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Abstract— The IDMaps project aims to provide a distance map of the
Internet from which relative distances between hosts on the Internet can
be gauged [1]. Many distributed systems and applications can benefit from
such a distance map service, for example, a common method to improve
user perceived performance of the Internet is to place data and server mir-
rors closer to clients. When a client tries to access a mirrored server, which
mirror should it access? With IDMaps, the closest mirror can be deter-
mined based on distance estimates between the client and the mirrors. In
this paper we investigate both graph theoretic methods and ad hoc heuris-
tics for instrumenting the Internet to obtain distance maps. We evaluate the
efficacy of the resulting distance maps by comparing the determinations of
closest replica using known topologies against those obtained using the dis-
tance maps.

I. INTRODUCTION

The IDMaps project [1] aims at providing a distance® map of
the Internet from which relative distances between hosts on the
Internet can be gauged, i.e. is host a closer to host b or host c¢?
We envision that many distributed systems and applications can
greatly benefit from such a distance information service. For
example, placing mirrors of popular Web sites has become a
common method to improve user-perceived performance and to
reduce network load. While strategically placed Web caches
may improve performance of static content, using server mirrors
has been proposed to improve performance of dynamic content.
Given a set of mirrors, which one should a client access? Aside
from the many ad hoc solutions, such as round robin DNS and
geography- or IP-address-based partitioning, there also are pro-
prietary systems that address this question? [2], [3]. One factor
to consider in determining the mirror closest to a client is the
topological distances between the client and the set of mirrors,
the information IDMaps intends to provide.
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The architecture of IDMaps [1] consists of a network of in-
strumentation boxes, which we call Tracers, distributed across
the Internet. Tracers measure distances among themselves and
between themselves and regions of the Internet to build a dis-
tance map. IDMaps aims at providing long-term measures of
relative distances between hosts across the global Internet. Gen-
erally speaking, given a host a and a list of some other hosts
on the Internet, IDMaps can return an ordered list of these other
hosts by their distances to host a. Such a simple service suffices
for applications, like the one described above, that do not neces-
sarily need a precise or absolute measure of distances between
hosts.

The regions of the Internet that Tracers measure are called
APs (“Address Prefixes”). Tracers measure distances among
themselves and to APs. We call each such measurement a vir-
tual link and the process of measuring, tracing. Tracers adver-
tise their measured distances on one or more multicast channels.
Collectively, these measured distances form the distance map
or, equivalently, the virtual topology of the Internet. From the
distance map, distance between any two hosts on the Internet
can be estimated.

The efficacy of IDMaps may be evaluated based on how accu-
rate the estimated distances are compared to actual distances, but
for applications such as closest server selection, only the order-
ing of distances between a client and server mirrors is needed.
We define an evaluation metric called P,,,,, for application level
performance metric that compares the “correctness” of closest
server selection using the distance map provided by IDMaps
against selection based on the underlying topology. A more pre-
cise definition of the metric is provided in Section I1I-A. In this
paper, we explore the following questions:

1. how many Tracers must be deployed?
2. where should these Tracers be placed?
3. must the distance map be a full-mesh?

Although our goal in this paper is biased towards the IDMaps
project, we believe that the results should be generally applica-



ble to the placement of measurement instrumentation boxes on
the Internet.

In the next section, we review two graph theoretic approaches
that can be used to determine the number and placement of
Tracers. Both of these approaches require a priori knowledge
of the network topology. Since the topology of the Internet is
not known and is continually changing, we call these the ide-
alized IDMaps placement algorithms and use their performance
as yard sticks to evaluate the performance of our heuristics pre-
sented in Section I11-B. In Section 1V, we examine algorithms
used to construct the distance map. Our experiments examine
the tracer placement problem and the virtual link construction
using P,,, on artificially generated network topologies. We de-
scribe our topology generation process in Section V and our per-
formance results in Section VI.

Notations: We adopt the following notations for this paper: the
network is a graph G(V, E), where V' is the set of nodes, and
E CV x V isthe set of links. We use N = |V| to denote the
number of nodes in G, and 7 to denote the number of Tracers
we place in the graph. We denote the distance between nodes u
and v in the graph G, dg(u,v); we will omit G when it can be
deduced from the context.

Il. PLACEMENT ON KNOWN TOPOLOGY

In this section we review two graph theoretic approaches that
can help us determine the number and the placement of Tracers
when the network topology is known. We use the generic term
“center” in place of “Tracer” in the following descriptions. We
study two variants of the center placement problem: in the first
case, the maximal center-node distance is given, and one is re-
quired to find the minimal number of centers needed to satisfy
the maximal distance constrain; in the second case, the number
of centers is given, and one needs to decide the locations of these
centers such that the maximum distance between a node and the
nearest center is minimized. In the following paragraphs, we
give the formal definitions of the two variants.

Number of Centers. Given a network G with N nodes, (that is,
the topology is a priori known), a bound D, one has to find a
smallest set of centers S¢ such that the distance between any
node ¢ and its closest center C; € Sc is bounded by D. The
performance metric (Pg;am) i the size of this set (|S¢|). More
formally find the minimum K such that there is a set S¢ C V
with |S¢g| =K andVYv € V @ d(v,C,) < D.

