
A Comparative Study of the DNS Design with
DHT-Based Alternatives

Vasileios Pappas
Computer Science Department

UCLA
Email: vpappas@cs.ucla.edu

Dan Massey
Computer Science Department

Colorado State University
Email: massey@cs.colostate.edu

Andreas Terzis
Computer Science Department

Johns Hopkins University
Email: terzis@cs.jhu.edu

Lixia Zhang
Computer Science Department

UCLA
Email: lixia@cs.ucla.edu

Abstract— The current Domain Name System (DNS) follows
a hierarchical tree structure. Several recent efforts proposed
to re-implement DNS as a peer-to-peer network with a flat
structure that uses Distributed Hash Tables (DHT) to improve the
system availability. In this paper we compare the performance
and availability of these two designs, enabled by caching and
redundancy in both cases. We show that the caching and
redundancy mechanisms in each design are closely bound to its
system structure. We further demonstrate that each of the two
system structures provides unique advantages over the other,
while each has its own shortcomings. Using analysis and trace-
driven simulations, we show that hierarchical structure enables
high performance caching and that DHT structures provide high
degree of robustness against targeted attacks. We further show
that the current DNS design offers engineering flexibilities which
have been utilized to optimize system performance under typical
Internet failures and traffic loads, and which can be further ex-
tended to overcome DNS weaknesses against the aforementioned
attacks.

I. INTRODUCTION

The Domain Name System (DNS) [11] is a large-scale,
hierarchical, distributed database spanning over a large number
of administrative domains, providing indispensable naming
services to the Internet. Its lean and extensible design has
enabled it to meet unforeseen demands twenty years after
its initial deployment. Despite all the successes, however, a
number of operational issues have risen recently including
configuration errors [13] and denial of service (DoS) attacks
[1]. These problems have motivated proposals (e.g. [3], [15]) to
re-implement DNS as a peer-to-peer network using Distributed
Hash Tables (DHTs) [16], [17]. The rationale is that the ability
of DHTs to self configure can eliminate misconfigurations,
while their flat structure can withstand denial of service
attacks.

Our goal in this paper is to compare the current DNS
to DHT-based designs. We choose service availability and
performance as the comparison metrics because all Internet
applications desire short lookup times and high availability
from DNS. We ground our comparison by using Chord [17]
as a representative of DHT designs in our comparative study.
However we claim that the results are general enough to be
applicable to other DHT-based designs.

Both the existing DNS and proposed DHT-based alternatives
employ the same two general mechanisms to improve their
availability and performance: redundancy and caching. The
similarities however end there; the specific realizations of these

mechanisms are entirely different. Our thesis is that these
realizations are closely bound to the structure of each system,
that is they are applied to complement the distinctive properties
of the hierarchical and flat structures. The end result is that
the same mechanisms result in different behaviors, reflective
of each system. This thesis is validated through analysis and
trace-driven simulations, in which we show that DNS and
DHTs exhibit distinctive behaviors that lead to respective
advantages and disadvantages.

More specifically, we show that the current DNS structure
with an average node degree of 2.57, is as resilient to random
node failures as a Chord structure with an average node
degree of 28 and roughly the same path length distribution
as DNS. Conversely, Chord is proven to be more resilient to
orchestrated attacks. Its failure rate is almost the same as in
the case of random failures, whereas in DNS the failure rate
under attacks is considerably higher when compared to random
failures. Both observations are attributed to the fact that the
deployed DNS is an engineered system in which higher level
nodes are more important and thus wider replicated, whereas
in DHTs with a flat structure all nodes have the exact same
role and weight.

We also show that the performance of the two systems,
measured as the number of application layer hops, has com-
pletely different properties. In contrast to previous studies [3],
that attributed the poor performance of DHT-based DNS look
up systems to long path lengths, our results show that that
the dominant factor is cache effectiveness, rather than path
length. For instance, there are cases where the performance
of passive caching in Chord can deteriorate when the average
path lengths decrease. Only when the global popularity of a
record increases then its cache hit rate improves. In contrast,
DNS cache performance is a function only of the local query
distribution, i.e the traffic generated locally at each caching
server, and benefits highly from the ability to cache the DNS
structure.

In summary, our comparative study offers the following
results: A DHT-based name look up system outperforms DNS
only in terms of its resilience to orchestrated attacks. Under
random node failures, the DHT-based system can provide
availability comparable to the current DNS only when its node
connectivity degree is high (one order of magnitude higher
than DNS), which consequently leads to higher maintenance
overhead. Moreover, our results show that DNS cache per-



formance outperforms passive caching in DHTs. Furthermore,
achieving comparable cache performance in a DHT requires
additional mechanisms, such as the proactive caching proposed
in [15], which however generate additional overhead.

II. IMPACT OF STRUCTURE ON

PATH REDUNDANCY AND CACHING

We compare DNS and DHTs using two metrics: perfor-
mance and availability. We measure performance by counting
the number of application-level servers visited while answer-
ing a query 1. We chose this metric because it captures the key
design features of the two systems. Although other factors,
such as the response time of individual servers, also impact
the performance of a name look up system, those factors can
be addressed without any design changes. On the other hand,
the number of hops is an intrinsic function of each system.
We measure availability based on the system’s static resiliency
[5], i.e. the ability to resolve queries in the presence of failures
while no recovery mechanism is active. While such recovery
mechanisms will significantly improve a system’s availability,
our goal is to capture the fundamental properties of a system’s
structure.

While both DNS and DHTs rely on redundancy and caching
to improve performance and availability, they implement the
two mechanisms differently due to the underlying structural
differences. DNS is a hierarchical tree, while DHTs use a flat
structure. In the remainder of this section we provide a brief
summary of each system and compare the implementation and
effectiveness of redundancy and caching in the two systems.

a) DNS Background: Scalable management of the Inter-
net’s large and continuously expanding namespace is achieved
via a distributed hierarchy in which separate administrative
entities manage different portions of the DNS tree. The basic
DNS management unit is called a zone, which covers a
continuous subtree in the DNS namespace. Each zone can
delegate parts of its namespace to children zones; there are no
limitations on either the number of a zone’s delegations or the
depth of the tree. The hierarchical Internet namespace maps
to a tree of zones, with the root zone at the top. Each zone
provides a set of redundant servers, each of which can provide
authoritative answers to all the data stored in the zone. Thus
a zone’s data is available as long as any of the authoritative
servers is available. DNS uses a generic data structure, called a
resource record (RR), to store all the naming information. The
Name Server (NS) RR provides the authoritative servers for a
zone, and it is stored both at the parent and the child zone.
DNS queries are generated by stub resolvers implemented in
all the hosts. A stub resolver sends DNS queries to a local
caching resolver which performs iterative look-ups to generate
the reply that is eventually returned to the end client.

b) Chord Background: Chord nodes lie on a one-
dimensional cyclic identifier space [0, . . . , 2m] on which the
distance between identifiers A and B is calculated as the
clockwise numeric distance from A to B on the circle. A

1In the rest of this paper we use “number of servers” and “number of hops”
interchangeably. Note that the latter means application-level server hops, and
not IP-level router hops.

node with identifier (ID) x in a Chord ring of N nodes,
maintains pointers, i.e. fingers, to logN neighbors where the
ith neighbor is the node closest to x + 2i on the circle. If
the base of the ring is extended from 2 to b, the number of
neighbors per node increases to (b−1)logbN . Moreover, each
node maintains an additional table with sequential neighbors
(i.e. its successor nodes) to improve the resilience of the ring
structure. A Chord-based DNS system maps DNS resource
records (RRs) to nodes by first hashing the name of each
record to a value in [0, . . . , 2m], the key for the record, and
then assigning the RR to the node υ with the next larger ID.
To provide high availability in the presence of node failures,
the same RR is replicated across a fixed number of nodes
which succeed node υ in the ring. Note that in the Chord-
based DNS each node serves both as an authoritative server
and as a caching resolver, thus we refer to them as servers or
simply nodes in the rest of the paper.

