SIGCOMM 1986
(Best Student Paper Award)

Why TCP Timers Don’t Work Well

Lixia Zhang
Laboratory for Computer Science
Massachusetts Institute of Technrology
Cambridge, MA 02139

Abstract

Repeated observation of TCP retransmission timer problems
stimulated investigation into the roles and limitations of
timers. Timers are indispensable tools in building up reliable
distributed systems. However, as the experience with the TCP
retransmission timer has shown, timers have intrinsic
limitations in offering optimal performance. Any timeout
based action is a guess based on incomplete information, and
as such is bound to be non-optimal. We conclude that, if we
aim at high performance, we should use external events as a
first line of defense against failures, and depend on timers only
in cases where external notification has failed.

1. Overview

In computer communication networks a fimer is a
failure detection mechanism, normally used to decide
when to retransmit a lost packet, or when to abandon a
broken connection. Timers have been employed in all
network protocols that offer reliable services. They seem
to play an indispensable role. However, even with many
vears of experience, we are still not able to make timers
work as well as we would like.

The Transmission Control Protocol (TCP) [8] is
intended for use as a highly reliable host-to-host protocol

in packet-switched computer networks, and in

Permission to copy without fee all or part of this material 15 granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

© 1986 ACM 0-89791-201-2/86/0800-0397 75¢

interconnected systems of such networks. TCP has been
widely implemented and used over the years. Repeated
observations of TCP timer problems stimulated our
investigation into further understanding of the following
questions:

e Is a timer really indispensable in network
protocols?

o What roles should a timer play? What are
its limitations?

o How should we use it?

The basic conclusions we draw are that timers are
indispensable in building reliable distributed systems; yet
their limitations need to be fully identified. In
retrospect, we see that many of the problems
encountered in using a timer are in fact due to
Although the

following discussions relate specifically to phenomena

misunderstanding of its limitations.

and problems oceurring in TCP, the conclusions, we
believe, apply to the roles of timers in similar protocols,
such as the ISO Transport Protocol, and in all
distributed systems.

The next section explains the necessity of timers in
distributed systems in general, and in network protocols
in particular. Section 3 is a review of previous work and
experience with TCP timer. Section 4 explores the
intrinsic limitations of a timer. With a Dbetter
understanding of the limitations, section 5 suggests some
heuristic rules in using timers, and uses the timing
algorithm of NETBLT (NETwork BLock Transfer) [2], a
bulk data transfer protocol, to give an example. The

last section is a summary of the work.

2. Why a Timer?

A computer network is a distributed system. One of
the advantages of distributed systems is that there is no
fate-sharing among individual autonomous components
This non-
the

components only through data communications channels.

in the system, i.e. they fail independently.

fate-sharing feature is achieved by coupling

Consequently, individual components in a distributed
system can only "hear" from each other through the
communication channels, but cannot directly observe the
existence or functioning of others and their running
states. To coordinate with each other, they have two

ways to detect external state changes or failures:

1. By external reports. Tor instances, upon the
arrival of an acknowledgment, the data
sender knows that the data sent have been
suceessfully received; when an ARPANET
host tries to communicate with another not-
running host, the network will respond with
a "remote host dead" message.

[O]

. By local detection, e.g. using a retransmission
timer to detect packet losses.

In this paper failure has a very general definition: it
may simply refer to the failure of an intended function,
as well as to a machine crash or the breaking of a
communication channel. Later on we will see that
external reports are a better way to do failure detection
and recovery. For the following reasons, however, local

detection is always needed:

e Not all external changes or failures can be
reported. For example, if a receiver detects
an incoming packet with a header checksumn
error, the source address part may have been
damaged, hence the sender cannot be
identified. The receiver will not be able to
notify the sender to retransmit the packet.

e The reporting system may fail itself, e.g. an
acknowledgment may get lost.

Therefore, to achieve sufficient self-protection in a
distributed system, cautious users set up some form of
local detection. So far, the only local detection tool
With no

external information, t¢me is the only tool that one can

available is a timer. This is not a coincidence.

use to estimate external state changes. If one

communiecating end does not hear from the other end as
it should within some reasonably long time period, it
assumes that something must have gone wrong, either

within the communication nelwork or at the remote site.

