

AbstractForcing all IP packets to carr y correct source
addresses can greatly help network secur ity, attack tracing, and
network problem debugging. However, due to asymmetr ies in
today's Internet routing, routers do not have readily available
information to verify the correctness of the source address for
each incoming packet.

In this paper we describe a new protocol, named SAVE, that
can provide routers with the information needed for source
address validation. SAVE messages propagate valid source
address information from the source location to all destinations,
allowing each router along the way to build an incoming table
that associates each incoming interface of the router with a set
of valid source address blocks. This paper presents the protocol
design and evaluates its correctness and performance by
simulation experiments. The paper also discusses the issues of
protocol secur ity, the effectiveness of par tial SAVE deployment,
and the handling of unconventional forms of network routing,
such as mobile IP and tunneling.

I. INTRODUCTION

Ensuring that an IP packet carries a correct source address

would be valuable for many purposes. Services that rely on
correct source addresses (congestion control, fair queuing,
source-based traff ic control schemes) would profit. Network
problem diagnosis, now able to locate the possible sources of
a problem, could also be simpli fied.

Moreover, this would assist in solving one of the most
important problems in network security: attackers commonly
forge source addresses to avoid responsibilit y for their
malicious packets. Examples include DDoS attacks [24],
TCP SYN flooding attacks [21], and smurf attacks [23].
Reliably locating the attacker has been diff icult because
defenders cannot easily verify that a packet was indeed sent
by the node specified in its source address.

Existing approaches to handling forged IP source
addresses include:
• Tracing back the source of the forged packets from their

destination with the cooperation of network routers [3]
[4] [20][22]

• Filtering forged packets at the first router encountered on
entering the Internet, which typically has information
about valid source addresses that pass through it (ingress
filtering) [9]

• Filtering forged packets on the basis of forwarding tables
that do not take asymmetries into account [1]

• Using cryptographic authentication, such as IPsec[11]

† This work is funded by NSF under contract number ANI-9980501.

Authors can be contacted at { lijun, sunshine, wangmq, reiher,
lixia} @cs.ucla.edu.

These approaches solve part of the problem, but do not
address all i ssues. In particular, paths through the Internet
are frequently asymmetric. According to [18], a path
through the Internet in 1995 visited different cities in each
direction 50% of the time and different autonomous systems
30% of the time. As a result, the forwarding tables used by
routers to deliver packets are not reliable for determining
where packets come from.

If we had reliable tables at many routers specifying proper
incoming interfaces for source addresses, an attacker’s
choice of forgeable IP source addresses would be sharply
reduced. All improperly addressed packets could be easily
dropped as soon as the forgeries were detected. Attack
tracing tools could also use the knowledge produced by
address validation to determine the possible sources of
attacks.

This table could also be used for non-security purposes.
Reverse path forwarding (RPF) would be more effective if
RPF had this knowledge, for example. Multicasting
protocols that use RPF to build reverse shortest-path
multicasting trees (such as DVMRP [7], CBT [2] and PIM
[8]) could thus build true shortest-path trees.

We present here the Source Address Validity Enforcement
(SAVE) protocol. SAVE runs on individual routers and
builds incoming tables for them, allowing each router to
verify whether each packet arrives at the expected interface.
Although the incoming tables built by SAVE are suitable for
any of the purposes described earlier, when describing
SAVE throughout this paper, we will use the example of
filtering packets with forged source addresses.

The rest of this paper is organized as follows: Section II
discusses the principles underlying the SAVE protocol;
Sections III and IV describe the SAVE protocol in detail;
Section V discusses how SAVE can be secured against
attacks; Section VI presents simulation results on the costs of
running the protocol and demonstrations of its eff icacy;
Section VII addresses the deployment of the SAVE; Section
VIII discusses related work; and Section IX concludes the
paper.

II . DESIGN PRINCIPLES

While a forwarding table specifies the outgoing interface

for a given destination address space, an incoming table
should specify the valid incoming interface for a given
source address space. This similarity suggests that a simple
reversal or slight modification of the existing routing
protocols could yield an effective SAVE protocol. However,
the information needed to construct an incoming table proves
to be inherently different from that used to build a
forwarding table, thus forcing a different protocol design.

SAVE: Source Address Validity Enforcement Protocol†

Jun Li, Jelena Mirkovic, Mengqiu Wang, Peter Reiher, and Lixia Zhang
Computer Science Department

University of Cali fornia, Los Angeles

In a routing protocol, routing updates advertise the set of
destination address spaces that routers can reach and the
properties of the routes used. Each router then uses these
updates and some local preference rules to calculate its best
outgoing interface for each destination address space.

While routing updates are used to calculate the best path,
SAVE updates should be designed to inform routers about
the path that has already been chosen, thus allowing all
routers on the path to a destination to deduce valid incoming
interfaces for specific source addresses.

In the following discussion, we further define the desirable
properties of the SAVE protocol and SAVE updates.

A. Properties of the SAVE Protocol

The SAVE protocol is run by routers in parallel with the

routing protocol. The following properties are desirable:
• Routing protocol independenceSAVE must be modular

and independent of the underlying routing protocol, so
that it can easily run on top of different routing
infrastructures.

• Immediate response to routing changesSAVE should
respond to routing changes immediately to adjust
incoming table entries.

• SecuritySAVE must be secured or attackers could
easily bypass any security it offers; worse, they could
directly use SAVE for certain attacks.

• Incremental deploymentSAVE can only be deployed
incrementally, and should offer benefits with partial
deployment.

• Low overheadSAVE must be lightweight in order to
minimize router overhead and scale well while achieving
its goals.

B. Properties of the SAVE Updates

The following are desirable properties of SAVE updates:
• End-to-end communicationSAVE updates must travel

through the same routers that data packets use to reach
their destination address space in order to create accurate
incoming tables at those routers.

