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Abstract

Simulation is the main tool for studying networking pro-
tocols before deploying them in a wide scale, or for under-
standing how they are expected to behave under various con-
ditions. IRLSim is a new packet level network simulator that
we developed in the hope to study several Internet proto-
cols. From its modest inception as a simulator for the RSVP
signaling protocol, IRLSim has evolved into a more general
purpose, easy to use, scalable simulator that can be used
as a guide for studying existing network protocols as well
as a research tool for developing new protocols. This pa-
per describes the architecture of IRLSim in detail, presents
its use in the study of a few specific networking problems
and argues about its usefulness amongst the variety of other
simulators.
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1 Introduction

IRLSim is a general purpose packet level network simu-
lator implemented at UCLA’s Internet Research Lab. While
IRLSim started as a stand-alone simulator for the RSVP [5]
signaling protocol, over the past year it has been signifi-
cantly enhanced to include a complete network layer as well
as transport layer protocols such as TCP and UDP. To ease
the creation of simulation scenarios and the analysis of sim-
ulation results, users can create simulation topologies using
a Java Graphical User Interface we have developed and view
animations of their results using the nam animator ([10]).

A question that may naturally arise is why another packet
level network simulator? We believe that IRLSim has three
strong points:

1. Scalability. IRLSim is written in Parsec, a simulation
language that supports a wide range of sequential and
parallel architectures. Using this feature the simulator
code written for a uniprocessor can run on parallel ma-
chines with trivial changes, exploiting the speedup that
these parallel machines can provide.

2. Code Portability. Since Parsec is very similar to C,
simulator code written in Parsec can be easily moved
to production code and vice versa. Thereby, existing
network code can be effortlessly added to the simulator
and conversely code developed in the simulator as a re-
search prototype can be moved to production faster and
with fewer porting errors.

3. Ease of use. IRLSim is useful to novice users as well
as experts. Novice users can start creating their simu-
lation scenarios using the simulator’s graphical user in-
terface. In fact, novice users can create simulations and
get meaningful results that they can further use, with-
out having to write a single line of code. This way, our
simulator can be used as a learning tool as well as a
research instrument.

The rest of the paper is structured as follows: In Sec-
tion 1.1 we present the guiding principles that shaped the
simulator’s design. Section 1.2 introduces the Parsec simu-
lation language, which is the language the simulation engine
is written with. We continue in Section 2, where the sim-
ulator’s internal architecture is revealed. Sections 3, 4, 5
and 6 present the network, routing, RSVP and transport lay-
ers respectively. The simulator’s Graphical User Interface
is discussed in Section 7 while in Section 8 we show how
IRLSim was used for various network studies we have done.
We conclude with a presentation of related work in Section
9 and our future work items in Section 10.

1.1 Design Principles

Before we present the simulator’s architecture, we would
like to present the design principles we have followed in de-
veloping IRLSim. In this way some of the decisions we have
made will be clear. As we have already mentioned scalabil-
ity is our prime concern. For simulation results to be appli-
cable in the Internet these days, topologies simulated have
to be of large scale and involve complex interactions among
the various network elements. As we will see later on, the
choice of Parsec and some associated techniques provide us
with essentially unlimited capacity to scale.



Power and scalability are of little use when the simula-
tor is difficult to use. We want our simulator to be useful
to beginners and to expert users alike, and so we require an
accessible interface that users can easily create the scenar-
ios they want to simulate. For this reason, we have included
a Graphical User Interface by which even first-time users
can interactively create the requested simulation scenario.
In comparison, other simulators, such as ns [3], present po-
tential users with a steep learning curve since they require
learning some specialized scripting language to describe the
simulation topology.

Following the same principle of usability, we also pose
the requirement that users can easily extend the simulator
and moreover, the code that they write for the simulator can
be easily ported to real protocol implementations. In order to
achieve this goal, our simulator architecture is much similar
to the architecture of a real networking protocol stack. Ex-
perienced users can apply their prior knowledge of network
protocols stacks, such as the Unix BSD stack, [17] which
have been widely studied [29], to understand the structure of
our simulator and write new modules for it. On the other
hand, other simulators have a much different architecture
from real implementations. Two are the major consequences
of this difference: first, users have to familiarize themselves
with the simulator architecture and second, they have to port
the code written in the simulator back to the architecture of
a real implementation if they want to implement their ideas
in real networks. In addition to the extra effort and time re-
quired in the porting of code from one architecture to the
other, another problem is that of minor inconsistencies (e.g.
timers) in the protocol implementations in the two architec-
tures that might negative effects in protocol performance and
behavior.

1.2 The Parsec simulation language

The simulation engine of IRLSim was written in PAR-
SEC [2], a simulation language developed at the UCLA Par-
allel Computing Lab. The structure of the simulation engine
is heavily influenced by the language’s character and capa-
bilities. For this reason, before we delve into the structure
of the simulation engine in the next section, we will present
Parsec’s features in the rest of this section.

The Parsec language is based on C, but introduces several
new features. A Parsec program consists of a set of entities
and C functions. Each entity is a logical process that models
a corresponding physical process; entities can be created and
destroyed dynamically. Entities communicate by exchang-
ing messages. Each message carries a logical time stamp
matching the time at which the corresponding event happens
in the physical system. Every Parsec program must include
an entity called driver. This entity serves a purpose similar
to the main function of a C program. Execution of a Par-

sec program is initiated by executing the first statement in
the body of entity driver. The purpose of the driver entity is
usually to create and dispatch duties to the other entities.