A. Redundancy

While a cursory inspection of the deployed DNS system
might suggest that only a single look-up path exists between
the root of the tree and the destination domain, this is not
the case in reality. Each “node”, i.e. zone, in the DNS tree
is served by multiple servers. Because each of the redundant
servers provides exactly the same pointers towards the desti-
nation, a resolver may use any of the servers at each level, that
is its look-up path can be any of P =

∏
i Ri total number of

paths, where Ri is the the number of servers at level i.
In Chord, as well as in other DHTs, path redundancy is

achieved by providing redundant connectivity between DHT
nodes. Each node has a set of neighboring nodes, and a subset
of one’s neighbors leads towards each destination. A query is
forwarded to one neighbor among the subset, preferably to
the one that is closest to the destination. It has been shown
that Chord can provide (logN)! paths between any two nodes,
where N is the number of nodes in the system [5], whereas
other DHT designs provide limited or no choice of next hop
nodes.

The design choices made by DNS and Chord lead to
two important differences. First, a DNS query will reach the
destination as long as any working path exists (e.g. at least
one server of each zone in the path is reachable). In Chord, a
node may fail to reach a destination even when a valid path
exists. For example, a node may have two neighbors which can
help forward a query, with the first one leading to a “dead-
end” after a few hops, while the second leads to a viable path
to the destination. The query will fail if it is forwarded to the
first neighbor even though a working path exists. We will show
later in the paper how this query forwarding scheme affects
the availability of DHTs. Broadly speaking, DNS utilizes all
the existing redundancy, while DHTs do not fully explore the
underlying redundancy.

The second important difference stems from the fact that in
DNS, all queries for the same zone follow the same logical
path, i.e. the same sequence of zones, and vary only in the
choice of server at each zone; in particular, all queries start
from the root zone, making it of critical importance to the



availability of the entire system. In contrast, DHT queries for
the same destination that originate from different nodes follow
different paths, which tend to merge only when they approach
the destination. Consequently, servers for the root and TLD
zones are more important than others in DNS, while nodes in a
DHT system are more or less equally important. This equality
among nodes is both an advantage and a liability. One can
easily improve the overall availability of DNS by increasing
the number of redundant servers serving important zones. In
fact, the root zone, important TLD zones, as well as most
popular domains, have been engineered with highly redundant
servers; the level of server redundancy tends to decrease for
zones at lower levels in the DNS hierarchy. However it is
impossible to apply similar engineering adjustments to DHT-
based systems. At the same time, the top level zones in DNS
are an obvious target for malicious attacks, while it is not
immediately clear how to effectively attack a DHT system.

B. Caching

Caching greatly improves the performance and availability
of DNS. In addition to caching user query replies, a unique
feature of caching in DNS is that resolvers also cache the
information about the servers (NS RRs) for all the zones
visited during a query resolution. For example, to answer
a query for www.cs.foo.edu, a resolver obtains the server
information for 3 zones: edu., foo.edu., and cs.foo.edu.. The
resolver can handle a subsequent query for ftp.cs.foo.edu by
directly contacting one of cs.foo.edu. zone servers if the zone’s
NS RRs are still in the cache; even a query for www.ee.foo.edu
can start with one of foo.edu. servers. Because DNS queries
follow a top-down search, in general resolvers have the root
and popular TLD server NS RRs cached locally almost all the
time.

In a DHT-based name lookup system, individual nodes can
also cache data obtained from query replies. However because
each name is hashed to a unique key in a flat space, and
each node has a different next hop in forwarding queries, there
is no concept of NS records or common servers that can be
cached. When a node issues a query, the query must traverse
the whole path to reach the destination. A DHT-based system
uses recursive queries and allows en-route caching of records.
After a record has been resolved, all the intermediate nodes,
that forward the record back to the querying node, can store a
local copy. Thus, subsequent queries for the same name that
cross any of the nodes with cached copies can be answered
immediately. As a result, the number of hops needed to resolve
a query is decreased. This type of caching also improves
availability. If the query crosses a node with a cached reply,
the record is retrieved even if some subsequent servers along
the path (or the destination itself) are unavailable.

Since both DNS and DHTs cache replies until the TTL
expires, the probability that a record can be found in a
node’s local cache should be roughly the same. However
the behavior, and hence the performance, of the two systems
are rather different when a cache miss occurs. In DHTs, the
node sends the query towards the destination, which either
reaches the destination or reaches an intermediate node along

the query path which has cached the record. The probability
of encountering a cached record at intermediate nodes is a
function of the record’s global popularity and other system
parameters that determine how likely and where the different
paths to the destination may meet. Conversely, a DNS resolver
uses its cached NS records to expedite queries in the event
of a cache miss. Following the example used in the previous
paragraph, even when a query for mail.cs.foo.edu does not find
the corresponding record in the local cache, the NS records for
cs.foo.edu may be present. Or if the NS records for cs.foo.edu
are not present, the NS records for foo.edu may be present.
As a result, the effectiveness of DNS caching depends only on
the popularity distribution of local queries to a resolver, and
is independent of the queries generated by other nodes.

Caching also helps improve the availability of both systems.
In case of a cache hit, data can be retrieved even if the path
to the authoritative servers or the authoritative server itself
are not available. In case of a cache miss, caching in DNS
and DHTs enables different availability “modes”. Caching in
DNS improves path availability. For example, if all of the root
zone servers become unavailable and thus the query path is
partitioned, a resolver can still access different subtrees of the
namespace, especially those of local interest, by using their
NS records in the cache; the resolver fails only if all the
authoritative servers of a destination zone are unavailable (data
availability). Caching in DHTs does not shorten the query
path, although it is possible to retrieve a record if it happens
to be cached at intermediate nodes on the path, even when all
the destination servers failed.

III. METHODOLOGY

We use a combination of analysis and simulation to compare
the two systems based on the following metrics:

• Data Failure rate: The percentage of queries that fail
because all replicas that store the queried record are not
available.

• Path Failure rate: The percentage of queries that fail to
find a path between the querying node and any of the
replica destination nodes, when at least one replica node
is available.

• Path Lengths: The number of server hops needed to
resolve a query. Unresolved queries are not counted in
this case.

A. DNS Traces

We have collected a set of DNS packet traces. We use these
traces both directly for a measurement analysis, and indirectly
by feeding them to a trace-driven simulator. Our DNS traces
were collected by capturing DNS traffic between three local
caching resolvers in a university campus and the Internet.
Thus, the traces include all transactions between the resolvers
and the DNS servers and exclude any exchanges between the
local stub-resolvers and the caching resolvers.

Table I provides the key characteristics of these traces.
The first three rows correspond to traces captured at three
different caching resolvers, while the last one is the sum
of the above three. All traces are 12 days long. The table



Name Start End Total Total Successful Unique All Zipf-law α
Date Date Queries Replies Questions Records Zones parameter

Trace 0 04/27/04 05/09/04 2,152,836 1,916,055 1,160,639 250,388 80,094 0.8622
Trace 1 04/27/04 05/09/04 1,681,524 1,356,120 719,430 218,664 78,612 0.7527
Trace 2 04/27/04 05/09/04 713,217 621,030 250,127 96,606 38,847 0.7095

All Traces 04/27/04 05/09/04 4,547,577 3,893,205 2,130,196 390,416 119,432 0.9365

TABLE I

STATISTICS OF THE COLLECTED DNS TRACES.

shows the total number of requests sent and replies received
by the caching servers. Only the queries that resulted in
successful responses were used in our measurement analysis
and trace-driven simulation. We derive the total number of
unique resource records from the successful queries for which
we receive at least one reply (either positive or negative).

