COMPUTER
NETWORKS

em W an
j ISDN SYSTEMS

University of Manchester
15-17th June 1998

Computer Networks and ISDN Systems 30 (1998) 2169-2177

Adaptive web caching: towards a new global caching architecture

Scott Michel 2, Khoi Nguyen?, Adam Rosenstein?, Lixia Zhang?*, Sally Floyd"®,
Van Jacobson®

2 UCLA Computer Science Department, 4531G Boelter Hall, Los Angeles, CA 90095, USA
b Lawrence Berkeley National Laboratories, Berkeley, CA, USA

Abstract

An adaptive, highly scalable, and robust web caching system is needed to effectively handle the exponential growth
and extreme dynamic environment of the World Wide Web. Our work presented last year sketched out the basic design of
such a system. This sequel paper reports our progress over the past year. To assist caches making web query forwarding
decisions, we sketch out the basic design of a URL routing framework. To assist fast searching within each cache group,
we let neighbor caches share content information. Equipped with the URL routing table and neighbor cache contents, a
cache in the revised design can now search the local group, and forward all missing queries quickly and efficiently, thus
eliminating both the waiting delay and the overhead associated with multicast queries. The paper also presents a proposal
for incremental deployment that provides a smooth transition from the currently deployed cache infrastructure to the new

design. [0 1998 Published by Elsevier Science B.V. All rights reserved.

Keywords: Web caching; Self-organizing; Multicast

1. Introduction

As Zhang, Floyd, and Jacobson argued [1], an
adaptive, highly scalable, and robust web caching
system is needed to effectively handle the exponen-
tial growth and extreme dynamic environment of the
World Wide Web. This paper elaborates on the ini-
tial architecture for an adaptive web caching system
outlined in [1]. When this web caching architec-
ture was initially proposed, severa other approaches
to building a caching system for the World Wide
Web were also introduced, including the Squid web-
caching system, which has since been widely de-
ployed and has emerged as the de facto standard for
web caching. Although the Squid system has proven

* Corresponding author. E-mail: lixia@cs.ucla.edu.

successful in accomplishing many of the goas of
web caching, we believe our adaptive approach to
the problem provides an effective, natural evolution-
ary step towards a truly scalable, robust, efficient,
and demand-driven web-caching system.

The dominant web-cache infrastructure on the In-
ternet today consists of a hierarchy of Squid object
caches. In the Squid system, all cache servers are
inter-connected in a manually configured hierarchi-
cal tree. Each cache server exchanges Internet Cache
Protocol (ICP) queries and replies with its ‘peers
(siblings and parent) in order to determine the most
appropriate peer from which to retrieve a client’s
requested web content (either via a cached copy or
directly from the origin server). Fueled in part by
Squid's success in demonstrating the potential ben-
efits of web caching on the Internet, a proliferation

0169-7552/98/$ — see front matter [1998 Published by Elsevier Science B.V. All rights reserved.

Pll: S0169-7552(98)00246-3

2170 S Michel et al./ Computer Networks and ISDN Systems 30 (1998) 2169-2177

Origin 59’"”/

Fed 3

. Proxy Cache

Ferﬁ
O Federation

Fig. 1. Sets of proxy caches are organized into small overlapping
groups, thus forming a mesh through which clients' web queries
may be forwarded.

of research in possible improvements to the sys
tem has recently emerged. It has been proposed that
improvements to the current manual configuration
of the Squid hierarchy would eliminate the heavy
burden placed on system administrators who must
coordinate with each other, make the system less
prone to both human error and misconfiguration by
system administrators, and improve the scal ability of
the system as well as the system'’s ability to adapt to
changing network conditions. In addition, research
has suggested that Squid's single, static hierarchy
should be enhanced to address the potential problem
of inefficient routing of web requests. This prob-
lem can arise since al cache misses must first be
fetched by a root node, which may be significantly
farther from the origin server than the client’s proxy
cache. Moreover, the fact that the static hierarchy
is not necessarily well suited to the unpredictable,
roving nature of web hot-spots is also subject to im-
provement. Squid can be further optimized to avoid
the inordinate amount of delay associated with the
3-way handshake protocol for exchanging ICP mes-
sages. Lastly, the possibility that upper nodes in the
Squid hierarchy may become excessively loaded and
degrade both the system’s performance and ability
to scale offers another opportunity for enhancement.
Thus, these challenges associated with improving the
Squid system suggest that the system must evolve
towards a more scalable, adaptive, efficient, and self-

configuring web-caching system in order to effec-
tively support the phenomenal growth in demand for
web content on the Internet.