Simulating a physical system in PARSEC requires two
steps: 1. finding the physical processes that communicate
with each other and 2. enumerating the different messages
exchanged among the communicating processes. Once this
is done, physical processes can be mapped to PARSEC enti-
ties while the actual information exchange between physical
processes can be modeled by the exchange of PARSEC mes-
sages between the corresponding PARSEC entities.

One important feature of Parsec is its ability to execute a
discrete-event simulation model using several different asyn-
chronous parallel simulation protocols on a variety of paral-
lel architectures. Parsec is designed to cleanly separate the
description of a simulation model from the underlying sim-
ulation protocol, sequential or parallel, used to execute it.
Thus, with few modifications, a Parsec program may be exe-
cuted using the traditional sequential simulation protocol or
one of many parallel optimistic or conservative protocols.

One of PARSEC’s major design goals is to facili-
tate migration of simulation models into operational soft-
ware. PARSEC is built around a thread-based message-
passing programming kernel called MPC (message-passing
C), which can be used to develop general-purpose parallel
programs. The only difference between PARSEC and MPC
is that a PARSEC model executes in logical time, with all
messages in the system being processed in the global order
of their time stamps. In contrast, each entity in an MPC
program can autonomously process messages in the phys-
ical order of their arrival. Because of the common set of
message-passing primitives used in both environments, it is
relatively easy to transform a Parsec simulation model into
operational parallel software in MPC or even multiple in-
stances of the same programs running on multiple machines
communicating over an actual network (the later case is true
when developing network simulations).

2 Simulator Architecture

IRLSim is divided into two major components: the
Graphical User Interface (GUI) and the simulation engine.
Users interact with the GUI to create simulation topologies
and to modify existing ones. These two components com-
municate with each other via a TCP socket. An advantage
of this communication method is that the two components
do not have to be on the same machine. The simulation en-
gine can run on a powerful parallel supercomputer while the
User Interface runs on the user’s workstation. The architec-
ture of the User Interface is explained in detail in Section 7,
while the rest of this section is devoted to exposing the inner
workings of the simulation engine.

As Figure 1 shows, the simulation engine follows a mod-
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Figure 1. The IRLSim Simulator Architecture

ular design. An important benefit of this design is that is
relatively easy to replace any of the modules (such as the
routing protocol entities or the entity simulating the physical
transmission channel) without affecting the rest. A driver
entity is responsible for creating the rest of the entities and
for communicating with the User Interface. The remaining
components of the simulator engine are structured in a way
that reflects the TCP/IP network protocol stack. At the bot-
tom of the simulator stack, we have network and data link
layers. The data link layer simulates physical links and their
associated MAC (Media Access Control) protocols. The net-
work layer entities simulate the IP layer in real networks
which is responsible for packet delivery. These entities learn
how to forward packets to their destinations by querying the
routing entities. Routing entities receive the network topol-
ogy from the driver entity and compute the routing table for
each network node by running unicast and multicast rout-
ing protocols. Transport layer entities receive data from ap-
plication layer and encapsulate the data in packets before
handling it to the network layer. When the packets reach
their final destinations, they are delivered back to the peer-
ing transport entities.

While routers forward packets, it is application hosts that
generate and consume those data packets. We have writ-
ten entities that simulate applications such as FTP or Telnet
as well as streaming media applications. While streaming
media applications run directly on top of the network layer,
reliable applications run on top of a transport layer protocol
called TCP that provides reliability and congestion control.
Applications that require higher level network services in-
voke RSVP to reserve resources for their data flows. The
RSVP entities simulate the RSVP protocol [5] running on
network routers.

In the section that follows we talk about the association
between the network nodes being simulated and the entities
that implement the various node functionalities.

2.1 Scalability

As we have already explained in Section 1.2 the first ap-
proach that comes to mind, when simulating a physical net-
work is to map each network node to a simulation entity.
This way the exchange of packets between physical network
nodes is simulated by the exchange of PARSEC messages
between simulation entities. While this approach is both in-
tuitive and simple it has one major disadvantage: as network
topologies increase in size, so does the context switching
overhead that results from having to switch among all the
threads that implement the Parsec entities. The result of this
is increased simulation time. Furthermore, since each entity
has a fixed amount of memory overhead required for internal
PARSEC book-keeping, as the number of entities increases
so does the amount of memory required to run the simula-
tion.

Our approach in solving this issue is what is called en-
tity aggregation. Using this technique, a single Parsec en-
tity simulates multiple physical nodes. When physical nodes
mapped to the same Parsec entity exchange packets, the en-
tity sends messages to itself and no context switch has to
occur. Context switches occur only when physical nodes
mapped to different simulation entities exchange messages.
By appropriately allocating physical nodes to simulation en-
tities we can exploit traffic localities and reduce the number
of context switches between the simulation entities.
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Figure 2. The effect of entity aggregation on
context switches

Figures 2 illustrates the effects of entity aggregation. We
have used as an example a topology that contains 15 nodes
and we measured the number of context switches among the
various simulation entities for different number of entities
per physical entity. In Figure 2 we can see that the number



of context switches is lowest when there is only one entity
for all the physical nodes (that is one entity per layer) while
the number of context increases as the number of entities in-
creases. The knee of the curve occurs at five entities (that is
when each entity simulates three physical nodes) because in
the particular topology we have used for this experiment and
for the current algorithm of distributing nodes among enti-
ties, most messages are exchanged between nodes belonging
to different entities and so higher aggregation does not pro-
vide any additional improvements.