• Aggregation of SAVE updatesSAVE updates should be
aggregated along the route as much as possible to reduce
bandwidth consumption.

• Minimized duplicationSAVE updates should avoid
duplicating any information that is already communicated
via routing updates.

III . OVERVIEW OF THE SAVE PROTOCOL

A. A Quick Overview

The goal of the SAVE protocol is to build a table at each

router that specifies the valid incoming interface for packets
carrying a given source address. Routers use this table to
filter those packets with forged source addresses.

SAVE assumes that each router is associated with a set of
source addresses. All packets from this address space can
only reach some set of destinations via this router. A router

that forwards packets for hosts on a LAN has a source
address space covering addresses of those hosts; a border
router of an autonomous system (AS) handles the source
address space of the whole AS (only for destinations where it
acts as the exit router); and a transit router with no attached
hosts has a source address space consisting of all it s own IP
addresses.

For each entry in its forwarding table, a SAVE router
periodically generates SAVE updates directed toward the
corresponding destination address space, in order to set up
valid incoming interfaces at routers along the route.
Forwarding table changes will also trigger new SAVE
updates. In both cases, an update specifies the originating
source address space and carries the destination address
space. Since SAVE updates arrive on the same incoming
interface as valid IP packets, routers between the source and
final destination can record the legitimate incoming interface
for the specified source address space. SAVE further allows
intermediate routers to piggyback their own source address
spaces on a passing-by SAVE update, thus greatly reducing
bandwidth overhead.

B. Complications

Although the basic SAVE operations seem simple, several

issues complicate the design. Here we discuss three of them:
ensuring SAVE updates follow the same path as valid data
packets, reacting to routing changes, and controlli ng SAVE
bandwidth overhead.

The first issue is ensuring that the SAVE updates follow
the proper paths. A SAVE update is forwarded toward a
destination address space, not a single IP address. The
SAVE protocol must account for all paths toward the
addresses in the destination space. In Fig. 1, if router A only
forwards a SAVE update toward router R, router r will not
learn of the valid path for SB. Instead, the SAVE protocol
needs to generate one SAVE update toward router R, and
one toward router r, to ensure proper information in
incoming tables.

The second issue concerns routing changes. Routing
changes establish new paths from sources to destinations that
need to be validated through SAVE updates. However, not
all routers that should generate SAVE updates will
necessarily experience a change in their forwarding table. In
Fig. 2(a), router D initially chooses router B as the next hop
to reach address space SA. The incoming table of router A is
shown in Fig. 2(b). Assume that due to the failure of link
BD, router D updates its forwarding table so that router C

131.192.0.0/16 1

131.192.136.0/24 2

……
A’s forwarding table

131.192.0.0/16

 131.192.136.0/24

R

r
2

1

A B

SB

U=<131.192.0.0/16,
SB, …>

Fig. 1. An example of SAVE update forwarding.

becomes its next hop to SA. Although D will send a new
SAVE update to SA, indicating to A that packets from SD
should now arrive from interface 2 instead, routers E and F
do not change their forwarding entries to SA and will not
regenerate SAVE updates. As a result, router A will have
stale information about address spaces SE and SF (Fig. 2(c)).

Periodically sending SAVE updates solves the problem
eventually, but not quickly. SAVE handles such routing
changes by employing an incoming tree. Each SAVE router
uses SAVE updates to build the incoming tree, and then
derives its incoming table from the tree. Each node on the
tree represents a specific source address space and is
associated with a specific incoming interface. A child
inherits the same incoming interface as its parent, and thus
all of its ancestors; if a node’s incoming interface is changed,
this change will be applied automatically to all it s
descendents on the tree. Consider router A in Fig. 2. Its
incoming tree before link BD fails is shown in Fig. 3(a),
where SD is the parent of SE, and SE is the parent of SF.
Triggered by routing changes at D, SD’s new SAVE update
will cause A to modify its incoming tree so that SD becomes
the child of SC, and all source address spaces of D, E, and F
will now map to interface 2 (Fig. 3(b)).

The third issue is overhead control. SAVE should allow
an intermediate router to piggyback its own updates to

SAVE updates passing through, but only if the router has not
already sent its own update. This complicates the protocol,
and requires that a SAVE update be marked to indicate
whether it is appendable or not.

IV. PROTOCOL DESCRIPTION

In this section we describe the SAVE protocol. As

depicted in Fig. 4, the main components of the protocol are
generating SAVE updates, processing SAVE updates, and
updating the incoming tree and incoming table based on
SAVE updates. We describe SAVE’s key data structures
and then describe each of the three operations.

A. SAVE Data Structures

SAVE employs three main data structures: the incoming

table, the incoming tree, and the SAVE update. Each SAVE
router has an incoming table and an incoming tree, and
SAVE routers exchange SAVE updates.

The incoming table is maintained at each SAVE router
and contains entries that specify a valid incoming interface
for a specific source address space.

The incoming tree is maintained at each SAVE router and
is used to derive the incoming table. Each tree node
specifies a source address space and is mapped to the valid
incoming interface for that address space. This tree structure
has the following properties:
1. If a SAVE update crosses router A and then router B

before reaching a router R, on R’s incoming tree node
SA will be the child of node SB. Here SA and SB are A’s

Fig. 4. The architecture of the SAVE protocol.

no
final
stop?

yes

generating SAVE updates

processing SAVE updates

SAVE
updates

SAVE
updates

forwarding table incoming table

updating
incoming
tree

SAVE protocol end

(a) The incoming tree at router A
before router D’s routing change

SA

SB SC

SD

SE

SF

1 2

SA

SB SC

SD

SE

SF

1 2

(b) The incoming tree at router A
after router D’s routing change

Fig. 3. Incoming tree example for topology in Figure 1.