We believe our adaptive web caching system pro-
vides an effective evolutionary step towardsthisgoal.
Asoriginaly presentedin[1], thegeneral architecture
of the envisioned adaptive web caching system would
be comprised of many cache serversthat self-organize
into amesh of overlapping multicast groups and adapt
as hecessary to changing conditions (see Fig. 1). This
mesh of overlapping groups forms ascalable, implicit
hierarchy that is used to efficiently diffuse popular
web content towards the demand. (The reader is re-
ferred to[1] for further detailsof the general architec-
ture.) There are two important research i ssues associ-
ated with this approach: (1) how to self-organize web
cachesto establish the different paths of communica-
tion among the cache groups in the mesh/hierarchy;
and (2) how to forward requests and other information
along the most appropriate path. The high-level focus
of our work, then, is (1) to design areasonable archi-
tecture for an adaptive, scalable web caching system;
and (2) to determine the most effective direction of
evolution from the current web caching infrastructure
to our proposed system.

This paper extends our original adaptive web
caching design [1] by first proposing how the current
web-caching infrastructure may evolve towards an
adaptive web-caching system and by discussing the
system and its associated research issues, including
those mentioned above, in greater detail than before.
The paper is organized as follows: We first discuss
in Section 2 a redlistic evolutionary path from the
currently deployed Squid caching infrastructure to
our proposed adaptive system. In Section 3, we
discuss how caches may share information about
their contents, and in Section 4, we present our recent
progress in our protocol for forwarding requests
through our mesh of cache groups. We then describe
the issues and mechanisms of self-organization in
Section 5, and finally, we conclude our paper in
Section 6.

2. Time scales

Incremental deployment is critical in introducing
or modifying any global-scale system; it isinfeasible

S Michel et al./ Computer Networks and ISDN Systems 30 (1998) 21692177 2171

to envision the one-step deployment or modification
of such large systems. A good plan for incremental
deployment is especialy important for an adaptive
caching system since multicast, an important element
in our system architecture, is yet to be ubiquitously
supported, and some of the research goals are on a
longer time scale than others (e.g., self-organization
is a longer term research topic). In addition, an
adaptive caching system would be built on top of the
existing web caching infrastructure, and this requires
gradual, incremental changes to the system.

As a result, we envision a deployment of adap-
tive web caching in three distinct phases, in which
the evolution from one stage to the next would
occur in tandem with the evolution of the Inter-
net itself as needed functionality for adaptive web
caching becomes widely supported in the Internet.
The three deployment phases would be (1) the in-
troduction of adaptive web caching for distribut-
ing information and web requests among the cache
mesh, without multicast and self-organization; (2)
the addition of multicast as a mechanism for both ef-
ficient group communication and as a building block
for the self-organization of groups, which will be
introduced in the third phase; and finally (3) the in-
troduction of self-organization into the adaptive web
caching system to make it completely adaptive and
robust.

It is unlikely that multicast will be ubiquitously
supported on the Internet in the near-term, and thus
we cannot assume that adaptive web caching will ini-
tially be able to leverage the efficiencies and useful
properties of multicast. At the same time, even if the
long-term research goal of enabling cache serversto
self-organize themsel ves into reasonabl e overlapping
groups in an adaptive and fully distributed manner
was fully realized, it would not be likely to be de-
ployed in the current web caching infrastructure in
the near term. An initial deployment of adaptive web
caching, then, would take place in a mesh of manu-
aly organized cache servers that communicate with
each other largely using unicast communications.
It should be noted that although multicast serves a
more important purpose than only as an efficient
group communication mechanism in our system, the
use of unicast suffices in an initial deployment of
adaptive web caching with cache groups that are
manually configured and static. That is, in an ini-

tial deployment of adaptive web caching, the routing
of information among the cache mesh would be
adaptive, but the underlying communication infras-
tructure among the web caches would remain static.
In this short-term system, there are two important
research issues that we will address: (1) how web
caches share and make use of information about the
contents of other nearby caches; and (2) how to
best route requests through the manually configured
cache mesh (including how to handle ‘cold page
requests). Both of these issues are discussed in more
detail in the next section.

