
A Study of Reservation Dynamics in Integrated Services Packet
Networks

Danny J. Mitzel* Deborah Estrin+
mitzelOcatarina.usc.edu estri nQusc.edu

Abstract
The Integrated Services Packet Network (ISPN)

architecture proposed within the Internel community
[2] incorporates a resource reservation mt:chanism for
those applications requiring Quality of Sorvice (QoS)
guarantees. Resource reservation introduces a new
,form of resource contention that can lea,d t o reduced
network ihroughput and thrashing. We establish sev-
eral necessary conditions to induce thrashzng. We also
ilook at the effects several different reservation models
(and user behaviors can have on network siiability. Our
,work is unique from previous network resource reser-
vation investigations in that we consider Ihe effects of
(reservations for multipoint-to-multipoint ,applications.
We conclude with examples of how simpile modifica-
ilions to user behavior can result in significant increases
ih system stability.

:L Introduction
The Internet, and other similar packet-switched net-

work architectures, offer best-effort service. Best-effort
service requires no admission control and involves no
resource reservation; that is, sources need not notify
the network before transmitting data, and no resources
are set aside for any particular flow. This architecture
has supported a wide variety of data applications, such
i t s remote login (e.g., Telnet), file transfer (e.g., FTP),
and electronic mail, in an extremely efficient manner.

However, there are application requirements that
this service model does not handle efficiently. For
instance, applications like interactive video and voice
cannot tolerate the wide variations in delay and band-
width present in best-effort service. Consequently,
most proposals for Integrated Services]Packet Net-
work (ISPN) architectures - networks designed to
support the full gamut of offered applications - in-
clude some services that require admission control; see
[2, 5, 7, 8, 101 and references therein.

Notice that admission control, or equivalently re-
source reservation, introduces a new form of resource

*Sponsered by a fellowship from Hughes Aircraft Company.
+Sponsored by the Advanced Research Prcljects Agency

(DoD), Computer Systems Technology Officme under Ft.
Huachuca contract #DABT63-91-C-0001, entitled “Gigabit Net-
work Communications Research”. The views anid conclusions
contained in this document are those of the authors and should
riot be interpreted as representing the official policies, either ex-
pressed or implied, of the Advanced Research PrxDjects Agency
or the U.S. Government.

tsponsered in part by the Advanced Research Projects
Agency, monitored by Fort Huachuca under contract DABT63-
914-C-0073. The views expressed here do not reflect the position
oa policy of the U.S. government.

Scott Shenkert Lixia Zhangt
shenkerQparc.xerox.com lixia@cs.ucla.edu

contention for the shared network resources. Previous
work in other domains incorporating resource alloca-
tion (e.g. , database systems) has uncovered phenomena
- usually called thrashing - having great detrimental
effects on overall system performance and throughput.
In this paper we study thrashing in the context of an
ISPN architecture such as that proposed in [2].

This work represents a first study of what we be-
lieve to be an important phenomena; we establish sev-
eral necessary conditions to induce thrashing, including
inter-reservation resource dependencies, and allowable
reservation setup and teardown delays. With reserva-
tions, admission control will deny access if there are not
sufficient unreserved resources available. Once reserva-
tion blocking occurs, the end-user application may ex-

and how reservation requests are requeued. We look at
the effects different user behavior can have on system
performance. We then look at more complex multi-
cast reservations and multipoint-to-multipoint appli-
cations, which have not been studied in previous net-
work reservation setup investigations [l, 141. Finally
we propose end-user/application behavioral character-
istics for reservation request retry backoff which result
in significant improvements in system stability.

We first, in
Section 2 define the model of thrashing we consider
and introduce our intuition as to its cause. Next we
introduce the network model, topologies studied, and
our simulation methodology in Section 3. We then, in
Sections 4 thru 6 evaluate reservation system through-
put using simulations. We begin by establishing the
underlying principles of the thrashing phenomena and
demonstrate its existence using a simple uni-directional
point-to-point reservation model (Section 4). In Sec-
tion 5 we look at the effects of more complex reser-
vations and application styles, and finally at methods
to improve system stability (Section 6). Our current
results represent a simple progression through several
initial thrashing scenarios; it is far from a complete
understanding of the entire network resource reserva-
tion thrashing space. In Section 7 we summarize our
findings from the current scenarios studied, introduce
several additional scenarios currently under investiga-
tion, and outline a number of outstanding issues for
future investigation.

2 Thrashing
Thrashing has been observed in a number of dif-

ferent domains where there is contention for a set of
shared resources [l, 9, 151. Tay [15] showed that, in
databases with a fixed transaction length and total re-
sources, scaling up the resource demand results in an

hibit several different styles of be h avior in regard to if

This paper is organized in 7 parts.

0’743-166W96 $5.00 0 1996 IEEE
7c.l.1

87 1

Authorized licensed use limited to: UCLA Library. Downloaded on August 05,2020 at 19:17:12 UTC from IEEE Xplore. Restrictions apply.

http://mitzelOcatarina.usc.edu
http://nQusc.edu
http://shenkerQparc.xerox.com
mailto:lixia@cs.ucla.edu

initial increase in throughput to a point and then a
steady decrease due to contention. We believe that
this model is most similar to the allocation of hop-by-
hop reservations in the ISPN architecture.