Fig. 2. An example topology of routers and their source
address spaces.

After link BD fails, router D changes its route to SA. A SAVE
update is thus triggered at D and sent toward SA, causing
router A to update its incoming table. But E and F do not
detect the routing change, leaving two stale entries about SE
and SF in A’s incoming table.

(b) Router A’s incoming table before
router D’s routing change

source address
space

valid incoming
interface

SB 1
SC 2
SD 1
SE 1
SF 1

source address
space

valid incoming
interface

SB 1
SC 2
SD 2
SE 1 (should be 2)
SF 1 (should be 2)

(c) Router A’s incoming table after

router D’s routing change

(a) A topology example
(SX stands for router X’s source address space.)

SD D A
SA

C

SC

E

SE

F

SF

B

SB

1

2

and B’s source address space, respectively.
2. Each sub-tree directly below the tree’s root is associated

with an incoming interface. All nodes in a sub-tree map
to the same incoming interface. This property makes
building an incoming table straightforward.

Each SAVE update has three fields. The destination
address space field specifies the final destination address
space of this SAVE update. The address space vector (ASV)
records source address spaces on the path that this SAVE
update has traversed. The appendable flag indicates whether
this SAVE update can have more information appended.

B. Generating SAVE Updates

A router generates SAVE updates for each entry in its

forwarding table. If router R has source address space SR
and has a forwarding entry for destination address space D,
the corresponding SAVE update will be: < destination
address space = D, ASV = <SR>, appendable = true >.

This SAVE update will be forwarded along the outgoing
interface specified in the forwarding entry for D. Note that a
SAVE update will be encapsulated inside an IP datagram
whose destination address is randomly chosen from D,
allowing routers not running SAVE to still forward SAVE
updates. (See [13] for a further discussion of compatibilit y
with legacy routers.)

Each SAVE update will cross a series of SAVE routers,
each of which will update its incoming tree (and thus
incoming table) based on the ASV contained in this SAVE
update. The ASV itself will also be updated in transit i f it is
appendable, as ill ustrated later.

Like soft state routing protocols, SAVE supports triggered
updates (when forwarding table entries change) and periodic
updates. The pseudocode in Appendix I.A describes detailed
steps for generating SAVE updates.

C. Updating an Incoming Tree

Upon receipt of a SAVE update, a SAVE router uses the

ASV of the SAVE update to maintain its incoming tree (see
Appendix I.B for a pseudocode description of the algorithm).

The ASV field records the path that the SAVE update has
traversed. Because its purpose is to piggyback address space
information onto a SAVE update, an ASV records an ordered
list of address spaces, not a list of routers. Initially, the ASV
in a SAVE update contains only the origin router’s source
address space. The ASV expands as the SAVE update
crosses intermediate routers; an intermediate router can
append its address space to the SAVE update’s ASV.

In general, if an ASV has the form <S1, S2, …, Sn>, where
Si is the source address space of a SAVE router Ri, the SAVE
update must have originated from R1 and then crossed SAVE
routers R2, R3…, and Rn consecutively (adjacent routers in
this sequence need not be physically adjacent). Any IP
packets from address space Si will cross Ri+1, Ri+2, …, and Rn
(and perhaps other routers beyond Rn) to reach the
destination. (ASV maintenance is discussed further in
Section IV.D.)

To preserve the properties of the tree discussed in Section
IV.A, the incoming tree updating procedure must first ensure
that the ASV will be “grafted” into the tree as an intact

branch, where Si will be the direct child of Si+1. Second, the
procedure must ensure that this branch will map to the
incoming interface that the SAVE update arrived on. Third,
the procedure must ensure that information regarding those
nodes on the tree that were descendents of Si will be updated
to reflect information for node Si; the incoming interfaces of
those nodes depend entirely on how Ri will forward their IP
packets to reach this router.

The tree update procedure therefore parses the ASV in
reverse order (see Appendix I.B), processing the last ASV
element Sn first. If Sn is not yet in the tree, it is grafted
directly under the root; otherwise, if Sn’s existing interface in
the tree is not this update’s incoming interface, the sub-tree
under Sn (not just Sn itself) will be remapped to the new
interface and grafted under the root. For any other element
of ASV, Si (i≠n), given that node Si+1 has just been
positioned into the tree correctly, the whole Si sub-tree can
be relocated directly under node Si+1. This relocation could
map the Si sub-tree to a new interface.

A SAVE router might receive two SAVE updates from
different incoming interfaces concerning the same source
address space. We solve this problem by prioritizing SAVE
updates (refer to [13] for details).

D. Processing SAVE Updates

Upon receipt of a SAVE update, a SAVE router will first

use the update to maintain its incoming tree and table. After
that, this update is further processed to help downstream
routers maintain their trees and tables. SAVE update
processing ensures that the SAVE protocol as a whole
achieves two important goals:
1. Recording the path that the SAVE update has traversed

before reaching a SAVE router
2. Assuring that the SAVE update follows the same path

toward the specified destination address space as do
valid data packets

Items 1 and 2 are addressed below in Section IV.D.1 and
Section IV.D.2, respectively. (Refer to Appendix I.C for the
pseudocode description.)

D.1 Maintaining the address space vector

As stated previously, the ASV field of a SAVE update

records the path that the update has traversed. However, an
ASV does not necessarily record the complete path. If a
router has just initiated a SAVE update toward the same
destination address space as a passing-by SAVE update, it
still appends its own source address space; however, it marks
the appendable field in the passing-by update as “not
appendable.” Thus, all downstream routers will stop
recording their source address spaces into the ASV, but they
will still be able to obtain the complete path information by
combining ASVs from multiple updates, as ill ustrated below.

