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SUMMARY

The main purpose of this paper is to document data traffic oscillation phenomena that have been
observed both in operational networks and in simulation. In particular, by means of simulating
TCP/IP network operations we are able to examine in detail the causes of traffic oscillation in a
simple network setting. Our analysis shows that users’ control actions are highly synchronized by
the network congestion signaling and that providing users with only a binary network state can lead
to repeated traffic oscillation.

It is yet to be determined by future work, however, to what extent the observed oscillation is due
to the specific congestion control algorithm being used, and to what extent oscillation is an intrinsic
phenomenon in large-scale, distributed systems and thus unavoidable. We suggest providing users
with selective feedback and more quantitative information about network state as one way to improve
traffic stability; the plausibility of this suggestion must be verified through simulation and
implementation.
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1. INTRODUCTION

In packet-switched networks, it is highly desirable to maintain a stable traffic flow to
avoid switch buffer overflow while maintaining high resource utilization, and to keep a
stable end-to-end transmission delay (which can in turn make superfluous retransmissions
unlikely to occur). Network traffic oscillation has been measured both in operational
networks and in simulation. Oscillating traffic can lead to the following undesirable
consequences:

1. At peak traffic resonance, switch buffers overflow and some packets are discarded.
Consequently, retransmissions are used to recover the losses, which result in out of
order packet arrivals at the receiving end.

2. Network resources are used unevenly; they are wasted both by retransmissions and
by the idle time between oscillations.
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3. Worst of all, end users experience long and highly varying network transmission
delays (see the measured end-to-end delay curves in Figure 4). The delay makes
the network incapable of serving real-time (e.g. packet voice) or interactive (e.g.
remote log-in) applications.

Therefore it is important to understand the underlying causes of network oscillation.

Jacobson (1987) was the first to observe oscillatory behavior in ARPANET traffic. He
sent ICMP echo messages (Postel, 1981b), at a constant rate, to a specific destination
host across the ARPANET, and then measured the round-trip time (RTT) of each echo.
He plotted a curve of the measured RTTs versus time which shows a periodic oscillation.

In our network simulation study, a similar oscillatory phenomenon was also observed
(Hashem, 1989; Zhang, 1989). We conducted network simulations to study the performance
of datagram networks with end-to-end window flow control mechanisms. The TCP/IP
protocol suite (Postel, 1981a,c) was chosen as an ideal candidate for this purpose. It is
well-known and widely deployed. In addition, the recently developed congestion control
algorithm, Slow-Start (Jacobson, 1988), has further enhanced the protocol and brought
significant performance improvement over previous TCP/IP implementations.' The TCP/IP
implementation mentioned in the rest of this paper is assumed to be the version with the
Slow-Start enhancement.

One of the most significant observations from our simulations of TCP/IP network
operation is wild oscillation of packet flows. Periodically, packet queues at network
bottleneck points grow to the buffer capacity and then shrink to nothing. In this paper
we examine in detail the causes of this traffic oscillation phenomenon by simulation of a
simple network setting. We discovered that, surprising as may it sound, the flow control
adjustments of individual TCP connections are highly synchronized, and it is this
synchronization that leads to the network traffic oscillation. The synchronization is in
turn due to the fact that all the end users receive network congestion signals simultaneously.
Consequently, the users slow down, and then speed up their data transmission in a
synchronized manner, making the network state repeat the cycle of being
congested—empty—congested again indefinitely.

We present the simulation model in Section 2 and the traffic oscillation observed in
Section 3. Simulation tools allow us to trace detailed protocol operations to explore the
causes of oscillation in Section 4. We then discuss our results as compared to other work
in this area. The last section summarizes our current discoveries and proposes directions
for future research effort.

2. SIMULATION MODEL

This section describes the network model used in our TCP/IP network simulation
experiments. Since the TCP/IP protocol suite is well-known, we omit the protocol
description here and refer interested readers to Postel (1981a,c) for details. We briefly
describe the Slow-Start congestion-control algorithm below.

