SAVE: SourceAddressValidity Enforcement Protocol "

JunLi, JelenaMirkovic, Mengqiu Wang, Peter Reiher, and Lixia Zhang

Computer Science Department
University of California, Los Angeles

Abstract[J Forcing all IP packets to carry correct source
addresses can greatly help network seaurity, attack tracing, and
network problem debugging. However, due to asymmetries in
today's Internet routing, routers do not have readily available
information to verify the arrectness of the source addressfor
each incoming packet.

In this paper we describe a new protocol, named SAVE, that
can provide routers with the information neeled for source
address validation. SAVE messages propagate valid source
addressinformation from the source location to al destinations,
allowing each router along the way to build an incoming table
that assciates each incoming interface of the router with a set
of valid source addressblocks. This paper presents the protocol
design and evaluates its correctness and performance by
simulation experiments. The paper also discuses the isales of
protocol seaurity, the dfedivenessof partial SAVE deployment,
and the handling of unconventional forms of network routing,
such as mobile I P and tunneling.

l. INTRODUCTION

Ensuring that an IP padket caries a mrred source aldress
would be valuable for many purposes. Services that rely on
corred source aldresses (congestion control, fair queuing,
source-based traffic control schemes) would profit. Network
problem diagnosis, how able to locae the possble sources of
aproblem, could also be simplified.

Moreover, this would asdst in solving one of the most
important problems in network seaurity: attadkers commonly
forge source aldreses to avoid responsibility for their
malicious padkets. Examples include DDoS attacks [24],
TCP SYN floodng attadks [21], and smurf attacks [23].
Reliably locating the dtadker has been difficult because
defenders cannot easily verify that a padket was indeed sent
by the node spedfied in its urce aldress

Existing approaches to handling forged
addressesinclude:

» Tradng badk the source of the forged padets from their
destination with the @operation of network routers [3]
[4] [201[22]

» Filtering forged padkets at the first router encountered on
entering the Internet, which typicdly has information
about valid source aldreses that passthroughit (ingress
filtering) [9]

» Filtering forged padkets on the basis of forwarding tables
that do not take asymmetriesinto acount [1]

« Using cryptographic authentication, such as 1Psed11]

IP source

T This work is funded by NSF under contrad number ANI-9980501
Authors can be contaded a {lijun, sunshine, wangmgq, reiher,
lixia} @cs.ucla.edu.

These gproaches lve part of the problem, but do not
address al isales. In particular, paths through the Internet
are frequently asymmetric. According to [18], a path
through the Internet in 1995 visited dfferent cities in eath
diredion 50% of the time and dfferent autonomous g/stems
30% of the time. As a result, the forwarding tables used by
routers to deliver padets are not reliable for determining
where padkets come from.

If we had reliable tables at many routers pedfying proper
incoming interfaces for source aldresses, an attadker’s
choice of forgeadle IP source aldreses would be sharply
reduced. All improperly addressed padkets could be eaily
dropped as on as the forgeries were deteded. Attadk
tradng tods could also use the knowledge produced by
address validation to determine the possble sources of
attadks.

This table muld also be used for non-seaurity purposes.
Reverse path forwarding (RPF) would be more dfedive if
RPF had this knowledge, for example. Multicasting
protocols that use RPF to huild reverse shortest-path
multi casting trees (such as DVMRP [7], CBT [2] and PIM
[8]) could thus build true shortest-path trees.

We present here the Source Address Validity Enforcement
(SAVE) protocol. SAVE runs on individual routers and
builds incoming tables for them, alowing ead router to
verify whether ead padket arrives at the expeded interface
Although the incoming tables built by SAVE are suitable for
any of the purposes described ealier, when describing
SAVE throughout this paper, we will use the example of
filtering padkets with forged source aldresses.

The rest of this paper is organized as follows. Sedion Il
discuses the principles underlying the SAVE protocol;
Sedions Il and 1V describe the SAVE protocol in detall;
Sedion V discuses how SAVE can be seaured against
attadks; Sedion VI presents smulation results on the @sts of
runnng the protocol and demonstrations of its efficacy;
Sedion VIl addresses the deployment of the SAVE; Sedion
VIl discusses related work; and Sedion IX concludes the

paper.
Il DESIGN PRINCIPLES

While aforwarding table spedfies the outgoing interface
for a given degtination address gace an incoming table
should spedfy the valid incoming interface for a given
source aldress pace This smilarity suggests that a simple
reversal or dlight modification of the eisting routing
protocols could yield an effedive SAVE protocol. However,
the information needed to construct an incoming table proves
to be inherently different from that used to huild a
forwarding table, thus forcing a diff erent protocol design.

In a routing protocol, routing yodates advertise the set of
destination address paces that routers can read and the
properties of the routes used. Each router then uses these
updates and some locd preference rules to cdculate its best
outgoing interfacefor ead destination address pace

While routing ypdates are used to cdculate the best path,
SAVE updates dhould be designed to inform routers about
the path that has already been chosen, thus alowing all
routers on the path to a destination to deduce valid incoming
interfaces for spedfic source aldresses.

In the following discusgon, we further define the desirable
properties of the SAVE protocol and SAVE updates.

A. Properties of the SAVE Rotocol

The SAVE protocol is run by routers in paralel with the
routing protocol. The foll owing properties are desirable:

* Routing protocol independenceld SAVE must be modular
and independent of the underlying routing protocol, so
that it can easily run on top d different routing
infrastructures.

« Imnediate resporse to routing changesll SAVE should
respond to routing changes immediately to adjust
incoming table entries.

e Seaurityd SAVE must be seaured o attadkers could
ealy bypass any seaurity it offers; worse, they could
diredly use SAVE for certain attads.

* Incremental deployment] SAVE can only be deployed
incrementally, and should ofer benefits with partial
deployment.

e Low overheadd SAVE must be lightweight in order to
minimize router overhead and scde well while adieving
its goals.