B. Trace-driven Simulation

We implemented a trace-driven simulator for DNS as well
as Chord [17]. In both cases, we feed the simulator with the
sequence of queries that appear in each packet trace. In this
way, we are able to reproduce a realistic resolver workload
and maintain the exact timing of the queries. Furthermore, we
are able to preserve the exact mapping between DNS records
and TTL values. Although synthetically generated traces can
provide the same distribution of queries and TTL as in a
real trace, they cannot preserve the mapping between query
popularity and corresponding record TTL values.

1) DNS Simulation: The DNS simulation runs as follows:
We collect all the zones that appear in each of the traces
and build an exact image of the resulting DNS tree in our
simulator. For each zone we preserve the number of author-
itative servers as shown in the trace data by looking at the
authoritative section of each reply. We ignore any potential
misconfigurations that might have reduced the actual number
of available authoritative servers [13].

After building the DNS tree structure, the simulator issues
the exact queries that appear in the trace, preserving both
the sequence and the specific timing for all the queries. The
simulator runs in two different modes: I) Caching-disabled,
where every query starts from the root zone and traverses the
whole tree hierarchy to reach the destination zone server which
replies back with an authoritative answer. II) Caching-enabled,
where the local resolver can use previously cached records to
speed up lookups. We use these two modes to separate the
effect of redundancy and caching on the availability of DNS.

Finally, we consider two types of failure: physical failures
(i.e. node crashes and uncorrelated network failures), and
failures due to orchestrated malicious attacks. Physical failures
are simulated by disabling a random set of DNS servers, and
malicious attacks are simulated by disabling a selected set of
servers. We assume the attacker can knock down the most
important nodes of the DNS tree structure (e.g. root and top-
level domain servers) to cause maximal damages.

2) DHT Simulation: The DHT simulation works as follows:
First, the simulator initializes a Chord ring for a given number
of nodes. In our simulation the network size ranges from 1024
to 65536 nodes and the base of the ring is either 2, 4 or 8. After
the initialization phase, we assign every resource record from

the DNS trace, to the appropriate node in the DHT system,
and then replicate the record in the neighboring nodes, based
on the degree of replication. We experimented with 3, 5 and
7 replica nodes (counting the original one).

Again, the DHT trace-driven simulator runs in two modes:
I) Caching-disabled, in which all queries are issued by the
same node in the DHT system, and query replies are not
cached by the intermediate nodes. As in the case of DNS,
queries are issued by preserving their sequence and their
specific timing. II) Caching-enabled, in which intermediate
nodes cache the answers for the queries that they forward
according to the TTL values appeared in the DNS traces. We
use a number of additional clients to populate the intermediate
node caches in this mode. The locations of these participating
nodes are randomly selected, their queries follow the same
popularity distribution as derived from the DNS traces, with
the sequence and timing randomly distributed. In this way we
avoid synchronizing the queries generated from all the nodes
while maintaining the same query distribution. Only one of
the nodes, the one used for collecting the results, follows the
inter-query timing as appears in the DNS traces.

Similar to DNS simulations, two types of failures are
considered here. Physical failures are simulated by failing a
set of randomly selected nodes; the set of failed nodes is
different for each query. Failures caused by malicious attacks
are simulated by failing the nodes occupying a continuous
block of the identifiers space.

C. Discussions

Before presenting our results, we highlight some of the de-
sign choices made in our simulation and analysis methodology.

1) Recovery Mechanisms: We did not implement any of
the recovery mechanisms to repair stale routing table entries
in DHTs after node failures, so that we can measure the static
resiliency [5] of the DHT system, rather that the availability
with all the possible recovery mechanisms utilized. We chose
to do so for the following two reasons. First, the degree of
static connectivity shows how resilient the structure of each
system is, and thus it indicates how necessary an adaptive re-
covery mechanism would be. Second, it allows us to do a direct
comparison between the DNS and the DHT systems, because
the former does not have an adaptive recovery mechanism.
This does not mean that such a mechanism cannot be added to
the current DNS when it is considered necessary. For example,
DNS anycast could be considered as an adaptive mechanism
against failures, though we do not evaluate its impacts on DNS
availability, for the same reasons that we do not consider the
impacts of recovery mechanisms on DHTs.



2) Node Failure Model: Our simulator uses a simple node
failure model which assumes that servers fail randomly. This
model is considered adequate for physical nodes failures (such
as node crashes or reboots), or even network connectivity
failures. However this model does not capture failures due to
configuration errors which may lead to correlated failures. For
example, measurements showed that a significant percentage
of the DNS zones have all their servers placed in the same
network [13], hence a single network failure can make all the
servers of a zone unavailable. This observation relates only to
the DNS system, as DHT-based systems are supposedly free
from configuration errors.

In addition, our simulator does not use a realistic distribution
model for the servers’ down-times. Instead, all failed servers
become available again after a short period of time in the order
of tens of seconds. Failures and recoveries happen more or less
instantaneously, thus queries that are issued closely spaced
in time and follow the same query paths may still encounter
different set of failed servers. However we believe that both
issues have negligible impact on our results and findings, for
the following reason: Although a realistic failure model could
provide more accurate failure rates for both systems when
deployed in a real environment, the main goal of this paper is
a comparative evaluation of the two systems under the same
setting to identify the relative advantages between each other,
rather than providing accurate measures for their performance
and availability in actual deployment.

3) Client Record Popularity: It is well-known that the
distribution of DNS query popularity follows Zipf’s law [8].
This observation leads to the following question: Do queries
generated by different caching resolvers follow the same
distribution? In other words, can we assume that the popularity
ranking of a given query is the same across different resolvers,
and consequently is the same when one aggregates queries
from a large set of resolvers?

In [12] we show that record popularity differs considerably
across caching resolvers even when they serve the same user
population. Naturally one would expect resolvers serving dif-
ferent user populations to have even less overlap in their query
popularity distribution. In our DHT trace-driven simulations,
however, we assumed that all the nodes, i.e.. caching resolvers,
follow the same query distribution. Thus, it is likely that
our simulation results provide an optimistic estimation of
DHTs cache performance. Nevertheless our simplified query
distribution model still allows us to identify the upper bound of
cache performance in a DHT-based system without proactive
caching.

IV. ANALYTICAL MODEL

We start our evaluation by presenting analytical models for
system availability as a function of node failure rate and for
the effect of caching on the performance of both systems.

A. Availability Analysis

Let’s assume a query distribution where Qi is the percentage
of queries that require i application hops to be resolved. In
addition, let’s assume that at each hop j there are Rj nodes

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100
DHT and DNS Path Failure Rate

Failed Nodes (%)

Fa
ilu

re
 R

at
e 

(%
)

DHT (Tree)
DHT (Ring)
DNS

Fig. 1. Analytical results on the path failure rates of DNS, Chord
and Tree based DHTs.

on average that can be used in order to forward a query to the
next hop, and that the maximum path length is L. If all nodes
fail independently and with a uniform probability P , then the
failure rate Fi for a query of length i is:

Fi = Fi−1 + (1 − Fi−1)PRi , F0 = 0 (1)

Thus, the average path failure rate for the system is:

F =
L∑

i=1

FiQi (2)

Equation 2 shows that the failure rate increases as the path
length increases, or when Ri decreases. Figure 1 shows the
path failure rate for DNS, by using the same distribution of
path lengths and number of redundant servers that appear in
our DNS packet traces. The path failure rate for Chord and
for a tree-based DHT are also shown on the same graph. For
the Chord protocol we don’t account for sequential neigh-
bors, given the analytical model cannot capture this system
parameter. These analytical results match the simulation results
presented later, as well as results from previous studies [5], and
they confirm our reasoning about the importance of the higher
level nodes in DNS tree: Even if the average node degree in
DNS is considerable lower than in the Chord structure, 2.57
and 13 respectively, its overall availability is higher, given that
the most important nodes have a higher degree of connectivity
than the typical nodes.