Our rationale as to why thrashing may be exhibited
by the reservation mechanism of the ISPN architecture
is based upon the fact that resources are wasted when
they are reserved but not used, we call these resources
provisional Provisional resources can be accumulated
in several ways: such as during the setup process due to
long end-to-end propagation and admission control de-
lays, or due to long teardown delays after a request has
been blocked or a receiver has completed service. Ac-
cumulation of any provisional resources increases the
system usage level while not contributing to through-
put, and in turn increases the probability of blocking
for other independent reservation requests. In essence,
blocking begets more blocking.

In addition to the accumulation of provisional re-
sources due to initial blocking, we also believe that
circularity in the resource dependencies of indepen-
dent reservations can have a detrimental effect. We
mean, looking at the set of network resources re-

uired to establish a set of n independent reservations
4.1 1 r 2 , ..., r,} then r1 may require resources held by
7-2, r2 may require resources held by r3, ..., r, may re-
quire resources held by r1. This is the familiar circular
wait condition described in the deadlock detection lit-
erature [12], and can in fact lead to deadlock among
the set of reservations involved in the cycle.

Our thesis is that the accumulation of significant
levels of provisional resources can occur, with the effect
of significant throughput degradation as the resource
demand is increased. We follow a strategy of first find-
ing the basic phenomena in simple if perhaps unrealis-
tic settings and then studying its dependence on var-
ious factors. In later sections we show that thrashing
can arise in more realistic, but more complicated, sit-
uations. All results presented rely on reservation tear-
down delay as the primary source of delays introduced
into the system, we have performed some analysis of
the effects of propagation and admission control delays
but much work is left to future research.

3 Network model
In this work we assume an Integrated Services

Packet Network (ISPN) architecture such as that pro-
posed in [2]. Critical components of this architecture
include: (1) a flow specification defining the source
traffic stream and receiver service requirements; (2)
a routing protocol supporting QoS and multicast data
distribution; (3) a reservation protocol to create and
maintain resource reservations; (4) an admission con-
trol algorithm to maintain network load at a proper
level; and (5) a packet service algorithm to schedule
packet transmissions in an order that maintains ser-
vice guarantees for individual data streams.

We consider a reservation to be a uni-directional
point-to-multipoint stream using a source-rooted mul-
ticast distribution tree. Reservation requests are re-
ceiver initiated as in the RSVP reservation protocol
[3, 171, the request is merged with the multicast dis-
tribution tree at the first branch where sufficient re-
sources are already allocated for the requested stream.

We arbitrarily set the amount of bandwidth requested
for each reservation to be the unit bandwidth, that
is each independent reservation consumes one unit of
bandwidth.’ We also arbitrarily select a 60 second
holding time for all successful reservation requests.
The effect of varying the reservation holding time is
to perturb the total network resource demand for a
specific request arrival rate, but this does not affect
whether thrashing occurs.

The underlying building block in our investigations
is the individual resource reservation, however we also
consider more complex scenarios that include multi-
cast data distribution and multipoint-to-multipoint ap-
plications. When discussing these complex scenarios
we often find it useful to refer to the grouping of all
reservations associated with the application. We use
the term session throughout the paper when referring
to a group of related source and receivers and the set
of related individual reservations. In addition, a ses-
sion typically exhibits a specific behavior in regard to
the coordination of establishment of all the component
reservations. We define the details of these behavior
in Section 5 where we consider the session models in
detail.

All simulations reported in this paper were per-
formed using a discrete event simulation package im-
plementing a receiver-initiated soft state reservation
protocol’similar to that specified in 3 . The term
soft-state was first used by Clark in [I 4 and, in our
context, refers to reservation state maintained at each
network switch which is periodically refreshed by end
applications; in the absence of refresh messages, such
as in case of route changes or end host crashes, the
reservation state times out and removes itself. The
soft-state approach can add both adaptivity and ro-
bustness to reservation protocols, however at the added
overhead of periodic refreshing messages. Therefore to
keep the overhead low the refresh period should not
be too short, and the timeout period also needs to be
set accordingly. In our simulation a “teardown” delay
is introduced to model the reservation removal delay.
Explicit reservation teardown requests result in zero
teardown delay; absence of explicit requests leads to a
teardown delay greater than zero seconds.

We consider two distinct classes of network topol-
ogy, cyclic and acyclic. The cyclic network is com-
posed of four switching nodes each connected to two
neighbors, forming a simple square topology. Each of
the interconnection links in the cyclic network is pro-
visioned with sufficient capacity to accommodate 23
simultaneous reservations.’ We assume minimal link
propagation and node processing delays of 1 millisec-
ond each, thus our current work focuses exclusively on
the effects of teardown delays. Source and receivers
were placed at each of the four switching nodes wlth
all reservations being between a source and receiver

lNote that we are using a rather primitive model of reser-
vations, using only bandwidth to describe the reservation. In
practice, the flow specification [11, 161 will likely be somewhat
more complex.