B. Propertiesof the SAVE Updates

The following are desirable properties of SAVE updates:

» End-to-end comnunication] SAVE updates must travel
through the same routers that data padets use to read
their destination address gacein order to crede acarate
incoming tables at those routers.

* Aggregation o SAVE updaes] SAVE updates sould be
aggregated along the route & much as possble to reduce
bandwidth consumption.

e Minimized dugicationd] SAVE updates <ould avoid
duplicating any information that is already communicated
viarouting ypdates.

1. OVERVIEW OF THE SAVE PROTOCOL

A. A Quick Overview

The goal of the SAVE protocol is to huild atable & ead
router that spedfies the valid incoming interfacefor padcets
carying a given source aldress Routers use this table to
filter those packets with forged source aldresses.

SAVE asaumes that ead router is asociated with a set of
source aldreses. All padkets from this address pace ca
only reat some set of destinations via this router. A router

that forwards padets for hosts on a LAN has a source
address pace overing addresses of those hosts; a border
router of an autonomous gystem (AS) handles the source
address paceof the whole AS (only for destinations where it
ads as the eit router); and a transit router with no attached
hosts has a source aldress gace onsisting of al its own IP
addresses.

For ead entry in its forwarding table, a SAVE router
periodicdly generates SAVE updates direded toward the
corresponding destination address ace in order to set up
valid incoming interfaces at routers along the route.
Forwarding table danges will aso trigger new SAVE
updates. In both cases, an update spedfies the originating
source aldress pace ad caries the destination address
space Since SAVE updates arrive on the same incoming
interface & valid |P padkets, routers between the source ad
final destination can record the legitimate incoming interface
for the spedfied source aldress pace SAVE further allows
intermediate routers to piggybad their own source aldress
spaces on a passng-by SAVE update, thus grealy reducing
bandwidth overhea.

B. Complications

Althoughthe basic SAVE operations sem simple, several
isaues complicate the design. Here we discussthreeof them:
ensuring SAVE updates follow the same path as valid data
padkets, reading to routing changes, and controlling SAVE
bandwidth overhead.

The first issue is ensuring that the SAVE updates follow
the proper paths. A SAVE update is forwarded toward a
destination address pace not a singe IP address The
SAVE protocol must acount for al paths toward the
addresss in the destination space In Fig. 1, if router A only
forwards a SAVE update toward router R, router r will not
lean of the valid path for Sg. Instead, the SAVE protocol
neels to generate one SAVE update toward router R, and
one toward router r, to ensure proper information in
incoming tables.

The semnd issue wncerns routing changes. Routing
changes establish new paths from sources to destinations that
neel to be validated through SAVE updates. However, not
al routers that should generate SAVE updates will
necessarily experience a dange in their forwarding table. In
Fig. 2(a), router D initially choases router B as the next hop
to reat address paceS,. The incoming table of router A is
shown in Fig. 2(b). Asaume that due to the failure of link
BD, router D updates its forwarding table so that router C

1311920.0/16
U=<1311920.0/16,

1311920.0/16
1311921360/24 | 2

A’sforwarding table

Fig. 1. Anexample of SAVE update forwarding.

bewmmes its next hop to S,. Although D will send a new
SAVE update to S,, indicaing to A that padkets from S
should now arrive from interface 2 instead, routers E and F
do not change their forwarding entries to S, and will not
regenerate SAVE updates. As a result, router A will have
stale information about address paces Sz and S: (Fig. 2(c)).

Periodicdly sending SAVE updates slves the problem
eventually, but not quickly. SAVE handles such routing
changes by employing an incoming tree Each SAVE router
uses SAVE updates to build the incoming tree and then
derives its incoming table from the tree Each node on the
tree represents a spedfic source aldress pace ad is
asociated with a spedfic incoming interface A child
inherits the same incoming interface & its parent, and thus
al of its ancestors; if a node’ s incoming interfaceis changed,
this change will be gplied automaticdly to all its
descendents on the tree Consider router A in Fig. 2. Its
incoming tree before link BD fails is gown in Fig. 3(a),
where S is the parent of S, and S is the parent of S
Triggered by routing changes at D, Sp's new SAVE update
will cause A to modify its incoming tree so that Sy becomes
the dhild of S¢, and al source aldress paces of D, E, and F
will now map to interface2 (Fig. 3(b)).

The third issue is overhead control. SAVE should allow
an intermediate router to piggybadk its own updates to

(& A topology example
(Sx stands for router X’s source address gace.)

source address valid incoming
spae interface
S 1
Sc 2
S 1
Se 1
S 1

(b) Router A’sincoming table before
router D’ s routing change

source address valid incoming
space interface
S 1
Sc 2
S 2
Se 1 (should be 2)
S 1 (should be 2)

(c) Router A’sincoming table after
router D’ s routing change

Fig. 2. An example topology of routers and their source
address paces.

After link BD fails, router D changesitsrouteto Sa. A SAVE
update isthustriggered at D and sent toward Sa, causing
router A to update itsincoming table. But E and F do not
detect the routing change, leaving two stale entries about S¢
and S:in A’sincoming table.

(a) Theincoming treeat router A
before router D’ s routing change

(b) Theincoming treeat router A
after router D’ s routing change

Fig. 3. Incoming tree example for topology in Figure 1.

SAVE updates passng through, but only if the router has not
arealy sent its own update. This complicates the protocol,
and requires that a SAVE update be marked to indicae
whether it is appendable or not.

V. PROTOCOL DESCRIPTION

In this dion we describe the SAVE protocol. As
depicted in Fig. 4, the main components of the protocol are
generating SAVE updates, procesing SAVE updates, and
updating the incoming tree ad incoming table based on
SAVE updates. We describe SAVE's key data structures
and then describe eat of the threeoperations.

A. SAVEData Sructures

SAVE employs three main data structures: the incoming
table, the incoming treg and the SAVE update. Each SAVE
router has an incoming table and an incoming treg and
SAVE routers exchange SAVE updates.