Center Placement: For the placement of a given number of cen-
ters, one could consider the following metric (Pp,ink): mMin-
imize the maximum distance between a node and the nearest
center. This problem is known as the minimum K -center prob-
lem, which states: given an undirected graph G = (V, E) with
link costs satisfying the triangle inequality,® and an integer K,
find a set of K nodes such that the maximum distance between
a node on the graph and the nearest center is minimized.

We present two algorithms below, each of which can be used
to solve both the Number of Centers problem and the Center

3 A cost function c satisfies the triangle inequality if for all vertices u, v, w in
V, e(u,w) < e(u,v) + ¢(v, w) [4].

Algorithm 1 (Greedy placement)

1. L+ N,

2. while (diam(Hz) > D)
3. h(—H[,

4, L+~ L—-—H,

5. L+ LUN,

Fig. 1. Greedy placement of centers on an k-HST tree.

Placement problem. The two algorithms were designed to solve
somewhat different problems than Tracer placement. Our tacit
assumption in applying these algorithms to Tracer placement is
that by minimizing the maximum distance between a node and
its closest Tracer, we will obtain the best distance estimate.

A. k-HST

We present in this subsection an algorithm based on the k-
hierarchically well-separated trees (k-HST) [5]. The k-HST al-
gorithm consists of two phases. In the first phase, the graph is
recursively partitioned as follows: A node is arbitrarily selected
from the current (parent) partition, and all the nodes that are
within a random radius from this node form a new (child) parti-
tion. The value of the radius of the child partition is a factor of
k smaller than the diameter of the parent partition. This process
recurses for each partition, until each node is in a partition of
its own. We then obtain a tree of partitions with the root node
being the entire network and leaf nodes being individual nodes
in the network. In the second phase, a virtual node is assigned
to each of the partitions on each level. Each virtual node in a
parent partition becomes the parent of the virtual nodes of the
child partitions. The length of the links from a virtual node to
its children is half the partition diameter. We embed the virtual
nodes in the original graph based on a technique developed by
Awerbuch and Shavitt [6]. Together, the virtual nodes also form
a tree.

The randomization of a partition radius is done so that the
probability of a short link being cut by partitioning decreases
exponentially as one climbs the tree. Hence nodes close to-
gether are more likely to be partitioned lower down the tree.
We take advantage of this characteristic of the resulting k-HST
tree to devise the following greedy algorithm to find the number
of centers needed when the maximum center-node distance is
bounded by D.

Let node r be the root of the partition tree, A; be the children
of node ¢ on the partition tree, and £ be a list of partitions sorted
in the decreasing order of the partition diameter at all times. H.
denotes the partition at the head of the list, and diam(H) its
diameter. Fig. 1 presents our greedy algorithm on the k-HST
tree. The algorithm pushes the centers down the tree until it dis-
covers a partition with diameter < D. The number of partitions,
|£], is the minimum number of centers required to satisfy the
performance metric Py;,.,,. To select the actual centers, we can
simply set the virtual nodes of these partitions in £ to be the
centers.

The k-HST-based greedy placement algorithm presented
above tells us the number of centers needed to satisfy the per-



Algorithm 2 (2-approximate minimum K -center [8])

1. Construct G%,G3,...,G2,

2. Compute M; for each G?

3. Find smallest i such that |M;| < K, say j
4. M; is the set of K centers

Fig. 2. Two-approximate algorithm for the minimum K-center problem.

formance metric Pg;,.,,. FOr any given budget of centers, the
algorithm above can also be used to determine their placement.
For example, to place K centers, we simply change line 2 in
Fig. 1 with “while (|| < K)”. Obviously, the performance
metric Pg;q.m May no longer be satisfied for K below a certain
number.

B. Minimum K -Center

The placement of a given number of centers such that the
maximum distance from a node to the nearest center is min-
imized, known as the minimum K-center problem, is NP-
complete [7]. However, if we are willing to tolerate inaccuracies
within a factor of 2, i.e. the maximum distance between a node
and the nearest center being no worse than twice the maximum
in the optimal case, the problem is solvable in O(N|E|) [8] as
follows:

Given a graph G = (V, E) and all its edges arranged in non-
decreasing order by edge cost, ¢: ¢(e1) < ¢(e2) < ... < ¢(em),
let G; = (V, E;), where E; = {e1,ea,...,e;}. Asguaregraph
of G, G? is the graph containing V' and edge (u,v) wherever
there is a path between « and v in G of at most two hops, u #
v—hence some edges in G2 are pseudo edges, in that they don’t
exist in G. An independent set of a graph G = (V,E) is a
subset V! C V such that, for all u,v € V', the edge (u,v) is
not in E. An independent set of G2 is thus a set of nodes in G
that are at least three hops apart in G. We also define a maximal
independent set M as an independent set V' such that all nodes
in V — V' are at most one hop away from nodes in V.