398

For example, the sending host of a TCP connection uses
a timer to detect packet loss, so does an ARPANET
IMP; during the absence of data traffic, ARPANET
IMPs regularly talk to each other, and a neighbor IMP
will be declared down if it has been silent for a certain
time period. A timer is a must for any player in a
distributed system.

3. Previous Experience and Work with
TCP Timer
A timer is an alarm clock which goes off after a
specified timeout period. The usual goal of a timer
algorithm is to dynamically adjust the timeout value to
approach ideal where the timer s

an triggered

immediately and only upon a real failure. In their
desire to achieve good performance, all timer algorithms

try to balance between two conflicting goals:

1. speeding up failure detection, and

2. minimizing false alarms, i.e. minimizing the
incidents of the timer going off prematurely
when no real failure has occurred.

TCP uses timers to detect packet losses (the
retransmission timer) and connection breaks (the death
timer). Since connection breaks happen rarely, and
hosts usually are willing to try for a long time before
(inally giving up. the death timer is often set to a large
This TCP
retransmission timers. In the middle of a session, it is
undesirable for a client to wait for a few minutes to
recover a transmission error. TCP took the approach of
the by dynamically
estimating the Round Trip Time (RTT) between the two
communicating entities.
the TCP’s

algorithm, then discuss its problems.

value. is not the case, however, for

setting retransmission timer
we first

retransmission timer

In this section

introduce adaptive

3.1. TCP Retransmission Timer Algorithm

Due to the variability of the networks that compose
an internetwork
(TCP timer for
each connection.

system, the TCP retransmission timer
short) is determined dynamicaily for
TCP measures the RTT for each data
segment transfer, and computes a Smoothed Round Trip
Time (SRTT):

SRIT=a X SRIT+ (1 — a) X RIT
Based on SRTT, it then computes the Retransmission
TimeOut value (RTO):

RTO = m#n { Ubound, max (Lbound, f X SRIT)}
Where Ubound and Lbound are the upper and lower

bounds on the timeout value; o is a smoothing factor,
and A is a variance factor. In real implementations,

Ubound and Lbound values are agsigned empirically as a

loose limitation on the timer's value. Recommended
values of a« and 8 are 0.8~0.9, and 1.3~2,
respectively. Different a and g8 values have been

experimented with, as described below.

3.2. Problems with TCP timer

Over running TCP the ARPA
Internet, many problems associated with the TCP timer
have bheen encountered.

the years of in
Understanding them requires
that we understand the running environment of TCP.
The ARPA Internet is a heterogeneous network complex
which conneects together a large number of diverse
networks: high speed LANs, narrow bandwidth dialup
lines, long delay satellite channels, reliable long haul
networks, etc., with the communication bandwidths and
delays by of
magnitude. The data carrier over this complex is IP (9],

varying between networks orders
a datagram protocol offering a "best effort", but not
reliable, delivery service. Packet loss is not uncommon,
especially when the network gets heavily loaded, because
IP’s only defensive tool is dropping packets, relying on
the end-to-end transport protocols to recover the loss
when necessary. TCP runs on top of IP, TCP does not
have a negative-acknowledgment mechanism to report

transmission errors; all data errors, including losses, rely

on the sender's retransmission timer to trigger the
recovery. Such an environment makes an accurate
setting of the TCP timer necessary for good

performance.

The first dilficulty in using the TCP timer is to
choose an initial value for the SRTT. Before the first
data exchange belween the two communicating entities,
there is no information available to the sender as to how
the
destination address does not convey network topological
implications.

long round trip time will be, assuming the

The current approach is to pick an
arbitrary value, say 3 seconds, in the hope that it will
quickly converge to the right value through the adaptive
algorithm. It is often the case that this arbitrarily
chosen value is too small, or too large, compared to the
round trip time of the intended connection; so will be
the initial RTO value. As a result, TCP will either
retransmit superfluously, or wait for a long time before
retransmitting if the first packet is lost. Also. the
When the initial value too
small, excessive retransmissions may cause a temporary

convergence is slowl. is

399

network congestion before the timer gets a chance to
converge to the correct value. This problem has been
On the

other hand, a large initial value means a possible slow

observed many times in the ARPA Internet.

start to the client, but does no damage to the network as

a whole otherwise.

