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Abstract 
Recursive hierarchy provides a framework for extending 
position estimation throughout a sensor network.  Given 
imprecise ranging and inter-node communication, nodes 
scattered throughout a large volume can estimate their 
physical locations from a small set of reference nodes 
using only local information.  System coverage increases 
iteratively, as nodes with newly estimated positions join 
the reference set, capitalizing on the massive scale of 
sensor networks.  The system frames position estimation 
as a geometric problem solvable through common 
nonlinear regression techniques and develops methods for 
gauging the reliability of position estimates.  This 
provides a flexible framework that can use and enhance a 
variety of technologies and protocols to produce fine-
grained position estimates.  A specific model provides a 
simulation environment showing that over 90% of position 
estimates are correct to within 3% of the ranging distance 
with only 5% of the system in the initial reference set. 
 
 
I.  Introduction 

 
Networks of autonomous sensors promise to provide 

radically new methods for monitoring the physical 
environment.  Though a single sensor node cannot 
currently replace a properly equipped human observer, the 
scale, persistence, and low cost of a mesh of many such 
nodes provides a better solution for a large variety of 
situations.  From large-scale collection of physical data to 
continuous monitoring of perimeter security, scenarios 
often lend themselves well to unobtrusive, automated 
sensor nodes.  To be useful in a number of these domains, 
sensor reports will need to include positional information.  
Though this often takes the form of a location tag for 
sensor data, some systems use geographical information 
for purposes as varied as routing [3, 9, 10] and query 
expression [8].  An obvious solution could involve 
equipping each node with Global Positioning System 
(GPS) [12] receivers to provide absolute positioning, but 
this currently requires significant increases in size, cost, 
and energy consumption, multiplied by the scale of the 
network.  More recent approaches often require the highly 

redundant placement of fixed references [4, 13] or the 
mass delivery of per-node data to a central unit for 
processing [5, 14], both of which are unreasonable 
burdens for many sensor networks.  To control system 
overhead, this work proposes a recursive method for 
propagating position information throughout a sensor 
network given a limited number of reference nodes. 

The algorithm adopts the Internet design preference for 
a system of many low-cost nodes over one with fewer, 
more expensive nodes [2].  While providing absolute 
positioning to every node would significantly increase 
per-node cost, in equipment (e.g., GPS receivers) or effort 
(e.g., manual placement and configuration), the proposed 
solution provides positioning information to all nodes in a 
three-dimensional space while restricting heavier 
investment to a very small subset of the network.  Given a 
few reference nodes with known location and noisy inter-
node range estimates, all nodes can derive their positions.  
Nodes use local information to estimate their positions 
autonomously, acting as lower-tier references in later 
iterations, thus improving coverage through a scalable 
hierarchy.  Nodes also attempt to shield themselves from 
estimation errors and try to limit the propagation of such 
errors. 

Most importantly, this approach allows the reliable 
designation of new reference nodes, safely expanding 
positioning coverage across the network.  This 
incorporates the fundamental scale of a sensor network 
into an implicit hierarchy while allowing operation under 
flexible assumptions.  Reference nodes can be scattered 
randomly throughout a space, and the system framework 
can take advantage of a variety of specific hardware 
and/or software mechanisms.  This flexibility adds to the 
broad applicability of the simple recursive hierarchy. 

This paper is organized as follows:  Section 2 
discusses the design goals of the positioning protocol 
developed.  Section 3 describes the underlying system 
requirements.  Section 4 describes the algorithm, framing 
the geometric problem posed and discussing its solution 
through nonlinear regression.  Section 5 describes the 
performance criteria and experimental results obtained via 
simulation.  Section 6 presents an overview of work in 
related areas, while Section 7 concludes the paper. 

 



II.  Design Goals 
 
A.  Functionality 
 
Given a sensor network with a few reference points, 

most nodes with unknown position should eventually 
derive good estimates of their location.  Locations near 
reference points should be most accurate, but positioning 
accuracy should decline gracefully for more remote nodes. 