The outline of the minimum K -center algorithm from [8] is
shown in Fig. 2. The basic observation is that the cost of the
optimal solution to the K -center problem is the cost of e;, where
i is the smallest index such that G; has a dominating set* of
size at most K. This is true since the set of center nodes is a
dominating set, and if G; has a dominating set of size K, then
choosing this set to be the centers guarantees that the distance
from a node to the nearest center is bounded by e;. The second
observation is that a star topology in G, transfers into a clique
(full-mesh) in GZ. Thus, a maximal independent set of size K
in G2 implies that there exists a set of K stars in G, such that the
cost of each edge in it is bounded by 2e;: the smaller the i, the
larger the K. The solution to the minimum K-center problem
is the G? with K stars. Note that this approximation does not
always yield a unique solution.

The 2-approximate minimum K-center algorithm can also
be used to determine the number of centers needed to satisfy

4a dominating set is a set of D nodes such that every v € V is either in D or
has a neighbor in D.

the performance metric Pg;,,, by picking an index & such that
c(er) < D/2. The maximum distance between a node and the
nearest center in G, is then at most D, and the number of centers
needed is | M.

The graph theoretic approaches described above assume
known network topologies. However, the topology of the In-
ternet may not be known to all parties at any one time. Further-
more, the Internet topology changes continuously, from physi-
cal and algorithmic causes. Nevertheless, there are scenarios in
which the above algorithms would be applicable on the Inter-
net. For example, an Internet Service Provider (ISP) may know
the topology of its network and be able to use the algorithms
to distribute Tracers within its own network, or companies may
use the algorithms to distribute Tracers on their intranets. In this
paper, results from the graph theoretic algorithms are used as
yard sticks to evaluate the performance of our Tracer placement
heuristics in the next section.

I1l. TRACER PLACEMENT ON THE INTERNET
A. Number of Tracers and Performance Metric

The number of instrumentation boxes needed to cover the In-
ternet depends greatly on the performance metric these boxes
must satisfy. In this subsection we discuss various candidate
performance metrics for IDMaps and the implications on the
number of Tracers required.

One could apply the Pg;q,,, metric and require that each nodes
is within a certain distance of the nearest Tracer, or require
that the distances between nodes and Tracers to be minimized
(Pmink)- Neither of these metrics, however, tells us how good
a service IDMaps provides. A higher level metric, such as re-
quiring that 2% of IDMaps estimates be within a factor of « of
actual distances, may be more useful. Depending on the value of
z and «, this performance metric may not be achievable for any
reasonable number of Tracers. In the worst case, the number of
Tracers required may be O(XV). For example, in order to get a
factor of 2 estimation in all cases, we need to put Tracers in a
way that for any node v the distance from w to its closest Tracer
does not exceed the shortest distance from « to any other node
v. In many practical networks, this will require a large number
of Tracers (N/2).

IDMaps does not intend to provide precise estimates of dis-
tances between hosts on the Internet; what it does provide is
estimates of relative distances between a source (e.g. a client)
and a set of potential destinations (e.g. server mirrors). Hence
we adopt an application-level performance metric, P,pp,, which
measures how often the determination of the closest mirror to
a client, using the information provided by IDMaps, results in
a correct answer. A quantitative evaluation of P,,, requires a
definition of some target accuracy, a. A good placement is one
that maximizes the number of possible node pairs for which a%
of client nodes will correctly select the closest mirror using the
distance map induced by IDMaps. We later introduce a practical
lax version of this measure.

As we will show in Section VI, this rather lax metric still al-
lows IDMaps to provide useful services with a small number of
Tracers. Furthermore, in reality, the number of Tracers we can



place, and where we can place them on the Internet, will be con-
strained by both administrative and budgetary considerations,
our goal in this paper is not to determine the minimum num-
ber of Tracers required to provide distance estimates to a given
precision of accuracy, but rather to evaluate the effectiveness
of various placement strategies for varying number of available
Tracers, according to the performance metric Py,

B. Tracer Placement Heuristics

Given a number of Tracers and an unknown topology, we de-
vise the following heuristics for Tracer placement:
Sub-AS Tracers are placed only on stub Autonomous Systems
(ASs). This would most likely reflect the initial deployment of
Tracers on the Internet, when Tracers would be run from end
hosts.
Transit-AS Tracers are placed only on transit ASs, i.e. ASs
connected to more than one other AS. This reflects deployment
of IDMaps on ISP backbones. As IDMaps becomes more pop-
ular, we hope that there will be enough incentives for network
providers and institutions with private networks to deploy it. For
networks that do not have IDMaps deployed, Tracers could still
be run from end hosts.
Mixed: Tracers are uniformly placed on the network. On one
hand, this is the simplest placement method and does not as-
sume any knowledge of network characteristics. On the other, it
means Tracers are placed on both stub and transit ASs. In terms
of deployment, this placement reflects IDMaps being partially
deployed on some ISPs.
Idealized: For the purposes of comparative study, we also con-
sider Tracer placement using the two algorithms presented in
Section Il. Since these algorithms require a priori knowledge of
network topologies, we call this the idealized IDMaps.

IV. THE DISTANCE MAP

Once Tracers are placed on the Internet, they start tracing to
each other and to regions of the Internet, called APs (see def-
inition in Section IV-B.) The resulting traces are advertised to
IDMaps’ clients. Clients of IDMaps, such as SONAR [9] or
HOPS [10] servers, collect the advertised traces and construct
distance maps. In this section, we first discuss Tracer-to-Tracer
part of the distance map; then we discuss Tracer-to-AP virtual
links.

