
Why TCP Timers Don’t Work Well

Lixia Zhang
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139

Abstract

R.epeated observation of TCP retransmission timer problems
stimulated investigation into the roles and limitations of
timers. Timers are indispensable tools in building up reliable
distributed systems. However, as the experience with the TCP
retransmission timer has shown, timers have intrinsic
limitations in offering optimal performance. Any timeout
based action is a guess based on incomplete information, and
as such is bound to be non-optimal. We conclude that, if we
aim at high performance, we should use external events as a
first line of defense against failures, and depend on timers only
in cases where external notification has failed.

1. Overview
In computer commui~icatioi~ networks a tiinzey is a

failure detection mechanism, normally used to decide
when to retransmit a lost packet, or when to abandon a
broken connection. Timers have been employed in all
network protocols that offer reliable services. They seem
to play an indispensable role. However, even with many
years of experience. we are still not able to make timers
work as well as we would like.

The Transmission Control Protocol (TCP) [8] is
intended for use as a highly reliable host-to-host protocol
in packet-switched c0111pute1 networks, and ill

Permission to copy without fee all or part of this material 1s granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. TO
copy otherwise, or to republish, requires a fee and/or speck
permission.

interconnected systems of such networks. TCP has been
widely implemented and used over the years. Repeated
observations of TCP timer problems stimulated our
investigation into further understanding of the following
questions:

l Is a timer really indispensable in network
protocols?

0 What roles should a timer play? What are
its limitations?

l How should we use it?

The basic conclusions we draw are that timers are
indispensable in building reliable distributed systems; yet
their limitations need to be fully identified. Ill

retrospect, we see that many of the problems
encountered in using a timer are in fact due to
illisuiiderstantling of its limitations. Although the
following discussions relate specifically to phenomena
and problems occurring in TCP, the conclusions. we
believe, apply to the roles of timers in similar protocols,
sLlcll as the IS0 Transport Protocol, a.nd in all
distributed systems.

The nest, section espla.ins the necessity of timers iii
disti~il~nt.ed systems in general, and in network protocols
in particular. Section 3 is a review of previous work and
rspcrience will1 TCP timer. Section 4 explores the
intrinsic liinitatious of a timer. With a better
understanding of the limitations, section 5 suggests some
hellristic rules in using timers, and loses the timing
a.lgorithm of NETBLT (NETwork BLock Transfer) [z], a
IJIIII; data transfrr protocol, to give au esi~tnple. The
last section is a suinmary of the 1vot.k.

0 1986 ACM o-89791-201 -2/86/0800-0397 7% 397

SIGCOMM 1986
(Best Student Paper Award)

2. Why a Timer?
A computer net,work is a distributed system. One of

the advantages of distributed systems is that there is no
i&e-slaa~ing among individual autonomous components
in the system, i.e. they fail independently. This non-
fate-sharing feature is achieved by coupling the
components only through data communications channels.
Consequently, individual components in a distributed
system can only “hear” from each other through the
communication channels, but cannot directly observe the
existence or functioning of others and their running
states. To coordinate with each other, they have two
ways to detect esteIxa1 state changes or failures:

1. By external reports. For instances, upon the
arrival of an ackno~vledgment, the data
sender knows that the data sent have been
successlully received; when an ARPANET
host tries to communicate with another not-
running host, the network will respond with
a “remote host dead” message.

2. By local detection, e.g. using a retransmission
timer to detect packet losses.

In this paper fk/w?.e has a very general definition: it
may simply refer to the failure of an intended function,
as well as to a machine crash or the breaking of a
communication channel. Later on we will see that
externa.1 reports are a better way to do failure detection
and recovery. For the following reasons, however, local
detection is alwa.ys needed:

. Not all external changes or failures can be
reported. For esmiple, if a receiver detects
an incoming packet with a header checksum
error, the source address part may have been
damaged, hence the sender cannot be
identified. The receiver will not be able to
notify the sender to retransmit the packet.

l The reporting system may fail itself, e.g. an
acl~iio~vleclgment may get lost.

Therefore, to xhieve sufficient self-protection in a
distributed system, cautious users set up some form of
local detection. So far, the only local detection tool
available is a timer. This is not a coincidence. With no
external information, tim.e is the only tool that one can
use to estinzate external state changes. If one
communicating end does not hear from the other end as
it should within some reasonably long time period, it
clSs’u?nes that something must have gone wrong, either
within the communication network or at the remote site.

For example, the sending host of a TCP connection uses
a timer to detect packet loss, so does an ARPANET
IMP; during the absence of data traffic, ARPANET
IMPS regularly talk to each other. and a. neighbor IMP
will be declared clown if it has been silent for a certain
time period. A timer is a ?nust for any player in a
distributed system.

