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Classification of non-well-founded sets and an
application

Abstract

A complete list of Finsler, Scott and Boffa sets whose transitive clo-
sures contain 1, 2 and 3 elements is given. An algorithm for deciding
the identity of hereditarily finite Scott sets is presented. Anti-well-
founded (awf) sets, i.e., non-well-founded sets whose all maximal ∈-
paths are circular, are studied. For example they form transitive inner
models of ZFC minus foundation and empty set, and they include un-
countably many hereditarily finite awf sets. A complete list of Finsler
and Boffa awf sets with 2 and 3 elements in their transitive closure is
given. Next the existence of infinite descending ∈-sequences in Aczel
universes is shown. Finally a theorem of Ballard and Hrbáček con-
cerning nonstandard Boffa universes of sets is considerably extended.

Mathematics Subject Classification: 03E30, 03E65.
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1 Introduction

As is well known the foundation (or regularity) axiom says that the relation
∈ is well-founded, i.e., there is no infinite descending ∈-sequence

· · · ∈ x2 ∈ x1 ∈ x0.

Depicting ∈ by an arrow←, one turns elementhood relations into directed
graphs. For instance the set 1 = {0} is depicted by the picture 1 → 0, or
more abstractly, by the graph a → b. In terms of graphs, well-foundedness
says that there is no path of the form

x0 → x1 → x2 → · · · .

Let ZFC− be ZFC minus foundation. An anti-foundation axiom is a
principle which is added to ZFC− to fill the gap left by the missing foundation,

2



and which, on the one hand postulates the existence of certain non-well-
founded sets, and on the other controls their identity. (Remember that the
ordinary extensionality axiom is often unable to determine identity of non-
well-founded sets.) In 1988, Aczel ([1]) treated in a unified way a host of anti-
foundation axioms that had been considered in isolation by several authors
along several decades of set theory. These are Aczel’s, Scott’s, Finsler’s
and Boffa’ axioms, which entail corresponding extensions A, S, F and B,
respectively, of the standard ZF universe V , such that

V ⊆ A ⊆ S ⊆ F ⊆ B.

In the next section instead of formulating the anti-foundation axioms them-
selves, we shall describe directly the classes A, S, F and B.

The representation of sets by graphs allows one to refer to the elements
(of the transitive closure) of a set as “nodes”. So an n-node set x is a set
whose graph consists of n nodes, or equivalently, |TC({x})| = n.

In 1962, Richard Peddicord ([10]) computed the number of Zermelo-
Fraenkel sets of finite nodes. In 1990, Booth ([5]) counted Finsler 1-node,
2-node and 3-node sets. In 1998, Milito and Zhang ([9]) proposed an algo-
rithm for classifying Aczel sets, and and found an error in Booth’s list of
3-node sets.

In section 2 of this paper, we provide the complete list of these sets.
In section 3 we give an algorithm for identifying Scott sets, and obtain the
number of Scott sets with one, two and three nodes. As a direct consequence
we show that Scott sets and Finsler sets coincide with each other in the case
of one and two nodes, and show that only two Finsler sets are not Scott sets
in the case of three nodes. Generally speaking, it is interesting to construct
Finsler sets that are not Scott sets. Dougherty found the first example of a
Finsler set with nine nodes and 26 edges that is not a Scott set ([1], p. 55).
Later, Moss found a simple example with only three nodes and five edges([1],
p. 54). We construct examples of Finsler sets of any number of nodes that
are not Scott sets. In particular, we obtain a new example with four nodes
and eight edges.

In section 4 we show the existence of Aczel sets with infinite descending ∈-
sequences of any ordinal length, either circular or non-circular. This result is
optimal since, as shown in ([12]), there are no infinite descending ∈-sequences
with length On in Aczel universe.
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In section 5 we focus on a particular kind of non-well-founded sets, the
anti-well-founded (awf) ones, which stand quite opposite to the well -founded
sets. These are non-well-founded sets whose all maximal ∈-paths are circular.
It is shown that they form transitive inner models of ZFC minus foundation
and empty set, and they include uncountably many hereditarily finite awf
sets. A complete list of Finsler and Boffa awf sets with 2 and 3 elements in
their transitive closure is given.

In section 6 we work with Boffa sets. For these sets Ballard and Hrbáček
([2]) developed a nonstandard universe in a class of urelements which satisfies
an extension principle. In this paper we generalize their work to a larger class
of sets, which we call “linear” and denote it by gx. Furthermore we introduce
an equivalence relation ∼ in a class of linear sets. In particular, we show the
following:

EXTENSION PRINCIPLE: Let U be a universe and κ an infinite
cardinal number. Then there exists a κ-saturated universe W and an ele-
mentary embedding F : U → W . Moreover, if gx is a linear set equation of
circular type and (Agx/∼) − (Agx ∩ U/ ∼) is a proper class, then one can
assume that F (x) is equal to x for all x ∈ Agx ∩U , and Agx −W is a proper
class.

The results of sections 3, 4 and 6 are due to the first two authors. Section
5 is due to the third author2.

Acknowledgement. The first two authors would like to thank Y. Yonezawa
and Y. Yoshinobu for useful discussions, and also L. Weng for correcting an
earlier draft of their manuscript.

2The first two authors submitted a manuscript to MLQ in February 2001 and in revised
form in December 2001. The third author submitted independently another manuscript in
November 2001. The two manuscripts happened to contain substantial overlaps, so, upon
the Editor’s request, we decided to rework them into a joint paper – the present one.
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2 Preliminaries

2.1 Non-well-founded set theories

2.1.1 Graphs and systems

In this subsection we recall basic definitions and facts from [1].
A directed graph G is a pair (G,→), where G is a set of nodes and → is

a binary relation on G, the set of edges of G. We usually write (a → b) ∈ G,
or just a → b, instead of (a, b) ∈→. Paths are sequences of consecutive edges

a0 → a1 → · · · → an.

A cycle in the graph G is a path of the form

a0 → a1 → · · · → an−1 → a0

(an n-cycle, i.e., a cycle with n nodes and n edges), or

a0 → a1 → · · · → an → · · · ,

(an infinite cycle).
An accessible pointed graph, or apg for short, is a triple (G,→, a), where

(G,→) is a directed graph and a is a distinguished node, the point of G, such
that any other node of G is connected to a by a finite path.

Given G and a ∈ G, we set:
aG = {b ∈ G : (a → b) ∈ G} (the set of children nodes of a in G),
Ga = the apg with point a and nodes and edges those of G lying on

paths starting from a.
A graph G is said to be extensional if

aG = bG ⇒ a = b.

An apg is said to be well-founded if it contains no circular path.
Let V be the set universe. Throughout the letters a, b, c, . . . are used as

labels of nodes of directed graphs, while x, y, z, . . . range over sets.
A decoration of an apg G is a mapping d : G → V such that for any node

b ∈ G, d(b) = {d(c) : (b → c) ∈ G}. An apg G with point a is a a picture of
a set x, if there is a decoration d of G such that d(a) = x. A decoration d of
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G is injective if it is 1-1. The apg G is said to be an exact picture if it has
an injective decoration.