A. Tracer-Tracer Virtual Links

As of the writing of this paper, there are about 60,000 rout-
ing address prefixes on the Internet [11]. Assuming we have
5% as many Tracers, and each Tracer traces to every other
Tracer, there will be about 9 million virtual links to be con-
tinually traced and advertised. In [1], we identified cases in
which IDMaps may reduce the number of virtual links traced
and still maintains good distance estimates. We now generalize
this result by applying the ¢-spanner algorithm [12] to distance
map construction. A ¢-spanner of a graph is a subgraph where
the distance between any pair of nodes is at most ¢ times larger
than in the original graph [13], [14]. Formally, given a graph,
G(V,E), a t-spanner is a subgraph G'(V, E'), E' C E such
that dg (u,v) < t-dg(u,v), Vu,v € V. The number of edges
required to build a 5-spanner, for example, on a graph with N

Algorithm 3 (¢-spanner [12])

sort E by cost ¢ in non-decreasing order
.G « (V,E'),E + 0
. for each edge (u,v) in E do
if (¢t % c((u,v)) < dg(u,v))
E' + (u,v)UE'

A wN R

Fig. 3. The ¢-spanner algorithm.

nodes is O(IV3/2). For t = log N, the number of edges required
is O(V). We examine the effect of using different ¢ values on
the performance metric P,,, in Section VI.

The design of IDMaps allows its clients to provide feed-
back to Tracers on which virtual links form their ¢-spanners and
should be continually traced. To capture topological changes,
instead of completely disregarding virtual links not currently
used in building distance maps, Tracers will simply reduce the
frequencies at which they trace and advertise these links. We
next describe the ¢-spanner algorithm.

Cai [15] showed that the minimum ¢-spanner (a ¢-spanner
with the minimum number of edges) is an NP-complete prob-
lem. However, asymptotically, the algorithm of Althtfer et
al. generates, from a graph G(V, E), a t-spanners whose edge
count is in the same order of magnitude as the optimal ¢-spanner
[12].

Fig. 3 presents the t-spanner algorithm of Althtfer et al. [12].
It first sorts, in increasing order, all the edges in G by the edge
cost. The edges are examined starting with the shortest. An
edge (u, v) is added to the spanner G' if it improves the distance
between u and v by at least a factor of ¢.

To apply the t-spanner algorithm described above would re-
quire IDMaps clients to first collect and store all 72 virtual
links advertised by the 7 Tracers. It also assumes that once a
t-spanner is computed, it will remain static. In reality, we do not
expect all IDMaps clients to be able to store 72 virtual links.
As the underlying Internet topology changes, we further expect
the set of virtual links that makes up the ¢-spanner to change
from time to time. Hence Tracers continually trace and advertise
all 72 virtual links—albeit at different frequencies, with higher
frequencies for those used by the ¢-spanner and those that are
less stable; accordingly, IDMaps clients must be able to examine
each new advertisement of a virtual link and continually update
their ¢-spanners. To allow for this incremental update, we have
developed an incremental ¢-spanner algorithm.®

B. Tracer-AP Virtual Links

We define an AP (Address Prefix) as a consecutive address
range within which all assigned addresses are equidistant (with
some hysteresis) to the rest of the network. We investigate var-
ious alternatives to discovering APs on the Internet in a related
work [16]. In this paper, we look at whether it is sufficient for
each AP to be traced by a single Tracer. If an AP has more than
one path to the rest of the Internet, having a single Tracer tracing

58pace limitation prevents us from including our incremental ¢-spanner algo-
rithm in this paper.
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Fig. 5. Distribution of degree of inter-AS connectivity on the Internet.

to that AP could result in bad distance estimates between this AP
and hosts that are not sharing paths with the Tracer. Fig. 4 shows
a network of four ISPs and three APs. One Tracer each is placed
in ISP1, ISP2, and ISP3, i.e., T1, T2, and T3, respectively. The
label on each link denotes the distance of the link. Consider the
following scenario. Mirrors M1 and M2 of a service are placed
in AP3 and AP2, respectively. Assume that Tracer T1 traces to
AP1, T2 traces to AP2, and T3 traces to AP3. Client C1 in AP1
will then be directed to mirror M1 in AP3 instead of M2 in AP2.
Had Tracer T2 also traced to AP1, the client would have been
directed to M2. We investigate the effect of having more than
one Tracer tracing to each AP in Section VI-F.

V. SIMULATION SETUP

To study the various algorithms presented in this paper prior
to the deployment of IDMaps on the Internet, we conduct some
simulations on generated network topologies. In this section,
we give an overview of the three topology generation processes
used in this study. Then we describe how we “deploy” IDMaps
on the generated topologies. Finally, we describe how the per-
formance metric, P,,p, is computed.