A second problem is how to measure the round trip
time. This measurement is, of course, trivial when there
is no packet loss. When packet losses occur, however,
getting correct RTT measurements is impossible, because
when an acknowledgment is vreceived after n
retransmissions, the data sender cannot tell which of the
n+1 copies sent is being acknowledged. This problem
directly affects the computation result of the SRTT

value. A case analysis due to Dave Clark (see Appendix-

I) shows that TCP ecannot compute the SRTT value
correctly when packet retransmission occurs. Since the
SRTT is used solely for packet loss recovery purposes,
this problem is particularly unfortunate: the SRTT is
not used when there is no loss; when it is to be used, it

cannot be correct.

The next problem in using the TCP timer is how to
set RTO values. Wrong SRTT values lead to wrong
RTO values. When the RTO is too small, the effective
networl throughput is reduced by too many duplicate
packets. When the RTO is too large, network clients
suffer from needless long walts before retransmitting lost
packets. Most TCP implementations, as well as the
TCP experiment discussed shortlv, measure the RTT
from the first sending. When the network is lightly
loaded, packet loss is random and negligible, occasional
inaccurate RTT measurements do unot cause a big
problem, because the SRTT value gradually approaches
the true

round trip time despite some momentary

fluctuation, aund because retransmissions are rare, so

using a larger than needed RTO value does not degrade

performance noticeably. However, when network

1Here are examples showing the rate of convergence when the
initial SRTT (SO) is improperly chosen. We choose a==0.85, #==2.
and assume SO = 3 seconds, all measured RTT values = 1 second, no
packet loss:
SR'ITn=oz" X Sy +(1—a) X RIT X (1 —a/(1-a)
SRTT[Q =1.1 sec
Obviously, if we turn the values of SO and RTT’s around so that
50:— lsec, all measured RTT values = 3 see, no packet loss,
S]?TTH = 2.9 seconds when n =19

This convergence speed is slow for short data sessions.

congestion occurs, packet losses tend to be frequent,
which in turn causes the SRTT and hence the RTO to
grow rapidly. This phenomenon was observed in a
network test conducted at MIT-IL.CS: data packets were
sent from one host on a 10 MMbps ringnet to another host
on a 10 Mbps Ethernet through a gateway. The packet
flood congested the gateway, eausing many packets to be
dropped. The RTO value grew quickly from several
hundred milli-seconds to more than 2 minutes, causing
the sender to wait too long before initiating the recovery.
The same phenomenon was also observed in a network

experiment at Digital Equipment Corporation [5].

Even assuming the SRTT value is a correct average
of the round trip time, setting an accurate RTO value
the SRTT still difficult,
potentially large variance of the RTT. One source of
the

based on is due to the

the variance comes from packet length effect.

Whenever there are one or more narrow bandwidth
channels on the route of a counection, the dominant
component in the RTT will be the bit transfer delay
over that line, which is proportional to the packet
length. Packet lengths can easily vary by a factor larger
Another source is

since P

than two, causing false timeouts.

dvnamic network routing: is a datagram

protocol, packets may theorctically be routed through
different paths with different delays. Still another one is
the delay at the receiving host:

the

besides its packet

processing delay, host, for performance
considerations, may prefer not to respond immediately
after every packet arrival {1], contributing another factor

to the RTT variance.

The ahove arguments show that the variance of
network delay can easily go above the recommended
value, 1.3 ~ 2, of the variance factor £, even without
the cffect the traffic

Still another dilficulty in setting an

value

considering of network

fluctuations>.
accurate RTO
the

the inevitable phase delay
RTT values and

A sudden change in

is

between measured the current
round trip time inside the network.
path or network condition. say at time T()’ can result in
a sudden increase in the round trip time. Packets sent
alter T

measured

will bear a longer delay, say of D seconds. The
RTT value.
change uatil time TO + 2. The value of D can be several

however, does not reflect this

seconds, or even tens of scconds, on a long path.

