
Securing the Domain Name System

44 COPUBLISHED BY THE IEEE COMPUTER AND RELIABILITY SOCIETIES ■ 1540-7993/09/$26.00 © 2009 IEEE ■ SEPTEMBER/OCTOBER 2009

T he Domain Name System (DNS)1 is the Inter-
net’s de facto name resolution system. In fact,
almost every transaction performed on the In-
ternet is prefaced by a DNS lookup—for ex-

ample, when a user types “www.bankofamerica.com”
into his or her Web browser, it issues a DNS request
to get Bank of America’s IP addresses. However, in
today’s Internet, attackers can spoof DNS messages.2
The DNS Security Extensions (DNSSEC) RFCs3–5
specify how DNS domains (logical namespaces such
as bankofamerica.com) can use cryptographic keys to
digitally sign their content and gain the protection of
origin authenticity, data integrity, and secure denial
of existence.

DNSSEC speci!es that each reply from authorita-
tive DNS servers will have cryptographic signatures
attached to it. DNS resolvers (clients) can obtain crypto-
graphic keys for each domain and then formally verify
that the key generated the signatures, the correct DNS
server originated the data the signatures cover, and the
data wasn’t modi!ed on the way to the resolver.

However, resolvers must ensure that the keys they
have for a domain are authentic and not spoofed.
Although DNSSEC’s deployment has grown, the
mechanisms by which resolvers can obtain and verify
domains’ cryptographic keys haven’t evolved as need-
ed. Speci!cally, it was envisioned that resolvers would
begin with a trusted key for the DNS root domain (“.”)
and recursively trace a secure delegation chain (chain
of trust) from parent domains to their children until
the resolvers reached the domain containing the que-
ried name. For example, a resolver might want to get
the A records (which contain IPv4 addresses) for the

domain www.
foo.com. This
would require it to ask the root domain “.” to refer it
to the com domain, and then the com domain would
refer it to the foo.com domain. At that point, the foo.
com domain would be able to respond to the www.
foo.com query. One essential problem facing DNS-
SEC deployment today is that neither the root nor
many of the top-level domains (TLDs, such as com)
have deployed DNSSEC. Consequently, DNS resolv-
ers don’t have an automated way to verify whether
the keys they have for foo.com are valid or spoofed by
an adversary (unless the keys are con!gured into the
resolvers as trust anchors via some unspeci!ed, out-of-
band process).

In this article, we examine the space of various
cryptographic key management issues involved in
DNSSEC deployment and the approaches resolvers
might use to identify the proper keys (trust anchors) for
the DNS domains they visit. Further examination into
these mechanisms leads to many more subtle issues that
arise from how we currently manage the DNS.

Background
The DNS maps domain names such as www.ucla.edu
to a wide range of data, including IP addresses, email
services, and geographic locations.

All DNS data is stored in the same type of data
structure, called a resource record (RR), each of which
has an associated name, class, and type. For example,
an IPv4 address for www.ucla.edu is stored in an RR
with the name www.ucla.edu, class IN (Internet), and
type A (IPv4 address). A host with several IPv4 ad-

Although the visible deployment of Domain Name

System Security Extensions is growing at a tremendous

rate, evidence suggests that managing cryptographic

keys is deceptively complex. Here, the authors outline

the problem of managing DNSKEYs and present a survey

comparison of existing proposed solutions.

ERIC
OSTERWEIL AND
LIXIA ZHANG
University
of California,
Los Angeles

Interadministrative
Challenges in
Managing DNSKEYs

Securing the Domain Name System

 www.computer.org/security 45

dresses will have a set of several RRs, each with the
same name, class, and type, but its own IPv4 address
value. This RRset is the smallest unit that can be re-
quested via query. For example, when a browser que-
ries for 〈www.ucla.edu, IN, A〉, the reply will be the
RRset for www.ucla.edu with all the IPv4 addresses
for that name. All DNS actions—including crypto-
graphic signatures, which we discuss later—apply to
RRsets instead of individual RRs.

