
 

AbstractForcing all IP packets to carr y correct source 
addresses can greatly help network secur ity, attack tracing, and 
network problem debugging.  However, due to asymmetr ies in 
today's Internet routing, routers do not have readily available 
information to verify the correctness of the source address for 
each incoming packet. 

In this paper we describe a new protocol, named SAVE, that 
can provide routers with the information needed for source 
address validation.  SAVE messages propagate valid source 
address information from the source location to all destinations, 
allowing each router along the way to build an incoming table 
that associates each incoming interface of the router with a set 
of valid source address blocks.  This paper presents the protocol 
design and evaluates its correctness and performance by 
simulation experiments.  The paper also discusses the issues of 
protocol secur ity, the effectiveness of par tial SAVE deployment, 
and the handling of unconventional forms of network routing, 
such as mobile IP and tunneling. 

 
I. INTRODUCTION 

 
Ensuring that an IP packet carries a correct source address 

would be valuable for many purposes.  Services that rely on 
correct source addresses (congestion control, fair queuing, 
source-based traff ic control schemes) would profit.  Network 
problem diagnosis, now able to locate the possible sources of 
a problem, could also be simpli fied.   

Moreover, this would assist in solving one of the most 
important problems in network security: attackers commonly 
forge source addresses to avoid responsibilit y for their 
malicious packets.  Examples include DDoS attacks [24], 
TCP SYN flooding attacks [21], and smurf attacks [23].  
Reliably locating the attacker has been diff icult because 
defenders cannot easily verify that a packet was indeed sent 
by the node specified in its source address. 

Existing approaches to handling forged IP source 
addresses include: 
• Tracing back the source of the forged packets from their 

destination with the cooperation of network routers [3] 
[4] [20][22]  

• Filtering forged packets at the first router encountered on 
entering the Internet, which typically has information 
about valid source addresses that pass through it (ingress 
filtering) [9] 

• Filtering forged packets on the basis of forwarding tables 
that do not take asymmetries into account [1] 

• Using cryptographic authentication, such as IPsec[11] 
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These approaches solve part of the problem, but do not 
address all i ssues.  In particular, paths through the Internet 
are frequently asymmetric.  According to [18], a path 
through the Internet in 1995 visited different cities in each 
direction 50% of the time and different autonomous systems 
30% of the time.  As a result, the forwarding tables used by 
routers to deliver packets are not reliable for determining 
where packets come from. 

If we had reliable tables at many routers specifying proper 
incoming interfaces for source addresses, an attacker’s 
choice of forgeable IP source addresses would be sharply 
reduced.  All improperly addressed packets could be easily 
dropped as soon as the forgeries were detected.  Attack 
tracing tools could also use the knowledge produced by 
address validation to determine the possible sources of 
attacks.   

This table could also be used for non-security purposes.  
Reverse path forwarding (RPF) would be more effective if 
RPF had this knowledge, for example.  Multicasting 
protocols that use RPF to build reverse shortest-path 
multicasting trees (such as DVMRP [7], CBT [2] and PIM 
[8]) could thus build true shortest-path trees. 

We present here the Source Address Validity Enforcement 
(SAVE) protocol.  SAVE runs on individual routers and 
builds incoming tables for them, allowing each router to 
verify whether each packet arrives at the expected interface.  
Although the incoming tables built by SAVE are suitable for 
any of the purposes described earlier, when describing 
SAVE throughout this paper, we will use the example of 
filtering packets with forged source addresses.  

The rest of this paper is organized as follows: Section II  
discusses the principles underlying the SAVE protocol; 
Sections III  and IV describe the SAVE protocol in detail; 
Section V discusses how SAVE can be secured against 
attacks; Section VI presents simulation results on the costs of 
running the protocol and demonstrations of its eff icacy; 
Section VII  addresses the deployment of the SAVE; Section 
VIII  discusses related work; and Section IX concludes the 
paper. 

 
II . DESIGN PRINCIPLES 

 
While a forwarding table specifies the outgoing interface 

for a given destination address space, an incoming table 
should specify the valid incoming interface for a given 
source address space.  This similarity suggests that a simple 
reversal or slight modification of the existing routing 
protocols could yield an effective SAVE protocol.  However, 
the information needed to construct an incoming table proves 
to be inherently different from that used to build a 
forwarding table, thus forcing a different protocol design. 
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In a routing protocol, routing updates advertise the set of 
destination address spaces that routers can reach and the 
properties of the routes used.  Each router then uses these 
updates and some local preference rules to calculate its best 
outgoing interface for each destination address space.  

While routing updates are used to calculate the best path, 
SAVE updates should be designed to inform routers about 
the path that has already been chosen, thus allowing all 
routers on the path to a destination to deduce valid incoming 
interfaces for specific source addresses.   

In the following discussion, we further define the desirable 
properties of the SAVE protocol and SAVE updates. 

 
A. Properties of the SAVE Protocol 

 
The SAVE protocol is run by routers in parallel with the 

routing protocol.  The following properties are desirable: 
• Routing protocol independenceSAVE must be modular 

and independent of the underlying routing protocol, so 
that it can easily run on top of different routing 
infrastructures. 