3. Previous Experience and Work with
TCP Timer
A timer is an alarm clock which goes off after a

specified timeout period. The usual goal of a timer
algorithm is to dynamically adjust the timeout value to
approach an ideal where the timer is triggered
kmntedicitely and only upon a real failure. In their
desire to achieve good performance, all timer algorithms
try to balance between two conflicting goals:

1. speeding up failure detection, and

2. minimizing false alarms, i.e. minimizing the
incidents of the timer going off prematurely
when no real failure has occurred.

TCP uses timers to detect packet losses (the
retransmission timer) and connection breaks (the death
timer). Since connection breaks happen rarely, and
hosts usually are willing to try for a long time before
finally giving up. the death timer is often set to a large
value. This is not the case, however, for TCP
retransmission timers. In the middle of a session, it is
undesirable for a client to wait for a few minutes to
recover a transmission error. TCP took the approach of
setting the retransmission time] by dynamically
estimating the Round Tkp Time (RTT) between the two
communicating entities. In this section we first
int,roduce the TCP’s adaptive retransmission timer
algorithm, then discuss its problems.

3.1. TCP Retransmission Timer Algorithm

Due to the variability of the networks that compose
an internetwork system, the TCP retransmission timer
(TCP timer for short) is determined dynamically fol
each connection. TCP measures the RTT for each data
segment transfer, and computes a Smoothed Round Trip
Time (SRTT):

SRlT= a x SRTT+ (1 - a) x RTT
Based on SRTT, it then computes the Ret,ransmissio,n
TimeOut value (RTO):

RTO = nrin { UDou~nd, mnz (Lbomd, p x SRTT) }
Where iY6omd and Lbwtzd a.re the upper and lower

398

bounds on the tinieout value; 0 is a smootliing factor,
and /? is a variance factor. In real implementstioi7s,
1Jbound and Lbound values are assigned cmpiricaily as a
loose limitation on the timer’s value. Recommended
values of a and p are 0.8 - 0.0, and 1.3 - 2,

respectively. Different Q and p values have been
experimented with, as descril,ed below.

3.2. Problems with TCP timer
Over the years of running TCP in the ARPA

Internet, many problems associated ~vith the TCP timer
have been encountered. Understanding them requires
that we understand the running environment of TCP.
The ARPA Internet is a hcterogeneoils netwolk complex
which connects together a large number of diverse
networks: high speed LAW, narrow bandwidth dialup
lines, loug delay satellite channels, reliable long haul
networks, etc.. with the communicatiou bandwidths and
delays varying between networks by orders of
magnitude. The data carrier over this complex is IP [O],
a datagram protocol offering a “best effort”, but not
reliable, delivery service. Packet loss is not uncoinii7on,
especially when the network gets heavily loaded, because
IP’s only defensive tool is di~oppiiig packets, relying on
Ihe end-to-end transport protocols to recover the loss
wl~en necesswy. TCP runs on top of II’. TCP does not
have a negative-acliiio~vleclgii~eiit mecliaiiism to report
transmission errors; all clata errors, including losses, rely
on the sender’s retransmission timer to triggel the
recovery. Such an environnieiit makes an accurate
setting of the TCP timer necessary for good
perform mce.

The lkst difficulty in using the TCP timer is to
choose an init,ial value for t:llc SRTT. l3efore the first
data exchange belween Ilic Tao comniunicating entities.
there is no information available t,o the sender as to how
long the round trip time will be, assuming the
rlcstination address does not convey network topological
implications. The current approach is to pick an
arbitrary value, say 3 seconds, in the hope that it will
quickly converge to the right value through the adaptive
algorithm. It is often the case that this arbitrarily
chosen value is too small, or too large, compared to the
round trip time of the intended connect,ion; so will be
the initial RTO value. As a result, TCP will either
retransmit superfluously, or wait, for a long time before
retransmitting if the first packet is lost. Also. the
convergence is slow’. 1Vhcn the initial value is too
small, escessive retransinissions may cause a temporary

network congestion before the timer gets a chance to
converge to the correct value. This problem has been
observed many times in the ARPA Iuternet. On the
other band, a large initial value means a possible slow

start to the client, but does no damage to the network as
a whole otherwise.

