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T he Domain Name System (DNS)1 is the Inter-
net’s de facto name resolution system. In fact, 
almost every transaction performed on the In-
ternet is prefaced by a DNS lookup—for ex-

ample, when a user types “www.bankofamerica.com” 
into his or her Web browser, it issues a DNS  request 
to get Bank of America’s IP addresses. However, in 
today’s Internet, attackers can spoof DNS messages.2 
The DNS Security Extensions (DNSSEC) RFCs3–5 
specify how DNS domains (logical namespaces such 
as bankofamerica.com) can use cryptographic keys to 
digitally sign their content and gain the protection of 
origin authenticity, data integrity, and secure denial 
of existence.

DNSSEC speci!es that each reply from authorita-
tive DNS servers will have cryptographic signatures 
attached to it. DNS resolvers (clients) can obtain crypto-
graphic keys for each domain and then formally verify 
that the key generated the signatures, the correct DNS 
server originated the data the signatures cover, and the 
data wasn’t modi!ed on the way to the resolver.

However, resolvers must ensure that the keys they 
have for a domain are authentic and not spoofed. 
Although DNSSEC’s deployment has grown, the 
mechanisms by which resolvers can obtain and verify 
domains’ cryptographic keys haven’t evolved as need-
ed. Speci!cally, it was envisioned that resolvers would 
begin with a trusted key for the DNS root domain (“.”) 
and recursively trace a secure delegation chain (chain 
of trust) from parent domains to their children until 
the resolvers reached the domain containing the que-
ried name. For example, a resolver might want to get 
the A records (which contain IPv4 addresses) for the 

domain www.
foo.com. This 
would require it to ask the root domain “.” to refer it 
to the com domain, and then the com domain would 
refer it to the foo.com domain. At that point, the foo.
com domain would be able to respond to the www.
foo.com query. One essential problem facing DNS-
SEC deployment today is that neither the root nor 
many of the top-level domains (TLDs, such as com) 
have deployed DNSSEC. Consequently, DNS resolv-
ers don’t have an automated way to verify whether 
the keys they have for foo.com are valid or spoofed by 
an adversary (unless the keys are con!gured into the 
resolvers as trust anchors via some unspeci!ed, out-of-
band process).

In this article, we examine the space of various 
cryptographic key management issues involved in 
DNSSEC deployment and the approaches resolvers 
might use to identify the proper keys (trust anchors) for 
the DNS domains they visit. Further examination into 
these mechanisms leads to many more subtle issues that 
arise from how we currently manage the DNS.

Background
The DNS maps domain names such as www.ucla.edu 
to a wide range of data, including IP addresses, email 
services, and geographic locations.

All DNS data is stored in the same type of data 
structure, called a resource record (RR), each of which 
has an associated name, class, and type. For example, 
an IPv4 address for www.ucla.edu is stored in an RR 
with the name www.ucla.edu, class IN (Internet), and 
type A (IPv4 address). A host with several IPv4 ad-
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dresses will have a set of several RRs, each with the 
same name, class, and type, but its own IPv4 address 
value. This RRset is the smallest unit that can be re-
quested via query. For example, when a browser que-
ries for 〈www.ucla.edu, IN, A〉, the reply will be the 
RRset for www.ucla.edu with all the IPv4 addresses 
for that name. All DNS actions—including crypto-
graphic signatures, which we discuss later—apply to 
RRsets instead of individual RRs.

The DNS provides a tree-like hierarchical name-
space; each node in the tree, except the leaf nodes, 
is called a domain. At the top of the tree, the root 
domain delegates authority to TLDs such as com, net, 
org, and edu. The com domain then delegates author-
ity to create the google.com domain, edu delegates 
authority to create the ucla.edu domain, and so forth. 
The information repository that makes up the domain 
database is divided into sections called zones, each of 
which belongs to a single administrative authority 
and is served by multiple authoritative name servers 
to provide name resolution services for all names in 
the zone. By de!nition, a zone can contain one or 
more connected domains in the DNS name tree; in 
practice, many zones contain only one domain—this 
is the case for DNS TLDs as well as large domains in 
general. In the rest of this article, we use the terms do-
main and zone interchangeably when a zone contains 
a single domain.