• Immediate response to routing changesSAVE should 
respond to routing changes immediately to adjust 
incoming table entries. 

• SecuritySAVE must be secured or attackers could 
easily bypass any security it offers; worse, they could 
directly use SAVE for certain attacks.    

• Incremental deploymentSAVE can only be deployed 
incrementally, and should offer benefits with partial 
deployment. 

• Low overheadSAVE must be lightweight in order to 
minimize router overhead and scale well while achieving 
its goals.   

 
B. Properties of the SAVE Updates 
 

The following are desirable properties of SAVE updates: 
• End-to-end communicationSAVE updates must travel 

through the same routers that data packets use to reach 
their destination address space in order to create accurate 
incoming tables at those routers.  

• Aggregation of SAVE updatesSAVE updates should be 
aggregated along the route as much as possible to reduce 
bandwidth consumption. 

• Minimized duplicationSAVE updates should avoid 
duplicating any information that is already communicated 
via routing updates.   

 
III . OVERVIEW OF THE SAVE PROTOCOL 

 
A. A Quick Overview 

 
The goal of the SAVE protocol is to build a table at each 

router that specifies the valid incoming interface for packets 
carrying a given source address.  Routers use this table to 
filter those packets with forged source addresses. 

SAVE assumes that each router is associated with a set of 
source addresses.  All packets from this address space can 
only reach some set of destinations via this router.  A router 

that forwards packets for hosts on a LAN has a source 
address space covering addresses of those hosts; a border 
router of an autonomous system (AS) handles the source 
address space of the whole AS (only for destinations where it 
acts as the exit router); and a transit router with no attached 
hosts has a source address space consisting of all it s own IP 
addresses.  

For each entry in its forwarding table, a SAVE router 
periodically generates SAVE updates directed toward the 
corresponding destination address space, in order to set up 
valid incoming interfaces at routers along the route.  
Forwarding table changes will also trigger new SAVE 
updates.  In both cases, an update specifies the originating 
source address space and carries the destination address 
space.  Since SAVE updates arrive on the same incoming 
interface as valid IP packets, routers between the source and 
final destination can record the legitimate incoming interface 
for the specified source address space.  SAVE further allows 
intermediate routers to piggyback their own source address 
spaces on a passing-by SAVE update, thus greatly reducing 
bandwidth overhead. 

 
B. Complications 

 
Although the basic SAVE operations seem simple, several 

issues complicate the design.  Here we discuss three of them: 
ensuring SAVE updates follow the same path as valid data 
packets, reacting to routing changes, and controlli ng SAVE 
bandwidth overhead. 

The first issue is ensuring that the SAVE updates follow 
the proper paths.  A SAVE update is forwarded toward a 
destination address space, not a single IP address.  The 
SAVE protocol must account for all paths toward the 
addresses in the destination space.  In Fig. 1, if router A only 
forwards a SAVE update toward router R, router r will not 
learn of the valid path for SB.  Instead, the SAVE protocol 
needs to generate one SAVE update toward router R, and 
one toward router r, to ensure proper information in 
incoming tables. 

The second issue concerns routing changes.  Routing 
changes establish new paths from sources to destinations that 
need to be validated through SAVE updates.  However, not 
all routers that should generate SAVE updates will 
necessarily experience a change in their forwarding table.  In 
Fig. 2(a), router D initially chooses router B as the next hop 
to reach address space SA.  The incoming table of router A is 
shown in Fig. 2(b).  Assume that due to the failure of link 
BD, router D updates its forwarding table so that router C 

131.192.0.0/16 1 

131.192.136.0/24 2 

……  
A’s forwarding table 

131.192.0.0/16 

  131.192.136.0/24 

R 

r 
2 

1 

A B 

SB 

U=<131.192.0.0/16,  
SB, …> 

Fig. 1.  An example of SAVE update forwarding. 



becomes its next hop to SA.  Although D will send a new 
SAVE update to SA, indicating to A that packets from SD 
should now arrive from interface 2 instead, routers E and F 
do not change their forwarding entries to SA and will not 
regenerate SAVE updates.  As a result, router A will have 
stale information about address spaces SE and SF (Fig. 2(c)).   

Periodically sending SAVE updates solves the problem 
eventually, but not quickly.  SAVE handles such routing 
changes by employing an incoming tree.  Each SAVE router 
uses SAVE updates to build the incoming tree, and then 
derives its incoming table from the tree.  Each node on the 
tree represents a specific source address space and is 
associated with a specific incoming interface.  A child 
inherits the same incoming interface as its parent, and thus 
all of its ancestors; if a node’s incoming interface is changed, 
this change will be applied automatically to all it s 
descendents on the tree.  Consider router A in Fig. 2.  Its 
incoming tree before link BD fails is shown in Fig. 3(a), 
where SD is the parent of SE, and SE is the parent of SF.  
Triggered by routing changes at D, SD’s new SAVE update 
will cause A to modify its incoming tree so that SD becomes 
the child of SC, and all source address spaces of D, E, and F 
will now map to interface 2 (Fig. 3(b)). 