A second problem is how to measure the round trip
time. This measurement is, of course, trivial when there
is no packet loss. When packet losses occur, however,
getting correct RTT measurements is impossible, because
when a11 acki~o~vletlgmeiit is received after n
l.et,~ansmissions, the data sender ca,nnot tell which of the
n+l copies sent is being acl~nowledged. This problem
directly affects the computation result of the SRTT
value. A case analysis due to Dave Clark (see Appendis-

I) shows that TCP cannot compute the SRTT value
correctly when packet retransmission occurs. Since the
SRTT is used solely for packet loss recovery purposes,
this problem is particularly unfortunate: the SRTT is
uot used mhen there is no loss; when it is to be used, it
cannot, be correct.

The nest, problem in using the TCP timer is how to
set RTO values. ~Vrong SR.TT values 1ea.d to wrong
RTO values. When the RTO is (,oo small, the effective
network throughput is rcducccl by too many duplica.te
packets. When the RTO is too large, network clients
sllffer from needless long waits before retransmitting lost
paclteh. Most TCP implclnentations, as well ELS the
‘TCP experiment discussed shortly. measure the RTT
from t,lx first sending. \\‘lien tlw iiet\vork is lightly
loaded, packet loss is random and negligible, occasional
inaccurate RTT measurements do not cause a big
problem, because the SRTT value gradually approaches
Lhe true round trill t:inie despite some inomentnry
fluct~uat ion, and because retransmissions are rare, so
using a larger t.1~1 needed RTO value does not degracle
performance noticeably. However, when network

399

congestion occurs, packet losses tend to be frequent,
which in turn causes the SRTT and hence the RTO to
grow rapitlly. This phenonienoli x33 olx5erved in a
netmorlr test conducted at hIIT-KS: data packets xvere
XlllI fro111 one host, 011 il LO hlbps rin;Snct. to another h0st
Ott a 10 Albps l3tlteri1cl~ though a gateway. The packet
flood congested the gat exva.y, causing many packels to be
dropped. The RTO va.lue grew quickly from several
hundred niilli-seconds to inore t1la.n 2 minutes, causing
the sender to wait to0 long before initia.ting the recovery.
The same plieiiomenoii was a.lso observed in a network
experinlent al, Digital Equipment Corporation [S].

Even assuming the SRTT value is a correct average
of the round trip time, setting an accurate RTO value
based on the SRTT is still clifficult, due to the
potentially large variance of the RTT. One source of
the variance comes from the packet length effect,.
\Vlienever there are one or more narrow bandwidth
channels on the route of a connection, the doininant,
component in the RTT will be the hit transfer delay
over that line, which is pi~oport.ioiial t.0 the packet!
length. Packet lengths can easily vary by a factor large1
than two, causing false timeouts. Another source is
dynainic network routing: since IP is a datagrain
protocol, packets may theoretically be routed through
different paths with different clelays. Still anothet* one is
the delay at t,he tweivitig host: besides its packet
])rocessing delay, the host, f01- perfotmln.tlce

co~~siderations, may prefer not to respond immediately
after every packet arrival [I], contributing another facto]
to the RTT variance.

The above a.rguments show that the variance of
network delay can easily go alcove the recommended
value. 1.3 - 2. of the variance factor j3, even without
considering the effect of the 11et1v0r1< traffic
fluctuations’). Slill another difficulty iii setting an
accurak RTO 121~ is the ineYital>le phase de1a.y
between the meas~lrccl RTT ValuPs and Lhe currents

rountl trip time inside tile nrt,n’ork. A sudden change in
path or 1letTVO~li condition. say at time T,, can result in
a sudden increase in the round trip time. Packets sent
after T o x.ill hear a longer cIFIR~-, say of D seconds. The
mcasllretl RTT vallle. ho\vever. does not, reflect this
chat~gc ttttt.il t.ime To + I>. The \rallie of D can be s3era.l
secolltls, or evei) t.ens of sccontls, on a. long path.
Reflecting the change to (he RTO setting t&es even
lolygcr \vllen a I.)ig CL value is used. It was observed iii a
nct,T\.orl; siniulntitsn that. during this time period, the

tinier frequently went off and triggered superfluous
retrwnsmissions [lo].

The last prol~lcm in using TCP timer is how to
handle a timeout. If the TCP timer on an
unaclinowledged data segment S goes off, TCP
implemenlatioiis mere ~econimended to retransmit only
the packet containing S, not any subsequent packets
that may be awaiting acl;iiolr:ledgment. In the t3ea.l
world, many possible events may result in a TCP time1
going off when retransmission is unnecessary 01

infeasible. Consider the following cases:

1. S may not have left the host yet because of
some locliup at lower layer. For example, the
interface to the attached network is blocked.

1. The current, timer value may be shorter than
the fluctuatiig 1*0uritl trip time a.t that
moment, causing a false alarm, e.g. a packet
surge at some gath3va.y made S have a mu&
longer round trip time.