The DNS provides a tree-like hierarchical name-
space; each node in the tree, except the leaf nodes,
is called a domain. At the top of the tree, the root
domain delegates authority to TLDs such as com, net,
org, and edu. The com domain then delegates author-
ity to create the google.com domain, edu delegates
authority to create the ucla.edu domain, and so forth.
The information repository that makes up the domain
database is divided into sections called zones, each of
which belongs to a single administrative authority
and is served by multiple authoritative name servers
to provide name resolution services for all names in
the zone. By de!nition, a zone can contain one or
more connected domains in the DNS name tree; in
practice, many zones contain only one domain—this
is the case for DNS TLDs as well as large domains in
general. In the rest of this article, we use the terms do-
main and zone interchangeably when a zone contains
a single domain.

The Three R’s in DNS Name Management
Generally speaking, three types of entities manage the
DNS namespace and are often referred to as the three
R’s of the DNS: the registry, the registrant, and the regis-
trar. At a high level, the registry is an organization that
serves the records for a zone. VeriSign, for instance, is
the registry for the com zone. Any organization that
would like to be assigned a new domain (like foo.
com) is a registrant. Because com is foo.com’s parent
zone, a resolver trying to look up information about
foo.com is !rst directed to com’s DNS servers (which
VeriSign runs). To make the com DNS servers redi-
rect these queries to the foo.com registrant, the reg-
istrant must purchase the registration service from a
registrar. Figure 1 illustrates the relationships between
the three R’s. It’s possible for the same organization to
play more than one role. In this !gure, for example,
VeriSign can be both a registrar and the registry, but
the VeriSign registry must treat the VeriSign registrar
in exactly the same way as it treats GoDaddy or any
other registrars.

This three-party arrangement aims to remove the
burden of directly interacting with potentially mil-
lions of registrants from large registries. Furthermore,
to ensure a marketplace with competition, the Inter-
net Corporation for Assigned Names and Numbers
(ICANN) mandates that the roughly 20 large generic

TLDs (gTLDs, such as com, net, org, and edu) use
ICANN-accredited registrars to sell domain names.
Consequently, a registrant must purchase service from
a registrar, which must in turn coordinate a delega-
tion contract with a registry. More than 200 country
code TLDs (ccTLDs), such as se, us, and de, often use
registrars as well.

DNSSEC Overview
When the DNS was designed in the mid 1980s, security
wasn’t a primary objective. Since then, researchers and
security professionals have identi!ed several vulnerabili-
ties, including cache poisoning and message spoo!ng.6,7
DNSSEC provides a cryptographic solution to these
problems that has a simple and intuitive design.

To prove that data in a DNS reply is authentic, each
zone creates public-private key pairs and then uses the
private portions to sign data. Each of the zone’s public
keys are stored in an RR called a DNSKEY; each sig-
nature is stored in a di"erent RR called an RRSIG.
In response to a query, an authoritative server returns
both the requested data and the associated RRSIGs. A

Registrants

RegistryRegistrars

com

GoDaddy

Dotster

Client

Register

Register

com

foo.com

Resolver

bar.comfoo.com

foo.com ???

Figure 1. The three R’s: registrants, registrars, and registries. The foo.
com and bar.com companies want to create Domain Name System (DNS)
zones and must use one of the many available registrars to do this. foo.
com chooses GoDaddy, and bar.com chooses Dotster. The registrars then
coordinate with the com registry, after which resolvers can ask com how to
!nd foo.com.

Securing the Domain Name System

46 IEEE SECURITY & PRIVACY

resolver that has learned the requested zone’s correct
DNSKEY can verify the reply data’s integrity and the
origin authenticity. To resist replay attacks, each sig-
nature carries a de!nitive expiration time.

To authenticate the DNSKEY set for a given do-
main—say, ucla.edu—the resolver must construct a
chain of trust that follows the DNS hierarchy from a
trusted root domain key down to the key for the do-
main in question, as Figure 2 shows. Ideally, resolvers
would obtain the DNS root’s public key in an o#ine
and secure way.

Several challenges are inherent to building the
chain of trust. First, a parent domain must encode the
authentication of each child domain’s public keys into
its own zone. To accomplish this, the parent domain
creates and signs a delegation signer (DS) RR that cor-
responds to a DNSKEY RR at the child. This signed
DS RR creates an authentication link from the parent
to the child. The child zone must request an update
to the DS RR every time the DNSKEY changes. Al-
though these procedures seem simple and straightfor-
ward, they are manual tasks, and humans inevitably
make errors, especially when handling large zones
with hundreds or thousands of child domains.

