied with Orbiter allows to apply high resolution textures selectively

®

>
Space Shuttle Atlantis can now re-capture objects, so complex missions x"’“ﬁg },
invalving deplayment and collection of satellites can ke designed.

Shuttle Atlantis (by Don Gallagher) including External Tank and Salid Rocket
Boosters (hy Damir Gulesich), madels far the HST {hy David Sundstram) and
LDEF zatellite (by Don Gallagher), and a news version of the DeltaGlider with
animated control surfaces (by Roger Long). Improved surface textures for both
the Maoon (by Jens Meyer) and Yenus (by Jim Williams) -

Mew models far the International Space Station by Andrew Farnahy), Space : "e

Mew MFD modes: Duncan Sharpe’s Transx for calculating complex
interplanetary missions is now bundled with Orbiter, fogether with a new
Horizontal Situation Indicator io assist with surface navigation and instrument
landings.

< Orbiter Demonstration >