A system is a pair (M,→), where M and → are now classes of nodes and
edges respectively, and for every a ∈ M , aM is a set, i.e., each node has set
many children. For instance (V,3) is a system. For every system M and
every node a ∈ M , clearly Ma is an apg.

Let V0 be the class of all apg’s. The elements of V0 have the form Ga,
where G is a graph and a is a node of G, and a is the point of Ga.

We may view the class V0 as a system if we equip it with edges (Ga, Gb)
whenever a → b is an edge in G.

The relationship between graphs and their decorations, or equivalently,
between sets and their pictures, is a powerful tool for exploring the phe-
nomenon of non-well-foundedness. For instance, every well-founded set has
a picture which is a well-founded graph. And conversely (by Mostowski’s Col-
lapsing Lemma), every well-founded apg G has a unique decoration. This
decoration is injective iff G is extensional. Therefore we may identify the
universe WF of well-founded sets (which of course is the universe of ZF)
with a certain subclass of V0, namely

WF = {G ∈ V0 : G is extensional and well-founded}.

2.1.2 Aczel sets

In 1988 Peter Aczel introduced the so-called Aczel’s Anti-Foundation Axiom
(AFA). This axiom claims that every graph has a unique decoration. AFA
can be reformulated in terms of the notion of system map. A system map π
from the system M to the system M ′ is a map such that for every a ∈ M , the
set of children of π(a) in M ′ is equal to the set {π(b) : b is a child of a in M}.
I.e., (π(a))M ′ = {π(b) : b ∈ aM}.

Call a system M strongly extensional if for every graph G, there is at
most one system map π : G → M . It is proved (cf [1], p. 28) that AFA can
be equivalently formulated as follows:

(AFA) An apg has an injective decoration iff it is strongly extensional.

Let
A = {G ∈ V0 : G is strongly extensional}.

6



A is said to be the Aczel universe and we refer to the elements of A as Aczel
sets.

We often write x =Aczel y to indicate that the sets x, y are equal in the
sense of Aczel, i.e., they decorate the same graph. The unique set decorating
the graph a → a is denoted by Ω.

2.1.3 Scott sets

In 1960, D. Scott ([11]), motivated by computer science considerations, pro-
vided another model of ZFC−. To every apg Ga there corresponds an apg
(Ga)

t whose nodes are paths starting from the point a of Ga, and whose edges
are pairs of paths of the form

(a → · · · → b, a → · · · → b → b′).

Let ∼=t be the relation defined on V0 as follows:

Ga
∼=t G′

a′ ⇐⇒ (Ga)
t ∼= (G′

a′)
t,

(where ∼= is the ordinary isomorphism between graphs).
A graph G is said to be Scott-extensional if it is ∼=t-extensional, i.e., if for

any b, c ∈ G
Gb
∼=t Gc ⇒ b = c.

Let
S = {G ∈ V0 : G is Scott-extensional}.

S is the Scott universe and the elements of S are referred to as Scott sets.

2.1.4 Finsler sets

In 1926, P. Finsler ([8]) proposed a group of three axioms as remedy of the
paradoxes. The most remarkable of them says that isomorphic sets are equal.
Roughly, the axiom is true in the system M , if M satisfies the following
extensionality principle: For any a, b ∈ M ,

Ma
∼= Mb ⇒ a = b.

However this kind of extensionality does not imply ordinary extensionality,
so P. Aczel weakened ∼= into a relation ∼=∗, to the effect that if aM = bM then
Ma

∼=∗ Mb (cf. [1], p. 57, for details).
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A graph G is said to be Finsler-extensional if it is ∼=∗-extensional i.e., if
for all a, b ∈ G,

Ga
∼=∗ Gb ⇒ a = b.

Let
F = {G ∈ V0 : G is Finsler-extensional}.

F is the Finsler universe and the elements of F are referred to as Finsler
sets.

It is known that the Finsler sets constitute the largest universe defined
by means of a ”bisimulation” (cf. [1], Prop. 4.26 (2)). In particular we have

A ⊆ S ⊆ F. (1)

2.1.5 Boffa sets

In 1972, M. Boffa ([4]) proposed another type of non-well-founded set theory.

Definition 2.1.1 The system M is said to be a transitive subsystem of the
system M ′, abbreviated M ≺ M ′, if M ⊆ M ′ and for every a ∈ M , the
children of a in M and M ′ coincide, i.e., aM = aM ′ .

Boffa’s antifoundation axiom is the following statement:

(BA) Given extensional graphs G0 and G with G0 ≺ G and an injective
system map G0 → V , there is an injective system map G → V that makes
the following diagram commute:

G

↑ ↘
G0 −→ V

(Equivalently, every exact decoration of a transitive subgraph of an exten-
sional graph can be extended to an exact decoration of the whole graph.)

When working in Boffa universe, we usually need a strong axiom of global
choice. The most suitable is von Neumann’s axiom of choice |V | = |On|,

8



saying that there is a bijection between V and On. So henceforth we fix a
bijection C : On → V .

In some places we do not need the full strength of the axiom BA but only
“half” of it, namely the following consequence of BA:

(BA1) An apg is an exact picture iff it is extensional.

BA1 gives the most generous answer to the question “which apg’s are
exact pictures”.

We denote by B a model of ZFC−+BA or even of ZFC−+BA1 and we
refer to elements of B as Boffa sets. For example, contrary to what happens
in the universes A, S and F, in B there are class many distinct copies of the
set Ω = {Ω}. More generally the following holds:

Lemma 2.1.2 In ZFC− + BA1, for every extensional graph G, there is a
proper class of sets which are pictures of G.

Proof. For any cardinal κ take a set of κ distinct copies of the graph G.
These are easily made parts of an extensional apg E. By BA1, there is an
injective decoration of E. Thus we get κ distinct decorations for the copies
of G. a

2.2 Booth’s classification of Finsler sets

Let TC(x) denote the transitive closure of x. Following D. Booth, we call
level of the set x the cardinality of TC(x ∪ {x}). For n ∈ N, clearly, x is of
level n iff it decorates an apg of n nodes. Contrary to what happens with
well-founded sets, a set may be hereditarily finite and of infinite level.

For any n > 0, let

Sn (resp. Fn) = {G ∈ S (resp. F) : G is of level n }.

Let also
sn = ]Sn and fn = ]Fn.

Theorem 2.2.1 (Booth ([5],[6]))

f1 = 2, f2 = 5, f3 = 78.

9



As remarked in [9], Booth’s classification method, proof and counting are
correct, but there is an inaccuracy in Booth’s list of F3. Below, we make
a correction. Our notation is the same as in [5] and [6]. Moreover in the
following list, we identify sets of equations with graphs in the obvious way.
For example, the equation x = {x}, is identified with x → x.

Our list is as follows:

F1: Sets of level one.

(1) x = 0; (2) x = {x}.

