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ABSTRACT

End-host multicast alleviates the deployment hurdle of IP
multicast by building a transport level overlay for data de-
livery to all members in a multicast group, but at the perfor-
mance penalty of higher network resource usage and higher
latency in data delivery. In this paper we present a sys-
tematic approach to reducing latencies between members of
an end-host multicast group. Latency reduction is achieved
by adding links to an existing overlay network. We have
developed several local heuristics to enable individual mul-
ticast group members to add new links as needed. We show
that, using these local heuristics, data delivery by an end-
host multicast overlay can achieve a latency from 30% over
to 2.5 times that of native IP multicast, depending on the
structure of the underlying physical topology. Our results
are applicable to any end-host multicast protocols, either
tree-based or mesh-based. A protocol based on these heuris-
tics, called TMesh, has been developed. TMesh can be used
in conjunction with any of the existing tree-based protocols
to shorten the latency per node pair. It can support large
end-host multicast groups with relatively low overhead.

1. INTRODUCTION

Twenty years after its introduction, IP Multicast [1] is
still not ubiquitously available on the Internet. Recent ef-
forts to provide multicast delivery have thus shifted on to
end-host multicast which builds a transport-layer overlay
network between members of a multicast group. There is
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a rich literature on the design, implementation, and evalua-
tion of various protocols for end-host multicast, for example,
BTP [2], HMTP [3], Hypercast [4], Narada [5], and Yoid
[6]. End-host multicast avoids the deployment hurdles of IP
Multicast at the cost of higher data delivery latencies, as il-
lustrated in the example network in Fig. 1. Nodes A, B, C,
D, and E in Fig. 1 are members of a multicast group, nodes
R1, R2, and R3 are routers in the network, and the dashed
lines connecting the nodes are physical links. The arrows
in Fig. 1(a) illustrate how IP multicast would forward data
sent by C to the other members of the group. Fig. 1(b)
shows a possible end-host multicast overlay where members
B, C, and FE are connected to member D, and member A
is connected to member B.! For C to multicast a packet to
the group, it forwards the packet to D, which forwards it to
B and E; at B the packet is further forwarded to A. The
right hand graph of Fig. 1(b) shows the overlay without the
underlying physical network. Comparing Figs. 1(a) and (b),
it is clear that data delivery using end-host multicast expe-
riences longer delays than native IP Multicast delivery. For
example, the latency from C to A on the overlay network is
extended at least by the round-trip times between R3 and
D and between R1 and B. Fig. 1(c) shows an even less effi-
cient overlay where multicast packets from C to A traverse
D, E, and B before reaching A. This example shows that
latencies between members in an end-host multicast overlay
depend largely on the quality of the overlay built.

Existing end-host multicast protocols can be categorized
into tree-based and mesh-based protocols by the type of
overlay they build. A tree is an overlay where there is a
single path between any node pair, while a mesh may sup-
port more than one path between any node pair. BTP,
HMTP, and Yoid are examples of tree-based protocols. Be-
cause a tree overlay is an acyclic graph, if any non-leaf mem-
ber leaves the multicast group or crashes, the tree is parti-
tioned and members in one partition will not be able to
communicate with members in the other partition. Tree-
based approaches thus require partition detection and re-
covery mechanisms. A mesh-based overlay, on the other
hand, has redundant connectivities among group members,
thus is less likely to get partitioned. However, the exis-
tence of redundant connectivities requires members to run a
routing algorithm to construct loop-free forwarding path(s)
between members. Narada and Hypercast are examples of
mesh-based protocols. Narada uses a path vector algorithm

!We assume “connections” on end-host multicast overlays
to be bi-directional unicast connections, either as reliable
TCP connections or connectionless UDP sessions.
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Figure 1: IP Multicast vs two end-host multicast overlays

for routing on the overlay. Hypercast assigns a logical ad-
dress to each member. This logical address encodes routing
information from which the next forwarding hop towards
the destination can be obtained. Unless underlying physical
network latencies are taken into account in the construc-
tion (and reconstruction) of the overlay, routing by logical
addresses can result in long latencies between node pairs.