We have also performedpreliminary simulations on networks
with higher degrees of multiplexing and we found similar thrash-
ing behavior.

872
7c.l.2

Authorized licensed use limited to: UCLA Library. Downloaded on August 05,2020 at 19:17:12 UTC from IEEE Xplore. Restrictions apply.

at opposite diagonals of the network, thu,3 all reserva-
tions are of length two hops. For the acyclic network
we consider a binary tree topology of depth four, again
all links have a capacity of 23 simultaneous reserva-
tions. Source and receivers are placed only at the 16
leaf nodes of the tree with reservations between source
and receiver at each pair of leaf nodes, this results in
a mix of 2-, 4-, 6-, and 8-hop paths.

When studying a single network and h,omogeneous
reservations the resource demand can be quantified by
{session arrival rate alone. In this study we look at
multiple network topologies, heterogeneous numbers
of sessions and path lengths, multipoint-to-multipoint
sessions and multicast distribution trees. Assuming all
reservation requests are for the unit bandmidth, we can
calculate a normalized loading metric for the network
as the product of the session arrival rate and the num-
lber of link reservations required to successfully allocate
the session distribution mesh. Calculating the normal-
iized load for a specific simulation scenario results in
an estimate of the average number of new link reser-
vation requests injected into the network per unit of
time. We use the normalized load measure throughput
this paper when contrasting results that are dependent
on network loading level.

The normalized loading metric tells us that for a
llarger session size fewer arrivals are required to main-
tain a fixed loading level, for this reason we scale the
llength of our simulation runs for scenarioti with larger
session sizes. All of our simulation runs are for 10,000,
'20,000, or 40,000 simulated seconds depending on the
session size. We found these simulation 1t:ngths to be
~wfficient to ensure consistent simulation results. When
reporting any results we discard the data from the first
lhalf of the simulation run and calculate all statistics
from the data following the warmup period.

4 Point-to-point reservations
The basic reservation model of the ISPN architec-

ture is that of a uni-directional point-to-multipoint
stream. However, we begin our investigation by look-
ing at the simplest case, that of uni-direclional point-
to-point reservations. When a reservation request is
blocked the end-user/application does not attempt to
requeue the request; that is, there are nc reservation
request retry attempted.

Our intuition tells us that in a system with acyclic
ordering of resources there should be a guaranteed level
of successes; as resource demand is increased we expect
system throughput to be strictly non-decreasing, and
if throughput asymptotes we expect the value to be
non-zero. We believe that in order to obtain depen-
dencies among independent reservations that lead to
thrashing requires a circularity in the resource depen-
dencies of the individual reservations. Note that un-
der the simple uni-directional point-to-point reserva-
tion model this circularity in inter-reservation resource
dependencies can occur only if the network itself con-
tains cycles.3

We note that in fact in the real world most topologies are
likely to contain cycles to avoid the single point of failure prob-
lems of a purely acyclic network, however the cyclic resource
dependency may still be rare although the possibility is always

0 1 2 3 4 5 6
Network Load (link reservation requests Is)

7 8

Figure 1: Number of successful reservation requests on
the square topology for mi-directional point-to-point
reservations.

14000 , I

0 5 10 15 20 25 30 35 40
Network Loadl (li "vatinn requests I s)

Figure 2: Number of successful reservation requests on
the binary tree topology for uni-directional point-to-
point reservations.

Figure 1 and Figure 2 present the number of suc-
cessful reservation requests for simulations of the uni-
directional point-to-point reservations on the square
and binary tree topologies. The larger size and capac-
ity of the binary tree topology required much higher
loading to induce blocking, however the important dis-
tinction is in the different shapes of the plots in the two
figures. We see that as predicted the cyclic resource
dependencies introduced by the cyclic topology can re-
sult in a decline in network throughput as the load
is increased, while the acyclic topology always shows
increasing throughput.

The results in Figure 1 do establish that the thrash-
ing phenomena can occur within the simple uni-
directional point-to-point reservation scenario inves-
tigated, however the degradation was only observed
for extremely long delays and network overload. For
systems within reasonable operational ranges it seems

there.

7c.l.3
873

Authorized licensed use limited to: UCLA Library. Downloaded on August 05,2020 at 19:17:12 UTC from IEEE Xplore. Restrictions apply.

quite stable. One situation where these long delays
may actually be encountered is within a soft state pro-
tocol that requires large timer values to control proto-
col overhead. The lesson to be learned here is that a
soft state mechanism should not rely on timers alone,
explicit messages should be incorporated to effect state
changes. Soft state timers should only be relied upon
to maintain consistency in exceptional cases such as
when messages are lost or systems crash. We note that
in fact the RSVP soft state reservation protocol does
employ this model with explicit teardown messages.
4.1 Point-to-point reservations with