Reflecting the change to the RTO setting takes even
longer when a big a value is used. Tt was observed in a

network simulation that, during this time period, the

400

timer frequently went off and triggered superfluous

retransmissions [10].

The last problem in using TCP timer is how to
If the TCP
segment S goes

handle a timeout.

timer an
off, TCP
implementations were recommended to retransmit only

on
unacknowledged data
the packet containing S, not any subsequent packets
In the real
world, many possible events may result in a TCP timer

going off

that may be awaiting acknowledgment.

when retransmission is

unnecessary or
infeasible. Consider the following cases:

1. S may not have left the host yet because of
some lockup at lower layer. For example, the
interface to the attached networlk is blocked.

2. The current timer value may be shorter than
the f{luctuating round trip time at that
moment, causing a false alarm, e.g. a packet
surge at some gateway made S have a much
longer round trip time.

3.8 was received correctly hut its

acknowledgment was damaged or lost.

S was dropped by some gateway due to
congestion.

[

.S was dropped due to transmission channel
error.

6. The network partitioned or the destination
host crashed.

In the first three cases, retransmission is unnecessary.
Even for the next one, which does require retransmission,
the existence ol congestion implies care should be taken

not to worsen the situation further. An immediate

gllel'e is an example showing the RTT variation due to traffic
interference: assume a 9.6 Kbps link connects two LANs through
two gateways, and a remote login session between two hosts on the
two LANs. \When there is no other traffic, the round trip time is
small since telnet packets are usually small in size. Let us plug in
some numbers and compute:
If IP packet size (both directions) =50 bytes,
gateway processing delay =>5msec, and
rcmole host processing delay = 15 msec,
then RTT =15 X 2 X 2+ 15+ 50 X 8 X 2/9.6 < 120 msee
The transfer delay on the LANs is small enough to ignore in the
above computation. If now a full-size IP packet from another
connection at one of the gateways, it will take
576X8/9.6 = 460 msec to drain out the slow channel. The telnet
packets following it will bear an RTT of 120+ 460 = 580 msec,
almost 5 times as long as hefore.

arrives

If the packet size is sulficiently large to require fragmentation at
gateways, the delay increase would even be worse than linear.

retransmission upon timeout is desirable only in case (5),
On the
other hand. more than one packet may be lost at once.

but it is now Dbeing done in all the cases listed.

The current strategy, which recovers only one packet per
round trip time, may result in poor performance il the
connection is over a channel with long delay such as a
satellite link.

Too quick and too many retransmissions are often
traffic.
These retransmissions are considered one of the causes

seen by people watching the daily network

for network congestion. Trom above we see that there
are several possible reasons for this phenomenon: SRTT
that
estimation that is too low, poor RTT measurements that

initial values are toc small, delay variance
lead the SRTT to converge to wrong values, etc. On the
other hand, complaints are often heard from the user
side about siow network responses, which may well be
due to RTO divergence. The two phenomena can even
if the initial RTO

connections are set too small, superfluous retransmissions

be related: values of a few new
can congest a gateway and cause packet losses on the
The

losses on those running connections will in turn make

new, as well as other established, connections.
their RTOs grow large and therefore the loss recovery
will take a long time. If the congestion is severe, it may
also cause TCP connections to appear to break, even
there is no broken part in the network but merely a

traffic jam due to IP's lack of control.

The above discussion might incorrectly be taken to
TCP
In fact, the above problems are largely due to
IP’s deficiency in congestion control. TCP is intended to

be a reliable end-to-end transport protocol: the TCP

mean that the robustness mechanism in is not

valid.

timer is designed to guarantee this reliability, under the
assumption that data losses are random and rare, say
1~2% As mentioned
however, this assumption is invalidated by the {act that
dropping IP’s

cannot

with a loss “ratio. earlier.

packets is

TCP

problems

primary way of
help [P
still

when

handling

congestion.