Although partition is less likely to happen on a mesh over-
lay, it is not impossible. In particular, members must avoid
forming isolated cliques. Omnce an efficient tree-based over-
lay is formed, on the other hand, multicast packets can be
forwarded along the tree without the further aid of a rout-
ing algorithm. Unfortunately, latencies between node pairs
on a tree-based overlay are likely to be suboptimal. In the
multicast tree shown as solid lines in Fig. 2, for a packet
sent by E to reach H, it must first travel up to the root
of the tree (R) and then down the other side of the tree to
H. If we add an extra link between A and C, shown as the
dashed line in the figure, data delivery between E and H
is shortened by one hop. Paths between other members on
the tree would also benefit from this extra link; in general,
the distance between the subtree rooted at C' and the sub-
tree rooted at A is shortened by one hop. Adding a few
extra links to a multicast tree may result in an overlay with
lower latencies between members. We call these extra links
“shortcuts,” a tree with shortcuts a T'Mesh, the process of
adding shortcuts to a tree the TMesh optimization process,
and the protocol for adding shortcuts the TMesh protocol.
Fig. 3 shows an example TMesh.

Compared to a tree-based multicast overlay, a TMesh pro-
vides shorter latencies between members in the group. It is
also more robust against partitioning as it provides redun-
dant connections between members. During tree reconstruc-
tion, after a member leave for example, nodes can switch
parent without any packet loss. Compared to a mesh-based
overlay, partition detection is much easier in a TMesh. As
long as the tree “skeleton” is maintained, the graph is guar-
anteed connected. While mesh-based approaches require
“refresh” messages to be periodically sent over the whole
mesh to detect partitioning, a TMesh only needs to detect
partitioning of the tree, thus reducing partition detection
overhead. Furthermore, for multicast groups with a small
number of senders, TMesh can be used without running a
routing algorithm.

Our experiments show that a TMesh can reduce latencies
between node pairs even when shortcuts are selected ran-
domly. Careful selections of the shortcuts allow a TMesh to
achieve an average node-pair latencies from 30% over to 2.5
times that of native IP multicast, depending on the struc-
ture of the underlying physical topology. Obviously TMesh

optimization is useful only if it can operate in a distributed
manner. Each node must decide for itself which shortcuts
to add to the tree. In Section 3, we evaluate the gain in
node-pair latencies achievable with several simple heuristics
for shortcut selection. While a number of works have been
published on various end-host multicast overlay construc-
tion protocol, we are not aware of any work that system-
atically investigates the effect of adding new links to the
overlay to reduce node-pair latencies. In Section 4 we show
that TMesh optimization can be used in conjunction with
the tree-based Yoid end-host multicast protocol to achieve
lower node-pair latencies. We also evaluate the performance
of TMesh with various group sizes. We see consistent per-
formance improvement in all cases. Since a TMesh is but a
mesh “grown” from a spanning tree, the heuristics we pro-
pose for shortcut selection can be equally applied to other
mesh-based overlays. In section 6, we summarize our work.

2. PERFORMANCE GAIN OF TMESH

Before delving into the details of shortcut selection heuris-
tics, we want to be more specific in the potential perfor-
mance gain afforded by TMesh. In particular, since a TMesh
is but a mesh, we want to know how it compares with exist-
ing mesh-based overlays such as Narada. The main perfor-
mance metric we adopt in this paper, given that the focus
of our study is on node-pair latency achieved under various
overlays, is the Average Relative Delay Penalty (ARDP). As
defined in [5], Relative Delay Penalty (RDP) is the ratio of
the latency D] ; between a node pair ¢ and j on the overlay
to the latency D; ; between them on the physical network.
ARDP is then the average RDP between all node pairs:

1 N N D
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where N is the number of members in the multicast group
(nodes in the overlay). The smaller the ARDP, the closer
node-pair latencies on the overlay are to latencies on the
physical network. If the overlay were a full mesh and all
members were directly connected to each other, the ARDP
would be 1. Fig. 4 shows that not only does TMesh achieve
lower latency per node-pair than tree-based overlays such as
HMTP and Yoid, it also achieves lower node-pair latencies
than Narada, which is a mesh-based protocol. The numbers
reported in the figure were obtained from simulations on a
4,000-node topology generated using the Inet-3.0 topology
generator [7]. The z-axis shows that the multicast overlays
built range in size from 50 to 1,000 members. For each
membership size, for each overlay construction protocol, we
run the simulation ten times, with different set of nodes
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Figure 4: ARDP performance of various overlays.

selected as members, and report the average ARDP on the
y-axis. In addition to ARDP, we also look at the 95%-tile
RDP in Section 4.

The overlays built by HMTP and Yoid are trees, con-
sisting of N — 1 links, whereas the number of links in an
overlay built by Narada depends on the settings of vari-
ous parameters used with the protocol (see below). Fig. 4
shows that node-pair latencies on the HMTP trees are 21%
to 26% lower than those on Yoid trees. While both HMTP
and Yoid try to minimize the latency between each node and
the root of the tree through tree reconfigurations,? HMTP
incorporates several heuristics to recognize and avoid local
minima in the tree construction process (see [3]).> Never-
theless, HMTP cannot achieve the same node-pair latencies
as Narada, which uses more than N — 1 links on the over-
lay. The node-pair latencies on HMTP trees are 6% to 24%
higher than those on Narada overlays. For the TMesh results
reported in Fig. 4, we added a number of links (shortcuts)
to trees constructed by HMTP. Links are added between
nodes chosen randomly with uniform probability. The total
number of links in the resulting TMesh is the same as that
on the Narada overlay. The figure shows that our simple
TMesh overlay with random shortcuts reduces node-pair la-
tencies by 11% to 26% compared to those on the original
HMTP trees. More interestingly, the figure also shows that
node-pair latencies on the simple TMesh are 5% to 11%
lower than those on Narada overlays!

Nodes running Narada periodically pick a random non-
neighbor member and calculate the utility of forming a link
to that member. The utility of a link (u,v) to node u is
defined to be the reduction in distance® between node u

%We waited until the trees stabilize before collecting the
numbers reported here.

3A local minima arises for example when a node fails to
switch to a parent closer to the root that has already reached
its node degree limit, which in turn prevents the node from
sin)ritching to other parents even closer to the root (see [2,
3)]).

“41n all simulation results reported here, the distance between
two nodes are the Euclidean distance between the nodes on

Tree links

Figure 3: An example overlay built by TMesh.

and all other nodes on the overlay if the link is added to the

overlay:

Dl(uaj) — D”(U,j)
D(wj)

utily ((u,v)) = )

JjEG

(2)

where G’ is the set of nodes in the overlay, D'(u, j) the dis-
tance between u and j without (u,v) on the overlay, and
D" (u,j) the distance with (u,v). When distance or path
vector routing algorithm is used to route packets on the
overlay, u can simply compute util, ((u,v)) by obtaining v’s
routing table. If the utility of a potential link is above a
threshold value, the link is added to the overlay. Following
[5], we use a utility threshold of N/6 to add a link. Narada
also defines a consensus cost metric. Links with consensus
cost below a threshold is dropped from the overlay.® Again,
following [5], we use N/12 as the consensus cost threshold.
To study whether different settings of these threshold val-
ues would negate the relative performance gain of TMesh
over Narada, we also compare TMesh against what we call
“Greedy Narada.” With Greedy Narada, instead of pick-
ing potential neighbors at random, each node computes the
utilities of all N —1 links between itself and all other nodes
on the overlay. Links are added in decreasing utility un-
til the resulting overlay has the same number of links as in
the corresponding Narada overlay under study. Similarly, to
drop a link under Greedy Narada, the link with the lowest
global consensus cost is dropped first. Due to the compu-
tation costs incurred, we do not expect Greedy Narada to
be practically deployable, we include it here to approximate
the minimum node-pair latencies achievable with the Narada
protocol. Fig. 4 shows that our simple TMesh can achieve
lower node-pair latencies even compared to Greedy Narada.