Assume a downstream router R receives a SAVE update
that originated from R1 (thus called R1’ s SAVE update). Its
ASV is expressed as <S1, S2, …, Sn>, where Si is the source
address space of a SAVE router Ri. If Rn is the SAVE router
immediately preceding R, R1’ s SAVE update to R contains
the complete path information. If that is not the case, the
ASV suggests that an intermediate router Rn has already

initiated a SAVE update toward the same destination address
space. In this case, recording the path information beyond Rn
in R1’ s SAVE update is redundant, since R has already
obtained this information from Rn’ s SAVE update, whose
ASV is < Sn, Sn+1, …>. Any downstream SAVE router after
Rn, including R, can obtain the complete path information by
concatenating the ASV of R1’ s SAVE update and the ASV of
Rn’ s SAVE update. (This can happen recursively on Rn’ s
SAVE update.) Note that this concatenation does not happen
literally; instead, it is implicit because of the incoming tree
update procedure.

D.2 Forwarding SAVE updates

To reach its destination address space, denoted as D-space,

a SAVE update must follow the same path as valid data
packets toward D-space. Following the same path ensures
that the incoming interface of the SAVE update is the same
as the incoming interface for all source address spaces
carried in its ASV field. Thus, regular IP forwarding tables
are used by intermediate routers to forward SAVE updates.

A problem arises when a router does not have a single
forwarding entry that points exactly to the D-space. Due to
forwarding table aggregation, a router could have a
forwarding entry for a sub-area of D-space, or an entry for a
superset of D-space. SAVE handles this as follows:
• For each forwarding entry that specifies a route toward a

sub-area of D-space, a new SAVE update will be created,
which is a duplicate of the original SAVE update except
that the destination address space in the new update will
be set to this sub-area. The new update is forwarded
further according to the corresponding forwarding entry.

• If the combined subset-type forwarding entries do not
cover the whole D-space, the smallest superset
forwarding entry will also be used to forward the SAVE
update, since it would be used for forwarding the valid
data packets toward the uncovered part of D-space.

SAVE updates are forwarded downstream until they reach
the SAVE router that can handle all IP addresses in the
destination address space without further forwarding

D.3 Overhead control

Just as source address spaces should not be appended to a

passing-by update’s ASV if an update has already been sent
for them, updates should not be sent for address spaces that
have been appended to the ASVs of passing-by updates, thus
avoiding further overhead. SAVE also does not forward
replaceable updates. An update is replaceable from the point
of view of a specific SAVE router if each address space
element in the update’s ASV is contained by this router’s
source address space. This router already has produced or
will produce the necessary SAVE updates to carry the
information in replaceable updates. This optimization
matches well with the two-level routing infrastructure of the
Internet: since all packets from an AS to the outside must
cross a border router, and the whole AS space is the source
address space of that border router, those SAVE updates
from within an AS are all replaceable and will not leak
beyond the AS.

E. Correctness of SAVE Address Validation

SAVE’s guarantee of source addresses validity is not

absolute. If an incoming table indicates that a range of IP
addresses comes in on a particular interface on the router, the
router itself has no way of knowing if one of the machines
with an address in that range forged the source address of
another machine in the same range. In a simple case, a
router attached to an Ethernet could not use SAVE methods
to detect one machine on that Ethernet forging the address of
another. The same observation applies to using SAVE for
other purposes.

V. SECURING THE SAVE PROTOCOL

The SAVE protocol builds incoming tables usable for a

variety of purposes, including providing security to the
network. Special care must be taken to secure the SAVE
protocol against malicious attempts to compromise, misuse
or disable the protocol. The SAVE update exchange process
between routers must be protected.

Securing the SAVE protocol is similar to securing a
routing protocol. Just as routing updates must be protected
to allow correct routing protocol operation, SAVE updates
must be protected to allow correct SAVE operation. We
believe that existing and upcoming approaches to securing
routing updates can be leveraged to secure SAVE updates.

Given the above discussion, we suggest that:
• SAVE updates should be exchanged only between

routers, excluding regular hosts. Thus, in order to mount
an attack via SAVE updates, the attacker would need to
compromise some router.

• Routers should establish trust relationships prior to
exchanging SAVE updates.

• Each SAVE update should be signed (or encrypted) to
guarantee its integrity. Replay of SAVE updates must
also be prevented, using standard cryptographic methods.

• The processing (including the authentication) of SAVE
updates should be lightweight to prevent a DoS attack on
the SAVE router. If a SAVE router only communicates
with trusted neighbors and can do so in a lightweight
fashion, DoS attacks will have fewer chances to succeed.

The SAVE protocol also has a correctness issue similar to
that of routing protocolsa compromised router, if
undetected, can severely damage the proper functioning of
the network by sending bogus SAVE updates. Some kind of
simple intrusion detection implemented in routers might help
to counter this problem.

VI. SIMULATION

A. Simulation Design

The SAVE protocol has been implemented and tested in a

custom simulation environment. While we are also working
on SAVE’s actual implementation and evaluation in a
testbed environment, simulation is the best approach to
verify our design early on and to investigate SAVE’s scaling
properties, which would be hard to assess in a limited testbed
environment.

(a) Spoofed packets from packet sender A

0

20

40

60

80

100

0 100 200
packet sequence number

tim
e

(s
ec

)

(b) Spoofed packets from packet sender B

0

20

40

60

80

100

0 100 200
packet sequence number

tim
e

(s
ec

)

(c) Spoofed packets from packet sender C

0

20

40

60

80

100

0 100 200
packet sequence number

tim
e

(s
ec

)

(d) Dropped packets

0

20

40

60

80

100

0 100 200packet sequence number

tim
e

(s
ec

)

Fig. 5. SAVE effectiveness verification.