Once multicast becomes widely supported on the
Internet, the second phase of deployment of adap-
tive web caching may be initiated. Adding multicast
to our system provides two primary benefits. Firdt,
it alows members of a group to communicate and
share information efficiently; and second, it provides
the necessary functionality for a scalable, fully dis-
tributed algorithm to self-organize the cache servers
into overlapping multicast groups. Such an algorithm
requires that each cache server be able to freely join
or leave cache groups without having to inform
anyone in the group. Multicast groups provide this
capability. In addition, multicast provides negotia-
tion-free group discovery, an important aspect of
auto-configuration *.

Thus, the primary research issue for this interme-
diate-term system is how to best leverage multicast
both in the intermediate-term as well as in the long-
term final system. Note that the use of multicast in
our design is strictly within certain local scope, thus
multi cast-enabled self-organization can be deployed
in a piecemea way, without needing to wait till
multicast becomes ubiquitous through the Internet.

Finally, an adaptive web caching system can only
be fully deployed after the achievement of a long-
term research goal of developing a scalable, robust,
adaptive, and fully distributed protocol for self-orga-

1In the 1997 white paper on adaptive web caching, it was sug-
gested that, in addition to the above proposed uses for multicast,
multicast would also be used as an information discovery ve-
hicle. We have since decided that cache group members would
inform each other of their cache contents, using multicast if
possible for efficiency, in advance to avoid the delays associated
with duplex suppression for multicast queries. Thus, multicasting
requests for data to neighboring web caches is no longer required
in our system.

2172 S Michel et al./ Computer Networks and ISDN Systems 30 (1998) 2169-2177

nizing an arbitrary number of cache servers into
overlapping multicast groups based on some vector
of metrics (e.g., delay and bandwidth between group
members, demand for web content, cache server
load, and possibly policy constraints). The addition
of self-organization to an adaptive web caching sys-
tem can make the whole system scalable, adaptive,
and robust. Some of the fundamental underlying
research issues here will be (1) how to efficiently
self-organize the groups to provide good communi-
cation paths among the caches in the cache mesh; (2)
how to organize caches separated by some political
or resource-constrained boundary (e.g., transoceanic
links, network boundaries between secure organiza-
tions); and (3) whether an implicit hierarchy (cache
mesh) is adequate or if an explicit hierarchy (a sec-
ond level cache structure overlaid over alower level
cache mesh) is needed. These research issues along
with others associated with self-organization are dis-
cussed in greater detail in Section 5.

3. Information about the contents of near by
caches

There are two distinct issues in applying adaptive
algorithms for the exchange of information among
caches in a cache mesh. First, within a region or
local area, caches receiving a request for data check
to seeif some nearby cache already has the requested
contents. A second step dynamically routes the re-
guest to another cache or caches within the cache
mesh after the first step has failed. In this section we
address the first step, of caches availing themselves
of the contents of nearby caches.

In our earliest thoughts of a adaptive web caching
architecture, as in the current Squid caching in-
frastructure, caches used explicit probing to query
neighboring caches about their cache contents. In the
Squid architecture, for example, a Squid cache sends
aquery to its sibling caches and waits for a positive
acknowledgment that the requested content is cached
within the sibling group. Severa recent proposals
have proposed alternative mechanisms that would
reduce the unnecessary delay of this explicit probing
behavior. One such approach is [2], where Bloom
filter hash code sets are periodically exchanged be-
tween siblings. This allows each sibling to make an

http

;
PEREHHE

Fig. 2. Decomposition of URLS into scheme, network location,
and path components. Multiple URLS from UCLA's Computer
Science Department build this tree of shared components.

informed judgment about whether or not a requested
URL is cached elsewhere in the group?.