Comparing the node-pair latencies on Narada, Greedy
Narada, and TMesh w/Rand, it is clear that some short-
cuts can lower the ARDP more than others. In the next
section, we correlate several locally measurable characteris-
tics of a shortcut to the eventual gain in ARDP when the
shortcut is added to the overlay.

3. SHORTCUT SELECTION

How would a node decide which shortcut to add to the
overlay? For a given overlay, we compute off-line, in a cen-
tralized manner, assuming detailed knowledge of the global
overlay structure, the effect of each potential shortcut on
overall node-pair latencies. We do not expect a scalable end-
host multicast protocol to perform similar computations on-
line. Hence we next try to correlate locally measurable char-
acteristics with the computed reduction in node-pair laten-

the simulated plane.

"Whereas the utility of a link is computed relative to each
node incident to it, a single consensus cost is computed for
the link based on its usefulness to both nodes incident to it.



Figure 5: Example of link selection.

cies attributable to each shortcut. From these correlations
we propose a set of heuristics for shortcut selection.

The effect of a shortcut on overall node-pair latencies de-
pends to a large extent on the structure of the overlay topol-
ogy. Fig. 5 shows a simple sample topology. Consider the
two potential shortcuts L1 and L2 depicted in the figure.
Assuming shortest path routing on the overlay, adding L1
reduces the shortest path between four node pairs (CD, AD,
BC, and AB) by one hop each. Adding L2 reduces the
shortest path between two node pairs (AD and BC) by one
hop each, and between one node pair (AB) by three hops.
L2 reduces the shortest path lengths between fewer node
pairs than L1, but the AB node pair sees larger reduction.
The ARDP metric accounts for both number of node pairs
with reduced path lengths and the size of the reductions.
When two shortcuts are added to an overlay, the resulting
reduction in ARDP is unfortunately not the sum of the re-
ductions when each of them is added singly. After the first
shortcut is added, adding the second shortcut may not re-
sult in as big a reduction in ARDP as when it was added
without the first shortcut.

For a tree overlay with N nodes, there are N(N —1)/2 —
(N —1) = (N - 1)(N —2)/2, or O(N?), potential short-
cuts and 2V DV =2)/2 [ogible combinations of shortcuts.
Even taking node degree limit into account and assuming
that each node can add only one or two shortcuts on aver-
age, we are still looking at O(2") possible combinations of
shortcuts, which is simply beyond our computing power to
simulate, for any meaningfully large N. Instead, we study
the effect of adding each link in isolation.® Starting with an
initial overlay, we add one extra link to it, and compute the
reduction in ARDP due to this single shortcut. Then we
remove the link, add another one, and compute the ARDP
reduction brought on by this other shortcut. We continue
in this vein for all O(IV?) potential shortcuts. In computing
ARDP reduction, we use incremental Dijkstra shortest path
first (SPF) algorithm [8]. We experiment with group sizes
ranging from 50 to 1,000 members, with the members ran-
domly distributed with uniform distribution on a 4,000-node
random topology generated using the Inet-3.0 topology gen-
erator.” For each group size, we run ten simulations with
varying member sets and different initial overlays. All the
numbers reported in the remainder of this paper are from
this set of simulations.

The experiment described above provided us with an ARDP
reduction value for each potential shortcut. We next try to
correlate locally measurable characteristics with reduction
in ARDP. We look at two locally measurable characteristics
already introduced in the previous section: RDP gain and
link utility.

8In Section 4 we look at several sample paths of adding
multiple links.

"We have also conducted experiments on 6,000- and 8,000~
node topologies, the results are comparable and are not in-
cluded due to space constraints.