In this scenario, a DDoS attack is performed from three different machines. Every
packet in the simulation has a global unique sequence number. Figures (a), (b) and
(c) show the pattern of spoofed packets generated at three machines (legitimate
packets are not shown). Figure (d) shows the patterns of packets that are dropped by
SAVE. We can observe that all spoofed packets are dropped.

The goal of the simulation is to verify the effectiveness of
SAVE, analyze the transient behavior of SAVE, and evaluate
the bandwidth and storage cost of SAVE.

In the simulation, all routers run the SAVE protocol in
addition to routing protocols. Corresponding to the two-
level routing infrastructure of the Internet, we used the
transit-stub topology generator from GT-ITM [5] to generate
inter-domain connectivity and intra-domain connectivity.
We simulated BGP [19] for inter-domain routing and RIP
[15] for intra-domain routing. We also introduced
asymmetric routing. The BGP simulation implements the
routing policy recommended by Cisco [14].

B. Simulation Results

We performed extensive simulation experiments to obtain

information related to: (1) whether all spoofed packets can
be successfully detected and dropped, (2) whether valid
packets are dropped erroneously, (3) the transient behavior
of SAVE, and (4) the cost of SAVE.

B.1 Effectiveness verification

To verify the effectiveness of the SAVE protocol, each

simulated packet source generates both valid packets and
spoofed packets that are controlled by two independent
Poisson processes. Spoofed source addresses were randomly
chosen from a pool of all source addresses in the network.
Every router is under an average load condition and every

packet carries a reachable destination address; thus a packet
can only be dropped due to address filtering or a transient
routing inconsistency caused by topology changes.

If SAVE is effective, all spoofed packets should be caught
and dropped, leading to a distribution pattern over time of
dropped packets matching the traff ic generation model of
spoofed packets. This was verified in numerous scenarios
over different topologies, with the presence of asymmetric
routing and dynamic routing changes. We report one such
scenario in Fig. 5.

B.2 Transient behavior of SAVE

When a forwarding table changes and a new route to a

destination address space is set up, there is a transient period
in which the incoming tables are incorrect, due to the delay
of generating, forwarding and processing the triggered
SAVE update. During this time SAVE must adjust every
incoming table along the new route. If a data packet is sent
toward the destination during this period, it can be
erroneously dropped even though it carries an authentic
source address. More accurately, assuming that the
propagation delay of a SAVE update is the same as that of a
valid data packet, the data packet can only be dropped by
mistake if:
1. The data packet is sent while the SAVE update is still

being generated due to a forwarding table change; in this
case, the packet can reach downstream routers earlier
than the SAVE update, and will be validated using the
obsolete incoming information there.

2. The data packet is received at an intermediate router
while the incoming tree and the incoming table are still
being updated using the triggered SAVE update; due to
the obsolete entry in the incoming table, the packet will
be regarded as a spoofed packet.

Given that both windows involve only processing delay
and are fairly short, we expect that few legitimate packets
will be dropped due to stale incoming table entries. In our
experiments we experienced no filtering drops of valid
packets due to routing changes.

B.3 The cost of the SAVE protocol

We measured the bandwidth and storage costs of the

SAVE protocol versus those of routing protocols.
(Theoretical cost analysis and comparison are further given
in [13].)

To measure the storage cost, we compared the size of the
corresponding fast-path data structures: the incoming table
used by SAVE and the forwarding table used by RIP or
BGP. Fig. 6 compares SAVE with RIP for different single-
domain topologies. Fig. 7 compares SAVE with BGP for
different multiple-domain topologies.

The incoming table can be optimized to reduce the storage
cost by leveraging symmetries in network routing. If the
valid incoming interface for a specific address space is
exactly the same as the outgoing interface to reach that
address space, the forwarding table entry that points to this
address space can be used to derive the incoming interface
and validate the source address. Otherwise, a flag can be
added to the forwarding table entry to indicate that the

incoming table must be consulted to determine the correct
incoming interface. The degree to which this optimization
saves storage space depends on the degree of asymmetry
present. Fig. 6 and Fig. 7 show that for reasonable cases the
storage cost of the optimized incoming table can be minimal.

To assess the bandwidth requirements of SAVE, we
compared the triggered and periodic bandwidth cost between
SAVE and routing protocols.

Assuming SAVE updates and routing updates are initiated
with the same frequency, we compared SAVE and RIP in
terms of periodic bandwidth cost over single-domain
topologies. Simulations over different topologies show
similar results (Fig. 8), where 10 different topologies were
measured for each given number of routers. The ratio of
SAVE bandwidth cost versus RIP bandwidth cost is lower
than 1 as the number of nodes in topologies grows beyond
40, suggesting that SAVE has better scaling properties than
RIP. We also measured the per-link bandwidth cost of
SAVE, which varies with topology. Over those single-
domain topologies in Fig. 6, the maximum per-link
bandwidth cost varies from 3.2 to 6.9 kilobytes/sec.

We also compared SAVE bandwidth in multiple-domain
topologies with BGP and RIP combined. Because BGP does
not initiate periodic routing updates, we compared the

bandwidth without periodic transmission of SAVE updates
and RIP updates. The result is shown in Fig. 9. SAVE uses
less than 60% of the bandwidth of the BGP and RIP
combined, in the worst case measured. The maximum per-
link bandwidth cost here varies from 0.6 to 6.4 kilobytes/sec
over the topologies we used in Fig. 7.