3. s TV a.5 received correctly bllt
acl~nowledgment was damaged or lost.

its

4. S was dropped by s0me gateway due to
congestion.

5. S wh5 tlr0ppeci due to transmission channel
error.

6. The network parlil,ioned or the destination
host crashed.

In Llie Eit3t three cases, retransmission is unnecessary.
Even for the nest one. which does require retransmission,
1 lie existence of congestion implies care sl~onlcl be taken
not to worsen the situxLion further. An immediate

400

xtransmission upon l,iineout is deairahle only in case (S),
but it is now being- done in roll t,lw cases listed. On the
other hand. niorc tliiln one packet, may be lost at once.
The current. Stl’a.tCg~~. which ~‘ccovers only one packet pet-
round trip time, map result in poor performance if the
connection is over a. channel with long delay such a5 a
aa.tellite link.

Too quick and too man) retransmissions axe oken
seen by people watching the daily network traffic.
These retransniissions are considered one of the causes
for network congestion. From above WC see that there
are several possible reasons for this phenomenon: SRTT
initial values that are too small, delay variance
estimation that is too low, poor RTT measurements that
lead the SRTT to converge to wrong values, etc. On the
other hand, complaints are often heard from the usei
side ahout sIow net\rorli responses, which may well be
clue to RTO divergencr. The tswo l~lienoinetia can even
be related: if the inil,ial RTO values of a few rxew
connections arc set loo small. slrpcrflliolis relransmissions
can congest. a gateway antI ca.ilse packet losses on t,he
llCW, as well as otlier estal~lislletl. connections. The
losses on those rllnnilig coii~icctions will iii turn make
t,heir RTOs grow large and tl~crrforc the loss rrcover)
\\;ill take a. long tilne. If t,hc congestion is severe, it may
also cnusr TCP connert,ions to appca.r to basal;, even
l.Iicrc is no br~olm~ part in the iietwoi~k but merely a
LrafTic jam due to IP’s lack of control.

The above discussion might incorrectly be taken to
mean that the robustness mechanism ill TCP is ll0t
valid. Ill fa.ct, the above prol>lelns are largely due to
11”s deficiency in congestion control. TCP is intended to
be a reliable end-to-end transport prot0col: tile TCP
timer is designed to grlarantec this wlia,l,ility, under the
assumplion tl1a.t data losses a.re ra.ndom and rare, saJ
with a 1 - 29% loss ‘ratio. As nientionwl earlier.
however, this awlinptinn is invalidat,ed by the fact that
dropping pa.ckets is F’s primary way of handling
congestion. TCP ca.nnot help IP solve network
congestion prolAems while still keeping good
perforniaiice. I.TllfOl%llllil,tel~, when the pcrforniance
becomes too poor, it is ii0 longer clistinguisliahle from
failure.

3.3. Previous Work with TCP Timer
Ill [b], Mills snggestecl that two values of a be used,

with cxl = 15/16 when RTT < SRTT a~1 OI., = 3/d
when RTT > SR,TT. The effect is to Inice the

algorithm more responsive to upward-going trends in
packet round trip time ancl less responsive to do~on~varcl-
going trends. He then clid some test runs by measuring
the de1a.y of ICMP echo/reply messages between many
hosts, and concluded that, using the new cy values
instead of the recommended one, the results were better
by several pcrccnt in most cases, and worse by sevet7.l
percent in a few cases. Notice. however, that the test,
was a lock/step process with at most one packet in the
fly! and t,herefore did not. sull’er YIYX~ SRTT divergence
caused by consecutive losses. A simulation with the
s~.~ggcsLcd a values showed that the SRTT goes up
substantially in the case of consecutive losses [lo], since
in this case the mea.rwetl R’I’T inclutlcs not only the

round trip time but also the loss detection time’.
Trying t,o adapt q\lickly to this wrong value simply
makes the RTO diverge much faster.

An experiment was performed at MIT-LCS to try out
a nother way to estimate RTO values wi tliout using the
IITT, thereby sidestepping the prol~lem with the RTT
n~easurement. This espcrimcnt azsumes that the delay
tlistril,ution is a bell-shaped clwe. treating lost packets
as having infinite rlela>r. The percentage of packet
~et,l-ansmissiolls, P. is wxd to adjust the RTO value. If
1’ l~~comes bigger tha.11 some t~l~resl~olcl, the R.TO is
incrrased, otlieru~ise it is dccreaserl. Tile original R’l’O
\X.lllC is chosen large, R I1 cl intmitletl to decrease
gradually. This scheme did not work out well. The
RTO x-alue diverged for the same reason a5 in the TCP
timer case: consecntive pxcket iosses due to congesthn
resulted in a continuous growth of P, hence a continuous
growth of the RTO. followcl hy a very slow recovery of
the lost packets.