! A number of TCP users reported throughput improvement by a factor of 2 to 5 in the operational Internet
(TCP-IP mail communications).
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2.1. Slow-Start algorithm

TCP runs on top of IP, a datagram protocol that provides essentially no feedback
information about the network status. Early implementations of TCP naturally chose a
fixed window size (specified by the data receiving end) as default for all connections.
The Slow-Start algorithm (Jacobson, 1988) enhances TCP’s flow control with a dynamically
adjusted congestion control window and uses the acknowledgment return and the
retransmission time-out as control information. The window size used to regulate data
transmission is

min(receiver window, congestion control window)

Packet losses, which are approximated by retransmission time-outs, are used as a
congestion signal and acknowledgment return as an indication of an uncongested network.
In the Slow-Start algorithm, each TCP connection starts with a congestion control window
size of one maximum-size packet, and opens the window gradually upon receiving
acknowledgments. When a retransmission time-out occurs, the control window closes
down to one packet; it then reopens gradually upon further acknowledgment returns. To
reduce throughput losses during the period of small control window size, the window
opening is divided into an exponential opening phase and a linear opening phase. This
means a faster opening at the beginning and a slower increase later when the window
size is getting close to the point at which congestion was last experienced. See (Jacobson,
1988) for more details.

2.2. Network model

Two topology models are used in simulation: a simple network with one bottleneck
link and a network with four switches in a row (see Figure 1).

All the links between hosts and switches have a bandwidth of 10 Mbit/s and a negligible
propagation delay, to mimic commonly seen high-speed LAN connections from hosts to
local gateways. The links between switches have a bandwidth of 100 kbit/s and a
propagation delay of 5 ms, approximating the condition of some of today’s long-haul
network connections. The switches in Topology-1 have a buffer size of 30 packets each,
and the switches in Topology-2 have a buffer size of 100 packets each. All the network
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Figure 1. The two network topologies used in simulation tests
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links and switches are assumed to provide error-free transmission. Because the Slow-Start
congestion-control algorithm uses packet losses (which can result from either congestion
or bit errors) as the congestion signal, this assumption eliminates the problem of false
congestion alarms resulting from transmission errors in simulation. However, such false
alarms present a serious problem in a real network environment (Seo et al., 1988).

2.3. Load model

Data traffic in the simulation is generated by TCP connections. In the rest of the paper
the word user refers to the end-to-end TCP connections. All the simulation tests mentioned
in this paper are based on the following assumptions:

1. Each TCP connection starts at a random time and keeps running forever.

2. Each connection has an infinite amount of data to transmit, hence the data flow is
restricted only by the protocol’s flow control mechanism.?

3. Each receiver specifies a window size of 20 packets. If this window size is too small,
it will limit the connection’s throughput; if it is large enough such that the data
transmission is controlled solely by the congestion control window, then the exact
value is not important.

4. All packets are assumed to have a fixed size of 500 bytes, and all ACK packets a
size of 50 bytes.

The simulation code of the TCP protocol is a simplified version of the TCP implementation
from the BSD UNIX4.3 release (i.e. the connection set-up and tear-down parts are
removed). ICMP source-quench (Postel, 1981b) is not activated in the simulation tests
because there is no clear specification on how the source-quench message should be
handled.

3. SIMULATION RESULTS: OSCILLATORY DATA TRAFFIC

This section presents the simulation results in graphical forms. We will focus on the
results from Topology-1, because the topology is simpler and the results are easier to
understand. The results from Topology-2 are used to confirm that a more complex system
also exhibits oscillatory symptoms similar to those observed in the simple system.

3.1. Observations with Topology-1

Ten TCP connections are set up on this simple topology. Connections 1 to 5 send data
from Host-1 to Host-2; connections 6 to 10 send in the other direction. The trace of the
packet queue length at switches clearly shows an oscillating load (see Figure 2).