Our current approach to adaptive web caching is
that caches exchange their entire content state with
the other members of their cache groups, eliminating
the delay and unnecessary use of resources of explicit
cache probing. URL hash coding is employed as a
compression mechanism. Each URL whose contents
occur in a single cache is decomposed into scheme
(e.g., ‘html"), network location (DNS host name), and
following path components. Repeated URL decom-
positions are organized as atree (see Fig. 2). A depth-
first traversal of the treeyields astring of hash codes,
which are subsegquently exchanged.

2 A completely different issue is that of neighboring of co-located
caches under common administrative control. In this case, hash
codes can be used not only to disseminate information about cache
contents, but in fact to allocate different portions of the URL ad-
dress space to different caches within the cache group [3].

S Michel et al./ Computer Networks and ISDN Systems 30 (1998) 21692177 2173

An immediate concern isthe size of the state mes-
sage as caches accumulate a large number of URLS.
However because this content state is exchanged
only among the members of each cache group, we
expect the cost of such exchanges to be well within
acceptable level as long as the grouping is formed
properly, taking into account the distance among
members and the bandwidth availability within each
group. Furthermore, the size of the content state
message scalesin the number of the URL tree nodes.
There exists a tradeoff between the reduced delay
that results from more complete information about
other caches URL decomposition trees, and the
additionally imposed load of larger state exchange
messages. Another important issue is the effective-
ness of the hashing scheme and the number of false
positives. This is a piece of ongoing research. Ad-
ditional concerns include cache update synchroniza-
tion, as[4] found in routers exchanging RIP protocol
messages. As [4] proposes, synchronization can be
broken by randomizing the exchange intervals.

4. Forwar ding requests

In this section, we consider adaptive approaches
for the forwarding of requests within the cache mesh.
These forwarding mechanisms are used after a cache
has decided that none of its fellow group members
have the requested contents. In some cases, it is suf-
ficient for a cache to forward requests to a fixed set
of ‘parent’ cachesin aconfigured hierarchy. Thisisa
reasonable approach for the current web caching in-
frastructure, where one of the first-order limitations
is that of congested trans-oceanic links connecting
clients in other continents with busy web servers
situated in North America. A fixed hierarchy for
forwarding requests is also sufficient for those ex-
tremely hot web pages that are quickly disseminated
to web caches throughout the global web caching
infrastructure. However, as the web caching infras-
tructure increases in both size and content diversity,
the importance of adaptive algorithms increases for
those requests that cannot be satisfied locally and
must be forwarded. A cache must decide whether
to forward the request towards the origin server,
a nearby replicated server, or a closer large cache
judged likely to have the desired contents.

As articulately argued in [5], design principles for
the global web caching infrastructure include mini-
mizing both the number of cache hops to access the
data and the delay in searching for a request that
cannot be satisfied by the caches. For requests that
are not sufficiently hot and thus not pervasively dis-
tributed among the web caching infrastructure, the
number of cache hops to access the data should be
minimized. This may be accomplished by forward-
ing the request to a cache or caches significantly
closer to the origin or replicated server, thus signifi-
cantly increasing the likelihood of reaching a cache
that already has the requested data. In certain cases,
minimizing the number of cache hops to access the
data can aso be accomplished by forwarding the
request to a cache known to be significantly more
likely to have the data, regardless of that cache's
distance to the origin or replicated server. For a re-
quest that is not sent directly to the origin server,
the delay in the case of a miss is only minimized
if that request was routed to a cache closer towards
the origin/replicated server. Two other design prin-
cipals set forth in [5] are to ‘ share data among many
caches', and ‘cache data close to clients'. Adaptive
web caching is true to this advice by complementing
the origin-ward query forwarding with a demand-
ward data replication scheme.

