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Abstract 

R.epeated observation of TCP retransmission timer problems 
stimulated investigation into the roles and limitations of 
timers. Timers are indispensable tools in building up reliable 
distributed systems. However, as the experience with the TCP 
retransmission timer has shown, timers have intrinsic 
limitations in offering optimal performance. Any timeout 
based action is a guess based on incomplete information, and 
as such is bound to be non-optimal. We conclude that, if we 
aim at high performance, we should use external events as a 
first line of defense against failures, and depend on timers only 
in cases where external notification has failed. 

1. Overview 
In computer commui~icatioi~ networks a tiinzey is a 

failure detection mechanism, normally used to decide 
when to retransmit a lost packet, or when to abandon a 
broken connection. Timers have been employed in all 
network protocols that offer reliable services. They seem 
to play an indispensable role. However, even with many 
years of experience. we are still not able to make timers 
work as well as we would like. 

The Transmission Control Protocol (TCP) [8] is 
intended for use as a highly reliable host-to-host protocol 
in packet-switched c0111pute1 networks, and ill 
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interconnected systems of such networks. TCP has been 
widely implemented and used over the years. Repeated 
observations of TCP timer problems stimulated our 
investigation into further understanding of the following 
questions: 

l Is a timer really indispensable in network 
protocols? 

0 What roles should a timer play? What are 
its limitations? 

l How should we use it? 

The basic conclusions we draw are that timers are 
indispensable in building reliable distributed systems; yet 
their limitations need to be fully identified. Ill 

retrospect, we see that many of the problems 
encountered in using a timer are in fact due to 
illisuiiderstantling of its limitations. Although the 
following discussions relate specifically to phenomena 
and problems occurring in TCP, the conclusions. we 
believe, apply to the roles of timers in similar protocols, 
sLlcll as the IS0 Transport Protocol, a.nd in all 
distributed systems. 

The nest, section espla.ins the necessity of timers iii 
disti~il~nt.ed systems in general, and in network protocols 
in particular. Section 3 is a review of previous work and 
rspcrience will1 TCP timer. Section 4 explores the 
intrinsic liinitatious of a timer. With a better 
understanding of the limitations, section 5 suggests some 
hellristic rules in using timers, and loses the timing 
a.lgorithm of NETBLT (NETwork BLock Transfer) [z], a 
IJIIII; data transfrr protocol, to give au esi~tnple. The 
last section is a suinmary of the 1vot.k. 
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2. Why a Timer? 
A computer net,work is a distributed system. One of 

the advantages of distributed systems is that there is no 
i&e-slaa~ing among individual autonomous components 
in the system, i.e. they fail independently. This non- 
fate-sharing feature is achieved by coupling the 
components only through data communications channels. 
Consequently, individual components in a distributed 
system can only “hear” from each other through the 
communication channels, but cannot directly observe the 
existence or functioning of others and their running 
states. To coordinate with each other, they have two 
ways to detect esteIxa1 state changes or failures: 

1. By external reports. For instances, upon the 
arrival of an ackno~vledgment, the data 
sender knows that the data sent have been 
successlully received; when an ARPANET 
host tries to communicate with another not- 
running host, the network will respond with 
a “remote host dead” message. 

2. By local detection, e.g. using a retransmission 
timer to detect packet losses. 

In this paper fk/w?.e has a very general definition: it 
may simply refer to the failure of an intended function, 
as well as to a machine crash or the breaking of a 
communication channel. Later on we will see that 
externa.1 reports are a better way to do failure detection 
and recovery. For the following reasons, however, local 
detection is alwa.ys needed: 

. Not all external changes or failures can be 
reported. For esmiple, if a receiver detects 
an incoming packet with a header checksum 
error, the source address part may have been 
damaged, hence the sender cannot be 
identified. The receiver will not be able to 
notify the sender to retransmit the packet. 

l The reporting system may fail itself, e.g. an 
acl~iio~vleclgment may get lost. 

Therefore, to xhieve sufficient self-protection in a 
distributed system, cautious users set up some form of 
local detection. So far, the only local detection tool 
available is a timer. This is not a coincidence. With no 
external information, tim.e is the only tool that one can 
use to estinzate external state changes. If one 
communicating end does not hear from the other end as 
it should within some reasonably long time period, it 
clSs’u?nes that something must have gone wrong, either 
within the communication network or at the remote site. 