The Three R’s in DNS Name Management
Generally speaking, three types of entities manage the 
DNS namespace and are often referred to as the three 
R’s of the DNS: the registry, the registrant, and the regis-
trar. At a high level, the registry is an organization that 
serves the records for a zone. VeriSign, for instance, is 
the registry for the com zone. Any organization that 
would like to be assigned a new domain (like foo.
com) is a registrant. Because com is foo.com’s parent 
zone, a resolver trying to look up information about 
foo.com is !rst directed to com’s DNS servers (which 
VeriSign runs). To make the com DNS servers redi-
rect these queries to the foo.com registrant, the reg-
istrant must purchase the registration service from a 
registrar. Figure 1 illustrates the relationships between 
the three R’s. It’s possible for the same organization to 
play more than one role. In this !gure, for example, 
VeriSign can be both a registrar and the registry, but 
the VeriSign registry must treat the VeriSign registrar 
in exactly the same way as it treats GoDaddy or any 
other registrars.

This three-party arrangement aims to remove the 
burden of directly interacting with potentially mil-
lions of registrants from large registries. Furthermore, 
to ensure a marketplace with competition, the Inter-
net Corporation for Assigned Names and Numbers 
(ICANN) mandates that the roughly 20 large generic 

TLDs (gTLDs, such as com, net, org, and edu) use 
ICANN-accredited registrars to sell domain names. 
Consequently, a registrant must purchase service from 
a registrar, which must in turn coordinate a delega-
tion contract with a registry. More than 200 country 
code TLDs (ccTLDs), such as se, us, and de, often use 
registrars as well.

DNSSEC Overview
When the DNS was designed in the mid 1980s, security 
wasn’t a primary objective. Since then, researchers and 
security professionals have identi!ed several vulnerabili-
ties, including cache poisoning and message spoo!ng.6,7 
DNSSEC provides a cryptographic solution to these 
problems that has a simple and intuitive design.

To prove that data in a DNS reply is authentic, each 
zone creates public-private key pairs and then uses the 
private portions to sign data. Each of the zone’s public 
keys are stored in an RR called a DNSKEY; each sig-
nature is stored in a di"erent RR called an RRSIG. 
In response to a query, an authoritative server returns 
both the requested data and the associated RRSIGs. A 
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Figure 1. The three R’s: registrants, registrars, and registries. The foo.
com and bar.com companies want to create Domain Name System (DNS) 
zones and must use one of the many available registrars to do this. foo.
com chooses GoDaddy, and bar.com chooses Dotster. The registrars then 
coordinate with the com registry, after which resolvers can ask com how to 
!nd foo.com.
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resolver that has learned the requested zone’s correct 
DNSKEY can verify the reply data’s integrity and the 
origin authenticity. To resist replay attacks, each sig-
nature carries a de!nitive expiration time.

To authenticate the DNSKEY set for a given do-
main—say, ucla.edu—the resolver must construct a 
chain of trust that follows the DNS hierarchy from a 
trusted root domain key down to the key for the do-
main in question, as Figure 2 shows. Ideally, resolvers 
would obtain the DNS root’s public key in an o#ine 
and secure way.

Several challenges are inherent to building the 
chain of trust. First, a parent domain must encode the 
authentication of each child domain’s public keys into 
its own zone. To accomplish this, the parent domain 
creates and signs a delegation signer (DS) RR that cor-
responds to a DNSKEY RR at the child. This signed 
DS RR creates an authentication link from the parent 
to the child. The child zone must request an update 
to the DS RR every time the DNSKEY changes. Al-
though these procedures seem simple and straightfor-
ward, they are manual tasks, and humans inevitably 
make errors, especially when handling large zones 
with hundreds or thousands of child domains.

Second, when the parent and child zones belong 
to di"erent administrative authorities, namespace 
management is often coordinated through the DNS’s 
three-R structure, as we described earlier. Having the 
registrar between a registry (the parent) and the reg-
istrant (the child) introduces additional complications 
in coordinating the change of the child’s key, as we 
explain later. Moreover, the parent and child domains 
might decide independently if and when they turn on 
DNSSEC, which increases operational challenges. If 
the parent zone isn’t signed, no chain of trust leads 
to the child zone’s DNSKEY, so this orphaned key 
e"ectively becomes an isolated trust anchor for its sub-
tree in the DNS hierarchy. In these cases, DNSSEC 
doesn’t specify how resolvers can learn DNSKEYs se-

curely. Thus, DNSSEC resolvers must maintain a set 
of these trust-anchor keys (Ta) so that they can trace a 
chain of key sets + signatures (secure delegation chain) 
from some Ta to a DNSSEC key K needed to veri-
fy the signature in a DNS query reply. The original 
DNSSEC design envisioned a top-down deployment 
in which resolvers would need to have only the root 
zone’s key con!gured in their trust-anchor sets, and 
all secure delegations would follow the existing DNS 
hierarchy. However, the root and most TLDs haven’t 
yet deployed DNSSEC, so a potentially very large 
number of isolated trust anchors exist, as our mea-
surement results show.