F2: Sets of level two. First let x be the point.

(1) x = {y}, y = 0; (2) x = {x, y}, y = 0; (3) x = {x, y}, y = {y}.

Now let both x and y be points. It defines two sets.

x = {y}, y = {x, y}.

F3: Sets of level three.
First, let all x, y, z be points.

(i) x = {y}, y = {z}, z = {x, y}
(ii) x = {y}, y = {z}, z = {x, z}
(iii) x = {y}, y = {z}, z = {x, y, z}
(iv) x = {y}, y = {x, z}, z = {y, z}
(v) x = {y}, y = {x, z}, z = {x, y}
(vi) x = {y}, y = {x, z}, z = {x, y, z}
(vii) x = {y}, y = {y, z}, z = {x, y}
(viii) x = {y}, y = {y, z}, z = {x, z}
(ix) x = {y}, y = {y, z}, z = {x, y, z}
(x) x = {y}, y = {x, y, z}, z = {x, y}
(xi) x = {y}, y = {x, y, z}, z = {y, z}
(xii) x = {y}, y = {x, y, z}, z = {x, z}
(xiii) x = {y, z}, y = {x, y}, z = {x, y, z}
(xiv) x = {x, y}, y = {y, z}, z = {x, y, z}.

Then let x and y be points.
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(1a) x = {y}, y = {x, z}, z = 0
(1b) x = {y}, y = {x, z}, z = {z}
(2a) x = {y}, y = {x, y, z}, z = 0
(2b) x = {y}, y = {x, y, z}, z = {z}
(3a) x = {y, z}, y = {x, y}, z = 0
(3b) x = {y, z}, y = {x, y}, z = {z}
(4a) x = {y, z}, y = {x, y, z}, z = 0
(4b) x = {y, z}, y = {x, y, z}, z = {z}
(5a) x = {x, y}, y = {x, y, z}, z = 0
(5b) x = {x, y}, y = {x, y, z}, z = {z}.

Finally, let x be the only point.

(1) x = {y}, y = {z}, z = 0
(2) x = {y}, y = {y, z}, z = 0
(3) x = {x, y}, y = {y, z}, z = 0
(4) x = {x, y}, y = {y, z}, z = 0
(5) x = {y}, y = {y, z}, z = {z}
(6) x = {x, y}, y = {y, z}, z = {z}
(7) x = {y, z}, y = {z}, z = 0
(8) x = {x, y, z}, y = {z}, z = 0
(9) x = {x, y, z}, y = {y, z}, z = 0
(10) x = {x, y, z}, y = {y, z}, z = {z}
(11) x = {y}, y = {z}, z = {y, z}
(12) x = {x, y}, y = {z}, z = {y, z}
(13) x = {x, z}, y = {z}, z = {y, z}
(14) x = {x, y, z}, y = {z}, z = {y, z}
(15) x = {y, z}, y = {y}, z = 0
(16) x = {x, y, z}, y = {y}, z = 0.

Booth’s list differs from the preceding one with respect to items (15) and
(16). In Booth’s list item (15) is x = {x, y, z}, y = {y, z}, z = {0}, which
coincides with (9) above, and item (16) is x = {x, y, z}, y = {y, z}, z = {y, z},
which is not a Finsler set.
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3 Classification of Scott sets

In this section, we compare Scott and Finsler sets of level 1, 2 and 3. It is
easy to see that for levels 1 and 2 F1 = S1 and S2 = F2. However F3 6= S3.
A simple example was provided by Moss and Johnson ([1], p. 55). This is
the following:

x = {y}, y = {x, z}, z = {x, y}; x = {x, y}, y = {z}, z = {y, z}. (2)

These are items (v) and (12) in the list of the previous section. We shall
prove below that these are the only sets in F3−S3. In fact there is a general
algorithm for checking whether an apg G of finite level corresponds to a Scott
set. The algorithm is as follows:

Step 1: Check whether there are nodes p, q with same number of children.
If there are no such nodes the apg is a Scott set. Hence the following apgs
are Scott sets: (vi), (ix), (x), (xi), (xii), (1a), (2a), (4a), (4b), (5a), (5b), (2),
(3), (7), (8), (9), (10), (14), (15) and (16).

Step 2: Suppose there are nodes p, q with same number of children. For
each such pair let p1, p2, . . . , pm be the children of p, and let q1, q2, . . . , qm be
the children of q. Let Mi, Ni be the number of children of pi, qi respectively
for every i = 1, . . . , m. Consider the following condition:

(*) There is a permutation σ ∈ S(m) such that

(Mσ(1),Mσ(2), . . . , Mσ(m)) = (N1, N2, . . . , Nm).

If no pair p, q as above satisfies (*), then clearly the apg is a Scott set.
For example, in (i) x = {y}, y = {z} and z = {x, y}, x and y have the same
number of elements. The element of x is y, the element of y is z, and y has
one element, while z has two elements. Similarly the following apgs are Scott
sets:

(i), (ii), (iii), (iv), (vii), (viii), (xiii), (xiv), (1b), (2b), (3a), (3b), (1), (4),
(5), (6), (11) and (13).

Step 3: Suppose there are pairs of nodes p, q which satisfy condition
(*). We examine them further as follows. Let the children of of pi be
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pi1, pi2, . . . , pini
, and the elements of q be qi1, qi2, . . . , qin′i , for i ≤ m. Let

also Mij, Nij denote the number of elements of pij, qij respectively.
Consider the following condition:

(**) There is a permutation σ ∈ S(m) such that condition (*) above holds
and moreover for every i ≤ m, there is a permutation σi ∈ S(n′i) such that

(Mσ(i),1,Mσ(i)2, . . . ,Mσ(i)nσ(i)
) = (Ni,σi(1), Ni,σi(2), . . . , Ni,σi(n′i)).

If condition (**) is satisfied for no nodes p, q, then the apg is a Scott set.
In the case of F3, (v) and (12) satisfy the third step.

In general, the n-th step consists in formulating a condition (∗ · · · ∗) gen-
eralizing the preceding ones in the obvious (thought complicated) way. If an
apg G with n nodes satisfies all conditions till the n-th step, then the apg is
not a Scott set. In fact, since the apg is unfolded periodically with a period
less than n, (Gp)

t ∼= (Gq)
t for some p, q. Hence (v) and (12) are not Scott

sets. In this way we obtain:

Theorem 3.0.2 s1 = 2, s2 = 5 and s3 = 74.

Using the examples (v) or (12) we construct Finsler sets of nodes n ≥ 3
that are not Scott sets as follows:

xi = {xi+1}(1 ≤ i ≤ n− 3),

xn−2 = {xn−1}, xn−1 = {xn−2, xn}, xn = {xn−2, xn−1}.
That is to say, we obtain the following:

Theorem 3.0.3 For any n ≥ 3,

Sn 6= Fn.