 
B.  Scalability 

 
The system must work with arbitrarily large numbers 

of nodes, often packed into dense configurations.  In many 
situations, sensor instrumentation of an area may require a 
higher density than needed for communication 
connectivity.  If a given set of reference nodes provides 
sufficient positioning coverage for an area, the addition of 
non-reference nodes must not hinder the effectiveness of 
the system.  This emphasizes that information should flow 
out from the small reference set.  Ideally, the system 
should benefit from the large number of nodes available. 

 
C.  Robustness 

 
Nodes should prefer to remain uncertain about their 

position rather than report inaccurate information, 
especially when providing data to other nodes.  The 
protocol must prevent the propagation of misinformation.  
A system may recover from lack of a position in a sensor 
report, perhaps through information gained from report 
delivery or parallel reporting, but it will have much more 
difficulty detecting and correcting falsely reported 
information.  This suggests that nodes keep some estimate 
of position accuracy and reject overly uncertain data. 

 
D.  Sensor Autonomy 

 
Nodes are responsible for estimating their own 

position from locally available information.  A centralized 
solution often involves prohibitive overhead for delivering 
input to a “position server” and processing collected data, 
as well as the difficulties of disseminating that data back 
to the sensors or providing unique mappings for a massive 
and unreliable sensor array.  Instead, nodes should choose 
their references based on local estimates of reliability, 
usefulness, etc., keeping distributed computations at the 
sensor nodes, where their results are needed.  This also 
allows for rapid, ad hoc distribution and auto-
configuration. 

 
III.  System Parameters  

 
The current approach extends from a given set of 

system parameters.  Most importantly, the protocol 

assumes that most nodes do not initially know their 
current position.  They may have been scattered from a 
plane, undergone occasional movement, or been 
assembled from components with embedded sensors.  
Even GPS-enabled nodes may be unable to determine 
their position due to physical obstacles or other levels of 
interference.  Secondly, the system considers the 
geographic location of sensors to be important but is not 
able to guarantee that each sensor will have this 
information available.  For other systems, high-level 
abstractions (e.g., rooms, buildings, printers, as in [11]) or 
logical relations (e.g., button sensors) may be more 
appropriate.  Nodes should also be able to deliver 
information to others (e.g., wireless broadcast).  Finally, 
some form of inter-node ranging must be possible (e.g., 
timing [11, 12, 13, 14], signal strength estimation [1]).  
Many systems may already include noisy ranging 
capabilities as part of some other system, such as inter-
node wireless communications.  In most systems with 
immobile nodes, positioning only needs to occur once, 
though a system with low mobility could probably revise 
position estimates through later iterations. 

 
IV.  Position Dissemination Algorithm 

 
Primarily, the current algorithm works through three-

dimensional “triangulation,” using four or more reference 
points, though it could take advantage of other position 
information.  Given a high enough level of certainty, a 
node may then advertise its own position, acting as a 
reference point for its neighborhood and extending system 
coverage.  There are four phases to the protocol.  In the 
first phase, a node determines its reference points.  In the 
second, the node obtains or uses already collected range 
estimates for the selected nodes.  In the third phase, the 
node estimates its position.  In the final phase, a node may 
advertise its own position for use as a reference in the next 
cycle. 

 
A.  Reference Selection 

 
In the reference selection phase, a node collects 

information from nearby reference points.  Once it 
becomes aware of a few references (e.g., by receiving 
randomly timed broadcasts), it must have a way to rank 
them.  References advertise their residual value, a measure 
of confidence, and the node chooses those with the lowest 
residual values for use in the next phase of the algorithm.  
The residual value for an estimated position (x, y, z) is 
defined as: 
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where (xi, yi, zi) is the ith reference’s position, and di is its 
measured range.  In other words, the residual value is the 
sum of the squared differences between the range from the 
estimated position and the measured range.  For the 
original reference set, the residual values should be near 
zero. 