For example, the sending host of a TCP connection uses 
a timer to detect packet loss, so does an ARPANET 
IMP; during the absence of data traffic, ARPANET 
IMPS regularly talk to each other. and a. neighbor IMP 
will be declared clown if it has been silent for a certain 
time period. A timer is a ?nust for any player in a 
distributed system. 

3. Previous Experience and Work with 
TCP Timer 
A timer is an alarm clock which goes off after a 

specified timeout period. The usual goal of a timer 
algorithm is to dynamically adjust the timeout value to 
approach an ideal where the timer is triggered 
kmntedicitely and only upon a real failure. In their 
desire to achieve good performance, all timer algorithms 
try to balance between two conflicting goals: 

1. speeding up failure detection, and 

2. minimizing false alarms, i.e. minimizing the 
incidents of the timer going off prematurely 
when no real failure has occurred. 

TCP uses timers to detect packet losses (the 
retransmission timer) and connection breaks (the death 
timer). Since connection breaks happen rarely, and 
hosts usually are willing to try for a long time before 
finally giving up. the death timer is often set to a large 
value. This is not the case, however, for TCP 
retransmission timers. In the middle of a session, it is 
undesirable for a client to wait for a few minutes to 
recover a transmission error. TCP took the approach of 
setting the retransmission time] by dynamically 
estimating the Round Tkp Time (RTT) between the two 
communicating entities. In this section we first 
int,roduce the TCP’s adaptive retransmission timer 
algorithm, then discuss its problems. 

3.1. TCP Retransmission Timer Algorithm 

Due to the variability of the networks that compose 
an internetwork system, the TCP retransmission timer 
(TCP timer for short) is determined dynamically fol 
each connection. TCP measures the RTT for each data 
segment transfer, and computes a Smoothed Round Trip 
Time (SRTT): 

SRlT= a x SRTT+ (1 - a) x RTT 
Based on SRTT, it then computes the Ret,ransmissio,n 
TimeOut value (RTO): 

RTO = nrin { UDou~nd, mnz (Lbomd, p x SRTT) } 
Where iY6omd and Lbwtzd a.re the upper and lower 
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bounds on the tinieout value; 0 is a smootliing factor, 
and /? is a variance factor. In real implementstioi7s, 
1Jbound and Lbound values are assigned cmpiricaily as a 
loose limitation on the timer’s value. Recommended 
values of a and p are 0.8 - 0.0, and 1.3 - 2, 

respectively. Different Q and p values have been 
experimented with, as descril,ed below. 

3.2. Problems with TCP timer 
Over the years of running TCP in the ARPA 

Internet, many problems associated ~vith the TCP timer 
have been encountered. Understanding them requires 
that we understand the running environment of TCP. 
The ARPA Internet is a hcterogeneoils netwolk complex 
which connects together a large number of diverse 
networks: high speed LAW, narrow bandwidth dialup 
lines, loug delay satellite channels, reliable long haul 
networks, etc.. with the communicatiou bandwidths and 
delays varying between networks by orders of 
magnitude. The data carrier over this complex is IP [O], 
a datagram protocol offering a “best effort”, but not 
reliable, delivery service. Packet loss is not uncoinii7on, 
especially when the network gets heavily loaded, because 
IP’s only defensive tool is di~oppiiig packets, relying on 
Ihe end-to-end transport protocols to recover the loss 
wl~en necesswy. TCP runs on top of II’. TCP does not 
have a negative-acliiio~vleclgii~eiit mecliaiiism to report 
transmission errors; all clata errors, including losses, rely 
on the sender’s retransmission timer to triggel the 
recovery. Such an environnieiit makes an accurate 
setting of the TCP timer necessary for good 
perform mce. 

The lkst difficulty in using the TCP timer is to 
choose an init,ial value for t:llc SRTT. l3efore the first 
data exchange belween Ilic Tao comniunicating entities. 
there is no information available t,o the sender as to how 
long the round trip time will be, assuming the 
rlcstination address does not convey network topological 
implications. The current approach is to pick an 
arbitrary value, say 3 seconds, in the hope that it will 
quickly converge to the right value through the adaptive 
algorithm. It is often the case that this arbitrarily 
chosen value is too small, or too large, compared to the 
round trip time of the intended connect,ion; so will be 
the initial RTO value. As a result, TCP will either 
retransmit superfluously, or wait, for a long time before 
retransmitting if the first packet is lost. Also. the 
convergence is slow’. 1Vhcn the initial value is too 
small, escessive retransinissions may cause a temporary 

network congestion before the timer gets a chance to 
converge to the correct value. This problem has been 
observed many times in the ARPA Iuternet. On the 
other band, a large initial value means a possible slow 

start to the client, but does no damage to the network as 
a whole otherwise. 