The incoming table is maintained at eath SAVE router
and contains entries that spedfy a valid incoming interface
for a spedfic source aldress pace

The incoming treeis maintained at ead SAVE router and
is used to derive the incoming table. Each tree node
spedfies a source aldress pace ad is mapped to the valid
incoming interfacefor that address pace Thistreestructure
has the foll owing properties:

1. If a SAVE update aosss router A and then router B
before reading a router R, on R’s incoming tree node
S, will be the dhild of node Sg. Here S, and Sg are A’s

[incomingtable | | forwarding table |
A
SAVE ¥
upcetes
> (}}) generating SAVE UPCELES iy
SAVE
updates
final A
stop? To®| processngSAVE updates | mmp-
yes
C SAVE protocol

Fig. 4. The architecture of the SAVE protocol.

and B’s ource aldress pace respedively.

2. Ead sub-treediredly below the treésroat is associated
with an incoming interface All nodesin a sub-treemap
to the same incoming interface This property makes
buil ding an incoming table straightforward.

Each SAVE update has three fields. The destination
address pace field spedfies the fina destination address
spaceof this SAVE update. The address pace vetor (ASV)
recmrds ource aldress gaces on the path that this SAVE
update has traversed. The appendale flag indicates whether
this SAVE update can have more information appended.

B. Generating SAVEUpdates

A router generates SAVE updates for ead entry in its
forwarding table. If router R has urce aldress pace Sy
and has a forwarding entry for destination address gaceD,
the crresponding SAVE update will be: < destination
address space = D, ASV = <S_>, appendable = true >.

This SAVE update will be forwarded along the outgoing
interfacespedfied in the forwarding entry for D. Note that a
SAVE update will be encapsulated inside an IP datagram
whose destination address is randamly chosen from D,
allowing routers not running SAVE to till forward SAVE
updates. (See[13] for a further discusson d compatibility
with legagy routers.)

Eadch SAVE update will cross a series of SAVE routers,
eah of which will update its incoming tree (and thus
incoming table) based onthe ASV contained in this SAVE
update. The ASV itself will also be updated in transit if it is
appendable, asill ustrated later.

Like soft state routing protocols, SAV E suppats triggered
updates (when forwarding table entries change) and periodic
updates. The pseudacode in Appendix |.A describes detail ed
steps for generating SAV E updtes.

C. Updaing anincoming Tree

Upon recapt of a SAVE update, a SAVE router uses the
ASV of the SAVE update to maintain its incoming tree (see
Appendix 1.B for a pseudocode description of the dgorithm).

The ASV field records the path that the SAVE update has
traversed. Because its purposeisto piggybadk address pace
information onto a SAVE update, an ASV rewords an ordered
list of address paces, not alist of routers. Initialy, the ASV
in a SAVE update contains only the origin router’'s urce
address pace The ASV expands as the SAVE update
croses intermediate routers, an intermediate router cen
append its address paceto the SAVE update' sASV.

In generadl, if an ASV hasthe form <S, S, ..., S>, where
S isthe source aldress paceof a SAVE router R, the SAVE
updete must have originated from R and then crossed SAVE
routers R, R...., and R, conseautively (adjacent routers in
this equence need na be physicdly adjacent). Any IP
padkets from address paceS will crossRi,1, R+o, ..., and R,
(and perhaps other routers beyond R, to read the
destination. (ASV maintenance is discussed further in
Sedion 1V.D.)

To preserve the properties of the treediscussed in Sedion
IV.A, the incoming tree updating procedure must first ensure
that the ASV will be “grafted” into the tree & an intad

branch, where S will be the direa child of S,4. Seoond, the
procedure must ensure that this branch will map to the
incoming interfacethat the SAVE update arived on. Third,
the procedure must ensure that information regarding those
nodes on the treethat were descendents of S will be updated
to refled information for node S; the incoming interfaces of
those nodes depend entirely on how R will forward their 1P
padkets to read this router.

The tree update procedure therefore parses the ASV in
reverse order (see Appendix 1.B), processng the last ASV
dement S, first. If S, is not yet in the tree it is grafted
diredly under the roat; otherwise, if S;'s existing interfacein
the treeis not this update’s incoming interface the sub-tree
under S, (not just S, itself) will be remapped to the new
interface ad grafted under the root. For any other element
of ASV, S (i#n), given that node S.; has just been
positioned into the tree orredly, the whole S sub-tree ca
be relocaed dredly under node S,;. This relocation could
map the § sub-treeto a new interface

A SAVE router might recéve two SAVE updates from
different incoming interfaces concerning the same source
address pace We solve this problem by prioritizing SAVE
updates (refer to [13] for detail s).

D. Processng SAVEUpdaes

Upon recept of a SAVE update, a SAVE router will first
use the update to maintain its incoming tree ad table. After
that, this update is further processed to help downstream
routers maintain their trees and tables. SAVE update
processng ensures that the SAVE protocol as a whole
achieves two important goals:

1. Reoording the path that the SAVE update has traversed
before reatinga SAVE router

2. Asarring that the SAVE update follows the same path
toward the spedfied destination address pace & do
valid data padkets

Items 1 and 2 are aldresed below in Sedion IV.D.1 and
Sedion 1V.D.2, respedively. (Refer to Appendix 1.C for the
pseudocode description.)

D.1 Maintainingthe address pace vetor

As gated previoudly, the ASV field of a SAVE update
records the path that the update has traversed. However, an
ASV does nat necessrily record the complete path. If a
router has just initiated a SAVE update toward the same
destination address pace & a passng-by SAVE update, it
till appendsits own source aldress pace however, it marks
the appendalde field in the passng-by updete & “not
appendable” Thus, al downstrean routers will stop
recording their source address paces into the ASV, but they
will till be &le to oltain the complete path information by
combining ASVs from multi ple upcetes, asill ustrated below.