To measure the triggered cost, we introduced random link
failures, then compared the bandwidth cost of triggered
SAVE updates with that of triggered routing updates; here,
the routing protocols are BGP and RIP combined in
multiple-domain topologies. The comparison over a specific
simulated topology with a total of 90 routers and 97 links is
shown in Fig. 10. Depending on the topology and the
number and location of failed links, the cost varies for both
SAVE and routing protocols. In most cases, however, SAVE
has lower triggered bandwidth cost than routing protocols.
Topology changes often start a chain reaction of triggered
routing updates; by contrast, not all of these changes lead to
forwarding table changes. Thus SAVE updates are not
always triggered and less bandwidth is consumed.

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100
number of routers

st
or

ag
e

co
st

 (
ki

lo
by

te
s)

incoming table built by SAVE

forwarding table built by routing protocols

optimized incoming table built by SAVE

Fig. 7. Storage cost comparison for multiple-domain topologies.

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100
number of routers

st
or

ag
e

co
st

 (
ki

lo
by

te
s)

incoming table built by SAVE

forwarding table built by RIP

optimized incoming table built by SAVE

Fig. 6. Storage cost comparison for single-domain topologies.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9
number of failed links

tr
ig

ge
re

d
ba

nd
w

id
th

 r
at

io

S
A

V
E

/(
B

G
P

+
R

IP
)

Fig. 10. Triggered bandwidth cost comparison between SAVE and
routing protocols over a 97-link multiple-domain topology
(confidence level: 95%).

0

0.5

1

1.5

2

2.5

10 20 30 40 50 60 70 80 90

number of routers

pe
rio

di
c

ba
nd

w
id

th
 r

at
io

S

A
V

E
/R

IP

Fig. 8. Periodic bandwidth cost comparison between SAVE and RIP
over different single-domain topologies (confidence level: 95%).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

12 24 32 40 52 64 70 80 90

number of routers

ba
nd

w
id

th
 r

at
io

S

A
V

E
/(

B
G

P
+

R
IP

)

Fig. 9. Bandwidth comparison between SAVE and routing protocols
(BGP &RIP) over different multiple-domain topologies
(confidence level: 95%).

Finally, the bandwidth cost incurred by routing protocols
is already quite small compared to data traff ic over the
Internet. For instance, in our simulation, SAVE’s bandwidth
cost per link for a 92-router topology is around 120 bytes/sec
per link, whereas many real routers are capable of handling
traff ic in a much greater magnitude of 10 Gbps or even 100
Tbps. Incurring a bandwidth cost of the same or less
magnitude than routing protocols, SAVE only introduces a
small amount of traff ic into the Internet. SAVE’s benefits
should outweigh this cost.

VII . DEPLOYMENT OF THE SAVE PROTOCOL

A. Partial Deployment

To be of any practical use, SAVE must provide substantial

value even when it is only partially deployed. SAVE must
ensure that incoming tables can still be properly established
and maintained in the presence of legacy routers, which do
not run SAVE. Also, SAVE must handle data packets that
carry source addresses from a legacy router’s address space.

With partial deployment, those packets which carry source
addresses that cannot be found in a router’s incoming table
can be flagged by the router, rather than immediately
dropped. This flag can tell a higher layer (such as transport
or application layer) that special handling is needed. One
possibilit y would be to deliver copies of such packets to an
intrusion detection system near the target address.

If a region’s routers deploy SAVE, one immediate
advantage gained is that the address space of this region will
be recorded in other SAVE routers’ incoming tables, making
the space unlikely to be chosen for spoofed source addresses.
Recall that one typical DoS attack is to put the victim's
address in the source address of TCP SYN packets, causing
the victim to be flooded by SYN-ACK packets. Deploying
SAVE routers protects the local address space from this
attack.

Researchers at Purdue have evaluated partial deployment
of route-based distributed packet filtering (DPF) and
suggested a deployment strategy that decreases the number
of spoofable addresses while minimizing the percentage of
routers performing the filtering [17]. Since route-based DPF
is indeed incoming-table-based filtering, this research is
complementary with the SAVE protocol and directly
applicable to many aspects of SAVE’s deployment. It
suggests that using incoming tables created by SAVE for
source address validation will work well even if only a small
percentage of routers run incoming-table-based filtering. It
also indicates that incoming tables built with partial SAVE
deployment can be useful for traceback.

Partial deployment of SAVE is complex and still has
many open issues. Research continues on this problem.

B. Mobile IP and Tunneling

Some Internet traff ic does not use default routing

behavior, and SAVE must handle such traff ic properly. Such
cases include mobile IP, tunneling, source routing, etc.

Mobile IP potentially conflicts with SAVE in that a
mobile host’s packets, if carrying its home IP address, would

be rejected whenever the mobile host is outside its home
network (since generally it uses a different path to the
destination than the rest of its home network). The reverse
tunneling technique [16], proposed to handle such conflicts
for general address filtering, also works for SAVE. A
mobile host’s packets are first tunneled from a foreign
network back to its home agent, and then forwarded to the
destination; thus, the source addresses of those packets are
valid on each segment of the path. IPv6 requires that a
packet from a mobile host in a foreign network use a care-of
address (an address belonging to the foreign network) as the
packet’s source address, thus also solving the problem.

IP tunneling complicates source address validation. A
packet’s true source address is buried inside a wrapping IP
header that contains the source address of the ingress of a
tunnel, thus the true internal source address can bypass the
validation. Source validation must be performed at the
ingress of a tunnel before a packet enters the tunnel.

In the view of SAVE, there are two different types of
tunnels: those that merely add one level of encapsulation
(and perhaps also IPsec for a secure tunnel), which follow
the same route as regular data packets, and those that deviate
from the regular routing path. The latter type fundamentally
bypasses the routing protocol (source routing has the same
problem). To accommodate this case, routers at the
endpoints of a tunnel can send out special-purpose SAVE
updates to build correct incoming table entries.