 
B.  Distance Measurement 

 
Once the node chooses a set of reference points, it then 

collects distance estimates to each reference.  For some 
ranging techniques, the node would have obtained this 
information when it received the original advertisement.  
For less precise ranging methods, the node can collect a 
number of samples until the sample variance falls below 
some threshold.  The node would then use the sample 
mean as the distance between the reference point and 
itself.  The node can also reject a reference point for 
which it cannot obtain a stable distance estimate. 

 
C.  Position Estimation 

 
Once a node estimates its distance to each of its 

reference points, it can estimate its position.  Each 
reference point monitored by a node yields an equation of 
the following form: 
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(ε is an error term).  Typically, one estimates a position 
from such a system of equations through nonlinear 
regression ([7, 13]), detailed discussion of which can be 
found in [6, 7].  For the implementation discussed in this 
paper, the nodes used the linearization, or Taylor series, 
method.  This method approximates the nonlinear system 
as a linear system by performing a Taylor series 
expansion about an initial estimate of the parameters and 
then solving for the parameters using standard regression.  
Linearization iteratively refines the estimated parameters.  
Unfortunately, in some cases the method may converge to 
erroneous values, oscillate wildly, or diverge [6].  Various 
techniques help minimize the likelihood of these 
situations.  Careful selection of the initial estimated 
parameters (currently, an average of the reference 
positions) minimizes incorrect convergence.  By only 
accepting parameters that have reached a quiescent state  
(i.e., subsequent iterations continue to yield estimates that 
differ only by a small value), one avoids oscillation and 
most divergent cases.  Finally, a node rejects a position 
estimate with a high residual (over 0.01 m2 in our 
simulations).  This further screens out incorrect 
convergence and divergence. 

 
D.  Next-Level Advertisement 

 
If the node obtains a reasonable position estimate, it 

may participate in the protocol as a reference point.  The 

current implementation requires the node to pass a more 
restrictive residual test before advertising itself as a 
reference point.  Therefore, while most nodes should 
manage to get good estimates of their positions, only the 
most accurate should extend system coverage, in order to 
avoid increasingly erroneous values.  The new reference 
points increase both the number of nodes that can find 
their position and the accuracy of their estimates.  We 
refer to nodes that decide to act as references during the 
ith iteration as level i references (the initial references are 
level 0).  When applied recursively, this process allows 
the system to turn the challenge of massive scale into an 
advantage for the sensor network. 

 
V.  Simulation and Analysis 

 
A.  Accuracy For Single Nodes 

 
Before investigating system performance in a full 

network, we first discuss accuracy for a single unknown 
node with at least the minimum number (four) of 
reference points.  We explored single-point estimation 
through sets of 10,000 independent simulations.  Each run 
randomly generated a given number of references within a 
limited ranging distance (10 m) around the unknown point 
(i.e., uniform distribution within a sphere).  To simulate 
noise, each range sample was disturbed by a normal 
random variant with a mean of 0.1% of the range and a 
standard deviation of 1% of the range.  The experiment 
did not add ground interference for estimates between 
altitudes.  Figure 1 shows the cumulative density function 
for position error, (i.e., the probability that an estimate’s 
error is less than that shown on the logarithmic x-axis).  
Figure 1 shows that the quality of the position estimate 
increases dramatically with the addition of reference 
points, but even with only four references, over 90% of 
the nodes suffer less than 0.12 meters of error.  Table 1 
shows the mean and worst errors, along with the residual 
value for the worst case.  During normal operation, a 
residual test avoids large errors by rejecting estimates 
with residuals of over 0.01-m2.  While this avoids most 
position errors, the worst-case run with four references 
shows that a degenerate set of references can still produce 
misleadingly small residual values.  That is, if the four 
references are roughly coplanar, a small skew in the 
distance measured to one of the reference points can result 
in a large position error, because coplanar references 
generate two possible solutions to the positioning 
equation.  Figure 2 shows the two-dimensional version of 
this problem:  collinear references (A, B, and C) generate 
two solutions (D and E).  To avoid this problem, one can 
wait for additional reference points if the current set is 
nearly collinear (i.e., the perpendicular distance of a 
reference point to the line between the furthest separated 
references is below some threshold).  In three dimensions, 
one would use an analogous planarity test. 
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Figure 1.  Cumulative distribution of single-node position estimation error 