Looking into each connection’s transmission behavior, we can see a corresponding
oscillation of the congestion control window size of each connection. In particular, these

2 Observations from simulations show that, with the Slow-Start congestion-control algorithm the exact pattern
of packet generation is largely irrelevant as long as the average generation rate is not below the available
channel bandwidth. Because newly generated packets are accumulated when the congestion window size is
small, the resulting transmission pattern is similar to that of an infinite data source.
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Figure 2. A 20-second trace of packet queue length at Link-2, Switch-1

window size oscillations are synchronized, as shown in Figure 3. It is this synchronized
control window oscillation that results in the network traffic oscillation.

A trace of the end-to-end packet delays of connections 1, 3 and 5 shows oscillation as
well (Figure 4), roughly corresponding to the packet queue oscillation at the switch. For
example, the minimum end-to-end packet delay of connection 1 is approximately S0 ms.
Owing to the oscillating packet queue at the switches, however, the average packet delay
is 490 ms, and the delay deviation is 213 ms (computed from a simulation run over 10
minutes of network time).

3.2. Observations with Topology-2

Fifty TCP connections are set up in Topology-2. Among the fifty connections,
connections 1 to 24 have a path of one-hop (i.e. across one inter-switch link only),
connections 25 to 40 are two-hop, and the rest are three-hop connections. The sources
and destinations of the connections are more or less uniformly distributed; and each of
the three inter-switch links carries packet flows from all of the three path length groups.
Despite the mix of traffic and a much larger packet buffer size (i.e. 100 per switch), data
traffic oscillation similar to that observed in Topology-1 exists; however, the oscillation
has a lower frequency (as shown in Figure 5).

4. ANALYSIS

Close observations of our simulations exposed that the traffic oscillation results primarily
from a combined effect of three causes. First, every time a switch runs out of buffer
space and starts dropping packets, it takes a long time to get out of the congested state.
Much like an object of large mass in motion, packet traffic keeps coming at the original
speed long after the switch entered the congested state, as if no packet dropping had
occurred.

We call this phenomenon the traffic inertia, which can be attributed to the operation
of the window flow control mechanism. Suppose that the Nth packet of a connection, C,
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Figure 3. A 20-second trace of the congestion control windows of connections 1, 3, and 5 in the Topology-1
test
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Figure 4. A trace of one-way end-to-end packet delays of connections 1, 3 and 5 in the Topology-1 test



108 L. ZHANG AND D. D. CLARK

queue length
:

70 4
60 -
50 -
40 -

30 -

20

10

i \ "
o . | Wik vl
480.00 490.00 500.00 510.00 520.00 530.00 540.00 550.00 560.00 570.00 580.00
Clock(sec)

100 -

90 -

80 -

queue length

70 -
60 -
50 -

40 -

30 4 I ' .
10 < f
o J b l i l‘“,u\i I

480.00 490.00 500.00 510.00 520.00 530.00 540.00 S550.00 S560.00 570.00 580.00
Clock(sec)

Figure 5. A trace of the packet queues at Link-11, Switch-2 and at Link-13, Switch-3 in the Topology-2 test

is lost, C does not stop transmission until after the (N + W — 1)th packet is sent, where
W is the control window size (assuming that the other direction of the path is not totally
blocked, so that the acknowledgments return successfully). Thus a single connection has
a flow inertia equal to its window size, and the aggregate traffic has an inertia equal to
the sum of the window sizes of all active connections.

This traffic inertia reflects the control delay in the Slow-Start algorithm. It determines
the duration of time that the network is in a congested state. During this time period,
most connections passing through the congested point lose packet(s), no matter whether
a connection is directly responsible for the congestion (although some connections may
lose more than others). For instance, from Figure 2 we can see that congestion occurred
at Link-2, Switch-1 around the 363rd second of the simulation test (at this time the packet
queue length has reached the buffer size limit of 30); Figure 3 shows that, around this
time, connection 1 has a control window size about 3-5 Kbytes, connection 3’s window
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is around 3-5 Kbytes, whereas connection 5’s is near 3 Kbytes. None the less all three
connections lost some packets during the congestion event, as evidenced by the close-
down of their congestion control window shortly thereafter.