VIII . RELATED WORK

Much network security research has focused on applying

cryptographic operations in order to guarantee authenticity of
packet information. IPsec is one representative at the IP
layer [11]. A packet’s authenticity can be guaranteed by
signing or encrypting it. However, the high computation
overhead of cryptographic operations prevents such
approaches from being widely employed per packet. The
hop integrity approach proposed in [10] uses a lighter-weight
signing technique, but it has to be deployed on a per-hop
basis; thus each router that needs to forward a packet must
incur extra overhead for cryptographic operations.

Other research addresses IP spoofing through both
preventive approaches and reactive approaches. Filtering is
a preventive approach. Tracing is primarily reactive.

Reference [1] proposes a general filtering approach where
many fields, including but not limited to source address, can
be used for filtering. Martian address filtering is required in
order to discard packets if their source addresses are special
addresses (loopback address, broadcast address, etc.) or are
not unicast addresses.

Forwarding-table-based-filtering is one possible approach
to validating source address. It assumes that the outgoing
interface that a router uses to reach a given address, as
specified by its forwarding table, is also the valid incoming
interface for packets originating from that address.
Unfortunately, routing asymmetry on the Internet is common,
invalidating this assumption and causing many legitimate
packets to be dropped. As a result, this feature is often
disabled since it leads to erroneous packet dropping when
asymmetric paths are used.

Ingress filtering proposed in [9] ensures that packets
leaving the domain of a periphery router have a source
address from inside the domain, and packets entering have an
outside source address, effectively providing a special-
purpose incoming table only at network ingress. However,
research has shown that unless ingress filtering is deployed
almost everywhere, nearly arbitrary forgery is still possible
[17]. Further, this approach offers no help in providing
address assurance for any other purposes.

Route-based distributed packet filtering suggested in [17]
studied benefits of such filtering for attack prevention and
traceback, and partial deployment strategies (Section VII .A).

Packet tracing has been widely studied [3] [4] [20] [22].
Tracing IP packets with forged source addresses requires
complex and often expensive techniques to observe the
traff ic at routers and reconstruct a packet’s real traveling
path [20]. Tracing becomes ineffective when the volume of
attack traff ic is small or the attack is distributed [12].
Moreover, tracing is typically performed after an attack is
detected, possibly too late to avoid damage.

Network intrusion detection has also studied approaches to
localize an attacker. For instance, DECIDUOUS
dynamically builds IPsec security associations to reveal the
location of attacking sources [6]. However, to do this a
victim running DECIDUOUS must detect the intrusion first.
Network topology information is also required.

IX. CONCLUSION

Up to this point packet delivery over the Internet has been

solely based on destination-address-directed forwarding.
Attackers have exploited this to forge source addresses in
their malicious packets to disguise their identities. Yet,
without the knowledge of what source address a packet
should carry when it arrives, routers cannot filter out attack
packets. Asymmetric network routing, which became
common over the years, also raised the need for an incoming
address table in order to support IP multicast routing
protocols.

Today’s Internet requires correct, reliable, secure
incoming tables at all routers that need them. The SAVE
protocol is the first practical step in making it possible to
build such tables. We have demonstrated that the protocol
produces correct incoming tables at reasonable costs,
comparable to or less than the costs of creating routing
tables. We believe that the functionality of incoming tables
justifies this cost.

If for no other reason, incoming tables are already of clear
value in handling the alarmingly rapid growth in the use of
forged IP source addresses on attack packets. Both manual
and automated responses to network attacks will be easier if
the defenders have confidence that the packets bear a correct
address, or at least an address on the same network as the
attacking machine. The incoming tables built by the SAVE
protocol can offer such assurance.

We believe that the incoming tables built by SAVE will be
equally useful for many other purposes, some of which
cannot be foreseen today. We will continue to improve the
protocol and investigate its utilit y.

ACKNOWLEDGMENT

The authors would like to thank Mark Yarvis, Gregory

Prier, and Janice Wheeler for their input on various aspects
of this work. Our thanks also to the anonymous reviewers of
this paper.

REFERENCES

[1] F. Baker. “Requirements for IP Version 4 Routers,” RFC

1812, June 1995.
[2] A Ballardie, P. Francis, and J. Crowcroft. “Core Based Trees

(CBT): An Architecture for Scalable Inter-Domain Multicast
Routing,” Proceedings of ACM SIGCOMM 1993.

[3] S. M. Bellovin. “ ICMP Traceback Messages,” Internet Draft:
draft-bellovin-itrace-00.txt, March, 2000.

[4] H. Burch and W. Cheswick. “Tracing Anonymous Packets to
Their Approximate Source,” Proceedings of 2000 Systems
Administration Conference, December 2000.

[5] K. L. Calvert, M. B. Doar, and E. W. Zegura. “Modeling
Internet Topology.” IEEE Communications Magazine 35, 6
June 1997.

[6] H. Y. Chang, R. Narayan, S. F. Wu, B. M. Vetter, X. Wang,
M. Brown, J. J. Yuill , C. Sargor, F. Jou, and F.
Gong. “ DECIDUOUS: decentralized source identification for
network-based intrusions,” Proceedings of the Sixth IFIP/IEEE
International Symposium on Integrated Network Management,
May 1999.

[7] S. E. Deering and D. R. Cheriton. “Multicast Routing in
Datagram Internetworks and Extended LANs,” ACM
Transactions On Computer Systems, Vol. 8, No. 2, May 1990.

[8] S. E. Deering, D. L. Estrin, D. Farinacci, V. Jacobson, C. –G.
Liu, and L. Wei. “The PIM Architecture for Wide-Area
Multicast Routing,” IEEE/ACM Transactions on Networking,
Vol. 4 No. 2. April 1996.

[9] P. Ferguson and D. Senie. “Network Ingress Filtering:
Defeating Denial of Service Attacks Which Employ IP Source
Address Spoofing,” RFC 2827, May 2000.