TABLE |
NETWORK DIAMETER AND MAX NODE DEGREE

Model  [[ Hop Count [ EZ2E Distance | Max Node Degree
Waxman 21 77,655 8
Tiers 35 14,635 20
Inet 18 78,379 24

A. Topology Generation

For the purposes of building distance maps, we model the In-
ternet as a flat network consisting of regions, all hosts within
a region are considered equidistant to the rest of the Internet.
In our simulated networks, each node represents such a region
(AP). To have a rough estimate of the number of APs, we need
to take a look at ASs (Autonomous Systems) on the current In-
ternet. As of this writing, there are about 5,300 ASs on the In-
ternet, with about 30% of them announcing only one routing
prefix [11]. Fig. 5 shows the distribution of inter-AS connec-
tivity degree observed from BGP peering data collected by the
NLANR (National Laboratory for Applied Network Research)
for the months of Nov. 97, Jun. 98, and Jun. 99 [17]. Maximum
inter-AS connectivity was 590 in Nov. 1997, 812 in Jun. 1998,
and 1,161 in Jun. 1999. We make the observation that large ASs,
such as those belonging to ISPs and large companies, connect
together many networks that are topologically dispersed. From
the published ISP backbone data [18], we estimate that large
ISPs have about 20 exchange points each. To the first order
of approximation, we consider ASs with degree of connectivity
less than 20 as APs.

We use three models to generate network topologies: the
Waxman model [19], Tiers [20], and a model based on AS-
connectivity (“Inet”) observed from data collected on the In-
ternet. All three models work by first placing a given number
of nodes, N, on a plane of dimensions s distance units by s
distance units. In this paper, we always choose s that is one or-
der of magnitude larger than V. The cost of each edge in the
generated network is the Euclidean distance between the two
end nodes, the cost of a path between two nodes is the sum of
the edge costs. The three models differ in their determination
of (1) how nodes are placed on the plane, (2) how many other
nodes each node should directly connect to (a.k.a. node con-
nectivity degree, or simply, node degree), and (3) which edges
are selected to form the network. These three models produce
networks with very different characteristics, including the node
degree distribution, the end-to-end delay distribution, and the
network diameter.

We use the three models to generate three 1,000 node net-
works.® Fig. 6 shows the distribution of node degree of the
three generated topologies (we will explain the graph labeled
“Inet Phase 1” later). Table | lists the diameter and the maxi-
mum node degree of each network, and Figs. 7 and 8 show the
distribution of hop counts and end-to-end distance between all
node pairs on the three networks, respectively. In Fig. 7 (8) the
hop counts (e2e distances) are normalized by the diameter of
the respective network. We next describe the topology genera-
tion process in greater details. Waxman. The Waxman model is

SWe continue to experiment with more networks from each model.
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widely used in the literature for generating random topologies.
To use this model, we select two parameters: 3, the average
node degree, and «, the density of short edges in the network.
Given N nodes, the Waxman model places them on the plane
by randomly generating each node’s z and y coordinates from a
uniform distribution over the interval [0, s]. We then compute
L, the maximum Euclidean distance between any two nodes
on the network. The probability of having an edge between
nodes » and v is then calculated according to the probability
P(u,v) = Be(~4wv)/La) where d(u,v) is the Euclidean dis-
tance between « and v. A random number between 0 and 1 is
generated. The edge is added if this number is smaller than the
computed P(u,v). We use & = .6 and 8 = .0015, which give
us a mean node degree of around 2.2. Finally, a spanning tree
is computed, adding edges where necessary, such that the final
network is a connected graph.

Tiers. Tiers was designed to generate networks whose topology
resembles that of typical internetworks; in particular, Tiers was
designed to capture the presence of locality and hierarchy in in-
ternetworks. Since we model the Internet as a flat network of
APs, we use Tiers to generate networks consisting of only WAN
(wide area network) nodes (in Tiers terminology).” Tiers places
the given NV nodes on the s x s plane ensuring that nodes are
not within a radius of .5s/+/N of each other. The connectivity
degree of each node is randomly distributed with a maximum
node degree (WAN redundancy, in Tiers parlance) of r. Fig. 6
shows the distribution of the resulting node degree on our 1,000
node network for » = 20. Edges are added by first computing
a minimum spanning tree connecting the nodes. Each node is
then connected to as many other nodes as specified by its node
degree. In selecting a node’s neighbors, the ones closest to the
node that have not yet met their node degrees are selected first.

Inet. We construct this model based on results reported in [21]
and the following empirical observations we made on the inter-
AS connectivity data from NLANR:

1. The top most connected ASs form a full-mesh.

2. The most common peers of the top most connected ASs are
ASs with connectivity degree of two.

3. The top most connected ASs generally do not directly con-
nect to other ASs with connectivity degree of one, even though
one is the most common degree of connectivity.

"Tiers is also capable of generating hierarchical networks; however the result-
ing topology looks like a single-backbone ISP network instead of an internet-
work of ISPs.
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The above observations about AS connectivities coincide
with the findings on tree depth in [21]. As of June 1st, 1999, the
number of ASs that qualify for “the top most connected ASs”
using each of the three criteria is 10, 15, and 5, respectively.
Fig. 5 indicates an increase in AS connectivity between 1997
and 1999, both in terms of the increase of dual-connected ASs
and the increase of maximum inter-AS connectivity. Maximum
inter-AS connectivity was 590 in Nov. 1997, 812 in Jun. 1998,
and 1,161 in Jun. 1999. Hence we expect the above observations
to remain true for the future.