B. Cache Performance Analysis

Previous studies have modeled the behavior of DNS caching
for queries that are issued from stub-resolvers to a local
caching server [7]. In contrast, our goal is to model the
behavior of caching in DNS for queries issued by the local
caching server to authoritative servers. In other words, we
model the effectiveness of caching for queries that have a local
cache miss. Similarly, we model the behavior of DHT caches
for the same type of queries, since cache hits can also be
modeled by the methodology presented in [7].

a) DNS Cache Performance : As we explained in Sec-
tion II-B, the effectiveness of caching in DNS critically
depends on the caching of NS records. These records are



locally stored only when caching servers receive specific types
of replies. Next, we classify replies based on their ability to
contribute to the caching of NS records for a specific zone:

• Type I: Replies for records contained in a zone. These
replies contain, apart from the actual answer, the zone’s
NS records. Thus, whenever a server receives such
replies, it can insert or even refresh the zone’s NS records
in the local cache.

• Type II: Replies about non-existing records. These replies
cannot directly refresh the zone’s NS records, since NS
records are not included in the reply.

• Type III: Replies that are referrals to a child zone. We
count these replies only for the parent zone 2.

Let’s assume that the number of replies of Type I, II and III
coming from zone i, with in the period of one TTL, is Ri1,
Ri2, and Ri3 respectively. Note that the TTL corresponds to
the TTL of the zone’s NS records. If at time 0 the caching
server does not have any cached entries, then in the period of
one TTL the first query for the zone’s NS records will lead to
a cache miss (i.e. a question to a higher level zone), followed
by Ri1 +Ri2 +Ri3 − 1 cache hits (i.e. questions sent directly
to the zone) until the TTL expires. Thus the cache hit rate for
the NS records of zone i is:

Pi = 1 − 1
Ri1 + Ri2 + Ri3

(3)

If we consider the fact that replies of Type I may refresh the
zone’s NS records, the cache hit rate should be even higher.
Thus, Equation 3 realistically provides a lower bound for the
zone’s cache hit rate. Given the query distribution for the three
types of replies, one can compute the cache hit rate Pi for
every zone i that appears in the trace, by using Equation 3.

Thus, if Zi is the total number of queries sent at zone i then
we can compute the number of queries that are answered in
j DNS hops as follows: Let N be the total number of zones
in the trace, and P j

i the cache hit rate of the zone that is
the ancestor at distance j of zone i (the parent is at distance
one and P 0

i =Pi). Then the number of queries Hj that need
j hops to be answered is equal to the percentage of queries
that have a cache miss for the NS records of zone i and it’s
j − 1 ancestors, multiplied by the number of queries zone i
receives, summed over all the zones:

Hj =
N∑

i=1

Zi

(
P j

i

j−1∏
k=0

(1 − P k
i )

)
(4)

Equations 3 and 4 show that the cache hit rate of DNS, for
queries that experience a local cache-miss is a function of the
following two parameters. The query distribution generated by
a caching server (Equation 3) and the exact subpart of the DNS
tree structure (Equation 4), as seen by the caching server. In
Section V-B we use the collected traces to directly measure
DNS cache performance, instead of using Equation 4, even

2For example, if the NS records of ucla.edu are not locally cached, and
there is a question about www.ucla.edu, then the referral from the parent zone
edu about the ucla.edu zone is considered a type III reply for the edu zone.

if difference between analytical and experimental results is
between 3-5%. We chose to look at the experimental results
since they provide us with a more details about the real system.

b) DHT Cache Performance : We make the following
assumptions to model DHT caches: records are stored only
in one node (i.e. no replication) and all queries to all servers
follow the same distribution. On the other hand the processes
that generate the queries are i.i.d. (independent and identically
distributed). While our analysis is based on the Chord protocol,
it can be extended to other DHTs, when the path length
distribution can be analytically expressed.

Let N be the total number of nodes in the Chord network,
and C be the total number of requests for a certain record
coming from distinctive clients in the period of the record’s
TTL. For now, we require that all the records receive the
same number of requests per TTL (i.e. they have the same
popularity), but we relax that assumption later. Finally, Qi is
the query distribution, i.e. the number of requests spanning i
hops.

It is known [10] that the shortest path lengths in a Chord
network with base 2 follow a binomial distribution with p =
1/2. This result can be extended to Chord rings with base b.
In this case, the probability mass function Li of the shortest
paths again is binomial, but p = 1 − 1/b:

Li =
(

logb N
i

)
(1 − 1/b)i(1/b)logb N−i (5)

where i is the length of the path. The request distribution Qi

follows also a binomial distribution, under the assumption that
requests are randomly generated from any node in the network.
Therefore, the number of clients Ci of a specific record that
are i or more hops away from that record is:

Ci =
logb N∑

j=i

C · Lj (6)

Given that routing paths from different clients to the same
record are different, the probability Pi of two clients having
a common node at distance i on the path to the record is:

Pi = 1 − (1 − 1
N · Li

)Ci (7)

Thus, two independent paths merge at distance i from the
destination record with probability Si:

Si = Pi ·
logb N∏
j=i+1

(1 − Pj) (8)

In consequence, the number of cache hits at distance i from
the destination record is:

Hi =
logb N∑

j=i

Sj · Qj (9)

Equations 5-9 show that the cache hit rate in Chord, is only a
function of the size of the network, N , the base b of the the
protocol and the total number of clients C. Note that originally



Number of Hops 0 3 5 7 9 11 13 15

500 Hit Rate % (Simulation) 2.61 4.67 15.47 17.40 8.62 1.69 0.12 0.00
Clients Hit Rate % (Analysis) 2.88 6.03 12.50 15.86 10.17 2.06 0.30 0.01

250 Hit Rate % (Simulation) 1.79 3.49 13.38 18.63 9.64 1.93 0.16 0.00
Clients Hit Rate % (Analysis) 1.76 4.60 11.55 16.76 11.75 3.54 0.38 0.01

100 Hit Rate % (Simulation) 0.42 2.77 12.56 19.78 12.01 2.86 0.26 0.00
Clients Hit Rate % (Analysis) 0.94 3.25 10.23 17.35 13.50 4.37 0.50 0.01

TABLE II

SIMULATION AND ANALYTICAL RESULTS OF CHORD CACHE HIT RATE FOR EACH HOP.

we assumed that all queries have the same popularity, i.e. C is
constant. In reality, queries have different popularity, and thus
we can compute the hit rate of the DHT systems, by taking
the weighed average for the different values of C.

In order to evaluate the accuracy of the analytical model,
we run a number of simulation and we compared the cache hit
rate provided by the analytical model with the ones provided
by simulation. From Table II we can see that the analytical
model provides a good approximation to the simulation results,
with maximum difference less than 3% between the cache
hit-rate computed analytically and with simulation. Given the
quality of this approximation and the fact that trace-driven
simulations for large DHT networks are very time consuming,
we chose to use our model in Section V-B to evaluate DHT
cache performance.

V. EVALUATION

A. Availability

In this section we evaluate the availability of the two
systems, by measuring the data and path failure rates, under
random node failures, and failures due to malicious attacks.
First, we investigate the contribution of record replication and
of path redundancy in both systems. Then, we explore how
caching affects their availability.

1) Data Replication & Path Redundancy: The results pre-
sented in this section are based on Trace 1. For the DNS
simulations we used a system of around 95,000 servers, the
total number of servers in Trace 1. We used a network of 8192
nodes for Chord. Note that we also tried a variable number of
servers for both cases, in order to assess the impact of scale,
and we found that the number of servers does not affect the
static resiliency of the two systems.