Secondly, although individual connections are supposed to operate independently from
each other, the simultaneous packet losses make the open/close cycles of their congestion
control windows highly synchronized. Connections that lost packets at the same congestion
point enter a retransmission time-out waiting state within a relatively short period. The
network traffic empties out during this wait time period.

Thirdly, after the detection of congestion (as signaled by packet losses), it takes a
rather long time to build up the network load again. Because the end-to-end connections
receive no quantitative information other than packet losses as a congestion signal, the
Slow-Start algorithm takes a conservative approach and reduces the congestion control
window to one packet. A number of round-trips are needed to open up the control
window to a proper size again. During this time period, the bottleneck links are under-
used.

The above explains why a congested state of a switch is always followed by an empty
state. Now let us see why the network enters a congested state repeatedly. This is due
to the aggressive window opening strategy of users. All the TCP connections start with
a minimal control window size of one packet. In the absence of packet losses, however,
the window keeps opening up as a consquence of acknowledgment returns. The Slow-
Start algorithm uses this ‘toe-in-water’ strategy to find out whether the highest possible
throughput has been achieved. Because packet losses are the only congestion signal that
can stop the speed-up, data traffic keeps increasing until it hits the network congestion
point. After the congestion recovery, the same congestion control window opening cycle
repeats, leading to the next congested state.

What we can conclude from the above analysis is that, owing to the traffic inertia
phenomenon, the majority of users lose packets simultaneously at congestion, independent
from whether they are responsible for the congestion, and that the synchronized packet
losses in turn lead to synchronized control actions of all the users. Furthermore, because
users have to acquire network capacity by continuously increasing their control window
size, congestion occurs repeatedly.

We see that the ultimate cause of traffic oscillation is the aggressive speed-up followed
by synchronized slow-down of connections upon packet losses. The speed-up in turn is
due to the binary feedback information from the network, i.e. whether the network is
congested or not. Therefore in the absence of packet losses users assume that further
speed-up is always feasible, which leads to congestion. Owing to traffic inertia, packet
losses caused by congestion hurts most users, forcing them to reduce the transmission
rate to the minimum at the same time. Therefore, even when the number of active users
remains the same, the network load fluctuates.

Such behavior can be corrected by providing users with selective feedback signals and
with more quantitative network load information. The information provided by packet
loss does not reflect reality. In reality only some of the users are major contributors to
each congestion, and the network load is a continuous variable rather than a binary state.
If these two kinds of information can be propagated to end users, they would be able to
avoid both the synchronized control actions as well as excessive speedup once the network
load reaches a proper level.
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5. RELATED WORK: USING HEAVY DAMPING TO PREVENT
OSCILLATION

Before concluding we relate our results to some previous work on this subject, mainly
the DECDbit congestion avoidance algorithm and a delay-based algorithm proposed by
Jain (1989).

5.1. DECbit algorithm

Another well-known congestion control algorithm for datagram networks, DECbit
(Ramakrishnan and Jain, 1988), uses a binary feedback scheme similar to Jacobson’s.
Switches in the network detect congestion and set a congestion indication bit on packets
flowing in the forward direction. The congestion indication is communicated back to the
senders through end-to-end acknowledgments. If at least S0 per cent of the congestion
bits are set, the flow control window size is reduced; otherwise it is increased. Because
the network state is considered to be a binary variable, users can only adjust their flow
control window by trial-and-error, similar to TCP connections.

Simulation of DECbit, however, shows only minor oscillations in the vicinity around
an ideal operation point.® This is because heavy damping is built into the control
algorithm—when a heavy load is detected, the control window of each connection is
reduced only by a factor of 0-875 per control cycle. A control cycle is about two round-
trip times (RTT). The DECbit scheme takes control delay into account. After each flow
control window adjustment, the connection waits for an RTT before taking another
measurement which takes roughly another RTT time period.