There are ot.hcr ~t~~tlies on the timeout algoi~it~liiii
wol~th melitioning. C~oopcr. in designing a new
retrn~ismission t.iiner algorithm for TFTP [3], pointed
out that. “the probability of a single packet hing lost
may be some constant P,, hut the probability that a
seconcl ~>;lCliC!t xvi11 tw losb once a packet ha,? already
hccil lost is P, > P,.” lie suggestecl that in case of
~eti,ansi~lissiolis, the SRTT val tie should be ii:creaxxl by
sonic empirical value (e.g. ‘I! seconds), instead of as 5
f’lwction of the RTT measl~rement. This al)proa.ch may
SlOl\~ clown, but, does not prevent, RTO divergence.
Work done Ly hlorris [i] is similar to the MT-LCS

401

experiment: ~mtler the assumption that tlw packet round
trip the is a. rn.ntlom varial.)le of some known
distribut~ion function, optimal timeout values, in terms of
minimizing the sunl of the performance loss of false
alarm and unnecessary waits, can be computed. Ill
(41 Edge assumes that packet delays are random

variables fomiing certa.in stochastic processes, and he
detclmines the timcont vallle by estima.ting the mea.11
and the variance of the measured dela.ys.

These studies have their great meriGs. We also
believe that TCP time1 algorithm can be further
inlproved. as a couple of suggestions will be made in the
nest seclion. I-Iowever, we consider that several
prol,lenis iii using the TCl’ timer are more due to some
iiitrinsic limitations of wing timers than due to the
specific algorithm used. The nest section explains these
limitations.

4. Intrinsic Limitations of Timers

4.1. TCP Timer Problem Revisited

In the previous section. we found two basic problems
iu using TCP timers: choosing a timeout value (RTO)
and handling a timeout. Let us now look at, each of the
two again from a more general viewpoint.

4.1.1. Choosing a Value
No algorithm can magically conipllte an a.ccura.te

ItTO for each packet trsnsfcr. hs mentioned above, the
tlifficiilties in choosing the initial SRTT value, in
measuring the ro\~n(l trip time. and in setting the RTO
value al-13 all r111e t,o the same VCiLSOll: lack of adequate
infolmation a.hol~t t,he network topology and dynamics.
i\.lany factors involved in the round trip time are not
currently known by the data sender. Given this
problem, it seems that directly providing the needed
information may help more in choosing a correct value
than clcvc~i~ly tIlning an algorithm based on inadequate
inforniation, alItI that the network slloultl ma.ke an effort
to wdllce t,lie variance of the round trip time. An
csample of t,lIe former is to let the TCP timer stamp a
liiiique ID nuniber on every packet sent. and let the
acl~non~letlf;~ne~~t, xhich is trl,, ‘~~~~ewtl by receiving packet
P, carry hack the ID of P. This will fix the RTT
nieasurcinent problem in packet retransmission cases.
An esainple of the latter is to add an effehive
congestion control mecllanisnl to IP; It will improve
‘I‘CP perfolmance more effectively Lhan any tuning 011

t,hc timer algorilhm.

As shown in the previolm section, the network delay
is a random variable involved with many ui~controllable
fwtors. Therefore even \rith further iinprovements. the
TCP tinier still slioultl be set with a sufficient variance
margin. This will have little effect on the performance,
if the network does not drop many packets. On the
other hand, we sl~n~lcl not expect an optimal
performance by 11sing a timer. A tiineout is a guess
Imsccl on incomplete infornxation, and as such is bouncl
to be non-ol)tinial. That a timer is triggered only and
immediately upon a real failure, unfortunately, can only
be an iinn.chievablc it1ca.l hy any timeout algorithms.

4.1.2. Handling the Timeout

The difficulty in setting t.he t,imer value is only half
or the st,ory. Since the t,iiner is a failure detection tool,
following a. tiineolit thcte has to be a failure rec0ver.y.
-4s discr~sscrl above, there are two ways to detect failures,
cxtcmal wpolts and timers. The two have different
impacts on the recovery. Failure reports, assuming they
Cil.rry correct messages, bring in csplicit, information of
\vhat, \\:ent wrong. B11t a timeout, by itself, is merely a
symptom which ca11 haw any of a large nlunber of
ca1.1scs. For instance, upon receiving a “remote host
dead ‘1 message, the local client can be infomed to close

the connection: while if a packet transfer has timed out
five times, it is not clear whether this is caused by a
telnporary network congest,ioti or a. remote host crnsh.
The Punrfament~al l)rol)lem iu Iising the timer is that a,
timeout does not t,ell pwcisely what went wrong (or even
whether there is aiiyl.l~ing gone wrung). so we cannot
know with certainty nliat s1~01.1lcl be clone in response.
rlssum ptions Ii a.vc to be iiia.de when attempting to
recover the i~~ili~io~v~i failiirc. The price to pay for thiq
uncertainty is, a.gain, non-optimal performance.