[10] M. G. Gouda, E. N. Elnozahy, C.–T. Huang, and T. M.
McGuire. “Hop Integrity in Computer Networks,” Proceedings
of the 8th IEEE International Conference on Network
Protocols, Osaka, Japan, November 2000.

[11] S. Kent and R. Atkinson. “Security architecture for the Internet
protocol,” RFC 2401, November 1998.

[12] H. Lee and K. Park. “On the Effectiveness of Probabili stic
Packet Marking for IP Traceback under Denial of Service
Attack,” Infocom 2001, Anchorage, Alaska, April 2001.

[13] J. Li, J. Mirkovic, M. Wang, P. Reiher, and L. Zhang. “SAVE:
Source Address Validity Enforcement Protocol,” UCLA
Technical Report 010004, 2001.

[14] B. Halabi. Internet Routing Architectures, Cisco Press, 1997.
[15] G. Mlakin. “RIP Version 2,” RFC 2453, November 1998.
[16] G. Montenegro. “Reverse Tunneling for Mobile IP,” RFC

2344, May 1998.
[17] K. Park and H. Lee. “On the Effectiveness of Route-Based

Packet Filtering for Distributed DoS Attack Prevention in
Power-Law Internets,” Proceedings of ACM SIGCOMM 2001.

[18] V. Paxson. “End-to-End Routing Behavior in the Internet,”
Proceedings of ACM Sigcomm, 1996.

[19] Y. Rekhter and T. Li. “A Border Gateway Protocol 4 (BGP-
4),” RFC 1771, July 1994.

[20] S. Savage, D. Wetherall , A. Karlin, and T. Anderson.
“Practical Network Support for IP Traceback,” Proceedings of
ACM SIGCOMM 2000.

[21] C. Schuba, I. Krsul, M. Kuhn, E. Spafford, A. Sundaram, and
D. Zamboni. “Analysis of a denial of service attack on TCP,”
Proc. of IEEE Symposium on Security and Privacy, 1997.

[22] R. Stone. “CenterTrack: An IP Overlay Network for Tracking
DoS Floods,” 9th USENIX Security Symposium, August 2000.

[23] Computer Emergency Response Team. “CERT Advisory CA-
1998-01 Smurf IP Denial-of-Service Attacks,”
http://www.cert.org/advisories/CA-1998-01.html, January 1998.

[24] Computer Emergency Response Team. “CERT Advisory CA-
2000-01 Denial-of-Service Developments,”
http://www.cert.org/advisories/CA-2000-01.html, January 2000.

APPENDIX I . SAVE PROTOCOL PSEUDOCODE
DESCRIPTION

A. SAVE Update Generation Procedure

B. Incoming Tree Update Procedure Upon Receipt
of a SAVE Update

C. The Processing Procedure of a SAVE Update

Procedure generateUpdates(): SAVE update generation
at router R.

 SR : router R’s source address space

1 Iterate through the forwarding table
2 loop:
 for each forwarding entry e:
 <destination prefix, outgoing interface oif>
3 if (should_generate_SAVE_update_for(e))
4 compose SAVE update U:
 U ←<destination prefix, ASV=<SR>,
 appendable=true>
5 send U out along interface oif
6 goto loop

Procedure updateIncomingTree(U): Incoming tree
update procedure at router R

 SR: the address space associated with router R
 U: a newly received SAVE update
 U = < SD, ASV, appendable>,
 where ASV=<S1, S2, …, Sn>
 iif : the incoming interface that U arrives on
 subtree(X): a sub-tree of the incoming tree that is

rooted at X
1 [Initialization when router R boots up]
 The tree only contains the root node that

represents SR

/* handle Sn first */
2 if (Sn does not exist in the incoming tree)
3 graft Sn under the root
4 associate Sn with iif
5 else
6 if (iif ≠ the current interface associated
 with Sn)
7 graft subtree(Sn) under the root
8 remap Sn to iif

Procedure processUpdate(U): processing SAVE update
U at router R.

 U = <SD, ASV, appendable>,
 where ASV=<S1, S2, …, Sk> (k≥1)
 SR : R’s source address space

1 if (R is the last hop to reach every address in SD)
2 return

3 if (SR ⊇ (S1∪S2∪…∪Sk)) /* U is a replaceable

SAVE update * /
4 return

5 Define set E={ forwarding entry ei = <SDi, oif i> |
 SDi⊂ SD && ¬∃ ej=<SDj, oif j> that SDi⊂SDj⊂ SD }
 /* first-level subset-type forwarding entries * /
6 for every ei in E
7 create a SAVE update:
 Ui ← <SDi , ASV, appendable>
8 processUpdate(Ui) /* process Ui * /
9 end loop

10 Define set S ← ∪SDi, for all <SDi, …>∈E
11 if (S == SD)
12 return /*Great! The entire SD is covered using E* /

/* find superset-type forwarding entry with least

coverage of SD* /
13 find f: <SD′, oif ′> that SD′ ⊇ SD &&
 ¬∃ ej=<SDj, oif j>: SD′ ⊃SDj⊇SD
14 if (f is not found)
 return

15 if (appendable) {
16 ASV ←<ASV, SR>
 /* append SR; ASV=<S1, S2, …, Sk, SR> * /
17 if (R has processed f, i.e.already generated SAVE

update for f)
18 appendable ← false
19 }

20 forward U=<SD, ASV, appendable> along outgoing

interface oif ′

/* now handle Sn-1, Sn-2, . . ., S2, S1 one by one */
9 for (i ← n-1; i > 0; i--)
10 if (Si does not exist in the incoming tree)
11 graft Si under Si+1

12 else
13 graft subtree(Si) directly under Si+1 (if not)
14 end

