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There is atwo-dimensional stationary equation of motion of a viscous incompressible fluid(it
is obtained from the Navier–Stokes equations by eliminating pressure and introducing the stream
functionw, see Remark).

1◦. Supposew(x,y) is a solution of the equation in question. Then the functions

w1 = −w(y, x),

w2 = w(C1x + C2, C1y + C3) + C4,

w3 = w(x cosα + y sinα, −x sinα + y cosα),

whereC1, . . . , C4 andα are arbitrary constants, are also solutions of the equation.

2◦. Any solution of the Poisson equation∆w = C is also a solution of the original equation (these
are “inviscid” solutions).

3◦. Solutions in the form of a one-variable function or the sum of functions with different arguments:

w(y) = C1y
3 + C2y

2 + C3y + C4,

w(x,y) = C1x
2 + C2x + C3y

2 + C4y + C5,

w(x,y) = C1 exp(−λy) + C2y
2 + C3y + C4 + νλx,

w(x,y) = C1 exp(λx) − νλx + C2 exp(λy) + νλy + C3,

w(x,y) = C1 exp(λx) + νλx + C2 exp(−λy) + νλy + C3,

whereC1, . . . , C5 andλ are arbitrary constants.

4◦. Generalized separable solutions:

w(x,y) = A(kx + λy)3 + B(kx + λy)2 + C(kx + λy) + D,

w(x,y) = Ae−λ(y+kx) + B(y + kx)2 + C(y + kx) + νλ(k2 + 1)x + D,

w(x,y) = 6νx(y + λ)−1 + A(y + λ)3 + B(y + λ)−1 + C(y + λ)−2 + D,

w(x,y) = (Ax + B)e−λy + νλx + C,

w(x,y) =
[
A sinh(βx) + B cosh(βx)

]
e−λy +

ν

λ
(β2 + λ2)x + C,

w(x,y) =
[
A sin(βx) + B cos(βx)

]
e−λy +

ν

λ
(λ2 − β2)x + C,

w(x,y) = Aeλy+βx + Beγx + νγy +
ν

λ
γ(β − γ)x + C, γ = ±

√
λ2 + β2,

whereA, B, C, D, k, β, andλ are arbitrary constants.

5◦. Generalized separable solution linear inx:

w(x,y) = F (y)x + G(y), (1)

where the functionsF = F (y) andG = G(y) are determined by the autonomous system of fourth-order
ordinary differential equations

F ′yF ′′yy − FF ′′′yyy = νF ′′′′yyyy, (2)

G′yF ′′yy − FG′′′yyy = νG′′′′yyyy. (3)
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Equation (2) has the following particular solutions:

F = ay + b,

F = 6ν(y + a)−1,

F = ae−λy + λν,

wherea, b, andλ are arbitrary constants.
Let F = F (y) is a solution of equation (2) (F � const). Then, the corresponding general solution

of equation (3) can be written out in the form

G =
∫

U dy + C4, U = C1U1 + C2U2 + C3

(
U2

∫
U1

Φ
dy − U1

∫
U2

Φ
dy

)
,

whereC1, C2, C3, andC4 are arbitrary constants, and

U1 =
{

F ′′yy if F ′′yy � 0,

F if F ′′yy ≡ 0,
U2 = U1

∫
Φ dy

U 2
1

, Φ = exp

(
−

1
ν

∫
F dy

)
.

6◦. There is an exact solution of the form (generalizes the solution of Item5◦):

w(x,y) = F (z)x + G(z), z = y + kx, k is any.

7◦. Self-similar solution:

w =
∫

F (z) dz + C1, z = arctan

(
x

y

)
,

where the functionF is determined by the first-order autonomous ordinary differential equation
3ν(F ′z)2 − 2F 3 + 12νF 2 + C2F + C3 = 0 (C1, C2, andC3 are arbitrary constants).

8◦. There is an exact solution of the form (generalizes the solution of Item7◦):

w = C1 ln |x| +
∫

V (z) dz + C2, z = arctan

(
x

y

)
.

Remark. The two-dimensional steady-state equations of a viscous incompressible fluid (the
Navier–Stokes equations)

u1
∂u1

∂x
+ u2

∂u1

∂y
= −

1
ρ

∂p

∂x
+ ν∆u1,

u1
∂u2

∂x
+ u2

∂u2

∂y
= −

1
ρ

∂p

∂y
+ ν∆u2,

∂u1

∂x
+

∂u2

∂y
= 0

are reduced to the equation in question by the introduction of a stream functionw such thatu1 = ∂w
∂y

andu2 = − ∂w
∂x followed by the elimination of the pressurep (with cross differentiation) from the

first two equations.
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