3 Network and Data Link Layers

We begin our description of the simulator architecture
with the lowest layers seen in Figure 1, namely the Net-
work and Data Link layers. These two layers simulate the IP
layer and data link layers of the Internet architecture and are
responsible for transferring data packets among the various
simulated network entities such as end-hosts and routers.
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Figure 3. The Network Layer Architecture

As Figure 3 shows, packets from upper layers are sub-
mitted to the network layer and are then forwarded hop-by-
hop until they reach their final destination(s). The network
layer functionality in each host is divided in four main com-
ponents: 1. Input Processing, 2. Policing and Shaping, 3.
Queuing and 4. Transmission. We are going to talk about
Policing and Shaping in Section 3.1, where we talk about
the Quality of Service enhancements to the network layer.
Steps 1, 3 and 4 are discussed in the following paragraphs.

Input Processing contains all the steps that are performed
when a packet arrives at a network node. For example
for multicast packets, a reverse path check must be per-
formed, that is, the router reads the packet’s source address
and checks if the packet arrives from the interface that the
router would use to send packets destined for this address.
If the packet arrived from a different interface the packet is
dropped. If the packet is destined for the current node, or
if it is an RSVP packet (see Section 5 for further discussion
about RSVP) then the packet is delivered to the appropriate

upper layer, otherwise the packet has to be forwarded to the
next hop towards it’s destination(s).

If a received packet has to be forwarded then the network
entity sends a routing query to the routing entity asking for
the next hop(s) that the packet should be forwarded to. The
query message contains the packet’s destination and for mul-
ticast packets it also contains the packet’s source address,
since for multicast routing protocols such as DVMRP [8]
source address is also important in making routing decisions.
Once the routing protocol entity replies with a list of output
interfaces, the packet is ready to be enqueued.

Packets ready for transmission through a particular inter-
face are placed on that interface’s output queue. Whether
the packet is placed on the queue depends on the type of the
output queue. At this point, two types of output queues are
supported:

1. FIFO queues. Packets are placed at the end of this
queue and are transmitted on a first-come, first-served
basis. If the queue is full the packet is dropped. For this
reason these queues are also called Tail Drop queues.

2. RED queues. These queues implement the RED [12]
active queuing mechanism. According to this mecha-
nism, upon arrival a packet could be randomly dropped
even if the queue is not completely full. The reason to
do so, is to try to control the size of the queue by sig-
naling co-operating end protocols (e.g. TCP) to reduce
their sending rate.

Users can select which kind of queue is used for each
link using the GUI or the configuration file. Once the packet
is enqueued, it stays in the queue awaiting its transmis-
sion. The packet at the queue’s head is handed to the data
link protocol for transmission. While at this point we have
only implemented a simple data-link protocol that simulates
point-to-point links with fixed propagation delay and capac-
ity, more complex data link protocols (such as CSMA/CD or
even wireless data link protocols such as MACA) can also
be easily incorporated. Once the packet at the head of the
queue is transmitted, the queue size is reduced by one and if
there is another packet ready to be transmitted, it is passed
to the data link functions.

One important feature of the network layer entities is that
they support extensive logging facilities similar to the Berke-
ley Packet Filter (BPF) [16]. The logging facilities record
various events such as packet arrivals and departures from
a certain network node and users can easily obtain plots
that show queue size variation with scripts we have written.
Users can also select the level of logging they need.

3.1 QoS Capabilities

To support our work in Differentiated Services, which we
present later in Section 8.2, we have enhanced the network



layer of our simulator with capabilities to provide different
Qualities of Service (QoS). Providing QoS in the network
layer fundamentally involves two tasks:

1. Classifying packets to their corresponding service
classes.

2. Implementing methods to provide the various different
treatments to packets according to the service class they
belong to. Examples of such methods include schedul-
ing and buffer management techniques.

The first step taken once a packet is received at a network
node is finding the service class the packet belongs to. This
task is part of the Input Processing phase shown in Figure
3. Packets are categorized according to the value of the DS
field [19] in the packet’s IP header. Once the packets have
been categorized they can be further treated according to the
service class they belong to.

So far we have implemented only one service in addition
to the normal best effort service. This service is the Expe-
dited Forwarding (EF) service [13] that provides a low loss,
low latency, low jitter and assured bandwidth network ser-
vice. In order to provide a low latency and low jitter network
service, EF packets must experience little if any, queuing de-
lay inside network nodes. To achieve this effect, two things
have to be done: 1. The packet incoming rate must always be
smaller that the packet departure rate. If this condition isn’t
met, as queuing theory shows us queues will build inside
the node and queuing delay will be created, 2. EF packets
should not be preempted by best effort packets for more than
a single packet transmission time.

To satisfy these two requirements, we have added polic-
ing of incoming EF packets and we also added a second
queue for EF packets at the output interface, that has priority
over the best effort queue. The rate of incoming EF packets
is compared against a token bucket profile. The token bucket
is filled with token at a configured rate. For each incom-
ing EF packet, the number of tokens is reduced by one. If
a packet arrives when the token bucket is empty, the packet
is discarded. This way the incoming rate of EF packets is
controlled and will always be smaller than the service rate.
EF packets are put in a separate output FIFO queue that has
priority over the best effort queue. If the EF queue is not
empty then the next packet transmitted is picked from the EF
queue. To make sure that the best effort queue is not starved
there is an upper limit on the amount of resources that can be
used by the EF queue (i.e the EF queue can only use a fixed
percentage ( < 50%) of the interface’s capacity). The output
of the EF queue is shaped so that packets exit the queue at
regular intervals without creating any traffic bursts. To do
s0, the service rate of the output queue is set to the sum of
the rates of all incoming traffic that is directed towards that
specific output link.