DNSSEC Deployment Status
Figure 3 shows data taken from our project, SecSpi-
der (http://secspider.cs.ucla.edu), the !rst monitoring 
project to track DNSSEC’s global rollout. The data 
set covers October 2005 through January 2009 and 
includes the histories of more than 11,000 secure 
zones. SecSpider’s corpus is learned via user submis-
sions, crawling from DNS monitors, crawling from 
a search engine, and NSEC (Next Secure) walking 
(NSEC RR types let you iterate through a DNS-
SEC zone because they chain names together; a more 
detailed description is out of this article’s scope). Al-
though this set of signed zones includes many well-
established DNS zones, such as the se ccTLD, it also 
includes other signed zones that are clearly deployed 
only for testing. 

One example is bogussig.bogussig.test.jelte.nlnet 
labs.nl. In this case, the zone’s actual name indicates 
that it’s used for testing, and other zones in this same 
delegation (under test.jelte.nlnetlabs.nl) account for a 
substantial portion of the signed zones. To focus on 
how DNSSEC deployment is proceeding in “produc-
tion” zones, our analysis prunes zones that appear to 
be operating in a test capacity. We broadly classify any 
zone as production if it’s signed and

is a TLD,
belongs to the delegation hierarchy under the arpa 
TLD,
has an active Web server at www.〈zone name〉, or
has an active mail server pointed to by a mail ex-
changer (MX) record.

This pruning process reduced the set of zones we con-
sidered from roughly 11,000 to roughly 2,200 signed 
production zones. Although our test might have 
missed some legitimate production zones and includ-
ed some test zones, it serves as an automated way to 
identify reasonable candidates for measurement.

Figure 3 shows production zone growth over re-
cent years; this list is also posted on the SecSpider 
project Web site and announced on DNSSEC de-
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Figure 2. Secure delegation hierarchy. Secure zones vouch for their 
children’s keys. Resolvers are precon!gured with the root zone’s public key 
as a trust anchor (Ta) so that they can authenticate the edu public key, 
which then allows the resolver to authenticate the ucla.edu public key.
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ployment mailing lists. Zone administrators can use 
the site’s Web interface to change a zone’s status from 
testing to production or vice versa. Note that due to 
the announcement of a new cache poisoning attack 
variant in summer 2008,2 the adoption rate has con-
tinued to increase dramatically. Furthermore, of all 
the security islands known, roughly 98 percent are 
isolated without secure delegations from their par-
ents. In some cases, such as ripe-ncc.com, the parent 
zone (com) isn’t signed. In others, the DS record ex-
ists but doesn’t match the child’s DNSKEY, and in 
still other cases, the parent zone has DNSSEC turned 
on but simply doesn’t have a DS for its child zone. 
Although not having secure delegations from parent 
zones might seem a trivial problem, we show in the 
next section that it’s deceptively complex.

How Zones Manage Their Public Keys
The operational issues that surround DNSSEC’s key 
management are a combination of the challenges faced 
from both the authoritative zone’s (publishing) and the 
resolver’s (consuming) perspectives. Each perspective 
brings separate complications when considering DNS-
KEY lifetimes, rollovers, and especially veri!cation.

When a Zone’s Parent Is Signed
When a zone administrator decides to deploy DNS-
SEC (or sign his or her zone), having a parent zone 
that has already signed provides a way to verify the 
zone’s DNSKEYs. The administrator will want to get 
the signed parent to serve a DS record that matches 
the zone’s keys. Having this delegation in place lets 
resolvers transit any trust they have in the parent zone 
to the child.