Figure 2 presents the failure rate of the current DNS system,
for different percentages of failing nodes. In addition, it gives
the failure rates for a number of hypothetical replication
schemes: for example with 3 replicas we require all the zones
to have at least three redundant servers. The graph shows that
the path failure rate is lower than the data failure rate. This
happens mostly due to the fact that higher level zones have
a higher degree of replication than leaf zones. Moreover, we
can see that a higher degree of replication leads to a lower
failure rate, both for data failures and path failures.

Figure 3 gives the corresponding results for Chord, with
and without sequential neighbors [5]. As in the case of DNS,
the data failure rate is lower when the degree of replication is
higher. Similarly, but to a much smaller extend, the path failure
rate decreases when the number of replicas increase. On the

other hand, it is interesting to note that the path failure rate
is higher than the data failure rate, when sequential neighbors
are not included. This means there is higher probability of
not being able to route a query to any of the replica nodes
compared to the probability of all replicas being unavailable.
This can be attributed mainly to the following reasons: the
typical path lengths of the above network are longer than the
path lengths of a typical DNS query, and that some of the
available paths are not fully exploited, something that happens
in a lower extend when sequential neighbors are included.

Figure 4 gives the path failure rate of DNS as a function of
the path lengths. More specifically this graph is derived in the
following way: for the queries that did not experience a data
failure, we measured how many of them had a path failure.
Then, we aggregated all the queries that would have normally
required the same number of hops in order to be resolved,
and we computed the average failure rate for each number of
hops. The graph shows that the failure rate becomes higher
as the path length becomes longer. This result indeed verifies
our conjecture that higher level zones are more available, due
to the higher degree of replication. In addition, we can see
that there are virtually no path failures for the queries that go
to the root or the TLD zones. This means that the root zone
almost never fails, or in other words that existing root servers
are more than enough to provide high availability even if the
server failure rate is as high as 90%.

Similarly, Figure 5 verifies our conjecture about the Chord
paths. We can see that the failure rate increases very rapidly
within the first 3-4 hops, and then it remains almost constant
for the rest of them. Given that the path lengths in the specific
network follow a binomial distribution, most paths are 6-7
hops, and thus, they experience a high path failure rate. In
contrast, in DNS most paths have length of 3-4 hops, which
leads to a lower path failure rate.

All the previous results are based on DNS and DHT
structures with a fixed number of nodes. We tried a variable
number of nodes and surprisingly the failure rates for the
two systems are the same. For DNS the explanation is the
following: even though the number of servers is different, the
probability of hitting a failed server is still the same for the
same percentage of failed nodes. For Chord, the explanation
is more involved: for a larger network size the path lengths
increase and thus the failure rate should increase. Fortunately,
the number of neighbors also increases and that increase in
capable for compensating the path length increase. The above
were verified through the simulation results and the analytical
results of Section IV-A.



0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

Failed Nodes (%)

Fa
ilu

re
 R

at
e 

(%
)

Path Failures (3 Replicas)
Data Failures (3 Replicas)
Path Failures (5 Replicas)
Data Failures (5 Replicas)
Path Failures (7 Replicas)
Data Failures (7 Replicas)
Path Failures (Trace 1)
Data Failures (Trace 1)

Fig. 2. DNS data and path failure rates

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

Failed Nodes (%)

Fa
ilu

re
 R

at
e 

(%
)

Path Failures (3 Replicas)
Path Failures (3 Replicas, Seq. Neigh.)
Data Failures (3 Replicas)
Path Failures (5 Replicas) 
Path Failures (5 Replicas, Seq. Neigh.)
Data Failures (5 Replicas)
Path Failures (7 Replicas)
Path Failures (7 Replicas, Seq. Neigh.)
Data Failures (7 Replicas)

Fig. 3. Chord data and path failure rates

2 4 6 8 10 12 14
0

10

20

30

40

50

60

70

80

90

100

Path Lenght 

Fa
ilu

re
 R

at
e 

(%
)

10% Failed Nodes
30% Failed Nodes
50% Failed Nodes
70% Failed Nodes
90% Failed Nodes

Fig. 4. DNS failure rate and query path lengths

0 2 4 6 8 10 12 14
0

10

20

30

40

50

60

70

80

90

100

Path Length

Fa
ilu

re
 R

at
e 

(%
)

10% Failed Nodes
30% Failed Nodes
50% Failed Nodes
70% Failed Nodes
90% Failed Nodes

Fig. 5. Chord failure rate and query path lengths

Finally, Figure 6 gives the impact of node failures on the
performance of the DNS system. It shows the increase in the
path length of successful queries, or more specifically queries
that do not encounter a path failure. The increase in the path
lengths is measured as the additional round trip times that an
iterative resolver needs in order to identify a working path.
We can see that for lower node failure rates, such as 10%,
only a small portion of paths, around 30%, encounters at least
one failed server, and the paths almost never double in length.
Note that a failure rate of 10% is a realistic failure rate for
the DNS system when one takes into consideration various
configuration errors [13]. In the extreme cases of very high
failure rate, such as 70%, almost all the queries encounter
a failed server, and the paths can become even seven times
longer.

Similarly, node failures have an impact on the performance
of the DHT systems. Figure 7 gives the increase in the path
lengths of the DHT system for the different percentages of
node failures. Comparing this graph with the corresponding
DNS graph, we see that failures have a much greater impact
on the DHT systems. Indeed, in the DHT system queries
encounter more failed nodes, given that path failure rate is
higher than in the DNS case. In order to overcome this
limitation, nodes in DHT systems usually monitor the status of
their neighbors and thus they avoid forwarding queries to non-
responding servers. By following this approach, the increase
of path lengths in DHT systems becomes comparable to the
one in DNS (we present this results in our technical report
[12]).

2) Availability & Caching: In this section we investigate
the impact of the caching mechanisms on the availability of

Failed Nodes 10% 30% 50% 70% 90%
DNS Path No Caching 0.03 0.66 3.62 13.69 46.38

Failures (%) Caching 0.01 0.24 1.29 4.63 17.59
DHT Path No Caching 0.57 7.03 26.29 70.45 98.62

Failures (%) Caching 0.20 2.69 12.15 53.81 98.12
DNS Data No Caching 0.05 1.57 7.96 24.24 61.81

Failures (%) Caching 0.05 1.48 7.65 23.92 61.89
DHT Data No Caching 0.18 1.39 10.29 23.65 65.46

Failures (%) Caching 0.06 1.28 9.19 17.45 64.78

TABLE III

DNS AND CHORD FAILURE RATE WITH CACHING

the two systems. Table III shows the path and data failure
rates for DNS, when caching is enabled. We can see that the
data failure rate remains the same, while the path failure rates
are considerably lower compared to the case when caching is
disabled. Indeed, a caching server takes advantage of the zones
NS records, whenever cached locally, by avoiding querying all
the involved zones, starting from the root zone. Thus, even if
the parent zone is not available, the caching server still has
the ability to contact the authoritative server of the child zone.
On the other hand, when all authoritative servers of a specific
zone are unavailable, the presence of the its NS records in the
local cache does not make any difference, given that there is
no server available to answer the queries.

Similarly, Table III shows the impact of caching on the
availability of DHT systems. The results are based on a
network of 8,192 nodes where 10% of the clients issue queries.
We see that the path failure rate decreases with caching
enabled, but the relative difference is not as big compared
to the DNS case. Indeed, caching in DHTs can improve
the availability only opportunistically, meaning that a query,



0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Path Length Increase (%)

CD
F

10% Failed Nodes
30% Failed Nodes
50% Failed Nodes 
70% Failed Nodes

Fig. 6. DNS path length increase

0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Path Length Increase (%)

CD
F

10% Failed Nodes
30% Failed Nodes
50% Failed Nodes
70% Failed Nodes

Fig. 7. Chord path length increase

Attack Duration (Hours) 3 6 12 24
DNS Path 100 Nodes Attacked 0.06 0.10 0.19 0.20
Failures 500 Nodes Attacked 7.57 7.91 8.53 8.78

(%) 1000 Nodes Attacked 20.32 20.49 20.82 22.64
DHT Path 100 Nodes Attacked 0.24 0.23 0.26 0.26
Failures 500 Nodes Attacked 0.64 0.64 0.65 0.67

(%) 1000 Nodes Attacked 0.75 0.74 0.76 0.77

TABLE IV

DNS AND CHORD PATH FAILURE RATE UNDER ATTACK

that is going to fail later, may hit a node with a cached
record by chance. On the other hand, caching in DHTs can
improve data availability for the reason that cached records
are actually replicated records (with loose integrity control).
Later, in Section V-B we explore in more detail the specifics
of DHTs’ cache.