4 Routing Layer

Entities at the routing layer are responsible for comput-
ing the routing tables used at each network node. The in-
formation in the routing tables is used to forward packets
from one node to the next as they travel from the source host
to their final destination(s). The first step in computing the
routing tables is finding each node’s neighbors, that is the
nodes directly connected to that node. This information can
be extracted from the simulated network topology created
through the simulator’s GUI or loaded through a configu-
ration file. The GUI communicates this information to the
simulator’s driver entity which in turn forwards the list of
neighbors for every node to the routing layer entities. Us-
ing this information, each routing layer entity computes the
routing tables for the network nodes it serves (see Section
2.1 for node aggregation).

In our current architecture, routing table entries for uni-
cast destinations are computed during simulation initializa-
tion time and are static. This is not restricting for now, since
there aren’t any events such as node or link failures that
could change the initial topology. For each node, Dijkstra’s
algorithm is used to compute the least distance path to each
destination. All links in this computation have unit length,
while a simple extension would be each link’s metric to be
proportional to the link’s propagation delay. The multicast
routing protocol in our simulator! is DVMRP [8]. The initial
multicast delivery tree is computed by the driver entity. The
tree is then distributed to the routing entities at the start of
simulation and subsequently maintained by the routing enti-
ties. Some branches of the tree may be pruned or grafted as
the multicast membership changes.

During simulation, when a node wants to forward a
packet downstream towards the packet’s final destination, it
sends a query message to the routing entity containing the
destination and source addresses. The routing entity then
looks up the routing table and returns a list of next hops the
packet should be sent out to. For unicast destinations there
is only one next hop while packets sent to multicast desti-
nations may have to be sent out through multiple outgoing
interfaces.

S RSVP Layer

RSVP [31],[5] is the signaling protocol for the Integrated
Services architecture [7]. RSVP is a soft-state, receiver-
oriented, two-phase resource reservation protocol for sim-
plex flows supporting one-to-one and multi-party communi-
cations. Senders advertise the characteristics of the traffic

IThe code was originally written by Rajat Ahuja and Lokesh Bajaj of
UCLA’s Parallel Computing Lab and it has been modified to fit into IRL-
Sim’s framework



they generate (i.e. in terms of peak and average transmis-
sion rate?), by sending PATH messages to the potential re-
ceiver(s). Receivers interested in receiving higher QoS for
the traffic advertised by these senders, respond by sending
RESV messages requesting a specific level of service. RESV
messages travel on the reverse path from receivers to senders
reserving resources along the way. Routers on the path be-
tween senders and receivers must process these RSVP mes-
sages, create associated state for each one of these messages
and allocate network resources according to the requests car-
ried in the RESV messages.

Senders and receivers periodically transmit their PATH
and RESV messages respectively. When routers receive
these messages, they refresh the associated RSVP state they
keep. If on the other hand, these routers do not receive
regular refreshes they will fear down the associated RSVP
state and network resources will be released. This approach
(Clark in [6] used the term soft state) provides an elegant yet
powerful way of handling network failures and stale state.
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Figure 4. RSVP Daemon Architecture

The architecture of the RSVP daemon is depicted in Fig-
ure 4. A node’s RSVP daemon receives through its Network
API all the RSVP messages exchanged between senders and
receivers that pass through that node. Messages are then
processed by the RSVP protocol engine and RSVP state is
installed or modified inside the RSVP daemon. After pro-
cessing each RSVP message, the RSVP daemon forwards
the message to the next router. To do so, it queries the rout-
ing protocol (unicast or multicast depending on the destina-
tion) about the (list of) interface(s) that the packet should
be sent out from. Each RSVP entity records every message
exchanged and the associated state changes in a log file for
post-processing.

2traffic specifications are called Tspecs in RSVP jargon

5.1 RSVP Senders and Receivers

While routers process and forward RSVP messages, it
is the traffic end-points that initiate RSVP sessions to re-
serve network resources for the traffic they send and re-
ceive. So, to have complete QoS functionality in our simu-
lator, in addition to RSVP processing at network routers we
have implemented the needed functionality at the network
edges. Specifically we have integrated RSVP functionality
at the traffic senders and receivers. While we describe these
end-points in more detail in Section 6 we talk about RSVP
senders and receivers in the paragraphs that follow.

The role of the RSVP sender is to send PATH mes-
sages thus initiating the whole resource reservation proce-
dure. Once initialized, the sender creates an RSVP PATH
message using the configured parameters and sends the mes-
sage towards its destination. After that, it enters an endless
loop, periodically refreshing the PATH message while wait-
ing for RESV or ERROR messages.