Single administrative domain. In some cases, a newly 
signed zone belongs to the same administrative orga-
nization as its parent zone—for example, cs.ucla.edu 
is the parent zone of secspider.cs.ucla.edu. Although 
di"erent operators might run each zone, they work 
within the same organization (UCLA’s computer sci-
ence department). Thus, the process of getting a DS 
record for secspider.cs.ucla.edu into the parent zone 
can be as simple as sending an email or making an 
in-person visit. Furthermore, changes and key roll-
overs can easily be governed by the processes outlined 
in the DNSSEC operational practices RFC.8 (In this 
work, we illustrate the complexities of managing keys 
and refrain from discussing the further implications of 
unplanned key rollovers.) For example, when a child 
zone needs to change its DNSKEYs, it can coordinate 
a DS record rollover locally so the parent and child 
zones remain synchronized. Failure to maintain syn-
chronization could cause resolvers to believe that the 
observed keys for a child zone are false because the 
parent might be serving a stale DS record. The essen-

tial observation here is that the DNSSEC key man-
agement process can be streamlined between child 
and parent zones if they’re within the same adminis-
trative organization.

Multiple administrative domains. DNSSEC’s opera-
tional needs become complicated when signed zones 
are run by di"erent administrative organizations than 
their parent zones. This is the case whenever a com-
pany wants to buy a zone whose name is directly be-
low a TLD. In such cases, DNSSEC key management 
generally requires coordination among the three R’s. 
As we described earlier, the three R’s conduct DNS 
namespace management jointly. Although the man-
agement process between these entities is well de-
!ned for DNS operations, the added complications of 
communicating new types of data, more rigid failure 
modes, and DNSSEC’s general cryptographic com-
plexity bring up many new coordination issues.

The typical non-DNSSEC communications among 
the three R’s are done to change name server (NS) 
record delegation information. Speci!cally, registrants 
that want to change their NS records might often re-
ceive a Web interface (from their registrar) that lets 
them log in and update their information. After this, 
the registrar will use some provisioning protocol (such 
as the Extensible Provisioning Protocol [EPP]) to com-
municate this information to the registry. Such com-
munications are relatively infrequent on a per-zone 
basis. Thus, overall communication between the three 
R’s is usually light for any single child zone. However, 
in DNSSEC, zones should change their keys at regular 
intervals (RFC 4641 suggests, for example, that some 
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Figure 3. Cumulative distribution function (CDF) showing a dramatic increase 
in Domain Name System Security Extensions (DNSSEC) deployment. This 
increase followed the announcement of the Kaminsky cache poisoning 
attack. The y-axis shows the percentage of zones SecSpider is tracking today 
(where 100 percent is roughly 2,200 zones), and the x-axis is the date. The 
three subcurves plot how SecSpider learned of the zones and sum to the 
main curve.
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DNSKEYs be rolled over every few months). Because 
the registrant’s zone owns DNSKEY records, and the 
registry has DS records that correspond, this periodic 
change of keys introduces new operational hurdles. 

The actual communications load among the three R’s 
might not increase signi!cantly, but the operational 
procedure to coordinate between the parent and child 
zones’ administrative domains and across all three R’s 
to perform key rollovers in synchrony is an open issue. 
Furthermore, in some cases, operators have noted that 
the full communication channels between registrants 
that run their own zones and their registries (which go 
through the registrar) aren’t necessarily secure enough 
to coordinate DNSSEC data, but this still leaves the 
registrant with no other recourse.

Note that many registrars provide hosting services 
to their registrants. Thus, while hosting a zone, a reg-
istrar might be able to simplify some inherent opera-
tional di$culties because the registrant wouldn’t be 
an online participant. However, this could complicate 
matters when registrants wish to change registrars. 
Consider a simple case in which a registrant (foo.com) 
wants to change registrars (perhaps to one o"ering a 
lower yearly fee), but the current registrar manages 
the registrant’s zone and actually owns the public and 
private keys for that zone. With DNS, an operator 
need only transfer the zone’s data to the new regis-
trar so it can begin serving the zone. However, with 
DNSSEC, it’s unclear whether the current registrar is 
expected to pass the keys over to the new registrar so 
that the zone doesn’t need to re-sign, how to do this 
securely, or whether the new registrar should create 
new keys (which might invalidate the chain of trust). 
In the latter case, how and when should the parent 
zone (the registry) be noti!ed? Furthermore, after no-
tifying the parent, how should the three parties coor-
dinate the rollover process? Recall that each party is 
an independent company and likely has its own op-
erational schedules and agendas—they might not all 
easily reach agreement on timing issues. Moreover, 
what business model motivates everyone to coordi-
nate in this process? One subtlety in this case is that 
no one can mandate what each party must do, and 
they need not cooperate. One proposed solution is to 
simply let the new registrar add new DNSKEYs to the 
registrant’s existing set. This solution raises yet anoth-
er concern about having too many keys for a zone and 

its inability to serve them to resolvers due to the path 
maximum transmission unit (PMTU) limitations. The 
PMTU issue is discussed in detail elsewhere.9