In the simple reservation scenario explored in Sec-
tion 4 we noted that whenever a reservation request
was blocked no further action was taken by the end-
user/application. An extension to this scenario is to
recognize that a common mode of operation might
be for the end-user/application to retry its reserva-
tion setup request after a short delay in the hope that
network conditions have changed in the interim. In
this section we investigate the effect of adding reser-
vation request retries to the uni-directional point-to-
point reservation model. We arbitrarily selected a
reservation request retry interval of one second.*

We assume that each reservation request retry at-
tempts to build upon the provisional resource alloca-
tion obtained during earlier requests if the reservation
is still in place; this leads to two distinct regions of
operation. Whenever the teardown delay is greater
than the reservation request retry interval, each retry
can build upon the previously established partial path
reservation. If the teardown delay is less than the retry
interval, then the provisional resources have already
timed out and each new request must once again con-
tend for resources along every link in the end-to-end
path.

Figure 3 presents the number of successful reserva-
tion requests for simulations on the square topology
for uni-directional point-to-point reservations with a
one second reservation request retry interval. It might
seem logical that the performance in the region where
retries attempt to build upon earlier provisional alloca-
tions (i.e., the teardown delay is greater than the retry
interval) would be superior to that of the region where
each request must contend for new resources at every
link, however this is obviously not true. The problem
with attempting to build upon the earlier partial path
reservation is that once a sufficient blocking level is
reached every retry continues to block and the provi-
sional allocation is held forever. Thus we see that sys-
tem performance for all teardown delays greater than
the retry interval is exactly identical, the entire sys-
tem deadlocks and throughput immediately drops to
zero. Note that because the allowable teardown delay
is directly dependent on the retry interval, system in-
stability can be induced for arbitrarily small teardown
delays by aggressive end-users/applications.

blocked reservation retry

4The effect of the selection of the reservation request retry
interval is shown to partition the system performance into two
distinct operational regions, however it does not affect our re-
sults in terms of whether the network can be made to exhibit
thrashing.

Network
Load

0.7

0.5 1 1.5 2 2.5 3 3.5 4
Network Load (fink resemation requests / s)

Figure 3: Number of successful reservation requests on
the square topology for uni-directional point-to-point
reservations with a one second reservation request retry
interval.

Total Blocked S uccessful
Requests Requests Requests

1725 0 1725

Network
Load

4

1636 0 I 43929 I 54?4ti I I1 577949

Total Blocked S uccessful
Requests Requests Requests

1528 0 1528

Table 1: Summary of reservation success and failures
on the square topology for uni-directional point-to-
point reservations with a one second reservation re-
quest retry interval and 60 second teardown delay.

5
6

For the operational region where earlier provisional
allocations are released the deadlock condition can be
avoided. We observe for teardown delays only slightly
less than the retry interval thrashing can still occur,
while smaller delays result in strictly non-decreasing
throughput. This transition from thrashing to non-
decreasing throughput is dependent on a number of
factors including network topology, capacity and de-
lays, and resource demands. We have not completely
modeled this transition phenomena at the present time.

Table 1 and Table 2 summarize the total numbers
of reservation request success and failure on the square
and binary tree topologies for uni-directional point-to-
point reservations with a one second reservation re-
quest retry interval and 60 second teardown delay.
We see that the total reservation requests behavior is
similar under both network topologies. As the net-

6057 4146 1911
163105 161007 2098

Table 2: Summary of reservation success and failures
on the binary tree topology for mi-directional point-
to-point reservations with a one second reservation re-
quest retry interval and 60 second teardown delay.

7c.l.4
874

Authorized licensed use limited to: UCLA Library. Downloaded on August 05,2020 at 19:17:12 UTC from IEEE Xplore. Restrictions apply.

2200

24"

1800

1600

1400

lux)

la00

800

600

400

c
_+-__

.e....
*- -

1 2 3 4 5 6 7
Network Load (li reservation requests Is)

Figure 4: Number of successful reservation requests
on the binary tree topology for uni-directional point-
to-point reservations with a one second reservation re-
quest retry interval.

work load is increased and blocking begirts to occur
the total number of reservation requests irjected into
the system begins to increase exponentially. Figure 4
presents the number of successful reservation requests
for simulations on the binary tree topology for uni-
directional point-to-point reservations with a one sec-
ond reservation request retry interval. Nobe that even
with the much greater reservation request rate intro-
duced by the retry policy, the system throughput is still
n'on-decreasing . These binary tree results differ sig-
nificantly from the throughput performance observed
for the cyclic topology (see Figure 3) where thrash-
ing was observed as the network load increased. This
further re-enforces our initial intuition that the inter-
reservation resource dependency circularity is a neces-
sary condition to induce thrashing.

5 Multipoint session models
In Section 4 we looked at scenarios where each

source and receiver represented an independent uni-
directional point-to-point reservation. 111 fact, the
ISPN reservation model directly supports more com-
plex point-to-multipoint reservations associated with
multicast data distribution. Additionally we believe
tlhat multipoint-to-multipoint applications may be-
come quite common and these may require coordina-
tiion in establishment of multiple reservations. We call
the set of source and receivers composing a multipoint-
to-multipoint application a sessaon and assume the ex-
istence of a session controller element which applies
specific policies to the coordinated resource reservation
rleq~ests.~

In the remainder of this section we look at the ef-
fects of the session model on the reservalion system

5Note that the multipoint application and session controller
irisues are actually independent. One could theoretically imagine
a point-to-multipoint application with a session controller that
nequired all end-points to succeed; however, such applications
appear to be less common.