Asaume adownstream router R receéves a SAV E update
that originated from R, (thus caled R’'s SAVE update). Its
ASV isexpresed as <S, S, ..., S>, where S is the source
address paceof a SAVE router R. If R isthe SAVE router
immediately precaling R, R’s SAVE updite to R contains
the wmplete path information. If that is not the cae, the
ASV suggests that an intermediate router R has alrealy

initiated a SAV E update toward the same destination address
space In this case, recording the path information beyondR,
in R’'s SAVE updite is redundant, since R has arealy
obtained this information from R’'s SAVE update, whose
ASV is<S§, S,, ..>. Any dovnstream SAVE router after
R, including R, can oltain the mmplete path information by
concaenating the ASV of R’s SAVE update and the ASV of
R’s SAVE update. (This can happen reaursively on R’s
SAVE upckte) Note that this concaenation daes not happen
literally; instead, it is implicit because of the incoming tree
update procedure.

D.2 Forwarding SAVEupdaes

To read its destination address pace denoted as D-space
a SAVE update must follow the same path as valid data
padkets toward D-space Following the same path ensures
that the incoming interfaceof the SAVE update is the same
as the incoming interface for all source aldress gaces
caried in its ASV field. Thus, reguar IP forwarding tables
are used by intermediate routersto forward SAVE updates.

A problem arises when a router does not have asinge
forwarding entry that points exadly to the D-space Due to
forwarding table aygregation, a router could have a
forwarding entry for a sub-areaof D-space or an entry for a
superset of D-space SAVE handles this as foll ows:

* For ead forwarding entry that spedfies a route toward a
sub-areaof D-space anew SAVE update will be aeaed,
which is a duplicae of the origina SAVE update except
that the destination address pacein the new update will
be set to this aib-area The new update is forwarded
further acwrding to the rresponding forwarding entry.

e If the combined subset-type forwarding entries do not
cover the whole D-space the smallest superset
forwarding entry will aso be used to forward the SAVE
update, since it would be used for forwarding the valid
data packets toward the uncovered part of D-space

SAVE updates are forwarded dowvnstream until they reat
the SAVE router that can handle dl IP addresses in the
destination address pacewithout further forwarding

D.3 Overhead control

Just as ource aldress paces $ould not be gopended to a
passng-by update’'s ASV if an uypdate has aready been sent
for them, updates dould not be sent for address paces that
have been appended to the ASV's of passng-by updates, thus
avoiding further overhead. SAVE aso dces not forward
replaceable updates. An update is replacedle from the point
of view of a spedfic SAVE router if eah address pace
element in the update’'s ASV is contained by this router's
source aldress gace This router aready has produced o
will produce the necessry SAVE updates to cary the
information in replacedle updates. This optimizaion
matches well with the two-level routing infrastructure of the
Internet: since dl padkets from an AS to the outside must
cross a border router, and the whole AS spaceis the source
address pace of that border router, those SAVE updates
from within an AS are dl replacedle and will not le&k
beyond the AS.

E. Corrednessof SAVE AddressValidation

SAVE's guarantee of source aldresses validity is not
absolute. If an incoming table indicates that a range of 1P
addresses comes in on a particular interfaceon the router, the
router itself has no way of knowing if one of the machines
with an addressin that range forged the source aldress of
another machine in the same range. In a simple case, a
router attached to an Ethernet could not use SAVE methods
to deted one madhine on that Ethernet forging the addressof
another. The same observation applies to using SAVE for
other purposes.

V. SECURING THE SAVE PROTOCOL

The SAVE protocol builds incoming tables usable for a
variety of purposes, including providing seaurity to the
network. Spedal care must be taken to seaure the SAVE
protocol against malicious attempts to compromise, misuse
or disable the protocol. The SAVE update exchange process
between routers must be proteded.

Seauring the SAVE protocol is smilar to seauring a
routing protocol. Just as routing yodates must be proteded
to alow corred routing protocol operation, SAVE updates
must be proteded to allow corred SAVE operation. We
believe that existing and upcoming approaches to seauring
routing ypdates can be leveraged to seaure SAVE updates.

Given the @ove discusson, we suggest that:

* SAVE updates dould be echanged only between
routers, excluding regular hosts. Thus, in order to mount
an attadk via SAVE updates, the atadker would neal to
COMPromise some router.

* Routers gould establish trust relationships prior to
exchanging SAVE updates.

e Eadc SAVE update should be signed (or encrypted) to
guarantee its integrity. Replay of SAVE updates must
also be prevented, using standard cryptographic methods.

* The processng (including the authentication) of SAVE
updates sould be lightweight to prevent a DoS attadk on
the SAVE router. If a SAVE router only communicates
with trusted neighbors and can do so in a lightweight
fashion, DoS attadks will have fewer chancesto succeeal.

The SAVE protocol also has a wrrednessisaie similar to
that of routing protocolsila @mpromised router, if
undeteded, can severely damage the proper functioning of
the network by sending bogus SAVE updates. Some kind of
simple intrusion detedion implemented in routers might help
to counter this problem.

VI, SIMULATION

A. Smulation Design

The SAVE protocol has been implemented and tested in a
custom simulation environment. While we ae dso working
on SAVE's adua implementation and evauation in a
testbed environment, simulation is the best approach to
verify our design ealy on and to investigate SAVE's <ding
properties, which would be hard to assessin a limited testbed
environment.

The goal of the simulation is to verify the dfedivenessof
SAVE, analyze the transient behavior of SAVE, and evaluate
the bandwidth and storage st of SAVE.

In the simulation, al routers run the SAVE protocol in
addition to routing protocols. Corresponding to the two-
level routing infrastructure of the Internet, we used the
transit-stub topdogy generator from GT-ITM [5] to generate
inter-domain connedivity and intradomain connedivity.
We simulated BGP [19] for inter-domain routing and RIP
[15] for intradomain routing. @ We dso introduced
asymmetric routing. The BGP simulation implements the
routing policy recommended by Cisco [14].