3.1 hRDP

Recall that RDP (Relative Delay Penalty) between two
nodes is the ratio of the latency between the nodes on the
overlay over the latency on the underlying physical network.
When a shortcut is added between the two nodes, the RDP
between the two nodes on the overlay becomes one. The
original RDP between the two nodes before the shortcut
addition is thus the RDP gain of the shortcut. When a
shortcut is added, it can be incorporated into the shortest
paths of multiple node-pairs, depending on the outcome of
the Dijkstra SPF computation. Hence the RDP gain of a
shortcut is not necessarily linearly correlated with the over-
all ARDP gain.

Fig. 6 plots the RDP gain of a shortcut against the over-
all ARDP improvement when the shortcut is added. The
numbers are averaged from ten simulations with overlay size
of 600 nodes. The ARDP improvements are small because
we are only looking at the effect of adding a single link to
the overlay. The figure shows the importance of the initial
overlay. The HMTP overlay avoids local minima in the tree
construction process. As evident in Fig. 4, HMTP’s overlays
already have lower ARDP than Yoid’s overlays even with-
out TMesh. When the initial overlay does not avoid local
minima in the construction process, each individual shortcut
can not improve ARDP by a large amount. For well con-
structed initial overlay, there is a clear correlation between
RDP gain and ARDP gain.

From the above results, one can form the heuristics to add
only shortcuts with RDP gain above a certain threshold (we
call this heuristics ARDP). Fig. 7 shows how many potential
shortcuts (y-axis) have a given RDP gain (z-axis). Even
for the HMTP overlay, there are more than 10,000 potential
shortcuts with RDP gain larger than 10. To calculate the
RDP between nodes v and v, node u needs to measure both
its latencies to v on the physical network and on the overlay.
Latency on the physical network can be obtained using ping
or by querying a distance estimation service such as IDMaps
[9]. Latencies between a source and its receivers on the
overlay can be measured by the use of timestamps, after
taking clock synchronization into account. For tree-based
protocols in which each node retains a root path (the path
of the node to the root on the tree), such as HMTP and
Yoid, latencies on the overlay between two members can
be computed simply by merging the two root paths. We
will briefly discuss some practical implementation issues in
setting the appropriate threshold value in Section 5.

3.2 hutil

In addition to hRDP, one can also form a heuristics similar
to Narada’s: add only shortcuts with average utility above
a certain threshold (we call this heuristics AUtil). The av-
erage utility is simply the utility computed in Eq. 2 divided
by the number of destinations. Recall that the utility metric
captures how much closer the shortcut can bring nodes inci-
dent to it to all destinations. By design, each node running
Narada computes the shortest paths to all other nodes using
a path vector algorithm. In TMesh, the initial skeletal tree-
based overlay ensures that the overlay is not partitioned. If
the application using the overlay does not require low la-
tencies between all node pairs, shortcuts can be added to
reduce latencies only to data senders. Each node (acting as
receiver) maintains its distance information to all potential
senders; utility of a shortcut (u, v) is computed only between
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a node (u) and potential senders:
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where S is the set of sender nodes.

Data delivery on the per-sender tree can be done by flood-
ing on-tree neighbors. Such “receiver-based” shortcut con-
struction process is possible in TMesh because links on over-
lays are bi-directional application-level connections. Simi-
lar to PIM sparse mode [10], each sender on TMesh starts
out sending data on the underlying tree skeleton of TMesh.
When the sending rate of a source goes above a thresh-
old, receivers can start adding shortcuts to the overlay for
that sender. When the sending rate of a source drops below
the threshold, shortcuts to it can be automatically removed.
Sources that send below this threshold can continue to use
the tree skeleton.