We can illustrate the above algorithm by constructing examples of Finsler
sets that are not Scott sets in the spirit of equations (2). In particular, as a
new example we have in F4 − S4,

x = {x, y}, y = {x, t}, z = {y, t}, t = {z, t}.
Remarks 3.0.4 Milito and Zhang ([9]) obtained an algorithm for deciding
Aczel sets. In general, as commented in [9], it is difficult to construct an
algorithm of deciding Finsler sets.
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4 Existence of infinite descending ∈-sequences

For any ordinal α, we shall prove that there exist both circular and non-
circular paths of length α in Aczel set theory. Following [12], we define an
α-path of a system as follows.

Definition 4.0.5 ([12]) Let X be a system and α be an ordinal. An α-path
in X is a class of nodes Y well-ordered by an ordering < such that:

a) For any x ∈ Y, (x, x′) is an edge of X, where x′ is the immediate
successor of x in (Y, <).

b) If x is a limit point of (Y, <), then there is a y0 ∈ Y such that y0 < x
and (y, x) are edges of X for all y ∈ Y with y0 < y < x.

c) ord(Y,<) = α.

We call α the length of Y . A path has always a first element but need
not have a last one. If it does, and x, y are these elements, respectively, then
we say that the path joins x and y. If Y is an X-path joining the nodes x
and y, and (y, x) is an edge of X, then Y is said to be circular.

Theorem 4.0.6 Let α ∈ On. There are Aczel sets containing non-circular
paths of length α, as well as Aczel sets containing circular paths of length α.

Proof.
(1) Existence of non-circular paths.

For an arbitrary ordinal α, we define a graph Gα as follows:
For β < α, let G(β) be an apg identifying to β and let pβ be the point of

G(β).

Nodes: {(α, β) ∈ {α} ×On : β < α} ∪ {nodes of G(β) : β < α};

Edges: {(α, β) → (α, γ) : β < γ < α} ∪ {edges of G(β) : β < α} ∪
{(α, β) → pβ, β < α}.

Clearly the graph Gα has point (α, 0).
Claim: the apg Gα is an Aczel set and it has a non-circular path of length

α.
Proof of the claim: Suppose Gα is not an Aczel set, that is, there exist

two nodes in Gα which are decorated by identical Aczel sets. Let da be a
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decoration of the node a. Then there exist ordinals β, γ such that β < γ < α.
Moreover, we have

(i) d(α, γ) =Aczel β or (ii) d(α, β) =Aczel γ or (iii) d(α, β) =Aczel d(α, γ).

Case (i) is impossible because β < γ and γ ∈ d(α, γ).
Assume case (ii). Since γ < α, there exists an ordinal δ such that γ ≤

δ < α. Since d(α, δ) ∈ d(α, β) and d(α, β) =Aczel γ, d(α, δ) is in γ. But
δ ∈ d(α, δ) and γ ≤ δ implies that d(α, δ) 6∈ γ. This is a contradiction.

Assume case (iii). Since β is an element of d(α, β) and children of (α, γ)
are d(α, δ) (γ < δ) and γ, there exists ε ∈ On such that γ < ε < α and
β =Aczel d(α, ε). This is a contradiction by the same argument as in case (i).

Therefore Gα is an Aczel set. The following path of Gα is a non-circular
path of length α:

(α, 0) → (α, 1) → (α, 2) → · · · → (α, ω) → (α, ω + 1) → (α, ω + 2) → · · ·

→ (α, ω′) → (α, ω′ + 1) → (α, ω′ + 2) → · · · → (α, β) → (α, β + 1) →

(α, β + 2) → · · · → (α, β′) → (α, β′ + 1) → (α, β′ + 2) → · · ·
where for a limit ordinal λ, the next limit ordinal is denoted by λ′ , and
0, ω, ω′, . . . , β, β′, . . . is the sequence of limit ordinals of {µ : µ ∈ On, µ < α}.

(2) Existence of circular paths.

For an arbitrary ordinal α, we define a graph G′
α as follows.

Nodes: {(α, β) ∈ {α}×On, β ∈ On, β ≤ α}∪{node of G(β), β ∈ On, β ≤
α};

Edges: {(α, β) → (α, γ) : β < γ ≤ α} ∪ {edges of G(β) : β ≤ α} ∪
{(α, β) → pβ : β ≤ α}.

As in (1), G′
α has a circular path of length α.
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Theorem 4.0.7 Let α be an ordinal and let f : α → On be an increas-
ing function. Then there are Aczel sets corresponding to f , containing both
circular paths and non-circular paths of length α.

Proof.
This may be done by replacing G(β) by G(f(β)) in 4.0.6. a

Corollary 4.0.8 There exist uncountably many Aczel sets in which there are
both circular and non-circular paths of length α.

Proof.
There are uncountably many increasing functions f : α → On, so the

claim follows from the previous theorem. a

Corollary 4.0.9 There exist uncountably many Aczel sets containing non-
circular infinite descending ∈-sequences.

Proof.
We fix an increasing function f : ω → On, and define a graph G as

follows:

G = {(ai → ai+1) : 0 ≤ i < ω} ∪ {(ai → pi) : 0 ≤ i < ω} ∪ (∪i∈NG(f(i))),

where we denote the point of G(f(i)) by pi. Then a0 → a1 → a2 → · · · is
an infinite descending ∈-sequence. Since increasing functions f : ω → On
are uncountably many, there exist uncountably many non-circular infinite
descending ∈-sequences. a

Recall that x is hereditarily finite if TC(x) is finite.

Corollary 4.0.10 There exist uncountably many hereditarily finite Aczel
sets, in which there are both circular and non-circular paths of length α.

Proof.
As the proof of Corollary 4.0.9 above, just consider increasing functions

f : ω → ω. a
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5 Anti-well-founded sets

In this section we deal with a special kind of non-well-founded sets, which lie
at the antipodes of well-founded ones. This is why we call them anti-well-
founded.

Recall that an apg is well-founded if it contains no circular path. Other-
wise it is said to be circular.

Definition 5.0.11 An apg G is said to be totally circular (t.c. for short) if
every maximal path of G starting from its point is circular.

A set x is said to be anti-well-founded (awf for short) if it decorates a t.c.
apg.

The simplest finite awf sets are those corresponding to the cyclic graphs Ci,
i ≥ 0, where Ci is the (i + 1)-node cycle

a0 → a1 → · · · → ai−1 → a0.

Let Ωi be the awf (if it exists) whose picture is the graph Ci. In particular
Ω0 = Ω.

The following is easy.

Lemma 5.0.12 x is an awf set iff TC(x) contains neither ∅, nor urelements.

As is well known all Aczel sets with the property of the above lemma
are identical to Ω. Therefore there are no Aczel awf sets except Ω. So such
entities live only in Scott, Finsler and Boffa universes. Especially in Boffa
universes, sets come up (as we have seen) in proper classes of isomorphic
copies. A type is a class of isomorphic sets. Each type also corresponds
to a particular apg which is the exact picture of the members of the class.
For example, to each graph Ci there corresponds the type Ωi, of all sets
decorating Ci, i.e.,

Ωi = {x : x is a decoration of Ci}.