B. Smulation Results

We performed extensive simulation experiments to oltain
information related to: (1) whether all spodied padkets can
be succesdully deteded and dropped, (2) whether valid
padkets are dropped erroneoudly, (3) the transient behavior
of SAVE, and (4) the mst of SAVE.

B.1 Effedivenessverification

To verify the dfediveness of the SAVE protocol, eat
simulated padket source generates both valid padkets and
spoded padkets that are ontrolled by two independent
Poison processes. Spoded source aldresses were randomly
chosen from a pod of al source aldresss in the network.
Every router is under an average load condition and every

=

o

o
|

(a) Spoofed packets from packet sender A
.80+
(%)
& 60 |
£ 401
20 A
0 T " b 1
0 100 Pac et sequence number 200
100 4 (b) Spoofed packets from packet sender B
—~ 80 A
o
& 60
£ 40 -
T | I
0 | ‘ ‘
0 100 packet sequence number 200
100 - (c) Spoofed packets from packet sender C
80 A
[s)
f,,i 60
.g 40 +
~ 20
0 ‘ ; \
0 100 packet sequence number 200
100 (d) Dropped packets
80
o
\%’ 60
g 40

n
o o

0 100 Packet sequence number 5qg

Fig. 5. SAVE effectivenessverification.

Inthis cenario, aDDoS attad is performed from three different machines. Every
padket in the simulation has a global unique sequence number. Figures (a), (b) and
(c) show the pattern of spodfed padkets generated at threemadhines (legitimate
padkets are not shown). Figure (d) shows the patterns of padkets that are dropped by
SAVE. We can observe that all spoded padkets are dropped.

padket caries a reatable destination address thus a padket
can only be dropped due to address filtering or a transient
routing inconsistency caused by topdogy changes.

If SAVE is effedive, all spoded padets dould be caight
and dropped, leading to a distribution pattern over time of
dropped padkets matching the traffic generation model of
spoded padkets. This was verified in numerous enarios
over different topdogies, with the presence of asymmetric
routing and dynamic routing changes. We report one such
scenario in Fig. 5.

B.2 Transient behavior of SAVE

When a forwarding table dhanges and a new route to a
destination address paceis %t up, there is a transient period
in which the incoming tables are incorred, due to the delay
of generating, forwarding and processng the triggered
SAVE update. During this time SAVE must adjust every
incoming table dong the new route. If a data padket is ent
toward the destination during this period, it can be
erroneously dropped even though it caries an authentic
source aldress More acaorately, asuming that the
propagation delay of a SAVE update is the same & that of a
valid data padet, the data padket can only be dropped by
mistake if:

1. The data padket is ent while the SAVE update is gill
being generated due to a forwarding table change; in this
case, the padket can read downstrean routers ealier
than the SAVE update, and will be validated using the
obsolete incoming information there.

2. The data padcet is recaéved at an intermediate router
while the incoming tree and the incoming table ae still
being yodated using the triggered SAVE update; due to
the obsolete entry in the incoming table, the padket will
be regarded as a spodfed padket.

Given that both windows involve only processng delay
and are fairly short, we exped that few legitimate padets
will be dropped due to stale incoming table entries. In our
experiments we eperienced no filtering drops of valid
padkets due to routing changes.

B.3 The mst of the SAVE protocol

We measured the bandwidth and storage wsts of the
SAVE protocol versus those of routing protocols.
(Theoretical cost analysis and comparison are further given
in[13].)

To measure the storage mst, we mmpared the size of the
corresponding fast-path data structures: the incoming table
used by SAVE and the forwarding table used by RIP or
BGP. Fig. 6 compares SAVE with RIP for different singe-
domain topdogies. Fig. 7 compares SAVE with BGP for
diff erent multi ple-domain topd ogies.

The incoming table can be optimized to reduce the storage
cost by leveraging symmetries in network routing. If the
valid incoming interface for a spedfic address gace is
exadly the same & the outgoing interface to read that
address pace the forwarding table entry that points to this
address gace ca be used to derive the incoming interface
and validate the source aldress Otherwise, a flag can be
added to the forwarding table entry to indicae that the

storage cost (kilobytes)

0 20 40 60 80 100
number of routers

—&—incoming table built by SAVE
—B—forwarding table built by RIP
—&— optimized incoming table built by SAVE

Fig. 6. Storage cost comparison for single-domain topologies.

90
80 -
70 H
60
50

N
)
.

30 4
20 +
10 4

storage cost (kilobytes)

0 20 40 60 80 100
number of routers

—&—incoming table built by SAVE
—B—forwarding table built by routing protocols
—&—optimized incoming table built by SAVE

Fig. 7. Storage cost comparison for multiple-domain topologies.

incoming table must be wnsulted to determine the @rred
incoming interface The degree to which this optimizaion
saves dorage space depends on the degree of asymmetry
present. Fig. 6 and Fig. 7 show that for reasonable cases the
storage st of the optimized incoming table can be minimal.

To as®ss the bandwidth requirements of SAVE, we
compared the triggered and periodic bandwidth cost between
SAVE and routing protocols.

Asaiming SAVE updates and routing ypdates are initi ated
with the same frequency, we mmpared SAVE and RIP in
terms of periodic bandwidth cost over single-domain
topdogies. Simulations over different topdogies gow
similar results (Fig. 8), where 10 dfferent topdogies were
measured for eatr gven nunber of routers. The ratio of
SAVE bandwidth cost versus RIP bandwidth cost is lower
than 1 as the number of nodes in topdogies grows beyond
40, sugeesting that SAVE has better scding properties than
RIP. We dso measured the per-link bandwidth cost of
SAVE, which varies with topdogy. Over those singe-
domain topdogies in Fig. 6, the maximum per-link
bandwidth cost varies from 3.2 to 6.9 kil obytes/'sec

We dso compared SAVE bandwidth in multiple-domain
topdogies with BGP and RIP combined. Becaise BGP does
not initiate periodic routing ypdates, we @mpared the

bandwidth without periodic transmisson of SAVE updates
and RIP updates. The result is siown in Fig. 9. SAVE uses
less than 60% of the bandwidth of the BGP and RIP
combined, in the worst case measured. The maximum per-
link bandwidth cost here varies from 0.6 to 6.4 kilobytes/sec
over the topdogieswe used in Fig. 7.