4.2. Timer’s Roles and Limitations
The above sho~us t.liat the TCP timer has intrinsic

limitations, i.e. it does uot have all the information
available to achieve the good perforinance as we would
desire. \Ve consider this a conmmn feature of any
algorithms based on timeout. As we discussed in section
‘2, a tinier is a l0ca.l tool mandatory for achieving
re1iabilit.v in dist,ributed systems. However, the necessity
of a timer does not imply that we should, or have to,
rely on it for everything. Timers should be used only
Jvhen all other means fail.

Iii general tlistril~lited systems or applications, the
pl~ol~lcin of using timers to achieve good perfornience

402

5. A Better Way to use Timers

5.1. Heuristic Rules

Since we have to pay the price of non-optimal
lxrforniance \vhcnwer using a timer. the first, advice in
usi11g ti1ner.s is to rely OE tllem as little as possible. This
ineaiis t,hat, ilny al~no~mnl situation should Ix resohrd if
J)ossiI:)le, rather t,ha1I t.uriiing it, to a. failure too easily
and ml>-ing 011 timers to tw0~e1~. and thiit, any failure
slio~~ltl he explicit I\ reJ>ortcd if possible. Esternal
I’e]>OrLS ill’? IK)Lll fklSt$l. RllCl IllON! ZKPl.l~atC tll~~ll uuing >l

limer in faililre detect,ioii.

Secondly, Lry Lo get. more in~orniatioii to help set 3

proper t.imcoutb value. mid do not al~tmiipt, to tighten the
tAnier for a “I.wtt~er perforniailce”, unless it is lxwxl on
the linomleclge of tile u1iclcrlyii~g system, because the
gain in occasio1d faster detection by a tight timer may
well he smaller than the loss due to false alams.

i\ccept8i1ig the fact that the timer should be set
loosely. if it, is not feasil~lc to wast,e the time when
waiting for eit,lier a, confimat~ioii or 5 timeout, one 7va;y
to improve the Jw2rforniance is Co explore more
conci.wmicy l>;\T applyin g t,Jic ki~on~leclge of the specific
apJ,lications.

5.2. An Example

Here we use WETBLT [?I .: a\ an eseniple to show a
I)et.Ler \\-ay to use t,inlers. KJYLXLT was designed as a
l)ulk data tr2iilsfer protocol at h,lJT-LCS. It, hrts a.chieved
\:er> good Jmfolm RIl(‘f’ clllring t,lie J~reIiminary
i in~~lciiient.ation trst.. hlrrc~ lests are get to be performed
over a wick range of iietwork c0nclitioiis. however. The
reader sliould J)e warned, therefore, that the following
tlixnssions are more based 011 so~r1icl arguments than on
xtiial experience.

WETJ3J,T is >ln0t,he~ tjranspol% level protocol designccl
for transferring large cJ”antit.ies of data across the
internetS. Like TC’P, it, wes a t,imer t,o detect packet loss,
Ijut, its data transmission l,imiiig scheme is clrastically
different, from TCP’s. ‘The four IllRjOl dil’f’ereiices are
clesci~il~etl I)elo~v.

First, NETBLT sets t,hr rct~msmissim timer at, the
recei\Giig end, rather than at the sender as TCF does.
\Vhen considering the state of a tla.ta transfer. it is the
receiver that is more coucemetl with the transfer results.
and thii t, know the st.nt,e changes (correct reception of
lIC\\’ clsta) first,.

Swontl. NE’I’RJ2T sets a I.c,t~i.iinsinission timer on each
I)lOclc 0P data, which COilLaillS a large number of packet,s,
instead of t.iniiiig ea.ch pncliel. This allows the timeout,
lxiue to J)e set more loosely to avoid false alarms, and
dill SawS a lot of wiiting time, because at worst the

remi\-cl. wait.S only oiicc t.0 initia.Le the recovery cycle foi
all packet losses in R block of data. Additio1mAg, fram
an iiiiplcn~rlilatio1i poinl. of view, setting and canceling
of Limers are espensive opem.Lions in all systems; setting

fewer t~imcrs certainly sa.ves system overlieacl.