Second, when the parent and child zones belong
to di"erent administrative authorities, namespace
management is often coordinated through the DNS’s
three-R structure, as we described earlier. Having the
registrar between a registry (the parent) and the reg-
istrant (the child) introduces additional complications
in coordinating the change of the child’s key, as we
explain later. Moreover, the parent and child domains
might decide independently if and when they turn on
DNSSEC, which increases operational challenges. If
the parent zone isn’t signed, no chain of trust leads
to the child zone’s DNSKEY, so this orphaned key
e"ectively becomes an isolated trust anchor for its sub-
tree in the DNS hierarchy. In these cases, DNSSEC
doesn’t specify how resolvers can learn DNSKEYs se-

curely. Thus, DNSSEC resolvers must maintain a set
of these trust-anchor keys (Ta) so that they can trace a
chain of key sets + signatures (secure delegation chain)
from some Ta to a DNSSEC key K needed to veri-
fy the signature in a DNS query reply. The original
DNSSEC design envisioned a top-down deployment
in which resolvers would need to have only the root
zone’s key con!gured in their trust-anchor sets, and
all secure delegations would follow the existing DNS
hierarchy. However, the root and most TLDs haven’t
yet deployed DNSSEC, so a potentially very large
number of isolated trust anchors exist, as our mea-
surement results show.

DNSSEC Deployment Status
Figure 3 shows data taken from our project, SecSpi-
der (http://secspider.cs.ucla.edu), the !rst monitoring
project to track DNSSEC’s global rollout. The data
set covers October 2005 through January 2009 and
includes the histories of more than 11,000 secure
zones. SecSpider’s corpus is learned via user submis-
sions, crawling from DNS monitors, crawling from
a search engine, and NSEC (Next Secure) walking
(NSEC RR types let you iterate through a DNS-
SEC zone because they chain names together; a more
detailed description is out of this article’s scope). Al-
though this set of signed zones includes many well-
established DNS zones, such as the se ccTLD, it also
includes other signed zones that are clearly deployed
only for testing.

One example is bogussig.bogussig.test.jelte.nlnet
labs.nl. In this case, the zone’s actual name indicates
that it’s used for testing, and other zones in this same
delegation (under test.jelte.nlnetlabs.nl) account for a
substantial portion of the signed zones. To focus on
how DNSSEC deployment is proceeding in “produc-
tion” zones, our analysis prunes zones that appear to
be operating in a test capacity. We broadly classify any
zone as production if it’s signed and

is a TLD,
belongs to the delegation hierarchy under the arpa
TLD,
has an active Web server at www.〈zone name〉, or
has an active mail server pointed to by a mail ex-
changer (MX) record.

This pruning process reduced the set of zones we con-
sidered from roughly 11,000 to roughly 2,200 signed
production zones. Although our test might have
missed some legitimate production zones and includ-
ed some test zones, it serves as an automated way to
identify reasonable candidates for measurement.

Figure 3 shows production zone growth over re-
cent years; this list is also posted on the SecSpider
project Web site and announced on DNSSEC de-

foo.com

com

Root

ucla.edu

Ta
edu

Ta

Figure 2. Secure delegation hierarchy. Secure zones vouch for their
children’s keys. Resolvers are precon!gured with the root zone’s public key
as a trust anchor (Ta) so that they can authenticate the edu public key,
which then allows the resolver to authenticate the ucla.edu public key.

Securing the Domain Name System

 www.computer.org/security 47

ployment mailing lists. Zone administrators can use
the site’s Web interface to change a zone’s status from
testing to production or vice versa. Note that due to
the announcement of a new cache poisoning attack
variant in summer 2008,2 the adoption rate has con-
tinued to increase dramatically. Furthermore, of all
the security islands known, roughly 98 percent are
isolated without secure delegations from their par-
ents. In some cases, such as ripe-ncc.com, the parent
zone (com) isn’t signed. In others, the DS record ex-
ists but doesn’t match the child’s DNSKEY, and in
still other cases, the parent zone has DNSSEC turned
on but simply doesn’t have a DS for its child zone.
Although not having secure delegations from parent
zones might seem a trivial problem, we show in the
next section that it’s deceptively complex.