0--
0 1 2 3 4 5 6 7 8 9 1 0 1 1

Netwnrk Load (link reservation requests / s)

Figure 5: Number of successful session reservation re-
quests on the binary tree topology for 2-way sessions
with a one second reservation request retry interval and
retry-all-receivers session retry policy.

performance. We assume an N-way conferencing ses-
sion model with a session controller that requires all
reservation requests to succeed before session estab-
lishment is completed. We believe this model is most
appropriate in capturing the effects of small video tele-
conferencing sessions.6 We will quantify the effects of
the more complex resource dependencies inherent in
the session model and the effects of increased session
sizes.
5.1 Bi-directional session model

The simplest extension to the reservation model is to
pair two uni-directional point-to-point reservations to
form a bi-directional session. That is, if there is a reser-
vation requested from A to B then there must also be
a reservation requested froim B to A and both requests
must successfully complete for the session to be estab-
lished. This session model is likely to be quite common
(e.g., telephone conversations). Note the major impli-
cation inherent in this simple session model extension,
now for any two independent sessions traversing a link
there is an inter-session resource dependency circular-
ity. Our conjecture is that thrashing is now possible
even on the acyclic network topology.

Figure 5 presents the number of successful session
reservation requests on the binary tree topology for
2-way sessions with a one second reservation request
retry interval. We assume that when a session is
blocked and provisional resources are to be released
(i.e., the teardown delay is less than the retry interval)
that the session controller causes both end-points of the
session to simultaneously release their provisional allo-
cations. System performance is now similar to that ob-
served earlier in Figure 3 €or the uni-directional point-
to-point reservations on the cyclic topology. The ses-
sion model has introduced resource dependency circu-

6We recognize that there are other classes of applications,
particularly ones with very large membership, that do not have
this strict model of success. Analysis of these session models is
another area for future investigation.

7c.l.5
875

Authorized licensed use limited to: UCLA Library. Downloaded on August 05,2020 at 19:17:12 UTC from IEEE Xplore. Restrictions apply.

Network 2-way
Load Session

1 0.00
5 0.00

10 0.13

4-way 8-way
Session Session

0.00 0.01
0.07 0.17
0.32 0.42

Table 3: Blocking probability for various N-way session
sizes on the binary tree topology for no blocked reser-
vation retry and immediate blocked reservation tear-
down.

15
20

larities, which in turn induces thrashing and system
deadlock for teardown delays greater than the retry
interval. This is quite significant in the fact that with
the introduction of the session model it is now possible
to induce thrashing on any network topology, not just
those with physical cycles.
5.2 Scaling session size

The simplest session model, as presented in Sec-
tion 5.1, is the combination of two uni-directional
point-to-point reservations to form a bi-directional ses-
sion, however we expect larger N-way sessions to be
quite common too. A consequence of these larger ses-
sion models is that each source must now establish a
multicast distribution tree to each of the other (N - 1)
session members, and N of these reservations must
be obtained before session establishment is completed.
Even with the increased efficiency in multicast distri-
bution over multiple point-to-point connections, the ef-
fect of the larger session sizes is to greatly increase the
total number of link reservations required for session
establishment. For example, for all combinations of 2-
way sessions on the binary tree topology we find that
the average number of link reservations required for
session establishment is 13, for 4-way sessions this in-
creases to 54, and for %way sessions 172 link reserva-
tions are required.

The net effect of larger session sizes is that each
session arrival: 1) represents a larger independent re-
source demand and 2) involves many more admission
control decisions, failure of any one can result in block-
ing of the entire session. For these reasons we believe
that as the session size is increased the probability of
session blocking will also increase for a fixed network
loading level. Table 3 shows the blocking probabil-
ity for various N-way session sizes on the binary tree
topology when there are no blocked reservation retry
attempts and immediate blocked reservation teardown.
As expected, the blocking probability is significantly
increased for fixed load level as the session size is in-
creased.

In the remainder of this section we look at the ef-
fects on system performance of this higher blocking
probability for larger sessions.

0.27 0.51 0.59
0.38 0.60 0.65

5.2.1 Retry-all-receivers session retry policy

As noted in Section 5.1 during simulation of the 2-
way sessions, one possible session retry policy is for
the session controller to force all receivers to simul-

Tree
Depth

1
2
3
4

0' \ . . i
1 2 3 4 5 6 I

Network Load (link reservation quests / s)

Figure 6: Number of successful session reservation re-
quests on the binary tree topology for 4-way sessions
with a one second reservation request retry interval and
retry-all-receivers session retry policy.