ThirtJl!r, in case of packet loss, NETBLT does not

\\‘ait, for the t.inicout to t.riggcr the recovery. Iiisteacl, as
50011 as lhe last. packet, in a blOCI< ill.l.i\TS. tlir receiver

will check to bee if any- pacliet,S are missing: if so, it,
dallies for a shrt~ time pcriotl (lo ~vait. for J>ossiJ>le out.-
of-order packets) and t him informs the wnclcr with il lisl
or itll missing pacl<et~ in the l~locli. The block

p2Lrnnsmission Lilnrr iS IlSed to iniLia.Le t,lie recovery only
1v11cn t.lic lest packet in a block is lost.

FourLli, I,lic l.etl,anSniisioil timer value is comJ>utSed
~l~0111 IIE t.ransl’cr speed or I,llC scntler. latllcr than t.hc

I~~cm~lKYJ llctwol~k Ckli1.I~. LTpon rcceiVii1g the first
packet, of a, J~locJ;, the iwei\-er sLwts the timer with tlw
ItTO vallte equal to t.lre amount of time required to
t,~.andw tlie whole J)locl; of data (this time can be
comput~ecl fro1n t,he l.~locli length antI the Sciirle~~‘s Sped),

plils a 7.ariat.ion margin. Tlleref0t.e tlie tinier does not

P,, ffcr l’nm the R’IY 1nr~s11renleellt errors. Al30, as n
sitlr effect, of tiiiiing au entire hlocli of data. cle1a.v
\-ariances 011 iildivid~li~l J)acliet,s in llir wiiie block are
likely t.0 cancel ont, hcncc a modcrate variance value is

rspwtctl to Ix sl1fficicnt.

403

Atltlit~ionally, NIYWLT provides for multiple data
I)locks being tranwlit.led concurrently. Wlie~i one block
finishes transn~ilting its dnta. and is waiting for the
rcwivcr’s reply, the nesl block can start sending
immetlia.tely, keeping tlic conlmuilicat,ion channel busy.
NlXBI,T uses a rate-hsetl flow conti~ol to coordinate
tllc host da.La transfer speed and Lhc network speed.
\\‘hen pr0p~rl.v supported by tlic network, it will smootli
Oat tIlle trallsfer and avoid Cl2LliI. nccuinulalion inside the
nctw01.l;: Irencc ~~lucc nc4work delay, delay variance,
alltl 132lCliet IOSS CRllSed by congest ion.

In short. the iiiairi llien~r in NETBLT timing is to
rccluce Llrc tlepcntlcnc~ on the timer to failure tlrLcct,ions
that. cai?uot he detected by other means. High
~xxforinance is acliicvecl through using inore inforniation
ilbOllt~ t,lle htja. Lransfer, exploring coI1cLlI’l‘e11Cy , , Rlld

n.*oitling congestion. or (‘rllIrse the NETl3LT protocol
has its limitations, i.e. it is niaiiily for hulk data
shipment,. The approa~lies it. employs in its Liming
algoriLlim. howe\-w. ilre expected to be generally
applicable t,o other llCJtT\‘O~li protocols and distributed
applications.

6. Conclusion
The purpose of this papel is to identify the

importance of timers ant1 Llieii roles in tlislril~uted
swcnls. .A timer is an intlispensal~le tool in I,uilcling up
Wlii~ble clist.i~ilmtetl syskms. However, as the experience
wit,ll Lli? TCP timer has aliown. it ha.5 int8rinsic
li~nit;aLion in offcrin g optinnal pciforiiiaiice. We sl~ould
l~2iIr in mind these liiuit.nt ions in iutllre protocol design.
LI’ \vr iIill2 at, high ~~7r~orm:ulce, xvc sll0llltl use external
e\.ents ar: a Tirst linr of ~ICfciisc agnii~st failures, a.nd
tlc]xw.l 011 t.1 111 e I’?5 onl!; in CXSC?S wl1ere external
iiot,i(‘ic.alioii 1125 r:Glctl.

Acknowledgment
I \\i~ll to Ihank LO I>:]\-c C;I;II.I<. J. P!ocI Chiwppa,

hlilic C~l~ecll\~altl, a.lltl lArr,V .+\llcll for 1111111&1‘0115

cnlighlcning discussions o\-cr the yeaix. I 5111 also
gmtcf’~rl rOr the help ol’ Dave Clark, J. Noel Chiappa,
.lim Gibson, and Bob Baldwin during the writing of this
paper. Finally, thanks to 1301.) Braden of USC-IS1 for his
~‘~lllill)lC! C0llllnfnls on rln enrlier wrsion 0l the paper.