Our Inet model is constructed in two phases. In the first phase,
we model AS connectivity by randomly placing N — n«x nodes
on an s x s plane, we define n and « in the description of the
second phase below. Since our edge selection process (described
below) does not add edges based on Euclidean distance, we do
not need to ensure that nodes are at least a certain distance apart.
We then assign the node degree such that the frequency of each
degree occurring agrees with the power law presented in [21].
Edges are then added to simulate the characteristics of inter-AS
connectivity we observed from the NLANR data, as follows:
first we connect the top 7 nodes into a full-mesh; in this pa-
per 7 = 5. For these 7 nodes, we then connect 10% of their
edges to randomly selected nodes with degree of connectivity
two. Finally, to achieve full connectivity, we fill the node degree
requirement of the remaining nodes, starting from the ones with
highest degree of connectivity, by ensuring that each node is ei-
ther connected to these = nodes or connected to another node
that can reach these 7 nodes.

In the second phase, we expand the most connected « nodes
into networks with n nodes each. This is to simulate the obser-
vation we made earlier that ASs with the largest degrees of con-
nectivity usually belong to ISPs with geographically dispersed
networks. In this paper, we use x = 10 for N = 1,000, & = 35
for N = 4,200, and n = 20 in all cases. We call the nodes
generated in the first phase of the Inet model, “phase-1 nodes”
and those generated in the second phase, “phase-2 nodes.” Re-
flecting the geographically dispersed nature of networks con-
nected to large ISPs, phase-2 nodes are randomly placed on the
plane. Connectivities between phase-2 nodes replacing the same
phase-1 node are determined using the Waxman model. These
phase-2 nodes also inherit, from the phase-1 node they replace,
and divide among themselves, connectivity to the rest of the net-
work. In Fig. 6, the graph labeled “Inet phase 1” shows the
distribution of the node degree of the N — nx phase-1 nodes,
the graph labeled “Inet” shows the distribution of the node de-
gree of all NV nodes, after the second phase expansion; in this



case N = 1,000. The maximum node degree before the second
phase expansion is 170, afterwards, 24.

B. IDMaps Infrastructure

Once a network is generated, we build an IDMaps infrastruc-
ture on it. In this section, we describe how the various Tracer
placement and distance map computation algorithms and heuris-
tics are implemented.

Tracer Placement. In Section I11-B, we list four Tracer place-
ment heuristics: Stub-AS, Transit-AS, Mixed, and Idealized.
Given T Tracers, to implement Sub-AS Tracer placement, we
pick 7 nodes with the lowest degrees of connectivity to host
Tracers. Conversely, for Transit-ASplacement, we pick 7 nodes
with the highest degrees of connectivity. We implement Mixed
Tracer placement by giving equal probability to all nodes on the
generated network to host a Tracer. We implement the | dealized
placement by computing Tracer placement using the algorithms
described in Section II.

Distance Map Computation. A distance map consists of two
parts: Tracer-Tracer virtual links and Tracer-AP virtual links.
Each Tracer advertises the virtual links it traces. Clients of
IDMaps collect these advertisements and build a distance map
out of them. We do not simulate virtual link tracing and adver-
tisement in this study, and we only simulate a single IDMaps
client. The simulated IDMaps client has a full list of Tracers
and their locations. The Tracer-Tracer part of the distance map
is computed either assuming a full-mesh among all Tracers, or
by executing the original ¢-spanner algorithm shown in Fig. 3.

Each AP (node) can be traced by one or more Tracers. When
each AP is traced by a single Tracer, the Tracer closest to an AP
is assigned to trace to the AP. If an AP is to be traced by more
than one Tracer, Tracers are assigned to the AP in the order of
increasing distance. In our simulations, we assume all edges
are bidirectional, and paths have symmetric and fixed costs. We
study the effect of measurement error and stability on IDMaps’
performance in a related work [16].

Once a distance map is built, the distance between two nodes,
A and B is estimated by summing up the distance from A to
its nearest Tracer TA, the distance from B to its nearest Tracer
TB, and the distance between TA and TB. When a full-mesh
is computed between Tracers, the TA to TB distance is exactly
the length of the shortest path between them on the underly-
ing network. Otherwise, they are computed from the ¢-spanner.
If A and/or B have multiple Tracers tracing to them, the dis-
tance between A and B is the shortest among all combinations
of Tracer-AP and Tracer-Tracer distances for the Tracers and
APs involved.

C. Performance Metric Computation

Recall that we evaluate the efficacy of IDMaps by computing
the “correctness” of closest server selection using the distance
map provided by IDMaps against selection based on the under-
lying topology (P,pp). Considering that on the Internet a client
served by a server 15 ms away would probably not experience
a perceptible difference from being served by a server 35 ms
away, or that a server 200 ms away will not appear much closer
than one 150 ms away, we consider IDMaps’ server selection

TABLE Il
SIMULATION PARAMETERS

Topology | Placement T | T-T Map TIAP
Waxman Stub-AS 10 | full-mesh 1
Tiers Transit-AS 20 | 2-spanner 2
Inet Mixed 40 | 10-spanner 3
Min K-center | 100
k-HST

correct as long as distance between the client and the closest
server determined by IDMaps is within a factor of A times the
distance between the client and the actual closest server (in this
paper, we use A = 2).