A second problem is how to measure the round trip 
time. This measurement is, of course, trivial when there 
is no packet loss. When packet losses occur, however, 
getting correct RTT measurements is impossible, because 
when a11 acki~o~vletlgmeiit is received after n 
l.et,~ansmissions, the data sender ca,nnot tell which of the 
n+l copies sent is being acl~nowledged. This problem 
directly affects the computation result of the SRTT 
value. A case analysis due to Dave Clark (see Appendis- 

I) shows that TCP cannot compute the SRTT value 
correctly when packet retransmission occurs. Since the 
SRTT is used solely for packet loss recovery purposes, 
this problem is particularly unfortunate: the SRTT is 
uot used mhen there is no loss; when it is to be used, it 
cannot, be correct. 

The nest, problem in using the TCP timer is how to 
set RTO values. ~Vrong SR.TT values 1ea.d to wrong 
RTO values. When the RTO is (,oo small, the effective 
network throughput is rcducccl by too many duplica.te 
packets. When the RTO is too large, network clients 
sllffer from needless long waits before retransmitting lost 
paclteh. Most TCP implclnentations, as well ELS the 
‘TCP experiment discussed shortly. measure the RTT 
from t,lx first sending. \\‘lien tlw iiet\vork is lightly 
loaded, packet loss is random and negligible, occasional 
inaccurate RTT measurements do not cause a big 
problem, because the SRTT value gradually approaches 
Lhe true round trill t:inie despite some inomentnry 
fluct~uat ion, and because retransmissions are rare, so 
using a larger t.1~1 needed RTO value does not degracle 
performance noticeably. However, when network 
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congestion occurs, packet losses tend to be frequent, 
which in turn causes the SRTT and hence the RTO to 
grow rapitlly. This phenonienoli x33 olx5erved in a 
netmorlr test conducted at hIIT-KS: data packets xvere 
XlllI fro111 one host, 011 il LO hlbps rin;Snct. to another h0st 
Ott a 10 Albps l3tlteri1cl~ though a gateway. The packet 
flood congested the gat exva.y, causing many packels to be 
dropped. The RTO va.lue grew quickly from several 
hundred niilli-seconds to inore t1la.n 2 minutes, causing 
the sender to wait to0 long before initia.ting the recovery. 
The same plieiiomenoii was a.lso observed in a network 
experinlent al, Digital Equipment Corporation [S]. 

Even assuming the SRTT value is a correct average 
of the round trip time, setting an accurate RTO value 
based on the SRTT is still clifficult, due to the 
potentially large variance of the RTT. One source of 
the variance comes from the packet length effect,. 
\Vlienever there are one or more narrow bandwidth 
channels on the route of a connection, the doininant, 
component in the RTT will be the hit transfer delay 
over that line, which is pi~oport.ioiial t.0 the packet! 
length. Packet lengths can easily vary by a factor large1 
than two, causing false timeouts. Another source is 
dynainic network routing: since IP is a datagrain 
protocol, packets may theoretically be routed through 
different paths with different clelays. Still anothet* one is 
the delay at t,he tweivitig host: besides its packet 
])rocessing delay, the host, f01- perfotmln.tlce 

co~~siderations, may prefer not to respond immediately 
after every packet arrival [I], contributing another facto] 
to the RTT variance. 

The above a.rguments show that the variance of 
network delay can easily go alcove the recommended 
value. 1.3 - 2. of the variance factor j3, even without 
considering the effect of the 11et1v0r1< traffic 
fluctuations’). Slill another difficulty iii setting an 
accurak RTO 121~ is the ineYital>le phase de1a.y 
between the meas~lrccl RTT ValuPs and Lhe currents 

rountl trip time inside tile nrt,n’ork. A sudden change in 
path or 1letTVO~li condition. say at time T,, can result in 
a sudden increase in the round trip time. Packets sent 
after T o x.ill hear a longer cIFIR~-, say of D seconds. The 
mcasllretl RTT vallle. ho\vever. does not, reflect this 
chat~gc ttttt.il t.ime To + I>. The \rallie of D can be s3era.l 
secolltls, or evei) t.ens of sccontls, on a. long path. 
Reflecting the change to (he RTO setting t&es even 
lolygcr \vllen a I.)ig CL value is used. It was observed iii a 
nct,T\.orl; siniulntitsn that. during this time period, the 

tinier frequently went off and triggered superfluous 
retrwnsmissions [lo]. 