2-way 4-way &way
Session Session Session

0.16 0.00

0.33 0.61 0.72
0.06 0.19 0.21

0.45 0.20 E

taneously release their provisional resource allocations
after a session block. We call this session retry policy
retry-&receivers since the retry policy applies to all
session receivers independent of whether their individ-
ual requests succeeded.

Figure 6 presents the number of successful session
reservation requests on the binary tree topology for
4way sessions with a one second reservation request
retry interval and retry-all-receivers session retry pol-
icy. We see that the shape of the plots are similar to
those observed for the 2-way sessions in Figure 5, that
is both 0.95 and 1 second teardown induce thrashing
while the smaller teardown delays do not. However,
note the effect of the higher blocking probabilities in
the 4way sessions, the onset point for thrashing has
been significantly reduced. For a one second teardown
delay we see that the maximum network loading has
been reduced from a load level of 8 down to a load level
of 4.

An interesting observation was discovered after his-
togramming the tree depths at which blocking was oc-
curring. As the session size is increased the total num-
ber of flows traversing the network backbone links sig-
nificantly increases. This would lead one to believe
that in a homogeneous network, such a.s the one we
simulated, the backbone becomes more of a bottleneck
as the session size is increased. Further, one might as-

7c.l.6
876

Authorized licensed use limited to: UCLA Library. Downloaded on August 05,2020 at 19:17:12 UTC from IEEE Xplore. Restrictions apply.

siume that scaling the capacity of links closer to the
backbone would be beneficial in maintainling uniform
utilization levels throughout the network. In fact, we
found that the opposite is true. Table 4 shows the per-
centage of session reservation requests blocked at the
various tree depth levels (level 1 is at the root of the
tree while larger values of tree depth are iowards the
leaves) for different N-way session sizes at 1,he network
loading level that induced thrashing. We see that as
tlhe session size is increased each receiver requests a
larger aggregate reservation on its local access links,
pushing the bottleneck and associated blocking out to-
wards the leaves, and thereby reducing blocking on the
backbone links.

5.2.2 Retry-blocked-receivers session retry

A m alternative to the retry-all-receivers srssion retry
policy investigated in Section 5.2.1 is to incorporate
a session controller that coordinates reservation retry
for only those session receivers that had their previ-
ous reservation request blocked, all successful receivers
maintain their resource allocations while waiting for
the other receivers to complete session establishment.
We call this session retry policy retry-blocked-receivers.
The retry-blocked-receivers session retry policy might
appear beneficial to developers of multipoint applica-
tions because, as we noted earlier, as the session size
iincreases it becomes much more difficult to establish
a complete session as a single request. Retxy-blocked-
receivers eliminates the need for all session receivers to
re-contend for resources for every retry request, while
incrementally adlding receivers to complete session es-
tablishment.

Figure 7 preslents the number of successful session
reservation requests on the binary tree topology for
%way sessions with a one second reservation request
retry interval and retry-blocked-receivers session retry
policy. Although the retry-blocked-receivers session
retry policy intuitively seemed better suited to estab-
lishing multipoint sessions than the retry-all-receivers
policy, we see this is not true. Similar to the effect ob-
served in the uni-directional point-to-point retry model
(see Section 4.1) where teardown delays greater than
the retry interval1 led to system deadlock, we see that
the effect of successful receivers holding onto their re-
source allocations is to significantly increase the level
of provisional resources, resulting in further system
degradation. In fact, now we see that even if there are
no delays in blocked reservation teardown For those re-
ceivers performing retries, the system deadlocks. The
exact same effects were observed in the 4- and $-way
session simulations with the incorporation of the retry-
blocked-receivers session retry policy.

The performance results presented in Figure 7 show
that the retry-blocked-receivers session resry policy is
very detrimental to the network. However, the retry-
blocked-receivers session retry policy is veiry beneficial
t,o the individual sessions that adopt it. The incremen-
tal addition of session receivers always results in fewer
retries, and theirefore lower session establishment de-
1 ays, than retry- all-receivers.

policy

2
8
2
4
E
Y

.$

I

a-

Lr:
e

8
v)

Y
v)

3500

3000

2500

2000

1500

10Oo

500

0
0 2 4 6 8 10 I2 14

Network Lnd (link reservation requests Is)

Figure 7: Number of successful session reservation re-
quests on the binary tree topology for 2-way sessions
with a one second reservation request retry interval and
retry-blocked-receivers session retry policy.

2000 ' I
0 1 2 3 4 5 6 7

Network Load (link reservation requests / s)

Figure 8: Number of successful reservation requests on
the square topology with uni-directional point-to-point
reservations with exponential retry backoff.

6 Reservation retry backoff
In the previous sections we have seen that reserva-

tion thrashing can occur due to the backlog of users
retrying their reservation requests. Previous work on
arbitrating access to shared resources (e.g., Ethernet
CSMA/CD, TCP congestion control) has shown an ex-
ponential retry backoff policy to be highly effective in
improving system stability.