To measure the triggered cost, we introduced random link
failures, then compared the bandwidth cost of triggered
SAVE updates with that of triggered routing updates; here,
the routing protocols are BGP and RIP combined in
multi ple-domain topdogies. The comparison over a spedfic
simulated topdogy with a total of 90 routers and 97linksis
shown in Fig. 10. Depending on the topdogy and the
number and locaion of failed links, the st varies for bath
SAVE and routing protocols. In most cases, however, SAVE
has lower triggered bandwidth cost than routing protocols.
Topdogy changes often start a chain readion of triggered
routing ypdates; by contrast, not al of these changes lead to
forwarding table changes. Thus SAVE updates are not
alwaystriggered and lessbandwidth is consumed.

25

periodic bandwidth ratio
SAVE/RIP

05 | ﬂﬂﬂ
Hiuddufdnm
0 30 40 50 60 70 80 90

10 2
number of routers

Fig. 8. Periodic bandwidth cost comparison between SAVE and RIP
over different single-domain topologies (confidence level: 95%).

0.7

© o o
U oo
[

0.3 -
0.2

bandwidth ratio
SAVE/(BGP+RIP)

o©
=
\

o

12 24 32 40 52 64 70 80 90

number of routers

Fig. 9. Bandwidth comparison between SAVE and routing protocols
(BGP &RIP) over diff erent multiple-domain topologies
(confidencelevel: 95%).

1.2

14
0.8
0.6 4

0.4 -

SAVE/(BGP+RIP)

0.2 A
0

triggered bandwidth ratio

1 2 3 4 5 6 7 8 9
number of failed links

Fig. 10. Triggered bandwidth cost comparison between SAVE and
routing protocols over a 97-link multiple-domain topology
(confidence level: 95%).

Finally, the bandwidth cost incurred by routing protocols
is dready quite small compared to data traffic over the
Internet. For instance, in our simulation, SAVE’s bandwidth
cost per link for a 92-router topdogy is around 120bytes/sec
per link, whereas many red routers are cgable of handling
traffic in a much greaer magnitude of 10 Gbps or even 100
Tbps. Incurring a bandwidth cost of the same or less
magnitude than routing protocols, SAVE only introduces a
small amount of traffic into the Internet. SAVE's benefits
should outweigh this cost.

VII. DEPLOYMENT OF THE SAVE PROTOCOL

A. Partial Deployment

To be of any pradicd use, SAVE must provide substantial
value even when it is only partially deployed. SAVE must
ensure that incoming tables can still be properly established
and maintained in the presence of legacy routers, which do
not run SAVE. Also, SAVE must handle data padkets that
cary source aldresses from alegacy router’s address pace

With partial deployment, those padkets which carry source
addresses that cannot be found in a router’s incoming table
can be flagged by the router, rather than immediately
dropped. This flag can tell a higher layer (such as transport
or applicdion layer) that spedal handling is needed. One
possbility would be to deliver copies of such padkets to an
intrusion detedion system nea the target address

If a region's routers deploy SAVE, one immediate
advantage gained is that the aldress paceof this region will
be recorded in other SAVE routers’ incoming tables, making
the spaceunlikely to be chosen for spodfed source aldresses.
Recdl that one typicd DoS attack is to put the victim's
addressin the source aldressof TCP SYN padkets, causing
the victim to be flooded by SYN-ACK padkets. Deploying
SAVE routers proteds the locd address gace from this
attack.

Reseachers at Purdue have evaluated partial deployment
of route-based dstributed padket filtering (DPF) and
suggested a deployment strategy that deareases the number
of spodable aldresses while minimizing the percentage of
routers performing the filtering [17]. Since route-based DPF
is indeed incoming-table-based filtering, this reseach is
complementary with the SAVE protocol and dredly
appliceble to many aspeds of SAVE's deployment. It
suggests that using incoming tables creaed by SAVE for
source aldressvalidation will work well even if only a small
percentage of routers run incoming-table-based filtering. It
also indicates that incoming tables built with partial SAVE
deployment can be useful for tracéback.

Partial deployment of SAVE is complex and still has
many open issues. Reseach continues on this problem.

B. MobilelP andTunreling

Some Internet traffic does not use default routing
behavior, and SAVE must handle such traffic properly. Such
cases include mobhil e IP, tunneling, sourcerouting, etc.

Mobile IP potentialy conflicts with SAVE in that a
mobil e host’s padkets, if carrying its home IP address would

be rejeded whenever the mobile host is outside its home
network (since generdly it uses a different path to the
destination than the rest of its home network). The reverse
tunreling technique [16], proposed to handle such conflicts
for general address filtering, also works for SAVE. A
mobile host's padkets are first tunreled from a foreign
network bad to its home gent, and then forwarded to the
destination; thus, the source aldresses of those padkets are
valid on ead segment of the path. IPv6 requires that a
padket from a mobile host in a foreign retwork use acare-of
address (an addressbelonging to the foreign retwork) as the
padket’s ource aldress thus also solving the problem.

IP tunreling complicates source aldress validation. A
padket’s true source aldressis buried inside awrapping IP
header that contains the source aldress of the ingress of a
tunrel, thus the true internal source aldress can bypass the
validation. Source validation must be performed at the
ingressof atunrel before apadket entersthe tunrel.

In the view of SAVE, there ae two dfferent types of
tunrels: those that merely add ane level of encapsulation
(and perhaps aso IPsec for a seaure tunrel), which follow
the same route & regular data padkets, and those that deviate
from the regular routing path. The latter type fundamentally
bypasses the routing protocol (source routing hes the same
problem). To acommodate this case, routers at the
endpaints of a tunnel can send out spedal-purpose SAVE
updates to build correa incoming table entries.