solve network

congestion while keeping
the
becomes too poor, it is no longer distinguishable f{rom

failure,

good

performance. Unfortunately, performance

3.3. Previous Work with TCP Timer

In [6], Mills suggested that two values of o be used,
with a, =15/16 when RTT < SRTT and o, =3/4
when RTT > SRTT. The effect

is to make the

401

algorithm more responsive to upward-going trends in
packet round trip time and less responsive to downward-
going trends. Te then did some test runs by measuring
the delay of ICMP echo/reply messages between many
hosts, and concluded that, using the new « values
instead of the recommended one, the results were better
by several percent in most cases, and worse by several
percent in a few cases. Notice, however, that the test
was a lock/step process with at most one packet in the
fly, and therefore did not suffer from SRTT divergence
A simulation with the
suggested « values showed that the SRTT goes up

substantially in the case of consecutive losses [10], since

caused by consecutive losses.

in this case the measured RTT includes not only the

3

round trip time but also the loss detection time®.
Trying to adapt quickly to this wrong value simply

makes the RTO diverge much faster.

An experiment was performed at MIT-LCS to try out
another way to estimate RTO values without using the
RTT, thereby sidestepping the problem with the RTT
measurement. This experiment assumes that the delay
distribution is a bell-shaped curve, treating lost packets
as having infinite delayv. The percentage of packet
retransmissions, P, is used to adjust the RTO value. If
P becomes bigger than some threshold, the RTO is
The original RTO

intended

increased, otherwise it is decreased.
decrease
The
RTO value diverged for the same reason as in the TCP

valne is chosen large, and to

gradually. This scheme did not work out well.
timer case: consecutive packet losses due to congestion
resulted in a continuous growth of P, lience a continuous
growth ol the RTO, followed by a very slow recovery of
the lost packets.

There are other studies on the timeout algorithm

worth mentioning. Cooper. in designing a new
retransmission timer algorithm for TFTP [3], pointed
out that "the probability of a single packet being lost
may be some constant P, but the probability that a
second packet will be lost once a packet has already
heen lost is Py > P"

retransmissions, the SRTT value should be increased by

He suggested that in case of
some empirical value (e.g. 2 seconds), instead of as a
function of the RTT measurement.
slow

Work

This approach may
RTO
Morris [7] is similar to the MIT-LCS

down, but does not prevent, divergence.

by

done

3The sitnulation followed Mlills approach of measuring the RTT

from the first of data to receiving the

acknowledgment.

sending copy

experiment: under the assumption that the packet round

trip time is a random variable of some known
distribution function, optimal timeout values, in terms of
minimizing the sum of the performance loss of false
alarm and unnecessary waits, can be computed. In
[4] Edge assumes that packet delays are random
variables forming certain stochastic processes, and he
determines the timeout value by estimating the mean

and the variance of the measured delays.

These studies have their great merits. We also
that TCP be further

improved. as a couple of suggestions will be made in the

helieve timer algorithm can

next seclion. However, we consider that several
problems in using the TCP timer are more due to some
intrinsic limitations of using timers than due to the
specific algorithm used. The next section explains these

limitations.

4. Intrinsic Limitations of Timers

4.1. TCP Timer Problem Revisited

In the previous section, we found two basic problems
in using TCP timers: choosing a timeout value (RTO)
and handling a timeout. Let us now look at each of the

two again from a more general viewpoint.

4.1.1. Choosing a Value

No algorithm can magically compute an accurate
RTO for each packet transfer. As mentioned above, the
SRTT

measuring the round trip time. and in setting the RTO

difficulties in choosing the initial value, in
value are all due to the same reason: lack of adequate
information ahout the network topology and dynamics.
Many factors involved in the round trip time are not
currently known by the data sender. Given this
problem, it seems that directly providing the needed
information may help more in choosing a correct value
than cleverly tuning an algorithm based on inadequate
information, and that the network should make an effort
An

example of the former is to let the TCP timer stamp a

to reduce the variance of the round trip time.

unique ID number on every packet sent. and let the
acknowledgment, which is triggered by receiving packet
P, the ID of P. This will fix the RTT
measurcment problem in packet retransmission cases.
An

congestion control mechanism to IP; It will improve

carry back

example of the latter is to add an effective

TCP performance more effectively than any tuning on

the timer algorithm.