3) Availability & Malicious Attacks: In this section we
consider the failure model where an attacker tries to cause the
maximum damage. In the case of DNS the attacker makes the
nodes placed on the top of the tree unavailable. Table IV shows
the path failure rates when the attack duration ranges from 4
hours to 1 day, and the attacker has the ability to set out of
operation 100, 500 and 1,000 nodes. For DNS, we see that for
the 100 nodes, which shutdown the root zone, the failure rate
is low, given that most queries start from the TLDs, which are
almost always cached. In contrast when the number of failed
servers is 1,000, almost 1% of the total number of servers,
the path failure rate is very high, more than 20% and almost
constant for the whole duration. In contrast 1% of random
failure rates have a negligible effect in the DNS structure.
The results above strongly indicate that the tree structure is
vulnerable to malicious attacks, even if it is over-provisioned
for normal operations.

For DHTs, the attacker shuts down all nodes that are placed
in a continuous subspace of the virtual ring. We use a Chord
network of 8,192 nodes and the attacker has the exact same
abilities as in the DNS case, i.e. he can attack 100, 500
or 1,000 nodes. Our simulation results show that the path
failure rate for these attacks are 0.26%, 0.67% and 0.77%
respectively, which are considerably lower than DNS. If we
compare the failure rate of this specific attack with the failure
rate of random failures we see that the attacker cannot create
considerably higher damage. For example, with 30% of the
nodes under attack the path failure rate is around 15%, instead

Number of Hops 1 2 3 4

Trace 0 Queries (%) 83.14 16.01 0.84 0.02
Hit Rate (%) 83.14 94.91 97.59 100.00

Trace 1 Queries (%) 79.62 18.78 1.56 0.04
Hit Rate (%) 79.62 92.17 97.81 99.19

Trace 2 Queries (%) 74.73 22.56 2.64 0.07
Hit Rate (%) 74.73 89.26 97.41 99.42

TABLE V

DNS CACHE PERFORMANCE

of 7% under random failures, and for 50% of failed nodes, the
failure rate is around 49%, instead of 26%.

4) Summary of Results: DNS provides better availability
under random failures for the following reasons: The hierarchi-
cal DNS structure favors the higher level nodes with a higher
degree of replication. This leads to significant improvements
on the overall system availability. In addition, the vast majority
of DNS nodes are essentially leaf nodes, which do not forward
queries, thus their failures can not considerably affect the
global availability of the system. In contrast, all nodes in
DHT networks have the same significance and one needs to
improve all nodes’ reliability in order to achieve better overall
system availability. However, the results change dramatically
with intentional attacks. The features that make DHTs weaker
under random failures also make DHTs extremely robust under
orchestrated attacks. Indeed, all DHT nodes have the same
significance and an attacker cannot easily identify a strategy
that will cause the maximum damage to the system. Finally, we
showed that caching considerably improves path availability in
DNS and data availability in DHTs.

B. Cache Performance

In the previous section we saw that the availability of both
systems depends to a great extend on the caching mechanisms.
In this section we take a more detailed view of caching and we
evaluate its effectiveness. The evaluation of the DNS system is
based on measurements performed on the packet traces, while
the evaluation of the DHT systems is based on the analytical
model of Section IV-B.0.b.

1) Caching in DNS: Table V shows the percentage of
queries that are answered within a given number of application
layer hops, and the cache hit rate for each number of hops.
We can see that for all three traces a large fraction of queries,
ranging between 75% to 83%, is answered within one hop.
Moreover, almost all queries are answered within two hops,



0 2 4 6 8 10 12

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Zone Ranking

CD
F

Type I   (Auth Answers)
Type II  (NXD  Answers)
Type III (Referrals)

Fig. 8. Relation between cache hits and types of replies

which is an interesting result given the fact that most queries
for all three traces require three or four hops in order to
be resolved, when caching is not enabled. In addition, we
can see that the cache hit rate increases as the path lengths
increase. In other words, if there is a cache miss in trying
to identify the NS records for a zone under question, then the
probability of finding the NS records of the parent zone is very
high. Moreover, in the case of a cache miss for the parent’s
NS records, the probability of finding the grand-parent’s NS
records is even higher, and so on.

While the above results indicate that caching in DNS is
very effective, it is not clear which parameters of the system
contribute to these results. Previous studies identified the main
reasons of the effectiveness of DNS caching by considering
the cache hit rate of individual records [8]. In contrast, our
goal is to study the effectiveness of DNS caching when it
comes to the cache hits of individual zones. More specifically
we answer questions such as: which type of replies make the
caching of DNS zones more effective, or what aspects of the
DNS structure increase the zones’ cache hit rate. Finally, we
evaluate how close the simple analytical model, developed in
Section IV-B.0.a, comes to the actual measurement results.

In order to identify the reply type that has the highest impact
on the performance of DNS caching, we rank all the zones
based on the number of replies they generate in TTL seconds,
where TTL is their NS record TTL value. The ranking is done
for each type of query separately: Thus, the zone with the
highest number of authoritative answers (Type 1) in a period
of one TTL is ranked number one for that type of reply, but it
is not necessarily ranked number one for the other two types.
Figure 8 gives the CDF of the cache hit rate for the three
different types of zone ranking. From the graph we conclude
that zones which reply with a high number of authoritative
answers contribute the largest portion of the cache hit rates. On
the other side, zones that reply with a high number of referrals
contribute a smaller portion of the NS records cache hit rates.
These results match our expectation, given that replies of
Type 1 are the only ones that can refresh the cached NS records
of the zone under question.

Table VI gives the average cache hit rate for the different
levels of the DNS tree, by accounting only the zones that
appear to have at least one delegation. Based on the this table,
we conclude that the top level domains (level 1) are almost
always locally cached, while the hit rate for the lower ones

Level 1 2 3 4
Hit Rate (%) (Trace 0) 98.55 89.65 85.41 86.80
Hit Rate (%) (Trace 1) 97.90 80.29 80.24 86.08
Hit Rate (%) (Trace 2) 95.84 78.38 54.98 77.78

TABLE VI

AVERAGE CACHE HIT RATE AND ZONE’S DEPTH

Fig. 9. Cache hit rate and number of delegations

decreases gradually. These results show that zones with more
delegations, which usually happen to be placed higher in the
DNS tree structure, have a higher hit rate. Indeed, Figure 9
shows the scatter plot of the zones’ cache hit rate, for the
different number of delegations appearing in the traces. It
also shows the smoothed average of the cache hit rate (solid
line). It is clear that zones with a high number of delegations
have a higher cache hit rate than the average case. While the
average cache hit rate is around 80%, zones with more than
100 delegations (appearing in our trace) have a cache hit rate
higher than 95%. This difference can be attributed to the higher
number of referral replies that come from those zones.