The third issue is overhead control.  SAVE should allow 
an intermediate router to piggyback its own updates to 

SAVE updates passing through, but only if the router has not 
already sent its own update.  This complicates the protocol, 
and requires that a SAVE update be marked to indicate 
whether it is appendable or not. 

 
IV. PROTOCOL DESCRIPTION 

 
In this section we describe the SAVE protocol.  As 

depicted in Fig. 4, the main components of the protocol are 
generating SAVE updates, processing SAVE updates, and 
updating the incoming tree and incoming table based on 
SAVE updates.  We describe SAVE’s key data structures 
and then describe each of the three operations. 

 
A. SAVE Data Structures 

 
SAVE employs three main data structures: the incoming 

table, the incoming tree, and the SAVE update.  Each SAVE 
router has an incoming table and an incoming tree, and 
SAVE routers exchange SAVE updates. 

The incoming table is maintained at each SAVE router 
and contains entries that specify a valid incoming interface 
for a specific source address space. 

The incoming tree is maintained at each SAVE router and 
is used to derive the incoming table.  Each tree node 
specifies a source address space and is mapped to the valid 
incoming interface for that address space.  This tree structure 
has the following properties: 
1. If a SAVE update crosses router A and then router B 

before reaching a router R, on R’s incoming tree node 
SA will be the child of node SB.  Here SA and SB are A’s 

Fig. 4.  The architecture of the SAVE protocol. 
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Fig. 2.  An example topology of routers and their source 
address spaces. 

After link BD fails, router D changes its route to SA.  A SAVE 
update is thus triggered at D and sent toward SA, causing 
router A to update its incoming table.  But E and F do not 
detect the routing change, leaving two stale entries about SE 
and SF in A’s incoming table. 
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and B’s source address space, respectively.  
2. Each sub-tree directly below the tree’s root is associated 

with an incoming interface.  All nodes in a sub-tree map 
to the same incoming interface.  This property makes 
building an incoming table straightforward.   

Each SAVE update has three fields.  The destination 
address space field specifies the final destination address 
space of this SAVE update.  The address space vector (ASV) 
records source address spaces on the path that this SAVE 
update has traversed.  The appendable flag indicates whether 
this SAVE update can have more information appended. 

 
B. Generating SAVE Updates 

 
A router generates SAVE updates for each entry in its 

forwarding table.  If router R has source address space SR 
and has a forwarding entry for destination address space D, 
the corresponding SAVE update will be: < destination 
address space = D, ASV = <SR>, appendable = true >. 

This SAVE update will be forwarded along the outgoing 
interface specified in the forwarding entry for D.  Note that a 
SAVE update will be encapsulated inside an IP datagram 
whose destination address is randomly chosen from D, 
allowing routers not running SAVE to still forward SAVE 
updates.  (See [13] for a further discussion of compatibilit y 
with legacy routers.) 

Each SAVE update will cross a series of SAVE routers, 
each of which will update its incoming tree (and thus 
incoming table) based on the ASV contained in this SAVE 
update.  The ASV itself will also be updated in transit i f it is 
appendable, as ill ustrated later.   

Like soft state routing protocols, SAVE supports triggered 
updates (when forwarding table entries change) and periodic 
updates.  The pseudocode in Appendix I.A describes detailed 
steps for generating SAVE updates. 

 
C. Updating an Incoming Tree  

 
Upon receipt of a SAVE update, a SAVE router uses the 

ASV of the SAVE update to maintain its incoming tree (see 
Appendix I.B for a pseudocode description of the algorithm).   

The ASV field records the path that the SAVE update has 
traversed.  Because its purpose is to piggyback address space 
information onto a SAVE update, an ASV records an ordered 
list of address spaces, not a list of routers.  Initially, the ASV 
in a SAVE update contains only the origin router’s source 
address space.  The ASV expands as the SAVE update 
crosses intermediate routers; an intermediate router can 
append its address space to the SAVE update’s ASV.   

In general, if an ASV has the form <S1, S2, …, Sn>, where 
Si is the source address space of a SAVE router Ri, the SAVE 
update must have originated from R1 and then crossed SAVE 
routers R2, R3…, and Rn consecutively (adjacent routers in 
this sequence need not be physically adjacent).  Any IP 
packets from address space Si will cross Ri+1, Ri+2, …, and Rn 
(and perhaps other routers beyond Rn) to reach the 
destination.  (ASV maintenance is discussed further in 
Section IV.D.) 

To preserve the properties of the tree discussed in Section 
IV.A, the incoming tree updating procedure must first ensure 
that the ASV will be “grafted” into the tree as an intact 

branch, where Si will be the direct child of Si+1.  Second, the 
procedure must ensure that this branch will map to the 
incoming interface that the SAVE update arrived on.  Third, 
the procedure must ensure that information regarding those 
nodes on the tree that were descendents of Si will be updated 
to reflect information for node Si; the incoming interfaces of 
those nodes depend entirely on how Ri will forward their IP 
packets to reach this router. 