In particular Ω0 = Ω. Note that, due to symmetry, every node of the graph
Ci, can be taken as the point of Ci. Also, if d is an injective decoration of
Ci, then for any two nodes a, b of Ci, d(a) ∼=∗ d(b), i.e., d(a), d(b) ∈ Ωi.
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Recall that B and F denote the Boffa and Finsler universes respectively.
Let AWFB and AWF F be the classes of all Boffa and Finsler awf sets re-
spectively. Obviously,

AWF F ⊂ AWFB.

Clearly, ∅ /∈ AWFB. So, for any x let PB(x) = P(x)∩AWFB and PF (x) =
P(x) ∩ AWF F . PB, PF are the powerset operations suitable for the classes
AWFB and AWF F . For example the following is easy to check.

Lemma 5.0.13 For every 0 ≤ i ≤ ∞, PB(Ωi) = {Ωi}.

Let ZFC−− be ZFC minus the foundation and empty set axioms. Let also

(BAc
1) A t.c. apg is an exact picture iff it is extensional,

(FAFAc) A t.c. apg is an exact picture iff it is ∼=∗-extensional.

Theorem 5.0.14 i) AWFB is a transitive inner model of ZFC−−+BAc
1.

ii) AWF F is an inner model of ZFC−−+AFAc

Proof. Obviously AWFB is a definable transitive subclass of B.
i) Extensionality is obvious.
2) Pairing: If x, y ∈ AWFB, then clearly {x, y} ∈ AWFB. Similarly,
3) Union: If x ∈ AWFB then ∪x ∈ AWFB, and
4) Powerset: if x ∈ AWFB then PB(x) = P(x) − {∅} and PB(x) ∈

AWFB.
5) Infinity: Obvious since AWFB contains proper classes of isomorphic

sets, e.g. Ω0 = Ω, Ω1, . . ..
6) Separation: Clearly if x ∈ AWFB and y ⊆ x and y 6= ∅, then y ∈

AWFB.
7) Replacement: Let φ(x, y) be a relation such that AWFB |= (∀x)(∃!y)φ(x, y)

and let z ∈ AWFB. Then clearly the set u = {y : (∃x ∈ z)φ(x, y)} belongs
to AWFB.

8) Choice: Let A ∈ AWFB such that x ∈ A ⇒ x 6= ∅. By the choice
of the ground model there is f such that f(x) ∈ x for every x ∈ A. Since
for every (x, y) ∈ f , both x, y are awf sets we easily see that f is awf, i.e.,
f ∈ AWFB. Thus there is a choice function for A in AWFB.
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9) BAc
1: Let G be an extensional t.c. apg in the sense of AWFB. Then

this is t.c. in the sense of B, hence, by BA1, there is an injective decoration
x. But then x is awf, hence x ∈ AWFB. Conversely, if G has an injective
decoration in AWFB, this is an injective decoration in B, therefore G is
extensional.

ii) Everything is as in (i) above except Infinity: Define the sets xn as
follows: x0 = Ω, xn+1 = {xn+1, xn}. For every n, |TC(xn)| = n + 1, hence
xn 6= xm for m 6= n. Thus xn, n ∈ N, are distinct awf Finsler sets. a

Because BA1 produces types of isomorphic sets which are proper classes,
when considering Boffa sets it would be better to switch from ZFC−, to
GBC− (Gödel-Bernays theory of classes). Also, because most often we have
to deal with representatives of these types, we need a strong axiom of choice
SC enabling us to choose elements from classes in general instead only from
sets. For example SC could be von Neumann’s axiom of choice |B| = |On|,
or the principle (∀x)(∃Y )φ(x, Y ) ⇒ (∃Y )(∀x)φ(x, Y(x)). Due to such choice
facilities, we can use the symbols Ci and Ωi, 0 ≤ i ≤ ∞, a bit vaguely, either
to denote the corresponding types of objects or arbitrary representatives of
them.

An apparent shortcoming of the classes AWFB and AWF F is that, in
absence of ∅, they do not contain ordinary natural and ordinal numbers.
However we might use convenient substitutes. The first thought is to define
ordinals as usually, just replacing 0 = ∅ by Ω. However it does not work,
because the next ordinal {Ω} is identical to Ω.

One might also consider the awf sets Ωi, 0 ≤ i ≤ ∞, themselves as
substitutes of natural numbers, and define Ωn + Ωm = Ωm+n and Ωn · Ωm =
Ωm·n. Putting for every n ∈ N, n = Ωn (the natural numbers in the sense
of AWFB), we can provide substitutes α∗ for all ordinals α, by setting ω =
{0, 1, . . .}, and for all α ≥ ω, (α + 1) = α,∪{α}, α = ∪{β : β < α}. The
ordering < between ordinals is defined in the obvious way.

However Ωi /∈ AWF F , for i > 0, so the above definition does not work in
Finsler universe. We may slightly alter our first attempt and define n∗ as xn

in the proof of 5.0.14 (ii). Namely we set for every n ∈ N:

0∗ = {0∗} = Ω, (n + 1)∗ = n∗ ∪ {(n + 1)∗},

i.e., n∗ = {0∗, 1∗, . . . , n∗} for every n.
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Let ω∗ = {0∗, 1∗, . . .}. We can see by induction that the graph of every
n∗ is ∼=∗-extensional, therefore ω∗ ⊂ AWF F and also n 6= m ⇒ n∗ 6= m∗.

Then we can continue our definition “classically”, setting, for all α ≥ ω,
α∗ = {β∗ : β ∈ α}. Again inductively it is shown that α∗ is ∼=∗-extensional.
If On∗ = {α∗ : α ∈ On}, then On∗ ⊂ AWF F and also α 6= β ⇒ α∗ 6= β∗.

In AWF F the “ordinals” α∗ are unique but in AWFB, due to the exis-
tence of class-many copies of Ω, there are class many copies for each a∗.

5.1 The structure of Boffa and Finsler awf sets

Here we describe briefly the general method of producing all Boffa and Finsler
awf sets. To gain intuition it is better to work with t.c. graphs rather than
awf sets themselves. However the transition from the one to the other is
straightforward.

The cycles Ci, 0 ≤ i ≤ ∞, are, in a sense, the simplest non-reducible t.c.
apg’s. In order to find out the structure of all t.c. graphs we have to consider
natural generalizations of them.

Let G be an apg. For any two nodes a, b ∈ G we set a ∼G b if there is
a path from a to b and a path from b to a. We can immediately check that
∼ is an equivalence relation. We can write just ∼ if there is no danger of
confusion. A graph G is said to be a generalized cycle if for any two a, b ∈ G,
a ∼ b. Therefore, given G, the equivalence classes [a]∼ of G with respect to
∼ are maximal generalized cycles in G.