402

As shown in the previous section, the network delay
is a random variable involved with many uncontrollable
[actors. Therefore even with further improvements, the

TCP timer still should be set with a sufficient variance

margin. This will have little effect on the performance,
if the network does not drop many packets. On the
other hand, we should not expect an optimal

performance by using a timer. A timeout is a guess
bascd on incomplete information, and as such is bound
to be non-optimal. That a timer is triggered only and
immediately upon a real failure, unfortunately, can only

be an unachievable ideal by any timeout algorithms.

4.1.2. Handling the Timeout

The difficulty in setting the timer value is only half
of the story. Since the timer is a failure detection tool,
following a timeout there has to be a failure recovery.
As discussed above, there are two ways to detect {ailures,
external reports and timers. The two have different
impacts on the recovery. Failure reports, assuming they
carry correct messages, bring in explicit information of
what went wrong. But a timeout, by itsell, is merely a
svmptom which can have any of a large number of
causes. For instance, upon receiving a "remote host

dead" message, the local client ean be informed to close

the connection: while if a packet transfer has timed out
five times, it is not clear whether this is caused by a
temporary network congestion or a remote host crash.
The fundamental problem in using the timer is that a
timeout does not tell precisely what went wrong (or even
whether there is anything gone wrong), so we cannot
know with certainty what should be done in response.
Assumptions be made when

have to attempting to

recover the unknown failure. The price to pay for this

uncertainty is, again, non-optimal performance.

4.2. Timer’s Roles and Limitations

The above shows that the TCP timer has intrinsic
limitations, i.e. it does not have all the information
available to achieve the good performance as we would
desire. \We consider this a common feature of any
algorithms based on timeout. As we discussed in section
2, a timer is a local tool mandatory for achieving
reliability in distributed systems. However, the necessity
of a timer does not imply that we should, or have to,
rely on it for everything. Timers should be used only
when all other means fail.

In general distributed systems or applications, the

problem of using timers to achieve good performance

scems even more difficult than in TCP. Tor long TCP
scssions, though the initial value of RTO may not be
right it can be tuned by continuous measuring on the
RTT. But

transactions with a few packet exchanges each, the real

for distributed applications running
round trip time is not known to start with, and not
enough data exchanges will occur for
For

cannot

an arbitrarily

chosen initial value to converge. this kind of

interactions, a timer alone insure a good

performance.

5. A Better Way to use Timers

5.1. Heuristic Rules

Since we have to pay the price of non-optimal
performance whenever using a timer, the first advice in
using timers is to rely on them as little as possible. This
means that any abnormal situation should be resolved if
possible, rather than turning it to a failure too easily
and relving on timers to recover, and that any [ailure
be

should [ixternal

explicitly reported il possible.
reports are both faster and more accurate than using a

timer in fallure detection.

Secondly, try to get more information to help set a
proper timeout value, and do not attempt to tighten the
timer for a "better performance®, unless it is based on
the knowledge of the underlying system, Dbecause the
gain in occasional faster detection by a tight timer may

well be smaller than the loss due to false alarms.

Accepting the fact that the timer should be set
loosely. if it is not feasible to waste the time when
waiting [or either a confirmation or a timeout, one way
the
concurrency by applving the knowledge of the specific
applications.

to improve performance is 1o explore more

5.2. An Example

Here we use NETBLT [2] as an example to show a
NETBLT was designed as a
bulk data transfer protocol at MIT-LCS. It has achieved

better way o use timers.

very good performance during the preliminary

implementation test. More tests are vet to be performed
The

reader should be warned, therefore, that the [ollowing

over a wide range of network conditions, however,

discussions are more based on sound arguments than on
actual experience.

403

NETBLT is another transport level protocol designed

for transferring large quantities of data across the
internet. Like TCP, it uses a timer to detect packet loss,
but its data transmission timing scheme is drastically
dilferent from TCP's,

described below.

The four major differences are

First, NETBLT sets the retransmission timer at the
receiving end, rather than at the sender as TCP does.
\When considering the state of a data transler, it is the
receiver that is more concerned with the transfer results,
and that knows the state changes (correct reception of
new data) first.