The last prol~lcm in using TCP timer is how to 
handle a timeout. If the TCP timer on an 
unaclinowledged data segment S goes off, TCP 
implemenlatioiis mere ~econimended to retransmit only 
the packet containing S, not any subsequent packets 
that may be awaiting acl;iiolr:ledgment. In the t3ea.l 
world, many possible events may result in a TCP time1 
going off when retransmission is unnecessary 01 

infeasible. Consider the following cases: 

1. S may not have left the host yet because of 
some locliup at lower layer. For example, the 
interface to the attached network is blocked. 

1. The current, timer value may be shorter than 
the fluctuatiig 1*0uritl trip time a.t that 
moment, causing a false alarm, e.g. a packet 
surge at some gath3va.y made S have a mu& 
longer round trip time. 

3. s TV a.5 received correctly bllt 
acl~nowledgment was damaged or lost. 

its 

4. S was dropped by s0me gateway due to 
congestion. 

5. S wh5 tlr0ppeci due to transmission channel 
error. 

6. The network parlil,ioned or the destination 
host crashed. 

In Llie Eit3t three cases, retransmission is unnecessary. 
Even for the nest one. which does require retransmission, 
1 lie existence of congestion implies care sl~onlcl be taken 
not to worsen the situxLion further. An immediate 
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xtransmission upon l,iineout is deairahle only in case (S), 
but it is now being- done in roll t,lw cases listed. On the 
other hand. niorc tliiln one packet, may be lost at once. 
The current. Stl’a.tCg~~. which ~‘ccovers only one packet pet- 
round trip time, map result in poor performance if the 
connection is over a. channel with long delay such a5 a 
aa.tellite link. 

Too quick and too man) retransmissions axe oken 
seen by people watching the daily network traffic. 
These retransniissions are considered one of the causes 
for network congestion. From above WC see that there 
are several possible reasons for this phenomenon: SRTT 
initial values that are too small, delay variance 
estimation that is too low, poor RTT measurements that 
lead the SRTT to converge to wrong values, etc. On the 
other hand, complaints are often heard from the usei 
side ahout sIow net\rorli responses, which may well be 
clue to RTO divergencr. The tswo l~lienoinetia can even 
be related: if the inil,ial RTO values of a few rxew 
connections arc set loo small. slrpcrflliolis relransmissions 
can congest. a gateway antI ca.ilse packet losses on t,he 
llCW, as well as otlier estal~lislletl. connections. The 
losses on those rllnnilig coii~icctions will iii turn make 
t,heir RTOs grow large and tl~crrforc the loss rrcover) 
\\;ill take a. long tilne. If t,hc congestion is severe, it may 
also cnusr TCP connert,ions to appca.r to basal;, even 
l.Iicrc is no br~olm~ part in the iietwoi~k but merely a 
LrafTic jam due to IP’s lack of control. 

The above discussion might incorrectly be taken to 
mean that the robustness mechanism ill TCP is ll0t 
valid. Ill fa.ct, the above prol>lelns are largely due to 
11”s deficiency in congestion control. TCP is intended to 
be a reliable end-to-end transport prot0col: tile TCP 
timer is designed to grlarantec this wlia,l,ility, under the 
assumplion tl1a.t data losses a.re ra.ndom and rare, saJ 
with a 1 - 29% loss ‘ratio. As nientionwl earlier. 
however, this awlinptinn is invalidat,ed by the fact that 
dropping pa.ckets is F’s primary way of handling 
congestion. TCP ca.nnot help IP solve network 
congestion prolAems while still keeping good 
perforniaiice. I.TllfOl%llllil,tel~, when the pcrforniance 
becomes too poor, it is ii0 longer clistinguisliahle from 
failure. 

3.3. Previous Work with TCP Timer 
Ill [b], Mills snggestecl that two values of a be used, 

with cxl = 15/16 when RTT < SRTT a~1 OI., = 3/d 
when RTT > SR,TT. The effect is to Inice the 

algorithm more responsive to upward-going trends in 
packet round trip time ancl less responsive to do~on~varcl- 
going trends. He then clid some test runs by measuring 
the de1a.y of ICMP echo/reply messages between many 
hosts, and concluded that, using the new cy values 
instead of the recommended one, the results were better 
by several pcrccnt in most cases, and worse by sevet7.l 
percent in a few cases. Notice. however, that the test, 
was a lock/step process with at most one packet in the 
fly! and t,herefore did not. sull’er YIYX~ SRTT divergence 
caused by consecutive losses. A simulation with the 
s~.~ggcsLcd a values showed that the SRTT goes up 
substantially in the case of consecutive losses [lo], since 
in this case the mea.rwetl R’I’T inclutlcs not only the 

round trip time but also the loss detection time’. 
Trying t,o adapt q\lickly to this wrong value simply 
makes the RTO diverge much faster. 