To compute the efficacy of IDMaps, we first place 3 server
mirrors on our simulated network. We place the mirrors such
that the distance between any two of them is at least 1/3 the
diameter of the network. We consider all the other nodes on
the network as clients to the server. We then compute for each
client the closest server according to the distance map obtained
from IDMaps, and according to the actual topology. For a given
3-mirror placement, we compute P, as the percentage of cor-
rect IDMaps’ answers over total number of clients, with the cor-
rectness criterion defined above. We repeat this experiment for
1,000 different 3-mirror placements, obtaining 1,000 P, val-
ues. In the next section, we present our simulation results by
plotting the complementary distribution function® of these P,,,
values. We plan to study the performance of IDMaps when the
client population is not uniformly distributed across all nodes in
a related work [16].

V1. SIMULATION RESULTS

Table Il summarizes the parameters of our simulations. The
heading of each column specifies the name of the parameter,
and the various values tried are listed in the respective column.
The column labeled “Topology” lists the three models we use to
generate random topologies. The “Placement” column lists the
Tracer placement algorithms and heuristics. The “7™ columns
lists the number of Tracers we use on 1000-node networks.
The “T-T Map” column lists the methods used to compute the
Tracer-Tracer part of the distance map. The “T/AP” column lists
the number of Tracers tracing to an AP. We experimented with
almost all of the 540 possible combinations of the parameters
on 1,000 node networks and several of them on 4,200 node net-
works. The major results of our study are:

1. Mirror selection using IDMaps gives noticeable improve-
ment over random selection.

2. Network topology can affect IDMaps’ performance.

3. Tracer placement algorithms that rely on knowing the net-
work topology do not always outperform heuristics that do not.
4. Adding more Tracers gives diminishing return.

5. Number of Tracer-Tracer virtual links required for good per-
formance can be O(7") with a small constant multiplier.

6. Increasing the number of Tracers tracing to each AP im-
proves IDMaps’ performance with diminishing return.

These results apply to both the 1000-node and 4200-node net-
works. We present simulation data substantiating each of the
above results in the following subsections.

8The complementary distribution function, F’(z) = 1 — F(z), where F(z)
is the cumulative distribution function of the random variable z.



A. Mirror Selection

Results presented in this subsection are obtained from simu-
lations on a 1,000-node network with topology generated using
the Inet model. In all cases, the number of Tracers deployed is
10 (1% of nodes), the distance maps are built by computing full-
meshes between the Tracers, with only a single Tracer tracing to
each AP.

We compare the results of randomly selection against selec-
tion using the distance map generated by IDMaps. The metric of
comparison is P,p,. Each line in Fig. 9a shows the complemen-
tary distribution function of 1,000 P, values as explained in
the previous section. For example, the line labeled “Transit-AS”
shows that when mirrors are selected based on the distance map
computed from Tracers placed by the Transit-AS heuristic, the
probability that 80% of all clients will be directed to the “cor-
rect” mirror is 100% (recall our definition of correctness from
the previous section); however, the probability that 98% of all
clients will be directed to the correct mirror is only 85%. We
start the x-axis of the figure at 40% to increase legibility. The
line labeled “k-HST” is the result for idealized IDMaps when
the k-HST algorithm is used to place Tracers. The k-HST al-
gorithm requires knowledge of the topology (see Section I1-A).
The line labeled “Random Selection” is the result when mir-
rors are randomly selected without using a distance map. As
expected, it performs well for less than 40% correctness and
the performance deteriorates beyond 60% correctness. Mirror
selection using distance maps outperforms random selection re-
gardless of the Tracer placement algorithm. We ran the same ex-
periment with Inet topologies generated using 31 different ran-
dom seeds and computed the 95% confidence interval (shown as
error bars) for the tail distribution in Fig. 9a. We include only
the best and worst performing Tracer placement algorithms in
Figs. 9 for legibility of the graphs. The relative performance of
the various placement algorithms is presented in Section VI-C.

B. Effect of Topology

Figs. 9b and 9c show the results of running the same set of
simulations as in the previous section, but on topologies gener-
ated from the Waxman and Tiers models, respectively. Again,
the error bars on each figure shows the 95% confidence interval
computed from 31 randomly seeded topologies. While mirror
selection using a distance map provides better performance than
random selection in all cases, performance on the Tiers gen-
erated topology exhibit a qualitatively different behavior than
those on the other two topologies. For example, the Transit-
AS heuristic gives better IDMaps performance than the k-HST
algorithm on topologies generated from the Inet and Waxman
models, but not so on the topology generated from Tiers.

We offer a hypothesis for the relatively poor performance of
random mirror selection on Tiers topology. Fig. 8 shows that al-
most all the end-to-end distances in Inet generated network fall
between 20% and 60% of the network diameter. When we ran-
domly pick two distances from this network, it is highly likely
that they will fall within this range. Consequently, one distance
will be no more than 3 times longer than the other. So given our
definition of the performance metric, even the random selection
can give acceptable performance. As can be seen by comparing

Fig. 9b against Figs. 9a and 9c, this is more evident in the net-
work generated from the Waxman model, where the distances
fall between 30% and 70% of the network diameter. However,
the distance distribution for the Tiers topology is much more
dispersed, and the range is between 10% and 70% of the di-
ameter. It is much harder for two randomly picked distances
to be close within a factor 3. This is corroborated by the poor
results “Random Selection” returns. We note again that despite
the significant differences in the three models, IDMaps is able to
provide noticeable improvements in mirror selection in all three
cases.