Second, NETBLT scts a retransmission timer on each
block of data, which contains a large number of packets,
instead of timing cach packet. This allows the timeout
value to be set more loosely to avoid false alarms, and
still saves a lot of waiting time, because at worst the
receiver waits only once to initiate the recovery cycle for
all packet losses in a bloek of data. Additionally, from
an implementation point of view, setting and canceling
of timers are expensive operations in all systems; setting

fewer timers certainly saves system overhead.

Thirdly, in case of packet loss, NETBLT does not
walit for the timeout to trigger the recovery. Instead, as
soont as the last packet in a block arrives. the receiver
will check to see if any packets are missing: if so, it
dallies [or a short time period (Lo wait for possible out-
of-order packets) and then informs the sender with a list
all the The

retransmission timer is used to initiate the recovery only

of missing packets in block. block

when the last packet in a block is lost.

TFourth, the retransmission timer value is computed
from the transfer speed of the sender. rather than the
thie {first

packet of a block, the receiver starts the timer with the

measured network delay. Upon receiving
RTO value equal to the amount of time required to
vransgfer the whole block of data (this time can be
computed from the block length and the sender’s speed),
plus a variation margin. Therefore the timer does not
suffer from the RTT measuwrement errors. Also, as a
side effect of timing an entire block of data. delay
variances on individual packets in the same block are
likely to cancel out, ltence a moderate variance value is

expected to be sullicient.

Additionally, NETBLT provides for multiple data

blocks being transmitted coneurrently. When one block

finishes transmilting its data and is waliting for the

receiver’s reply, the next Dblock can start sending

immediately, keeping the communication channel busy.
NETBLT uses
the
When properly

a rate-hased flow control to coordinate
host data transfer speed and the network speed.
supported by the network, it will smooth
out the transfer and avoid data accumulation inside the
network, hence reduce network delay, delay variance,

and packet loss caused by congestion.

In short, the main theme in NETBLT timing is to
reduce the dependency on the timer to failure detections
that. High
performance is achieved through using more information

cannot be detected Dby other means.

about the data transfer, exploring concurrency, and
Of course the NETBLT protocol
it bulk
The approaches it employs in its timing

avoiding congestion.

has its limitations, i.e. is mainly for data

shipment.
algorithm, however, are expected to be generally
applicable to other network protocols and distributed

applications.

6. Conclusion
The

importance of timers

the

distributed

purpose of this paper is to identify

and their roles in
systems. A timer is an indispensable tool in building up
reliable distributed svstems. However, as the experience
TCP it

limitations in offering optimal performance.

intrinsic
We should

bear in mind these limitations in future protocol design.

with the timer has shown, has

IF we aim at high performance, we should use external
events as a [irst line of defense against failures, and
depend on timers in where exlernal

onlv cases

notilieation has [ailed.

Acknowledgment
I wish to thank to Dave Clark, J. Noel Chiappa,
NMike Allen

enlightening discussions over the years.

Greenwald, and Larry for numerous
also
arateful for the help of Dave Clark, J. Noel Chiappa,
Jim Gibson, and Bob Baldwin during the writing of this
paper. Finally, thanks to Belh Braden of USC-ISI for his

valuable comments on an earlier version of the paper.

I am

404

Appendix-I: RTT Measurement in Packet

Retransmission Case

The following case analysis due to Dave Clark shows
that, when packet retransmissions occur, there is an
uncertainty in the RTT measurement, and therefore the
SRTT value cannot be computed correctly. Assume an

acknowledgment is received after retransmitting a

packet n times,

1. If the RTT sample is taken as the elapsed
time from sending the first copy of the
packet to finally receiving the
acknowledgment, the time period actually
covers the loss detection time (n X RTO) as
well as the recovery time (the true round trip
time) (assuming no false alarms, so the last
retransmission is being acknowledged). Using
this value to compute the SRTT and then
the RTO, we see a loop in the computation:

RTO; = min {Ubound, maz (8 X SRTT,, Lbound)}
RIT;,, =n X RTO, +true_RTT=n X f X SRITX + true_ RTT
SRIT;, = a X SRTT; +(1—a) X RTT,

=(a X SRIT;+ (1 —a) X true_RTT) + (1—a) X n X 8 X SRIT,

i+l
desired term unwanted contributor

Therefore a single packet loss may cause a
big jump in the SRTT value, and multiple
losses in a row {a likely result of network
congestion) will make the SRTT and RTO
values grow until the RTO is bounded by
Ubound.