Consider another example: suppose that a regis-
trant uses a third party to sign its zone. In this case, 
the registrant would operate its own DNS zone but 
contract out to a third party all the cryptographic op-
erations that support DNSSEC (www.signmyzone.
com). The third party takes the registrant’s DNS 
zone and returns a signed version; it also handles key 
management rollovers and other related duties. The 
main distinction between the third-party signers and 
the registrars that host services for registrants is that 
a given third-party signer need not have any speci!c 
contractual qualities that ICANN mandates for regis-
trars. This is a subtle point that highlights the lack of 
formal procedures in place today.

Other complications are matters of scale. Sup-
pose a large registrar manages the zone data for many 
thousands of registrants. Large zones might experi-
ence changes in their data at frequent intervals, and 
every change requires that data to be re-signed. The 
computation power needed simply to generate the 
cryptographic keys for new zones and rollovers is al-
ready signi!cant. The additional resources required to 
sign zones at the frequency that they change can be 
nontrivial. To address this, an increasing number of 
software tools allow operators to sign zones “incre-
mentally,” meaning that when a change to a zone oc-
curs, an operator must sign only the relevant  RRsets. 
We note this primarily because some of the most 
popular DNS name server software packages either 
don’t support this facility or have only recently be-
gun to, and would require existing installations to up-
grade. Thus, without incremental signing, users must 
pay the computational costs of re-signing their whole 
zone whenever a change occurs. Moreover, DNSSEC 
requires several additional record types for each DNS 
RRset (all RRsets need RRSIGs and must have as-
sociated NSEC or NSEC3 records for secure denial of 
existence), which increases the storage size by roughly 
a factor of three.

Finally, a fundamental di"erence exists between 
DNS and DNSSEC operations: in DNS, when there 
is a miscon!guration (such as an NS record that points 
to the wrong server), the redundancy in the servers 
often ensures that name resolutions can still proceed 
successfully. In DNSSEC, if, for example, a stale DS 
record points to the wrong DNSKEY for a zone, re-
solvers might consider all data from that zone to be 
invalid and discard it, leading to denial of service.

These and other problems aren’t insurmountable 
from a technical perspective, but a true appreciation 
for their complexity comes from realizing that the 
barriers sometimes stem from managing operational 
di$culties at a large scale.

The DNSSEC community has begun investigating 

ways to design trust-anchor repositories 

(TARs) that resolvers can use as off- hierarchy 

systems to verify DNSKEYs for zones.
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When a Zone’s Parent Isn’t Signed
Another complicated case is one in which a zone C 
decides to sign but can’t get a secure delegation from 
its parent (that is, get a DS record signed by its par-
ent zone). This can happen if the parent zone isn’t 
signed, or if no clearly de!ned, generally usable, and 
secure mechanism exists through which C can pass its 
DS record to its parent zone. A resulting question is 
then, why would a zone choose to deploy DNSSEC 
if it didn’t have a secure delegation from its parent? 
The answer can vary, but one major reason is that 
DNSSEC can o"er isolated (or singleton) zones both 
origin authenticity and data integrity, assuming re-
solvers can !nd means to verify the DNSKEYs for a 
singleton zone.

SecSpider’s observations show that more than 
98 percent of DNSSEC-enabled zones are single-
tons (zones without a valid secure delegation). This 
fact illustrates that for early DNSSEC adopters, the 
secure delegation hierarchy isn’t there to help their 
key veri!cations. Consequently, the DNSSEC com-
munity has begun investigating ways to design trust-
anchor repositories (TARs) that resolvers can use as 
o"- hierarchy systems to verify DNSKEYs for zones.

Trust-anchor repositories. TARs are systems de-
signed to let resolvers determine the validity of keys 
for DNSSEC-enabled zones. Existing TARs vary 
widely in how they’re implemented and maintained, 
and in the ways they present trust anchors to resolvers.