How Zones Manage Their Public Keys
The operational issues that surround DNSSEC’s key
management are a combination of the challenges faced
from both the authoritative zone’s (publishing) and the
resolver’s (consuming) perspectives. Each perspective
brings separate complications when considering DNS-
KEY lifetimes, rollovers, and especially veri!cation.

When a Zone’s Parent Is Signed
When a zone administrator decides to deploy DNS-
SEC (or sign his or her zone), having a parent zone
that has already signed provides a way to verify the
zone’s DNSKEYs. The administrator will want to get
the signed parent to serve a DS record that matches
the zone’s keys. Having this delegation in place lets
resolvers transit any trust they have in the parent zone
to the child.

Single administrative domain. In some cases, a newly
signed zone belongs to the same administrative orga-
nization as its parent zone—for example, cs.ucla.edu
is the parent zone of secspider.cs.ucla.edu. Although
di"erent operators might run each zone, they work
within the same organization (UCLA’s computer sci-
ence department). Thus, the process of getting a DS
record for secspider.cs.ucla.edu into the parent zone
can be as simple as sending an email or making an
in-person visit. Furthermore, changes and key roll-
overs can easily be governed by the processes outlined
in the DNSSEC operational practices RFC.8 (In this
work, we illustrate the complexities of managing keys
and refrain from discussing the further implications of
unplanned key rollovers.) For example, when a child
zone needs to change its DNSKEYs, it can coordinate
a DS record rollover locally so the parent and child
zones remain synchronized. Failure to maintain syn-
chronization could cause resolvers to believe that the
observed keys for a child zone are false because the
parent might be serving a stale DS record. The essen-

tial observation here is that the DNSSEC key man-
agement process can be streamlined between child
and parent zones if they’re within the same adminis-
trative organization.

Multiple administrative domains. DNSSEC’s opera-
tional needs become complicated when signed zones
are run by di"erent administrative organizations than
their parent zones. This is the case whenever a com-
pany wants to buy a zone whose name is directly be-
low a TLD. In such cases, DNSSEC key management
generally requires coordination among the three R’s.
As we described earlier, the three R’s conduct DNS
namespace management jointly. Although the man-
agement process between these entities is well de-
!ned for DNS operations, the added complications of
communicating new types of data, more rigid failure
modes, and DNSSEC’s general cryptographic com-
plexity bring up many new coordination issues.

The typical non-DNSSEC communications among
the three R’s are done to change name server (NS)
record delegation information. Speci!cally, registrants
that want to change their NS records might often re-
ceive a Web interface (from their registrar) that lets
them log in and update their information. After this,
the registrar will use some provisioning protocol (such
as the Extensible Provisioning Protocol [EPP]) to com-
municate this information to the registry. Such com-
munications are relatively infrequent on a per-zone
basis. Thus, overall communication between the three
R’s is usually light for any single child zone. However,
in DNSSEC, zones should change their keys at regular
intervals (RFC 4641 suggests, for example, that some

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Jul 05 Jan 06 Jul 06 Jan 07 Jul 07 Jan 08 Jul 08 Jan 09 Jul 09

Zo
ne

s
(%

)

Date

All zones
User submissions
Crawled
NSEC walked

Figure 3. Cumulative distribution function (CDF) showing a dramatic increase
in Domain Name System Security Extensions (DNSSEC) deployment. This
increase followed the announcement of the Kaminsky cache poisoning
attack. The y-axis shows the percentage of zones SecSpider is tracking today
(where 100 percent is roughly 2,200 zones), and the x-axis is the date. The
three subcurves plot how SecSpider learned of the zones and sum to the
main curve.

Securing the Domain Name System

48 IEEE SECURITY & PRIVACY

DNSKEYs be rolled over every few months). Because
the registrant’s zone owns DNSKEY records, and the
registry has DS records that correspond, this periodic
change of keys introduces new operational hurdles.

The actual communications load among the three R’s
might not increase signi!cantly, but the operational
procedure to coordinate between the parent and child
zones’ administrative domains and across all three R’s
to perform key rollovers in synchrony is an open issue.
Furthermore, in some cases, operators have noted that
the full communication channels between registrants
that run their own zones and their registries (which go
through the registrar) aren’t necessarily secure enough
to coordinate DNSSEC data, but this still leaves the
registrant with no other recourse.