The tree update procedure therefore parses the ASV in 
reverse order (see Appendix I.B), processing the last ASV 
element Sn first.  If Sn is not yet in the tree, it is grafted 
directly under the root; otherwise, if Sn’s existing interface in 
the tree is not this update’s incoming interface, the sub-tree 
under Sn (not just Sn itself) will be remapped to the new 
interface and grafted under the root.  For any other element 
of ASV, Si (i≠n), given that node Si+1 has just been 
positioned into the tree correctly, the whole Si sub-tree can 
be relocated directly under node Si+1.  This relocation could 
map the Si sub-tree to a new interface.   

A SAVE router might receive two SAVE updates from 
different incoming interfaces concerning the same source 
address space.  We solve this problem by prioritizing SAVE 
updates (refer to [13] for details). 

 
D. Processing SAVE Updates 

 
Upon receipt of a SAVE update, a SAVE router will first 

use the update to maintain its incoming tree and table.  After 
that, this update is further processed to help downstream 
routers maintain their trees and tables.  SAVE update 
processing ensures that the SAVE protocol as a whole 
achieves two important goals: 
1. Recording the path that the SAVE update has traversed 

before reaching a SAVE router 
2. Assuring that the SAVE update follows the same path 

toward the specified destination address space as do 
valid data packets 

Items 1 and 2 are addressed below in Section IV.D.1 and 
Section IV.D.2, respectively.  (Refer to Appendix I.C for the 
pseudocode description.) 

 
D.1 Maintaining the address space vector 

 
As stated previously, the ASV field of a SAVE update 

records the path that the update has traversed.  However, an 
ASV does not necessarily record the complete path.  If a 
router has just initiated a SAVE update toward the same 
destination address space as a passing-by SAVE update, it 
still appends its own source address space; however, it marks 
the appendable field in the passing-by update as “not 
appendable.”  Thus, all downstream routers will stop 
recording their source address spaces into the ASV, but they 
will still be able to obtain the complete path information by 
combining ASVs from multiple updates, as ill ustrated below. 

Assume a downstream router R receives a SAVE update 
that originated from R1 (thus called R1’ s SAVE update).   Its 
ASV is expressed as <S1, S2, …, Sn>, where Si is the source 
address space of a SAVE router Ri.  If Rn is the SAVE router 
immediately preceding R, R1’ s SAVE update to R contains 
the complete path information.  If that is not the case, the 
ASV suggests that an intermediate router Rn has already 



initiated a SAVE update toward the same destination address 
space.  In this case, recording the path information beyond Rn 
in R1’ s SAVE update is redundant, since R has already 
obtained this information from Rn’ s SAVE update, whose 
ASV is < Sn, Sn+1, …>.  Any downstream SAVE router after 
Rn, including R, can obtain the complete path information by 
concatenating the ASV of R1’ s SAVE update and the ASV of 
Rn’ s SAVE update.  (This can happen recursively on Rn’ s 
SAVE update.)  Note that this concatenation does not happen 
literally; instead, it is implicit because of the incoming tree 
update procedure. 

 
D.2 Forwarding SAVE updates 

 
To reach its destination address space, denoted as D-space, 

a SAVE update must follow the same path as valid data 
packets toward D-space.  Following the same path ensures 
that the incoming interface of the SAVE update is the same 
as the incoming interface for all source address spaces 
carried in its ASV field.  Thus, regular IP forwarding tables 
are used by intermediate routers to forward SAVE updates.   

A problem arises when a router does not have a single 
forwarding entry that points exactly to the D-space.  Due to 
forwarding table aggregation, a router could have a 
forwarding entry for a sub-area of D-space, or an entry for a 
superset of D-space.  SAVE handles this as follows: 
• For each forwarding entry that specifies a route toward a 

sub-area of D-space, a new SAVE update will be created, 
which is a duplicate of the original SAVE update except 
that the destination address space in the new update will 
be set to this sub-area.  The new update is forwarded 
further according to the corresponding forwarding entry.   

• If the combined subset-type forwarding entries do not 
cover the whole D-space, the smallest superset 
forwarding entry will also be used to forward the SAVE 
update, since it would be used for forwarding the valid 
data packets toward the uncovered part of D-space. 

SAVE updates are forwarded downstream until they reach 
the SAVE router that can handle all IP addresses in the 
destination address space without further forwarding  

 
D.3 Overhead control 

 
Just as source address spaces should not be appended to a 

passing-by update’s ASV if an update has already been sent 
for them, updates should not be sent for address spaces that 
have been appended to the ASVs of passing-by updates, thus 
avoiding further overhead.  SAVE also does not forward 
replaceable updates.  An update is replaceable from the point 
of view of a specific SAVE router if each address space 
element in the update’s ASV is contained by this router’s 
source address space.  This router already has produced or 
will produce the necessary SAVE updates to carry the 
information in replaceable updates.  This optimization 
matches well with the two-level routing infrastructure of the 
Internet: since all packets from an AS to the outside must 
cross a border router, and the whole AS space is the source 
address space of that border router, those SAVE updates 
from within an AS are all replaceable and will not leak 
beyond the AS. 

E. Correctness of SAVE Address Validation 
 
SAVE’s guarantee of source addresses validity is not 

absolute.  If an incoming table indicates that a range of IP 
addresses comes in on a particular interface on the router, the 
router itself has no way of knowing if one of the machines 
with an address in that range forged the source address of 
another machine in the same range.  In a simple case, a 
router attached to an Ethernet could not use SAVE methods 
to detect one machine on that Ethernet forging the address of 
another.  The same observation applies to using SAVE for 
other purposes. 