An experiment was performed at MIT-LCS to try out 
a nother way to estimate RTO values wi tliout using the 
IITT, thereby sidestepping the prol~lem with the RTT 
n~easurement. This espcrimcnt azsumes that the delay 
tlistril,ution is a bell-shaped clwe. treating lost packets 
as having infinite rlela>r. The percentage of packet 
~et,l-ansmissiolls, P. is wxd to adjust the RTO value. If 
1’ l~~comes bigger tha.11 some t~l~resl~olcl, the R.TO is 
incrrased, otlieru~ise it is dccreaserl. Tile original R’l’O 
\X.lllC is chosen large, R I1 cl intmitletl to decrease 
gradually. This scheme did not work out well. The 
RTO x-alue diverged for the same reason a5 in the TCP 
timer case: consecntive pxcket iosses due to congesthn 
resulted in a continuous growth of P, hence a continuous 
growth of the RTO. followcl hy a very slow recovery of 
the lost packets. 

There are ot.hcr ~t~~tlies on the timeout algoi~it~liiii 
wol~th melitioning. C~oopcr. in designing a new 
retrn~ismission t.iiner algorithm for TFTP [3], pointed 
out that. “the probability of a single packet hing lost 
may be some constant P,, hut the probability that a 
seconcl ~>;lCliC!t xvi11 tw losb once a packet ha,? already 
hccil lost is P, > P,.” lie suggestecl that in case of 
~eti,ansi~lissiolis, the SRTT val tie should be ii:creaxxl by 
sonic empirical value (e.g. ‘I! seconds), instead of as 5 
f’lwction of the RTT measl~rement. This al)proa.ch may 
SlOl\~ clown, but, does not prevent, RTO divergence. 
Work done Ly hlorris [i] is similar to the MT-LCS 
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experiment: ~mtler the assumption that tlw packet round 
trip the is a. rn.ntlom varial.)le of some known 
distribut~ion function, optimal timeout values, in terms of 
minimizing the sunl of the performance loss of false 
alarm and unnecessary waits, can be computed. Ill 
(41 Edge assumes that packet delays are random 

variables fomiing certa.in stochastic processes, and he 
detclmines the timcont vallle by estima.ting the mea.11 
and the variance of the measured dela.ys. 

These studies have their great meriGs. We also 
believe that TCP time1 algorithm can be further 
inlproved. as a couple of suggestions will be made in the 
nest seclion. I-Iowever, we consider that several 
prol,lenis iii using the TCl’ timer are more due to some 
iiitrinsic limitations of wing timers than due to the 
specific algorithm used. The nest section explains these 
limitations. 

4. Intrinsic Limitations of Timers 

4.1. TCP Timer Problem Revisited 

In the previous section. we found two basic problems 
iu using TCP timers: choosing a timeout value (RTO) 
and handling a timeout. Let us now look at, each of the 
two again from a more general viewpoint. 

4.1.1. Choosing a Value 
No algorithm can magically conipllte an a.ccura.te 

ItTO for each packet trsnsfcr. hs mentioned above, the 
tlifficiilties in choosing the initial SRTT value, in 
measuring the ro\~n(l trip time. and in setting the RTO 
value al-13 all r111e t,o the same VCiLSOll: lack of adequate 
infolmation a.hol~t t,he network topology and dynamics. 
i\.lany factors involved in the round trip time are not 
currently known by the data sender. Given this 
problem, it seems that directly providing the needed 
information may help more in choosing a correct value 
than clcvc~i~ly tIlning an algorithm based on inadequate 
inforniation, alItI that the network slloultl ma.ke an effort 
to wdllce t,lie variance of the round trip time. An 
csample of t,lIe former is to let the TCP timer stamp a 
liiiique ID nuniber on every packet sent. and let the 
acl~non~letlf;~ne~~t, xhich is trl,, ‘~~~~ewtl by receiving packet 
P, carry hack the ID of P. This will fix the RTT 
nieasurcinent problem in packet retransmission cases. 
An esainple of the latter is to add an effehive 
congestion control mecllanisnl to IP; It will improve 
‘I‘CP perfolmance more effectively Lhan any tuning 011 

t,hc timer algorilhm. 