We propose that web caches maintain a URL rout-
ing table, and use this URL routing table to decide
where to forward arequest in the web caching infras-
tructure. The URL routing table bears a resemblance
to the IP routing table: caches would maintain a URL
prefix table just as routers maintain an IP network
prefix table. This URL routing mechanism can be de-
ployed either in an infrastructure based on multicast
groups of web caches or in the current unicast-based
web caching infrastructure. The URL routing table's
primary keys are URL prefixes, with which are asso-
ciated one or more identifiers to the next-hop caches
or cache groups. The URL prefix may be a distinct,
complete URL, or, more typically, an aggregation
of URLSs designated by their common scheme, net-
work location and path components. For URLs that
do not match to anything more specific in the URL
routing table, a default entry may exist in the table,
similar to the default forwarding entry maintained
in many IP routing tables. This allows the familiar
tradeoff between minimizing overhead and optimiz-

2174 S Michel et al./ Computer Networks and ISDN Systems 30 (1998) 2169-2177

ing request routing (by decreasing or increasing the
level of detail in the URL routing table).

The information for the URL routing table is
learned from caches within the participating caching
infrastructure, transparent to web clients and servers.
The initial information for the URL routing table
may be filled in a number of possible ways. For ex-
ample, source-based entries can result from a cache's
proximity to a specific server or replicated server, or
from that cache's more general proximity to an en-
tire set of servers (e.g. an aggregated entry could
refer to all the servers from ‘*.berkeley.edu’, or al
the servers from the same country.) The information
for the source-based entries includes the URL prefix,
an identifier for the cache, and a metric reflecting
that cache’'s average measured delay in seconds to
retrieve arequest from amatching URL. To maintain
these entries the caches may use their own experi-
ence of sending requests directly to those servers to
assure their existence and to estimate the distance in
seconds from those servers. New source-based en-
tries in a cache’'s URL routing table can result from
receiving location advertisement of a nearby busy
origin server. When origin servers are unknown to
the cache system, Web requests are sent directly to
the servers identified in the URL'’s. Thus read-once
pages are served as fast as possible without going
through the caching infrastructure. However when-
ever the volume of requests reaches a certain level,
a busy server (or a nearby cache on the server's
behalf) can actively advertise its location to nearby
caches, resulting in further requests and data dissem-
ination to go through the caching system. However
caches must also build in self-protection mechanism
to avoid idle web servers from aggressively pushing
out their own reachability information, thus loading
up the URL table with useless entries.

A second information source for the URL routing
tableis derived from content-based entries. Content-
based entries are learned from caches which accu-
mulate URLs matching a certain URL prefix, either
as the result of administrative policy or their own
request history. An example scenario where content-
based entries are necessary is the Japan cache in
the United States [6], created to cache entries from
servers with domain names ‘*.jp’. Caches distin-
guish between source-based and content-based en-
tries in the URL routing table. Because forwarding

decisons made on content-based entries are less
likely to head towards the origin server, these for-
warding decisions are more likely to increase request
delay in the event of a cache miss. However, content-
based entries often will cover abroad range of URLS
(e.g. ‘*.jp’) and will thus alow such queries to take
advantage of a great degree of aggregation. While
content-based caching is different from atrue mirror,
such large-scale aggregation points provide a simi-
lar benefit in answering requests from neighboring
cache groups. Such aggregation points may also look
similar to the cache-banks that use URL-hashing to
designate each cache for serving a certain range of
URLSs, however with the advantage of having control
over the exact cached content types and volumes.

We are exploring a range of possible approaches
for cachesto exchange URL prefixesin order to build
URL routing tables based on these source-based and
content-based entries. One simple approach isto use
a distance-vector-style routing algorithm among the
web caches, based on the rough measured metric
of ‘seconds between caches and their neighboring
caches. A second approach to building the URL
routing table is to use a link-state routing analog.
A link-state approach means that routing informa-
tion is exchanged globally, to scale well one must
restrict the global URL routing updates to a subset
(e.g., a most several hundred) of large caches. This
approach reflects an inherent underlying organiza-
tion of the web caching infrastructure into larger
regional caches that participate in the globa URL
routing table, and smaller local caches that tend to
serve their local community. Each cache constructs
its own URL routing table based on its knowledge
of the cache topology, combined with the source-
based and content-based entries distributed among
the large web caches indicating which caches are
close (measured in seconds of delay) to which URL
prefixes.