Heavy damping, however, may not be a good solution to traffic oscillation. Because
of the small adjustment step used, heavy damping may take too long to reach a desired
control window size when network load changes rapidly, such as when active users
terminate or new users start. For instance, simulation results presented by Ramakrishnan,
Jain and Chiu (1988) show that, with a simple topology (four switches in a row), when
a second user starts transmission, the first user takes more than 10 round-trip-times
(RTTs) to adjust its window size to half.* This can be too long a control adjustment
period in a high-speed network environment, not to mention the possibility of buffer
overflow during this long period. In a gigabit network, many data transfer applications
may have completed within a time period of a few RTTs.

5.2. Delay-based algorithm

Jain (1989) proposed a delay-based congestion avoidance algorithm which is similar to
DECDbit except that it uses a different congestion signal. Instead of using explicit congestion
bits set by the network, Jain’s algorithm uses implicit information derived from the RTT

3 However, because only the trace of the connection’s window size changes are presented and no measurement
of the network traffic is mentioned in Ramakrishnan and Jain (1988), we do not know exactly how the switch
queueing changes with time.

4 This is a rough estimate based on the graph (Ramakrishnan, Jain and Chiu, 1988, Figure 8-b). Each control
cycle takes about two RTTs, and the coefficient used for window adjustment is 0-875, (0-875)° = 0-513. Thus,
a five-step adjustment needs a period of 10 RTTs.
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measurement to determine whether a connection should increase or decrease its flow
control window. To minimize the amplitude of oscillation, it uses the same increase and
decrease parameters as DECbit. In addition to the slow convergence property described
above, this algorithm may also suffer from the drawbacks associated with delay-based
algorithms, as pointed out by Robinson, Friedman and Steenstrup (1990).

We suggest that one possible way to reduce the heavy damping without sacrificing
stability is to derive a more quantitative control value from the available information.
For example, depending on the percentage of the congestion bits set, the DECbit
algorithm may compute a finer granularity value of the network state, avoid adjusting
the flow control window size up or down all the time. The same approach can apply to
Jain’s delay-based algorithm.

6. SUMMARY

In a heterogeneous internetworking environment, severe bottleneck points are normal
cases rather than exceptions. Therefore effective congestion avoidance and control
algorithms are needed to prevent the network from congestion collapse (Nagle, 1984). It
seems difficult, however, to implement effective control while maintaining traffic stability
in a large-scale, distributed environment.

By using simulation tools we examined in detail the causes of traffic oscillation in a
simple network setting. Our analysis shows that, first, users’ control actions are highly
synchronized by the network congestion signaling in use (i.e. packet losses); and secondly,
providing users with a binary network state is not adequate and can lead to fluctuating
traffic. Although our analysis is based on the specific congestion control algorithm used
in TCP/IP networks, we believe that this oscillatory traffic phenomenon applies in general
to the design of congestion control algorithms. That is, a selective feedback signal, instead
of a synchronized signal, and quantitative network load information, instead of a simple
congestion signal, should be provided to end users to help properly adjust individuals’
transmission rate.

This is our preliminary step in studying network control dynamics. More research issues
have been identified for future study. First, what kind of quantitative information should
the control algorithm provide? Should it be based on the aggregate traffic or on the
contribution of individual users?® Secondly, who should measure and compute this
quantitative information? Should it be carried out at network switches, at the user end,
or jointly by both sides? What will be the control delay, and what will be its effect in
this context? Moreover, will different service disciplines at switches help stabilize data
traffic? Preliminary simulation results have shown that a fair-queueing service at switches
may help reduce the synchronization among TCP connections, because only packets from
the connections with the largest control window size get dropped (Shenker and Zhang,
work in progress). Our investigation into these issues will be reported in future.

Although we made specific suggestions to improve network stability, it is yet to be
determined to what extent the observed oscillation is due to the specific congestion
control algorithm being used, and to what extent oscillation is an intrinsic phenomenon
in large-scale, distributed systems, and is thus unavoidable.

* Scott Shenker of XEROX PARC has also looked into this question (Shenker, 1990).
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