One of a TAR’s !rst considerations is how to ob-
tain valid keys for trust anchors. This is directly re-
lated to resolver operators’ most important concerns: 
How much should they trust the keys a TAR vali-
dates? Currently, two main schools of thought exist:

TAR operators should vet keys manually and enter a 
given zone’s DNSKEYs into a TAR only after some 
real-world assurances are made (where “real-world” 
might not be clearly de!ned); or 
keys should be obtained from large-scale monitor-
ing of all visible DNSSEC zones by polling them 
from multiple independent vantage points.

Each approach has its pros and cons. For example, 
the TARs with manual inputs o"er traditional cryp-
tographic assurances that keys found in them should 
belong to the zones they report. However, such a 
manual veri!cation and maintenance process faces 
scaling challenges. In the presence of the hundreds of 
millions of DNS zones that exist today, key rollovers 
could require even more TAR maintenance e"orts 
than large registrars face today. Conversely, the poll-
ing TARs use concepts from distributed system de-
sign (o"-axis polling, independent paths, and so on) 
to signi!cantly raise the bar and make it impractical 

for an adversary to spoof keys. Clearly, this approach 
doesn’t o"er the provable veri!ability that the manual 
TARs do, but it does o"er systems-level assurances, 
and its automated operation can scale as DNSSEC 
continues to grow.

Another issue facing TARs relates to how resolv-
ers get data from them. Again, two major schools of 
thought exist:

DNS queries should spawn an additional inline 
query to a TAR (or a look-aside) while the resolver 
waits, or
resolvers should obtain static entries from TARs so 
that all trust anchors are known locally a priori.

An inline lookup lets a TAR be a separate service op-
erated by focused operational groups separated from 
resolvers and can provide up-to-date information. On 
the other hand, this approach also adds obvious latency 
to DNS queries because resolvers can’t send responses 
until after receiving a separate response from the TAR 
and any further validation occurs (using multiple look-
aside TARs would clearly compound this). Further-
more, a resolver operator must trust the TAR operators 
to provide reliable and faithful service with limited 
outages and without compromised servers. The sec-
ond approach has the advantage that all trust-anchor 
information is precon!gured and that no appreciable 
latency occurs when using their trust anchors. How-
ever, one drawback is that the list might grow large 
enough to become infeasible to manage locally.

TARs also face issues related to how they stay 
abreast of changes to the DNSKEYs of the zones they 
represent. It’s just as important for TARs to keep up-
dated as it is for parent zones to maintain their chil-
dren’s DS records. Thus, TAR designers must consider 
keys’ lifetimes when designing a TAR. Can a TAR 
keep up with the frequency at which zones change 
their keys? Also, during a zone’s key rollover (when it 
changes from one key to another), a few short transi-
tion phases exist in which the zone uses di"erent com-
binations of the old and new keys—how will a TAR 
keep up during these phases? Keeping up with the key 
rollovers is particularly challenging if the trust-anchor 
keys are con!gured into all resolvers rather than que-
ried inline. Additionally, many believe another ques-
tion is much larger in scope: How will TARs let a zone 
transition to using a DS record once its parent signs and 
begins o"ering secure delegations? These questions re-
main largely open challenges at the time of this writ-
ing. The operational and research communities have 
various opinions about how to answer these questions 
and how TARs should evolve in the future.

Example TARs. Today, several examples exist of sys-
tems that act as TARs for resolvers.
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The Internet Software Consortium (ISC) runs a 
DNSSEC key repository known as a DNSSEC Look-
aside Validation (DLV) service,10 which de!nes a new 
type of DNS RR called a DLV. Resolvers use this 
DLV repository as a TAR in the following way: when 
a resolver gets a DNSKEY from a zone 〈Z〉, it issues a 
query to 〈Z〉.dlv.isc.org for a DLV record. This record 
is similar to the DS record in that it’s a cryptographic 
!ngerprint of the associated DNSKEY. If the record 
matches the DNSKEY, the DLV repository has veri-
!ed the key’s authenticity. Thus, the resolver should 
be satis!ed, and query responses that this key signs can 
be returned; otherwise, the resolver returns a SERV-
FAIL error to the client because the DNSSEC key 
validation failed. ISC’s DLV repository is a manually 
maintained, inline TAR that uses its own DNSKEY 
to sign its DLV records. So, all resolvers must obtain 
ISC’s key o#ine in a secure way and use it as a trust 
anchor to verify DLV records.