Note that many registrars provide hosting services
to their registrants. Thus, while hosting a zone, a reg-
istrar might be able to simplify some inherent opera-
tional di$culties because the registrant wouldn’t be
an online participant. However, this could complicate
matters when registrants wish to change registrars.
Consider a simple case in which a registrant (foo.com)
wants to change registrars (perhaps to one o"ering a
lower yearly fee), but the current registrar manages
the registrant’s zone and actually owns the public and
private keys for that zone. With DNS, an operator
need only transfer the zone’s data to the new regis-
trar so it can begin serving the zone. However, with
DNSSEC, it’s unclear whether the current registrar is
expected to pass the keys over to the new registrar so
that the zone doesn’t need to re-sign, how to do this
securely, or whether the new registrar should create
new keys (which might invalidate the chain of trust).
In the latter case, how and when should the parent
zone (the registry) be noti!ed? Furthermore, after no-
tifying the parent, how should the three parties coor-
dinate the rollover process? Recall that each party is
an independent company and likely has its own op-
erational schedules and agendas—they might not all
easily reach agreement on timing issues. Moreover,
what business model motivates everyone to coordi-
nate in this process? One subtlety in this case is that
no one can mandate what each party must do, and
they need not cooperate. One proposed solution is to
simply let the new registrar add new DNSKEYs to the
registrant’s existing set. This solution raises yet anoth-
er concern about having too many keys for a zone and

its inability to serve them to resolvers due to the path
maximum transmission unit (PMTU) limitations. The
PMTU issue is discussed in detail elsewhere.9

Consider another example: suppose that a regis-
trant uses a third party to sign its zone. In this case,
the registrant would operate its own DNS zone but
contract out to a third party all the cryptographic op-
erations that support DNSSEC (www.signmyzone.
com). The third party takes the registrant’s DNS
zone and returns a signed version; it also handles key
management rollovers and other related duties. The
main distinction between the third-party signers and
the registrars that host services for registrants is that
a given third-party signer need not have any speci!c
contractual qualities that ICANN mandates for regis-
trars. This is a subtle point that highlights the lack of
formal procedures in place today.

Other complications are matters of scale. Sup-
pose a large registrar manages the zone data for many
thousands of registrants. Large zones might experi-
ence changes in their data at frequent intervals, and
every change requires that data to be re-signed. The
computation power needed simply to generate the
cryptographic keys for new zones and rollovers is al-
ready signi!cant. The additional resources required to
sign zones at the frequency that they change can be
nontrivial. To address this, an increasing number of
software tools allow operators to sign zones “incre-
mentally,” meaning that when a change to a zone oc-
curs, an operator must sign only the relevant RRsets.
We note this primarily because some of the most
popular DNS name server software packages either
don’t support this facility or have only recently be-
gun to, and would require existing installations to up-
grade. Thus, without incremental signing, users must
pay the computational costs of re-signing their whole
zone whenever a change occurs. Moreover, DNSSEC
requires several additional record types for each DNS
RRset (all RRsets need RRSIGs and must have as-
sociated NSEC or NSEC3 records for secure denial of
existence), which increases the storage size by roughly
a factor of three.

Finally, a fundamental di"erence exists between
DNS and DNSSEC operations: in DNS, when there
is a miscon!guration (such as an NS record that points
to the wrong server), the redundancy in the servers
often ensures that name resolutions can still proceed
successfully. In DNSSEC, if, for example, a stale DS
record points to the wrong DNSKEY for a zone, re-
solvers might consider all data from that zone to be
invalid and discard it, leading to denial of service.

These and other problems aren’t insurmountable
from a technical perspective, but a true appreciation
for their complexity comes from realizing that the
barriers sometimes stem from managing operational
di$culties at a large scale.

The DNSSEC community has begun investigating

ways to design trust-anchor repositories

(TARs) that resolvers can use as off- hierarchy

systems to verify DNSKEYs for zones.

Securing the Domain Name System

 www.computer.org/security 49

When a Zone’s Parent Isn’t Signed
Another complicated case is one in which a zone C
decides to sign but can’t get a secure delegation from
its parent (that is, get a DS record signed by its par-
ent zone). This can happen if the parent zone isn’t
signed, or if no clearly de!ned, generally usable, and
secure mechanism exists through which C can pass its
DS record to its parent zone. A resulting question is
then, why would a zone choose to deploy DNSSEC
if it didn’t have a secure delegation from its parent?
The answer can vary, but one major reason is that
DNSSEC can o"er isolated (or singleton) zones both
origin authenticity and data integrity, assuming re-
solvers can !nd means to verify the DNSKEYs for a
singleton zone.