 
V. SECURING THE SAVE PROTOCOL 

 
The SAVE protocol builds incoming tables usable for a 

variety of purposes, including providing security to the 
network.  Special care must be taken to secure the SAVE 
protocol against malicious attempts to compromise, misuse 
or disable the protocol.  The SAVE update exchange process 
between routers must be protected. 

Securing the SAVE protocol is similar to securing a 
routing protocol.  Just as routing updates must be protected 
to allow correct routing protocol operation, SAVE updates 
must be protected to allow correct SAVE operation.    We 
believe that existing and upcoming approaches to securing 
routing updates can be leveraged to secure SAVE updates. 

Given the above discussion, we suggest that: 
• SAVE updates should be exchanged only between 

routers, excluding regular hosts.  Thus, in order to mount 
an attack via SAVE updates, the attacker would need to 
compromise some router.   

• Routers should establish trust relationships prior to 
exchanging SAVE updates. 

• Each SAVE update should be signed (or encrypted) to 
guarantee its integrity.  Replay of SAVE updates must 
also be prevented, using standard cryptographic methods. 

• The processing (including the authentication) of SAVE 
updates should be lightweight to prevent a DoS attack on 
the SAVE router.  If a SAVE router only communicates 
with trusted neighbors and can do so in a lightweight 
fashion, DoS attacks will have fewer chances to succeed.  

The SAVE protocol also has a correctness issue similar to 
that of routing protocolsa compromised router, if 
undetected, can severely damage the proper functioning of 
the network by sending bogus SAVE updates.  Some kind of 
simple intrusion detection implemented in routers might help 
to counter this problem. 

 
VI. SIMULATION 

 
A. Simulation Design 

 
The SAVE protocol has been implemented and tested in a 

custom simulation environment.  While we are also working 
on SAVE’s actual implementation and evaluation in a 
testbed environment, simulation is the best approach to 
verify our design early on and to investigate SAVE’s scaling 
properties, which would be hard to assess in a limited testbed 
environment.  
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Fig. 5.  SAVE effectiveness verification. 

In this scenario, a DDoS attack is performed from three different machines.  Every 
packet in the simulation has a global unique sequence number.  Figures (a), (b) and 
(c) show the pattern of spoofed packets generated at three machines (legitimate 
packets are not shown).  Figure (d) shows the patterns of packets that are dropped by 
SAVE.  We can observe that all spoofed packets are dropped. 

The goal of the simulation is to verify the effectiveness of 
SAVE, analyze the transient behavior of SAVE, and evaluate 
the bandwidth and storage cost of SAVE. 

In the simulation, all routers run the SAVE protocol in 
addition to routing protocols.  Corresponding to the two-
level routing infrastructure of the Internet, we used the 
transit-stub topology generator from GT-ITM [5] to generate 
inter-domain connectivity and intra-domain connectivity.  
We simulated BGP [19] for inter-domain routing and RIP 
[15] for intra-domain routing.  We also introduced 
asymmetric routing.  The BGP simulation implements the 
routing policy recommended by Cisco [14].   

 
B. Simulation Results 

 
We performed extensive simulation experiments to obtain 

information related to: (1) whether all spoofed packets can 
be successfully detected and dropped, (2) whether valid 
packets are dropped erroneously, (3) the transient behavior 
of SAVE, and (4) the cost of SAVE.   

 
B.1 Effectiveness verification 

 
To verify the effectiveness of the SAVE protocol, each 

simulated packet source generates both valid packets and 
spoofed packets that are controlled by two independent 
Poisson processes.  Spoofed source addresses were randomly 
chosen from a pool of all source addresses in the network.  
Every router is under an average load condition and every 

packet carries a reachable destination address; thus a packet 
can only be dropped due to address filtering or a transient 
routing inconsistency caused by topology changes. 

If SAVE is effective, all spoofed packets should be caught 
and dropped, leading to a distribution pattern over time of 
dropped packets matching the traff ic generation model of 
spoofed packets.  This was verified in numerous scenarios 
over different topologies, with the presence of asymmetric 
routing and dynamic routing changes.  We report one such 
scenario in Fig. 5.  

 
B.2 Transient behavior of SAVE 

 
When a forwarding table changes and a new route to a 

destination address space is set up, there is a transient period 
in which the incoming tables are incorrect, due to the delay 
of generating, forwarding and processing the triggered 
SAVE update.  During this time SAVE must adjust every 
incoming table along the new route.  If a data packet is sent 
toward the destination during this period, it can be 
erroneously dropped even though it carries an authentic 
source address.  More accurately, assuming that the 
propagation delay of a SAVE update is the same as that of a 
valid data packet, the data packet can only be dropped by 
mistake if: 
1. The data packet is sent while the SAVE update is still 

being generated due to a forwarding table change; in this 
case, the packet can reach downstream routers earlier 
than the SAVE update, and will be validated using the 
obsolete incoming information there.  