As shown in the previolm section, the network delay 
is a random variable involved with many ui~controllable 
fwtors. Therefore even \rith further iinprovements. the 
TCP tinier still slioultl be set with a sufficient variance 
margin. This will have little effect on the performance, 
if the network does not drop many packets. On the 
other hand, we sl~n~lcl not expect an optimal 
performance by 11sing a timer. A tiineout is a guess 
Imsccl on incomplete infornxation, and as such is bouncl 
to be non-ol)tinial. That a timer is triggered only and 
immediately upon a real failure, unfortunately, can only 
be an iinn.chievablc it1ca.l hy any timeout algorithms. 

4.1.2. Handling the Timeout 

The difficulty in setting t.he t,imer value is only half 
or the st,ory. Since the t,iiner is a failure detection tool, 
following a. tiineolit thcte has to be a failure rec0ver.y. 
-4s discr~sscrl above, there are two ways to detect failures, 
cxtcmal wpolts and timers. The two have different 
impacts on the recovery. Failure reports, assuming they 
Cil.rry correct messages, bring in csplicit, information of 
\vhat, \\:ent wrong. B11t a timeout, by itself, is merely a 
symptom which ca11 haw any of a large nlunber of 
ca1.1scs. For instance, upon receiving a “remote host 
dead ‘1 message, the local client can be infomed to close 

the connection: while if a packet transfer has timed out 
five times, it is not clear whether this is caused by a 
telnporary network congest,ioti or a. remote host crnsh. 
The Punrfament~al l)rol)lem iu Iising the timer is that a, 
timeout does not t,ell pwcisely what went wrong (or even 
whether there is aiiyl.l~ing gone wrung). so we cannot 
know with certainty nliat s1~01.1lcl be clone in response. 
rlssum ptions Ii a.vc to be iiia.de when attempting to 
recover the i~~ili~io~v~i failiirc. The price to pay for thiq 
uncertainty is, a.gain, non-optimal performance. 

4.2. Timer’s Roles and Limitations 
The above sho~us t.liat the TCP timer has intrinsic 

limitations, i.e. it does uot have all the information 
available to achieve the good perforinance as we would 
desire. \Ve consider this a conmmn feature of any 
algorithms based on timeout. As we discussed in section 
‘2, a tinier is a l0ca.l tool mandatory for achieving 
re1iabilit.v in dist,ributed systems. However, the necessity 
of a timer does not imply that we should, or have to, 
rely on it for everything. Timers should be used only 
Jvhen all other means fail. 

Iii general tlistril~lited systems or applications, the 
pl~ol~lcin of using timers to achieve good perfornience 
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5. A Better Way to use Timers 

5.1. Heuristic Rules 

Since we have to pay the price of non-optimal 
lxrforniance \vhcnwer using a timer. the first, advice in 
usi11g ti1ner.s is to rely OE tllem as little as possible. This 
ineaiis t,hat, ilny al~no~mnl situation should Ix resohrd if 
J)ossiI:)le, rather t,ha1I t.uriiing it, to a. failure too easily 
and ml>-ing 011 timers to tw0~e1~. and thiit, any failure 
slio~~ltl he explicit I\ reJ>ortcd if possible. Esternal 
I’e]>OrLS ill’? IK)Lll fklSt$l. RllCl IllON! ZKPl.l~atC tll~~ll uuing >l 

limer in faililre detect,ioii. 

Secondly, Lry Lo get. more in~orniatioii to help set 3 

proper t.imcoutb value. mid do not al~tmiipt, to tighten the 
tAnier for a “I.wtt~er perforniailce”, unless it is lxwxl on 
the linomleclge of tile u1iclcrlyii~g system, because the 
gain in occasio1d faster detection by a tight timer may 
well he smaller than the loss due to false alams. 

i\ccept8i1ig the fact that the timer should be set 
loosely. if it, is not feasil~lc to wast,e the time when 
waiting for eit,lier a, confimat~ioii or 5 timeout, one 7va;y 
to improve the Jw2rforniance is Co explore more 
conci.wmicy l>;\T applyin g t,Jic ki~on~leclge of the specific 
apJ,lications. 