SecSpider’s observations show that more than
98 percent of DNSSEC-enabled zones are single-
tons (zones without a valid secure delegation). This
fact illustrates that for early DNSSEC adopters, the
secure delegation hierarchy isn’t there to help their
key veri!cations. Consequently, the DNSSEC com-
munity has begun investigating ways to design trust-
anchor repositories (TARs) that resolvers can use as
o"- hierarchy systems to verify DNSKEYs for zones.

Trust-anchor repositories. TARs are systems de-
signed to let resolvers determine the validity of keys
for DNSSEC-enabled zones. Existing TARs vary
widely in how they’re implemented and maintained,
and in the ways they present trust anchors to resolvers.

One of a TAR’s !rst considerations is how to ob-
tain valid keys for trust anchors. This is directly re-
lated to resolver operators’ most important concerns:
How much should they trust the keys a TAR vali-
dates? Currently, two main schools of thought exist:

TAR operators should vet keys manually and enter a
given zone’s DNSKEYs into a TAR only after some
real-world assurances are made (where “real-world”
might not be clearly de!ned); or
keys should be obtained from large-scale monitor-
ing of all visible DNSSEC zones by polling them
from multiple independent vantage points.

Each approach has its pros and cons. For example,
the TARs with manual inputs o"er traditional cryp-
tographic assurances that keys found in them should
belong to the zones they report. However, such a
manual veri!cation and maintenance process faces
scaling challenges. In the presence of the hundreds of
millions of DNS zones that exist today, key rollovers
could require even more TAR maintenance e"orts
than large registrars face today. Conversely, the poll-
ing TARs use concepts from distributed system de-
sign (o"-axis polling, independent paths, and so on)
to signi!cantly raise the bar and make it impractical

for an adversary to spoof keys. Clearly, this approach
doesn’t o"er the provable veri!ability that the manual
TARs do, but it does o"er systems-level assurances,
and its automated operation can scale as DNSSEC
continues to grow.

Another issue facing TARs relates to how resolv-
ers get data from them. Again, two major schools of
thought exist:

DNS queries should spawn an additional inline
query to a TAR (or a look-aside) while the resolver
waits, or
resolvers should obtain static entries from TARs so
that all trust anchors are known locally a priori.

An inline lookup lets a TAR be a separate service op-
erated by focused operational groups separated from
resolvers and can provide up-to-date information. On
the other hand, this approach also adds obvious latency
to DNS queries because resolvers can’t send responses
until after receiving a separate response from the TAR
and any further validation occurs (using multiple look-
aside TARs would clearly compound this). Further-
more, a resolver operator must trust the TAR operators
to provide reliable and faithful service with limited
outages and without compromised servers. The sec-
ond approach has the advantage that all trust-anchor
information is precon!gured and that no appreciable
latency occurs when using their trust anchors. How-
ever, one drawback is that the list might grow large
enough to become infeasible to manage locally.

TARs also face issues related to how they stay
abreast of changes to the DNSKEYs of the zones they
represent. It’s just as important for TARs to keep up-
dated as it is for parent zones to maintain their chil-
dren’s DS records. Thus, TAR designers must consider
keys’ lifetimes when designing a TAR. Can a TAR
keep up with the frequency at which zones change
their keys? Also, during a zone’s key rollover (when it
changes from one key to another), a few short transi-
tion phases exist in which the zone uses di"erent com-
binations of the old and new keys—how will a TAR
keep up during these phases? Keeping up with the key
rollovers is particularly challenging if the trust-anchor
keys are con!gured into all resolvers rather than que-
ried inline. Additionally, many believe another ques-
tion is much larger in scope: How will TARs let a zone
transition to using a DS record once its parent signs and
begins o"ering secure delegations? These questions re-
main largely open challenges at the time of this writ-
ing. The operational and research communities have
various opinions about how to answer these questions
and how TARs should evolve in the future.

Example TARs. Today, several examples exist of sys-
tems that act as TARs for resolvers.