In this section we investigate the effects on reserva-
tion system stability when an exponential retry backoff
policy is added to the reservation retry scenarios ex-
plored in earlier sections. Our model for incorporating
exponential reservation retry backoff is to assume a set
of cooperating end-applications each of which doubles
its retry interval timer each time a blocked reservation
request indication is received.

7c.l.7
877

Authorized licensed use limited to: UCLA Library. Downloaded on August 05,2020 at 19:17:12 UTC from IEEE Xplore. Restrictions apply.

m , t 7.-

3500

3000

2500

2000

1500

loo0

500

-

-

-
-

-

-

-

n l I
n 2 4 6 8 in 12

Network Load (link reservation requests I s)

Figure 9: Number of successful session reservation re-
quests on the binary tree topology for 2-way sessions
with exponential retry backoff and retry-all-receivers
session retry policy.

6.1 Unidirectional point-to-point reserva-

Figure 8 presents the number of successful reserva-
tion requests for simulations on the square topology
with uni-directional point-to-point reservations and
the exponential retry backoff. Comparing the results
to those found earlier for the similar scenario with fixed
retry interval (see Figure 3) we see that the retry in-
terval backoff has a dramatic effect on improving sys-
tem stability. With the retry backoff in place, once
a reservation request begins to block the retry inter-
val is quickly pushed to a level greater than the tear-
down delay, thus eliminating the deadlock problem. In-
terestingly, measurements of the average setup delays
showed both scenarios to be nearly equivalent. The
total number of reservation request retries was signifi-
cantly lower with the backoff, however the exponential
increase in retry interval resulted in virtually identical
elapsed times.
6.2 Session reservations with exponential

Figure 9 presents the number of successful session
reservation requests for simulations of the binary tree
topology with 2-way sessions, the exponential retry
backoff and retry-all-receivers. Once again when com-
pared to the earlier results for the similar scenario with
fixed retry interval (see Figure 5) we see a substantial
improvement in system stability. Throughput is now
strictly non-decreasing even for very long teardown de-
lays. In fact, for reasonable teardown delays (e.g., less
than 1 second) we see that throughput is almost iden-
tical to the immediate teardown case in Figure 5. We
also saw similar results for the larger session sizes.

Figure 10 presents the number of successful session
reservation requests for simulations of the binary tree
topology with 2-way sessions, the exponential retry
backoff and retry-blocked-receivers. We see that in
this case the exponential retry interval backoff is in-
sufficient to stabilize the system. The problem here is

tions with exponential retry backoff

retry backoff

Teardown=Os -

0' I
n 2 4 6 8 in 12

Network Load (link reservation requests Is)

Figure 10: Number of successful session reservation
requests on the binary tree topology for 2-way ses-
sions with exponential retry backoff and retry-blocked-
receivers session retry policy.

that the backoff policy is only applied to those receivers
performing retries. Once a receiver has successfully ob-
tained its reservation request it continues to consume
resources while any remaining session members are still
attempting to obtain their requested reservations. This
accumulation of provisional resources is sufficient to in-
terfere with the requests of additional session arrivals.

7 Summary
We wish to stress once again that the current re-

sults presented are just an initial study. However, we
think that our simple progression of reservation sce-
narios uncovers a number or interesting dynamics in-
troduced into the ISPN architecture by resource reser-
vations and multipoint applications.

Our earliest results establish that even the simplest
reservation scenarios with no blocked reservation re-
tries can exhibit throughput degradation. Because of
the excessively long delays required this result most
likely pertains only to those developers of soft state
protocols, who should heed the advice to incorporate
explicit state change messages. We also found that
the larger resource demand and number of admission
control decisions as N-way conference session size is
increased results in significant decreases in maximum
throughput.

The primary findings of our study is related to the
effects the end-user/application behavior can exert on
the network stability. It is reasonable that an appli-
cation be allowed to retry its reservation request af-
ter a failure, however we found that the retry inter-
val selected has a direct influence on the allowable
delays before entering the thrashing region. Aggres-
sive applications can induce thrashing in a system
with arbitrarily fast reservation setup and teardown.
The retry-blocked-receivers session retry policy pro-
vides another example of a behavior that is advanta-
geous to an application but quite detrimental to the
network. We showed that retry-blocked-receivers also
induced thrashing for arbitrarily small delays.

7c.l.8
878

Authorized licensed use limited to: UCLA Library. Downloaded on August 05,2020 at 19:17:12 UTC from IEEE Xplore. Restrictions apply.

We assumed an environment with cooperative appli-
czrtions employing an exponential reservation request
retry backoff and found significant improvement. Ex-
ponential backoff resulted in improved system stabil-
it,y, maximized throughput, and setup delays consis-
tent with the nom-backoff scenario. We did find that
the exponential backoff was not sufficient to overcome
the negative effects of every possible user behavior, the
retry-blocked-receivers still showed significant degra-
diition.

We see a number of directions in which. this work
can be extended to expand our understanding of the
subject. A few of the topics we are considering for
future investigation include:

In the current work all significant delays are at-
tributed to the teardown delay. In large net-
works end-to-end propagation and admission con-
trol may also introduce significant delays. We
would like to quantify the effects these other delays
have on network throughput. We have looked at
several scenarios exhibiting significant reductions
in throughput, but no deadlock. Are there scenar-
ios that lead to thrashing?