3.3 ARDP Corréation

Fig. 8 shows the correlation between the locally computed
average utility against ARDP improvements from ten simu-
lations of 600-node overlays. The figure shows average util-
ity computed when only 3 of the 600 nodes are senders, 10%
of the nodes are senders, 25% of the nodes are senders, or
all of the nodes are senders. In all cases, the ARDP im-
provements are computed between all node pairs, not just
between senders and other members. As with hRDP, we
see that each shortcut can only achieve a small ARDP gain
when the initial tree does not avoid local minima during the
construction process. Fig. 9 further shows that there are
more potential shortcuts with higher average utilities in the
HMTP case than in Yoid’s case. The more surprising result
apparent from Fig. 8 is how shortcuts that improve average
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Figure 7: The number of shortcuts with different
RDP gains.
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Figure 9: The number of shortcuts with different
average utility.

utility to a small number of senders achieve the same over-
all ARDP gain as shortcuts that improve average utility to
all nodes! Since senders are selected randomly, a shortcut
that improves average utility to far away senders already
provide maximal improvement in overall ARDP. From data
not presented here, we note that when there are only a small
number of senders, the maximum and minimum ARDP im-
provements are further from the mean than when there are
a larger number of senders.

4. EVALUATION OF HEURISTICS

We showed in the previous section that locally measured
RDP gain and average utility of a shortcut can be good in-
dicators for its overall ARDP gain. In this section we evalu-
ate the performance gain of these heuristics in constructing
a TMesh. In particular, while we consider the ARDP gain
of individual shortcut in the previous section, in this section
we look at the performance gain of a TMesh as a whole,
after multiple link additions. We use the same simulation
scenarios used throughout this paper. In addition, we limit
the degree of each node to ten. Of these, only six are allowed
to connect to on-tree neighbors, the other four can only be
used to form shortcuts. Each node add as many “qualified”
shortcuts as its free degrees allow. A shortcut is considered
“qualified” if either its RDP gain or average utility is above
certain threshold, depending on the heuristics employed.

We briefly discuss some practical issues related to the set-
ting of these thresholds in Section 5. For the simulations
reported here, based on data presented in the previous sec-
tion, we set the RDP gain threshold in the hRDP heuristics
to VN, where N is the group size. For the hUtil heuris-
tics, we assume 10% of the members are senders and set
the average utility threshold for adding shortcuts to 1/8. In
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addition to ARDP, we evaluate the performance of TMesh
along several other metrics: 95%-tile RDP, node degree dis-
tribution, link load, and protocol overhead. We also run
several simulations on a router-level Internet topology.

4.1 Multiple Shortcuts

Fig. 10 shows that TMeshes grown with the various non-
random heuristics roughly achieve similar ARDP gain with
each other for group sizes larger than 300. The figure also
shows that TMeshes achieve lower ARDP than both Narada
and “Greedy Narada”. Fig. 11 shows the number of links
used in the various meshes. We added as many random
shortcuts in “TMesh w/Rand” overlays as necessary such
that they have the same total number of links as the cor-
responding Narada and “Greedy Narada” overlays. “TMesh
w/hRDP” uses fewer number of links than “T'Mesh w/Rand,”
which explains why it cannot achieve as low ARDPs as
“TMesh w/Rand” for overlays with less than 150 nodes,
as shown in Fig. 10. “TMesh w/hUtil (10% Senders)” uses
more shortcuts in its meshes than “TMesh w/hUtil (100%
Senders),” which explains why it can achieve lower ARDP
than the latter.

From Figs. 6 and 8, we know that each individual short-
cut does not provide as much gain in ARDP when the initial
tree was built using Yoid. These figures also show that in
Yoid’s case, adding shortcuts based on their average utilities
does not provide as much improvement in average ARDP as
adding shortcuts based on their RDP gains. Fig. 12 bears
out these observations. In all cases, we add as many short-
cuts as necessary such that TMeshes built from Yoid’s trees
(“YoidTMs”) have the same number of total links as the cor-
responding Narada’s overlays. An interesting observation is
that even though each individual shortcut contributes only
a minuscule improvement to average ARDP, in aggregate,
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Figure 11: The number of links used in different
overlay schemes.
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they provide quite a significant improvement in ARDP to
Yoid-based TMeshes, as can be seen from Fig. 12.