VIII. RELATED WORK

Much retwork seaurity reseach haes focused on applying
cryptographic operations in order to guarantee athenticity of
padet information. IPsec is one representative & the IP
layer [11]. A padket's authenticity can be guaranteed by
signing or encrypting it. However, the high computation
overhead o cryptographic operations prevents sich
approaches from being widely employed per packet. The
hop integrity approach propased in [10] uses a lighter-weight
signing technique, but it has to be deployed on a per-hop
basis; thus ead router that needs to forward a padket must
incur extra overhead for cryptographic operations.

Other reseach addreses IP spoding through both
preventive gproaches and readive gproacies. Filteringis
apreventive gpproach. Tradngis primarily readive.

Reference [1] proposes a general filtering approach where
many fields, including but not limited to source aldress can
be used for filtering. Martian addressfiltering is required in
order to dscard padkets if their source aldresses are spedal
addresses (loopladk address broadcast address etc.) or are
not unicast addresses.

Forwarding-table-based-filtering is one possble gproach
to validating source aldress It assumes that the outgoing
interface that a router uses to read a given address as
spedfied by its forwarding table, is also the valid incoming
interfface for padets originating from that address
Unfortunately, routing asymmetry on the Internet is common,
invalidating this assumption and causing many legitimate
padkets to be dropped. As a result, this feaure is often
disabled since it leals to erroneous padket droppng when
asymmetric paths are used.

Ingress filtering proposed in [9] ensures that padkets
leaving the domain of a periphery router have a source
addressfrom inside the domain, and padkets entering have an
outside source aldress effedively providing a spedal-
purpose incoming table only at network ingress However,
reseach has gown that unlessingressfiltering is deployed
amost everywhere, nealy arbitrary forgery is gill possble
[17]. Further, this approach offers no help in providing
addressasaurancefor any other purposes.

Route-based distributed packe filtering suggested in [17]
studied benefits of such filtering for attadk prevention and
tracdbadk, and partial deployment strategies (Sedion VII.A).

Padket tradng hes been widely studied [3] [4] [20] [22].
Tradng IP padkets with forged source aldresses requires
complex and often expensive techniques to olserve the
traffic & routers and reconstruct a padet's red traveling
path [20]. Tradng beomes ineffedive when the volume of
attadk traffic is smal or the atadk is distributed [12].
Moreover, tradng is typicdly performed after an attad is
detedted, possbly too late to avoid damage.

Network intrusion detedion has also studied approaches to
locdize an attadker. For instance, DECIDUOUS
dynamicdly builds IPsec seaurity associations to reved the
locaion of attaking sources [6]. However, to do this a
victim running DECIDUOUS must deted the intrusion first.
Network topdogy information is also required.

IX. CONCLUSION

Up to this point padket delivery over the Internet has been
solely based on destination-addressdireded forwarding.
Attadkers have exploited this to forge source aldresses in
their malicious padkets to disguise their identities. Yet,
without the knowledge of what source aldress a padket
should cary when it arrives, routers cannot filter out attack
padkets. Asymmetric network routing, which becane
common over the yeas, also raised the need for an incoming
address table in order to suppat IP multicast routing
protocols.

Today’s Internet requires corred, reliable, seaure
incoming tables at all routers that nead them. The SAVE
protocol is the first pradicd step in making it possble to
build such tables. We have demonstrated that the protocol
produces correct incoming tables at reessonable @sts,
comparable to or less than the wsts of creaing routing
tables. We believe that the functionality of incoming tables
justifies this cost.

If for no ather reason, incoming tables are drealy of clea
value in handling the darmingy rapid growth in the use of
forged IP source aldresses on attadk padkets. Both manual
and automated responses to network attadks will be eaier if
the defenders have cnfidence that the padets bea a corred
address or at least an address on the same network as the
attadking machine. The incoming tables built by the SAVE
protocol can offer such asaurance

We believe that the incoming tables built by SAVE will be
equally useful for many other purposes, some of which
cannot be foreseen today. We will continue to improve the
protocol and investigate its utilit y.

ACKNOWLEDGMENT

The autthors would like to thank Mark Yarvis, Gregory
Prier, and Janice Wheder for their input on various aspeds
of thiswork. Our thanks aso to the anonymous reviewers of
this paper.

REFERENCES

[1] F. Baker. “Requirements for IP Version 4 Routers,” RFC
1812 June 1995

[2] A Badlardie, P. Francis, and J. Crowcroft. “Core Based Trees
(CBT): An Architedure for Scdable Inter-Domain Multicast
Routing,” Proceeadings of ACM SSGCOMM 1993

[3] S. M. Bélovin. “ICMP Tracéhadk Messges,” Internet Draft:
draft-bell ovin-itrace 00.txt, March, 200Q

[4] H. Burch and W. Cheswick. “Tradng Anorymous Padets to
Their Approximate Source” Proceadings of 2000 $stems
Administration Conference, Decanber 200Q

[5] K. L. Calvert, M. B. Doar, and E. W. Zegura. “Modeling
Internet Topdogy.” IEEE Communications Magazine 35, 6
June 1997

[6] H.Y.Chang, R. Narayan, S. F. Wu, B. M. Vetter, X. Wang,
M. Brown, J. J Yuill, C. Sargor, F. Jou, and F.
Gong. “ DECIDUOUS: decentrdized source identificaion for
network-based intrusions,” Procealings of the Sixth IFIP/IEEE
Internationad Symposium on Integrated Network Management,
May 1999

[7] S. E. Deaing and D. R. Cheriton. “Multicest Routing in
Datagram Internetworks and Extended LANs” ACM
Transactions On Computer Systems, Vol. 8, No. 2, May 199Q