5. Self-organization

We are till in the early stage of developing a
Cache Group Management Protocol (CGMP) to let
autonomous Web caches organize themselves into
multiple, overlapping multicast groups, forming a
transport substrate for URL requests and data flow.

S Michel et al./ Computer Networks and ISDN Systems 30 (1998) 21692177 2175

We envision that each popular page will grow its
own cache tree upon the foundation provided by
this mesh of overlapping cache groups. Cache trees
for ‘flash spots may come and go highly dynami-
cally, but the cache groups upon which they are built
will remain relatively stable. Groups will gradually
and continuously adjust themselves according to dy-
namic changes in the operational environment such
as changes in network topology due to cache servers
entering and leaving the population, links coming up
or going down, and changes in traffic load and user
demand levels. We have considered several possible
mechanisms for self-configuration of cache groups.
These included approaches based on reaction-diffu-
sion models found in biology as well as more tra-
ditional negotiation techniques. Further examination
of scaling issues, however, led us to abandon those
approaches in favor of a new voting scheme with
which we have had success in preliminary simula-
tion studies. Given the increasingly complex World
Wide Web, a distributed caching protocol must scale
effortlessly. To meet this goal we envision a global
cache system capable of utilizing new cache servers
whenever and wherever they may appear.

In order to best achieve such a scale-up, our de-
sign allows cache servers to be added by any party,
a any time, in any location. To facilitate this vi-
sion, adaptive web caching defines cache servers to
be autonomous entities which observe and react to
their changing environments independent of outside
control. A continuing increase in web access demand
will necessitate a corresponding continual addition
of cache serversto the global cache mesh. Self-orga-
nization is a necessity in this kind of decentralized
environment, both in terms of adaptive web caching
protocols and in terms of the policy authorities con-
trolling adaptive web caching servers.

The fundamental design goals of CGMP include
making the entire cache topology group-wise con-
nected, making the grouping follow and match the
topological constraints, and grouping cachesto mini-
mize the number of ‘hops’ a URL request must travel
upon cache fault. Cache groups that cross trans
oceanic links should keep the group size minimal
in order to minimize the intra-group communication
cost, while caches with low-delay, high bandwidth
connectivity to one another should group themselves
together. Furthermore, a group should cover a con-

tiguous neighborhood in network topology (that is,
not fragmented by intersections with other groups).
The last point implies that whether a cache joins
a group G should not be determined by whether
its location is close to a single member of G, but
by taking into account the locations of all members
in G. Lastly, the CGMP should not require manual
configuration and, consequentially, must learn of the
existence of cache groups which it may potentially
join without resorting to negotiation. This suggests
that multicast group discovery would be particularly
advantageous.

In the proposed voting scheme, each cache server
periodically sends voting messages on awell-known
multicast address, one for each group of which it is
a member. Simultaneously, each cache server indi-
vidually decides which cache groups to join based
on the voting announcements received from other
cache servers. The overlapping of cache groups is
achieved by requiring that caches join more than
one group, but with no two cache servers joining
the same two groups. Each voting message contains
the group ID for the cache group and a voting sig-
nal. Recipients of a voting message from member
M of group G evaluate the voting signal relative
to their distance from M, and then treat this value
as the partial support from M for their membership
in G. The sum of al the partial supports a cache
received from members of G indicates its appropri-
ateness for membership in group G. If the support
for membership in G surpasses a threshold, a cache
wishing to join G (an ‘applicant’) may simply be-
gin operating as a member of G. If a member of G
notices a decline in voting support below a different
threshold, it will exit group G (it has been ‘voted
out’). In addition to sending periodic voting mes-
sages to all other caches, members and applicants
of a group G also multicast ‘voting requests’ to the
multicast group G. These requests call for some rel-
ative increase or decrease in the voting signal. Group
members average the requests, and alter the form and
distance of their voting signals in response. In this
way, each member indirectly responds to every ap-
plicant, as members attempt to balance the strength
of the voting signal to be ‘strong enough’ to sup-
port distant members and applicants as it can, while
not being ‘too strong’ for those members that are
close-by. This approach is robust because dropped

2176 S Michel et al./ Computer Networks and ISDN Systems 30 (1998) 2169-2177

votes merely appear to weaken support for group
membership temporarily.