C. Performance of Placement Algorithms

To compare the relative performance of the various Tracer
placement algorithms and heuristics, we repeat the same simu-
lations as in the previous two subsections, once for each place-
ment algorithm. Then using the complementary distribution
function of the P,,, values obtained from running the Mixed
placement algorithm as the baseline, we compute the improve-
ment of the placement algorithms relative to Mixed placement.
The results are presented in Figs. 10a and 10b for networks gen-
erated using the Inet and Tiers model, respectively. For exam-
ple, Fig. 10b shows that for the Tiers topology, while the Min
K-center, k-HST, and Stub-AS placement algorithms outper-
form the Mixed algorithm, the Transit-AS placement algorithm
underperforms it. While no placement algorithm convincingly
outperform any other, it is interesting to note that the mere exis-
tence of IDMaps, regradless of the placement algorithm, already
provides significant improvement over random selection.

D. Having More Tracers

In this subsection, we study the effect of increasing the num-
ber of Tracers on IDMaps’ performance. Fig. 11a shows the re-
sults of running the Transit-AS placement algorithm on a 1,000-
node network generated using the Tiers model. Increasing the
number of Tracers from 10 to 20 improves performance per-
ceptibly, with diminishing improvements for further increases.
Comparing Fig. 11a against Fig. 9c from Section VI-B we see
that increasing the number of Tracers from 10 to 20 makes the
performance IDMaps using the Transit-AS placement algorithm
comparable to that using the k-HST algorithm with 10 Tracers.

Fig. 11b shows the results of running the Transit-AS place-
ment algorithm on a 4,200-node network generated using the
Inet model. Again, we see a perceptible improvement in
IDMaps performance when the number of Tracers increases
from 10 to 35, with diminishing improvements for further in-
creases. Also of significance is that having only .2% of all nodes
serving as Tracers already provides correct answer 90% of the
time with very high probability. Overall, it is clear that we do
not necessarily need a large scale IDMaps deployment to realize
an improvement in the current metric of interest, P, .

E. Distance Map Reduction

In all the simulations reported so far, the distance maps are
built by computing full-mesh Tracer-Tracer virtual links. Fig-
ure 12 shows the results of running the Transit-AS algorithm
to place 100 Tracers on a 1,000-node network generated using
the Inet model, with Tracer-Tracer virtual links computed as a
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full-mesh and as ¢-spanners. For t = 2, there is no perceptible
difference in performance; for ¢ = 10, the performance is worse.
Qualitatively similar results are observed for topologies gener-
ated by the Waxman and Tiers models, with worse performance
for ¢t = 10 in the Tiers case.

Using a t-spanner in place of a full-mesh can significantly
reduce the number of Tracer-Tracer virtual links that must be
traced, advertised, and stored. Table 111 shows that for all the
topologies we experimented with, the number of virtual links
used by both 2- and 10-spanners are O(7") with a small constant
multiplier. In contrast, the number of virtual links required to
maintain a full-mesh for 7 = 100 is 4,950 edges.

TABLE I1I

NUMBER OF VIRTUAL LINKS USED BY t-SPANNER.

Placement | 2-spanner [ 10-spanner
Inet
Stub 628 198
Mixed 520 200
Transit 434 198
Min K -center 402 198
Waxman
Stub 654 198
Mixed 466 198
Transit 386 202
Min K-center 434 196
Tiers
Stub 268 202
Mixed 264 200
Transit 262 198
Min K -center 266 202
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F. Multiple Tracers per AP

In all our simulations so far we have assumed that only a sin-
gle Tracer traces each AP. On the 1000-node network gener-
ated using the Waxman model, we experimented with having
two and three Tracers tracing to each AP. Tracers are placed us-
ing the Transit-AS algorithm, and a full-mesh is computed for
Tracer-Tracer virtual links. Using the one Tracer per AP per-
formance as the baseline, we compute the percentage improve-
ment of increasing the number of Tracers per AP. We only con-
sider up to 3 Tracers per AP since currently 85% of ASs on the
Internet have degree of connectivity of at most 3 (see Fig. 5).
Figs. 13 shows the results for IDMaps with 100 Tracers. The
figure shows clearly the diminishing return of having multiple
tracers per AP.

VIlI. CONCLUSION

It has become increasingly evident that some kind of distance
map service is necessary for distributed applications on the In-
ternet. However, the question of how to build such a distance
map remains largely unexplored. In this paper, we tackle the
question of how a measurement network can be placed on the
Internet to collect distance information.

In the context of closest server selection for clients, we
showed that, significant improvement over random selection can
be achieved using placement heuristics that do not require the
full topological knowledge. In addition, we showed that the
IDMaps overhead can be minimized by applying spanners to the
Tracer-Tracer virtual links, which results in linear measurement
overhead with respect to the number of Tracers. Furthermore,
we looked at some theoretical approaches to the well-known
center placement problem, which can potentially provide a the-
oretical basis for our on-going research. Overall this study has
provided positive results to show that an Internet distance map
service is indeed useful.
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