While the senders advertise existing flows by sending
PATH messages, it is the role of the receivers to initiate
the reservations. In this respect, the receiver functionality is
more complicated than that of the sender. A receiver, if it is
part of a multicast group it has to join the group. After that,
it waits for PATH messages from senders sending to the ses-
sion (unicast or multicast) that it is listening to. Each new
PATH message is processed and if it comes from a previ-
ously unknown sender, it is added to the list of senders send-
ing to the receiver’s session. From that list of senders, the re-
ceiver chooses a flow to reserve for. The receiver then uses
the sender’s parameters to send a RESV message towards
that sender. Once this process is finished, the receiver pe-
riodically refreshes its reservation by sending refresh RESV
messages

6 Transport Layer Protocols

As we have seen in Section 2, there are two major types of
simulated network nodes: routers that forward packets and
end nodes that act as the sources and sinks of network traffic.
User applications run at the end hosts as well as the trans-
port protocols responsible for tasks such as demultiplexing,
reliable delivery and congestion control. In the paragraphs
that follow we will present each of the two transport proto-
cols we have implemented and the applications that run on
top of them.

6.1 UDP

The first class of applications is what we call UDP
sources/receivers and contains applications that do not per-
form any reliability or congestion control mechanisms. We



have named them this way after the UDP [21] transport pro-
tocol in the TCP/IP protocol stack, since UDP does not per-
form any of these functions either. We haven’t actually im-
plemented UDP in the sense of a different entity that “sits”
between the applications and the network layer. What we
have done instead, is to fold UDP inside the applications.

There are three types of UDP sources in IRLSim. The
difference among them is in the pattern of the traffic they
send. The simplest of the three is a constant rate source that
sends specified size packets at fixed intervals. The next type
of source, is what is called an ON/OFF source, meaning that
the source alternates between the ON state in which it sends
packets at a fixed interval and the OFF state where it does
not send any traffic. We have implemented two variations of
the ON/OFF source, the difference being the distribution of
the length of the ON and OFF intervals. In the first type
of source, the intervals follow an exponential distribution
which results in a Poisson source. Poisson sources have been
widely used in network research as traffic sources, but recent
evidence [28] shows that traffic on the Internet shows self-
similar characteristics which cannot be generated by Pois-
son sources. The authors of [28] have shown that the super-
position of a large number of ON-OFF sources that have a
long-tail distribution (i.e Pareto) can create self-similar net-
work traffic. For these reasons we have also implemented
a Pareto ON/OFF source where the ON and OFF intervals
follow the Pareto distribution.

As we will see in Section 8.1 we have used UDP sources
and receivers to test the effects of mobility on playback ap-
plications. The term playback applications appeared in [7]
to model real-time applications. In these applications the
source takes some signal (e.g. voice) packetizes it and then
transmits it over the network. The network inevitably intro-
duces some variation in the delay of each delivered packet.
This variation has traditionally been called jitfer. The re-
ceiver depacketizes the data and attempts to faithfully play
back the signal. This is done by buffering data to remove
the network induced jitter and then replaying the signal at
some designated play-back point. Any data that arrives be-
fore its associated playback point can be used to reconstruct
the signal; data arriving after the play-back point is useless in
reconstructing the real-time signal. The implemented UDP
receivers support two adaptation protocols for setting the
play-back point. These adaptation protocols were originally
presented in [23].

62 TCP

We first describe the design of the TCP module in Sec-
tion 6.2.1 and then address some issues in porting real code
to IRLSim using TCP as an example. In Section 6.2.3, we
describe the TCP applications implemented in our simulator.

6.2.1 TCP Module Design

TCP [22] is a transport protocol that provides in-order reli-
able delivery. To ensure reliability, TCP assigns each byte of
data a sequence number and a receiver sends an acknowledg-
ment carrying the sequence number after it receives a packet
from the sender. The sender then decides on which piece of
data to (re)transmit based on the information in the acknowl-
edgment. What’s most interesting in TCP is the congestion
control algorithms that open/close TCP’s sending window
dynamically in response to changes in network condition.
The intricate details of these congestion control algorithms
have been studied for decades and many improvements have
been applied to the original algorithms [1]. In the rest of
this section, we describe the design objectives of the TCP
module and how we achieved them.

There are at least three possible uses of the TCP module:

1. Experimentation with various features of TCP;
2. Evaluating TCP performance;

3. Implementation of application prototypes on top of
TCP.

To support these uses, we have chosen to port the TCP
code in 4.4BSD-Lite [17] to IRLSim. The ported code sup-
ports many algorithms of TCP such as slow start, congestion
control and avoidance, fast retransmission and fast recovery,
as well as various TCP header options. In addition, users can
(a) enable or disable some optional features including keep-
alive, delayed ACK and Nagle algorithm; (b) turn on or off
any TCP header options; and (c) specify various protocol pa-
rameters, such as maximum sender segment size, sender and
receiver’s buffer size.

To collect simulation statistics, we embedded logging fa-
cilities inside the code. By analyzing the log file using the
scripts we provide, one can obtain TCP window plot (win-
dow size variation with time) and sequence number plot (se-
quence number growth with time). From the window plot,
one can tell the various stages a TCP connection is in (e.g.
slow start or congestion avoidance). TCP sequence number
plot shows how fast a TCP connection transmits data and
when it retransmits a packet. We also print summary statis-
tics for TCP connections, such as throughput, starting and
ending time, at the end of a simulation run.

To support application prototyping, we designed a simple
interface between applications and TCP. This interface is a
simplified version of the Unix socket API, which enables
users to port simulation applications to real Unix system and
vice versa. The interface API is comprised of five primitives:
listen, open, close, send and receive. An application can
initiate TCP connections using the first three primitives and
transfer data using the last two primitives.