5.2. An Example 

Here we use WETBLT [?I .: a\ an eseniple to show a 
I)et.Ler \\-ay to use t,inlers. KJYLXLT was designed as a 
l)ulk data tr2iilsfer protocol at h,lJT-LCS. It, hrts a.chieved 
\:er> good Jmfolm RIl(‘f’ clllring t,lie J~reIiminary 
i in~~lciiient.ation trst.. hlrrc~ lests are get to be performed 
over a wick range of iietwork c0nclitioiis. however. The 
reader sliould J)e warned, therefore, that the following 
tlixnssions are more based 011 so~r1icl arguments than on 
xtiial experience. 

WETJ3J,T is >ln0t,he~ tjranspol% level protocol designccl 
for transferring large cJ”antit.ies of data across the 
internetS. Like TC’P, it, wes a t,imer t,o detect packet loss, 
Ijut, its data transmission l,imiiig scheme is clrastically 
different, from TCP’s. ‘The four IllRjOl dil’f’ereiices are 
clesci~il~etl I)elo~v. 

First, NETBLT sets t,hr rct~msmissim timer at, the 
recei\Giig end, rather than at the sender as TCF does. 
\Vhen considering the state of a tla.ta transfer. it is the 
receiver that is more coucemetl with the transfer results. 
and thii t, know the st.nt,e changes (correct reception of 
lIC\\’ clsta) first,. 

Swontl. NE’I’RJ2T sets a I.c,t~i.iinsinission timer on each 
I)lOclc 0P data, which COilLaillS a large number of packet,s, 
instead of t.iniiiig ea.ch pncliel. This allows the timeout, 
lxiue to J)e set more loosely to avoid false alarms, and 
dill SawS a lot of wiiting time, because at worst the 

remi\-cl. wait.S only oiicc t.0 initia.Le the recovery cycle foi 
all packet losses in R block of data. Additio1mAg, fram 
an iiiiplcn~rlilatio1i poinl. of view, setting and canceling 
of Limers are espensive opem.Lions in all systems; setting 

fewer t~imcrs certainly sa.ves system overlieacl. 

ThirtJl!r, in case of packet loss, NETBLT does not 

\\‘ait, for the t.inicout to t.riggcr the recovery. Iiisteacl, as 
50011 as lhe last. packet, in a blOCI< ill.l.i\TS. tlir receiver 

will check to bee if any- pacliet,S are missing: if so, it, 
dallies for a shrt~ time pcriotl (lo ~vait. for J>ossiJ>le out.- 
of-order packets) and t him informs the wnclcr with il lisl 
or itll missing pacl<et~ in the l~locli. The block 

p2Lrnnsmission Lilnrr iS IlSed to iniLia.Le t,lie recovery only 
1v11cn t.lic lest packet in a block is lost. 

FourLli, I,lic l.etl,anSniisioil timer value is comJ>utSed 
~l~0111 IIE t.ransl’cr speed or I,llC scntler. latllcr than t.hc 

I~~cm~lKYJ llctwol~k Ckli1.I~. LTpon rcceiVii1g the first 
packet, of a, J~locJ;, the iwei\-er sLwts the timer with tlw 
ItTO vallte equal to t.lre amount of time required to 
t,~.andw tlie whole J)locl; of data (this time can be 
comput~ecl fro1n t,he l.~locli length antI the Sciirle~~‘s Sped), 

plils a 7.ariat.ion margin. Tlleref0t.e tlie tinier does not 

P,, ffcr l’nm the R’IY 1nr~s11renleellt errors. Al30, as n 
sitlr effect, of tiiiiing au entire hlocli of data. cle1a.v 
\-ariances 011 iildivid~li~l J)acliet,s in llir wiiie block are 
likely t.0 cancel ont, hcncc a modcrate variance value is 

rspwtctl to Ix sl1fficicnt. 
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Atltlit~ionally, NIYWLT provides for multiple data 
I)locks being tranwlit.led concurrently. Wlie~i one block 
finishes transn~ilting its dnta. and is waiting for the 
rcwivcr’s reply, the nesl block can start sending 
immetlia.tely, keeping tlic conlmuilicat,ion channel busy. 
NlXBI,T uses a rate-hsetl flow conti~ol to coordinate 
tllc host da.La transfer speed and Lhc network speed. 
\\‘hen pr0p~rl.v supported by tlic network, it will smootli 
Oat tIlle trallsfer and avoid Cl2LliI. nccuinulalion inside the 
nctw01.l;: Irencc ~~lucc nc4work delay, delay variance, 
alltl 132lCliet IOSS CRllSed by congest ion. 