Securing the Domain Name System

50 IEEE SECURITY & PRIVACY

The Internet Software Consortium (ISC) runs a
DNSSEC key repository known as a DNSSEC Look-
aside Validation (DLV) service,10 which de!nes a new
type of DNS RR called a DLV. Resolvers use this
DLV repository as a TAR in the following way: when
a resolver gets a DNSKEY from a zone 〈Z〉, it issues a
query to 〈Z〉.dlv.isc.org for a DLV record. This record
is similar to the DS record in that it’s a cryptographic
!ngerprint of the associated DNSKEY. If the record
matches the DNSKEY, the DLV repository has veri-
!ed the key’s authenticity. Thus, the resolver should
be satis!ed, and query responses that this key signs can
be returned; otherwise, the resolver returns a SERV-
FAIL error to the client because the DNSSEC key
validation failed. ISC’s DLV repository is a manually
maintained, inline TAR that uses its own DNSKEY
to sign its DLV records. So, all resolvers must obtain
ISC’s key o#ine in a secure way and use it as a trust
anchor to verify DLV records.

The Interim Trust-Anchor Repository (ITAR) is sup-
ported by the Internet Assigned Numbers Authority
(IANA), which coordinates the DNS root zone. This
TAR is manually maintained but contains trust an-
chors only for the DNS TLDs. The ITAR is speci!-
cally chartered to be decommissioned once the DNS
root is signed, because a signed root would replace the
ITAR’s role and would do so through DNSSEC’s se-
cure delegation design. The ITAR expects all resolv-
ers to statically con!gure its entries. Thus, the ITAR
is a manually maintained, statically con!gured TAR.

The SecSpider TAR is an inline TAR that uses the
same DLV mechanism as ISC’s. Lookups to SecSpi-
der’s TAR take the form 〈Z〉.secspider.cs.ucla.edu for
DLV records. Rather than using manual veri!cation
to collect and validate DNSSEC keys, SecSpider uses
distributed polling from vantage points distributed
worldwide; keys are inserted into the TAR only if
they’re globally consistent. Every time SecSpider runs,
it randomizes the order in which it polls the zones
in its corpus. SecSpider queries each zone from all of
its pollers (lightweight DNS query repeaters) simul-
taneously. Its pollers are deployed at multiple vantage
points around the world, and the communication
channel between SecSpider and its pollers is crypto-
graphically secured. SecSpider takes these three steps
(unpredictable schedule, spatially diverse vantages,
and secure communication channels) to severely
handicap a would-be adversary who attempts to spoof
it and falsely insert a DNSKEY for a zone. Because the
scope of the SecSpider TAR is as large as the observ-
able DNSSEC deployment, it helps verify the keys for
all the zones it can !nd via its automated crawls of
the DNS hierarchy. Thus, SecSpider is an automated,
inline TAR.

Finally, Vantages (www.vantage-points.org) repre-
sents yet another type of TAR. It’s designed to be run

by resolver operators, as a daemon that polls speci!c
data sources the operator speci!es. Thus, it can poll
the keys of all DNS zones that the resolver queries, or
it can poll the Web pages where zone owners publish
their keys. It can also use manual trust assertions from
users that the operator personally believes are trust-
worthy. Vantages then compares the results of the lo-
cal polling against the key information obtained from
a list of the operator’s manually con!gured and trusted
friends who are also running Vantage daemons, pro-
viding o"-axis corroboration. The Vantage daemon
checks the results for consistency and then con!gures
them into the local resolver. So, we classify Vantages
as a hybrid automated/manually maintained, statically
con!gured TAR.

Turning DNSSEC Off
One !nal case is one in which a zone administra-
tor elects to discontinue using DNSSEC. Here, it’s
important for validating resolvers to be able to dis-
tinguish between a zone that was formerly serving a
DNSSEC zone but has now reverted to the basic DNS
service, and a DNSSEC zone that’s under a down-
grade attack. In this attack, an adversary attempts to
serve non-DNSSEC data to a resolver rather than try-
ing to spoof the cryptographic key used in the veri!-
cation. If an adversary can convince the resolver that
a zone doesn’t use DNSSEC, then he or she can serve
unsigned spoofed DNS data.