Generalized cycles may be either finite or infinite graphs. Note that if G
is a generalized cycle, then every node of G defines a point, i.e., for every
a ∈ G, Ga is an apg. In B we are interested in extensional such graphs, while
in F we are interested in ∼=∗-extensional such graphs. E.g. the cycles Ci exist
in B but not in F. However F does contain generalized cycles.

Call an awf set x of AWFB or AWF F cyclic if its graph is a generalized
cycle. In the next section we specify the number of cyclic sets x of AWFB

and AWF F with |TC({x})| = 3.
Let G be a graph. Given two classes [a] and [b] of G we write [a] ¹G [b]

if there is at least one path in G leading from some (and hence from every)
node of [a] to some (and hence to every) node of [b]. It is easy to see that ¹G

is a partial ordering. It suffices to check only that [a] ¹G [b] and [b] ¹G [a]
implies [a] = [b]. Indeed if [a] ¹G [b] and [b] ¹G [a] there is a path from a to
b and a path from b to a, therefore a ∼ b or, [a] = [b].
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Now the paths between two generalized cycles [a], [b] of G may be multiple
and also of various lengths, subject only to the constraint of extensionality.

Definition 5.1.1 Given an apg G, the extensional (resp. ∼=∗-extensional)
collapse of G is the apg G′ resulting from G if we identify all the nodes a, b
such that aG = bG (resp. as well as the nodes a, b such that Ga

∼=∗ Gb).

The above sum up to the following:

Theorem 5.1.2 Every extensional (resp. ∼=∗-extensional) totally circular
graph is generated as follows: Take an ordering (X, x0,¹) with first element
x0. Replace every point x ∈ X by an extensional (resp. ∼=∗-extensional)
generalized cycle Gx, or by a single node if x = x0. Draw various paths
from Gx to Gy iff x ¹ y not forming new cycles. Then take the extensional
collapse (resp. ∼=∗-extensional) collapse of this graph.

The above specify also the method for generating Boffa (resp. Finsler)
awf set.

5.2 Hereditarily finite awf sets

D. Booth [5] provides some results concerning hereditarily finite Finsler sets.
Among others, he specifies all sets whose transitive closures contain 2 and 3
elements. The corresponding problem here is to determine the isomorphism
types of Boffa and Finsler awf sets with 2 and 3 sets in their transitive closure.
We do it by an exhausting inspection of all t.c. apg’s with 2 and 3 nodes.

Following D. Booth, we call level of the set x the cardinality of TC({x}).
For n ∈ N, clearly, x is of level n iff it decorates an apg of n nodes. Contrary
to what happens with well-founded sets, a set may be hereditarily finite and
of infinite level.

Obviously Ω is the only awf set of AWF F of level 1, and the only isomor-
phism type of awf sets of AWFB of level 1.

Proposition 5.2.1 i) AWFB contains 4 isomorphism types of awf sets of
level 2.

ii) AWF F contains 3 awf sets of level 2.

Proof. i) In AWFB we have the following isomorphism types:
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(1) Two types determined by the sets x, y defined by

x = {x, y}, y = {x}.

(2) One type determined by the set z = {z, Ω}.
(3) One type determined by the equations

x = {y}, y = {x}.

x, y decorate the graph C2, and determine the same type since x ∼=∗ y. It is
easy to see that these are the only types possible.

i) In AWF F we have only the first 3 sets of the above list. The graph C2

is not ∼=∗-extensional, so it is not decorated by Finsler sets. a

Proposition 5.2.2 i) AWFB contains 74 isomorphism types of awf sets of
level 3.

ii) AWF F contains 59 awf sets of level 3.

Proof. i) We have the following isomorphism types of the sets of level 3.
We give the circular definitions of the sets. Besides each definition we give
a triple of the form k − l − m, where k, l,m ∈ {0, 1, 2, 3}, which indicates
that the corresponding graph contains k 3-cycles, l 2-cycles and m 1-cycles.
E.g. the triple 0-2-3 means that we have no 3-cycles, two 2-cycles and three
1-cycles. The 74 isomorphism types of Boffa’s awf sets are as follows:

(1) x = {y}, y = {y, Ω}. (0-0-2. One type of set, x. y is of level 2.)
(2) x = {Ω′, Ω′′}. (0-0-2. One type. Ω′ ∼=∗ Ω′′ are distinct copies of sets

of type Ω.)
(3) x = {x, y}, y = {y, Ω} (0-0-3. One type, x. y is of level 2.)
(4) x = {x, Ω′, Ω′′} (0-0-3. One type, Ω′ ∼=∗ Ω′′ ∼=∗ Ω.)
(5) x = {x, y, Ω}, y = {y, Ω}. (0-0-3. One type, x.)
(6) x = {y}, y = {z}, z = {y}. (0-1-0. One type, x. y, z are of level 2

and y ∼=∗ z.)
(7) x = {x, y}, y = {z}, z = {y}. (0-1-1. One type, x. y ∼=∗ z.)
(8) x = {y}, y = {z}, z = {y, z}. (0-1-1. One type, x.)
(9) x = {x, y, z}, y = {z}, z = {y}. (0-1-1. One type, x. y ∼=∗ z.)
(10) x = {y}, y = {x, Ω}. (0-1-1). Two types.)
(11) x = {y, Ω}, y = {x, Ω}. (0-1-1. One type, x ∼=∗ y.)
(12) x = {x, y}, y = {y, z}, z = {y}. (0-1-2. One type, x.)
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(13) x = {x, y}, y = {z}, z = {y, z} (0-1-2. One type, x.)
(14) x = {x, y, z}, y = {z}, z = {y, z}. (0-1-2. One type, x.)
(15) x = {y}, y = {x, Ω}. (0-1-2. Two types.)
(16) x = {x, y}, y = {x, Ω}. (0-1-2. Two types.)
(17) x = {x, y, Ω}, y = {x, Ω}. (0-1-2. Two types.)
(18) x = {x, y}, y = {x, y, Ω}. (0-1-3. Two types.)
(19) x = {y, z}, y = {y, x}, z = {x}. (0-2-1. Three types.)
(20) x = {x, y, z}, y = {x, y}, z = {x, z}. (0-2-2. Three types.)
(21) x = {y, z}, y = {x, y}, z = {x, z}. (0-2-2. Two types, y ∼=∗ z.)
(22) x = {x, y, z}, y = {x, y}, z = {x, z}. (0-2-3. Two types, y ∼=∗ z.)
(23) x = {y}, y = {z}, z = {x}. (1-0-0. One type, x ∼=∗ y ∼=∗ z.)
(24) x = {x, y}, y = {z}, z = {x}. (1-0-1. Three types.)
(25) x = {y}, y = {y, z}, z = {x, z}. (1-0.2. Three types.)
(26) x = {x, y}, y = {y, z}, z = {x, z}. (1-0-3. One type, x ∼=∗ y ∼=∗ z.)
(27) x = {y}, y = {z}, z = {x, y}. (1-1-0. Three types.)
(28) x = {y}, y = {y, z}, z = {x, y}. (1-1-1 Three types.)
(29) x = {y}, y = {z}, z = {y, z}. (1-1-1 Three types.)
(30) x = {xy}, y = {z}, z = {x, y, z}. (1-1-2. Three types.)
(31) x = {y}, y = {y, z}, z = {x, y, z}. (1-1-2 (iii). Three types.)
(32) x = {x, y}, y = {y, z}, z = {x, y, z}. (1-1-3. Three types.)
(33) x = {y, z}, y = {x, z}, z = {x}. (1-2-0. Three types.)
(34) x = {x, y, z}, y = {x, z}, z = {x}. (1-2-1. Three types.)
(35) x = {y, z}, y = {x, y, z}, z = {x}. (1-2-1. Three types.)
(36) x = {y, z}, y = {y, z}, z = {x}. (1-2-2. Three types.)
(37) x = {y, z}, y = {x, z}, z = {x, y}. (1-3-0. One type, x ∼=∗ y ∼=∗ z.)
(38) x = {x, y, z}, y = {x, z}, z = {x, y}. (1-3-1. Two types, y ∼=∗ z.)