In the previous section, we attributed the difference in per-
formance between Yoid-based and HMTP-based TMeshes
to the quality of the initial trees. Since “I'Mesh w/hRDP”
reduces the RDP between nodes incident to the shortcuts,
it practically “corrects” cases where the tree fell into local
minima in the tree construction process. Hence we see that
“YoidTM w/hRDP” achieves lower ARDP than “YoidTM
w/hUtil.” To further emphasize the crucial role of the initial
tree from which TMeshes are grown, we show in Fig. 13 the
performance of TMeshes when the initial trees are randomly
generated (“RandTM?”). In all cases, they do not perform as
well as Narada’s overlays, not even as well as YoidTMs. The
efficient HMTP trees maintained inside the TMeshes play a
crucial role in TMeshes’ performance, which also explains
the performance gain of TMesh over Narada even though
the heuristic hUtil is practically what Narada uses in form-
ing its overlays.

Figs. 14 and 15 show the CDF (Cumulative Distribution
Function) and 95%-tile of RDP in the various overlays. The
CDF's were computed from simulations with 600-node over-
lays. These figures provide a more complete picture of the
performance gain afforded by the different overlays.

4.2 Node Degree Distribution and Link Load

Fig. 16 shows the node degree distribution in 600-node
overlays constructed using the various construction processes.
In all cases, the node degree limit is 10. Using TMesh, 65%
to 70% of nodes have degree less than 3. Nodes with high
degrees consume more resources. The larger number of low
degree nodes in TMesh means that content providers can
engineer their overlays and place well provisioned nodes on
the network to serve as high degree nodes.
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Figure 16: Node degree distribution.

When a node has a higher degree on the overlay than its
number of physical connections, at least one of its physical
connection will see multiple copies of the same data sent on
the overlay. We call this the link’s load. Link load of one
means the physical connection sees only one copy of data
sent on the overlay. Fig. 17 shows the distribution of link
loads from ten simulations of 600-node overlays built with
Narada. In each simulation, we pick one random node to
serve as a data source and count how many copies of data
sent traverse each physical link used to form the overlay. A
routing algorithm is implemented on the overlay and data
is forwarded through source-rooted shortest paths on the
overlay. The figure also shows the link load distribution
when unicast delivery is assumed. With unicast delivery,
the source sends a copy of the data to each member directly
using a separate unicast connection. The maximum link
load in the unicast case is 597 (not shown), due to nodes
having multiple physical connections. The maximum link
load on TMesh is about half that of Narada.

4.3 Protocol Overhead

We categorize protocol overhead into two types: routing
overhead and tree maintenance overhead. We do not con-
sider packet header overhead as it does not have to be very
different between protocols. Assuming that TMesh uses the
same path vector algorithm used on Narada, Fig. 18 shows
that the cost to maintain path vectors to all nodes (“100%
Senders”) on a 600-node TMesh overlay can be as high as 2.3
Mbits per update, comparable to the overhead on Narada.
(The figure shows the routing overhead incurred by each
node in descending order.) When receiver-based shortcut
construction is employed (see Section 3), with only 10% of
the nodes acting as senders, maximum routing overhead can
be cut to about 233 Kbits per update.
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Figure 15: 95%-tile RDP of various overlays.
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Figure 18: Routing overhead of each node running
TMesh.

In Table 1 we show the overhead per second for both rout-
ing and tree construction/maintenance for various overlay
construction mechanisms. The original Narada assumes all
nodes are potential data sources. We also show the overhead
when only 10% of nodes are potential sources, under a mod-
ified Narada and under TMesh implementing the hRDP and
hUtil heuristics. The modified Narada keeps only distance
information to the 10% of nodes that are potential sources.
This modified Narada is included here only for rough com-
parison purposes. A deployable version would need a par-
tition detection mechanism added, which will increase the
overhead. In our simulations we use a routing update period
of 15 seconds. Shortcuts are added in TMesh only after a
member has remained connected to a parent for 45 seconds
without switching. A member checks for better shortcuts
every 30 seconds, which is doubled after every two shortcut
additions.