[8] S.E. Deqing, D. L. Estrin, D. Farinacd, V. Jambson, C. -G.
Liu, and L. Wei. “The PIM Architedure for Wide-Area
Multicast Routing,” IEEEACM Transactions on Networking,
Vol. 4 No. 2. April 1996

[9] P. Ferguson and D. Senie. “Network Ingress Filtering:
Defeding Denial of Service Attacks Which Employ IP Source
AddressSpoding,” RFC 2827, May 200Q

[10] M. G. Gouds, E. N. Elnozehy, C—T. Huang, and T. M.
McGuire. “Hop Integrity in Computer Networks,” Procealings
of the 8th IEEE Internationd Conference on Network
Protocols, Osaka, Japan, November 200Q

[11] S. Kent and R. Atkinson. “Seaurity architedure for the Internet
protocol,” RFC 2401, November 1998

[12] H. Lee ad K. Park. “On the Effectiveness of Probabili stic
Packet Marking for IP Tracebadk under Denid of Service
Attac,” Infocom 2001, Anchorage, Alaska, April 2001

[13] J. Li, J. Mirkovic, M. Wang, P. Reiher, and L. Zhang. “SAVE:
Source Address Vadidity Enforcement Protocol,” UCLA
Technicd Report 010004 2001

[14] B. Halabi. Internet Routing Architedures, Cisco Press 1997

[15] G. Mlakin. “RIP Version 2" RFC 2453 November 1998

[16] G. Montenegro. “Reverse Tunreling for Mobile IP,” RFC
2344 May 1998

[17] K. Park and H. Lee “On the Effediveness of Route-Based
Packet Filtering for Distributed DoS Attadk Prevention in
Power-Law Internets,” Proceelings of ACM SGCOMM 2001

[18] V. Paxson. “End-to-End Routing Behavior in the Internet,”
Procealings of ACM Sgcomm 1996

[19] Y. Rekhter and T. Li. “A Border Gateway Protocol 4 (BGP-
4),” RFC 1771 July 1994

[20] S. Savage, D. Wetherdl, A. Karlin, and T. Anderson.
“Pradicd Network Suppat for IP Tracdadk,” Proceelings of
ACM SSGCOMM 200Q

[21] C. Schube, I. Krsul, M. Kuhn, E. Spafford, A. Sundaram, and
D. Zamboni. “Anadysis of adenial of service atadk on TCP,”
Proc. of IEEE Sympaosium on Sarity and Privacy, 1997

[22] R. Stone. “CenterTrack: An IP Overlay Network for Tradking
DoS Hoods,” 9" USENIX Seaurity Symposium, August 200Q

[23] Computer Emergency Resporse Team. “CERT Advisory CA-
199801 Smurf IP Denial-of-Service Attacks,”
http://www.cert.org/advisories/ CA-199801hm, January 1998

[24] Computer Emergency Resporse Team. “CERT Advisory CA-
200001 Denial-of-Service Developments,”
http://www.cert.org/advisoriess CA-2000-01.him, January 200Q

APPENDIX |. SAVE PROTOCOL PSEUDOCODE

DESCRIPTION

A. SAVE Update Generation Procedure

Procedure generateUpdates(): SAVE update generation
at router R.
Sk router R's source aldress pace

=

Iterate throughthe forwarding table
2 loop
for ead forwarding entry e
<destination prefix, outgoing interfaceoif>

3 if (should_generate SAVE_update for(e))
4 compose SAV E update U:
U — <destination prefix, ASV=<S>,
appendade=true>
5 send U out donginterfaceoif
6 gotoloop

B. Incoming Tree Update Procedure Upon Recept
of a SAVE Update

Procedure updatelncomingTree(U): Incoming tree
update procedure & router R
S the aldress pace aciated with router R
U: anewly recaved SAVE update
U=<$%, ASV, appendale>,
where ASV=<S, S, ..., S>
iif: theincominginterfacethat U arriveson
subtregX): asub-treeof the incoming treethat is
rooted at X
1 [Initiaization when router R boas up]
The treeonly contains the root node that
represents

/* handle S, first */

2 if (S, does not exist in the incoming treg

3 graft S, under the root

4 asciate S, with iif

5 else

6 if (iif # the aurrent interface axciated
with S)

graft subtreqS,) under the root
remap S, to iif

o

[* now handle S, Sv2, - - -,S, S; one by one*/
9 for(i « n-1;i>0;i--)

10 if (§ doesnot exist in the incoming tred
11 graft S under S,

12 ese
13 graft subtregS) diredly under S, (if not)
14 end

C. TheProcessng Procedure of a SAVE Update

Procedure procesdJpdate(U): processng SAVE update
U at router R.
U =<, ASV, appendabe>,
where ASV=<S, S, ..., S> (k=1)
Sk :R’'s ource aldress pace

1 if (Risthelast hopto read every addressin S))
2 return

3 if(S,0(sOsSO...09)) * Uisareplacedle
SAVE upcdkte */
4 return

5 Define set E={forwarding entry e = <S,,, oif > |
S0 && -Oe=<3,, oif > that 05,0 S, }
[* first-level subset-type forwarding entries */
6 foreveryeinE
7 creae aSAV E update:
U, « <S,,ASV, appendade>
8 procesdJpdate(U)) /* processU, */
9 endloop

10 Defineset S — OS,, foral <S,, ..>0E
11 if(S==93)
12 return /*Grea! The entire S is covered using E*/

[* find superset-type forwarding entry with least
coverage of S.*/
13 findf: <S,, oif '> that §.0 § &&
-Ue=<§,, oif >: §, 08,005,
14 if (fisnot found
return

15 if (appendabe) {
16 ASV ~<ASV,S>
I* append S,; ASV=<S,, S,, ..., S, S>*/
17 if (Rhasprocesedf, i.e.drealy generated SAVE
update for f)
18 appendable ~ false
19 }

20 forward U=<S,, ASV, appendale> along ougoing
interfaceoif '