 
 
 

 
Number 

of References 
Mean 

Error (m) 
Max 

Error (m) 
Residual 
(m2) 4 0.114 11.7764 0.0003 

5 0.043 3.9118 0.1604 
6 0.030 2.8896 0.0334 
10 0.021 0.1691 0.0006 

 
Table 1.  Single-node position estimation error 

with residuals for worst cases 
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Figure 2.  Degenerate case (collinear references) 

 

 
B.  Obstructed Path Errors for Single Nodes with 
Four References 

 
For some ranging methods, distance estimates to 

reference points may experience disruptive phenomena.  
Errors may occur when an obstacle blocks the direct path 
but allows range estimation along an indirect path.  For 
example, the acoustic signals used by some ranging 
systems easily reflect from surfaces.  We refer to these 
types of errors as obstructed path errors.  The effects of 
different skews were investigated in single-node 
simulations with four references, one of which suffers 
from an obstructed path.  Therefore, the simulations 
conducted were similar to those used to produce the four-
reference curve above, with the addition of a large skew.  
The skew varied from 10 cm to 5 m.  Table 2 displays the 
percentage of estimates that pass the residual threshold 
test, as well as the mean and maximum errors for accepted 
position estimates.  Clearly, the percentage of nodes 
accepting an estimated position drops quickly with the 
magnitude of the obstructed path error, allowing most 
nodes to seek better reference points, but skews 
exacerbate problems with planar ambiguity. 

 
 



 
Obstruction 
Skew (m) 

% 
Acceptance 

Mean 
Error (m) 

Max 
Error (m) 0.1 99.46 0.510 14.3914 

0.5 31.19 1.764 13.9475 
1 15.60 2.680 12.4098 

5 1.89 7.374 14.9973 
 

Table 2.  Single-node position estimation 
acceptance with obstructed paths 

 
The above results show that given four or more 

reference points, a node can determine a very accurate 
position estimate, even in the face of conflicting noise.  
Additionally, the method reliably shields itself against 
environmental conditions that might skew distance 
estimates.  This allows for the use of a variety of ranging 
methods, some of which may suffer from significant 
estimation errors.  Full implementations can also take a 
number of distance samples, allowing a node to average 
out time-varying noise or ignore temporary noisy 
phenomena. 

 

C.  Accuracy and Coverage for Sensor Networks 
 
The system can obtain greater coverage by having 

nodes advertise themselves as  reference points once they 
have estimated their own positions.  These results were 
averaged over 10 topologies wherein 2000 sensors were 
randomly distributed throughout a 100-by-100-by-2.5 
meter volume.  The simulations fixed the ranging radius 
of each node at 10 meters, and they designated 5% of the 
nodes as level 0 (i.e., original reference points).  Figures 3 
and 4 summarize the results.  Figure 3 shows that the 
increased availability of reference nodes decreases 
positioning error significantly, even though many of the 
new reference points advertise derived estimates of their 
own positions.  In fact, over 90% of the nodes have less 
than 0.28 meters of error.  Random distribution also 
decreases the effect of degenerate reference sets, as only 
0.1% of the estimates have errors over 5 meters.  Figure 4 
shows that the recursive referencing increases system 
coverage by over 140%, allowing over 90% of the nodes 
to determine their positions. 
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Figure 3.  Cumulative distribution of position estimation error 
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Figure 4.  Node level distribution (recursion depth) 

 
D.  Positioning Time  

 
The time involved in positioning depends strongly on 

the time it takes a node to obtain its ranging estimates.  
While ranging via an ultrasonic beacon might be done 
with the initial reference broadcast, noisy signal strength 
estimations might benefit from a series of samples.  This 
defines the fundamental length of an iteration, which adds 
one level to the system hierarchy.  Figure 4 shows that the 
bulk of all position estimates finish in the first two 
iterations, while system coverage shows diminishing 
expansion until the sixth iteration.  While nodes could 
incorporate new reference broadcasts at any time, most 
immobile sensor networks would only need to undergo 
positioning during a short initialization phase. 