6.2.2 Porting Real Code into IRLSim

In general, one needs to address the following issues in order
to port real networking code into IRLSim:

1. Protocol Interaction

If the real code uses function calls to invoke the ser-
vices of another protocol/module, one needs to map the
function calls to the corresponding PARSEC messages
we have defined. This is because we model each pro-
tocol as a PARSEC entity and entities communicate via
PARSEC messages. For example, when the network
layer entity wants to submit a packet to TCP, it sends a
PARSEC message packet_nw_to_tcp with the packet as
a parameter, as opposed to calling fcp_input() directly.
Once the TCP entity receives the Parsec message, it
calls tcp_input() to process the packet.

2. Timer Management

Networking code uses timers extensively and different
systems implement timers in different ways. In the
BSD code we use, there is a system interrupt every 500
ms and each 500 ms is called a tick. When TCP sets
a timer, it actually sets a timer variable to the number
of ticks until the timer expires. Whenever it receives a
system interrupt, it checks all the timer variables to see
if any of them has expired. In the simulation, we use
a Parsec message which is periodically sent to the TCP
entity to simulate the interrupt. In this way, we mini-
mize the changes to the timer management code. Since
other systems may implement timers in a different way,
one needs to find a way to simulate timers in Parsec or
make use of our periodic timer messages.

3. Simulation Detail

To simplify code and speed up simulation, one may
want to eliminate unnecessary features present in the
real code. For example, if the simulated network en-
vironment is homogeneous, one can take out the code
that handles backward compatibility and heterogeneity.

6.2.3 TCP Applications

FTP and Telnet are two representative TCP applications. We
simulate FTP traffic by sending data continuously from a
TCP sender to a TCP receiver. Telnet traffic is modeled as
one-byte data sent at randomly distributed intervals (we cur-
rently use exponential distribution). Users can specify start-
ing time, data transfer duration and data size for every TCP
sender. As a next step, we plan to integrate tcplib ([14]) into
IRLSim to model more applications.

7 Graphical User Interface

A valuable addition to any simulator package is a graph-
ical user interface (GUI). Therefore, we decided to provide
one for IRLSim and it turned out to be very useful by simpli-
fying many tasks. The GUI, which was implemented in Java
with ideas and the reuse of some classes of the similar in-
terface of [18], allows users to view the protocol actions and
interact with various network elements during simulation. A
snapshot of how the interface looks like with a simple topol-
ogy is presented in Fig. 5.

One of the first goals in the development of IRLSim was
to have a full RSVP simulation that would be used for vari-
ous RSVP related experiments. To test and evaluate the be-
havior of RSVP during such experiments it would be useful
to visually observe the exchange of RSVP messages. This
was made possible with the GUI and it proved a valuable
feature for debugging and testing. The small disks along
each edge in Fig. 5 were used for that purpose. When no
message is transmitted over the link the disks remain col-
ored grey. When a message is transmitted or received, one
of them is briefly illuminated with a color appropriate for
the type of message being send or received. However, as the
topologies and the scenarios become more complex, this fea-
ture becomes less valuable. The multitude of messages that
are exchanged can get very large and it becomes hard for the
user to visually track them. This feature was not extended
for the other protocols that were added in the simulator (e.g.
for TCP and UDP) because of the ever increasing number of
messages that would have to be animated. Additionally, an
option is given to the user to disable this feature.

Nevertheless, for several of the experiments that were
conducted with the simulator, it is desirable to have detailed
view of what is going on down to the packet level. For exam-
ple, in the experiments involving the study of mobile RSVP
we want to study and observe closely the data flow. Due
to the shortcomings of using the GUI for such tasks, we
decided to integrate into IRLSim support for the Network
Animator - nam ([10]). nam allows for the post-mortem ani-
mation of a networking scenario at varying playback speeds.
This is very appealing since it allows to observe events that
might be happening too fast to be observed during the sim-
ulation. So, during the course of the simulation, networking
events are logged according to the nam log format for later
playback.

As a balance between waiting to view the logs after the
experiment has concluded and viewing all the networking
events as they happen, various logs are kept that can being
accessed at the end of a simulation step. This featured has
been integrated in the GUI and the logged information that
has been recorded on the disk is displayed by clicking on the
desired node.

Reviewing fig. 5 we can distinguish several components
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Figure 5. A screen snapshot

of the GUI. The most prominent part is the central compo-
nent which displays the topology and where all the action
takes place. There are three different kinds of nodes: senders
identified by a square shape, properly labeled with the
sender’s id; RSVP capable routers also with square shapes
but distinctly colored and labeled; and receivers drawn as
circles, also appropriately labeled. The coloring of routers
is insignificant, but the coloring of senders and receivers re-
veals information about their multicast group membership.
Receivers with the same color means that they belong to the
same multicast group and senders of the same color means
that the corresponding sender has data flow for that group.

This brings us to the right portion of the interface which
has not any functionality but it is for informational purposes:
it displays, on the top part, the types of RSVP messages that
can be generated in the simulation and their associated col-
ors. On the lowest part it displays the multicast groups (in
terms of their IP addresses) and their associated color.

The top level of the interface consists of two menus. The
File menu currently supports saving and loading topologies.
Topology files are saved in a human readable format that
allows for manual adjustments after the topology has been
designed. For the creation of topologies, the Create menu
is used. It allows the user to select the type of node to be
created (router, TCP sender, UDP sender, to name a few)
or add an edge or create a multicast group. The choice of
an option from the Create menu simply enables the creation
of the respective component. A subsequent click (or drag if
it is an edge) of the left mouse button is required for that.