No decisions regarding group membership are
made on hard thresholds, but rather they are made
with tolerance to varying support and randomized
timesto act. If alossy link prevents an applicant from
receiving many votes from some members, then the
apparent vote will be too low to join —an appropriate
observation given the applicant’s impaired connec-
tivity. Likewise, applicants appearing to fit well into
the chosen scale upon which the group is operating
will be able to determine this by simply observing
the group’s votes, and may join the group’s multi-
cast group and start issuing its own votes without
ever contacting a member. Thus, the adaptive web
caching group management protocol does not need
reliable multicast nor direct negotiations, it is tol-
erant to changing topologies and transient failures,
it does not rely on any hand configuration, and it
generates little protocol overhead.

Using a well-known multicast address to boot-
strap auto-configuration allows for transparent neigh-
borhood discovery and configuration-free initializa-
tion. The associated overhead can be controlled by
adjusting both the frequency of the voting messages
and the maximum distance to which the messages
travel. This distance limiting is achieved by group
members setting the TTL limit in their voting an-
nouncements to be not much farther than the farthest
existing member of the group. For an unconnected
cache server to achieve connectivity it must send
‘vote solicitation requests’ on the global well-known
multicast address with increasing TTL values until
connected caches respond by increasing the TTL on
their voting announcements sufficiently. Because the
TTL value controls the number of router hops a
message travels, a trans-oceanic link is counted the
same way as a FDDI hop. Thus an increasing TTL
value assures that the request eventually reaches
other existing caches. On the other hand, caches take
into account measured delays and connectivity be-
tween each other in considering the appropriateness
of group membership, so that a group crossing a
trans-oceanic link will most likely result in the min-
imal size of two caches (one at each end), and a
group crossing a campus FDDI ring will include all
the caches connected to the ring. A special case that
is yet to be incorporated into our design is handling

of satellite channels —although they have a long
propagation delay, their broadcast nature suggests
the grouping of all their connected caches.

Preliminary simulation results have shown the vot-
ing scheme to be stable, resistant to node failures,
adaptive to changing topology, and successful in
forming and maintai ning the group at any desired size.
However, the simulations performed so far are based
on small topologies and are very coarse-grained. We
are moving onto larger-scale simulation tests to ex-
amine the proposed schemein more realistic network
settings. Because engineering of self-organized sys-
temsis, in general, an area of open research, we rel-
egate full deployment of CGMP towards the end of
the proposed incremental deployment of adaptiveweb
caching. In the interim, we propose a gradual adjust-
ment of currently deployed Squid cache hierarchies
into adaptive web caching groups.

Initially, adaptive web caching can be built on top
of existing Squid hierarchies. In this environment
new adaptive web caching servers will need to deter-
mine their ‘ sharing neighbors’ and their place in the
Squid hierarchy. Thisinitial self-organization within
the Squid hierarchy is driven by the adaptive web
caching server’'s hand-configured knowledge about
its own cache capacity and network quality. The use
of multicast to identify parents, siblings and chil-
dren is a well-established mechanism which takes
advantage of multicast’s unique features. This sort of
self-organization will be introduced into the system
when the ‘birth rate’ of adaptive web caching servers
warrantsit.

As adaptive web caching grows, it can break
away from the traditional Squid-type hierarchy to
a form that better suits the task of demand-driven
data diffusion. Aggregation of client requests (to im-
prove hit rates) will be achieved by replacing Squid
leaf caches with groups of topologicaly nearby
caches. As URL routing is introduced, adaptive web
caching will transition from the explicit Squid hier-
archy to animplicit hierarchy. This configuration can
be achieved through the use of multi-scale group-
ings. Groups will vary in size, with upper-hierarchi-
cal-layer Squid servers joining/forming wide-area
groups. These wide-area groups form an implicit hi-
erarchy because they will serve the same purpose
as network backbones with respect to request for-
warding. As the most expedient cache-group link

S Michel et al./ Computer Networks and ISDN Systems 30 (1998) 21692177 2177

to get from a local cache group to any number of
distant servers, the wide-area cache groups will see
more traffic, and thus cache more objects than the
local-area groups. They should also experience the
highest hit-ratios in servicing requests.