ii) The awf sets of AWF F result from the graphs of Appendix if we discard
those which are not∼=∗-extensional. Equivalently, it suffices to discard clauses
(2), (4), (6), (7), (9), (11), (21), (22), (23), (26), (37), (38) of the list of (i)
above. These contain total 15 sets, therefore the distinct awf sets of AWF F

are 74-15=59. a

The above 59 awf Finsler sets should be identical to those calculated by D.
Booth ([5], Th. 15), if we drop from his list the Finsler sets whose transitive
closure contains ∅. However there is some divergence. Booth’s list contains
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78 Finsler sets of which 16 involve ∅. Therefore his awf Finsler sets are 78-
16=62. The divergence is due to the fact, already mentioned in section 2,
that Booth’s list contains certain improper sets, repetitions and omissions.
Namely:

(a) He cites 15 circular triplets, defining 45 awf sets. However the triplet
No (14) x = {y, z}, y = {x, z}, z = {y, z} defines no sets, since it corresponds
to a non extensional graphs. Therefore there are only 14 triplets defining 42
sets.

(b) He cites 9 circular pairs defining 18 sets. However the pair No (9)
x = {x, J}, y = {x, y, J} (Booth writes J for Ω), defines only one set of level
3, since x is of level 2. Therefore there are only 17 sets of this kind.

(c) He includes as distinct the set x = {x, J1, J}, where J1 = {J1, J}.
But the latter is identical to x = {x, J}, therefore the set y = {x, y, J} of (b)
is no different from x = {x, J1, J}.

(d) He includes the set x = {J, J1}, which is just J1, hence of level 2.
Therefore the true awf sets of level 3 contained in his list are 62-6=56

sets.
(e) On the other hand he omits from his list the sets defined by
x = {x, y}, y = {z}, z = {y, z} (one set of level 3).
x = {x, y, Ω}, y = {z, Ω} (two sets of level 3).
If we add to the 56 sets above the last 3 ones we find 59, which is exactly

the number we found in 5.2.2.

Recall that an awf is said to be cyclic if its graph is a generalized cycle.
In fact the majority of the Boffa and Finsler awf sets of level 3 cited above
are cyclic. Namely:

Proposition 5.2.3 i) There are 51 cyclic (isomorphism types of) sets of
level 3 in AWFB.

ii) There are 42 cyclic sets of level 3 in AWF F .

Proof. We just inspect which sets in the list of proposition 5.2.2 are cyclic.
i) The clauses of the above list which contain Boffa cyclic sets are (19)-

(38). Their total number of sets is 51. ii) The clauses of the above list which
contain Finsler cyclic sets are (19), (20), (24), (25) (27)-(36). Their total
number of sets is 42. a
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Another result of [5] is that there are uncountably many hereditarily finite
Finsler sets (Thm. 22) (see also [3]), p. 282). The proof is very simple: For
every increasing mapping g : N→ N, consider the set xg defined inductively
by the sequence: xg = xg

0, xg
n = {xg

n+1, g(n)}. Then g 6= f ⇒ xg 6= xf . These
sets are not awf. However we can easily convert this proof to one providing
uncountably many hereditarily finite sets in AWF F .

Proposition 5.2.4 There are uncountably many hereditarily finite sets in
AWF F , hence in AWFB.

Proof. Simply consider the 1-1 mappings g : N → ω∗, where ω∗ is the
class of finite ordinals in the sense of AWF F , defined in the last section. If
for each such g we define xg as above, i.e., xg

n = {xg
n+1, g(n)}, clearly all xg

are distinct elements of AWF F . a

6 Nonstandard Boffa set theory

In this section we use the concept “linear set equation” to extend a result of
Ballard and Hrbáček to the case of the solution space of a linear set equation.
A set equation is just a quantifier-free formula of the language of set theory.
In the sequel we feel free to interchange the arrow ← of a graph with ∈, and
nodes ai of Ga0 with variables xi. If there is no danger of confusion, we write
x instead of x0. We denote the formula that defines the graph Ga0 by gx. If
a Boffa set s satisfies gx, then we call solution of gx and write gx(s). Let Agx

be the set of solutions of gx, i.e, Agx = {s ∈ B | gx(s)}.

Definition 6.0.5 (i) A set s is linear if each set in the transitive closure
TC({s}), has a unique element.

(ii) A set equation gx is transitive if gx(s) and t ∈ s implies gx(t).
(iii) For a finite number n, a linear set equation gx is of circular type of

length n if gx is

x1 ∈ xn ∈ · · · ∈ x2 ∈ x1 (if i 6= j, xi 6= xj).

(iv) A linear set equation gx is of non-circular type if gx is

· · · ∈ xj ∈ · · · ∈ xi ∈ · · · ∈ x2 ∈ x1 (if i 6= j, xi 6= xj).
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Accordingly we have two corresponding types of set equations.

Theorem 6.0.6 Let G be an apg with corresponding set equation gx. If Agx

is a proper class, then each element of Agx is not a ZF set. Furthermore if
gx is transitive and an element of Agx is not a ZF set, then Agx is a proper
class.

Proof. If an element of Agx is a ZF set, then Agx is a set of one element
because of the Extensionality Axiom. We assume that each element of Agx

is not a ZF set and Agx is a set. Since gx is transitive, Agx is transitive. Let
A?

gx
be a graph Agx ∪ G where we identify nodes of G that are decorated

with well-founded sets, with well-founded sets of Agx , as ZF sets. Then Agx

is transitive in an extensional A?
gx

. By (BA), there exists a Boffa set u and
an isomorphism A?

gx
→ u. Agx is a proper subset in u. This contradicts the

definition of the solution space Agx . HenceAgx is not a set. a

Recall that a transitive proper class U is said to be a universe, if all
axioms of ZF− hold in U . The following lemma is a direct consequence of
the global axiom of choice |On| = |V |.

Lemma 6.0.7 For an arbitrary proper class A, there is a partition of A into
two proper subclasses B and C, i.e., A = B ∪ C and B ∩ C = ∅.