The creation of most network elements involves additional
interaction. For example, the destination for a sender’s traf-
fic needs to be specified, as well as the characteristics of the
traffic transmitted by the sender. Fig. 6 displays a sample in-
teraction window during the creation of a UDP source. Sim-
ilar windows pop up for the creation of the other network
elements.
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Figure 6. Pop-up window for getting the char-
acteristics of a sender

On the top of the simulation panel, the simulation time
is displayed as provided by the Parsec clock. There are a
few more inputs that the user can provide. In one of those
the user can specify the duration that the simulation is to be
executed. This allows the stepwise execution of the simula-
tion so that the user gets the chance to monitor the state of
various nodes. Other useful features include zooming in and



out, printing of topology graphs and viewing of various link
characteristics.

8 Case Studies

So far we have used our simulator for two main reasons:
As a learning tool for ourselves on how networks are built
and work but also as a tool for our research work. We have
used IRLSim in a number of projects in our research group.
In the paragraphs that follow we describe two of the projects
we have used IRLSim for.

8.1 RSVP Extensions for Mobile Users

[P-in-IP "tunnels” have become a widespread mechanism
to transport datagrams in the Internet. Typically, a tunnel is
used to route packets through portions of the network which
do not directly implement the desired service (e.g. IPv6), or
to augment and modify the behavior of the deployed routing
architecture (e.g. multicast routing, mobile IP, Virtual Pri-
vate Net). From the perspective of traditional best-effort IP
packet delivery, a tunnel behaves as any other link. Packets
enter one end of the tunnel, and are delivered to the other
end unless resource overload or error causes them to be lost.
IP-in-IP tunnels cause problems in the regular processing of
RSVP messages, since RSVP messages get “lost” when they
cross a tunnel *. The main idea proposed in [27] to solve this
problem, is to have a separate RSVP session between the
tunnel endpoints. The tunnel entry point R.ps, serves as
the sender for the Tunnel session, while the tunnel exit point
R, serves as the receiver. The tunnel session can exist in-
dependently from the End-to-End sessions (e.g created via
a management interface), or its creation can be triggered by
End-to-End messages. When an End-to-End RSVP session
crosses an RSVP capable tunnel it is mapped to a tunnel
RSVP session. The tunnel RSVP session views the two tun-
nel end-points as the two end hosts. Then a reservation is
made from R.;;; t0 Reptry for the amount of data crossing
the tunnel. The original, end-to-end RSVP session views
the tunnel as a single (logical) link along the path between
the source(s) and the destination(s). PATH and RESV mes-
sage of the End-to-End session are encapsulated at one tun-
nel end-point and get decapsulated at the other end, where
they get forwarded as usual. Data packets are encapsulated
with the TP as well as a UDP header when crossing the tun-
nel. In this way, packets belonging to different flows can
be distinguished by routers inside the tunnel using standard
RSVP processing.

In [25], we have used the RSVP Tunnels mechanism
described above to provide RSVP functionality to mobile

3RSVP packets use the Router Alert option to indicate to routers on the
path that they require special handling. When RSVP messages are encap-
sulated with an outer IP header, the Router Alert option becomes invisible

users. In the current Internet mobility model [20], mobile
hosts are associated with a Home Agent (HA) that is respon-
sible to deliver the traffic to the mobile node when this node
is outside its home domain. In order to support forwarding
from a mobile node’s HA to the Foreign Agent (FA) we im-
plemented a mechanism equivalent to Mobile-IP [20]. When
the mobile node moves to a different cell it registers with the
router of that cell. This message is delivered to the node’s
routing entity which alters the routing entry for that node
and forwards the requests to the mobile node’s home agent.
Once the home agent receives this message it adds a tunnel
routing entry for packets address to the mobile node. When
subsequent packets packets addressed to the mobile host ar-
rive at the home agent, the home agent encapsulates them
and sends them to the current foreign agent. Once delivered
to the foreign agent, packets are decapsulated and are then
directly delivered to the mobile host.

From this description it is easy to see that to support
RSVP reservations from and to mobile nodes, one needs to
create an RSVP Tunnel between the HA and the FA.

We have investigated two cases:

1. Tunnels between base stations are created dynamically
when mobile nodes cross between domains.

2. Tunnels between neighboring nodes are preconfig-
ured and when mobile nodes move to a new domain
their end-to-end reservations are mapped onto the pre-
existing allocations between the tunnel endpoints.

Using simulations, we have shown that pre-existing tun-
nels result in dramatically fewer dropped data packets and
therefore improved application support.

8.2 Differentiated Services

Differentiated Services is a recent effort to provide scal-
able service differentiation in the global Internet. The Differ-
entiated Services architecture [4], is based on a simple model
where within the core of the network, routers decide how to
service packets by looking at the DS field (previously called
TOS byte) in the IP header. Each DS field value corresponds
to a different treatment, called a Per Hop Behavior (PHB).
For example, if the value a packet carries translates to a "low
delay” treatment, routers could put that packet in a priority
queue to service it promptly. Since core routers only have to
look at DS codepoint to decide how to service a packet, no
intricate classification or per-flow state is needed, leading to
increased scalability and flexibility. To ensure that network
resources are not over-allocated, traffic entering the network
is classified and possibly shaped or policed at the boundaries
of the network. The reason for policing resource usage at
points close to the traffic sources is that load at those points



is light allowing for more complex operations. The synthe-
sis of per hop behaviors and traffic conditioning creates the
end-to-end services visible to network users.