In short. the iiiairi llien~r in NETBLT timing is to 
rccluce Llrc tlepcntlcnc~ on the timer to failure tlrLcct,ions 
that. cai?uot he detected by other means. High 
~xxforinance is acliicvecl through using inore inforniation 
ilbOllt~ t,lle htja. Lransfer, exploring coI1cLlI’l‘e11Cy , , Rlld 

n.\*oitling congestion. or (‘rllIrse the NETl3LT protocol 
has its limitations, i.e. it is niaiiily for hulk data 
shipment,. The approa~lies it. employs in its Liming 
algoriLlim. howe\-w. ilre expected to be generally 
applicable t,o other llCJtT\‘O~li protocols and distributed 
applications. 

6. Conclusion 
The purpose of this papel is to identify the 

importance of timers ant1 Llieii roles in tlislril~uted 
swcnls. .A timer is an intlispensal~le tool in I,uilcling up 
Wlii~ble clist.i~ilmtetl syskms. However, as the experience 
wit,ll Lli? TCP timer has aliown. it ha.5 int8rinsic 
li~nit;aLion in offcrin g optinnal pciforiiiaiice. We sl~ould 
l~2iIr in mind these liiuit.nt ions in iutllre protocol design. 
LI’ \vr iIill2 at, high ~~7r~orm:ulce, xvc sll0llltl use external 
e\.ents ar: a Tirst linr of ~ICfciisc agnii~st failures, a.nd 
tlc]xw.l 011 t.1 111 e I’?5 onl!; in CXSC?S wl1ere external 
iiot,i(‘ic.alioii 1125 r:Glctl. 
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Appendix-I: RTT Measurement in Packet 
Retransmission Case 

The following case analysis due to Dave Clark shows 
that, when packet retransmissions occur, there is an 
uncertainty in the RTT measurement, and therefore the 
SRTT value cannot be computed correctly. Assume 
acknowledgment is received after retransmitting 
packet n times, 

an 
a 

1. If the RTT sample is taken as the elapsed 
time from sending the first copy of the 
packet to finally receiving the 
acknowledgment, the time period actually 
covers the loss detection time (n X RTO) as 
well as the recovery time (the true round trip 
time) (assuming no false alarms, so the last 
retransmission is being acknowledged). Using 
this value to compute the SRTT and then 
the RTO, we see a loop in the computation: 

Rmi = min {Ubound, maz (P x .SRITi, Lbound) } 

RTI;.+l = n x RTOi f true-RlT= n x 4 x SRTTi*+ true-m 
SRTI;.,, = a x SR7Ti + (1 - a) x RTfi+l 

= (a X SRTi + (1 - n) X true_RTI) + (1-a) x n x /3 x SRTT, 

desired term unwanted contributor 

Therefore a single packet loss may cause a 
big jump in the SRTT value, and multiple 
losses in a row (a likely result of network 
congestion) will make the SRTT and RTO 
values grow until the RTO is bounded by 
Ubound. 

lime /’ - . \ . ,/Retr*nsmisfion Timeout 

15 
f 

/ ‘.I 
/\ 

/ . . 
/ -\. / 

/ -- / The computed SRTT value 

/ 
5 4 L. Actual round-trip-time 

I b 
1234 5 6 7 8 9 10 15 

Packets transmitted 
Cnsc 1: SRI-T grows IO Ubound. 

* 
Since Ubound and Lbound are wired-in constants in TCP 

implementations, they are usually &osen very loosely to suit order- 

of-nngnitude differences of the RTTs in TCP’s running 
environment. Therefore RTO= /3 X ,SFMT, until SRTT soars too 
high or shrinks too small. 
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2. If the RTT is measured from sending the last 
copy to receiving the acknowledgment, the 
result will be a smaller value than the real 
round trip time, if an earlier than the last 
retransmitted COPY triggered the 
acknowledgment. The SRTT will then 
converge to wrong values. Consider the 
following example: if the true RTT is 11 
seconds, but the RTO was wrongly set to 10 
seconds, the packet is then retransmitted 

I l 
5 10 Packets transmitted 

Case2: SRTTConvergcs toawrongvalue. 

after 10 seconds, and the RTT measurement 
returns 1 second when the acknowledgment 
to the first Packet is received. 

3. If the measured RTT is not used to adjust 
the SRTT when retransmissions occur, the 
SRTT will not change. If the original RTO 
is shorter than the real round trip time or the 
network delay has suddenly increased (e.g. 
because of route change), the RTO will stick 
at the small value, resulting in unnecessarily 
retransmitting every packet. 

Case 3: SRTT stays nt the wrong value 
Packets transmitted 
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