In Section IV-B.0.a we showed that the hit rate of a zone’s
NS records is bounded below by the total number of replies
coming from that zone. Figure 10 verifies our conjecture.
It shows, in a scatter plot, the NS records hit rates for the
different number of replies, measured within a period of time
equal to NS records TTL value. The solid line shows the lower
bound specified by Equation 3. Most zones have a cache hit
rate higher or close to the bound. We should point out that
some of the zones lie lower than the predicted bound. The
main reason is that for each zone we compute the average
number of replies per TTL, for the duration of the 12 days.
Thus, it is possible that the average may not correspond to
the actual number of queries appearing in each TTL epoch,

Fig. 10. Hit rates for different zone popularity.



0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

Pe
rc

en
ta

ge
 o

f Q
ue

rie
s 

(%
)

Number of Hops

10% of Clients
30% of Clients
50% of Clients
70% of Clients
90% of Clients
  1% of Clients

Fig. 11. Chord cache performance with constant network size
Clients 1% 10% 30% 50% 70% 90%

Hit rate (%) 61.7 86.0 92.4 94.6 95.7 96.4

TABLE VII

CHORD HIT RATE WITH CONSTANT NETWORK SIZE

something that can skew the results.
2) Caching in DHTs: We used the analytical model of

Section IV-B.0.b to evaluate the performance of caching in
the DHT systems. Furthermore, we used Trace 1 from Table
I to feed the analytical model with the record popularity
distribution. We need to clarify that the term “client” refers
to the equivalent of caching server in the DHT networks and
not to individual end-hosts, i.e. stub resolvers.

Figure 11 shows the cache performance when the number
of participating nodes is constant and the number of clients
changes. The graph shows the number of queries for which
there is a cache hit at a certain distance from the querying
node. Note that when the hop number is 0 the record is locally
cached. The results are based on the analytical model for a
system size of 8,192 nodes. The previous graph shows only
the path lengths for the queries that experienced a cache hit
somewhere in the system. The total number of these queries is
not the same for the different number of clients, as Table VII
shows. The above results are indicative that the performance
of cache in the DHT systems merely depends on the global
popularity of the resource records. Thus, records that are
accessed by a small number of clients have a relatively poor
cache performance, whereas records accessed very frequently
by a large number of clients exhibit much better performance.

Figure 12 gives the cache performance when the relative
number of clients over the number of servers remains the
same (constant system size). It shows that the cache hit rate
deteriorates as the size of the system increases. On the other
hand, Table VIII shows that the percentage of the queries that
experience a cache hit increases as the size of the system
increases. Thus, when the number of clients and servers in-
crease both at the same rate, the absolute number of cache hits
increases. However, because the cache hits happen far from
from the querying node, the overall performance decreases.
The above scenario can happen under a situation where the
number of clients increases, which causes an additional load
in the system that can be sustained only with a corresponding
increase in the number of servers.

In a different scenario, where only the number of servers
increases, for example in order to improve the redundancy

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

Number of Hops

Pe
rc

en
ta

ge
 o

f Q
ue

rie
s 

(%
)

210 Nodes
212 Nodes
214 Nodes
216 Nodes
218 Nodes
220 Nodes

Fig. 12. Chord cache performance with constant system size

Nodes 1024 4096 16384 65536 262144 1048576
Hit Rate (%) 69.1 81.2 89.9 95.4 98.3 99.6

TABLE VIII

CHORD HIT RATE WITH CONSTANT SYSTEM SIZE

of the system, or in order to accommodate more resource
records in the system, the performance of the system becomes
different. Figure 13 gives the cache performance when the
number of clients is constant and the size of the system
changes, and it shows that the cache performance deteriorates
when the system size increases. Indeed, when the number of
servers increases and the number of clients remains the same,
the relative number of clients decreases and thus the cache hit
rate becomes worse. On the other hand, the number of queries
that experience a cache hit is almost the same, as we show in
Table IX.

All previous results suggest that the use of a proactive
replication schemes [15] becomes necessary when the relative
number of clients and servers is low. In that case passive
caching cannot provide performance comparable to DNS cache
performance, but a proactive caching scheme can be tuned
in order to provide the desired performance. On the other
hand, when the number of clients that request the same
records is very high, then both proactive and active caching
have comparable performance, given that records are cached
virtually everywhere in the DHT system.

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

Number of Hops

Pe
rc

en
ta

ge
 o

f Q
ue

rie
s 

(%
)

210 Nodes
212 Nodes
214 Nodes
216 Nodes
218 Nodes
220 Nodes

Fig. 13. Chord performance with constant number of clients

Nodes 1024 4096 16384 65536 262144 1048576
Hit Rate (%) 96.4 95.8 95.2 94.6 94.1 93.6

TABLE IX

CHORD HIT RATE WITH CONSTANT NUMBER OF CLIENTS



3) Summary of Results: In DNS, the effectiveness of
caching is driven by the cache hit rate of “hint” pointers, i.e.
the NS records, that can route a query close to the destination.
The cache hit rate of those pointers is only a function of
the local query distribution of each individual caching server.
More specifically, the hit rate is higher for the zones that are
queried more often, and for the zones that are higher in the
DNS tree hierarchy. In contrast, caching in DHT systems is
a function of the global popularity of records. Thus, when
viewed from the perspective of one caching server, caching
in DHTs is effective only when the server’s query distribution
follows roughly the global query distribution 3.

VI. DISCUSSION

After quantitatively comparing the performance and robust-
ness of the current DNS system and a DHT-based design,
in this section we step up a level and consider two basic
design issues in engineering a distributed system: engineering
provisioning, and functionality versus complexity.

a) Engineering Flexibility: A common rule-of-thumb in
improving computer system performance is to “Make the
common case go fast”, and this rule has been widely applied to
engineer the deployed DNS system. For example, because the
top level domains of the DNS hierarchy are most critical for
both the service availability and the system performance, they
tend to have a much larger number of replicated servers com-
pared to a regular zone at a lower level. Similar engineering
enhancement is also done for most popular domains, e.g. those
of popular websites, or for the domains which are deemed
worthwhile. The enabler factor for such selective engineering
is a design which divides a distributed system into separable
pieces, as is done in DNS, so that one can enhance individual
pieces without affecting other parts. In addition, the design of
DNS caching naturally allows “the common case go fast”, in
that the NS records of top level domains and popular domains
are almost always in the cache, which leads to very short look
up paths even when the DNS data itself may change frequently.

In contrast, because the DHT design treats all the names
equally in a flat space, it is difficult to separate some parts
out for additional engineering tuning. Treating all the names
equally facilitated the design of letting all the nodes play the
same role. Consequently, performance improvements can only
be done by improving the performance for the entire system
but not selected parts, and if any names require exceptionally
high availability service, that goal can only be achieved by
providing all the names with the same high availability.

At the same time, a design with separable parts can also
be abused. If some critical parts can be readily identified, they
become easy targets for deliberated attacks. In this respect, one
may argue that a hierarchical structure can be more vulnerable
compared to a flat structure if the system is not designed to
withstand concentrated attacks against the top of the hierarchy,
as we have shown in this paper.

3Even a proactive replication scheme [15] cannot overcome this limitation

b) System Complexity: Despite the specific structure of
a system, one can always enhance it by adding any miss-
ing functionality. For example, one can overcome the low
caching performance of a DHT-based name look up system by
implementing additional proactive caching mechanisms [15].
While implementing additional mechanisms on top of the
system’s basic structure can be a viable strategy, we would
like to point out that no additional functionality comes for
free, rather each of them brings with it added complexity
and overhead. As the DNS system today is burdened with
usage modes not envisioned in the original design (e.g. load
balancing etc), DHTs can also strain under the burden of
additional complexity from mechanisms required to improve
performance and availability. A fine balance needs to be
maintained between improving performance and increasing
complexity.

c) Generality of our Conclusions: In this paper we
compared DNS with a specific DHT implementation, the
Chord. While most of our results would have been different
under a different DHT implementation, our main conclusions
apply to all DHT designs of a flat structure. For example,
the fact that the DNS structure is more resilient to random
failures than the Chord structure, with the same average node
degree connectivity, holds for many other DHTs, given that
Gummadi et al. [5] showed that the Chord structure is the one
with the highest static resiliency among other DHT structures.
Similarly, the results of the performance of passive caching
in Chord, can be applied to other DHTs, whose path length
distribution follows a binomial distribution, such as the CAN
protocol with large number of nodes [10].