Consceutive 3 lusses of packets 13 caused SRTT io double its original
correet value of 5 sce: 10 successful transmissions brought it down to 7.3 sec;
then another 3 fosses soared it up to 13.6 sec.

Time / ~ . /Retransmission TimeQut
~ .
. . .
15 / ~) /
. 7~
~
/ ~
10 / 7N
- - 7/
/ ~ P
7 == =~ “The computed SRTT vatue
Z
5
‘\Actual round-trip-time
1 2 3 4 5 6 7 8 9 10 15 "

Packets transmitted
Casc 1: SRTT grows to Ubound.

*Since Ubound and Lbound are wired-in constants in TCP
implementations, they are usually chosen very loosely to suit order-
of-magnitude differences of the RTTs in TCP’s running
environment. Therefore RTO = 3 X SRTT, until SRTT soars too
high or shrinks too small.

2.

If the RTT is measured from sending the last
copy to receiving the acknowledgment, the
result will be a smaller value than the real
round trip time, if an earlier than the last
retransmitted copy triggered the
acknowledgment. The SRTT will then
converge to wrong values. Consider the
following example: if the true RTT is 11
seconds, but the RTO was wrongly set to 10
seconds, the packet is then retransmitted

Time

11
10

3.

b Searting with RTO = 10 sec, actual RTT =11 scc, SRTT converges to 3.67 sec

{,— Actual round-trip-time

~ Retransmission TimeQut

— =~ e . ._ _The computed SRTT value

>

5 10 Packets transmitted

Case 2: SRTT Converges to a wrong value.

after 10 seconds, and the RTT measurement
returns 1 second when the acknowledgment
to the first packet is received.

If the measured RTT is not used to adjust
the SRTT when retransmissions occur, the
SRTT will not change. If the original RTO
is shorter than the real round trip time or the
network delay has suddenly increased (e.g.
because of route change), the RTO will stick
at the small value, resulting in unnecessarily
retransmitting every packet.

Time

4

‘//, Actual round-trip-time

The computed SRTT valuve

>

Packets transmitted

Case 3: SRTT stays at the wrong value

References

David Clark.

Window and Acknowledgment Strategy in TCP.
ARPA RFC-813.

1982

David Clark, Mark Lambert, & Lixia Zhang.
NETBLT: A Bulk Data Transfer Protocol.
ARPA RFC-969.

December, 1985

405

16

)

[10]

Geollrey Cooper.

A New Timing Algorithm for Transmission and
Retransmission in TFTP.

A working paper draft written at Computer
System Research group, MIT-LCS.

1983

Stephen W. Edge.

An Adaptive Timeout Algorithm for
Retransmission Across a Packet Switching
Network.

ACAN Computer Communication Review
14(2):248-255, June, 1984.

Raj Jain.

Divergence of Timeout Algorithms for Packet
Retransmissions.

Technical Report 329, Digital Equipment Corp.,
1985.

David L. Milis.

Internet Delay Experiments.
ARPA RIFC-889.

December, 1983

Robert J.T. Morris.

Fixing Timeout Intervals for Lost Packet
Detection in Computer Communication
Networks,

n Proc. of National Computer Con ference.
AFTPS, 1979.

J. Postel.

DoD Standard Transmission Control Protocol.
ARPA RIFC-793,

September, 1981

J. Postel.

DoD Standard Internct Protocol.
ARPA RIFC-791.

September, 1981

Lixia Zhang.

Network Simulation Report.

Working paper in progress.

This report summarizes test results on IP source
quench handling and TCP timer problems.
The simulator was built hy the author at
MIT-LCS to study network congestion control
problems. Its topology imitates the conditions
in the current ARPA Internet, i.e. the delay
and bandwidth characteristics of
communication channels differ by orders of
magnitude. The data traffic generator models
two types of applications: file transfer and
remote login.,