6. Conclusion

Extending Zhang, Floyd, and Jacobson’s original
adaptive web caching proposal in [1], we have dis-
cussed both our recent progressin desi gning our adap-
tive caching system as well as some of the important
research issues associated with our work. In particu-
lar, we have presented our research towards building
an adaptive mesh of overlapping multicast groups of
cache servers via a self-organizing mechanism. We
have also discussed how we intend to forward web
requests and content through the cache mesh such
that the web content can efficiently meet its demand.

We believe our proposed adaptive, self-config-
uring web caching system is needed to adequately
accommodate the current exponential growth in de-
mand for web content. Our design has specifically
been designed to scale with the total traffic volume
as well as with the number of users, hosts, and net-
worksin the Internet. At the sametime, our systemis
designed to remain robust and efficient in the face of
the heterogeneous and dynamic network conditions
that typically characterize the Internet. Although our
system is being designed specifically for the World
Wide Web, we believe that many of the research
issues that we are addressing can be more generally
applied to other Internet systems which face issues
of scale and which can benefit from caching.

References

[1] L. Zhang, S. Floyd, V. Jacobson, Adaptive web caching,
Research proposal, February 1997, http://irl.cs.ucla.edu/AW
Clproposal.ps

[2] L. Fan, P. Cao, J. Almeida, A. Broder, Summary cache: a
scalable wide-area Web cache sharing protocol, Technical

Report 1361, Computer Sciences Dept., Univ. of Wisconsin-
Madison.
[3] K. Ross, Hash routing for collections of shared Web caches,
|EEE Networks 11 (6) (1997) 37—44.
S. Floyd, V. Jacobson, The synchronization of periodic rout-
ing messages, |EEE/ACM Trans. Networking 2 (2) (1994)
122-136.
R. Tewari, M. Dahlin, H. Vin, J. Kay, Beyond hierarchies:
design considerations for distributed caching on the Internet,
Technical Report TR98-04, Dept. of Computer Sciences,
Univ. of Texas at Austin, February 1998.
[6] M. Nabeshima, The Japan cache project, NLANR Cache
Workshop, http://ircache.nlanr.net/Cache/Workshop97/Paper
s/Nabeshima/nabeshima.html

[4]

=

[5

—

Scott Michel is currently a graduate student at the University
of California, Berkeley. He plans to draw his Ph.D. dissertation
material from the Content Routing Protocol.

Khoi Nguyen is a graduate of the Computer Science Program
at the University of Cdlifornia, Berkeley, Mr. Nguyen entered
the computer science graduate program at the University of
Cdlifornia, Los Angeles in 1997. He plans to draw his Ph.D.
dissertation material from portions of the AWC project.

Adam Rosenstein is a graduate of the Computer Science Pro-
gram at the University of Florida, Mr. Rosenstein entered the
computer science graduate program at the University of Califor-
nia, Los Angelesin 1996. He plans to draw his Ph.D. dissertation
material from the Cache Group Management Protocol.

Lixia Zhang was born in Shen-Yang, China. She received her
B.S. degree in 1976 from Heilongjiang University in Harbin,
China, her M.S. in Electrical Engineering in 1981, and her Ph.D.
in Computer Science in 1989 from Cal State, L.A. and M.I.T.,
respectively. She has worked at Xerox Palo Alto Research Center
in Palo Alto, California for over six years. Dr. Zhang joined the
University of California, Los Angeles Computer Science faculty
in November of 1995.

Sally Floyd received her B.A. degreein 1971 from the University
of California, Berkeley, and her M.S. and Ph.D. in Computer
Science from the University of California, Berkeley in 1987
and 1989, respectively. She is a staff scientist in the Network
Research Group of the Information and Computing Sciences
Division at Lawrence Berkeley National Laboratory in Berkeley,
Cadlifornia.

Van Jacobson is currently the group leader of the Network
Research Group of the Information and Computing Sciences
Division at Lawrence Berkeley National Laboratory in Berkeley,
Cadlifornia.