2. The data packet is received at an intermediate router 
while the incoming tree and the incoming table are still 
being updated using the triggered SAVE update; due to 
the obsolete entry in the incoming table, the packet will 
be regarded as a spoofed packet. 

Given that both windows involve only processing delay 
and are fairly short, we expect that few legitimate packets 
will be dropped due to stale incoming table entries.  In our 
experiments we experienced no filtering drops of valid 
packets due to routing changes. 

 
B.3 The cost of the SAVE protocol 

 
We measured the bandwidth and storage costs of the 

SAVE protocol versus those of routing protocols.  
(Theoretical cost analysis and comparison are further given 
in [13].)     

To measure the storage cost, we compared the size of the 
corresponding fast-path data structures: the incoming table 
used by SAVE and the forwarding table used by RIP or 
BGP.  Fig. 6 compares SAVE with RIP for different single-
domain topologies.  Fig. 7 compares SAVE with BGP for 
different multiple-domain topologies. 

The incoming table can be optimized to reduce the storage 
cost by leveraging symmetries in network routing.  If the 
valid incoming interface for a specific address space is 
exactly the same as the outgoing interface to reach that 
address space, the forwarding table entry that points to this 
address space can be used to derive the incoming interface 
and validate the source address.  Otherwise, a flag can be 
added to the forwarding table entry to indicate that the 



incoming table must be consulted to determine the correct 
incoming interface.  The degree to which this optimization 
saves storage space depends on the degree of asymmetry 
present.  Fig. 6 and Fig. 7 show that for reasonable cases the 
storage cost of the optimized incoming table can be minimal. 

To assess the bandwidth requirements of SAVE, we 
compared the triggered and periodic bandwidth cost between 
SAVE and routing protocols.   

Assuming SAVE updates and routing updates are initiated 
with the same frequency, we compared SAVE and RIP in 
terms of periodic bandwidth cost over single-domain 
topologies.  Simulations over different topologies show 
similar results (Fig. 8), where 10 different topologies were 
measured for each given number of routers.  The ratio of 
SAVE bandwidth cost versus RIP bandwidth cost is lower 
than 1 as the number of nodes in topologies grows beyond 
40, suggesting that SAVE has better scaling properties than 
RIP.  We also measured the per-link bandwidth cost of 
SAVE, which varies with topology.  Over those single-
domain topologies in Fig. 6, the maximum per-link 
bandwidth cost varies from 3.2 to 6.9 kilobytes/sec. 

We also compared SAVE bandwidth in multiple-domain 
topologies with BGP and RIP combined.  Because BGP does 
not initiate periodic routing updates, we compared the 

bandwidth without periodic transmission of SAVE updates 
and RIP updates.  The result is shown in Fig. 9.  SAVE uses 
less than 60% of the bandwidth of the BGP and RIP 
combined, in the worst case measured.  The maximum per-
link bandwidth cost here varies from 0.6 to 6.4 kilobytes/sec 
over the topologies we used in Fig. 7. 

To measure the triggered cost, we introduced random link 
failures, then compared the bandwidth cost of triggered 
SAVE updates with that of triggered routing updates; here, 
the routing protocols are BGP and RIP combined in 
multiple-domain topologies.  The comparison over a specific 
simulated topology with a total of 90 routers and 97 links is 
shown in Fig. 10.  Depending on the topology and the 
number and location of failed links, the cost varies for both 
SAVE and routing protocols.  In most cases, however, SAVE 
has lower triggered bandwidth cost than routing protocols.  
Topology changes often start a chain reaction of triggered 
routing updates; by contrast, not all of these changes lead to 
forwarding table changes.  Thus SAVE updates are not 
always triggered and less bandwidth is consumed.   
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Fig. 6.  Storage cost comparison for single-domain topologies. 
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routing protocols over a 97-link multiple-domain topology 
(confidence level: 95%). 
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Finally, the bandwidth cost incurred by routing protocols 
is already quite small compared to data traff ic over the 
Internet.  For instance, in our simulation, SAVE’s bandwidth 
cost per link for a 92-router topology is around 120 bytes/sec 
per link, whereas many real routers are capable of handling 
traff ic in a much greater magnitude of 10 Gbps or even 100 
Tbps.  Incurring a bandwidth cost of the same or less 
magnitude than routing protocols, SAVE only introduces a 
small amount of traff ic into the Internet.  SAVE’s benefits 
should outweigh this cost. 

 
VII . DEPLOYMENT OF THE SAVE PROTOCOL 

 
A. Partial Deployment 

 
To be of any practical use, SAVE must provide substantial 

value even when it is only partially deployed.  SAVE must 
ensure that incoming tables can still be properly established 
and maintained in the presence of legacy routers, which do 
not run SAVE.  Also, SAVE must handle data packets that 
carry source addresses from a legacy router’s address space.  

With partial deployment, those packets which carry source 
addresses that cannot be found in a router’s incoming table 
can be flagged by the router, rather than immediately 
dropped.  This flag can tell a higher layer (such as transport 
or application layer) that special handling is needed.  One 
possibilit y would be to deliver copies of such packets to an 
intrusion detection system near the target address. 