So far most of the work in Differentiated Services has
focused on defining Per Hop Behaviors and ways to pro-
vide them, while management plane issues have received
little attention. The management plane is concerned with
the configuration of network elements and the allocation of
network resources to network users. In [24] we proposed
an architecture that attempts to deal with these tasks. The
tenet of our architecture is what we call Two-Tier resource
management. By this term we mean that resource allocation
should be done in two levels. The first level is resource al-
location inside each administrative domain while the second
level is resource management across neighboring domains.
The role of the inter-domain protocol is to communicate re-
source agreements between the neighboring domains and to
set the appropriate parameters at the edges devices. The task
of the second component of the Two-Tier architecture, the
intra-domain resource allocation mechanism, is the alloca-
tion of resources inside DS domains. Different DS domains
are free to choose a mechanism that best fits their needs. A
couple examples of such mechanisms are over-provisioning
and static allocation of resources. In [26] we present an-
other proposal for this task that uses RSVP to allocate re-
sources for aggregate flows between a domain’s ingress and
egress routers. The co-ordination of intra- and inter-domain
resource allocations creates the end-to-end services observ-
able to end users.

In [26] we used IRLSim to validate our model with ex-
tensive simulations. Using these simulations we have been
able to investigate the engineering trade-offs on the design
of the inter-domain protocol and we were able to fine tune
some of the protocol’s parameters. Our initial results using
the simulator, have shown that the Two-Tier resource allo-
cation scheme provides end-to-end services comparable to
those provided by other architectures at a much lower net-
work overhead.

9 Related Work

Network simulation has been the focus of considerable
research and numerous simulation packages have emerged
from these research efforts. Here we list some of them
and compare the most prominent among them with IRLSim.
There is a wide span of focus in different simulators. Some
model a narrow aspect of a network with varying degrees of
detail that is only relevant to the problem at hand. Many oth-
ers focus on the study of specific protocols (e.g a multicast
protocol) or specific networking environments. GlomoSim
[30] is such a simulator and focuses on the simulation of
mobile wireless networks. It shares the same implemen-
tation infrastructure as IRLSim since it is implemented in

PARSEC as well. At the other end, there are more general
simulation packages that target a wide range of protocols and
environments. Such include ns (and its predecessor REAL
[15]), OPNET [9], and others.

Those high end simulation packages are usually distin-
guished by the level of abstraction they offer and the way
they address the issue of scalability. Most come with their
own simulation language and a set of assorted protocol li-
braries. Most high end simulators provide different kinds of
simulation interfaces, like programming using a high level
scripting language (like Tcl in the case of ns), or a traditional
programming language or a combination of both.

Comparing IRLSim with other simulator packages, par-
ticularly ns, we can say the following. IRLSim started at
one end of the simulator spectrum, that is, it focused on
simulating only a specific protocol (RSVP), and gradually
it evolved to a multi-featured one. Many of the scenarios
that can be studied with IRLSim can also be studied with
ns. Nevertheless, we believe that IRLSim has some advan-
tages over ns. Despite its success, ns is difficult to use since
it has a rather steep learning curve for people not familiar
with the scripting environment. IRLSim on the other hand,
allows for the easy set up of simulations scenarios and the
easy monitoring of the progression of experiments. ns can
be used only in conjunction with nam, making it impossible
to interact with the simulation as it progresses. IRLSim is
build on top of PARSEC, a programming language targeted
towards simulation. The degree of scalability of IRLSim is
depended on the effectiveness of PARSEC which according
to [2] is very promising. It is true however that the commu-
nication required by some protocols does not always allow
for that potential to be fully exploited. The ns simulation en-
gine is written in a system language and making extensions
is harder and parallelization is not possible.

10 Summary and Future Work

In summary, IRLSim is a scalable and easy to use net-
work simulator. To achieve scalability, we use PARSEC
with entity aggregation where one entity is used to simu-
late multiple nodes. In this way, we can significantly reduce
the memory usage and execution time of simulations. For
ease of use, we provide a GUI with which users can create
new topologies, load and edit existing topologies, as well as
observe the progress of a simulation in real-time. IRLSim
boasts a complex set of features, including QoS capabilities,
such as resource reservation, traffic shaping, traffic policing,
and EF forwarding. Extensibility and portability is achieved
by having a simulator architecture which is very close to net-
working stacks in real-life systems.

In the future, we plan to improve our simulator along
several directions. First, we want to experiment with par-
allel simulations. Up to now, all of our simulations run on



sequential machines and therefore we have not tapped into
PARSEC’s biggest potential benefit. Since the speed up of
parallel programs over sequential programs depends heav-
ily on reducing the interaction between entities running on
different processors, we need to refine the algorithm that dis-
tributes network nodes to entities in a way that minimizes the
communication between entities. Second, we plan to sup-
port dynamic events such as node and link failures as well as
dynamic routing protocols that recompute routing tables af-
ter these failures happen. At the networking layer we seek to
implement more scheduling and queue management mech-
anisms such as Fair Queuing and CBQ [11], while at the
application layer we aim to add more TCP applications. Our
first priority is to model protocol behavior similar to HTTP
which is the dominant traffic on the Internet today.
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