The Interim Trust-Anchor Repository (ITAR) is sup-
ported by the Internet Assigned Numbers Authority 
(IANA), which coordinates the DNS root zone. This 
TAR is manually maintained but contains trust an-
chors only for the DNS TLDs. The ITAR is speci!-
cally chartered to be decommissioned once the DNS 
root is signed, because a signed root would replace the 
ITAR’s role and would do so through DNSSEC’s se-
cure delegation design. The ITAR expects all resolv-
ers to statically con!gure its entries. Thus, the ITAR 
is a manually maintained, statically con!gured TAR.

The SecSpider TAR is an inline TAR that uses the 
same DLV mechanism as ISC’s. Lookups to SecSpi-
der’s TAR take the form 〈Z〉.secspider.cs.ucla.edu for 
DLV records. Rather than using manual veri!cation 
to collect and validate DNSSEC keys, SecSpider uses 
distributed polling from vantage points distributed 
worldwide; keys are inserted into the TAR only if 
they’re globally consistent. Every time SecSpider runs, 
it randomizes the order in which it polls the zones 
in its corpus. SecSpider queries each zone from all of 
its pollers (lightweight DNS query repeaters) simul-
taneously. Its pollers are deployed at multiple vantage 
points around the world, and the communication 
channel between SecSpider and its pollers is crypto-
graphically secured. SecSpider takes these three steps 
(unpredictable schedule, spatially diverse vantages, 
and secure communication channels) to severely 
handicap a would-be adversary who attempts to spoof 
it and falsely insert a DNSKEY for a zone. Because the 
scope of the SecSpider TAR is as large as the observ-
able DNSSEC deployment, it helps verify the keys for 
all the zones it can !nd via its automated crawls of 
the DNS hierarchy. Thus, SecSpider is an automated, 
inline TAR.

Finally, Vantages (www.vantage-points.org) repre-
sents yet another type of TAR. It’s designed to be run 

by resolver operators, as a daemon that polls speci!c 
data sources the operator speci!es. Thus, it can poll 
the keys of all DNS zones that the resolver queries, or 
it can poll the Web pages where zone owners publish 
their keys. It can also use manual trust assertions from 
users that the operator personally believes are trust-
worthy. Vantages then compares the results of the lo-
cal polling against the key information obtained from 
a list of the operator’s manually con!gured and trusted 
friends who are also running Vantage daemons, pro-
viding o"-axis corroboration. The Vantage daemon 
checks the results for consistency and then con!gures 
them into the local resolver. So, we classify Vantages 
as a hybrid automated/manually maintained, statically 
con!gured TAR.

Turning DNSSEC Off
One !nal case is one in which a zone administra-
tor elects to discontinue using DNSSEC. Here, it’s 
important for validating resolvers to be able to dis-
tinguish between a zone that was formerly serving a 
DNSSEC zone but has now reverted to the basic DNS 
service, and a DNSSEC zone that’s under a down-
grade attack. In this attack, an adversary attempts to 
serve non-DNSSEC data to a resolver rather than try-
ing to spoof the cryptographic key used in the veri!-
cation. If an adversary can convince the resolver that 
a zone doesn’t use DNSSEC, then he or she can serve 
unsigned spoofed DNS data.

How to address this issue is largely an open chal-
lenge. One notable example of an operational approach 
used today is the one followed by the se ccTLD. When 
a zone under se chooses to discontinue DNSSEC, se 
simply stops serving the DS record for that zone. For 
a zone C under se, if resolvers don’t !nd a DS RR for 
C, they don’t expect to see DNSKEYs or signatures 
when querying it. However, with TARs’ increasing 
numbers and usage, resolvers might continue to !nd 
DNSKEYs for zone C, until all the TAR operators 
remove their entries.

T he active community surrounding DNSSEC has 
clearly identi!ed the challenges listed in this work 

and discusses solutions to open issues daily on mailing 
lists and in community meetings. Much debate exists 
on how best to move forward. However, despite the 
remaining open issues, for many, DNSSEC is usable 
in its current form, and its deployment has entered a 
rapid growth phase, as evidenced by SecSpider’s mon-
itoring results. 
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