 
VI.  Related Work 

 
A popular approach to positioning is the Global 

Positioning System.  A GPS receiver estimates its distance 
from a number of satellites by timing the satellites’ signal 
propagation.  The receiver estimates an offset between its 
local clock and satellite system time to perform the 
position estimation.   The clocks require precise 
synchronization, and receivers must avoid overhead 
cover.  These drawbacks make full GPS unrealistic for 
most large sensor networks. 

Other research in positioning often takes a centralized 
approach.  In [13], the “Active Office” a) places a matrix 
of receivers in the ceiling of an office, b) attaches a 
wireless transmitter to each object, c) polls the receivers 
from a control unit for range information, and then d) 
estimates each object’s position.  The regular placement 
of receivers and the polling of transmitters automatically 
restrict the applicability of this approach.  A similar 
system was designed for “tags” that need not be aware of 
their position, instead letting a central inventory system 
record that information [14].  For some inventory tracking 
systems, this is a practical approach, but a sensor network 
often requires that each node have this information 
available.  The potential scale and unreliability of a sensor 
network also defies conventional centralized control. 

Still, a number of recent sensor network positioning 
methods take similar approaches.  [4] uses a grid of 
reference points, like that of [13], but reverses the flow of 
information.  Given higher communication overlap or, 
equivalently, higher reference point density, the averaged 
positions of in-range reference points give better position 
estimates.  This approach might benefit from recursive 
referencing as presented in this paper, since the increased 
reference density would improve the accuracy of later 
estimates.  Unfortunately, their initial estimates suffer 
from relatively large errors, and nodes have no gauge of 
confidence level, allowing misinformation to accumulate 
within the system.  Along the other direction, [5] again 



requires that nodes deliver connectivity information to a 
central processor, here for solution as a convex 
optimization problem.   Very few well-placed reference 
points, or many more randomly distributed ones, can 
provide well-bounded position estimates.  Even allowing 
for centralized solution, the constraints in the problem are 
susceptible to errors, since lack of connectivity implies 
great separating distance, though nearby nodes may 
actually just be blocked by an obstacle or intermittent 
noise.  Inaccuracies might cause solutions to oscillate or, 
worse yet, make the problem infeasible. 

 
VII.  Conclusion 

 
This paper presents a basic framework for extending 

positioning coverage across a sensor network.  The 
algorithm correctly estimates three-dimensional position 
given noisy range estimates in a local volume, and it 
rejects large errors that may arise in the ranging process.  
This produces an implicit, scalable hierarchy through 
simple recursion. 

Future work will address the refinement of position 
estimates and development for specific scenarios.  
Planarity tests could block rare degenerate cases, while 
groups of connected nodes should be able to identify 
members with large position errors (at the cost of node 
autonomy).  Nodes might also try to select the best 
references as they become available.  In GPS, receivers 
typically try all combinations of four reference points to 
reduce position error.  At the scale of sensor networks, 
this combinatorial approach is intractable.  Here, the 
nodes simply made an estimated ranking of the available 
references by residual, but heuristics that take reference 
distance, recursion level (since earlier iterations have less 
opportunity for accumulated position error), and/or other 
knowledge into account might yield better results.  
Similarly, experiments should explore the impact of 
reference distribution.  While this paper uses the general 
case of random distribution, some situations might allow a 
user to place reference nodes in a specific pattern, or they 
might restrict the reference area (e.g., overhead cover 
blocking access to GPS satellites).  Finally, the 
incorporation of other methods, like those mentioned in 
the related work section, into the framework of the system 
could provide more accurate position estimates and/or 
extend the applicable domain of the system. 
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