In Agx , define ∼ as follows: For an element a and b in Agx , let

a ∼ b ⇐⇒ a ∈ TC(b) or b ∈ TC(a).

Clearly ∼ is an equivalence relation. Let π be the projection of Agx onto
Agx/ ∼.

Lemma 6.0.8 Let U be a universe. If (Agx/ ∼)− (Agx ∩ U/ ∼) is a proper
class, there exists a proper class A′

gx
⊆ Agx such that (Agx∩U/∼) ⊆ (A′

gx
/∼),

furthermore both classes (A′
gx

/∼)− (A′
gx
∩U/∼) and (Agx/∼)− (A′

gx
/∼) are

proper.

Proof. By Lemma 6.0.7, (Agx/∼) − (Agx ∩ U/∼) has a decomposition
into two proper subclasses D1 and D2. Let Ci be π−1(Di) (i=1,2), and let
A′

gx
= (Agx∩U)∪C1. Then (A′

gx
/ ∼)−(A′

gx
∩U/ ∼)= D1, and D2 is included

in (Agx/∼)− (A′
gx

/ ∼). a
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We are now ready to prove the following.

EXTENSION PRINCIPLE Let U be a universe and κ an infinite car-
dinal number. Then there exist a κ-saturated universe W and an elementary
embedding F : U → W . Moreover, if gx is a linear set equation of circular
type and (Agx/∼)− (Agx ∩U/∼) is a proper class, then one can assume that
F (x) = x for all x ∈ Agx ∩ U , and Agx −W is a proper class.

Proof. Let U be a universe such that (Agx/∼)− (Agx ∩ U/∼) is a proper
class. By Lemma 6.0.8, there exists a proper class Agx ⊆ Agx such that

(Agx ∩ U/ ∼) ⊆ (Agx/ ∼)

and both (A′
gx

/∼)− (A′
gx
∩U/∼) and (Agx/∼)− (A′

gx
/∼) are proper classes.

Let Uα be the transitive closure of U ∩ C[α], where C[α] = {C(α) : γ < α}.
Let D be a κ-good ultrafilter (see e.g. [7] for the definition), let I =

⋃
D, and

(Aα, Eα) be the ultraproduct of (Uα,∈Uα) over D, and let dα : Uα → Aα be
the natural elementary embedding. Since Uα is transitive, the inverse image
of (Agx ∩Uα/ ∼) under π is (Agx ∩Uα). Each (Aα, Eα) is extensional, and it
is κ-saturated because D is κ-good. Let

Agx(Aα) = {fα ∈ Aα | {i ∈ I : fα(i) ∈ Agx} ∈ D}.
Now we use transfinite recursion. We divide A0 into a disjoint sum

d0(Agx ∩ U0), Agx(A0)− d0(Agx ∩ U0) and A0 − Agx(A0),

all of which are transitive sets. Each element of Agx(A0) satisfies gx. Since

Agx(A0)−d0(Agx∩U0) is a set and A′
gx
−U is a class, there exists an injection

e0 : Agx(A0)− d0(Agx ∩ U0) → A′
gx
− U

preserving ?∈ and ∈−structures. Let W0 be a disjoint union of (Agx ∩ U0),
the range of e0 and A0 − d0(Agx(A0)). We define g0 : A0 → W0 such that
restrictions to d0(Agx∩U0), Agx(A0)−d0(Agx∩U0) and A0−d0(Agx(A0)) give
g0(d0(x)) = x, g0(y) = e0(y) and g0(z) = z, respectively. For all α < β, given
isomorphisms gα : Aα → Wα to transitive sets Wα such that gα[Agx(Aα)] ⊆
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A′
gx
∩Wα, and gα(dα(x)) = x for all x ∈ Agx ∩ Uα. If α < α′ < β, Wα ⊆ Wα′

and gα = gα′ ◦ iαα′ , where iαα′ is the inclusion map. Let

A′
β := ∪α<β iαβ[Aα], W ′

β := ∪α<βWα,

and define
g′ : A′

β ∪ Agx(Aβ) → W ′
β ∪ A′

gx

so that g′ restricted to iαβ[Aα] is gα ◦ i−1
αβ and g′ restricted to Agx(Aβ)∩dβ[Uβ]

agrees with d−1
β for each α < β. Now gx is linear, Aβ is a set and

(Agx/ ∼)− (Agx ∩ U/ ∼)

is a proper class. Hence g′ restricted to Agx(Aβ)−(A′
β∪dβ[Uβ]) can be defined

as a one to one mapping into A′
gx
− (U ∪ W ′

β) and preserves ∈-structures.
Clearly dom(g′) is transitive in Aβ, g′(dβ(x)) = x for all x ∈ Agx ∩Uβ, and g′

is an isomorphism of (dom(g′), Eβ ∩ dom(g′)2) onto (ran(g′),∈ran(g′)), where
ran(g′) is transitive. Then by (BA) there exist gβ and Wβ such that g′ ⊂ gβ,
ran(g′) ⊆ Wβ, Wβ is transitive, and gβ is an isomorphism between (Aβ, Eβ)
and (Wβ,∈Wβ

). Next we show that Agx ∩Wα = A′
gx
∩Wα for each α. Let

s be an element of Agx ∩Wα. Then g−1
α (s) ∈ Agx ∩ Aα. We write g−1

α (s) as
s1 and denote the length of gx by n. Since s1 is a solution of gx, there exist
elements s2, s3, . . . , sn of Aα such that s1

?∈ sn
?∈ · · ·?∈ s2

?∈ s1. Let

Dj(1 ≤ j ≤ n− 1) = {i ∈ I : sj+1(i) ∈ sj(i)}

and
Dn = {i ∈ I : s1(i) ∈ sn(i)}.

Since
s1(i) ∈ sn(i) ∈ · · · ∈ s2(i) ∈ s1(i)

for i ∈ ∩1≤j≤n Dj, s1(i) is an element of Agx . Hence s1 ∈ Agx(Aα), that is,

g−1
α (Agx ∩Wα) ⊂ Agx(Aα).

Thus
Agx ∩Wα ⊂ gα(Agx(Aα)).

Since
gα(Agx(Aα)) ⊂ A′

gx
∩Wα,
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it follows that
Agx ∩Wα = A′

gx
∩Wα.

Therefore
Agx − (Agx ∩Wα) = Agx − (A′

gx
∩Wα).

Note that (Agx/∼)− (A′
gx

/∼) is a proper class, so Agx − A′
gx

is also proper.
Finally since

Agx − A′
gx
⊂ ∩α∈On(Agx − (A′

gx
∩Wα))

and
∩α∈On(Agx − (A′

gx
∩Wα)) = Agx −W,

Agx −W is a proper class. This completes the proof. a

Remarks 6.0.9 Ballard and Hrbáček’s result in [2] concerns the equations
gx : x = {x}. Our result works for every linear set equations, e.g. x = {y}
and y = {x}, etc.
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