[ Group size | 50 [ 100 [ 150 [ 200 | 400 | 600 | 800 [ 1000 ]
Narada (100% Senders) 2.590 | 4.243 | 5.261 | 6.031 | 15.084 | 21.443 | 26.626 | 29.748
Narada (10% Senders) 0.012 | 0.033 | 0.065 | 0.106 0.373 0.732 1.168 1.566
TMesh w/hUtil (10% Senders) 0.009 | 0.022 | 0.037 | 0.058 0.178 0.349 0.573 0.818
TMesh w/hRDP (10% Senders) | 0.008 | 0.018 | 0.032 | 0.048 0.163 0.359 0.593 0.876

Table 1: Protocol overhead (Kbps).

4.4 |Internet Topology

We construct a router-level topology of a large ISP from
traceroute results. The traceroutes were initiated from 50
sites on the Internet to 200,000 IP addresses (see [11] for a
detailed description of the topology construction process).
The resulting topology contains 1,426 nodes. We run ten
simulations for each overlay construction process on this
topology. For each simulation, we randomly pick 200 nodes
to serve as members of an end-host multicast group, the
maximum node degree limit is set to 8. The resulting ARDPs
are: 1.76 (Narada), 1.38 (TMesh w/hRDP), and 1.26 (TMesh

w/hUtil, 10% senders). The 95%-tile RDPs are: 3.93 (Narada),

2.5 (TMesh w/hRDP), and 1.99 (TMesh w/hUtil). The pro-
tocol overhead are 0.37 Kbps (Narada, 10% senders), 0.248
Kbps (TMesh w/hRDP) and 0.178 Kbps (TMesh w/hUtil).

5. IMPLEMENTATION ISSUES

As with other network protocols, efficiency and scalabil-
ity are some of the key goals in TMesh protocol design. We
stipulate that each node running TMesh does not need to
keep a full member list and that shortcut addition must be
made by each node independently, based on locally measur-
able characteristics.

As described in Section 3, only shortcuts whose RDP gain
or average utility is above certain thresholds are added to
TMesh. Higher thresholds mean only links with high poten-
tial to reduce ARDP significantly are added to the TMesh.
However, higher thresholds also mean that fewer links will
qualify for addition, which unfortunately could lead to the
TMesh having too few shortcuts. In general, two factors
should be considered in setting shortcut selection threshold
values:

Node degree limit: A shortcut can be added only if both
nodes incident to it still have a free degree. The implication
being that not all shortcuts with potential gains/utilities
above threshold could actually be added. For example, to
build a TMesh overlay with 3N links, we would need about
2N shortcuts. If we rank all potential shortcuts in descend-
ing order and set the threshold at the 2N-th cut off point,
we could very well end up with less than 2N shortcuts on
the TMesh because not all of them could be added due to
node degree limit.

Group size: It is more likely that we will see large latencies
between members on large overlays than on small overlays.
When TMesh is used with the hRDP heuristics, if the RDP
gain threshold is set too low, relative to the group size, one
could end up with a large number of shortcuts with values
above the threshold. (For the hUtil heuristics, the computa-
tion of a shortcut’s average utility already takes group size
into account.)

6. CONCLUSION

In this paper we presented a systematic study on corre-
lating locally measurable characteristics of a link with the
potential reduction of node-pair latencies in host-based mul-
ticast data delivery. We proposed a protocol called TMesh
that can be used in conjunction with any existing tree-based
host multicast protocol to reduce node-pair latencies. We
showed that, even with randomly selected shortcut links,
TMesh achieves lower ARDP than Narada. Our simula-
tion results also indicated that the initial topology used in
growing TMesh has a critical effect on achievable ARDP. In
particular, it is important that the protocol used to built
the underlying tree avoids local minima in the construction
process. Furthermore, we showed that adding shortcuts to
a small number of far apart nodes can achieve most of the
performance gain of having shortcuts to a large number of
close-by nodes.
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