How to address this issue is largely an open chal-
lenge. One notable example of an operational approach
used today is the one followed by the se ccTLD. When
a zone under se chooses to discontinue DNSSEC, se
simply stops serving the DS record for that zone. For
a zone C under se, if resolvers don’t !nd a DS RR for
C, they don’t expect to see DNSKEYs or signatures
when querying it. However, with TARs’ increasing
numbers and usage, resolvers might continue to !nd
DNSKEYs for zone C, until all the TAR operators
remove their entries.

T he active community surrounding DNSSEC has
clearly identi!ed the challenges listed in this work

and discusses solutions to open issues daily on mailing
lists and in community meetings. Much debate exists
on how best to move forward. However, despite the
remaining open issues, for many, DNSSEC is usable
in its current form, and its deployment has entered a
rapid growth phase, as evidenced by SecSpider’s mon-
itoring results.

References
1. P. Mockapetris and K.J. Dunlap, “Development of

the Domain Name System,” Proc. SIGCOMM Conf.
 (SIGCOMM 88), ACM Press, 1988, pp. 123–133.

Securing the Domain Name System

 www.computer.org/security 51

2. CERT, Cert vulnerability note vu#800113, 2008;
www.kb.cert.org/vuls/id/800113.

3. R. Arends et al., DNS Security Introduction and Require-
ment, IETF RFC 4033, Mar. 2005; www.ietf.org/rfc/
rfc4033.txt.

4. R. Arends et al., Resource Records for the DNS Security
Extensions, IETF RFC 4034, Mar. 2005; www.ietf.org/
rfc/rfc4034.txt.

5. R. Arends et al., Protocol Modi!cations for the DNS Secu-
rity Extensions, IETF RFC 4035, Mar. 2005; www.ietf.
org/rfc/rfc4035.txt.

6. S.M. Bellovin, “Using the Domain Name System for
System Break-ins,” Proc. 5th Usenix Unix Security Symp.,
Usenix Assoc., 1995, pp. 199–208.

7. D. Atkins and D. Austein, Threat Analysis of the Domain
Name System (DNS), IETF RFC 3833, Aug. 2004;
www.ietf.org/rfc/rfc3833.txt.

8. O. Kolkman and R. Gieben, DNSSEC Operational
Practices, IETF RFC 4641, Sept. 2006; www.ietf.org/
rfc/rfc4641.txt.

9. E. Osterweil et al., “Quantifying the Operational

Status of the DNSSEC Deployment,” Proc. 8th ACM
 SIGCOMM Conf. Internet Measurement (IMC 08), ACM
Press, 2008, pp. 231–242.

10. S. Weiler, DNSSEC Lookaside Validation (DLV), IETF
RFC 5074, Sparta, Nov. 2007; www.ietf.org/rfc/
rfc5074.txt.

Eric Osterweil is a PhD candidate at the University of Califor-
nia, Los Angeles. His research focuses on large-scale network
measurement systems, network security, and distributed data
veri!cation. His thesis work focuses on a concept called the
Public-Space. Contact him at eoster@cs.ucla.edu.

Lixia Zhang is on the faculty of the University of California,
Los Angeles computer science department. Her research inter-
ests include network architecture, system security, and proto-
col designs. Zhang has a PhD in computer science from the
Massachusetts Institute of Technology. She cochairs the Rout-
ing Research Group under IRTF and is a fellow of the ACM and
the IEEE. Contact her at lixia@cs.ucla.edu.

—George Orwell, “Why I Write” (1947)

All writers are vain,
sel! sh and lazy.

(except ours!)

“
”

The	
 IEEE	
 Computer	
 Society	
 Press	
 is	
 currently	
 seeking	
 authors.	

The	
 CS	
 Press	
 publishes,	
 promotes,	
 and	
 distributes	
 a	
 wide	

variety	
 of	
 authoritative	
 computer	
 science	
 and	
 engineering	

texts.	
 It	
 offers	
 authors	
 the	
 prestige	
 of	
 the	
 IEEE	
 Computer	

Society	
 imprint,	
 combined	
 with	
 the	
 worldwide	
 sales	
 and	

and	
 technical	
 publisher	
 Wiley	
 &	
 Sons.

For	
 more	
 information	
 contact	
 Kate	
 Guillemette,	

Product	
 Development	
 Editor,	
 at	
 kguillemette@computer.org.	