If a region’s routers deploy SAVE, one immediate 
advantage gained is that the address space of this region will 
be recorded in other SAVE routers’ incoming tables, making 
the space unlikely to be chosen for spoofed source addresses.  
Recall that one typical DoS attack is to put the victim's 
address in the source address of TCP SYN packets, causing 
the victim to be flooded by SYN-ACK packets.  Deploying 
SAVE routers protects the local address space from this 
attack. 

Researchers at Purdue have evaluated partial deployment 
of route-based distributed packet filtering (DPF) and 
suggested a deployment strategy that decreases the number 
of spoofable addresses while minimizing the percentage of 
routers performing the filtering [17].  Since route-based DPF 
is indeed incoming-table-based filtering, this research is 
complementary with the SAVE protocol and directly 
applicable to many aspects of SAVE’s deployment.  It 
suggests that using incoming tables created by SAVE for 
source address validation will work well even if only a small 
percentage of routers run incoming-table-based filtering.  It 
also indicates that incoming tables built with partial SAVE 
deployment can be useful for traceback. 

Partial deployment of SAVE is complex and still has 
many open issues.  Research continues on this problem. 

 
B. Mobile IP and Tunneling 

 
Some Internet traff ic does not use default routing 

behavior, and SAVE must handle such traff ic properly.  Such 
cases include mobile IP, tunneling, source routing, etc. 

Mobile IP potentially conflicts with SAVE in that a 
mobile host’s packets, if carrying its home IP address, would 

be rejected whenever the mobile host is outside its home 
network (since generally it uses a different path to the 
destination than the rest of its home network).  The reverse 
tunneling technique [16], proposed to handle such conflicts 
for general address filtering, also works for SAVE.  A 
mobile host’s packets are first tunneled from a foreign 
network back to its home agent, and then forwarded to the 
destination; thus, the source addresses of those packets are 
valid on each segment of the path.  IPv6 requires that a 
packet from a mobile host in a foreign network use a care-of 
address (an address belonging to the foreign network) as the 
packet’s source address, thus also solving the problem. 

IP tunneling complicates source address validation.  A 
packet’s true source address is buried inside a wrapping IP 
header that contains the source address of the ingress of a 
tunnel, thus the true internal source address can bypass the 
validation.  Source validation must be performed at the 
ingress of a tunnel before a packet enters the tunnel.    

In the view of SAVE, there are two different types of 
tunnels: those that merely add one level of encapsulation 
(and perhaps also IPsec for a secure tunnel), which follow 
the same route as regular data packets, and those that deviate 
from the regular routing path.  The latter type fundamentally 
bypasses the routing protocol (source routing has the same 
problem).  To accommodate this case, routers at the 
endpoints of a tunnel can send out special-purpose SAVE 
updates to build correct incoming table entries. 

 
VIII . RELATED WORK 

 
Much network security research has focused on applying 

cryptographic operations in order to guarantee authenticity of 
packet information.  IPsec is one representative at the IP 
layer [11].  A packet’s authenticity can be guaranteed by 
signing or encrypting it.  However, the high computation 
overhead of cryptographic operations prevents such 
approaches from being widely employed per packet.  The 
hop integrity approach proposed in [10] uses a lighter-weight 
signing technique, but it has to be deployed on a per-hop 
basis; thus each router that needs to forward a packet must 
incur extra overhead for cryptographic operations.  

Other research addresses IP spoofing through both 
preventive approaches and reactive approaches.  Filtering is 
a preventive approach.  Tracing is primarily reactive. 

Reference [1] proposes a general filtering approach where 
many fields, including but not limited to source address, can 
be used for filtering.  Martian address filtering is required in 
order to discard packets if their source addresses are special 
addresses (loopback address, broadcast address, etc.) or are 
not unicast addresses.   

Forwarding-table-based-filtering is one possible approach 
to validating source address.  It assumes that the outgoing 
interface that a router uses to reach a given address, as 
specified by its forwarding table, is also the valid incoming 
interface for packets originating from that address.  
Unfortunately, routing asymmetry on the Internet is common, 
invalidating this assumption and causing many legitimate 
packets to be dropped.  As a result, this feature is often 
disabled since it leads to erroneous packet dropping when 
asymmetric paths are used.   



Ingress filtering proposed in [9] ensures that packets 
leaving the domain of a periphery router have a source 
address from inside the domain, and packets entering have an 
outside source address, effectively providing a special-
purpose incoming table only at network ingress.  However, 
research has shown that unless ingress filtering is deployed 
almost everywhere, nearly arbitrary forgery is still possible 
[17].  Further, this approach offers no help in providing 
address assurance for any other purposes. 

Route-based distributed packet filtering suggested in [17] 
studied benefits of such filtering for attack prevention and 
traceback, and partial deployment strategies (Section VII .A).  

Packet tracing has been widely studied [3] [4] [20] [22].  
Tracing IP packets with forged source addresses requires 
complex and often expensive techniques to observe the 
traff ic at routers and reconstruct a packet’s real traveling 
path [20].  Tracing becomes ineffective when the volume of 
attack traff ic is small or the attack is distributed [12].  
Moreover, tracing is typically performed after an attack is 
detected, possibly too late to avoid damage.  