Similarly, one can argue that our results are specific to the
failure modes that we consider. For example it is possible
that node failures may be correlated, due to running the same
software on all nodes. This is possibly a realistic scenario for a
DHT system that is deployed by just one organization. On the
other hand, DNS and DHT systems deployed by multiple orga-
nization run multiple versions of the same software, or even
completely different implementations of the same protocol,
which makes the events of correlated software failures more
rare. Thus we believe that our failure modes cover a range of
cases that are most possible to happen in a real system.

VII. RELATED WORK

The first study [3] to explore an alternative design for
DNS, based on the DHT systems, concluded that, despite
the attractiveness of auto-configuration and resistance to DoS
attacks, the long path lengths of DHT networks pose a hurdle
in deploying such a system. In this paper we explore the
different aspects of DHTs that affect their performance and
investigate whether DHTs can achieve the same level of
performance as DNS. A subsequent study [15] showed how
a proactive replication mechanism can considerably improve
DHTs’ performance. While we do not consider the effects
of proactive caching in this paper, we show when such a
mechanism is necessary, and whether passive caching can
provide comparable performance benefits.



The proliferation of different DHT-based system designs
[17], [16] has created the need for studies that compare the
relative benefits of each design and that identify trade-offs
applicable to all DHT systems. In this area, the comparative
studies [10], [5], [9] concentrated on the fault resiliency, the
routing flexibility, and the behavior of various DHTs under
churn, respectively. In contrast, our work concentrates on
understanding the relative advantages and disadvantages of
DHT designs of a flat structure, when compared to DNS, a
hierarchical structure system. This comparison has enabled us
to identify key issues not explored by previous comparative
studies.

Several recent studies have proposed hybrid systems, com-
bining features from hierarchical and flat systems. Specifically,
works such as [18], [14], [4], have added features from DHT
systems into different sub-parts of the DNS system. Similar
efforts such as [2], [6], have included features from DNS into
a DHT design. These approaches lead to hybrid systems with
unique features. On the other hand, it is not clear how to
attribute specific properties of each system to the numerous
mechanisms used, and it is questionable if a hybrid design can
always provide the best of the two designs. Our work focuses
on understanding the relative benefits of hierarchical and flat
structures and attempts to shed light on the advantages of each
system. In this respect, it illustrates the design trade-offs that
should drive any future hybrid systems.

While the effectiveness of DNS caching has been exten-
sively studied in the past from the perspective of queries sent
by stub resolvers to caching servers[8], we extend the previous
results by showing how caching affects the performance of
queries sent from a caching server to the Internet.

VIII. CONCLUSION

In this paper we compared two different implementations of
distributed naming systems, one is the current DNS design that
organizes all the name servers in a hierarchical tree structure,
and the other is a DHT-based design using a flat peer-to-peer
structure. We used a combination of analysis and simulations
to evaluate the availability and performance of both implemen-
tations. Our results show that while DHTs with flat structure
can only cache data, DNS can cache the hierarchy itself.
This feature allows DNS to outperform DHTs under normal
operation, with higher availability under random node failures
and better cache performance for typical records. On the other
hand, hierarchy makes DNS vulnerable to orchestrated attacks,
something that DHT designs can handle naturally, due to the
fact that all nodes have the same importance from a system
perspective.

Our results suggest that replacing the current DNS system
with a DHT system of a flat peer-to-peer structure will only
make the service more resilient to orchestrated attacks, but it
will not provide any additional benefits in terms of systems
performance and availability under normal failures. On the
contrary, a DHT-based naming system can achieve the same
level of performance as the current DNS system only with a
structure of a higher average node degree and with additional
mechanisms, such as proactive caching [15]. Based on these

observation, our position is that improving the resilience of the
current system against malicious attacks is a more appealing
solution compared to replacing the current system with a
completely new design, that can achieve the same performance
under normal operations and only with a higher cost.

In finishing this paper we would like to draw some general
conclusions from our results. Like all other engineering de-
signs, we showed that both structures have their advantages
and disadvantages, with no clear winner. Our investigation
into the exact behavior of both systems has deepened our
understanding on how each of them works, which may seem
like a surprise, as the DNS has been with us for over 20
years and DHTs, although a relative newcomer, have attracted
extensive evaluation efforts. This shows us that we do not
necessarily understand how a system works or why it works
well, and even a seemingly well understood system may show
surprises when analyzed in detail.

REFERENCES

[1] Nameserver DoS Attack October 2002. http://www.caida.org/projects/
dns-analysis/, 2004.

[2] A. Mislove and P. Druschel. Providing Administrative Control and
Autonomy in Structured Peer-to-Peer Overlays. In Proceedings of
IPTPTS, 2004.

[3] R. Cox, A. Muthitacharoen, and R. Morris. Serving DNS Using a Peer-
to-Peer Lookup Service. In Proceedings of IPTPS, 2002.

[4] M. Freedman, E. Freudenthal, and D. Mazieres. Democratizing Content
Publication with Coral. In Proceedings of NSDI, 2004.

[5] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, and
I. Stoica. The Impact of DHT Routing Geometry on Resilience and
Proximity. In Proceedings of SIGCOMM, 2003.

[6] N. Harvey, M. Jones, S. Saroiu, M. Theimer, and A. Wolman. Skipnet:
A Scalable Overlay Network with Practical Locality Properties. In
Proceedings of USITS, 2003.

[7] J. Jung and H. Balakrishnan. Modeling TTL-based Internet Caches. In
Proceedings of Infocom, 2003.

[8] J. Jung, E. Sit, H. Balakrishnan, and R. Morris. DNS Performance and
the Effectiveness of Caching. In Proceedings of SIGCOMM IMW, 2001.

[9] J. Li, J. Stribling, R. Morris, F. Kaashoek, and T. Gil. A Performance vs.
Cost Framework for Evaluating DHT Design Tradeoffs Under Churn.
In Proceedings of INFOCOM, 2005.

[10] D. Loguinov, A. Kumar, V. Rai, and S. Ganesh. Graph-theoretic Analysis
of Structured P2P Systems: Routing Distances and Fault Resilience. In
Proceedings of SIGCOMM, 2003.

[11] P. Mockapetris and K. J. Dunlap. Development of the Domain Name
System. SIGCOMM CCR, 1988.

[12] V. Pappas, D. Massey, A. Terzis, and L. Zhang. A Comparative Study
of Hierarchical and DHT Based Naming Systems. Tech. Report UCLA-
CS-TR050023, 2005.

[13] V. Pappas, Z. Xu, S. Lu, D. Massey, A. Terzis, and L. Zhang. Impact of
Configuration Errors on DNS Robustness. In Proceedings of SIGCOMM,
2004.

[14] K. Parka, V. Pai, L. Peterson, and Z. Wang. CoDNS: Improving DNS
Performance and Reliability via Cooperative Lookups. In Proceedings
of OSDI, 2004.

[15] V. Ramasubramanian and E. Sirer. The Design and Implementation of
a Next Generation Name Service for the Internet. In Proceedings of
SIGCOMM, 2004.

[16] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A
Scalable Content-Addressable Network. In Proceedings of SIGCOMM,
2001.

[17] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan.
Chord: A Scalable Peer-To-Peer Lookup Service for Internet Applica-
tions. In Proceedings of SIGCOMM, 2001.

[18] H. Yang, H. Luo, Y. Yang, S. Lu, and L. Zhang. HOURS: Achieving
DoS Resilience in an Open Service Hierarchy. In Proceedings of DSN,
2004.