Appendix-I: RTT Measurement in Packet
Retransmission Case

The following case analysis due to Dave Clark shows
that, when packet retransmissions occur, there is an
uncertainty in the RTT measurement, and therefore the
SRTT value cannot be computed correctly. Assume
acknowledgment is received after retransmitting
packet n times,

an
a

1. If the RTT sample is taken as the elapsed
time from sending the first copy of the
packet to finally receiving the
acknowledgment, the time period actually
covers the loss detection time (n X RTO) as
well as the recovery time (the true round trip
time) (assuming no false alarms, so the last
retransmission is being acknowledged). Using
this value to compute the SRTT and then
the RTO, we see a loop in the computation:

Rmi = min {Ubound, maz (P x .SRITi, Lbound) }

RTI;.+l = n x RTOi f true-RlT= n x 4 x SRTTi*+ true-m
SRTI;.,, = a x SR7Ti + (1 - a) x RTfi+l

= (a X SRTi + (1 - n) X true_RTI) + (1-a) x n x /3 x SRTT,

desired term unwanted contributor

Therefore a single packet loss may cause a
big jump in the SRTT value, and multiple
losses in a row (a likely result of network
congestion) will make the SRTT and RTO
values grow until the RTO is bounded by
Ubound.

lime /’ - . \ . ,/Retr*nsmisfion Timeout

15
f

/ ‘.I
/\

/ . .
/ -\. /

/ -- / The computed SRTT value

/
5 4 L. Actual round-trip-time

I b
1234 5 6 7 8 9 10 15

Packets transmitted
Cnsc 1: SRI-T grows IO Ubound.

*
Since Ubound and Lbound are wired-in constants in TCP

implementations, they are usually &osen very loosely to suit order-

of-nngnitude differences of the RTTs in TCP’s running
environment. Therefore RTO= /3 X ,SFMT, until SRTT soars too
high or shrinks too small.

404

2. If the RTT is measured from sending the last
copy to receiving the acknowledgment, the
result will be a smaller value than the real
round trip time, if an earlier than the last
retransmitted COPY triggered the
acknowledgment. The SRTT will then
converge to wrong values. Consider the
following example: if the true RTT is 11
seconds, but the RTO was wrongly set to 10
seconds, the packet is then retransmitted

I l
5 10 Packets transmitted

Case2: SRTTConvergcs toawrongvalue.

after 10 seconds, and the RTT measurement
returns 1 second when the acknowledgment
to the first Packet is received.

3. If the measured RTT is not used to adjust
the SRTT when retransmissions occur, the
SRTT will not change. If the original RTO
is shorter than the real round trip time or the
network delay has suddenly increased (e.g.
because of route change), the RTO will stick
at the small value, resulting in unnecessarily
retransmitting every packet.

Case 3: SRTT stays nt the wrong value
Packets transmitted

References

111 Da.vid Clark.
\Vintlow and t\cl~no~\~letl~:1~~e~lt Stralegy in TCP.
ARPA RFC-813.
1082

PI David Clark, h4ark Lambert, & Lisia Zhang.
NETBLT: A Rulk Data Transfer Protocol.
ARPA RFC-WI).
December. 108.5

ckorL'rcy Cooper.
A New Timillg Algnrilhni for Transmission nnd

Retransmission in ‘I’FTP.
ii working paper dra.Pl, written a.t Computer

System Research group, MIT-LCS.
1083

SLel)hen Mr. Edge.
An Adaptive TimeoilL Algorithm for

ReLransmission Across a Packet Switching
Net\vork.

David L. Milk.

.I. l’ostel.
DOD Standilrd Tra.nsmission Control Protocol.
ARl>‘r\ RI’C-x3.
8Cl)l elnlxr. 1m I

J. Postcl.
DOD St.mltlalYl IntdTnet Pl~ot,ocol.

=\Rl’=\ Rl’C:-791,
SeptemIK!r~, ISIS1

Lisin. %Ililll!&.

iVel~wo1~1c Siinlllat.iori Rcpo~t.
\Vorliing paper in progress.
This report summarizes test. results on IP so1Irce

r~uench hantlli~~g and TCP timer problems.
The simulator wa.rc built, I,y the au tlior a.t
h,L[T-LCS to stlttlY net\vork congestion control
problems. It25 t,opology imitates the conditions
in the current Al?I’-4 Internet, i.e. the delay
2nd bantl7vidl.h charncteri.stics of
c0111n1 Ilnicalion cl~annels differ by orders of
magnil;urlr. The dat.a. ~.raffic gcncrator models
two l,!-l)es of ilpplicxtions: file tramfer ant1
Ixmiole login.

405