Network intrusion detection has also studied approaches to 
localize an attacker.  For instance, DECIDUOUS 
dynamically builds IPsec security associations to reveal the 
location of attacking sources [6].  However, to do this a 
victim running DECIDUOUS must detect the intrusion first.  
Network topology information is also required. 

 
IX. CONCLUSION 

 
Up to this point packet delivery over the Internet has been 

solely based on destination-address-directed forwarding.  
Attackers have exploited this to forge source addresses in 
their malicious packets to disguise their identities.  Yet, 
without the knowledge of what source address a packet 
should carry when it arrives, routers cannot filter out attack 
packets.  Asymmetric network routing, which became 
common over the years, also raised the need for an incoming 
address table in order to support IP multicast routing 
protocols. 

Today’s Internet requires correct, reliable, secure 
incoming tables at all routers that need them.  The SAVE 
protocol is the first practical step in making it possible to 
build such tables.  We have demonstrated that the protocol 
produces correct incoming tables at reasonable costs, 
comparable to or less than the costs of creating routing 
tables.  We believe that the functionality of incoming tables 
justifies this cost.   

If for no other reason, incoming tables are already of clear 
value in handling the alarmingly rapid growth in the use of 
forged IP source addresses on attack packets.  Both manual 
and automated responses to network attacks will be easier if 
the defenders have confidence that the packets bear a correct 
address, or at least an address on the same network as the 
attacking machine.  The incoming tables built by the SAVE 
protocol can offer such assurance. 

We believe that the incoming tables built by SAVE will be 
equally useful for many other purposes, some of which 
cannot be foreseen today.  We will continue to improve the 
protocol and investigate its utilit y. 
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APPENDIX I . SAVE PROTOCOL PSEUDOCODE 
DESCRIPTION 
 
A. SAVE Update Generation Procedure 

B. Incoming Tree Update Procedure Upon Receipt 
of a SAVE Update 

 

C. The Processing Procedure of a SAVE Update 
 

 
 

Procedure generateUpdates():  SAVE update generation 
at router R. 

 SR :  router R’s source address space  
 
1 Iterate through the forwarding table 
2 loop:  
 for  each forwarding entry e:  
    <destination prefix, outgoing interface oif> 
3   if (should_generate_SAVE_update_for(e))   
4    compose SAVE update U: 
     U ←<destination prefix, ASV=<SR>,  
       appendable=true> 
5     send U out along interface oif 
6 goto loop 

Procedure updateIncomingTree(U): Incoming tree 
update procedure at router R 

 SR:   the address space associated with router R 
 U:    a newly received SAVE update 
     U = < SD, ASV, appendable>,  
     where ASV=<S1, S2, …, Sn> 
 iif :   the incoming interface that U arrives on 
 subtree(X):  a sub-tree of the incoming tree that is 

rooted at X 
1 [Initialization when router R boots up]  
  The tree only contains the root node that 

represents SR 

 
/* handle Sn first */ 
2  if (Sn does not exist in the incoming tree) 
3    graft Sn under the root  
4    associate Sn with iif  
5  else 
6    if (iif  ≠ the current interface associated  
      with Sn) 
7     graft subtree(Sn) under the root 
8     remap Sn to iif  

Procedure processUpdate(U): processing SAVE update 
U at router R.   

 U  = <SD, ASV, appendable>,  
    where ASV=<S1, S2, …, Sk> (k≥1) 
 SR : R’s source address space  
 
1 if (R is the last hop to reach every address in SD) 
2  return 
 
3 if ( SR ⊇ (S1∪S2∪…∪Sk) )  /* U is a replaceable 

SAVE update * / 
4  return 
  
5 Define set E={ forwarding entry ei = <SDi, oif i> |  
   SDi⊂ SD && ¬∃ ej=<SDj, oif j> that SDi⊂SDj⊂ SD }  
    /* first-level subset-type forwarding entries * / 
6 for every ei in E 
7   create a SAVE update:  
     Ui ← <SDi , ASV, appendable> 
8   processUpdate(Ui)  /* process Ui * / 
9 end loop 
 
10 Define set S ← ∪SDi, for all <SDi, …>∈E   
11 if ( S == SD)  
12  return /*Great! The entire SD is covered using E* /
  
/* find superset-type forwarding entry with least 

coverage of SD* / 
13 find f: <SD′, oif ′> that SD′ ⊇ SD &&  
        ¬∃ ej=<SDj, oif j>: SD′ ⊃SDj⊇SD 
14 if (f is not found) 
  return 
 
15 if ( appendable) { 
16  ASV ←<ASV, SR>  
      /* append SR; ASV=<S1, S2, …, Sk, SR> * / 
17  if ( R has processed f, i.e.already generated SAVE 

update for f) 
18   appendable ← false 
19 } 
 
20 forward U=<SD, ASV, appendable> along outgoing 

interface oif ′ 

/* now handle Sn-1, Sn-2, . . ., S2, S1 one by one */ 
9 for (i ← n-1; i > 0; i-- ) 
10  if (Si does not exist in the incoming tree) 
11    graft Si under Si+1 

12  else 
13    graft subtree(Si) directly under Si+1 (if not) 
14 end  