We were surprised by earlier results showing very
similar performance for the 4- and 8-way session
models. We believe this may be an artifact of the
dense distribution of session members across the
16 leaf nodes in the current network. We plan to
look at larger networks with more sparse member-
ship distributions to see if this differentiates the
performance of the session models. We also recog-
nize that the N-way success session model does not
scale to very large groups, and there are many ap-
plications that require only a subset of members
to succeed. We would like to investigate the ef-
fects of further scaling session size and the partial
success model.

Provided the retry-blocked-receivers session retry
policy is beneficial from an applications point of
view, it may be useful to consider a hybrid retry
policy incorporating both the exponential backoff
and a session idle threshold. Under this scheme af-
ter a specified number of failed reservation request
retry attempts, all session receivers would initiate
retry in an attempt to preempt any deadlock con-
ditions. What is the effect of this hyhid scheme
on system stability, throughput, and session setup
duration?

We have investigated the problem of thrashing from
a technical perspective; however, there is an important
underlying incentive issue. If we were looking at this as
a unified design problem, where we could design the be-
havior of end users ag well as the network, then there is
little question that we could easily prevent thrashing.
When sessions use the retry-all-receivers policy, and
the retry interval is significantly longer than the tear-
down delay, we never observed thrashing. The problem
is that sessions can determine their own sttssion retry
policy, and own retry timing, and these decisions need
not be taken with the overall health of the network in
mind. The retry-blocked-receivers session ~e t ry policy

yields lower delays for the individual sessions adopting
it. Reducing the retry interval also lowers delays. The
result of each session optimizing its own performance
is to send the network into a thrashing state. The ul-
timate question, therefore, is whether it's possible for
the network to actually proscribe specific user behavior
by employing incentive mechanisms, or by isolating in-
dividual sessions from each other similar to that done
by Fair Queueing [6J for transport data streams.

References
J. Akinpelu. The Overload Performance of Engineered
Networks With Nonhierarchical and Hierarchical Routing,
In AT&T Bell Labs Tech. Journal, Vol. 63, No. 7,1984.

R. Braden, el al. Integrated Services in the Intemet Archi-
tecture: an Overview, In RFC-1633, June 1994.

R. Braden, et al. Resource Reservation Protocol (RSVP)
- Version 1 Functional Specification, In Internet Draft
draft-ietf-rsvp-spec-08.txt, Nov. 1995.

D. Clark. The Design Phdosophy of the DARPA Internet
Protocols, In Proceedings of ACM SIGCOMM '88.

D. Clark, S . Shenker, and L. Zhang. Supporting Real-
Time Applications in an Integrated Services Packet Net-
work: Architecture and Mechanism, In Proceedings of

A. Demers, S . Keshav, and S . Shenker. Analysis and Sim-
ulation of a Fair Queueing Algorithm, In Internetwork-
ing: Research and Experience, Vol. 1, pp. 3-26,1990.

D. Ferrari and D. Verma. A Scheme for Real-Time Chan-
nel Establishment in Wide-Area Networks, In IEEE
JSAC, Vol. 8, No. 3, pp. 368-379, April 1990.

J. Hyman, A. Lazar, and G . Pacifici. Real-Time Scheduling
with Quality of Service Canstraints, In IEEE JSAC, Vol.
9, No. 9, pp. 1052-1063, September 1991.

M. Maehwa, et al.
Concepts, Benjamin/Cdngs, pg. 139,1987.

A. Parekh. A Generalized Processor Sharing Approach to
Flow Control in Integrated Services Networks, In Techni-
cal Report LIDS-TR-2089, MIT, 1992.

C. Partridge. A Proposed Flow Specification, In Internet
Request for Comments, RFC-1363, September 1992.

J. Peterson and A. Silberschatz. Operating System
Concepts, Addison-Wesley, pg. 261, 1983.

S . Shenker, D. Clark, and L. Zhang. A Scheduling Service
Model and a Scheduling Architecture f o r an Integrated Ser-
vices Packet Network, preprint, 1993.

S . Sibal, and A. DeSimone. Controlling Alternate Routing
in General-Mesh Packet Flow Networks, In Proceedings
of ACM SIGCOMM '94, pp. 168-179, October 1994.

Y.C. Tay. Locking Performance in Centralized
Databases, 1987.

C. Topolcic. Experimental Internet Stream Protocol: ver-
sion 2 (ST-II), In RFC-1190, October 1990.

L. Zhang, S . Deering, D. Estrin, S . Shenker, and D. Zap-
pala. RSVP: A New Resource Reservation PTOtOCOl, In
IEEE Network Magazine, September 1993.

SIGCOMM '92, pp. 14-26, 1992.

Operating Systems Advanced

7c.l.9
879

Authorized licensed use limited to: UCLA Library. Downloaded on August 05,2020 at 19:17:12 UTC from IEEE Xplore. Restrictions apply.

