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Abstract 
The Integrated Services Packet Network (ISPN) 

architecture proposed within the Internel community 
[2] incorporates a resource reservation mt:chanism for  
those applications requiring Quality of Sorvice (QoS) 
guarantees. Resource reservation introduces a new 
,form of resource contention that can lea,d t o  reduced 
network ihroughput and thrashing. We establish sev- 
eral necessary conditions to  induce thrashzng. We also 
ilook at the effects several different reservation models 
(and user behaviors can have on network siiability. Our 
,work is  unique from previous network resource reser- 
vation investigations in that we consider Ihe effects of 
(reservations for  multipoint-to-multipoint ,applications. 
We conclude with examples of how simpile modifica- 
ilions to  user behavior can result in significant increases 
ih system stability. 

:L Introduction 
The Internet, and other similar packet-switched net- 

work architectures, offer best-effort service. Best-effort 
service requires no admission control and involves no 
resource reservation; that is, sources need not notify 
the network before transmitting data, and no resources 
are set aside for any particular flow. This architecture 
has supported a wide variety of data applications, such 
i t s  remote login (e.g., Telnet), file transfer (e.g., FTP), 
and electronic mail, in an extremely efficient manner. 

However, there are application requirements that 
this service model does not handle efficiently. For 
instance, applications like interactive video and voice 
cannot tolerate the wide variations in delay and band- 
width present in best-effort service. Consequently, 
most proposals for Integrated Services ]Packet Net- 
work (ISPN) architectures - networks designed to 
support the full gamut of offered applications - in- 
clude some services that require admission control; see 
[2, 5, 7, 8, 101 and references therein. 

Notice that admission control, or equivalently re- 
source reservation, introduces a new form of resource 

*Sponsered by a fellowship from Hughes Aircraft Company. 
+Sponsored by the Advanced Research Prcljects Agency 

(DoD), Computer Systems Technology Officme under Ft. 
Huachuca contract #DABT63-91-C-0001, entitled “Gigabit Net- 
work Communications Research”. The views anid conclusions 
contained in this document are those of the authors and should 
riot be interpreted as representing the official policies, either ex- 
pressed or implied, of the Advanced Research PrxDjects Agency 
or the U.S. Government. 

tsponsered in part by the Advanced Research Projects 
Agency, monitored by Fort Huachuca under contract DABT63- 
914-C-0073. The views expressed here do not reflect the position 
oa  policy of the U.S. government. 

Scott Shenkert Lixia Zhangt 
shenkerQparc.xerox.com lixia@cs.ucla.edu 

contention for the shared network resources. Previous 
work in other domains incorporating resource alloca- 
tion (e.g. , database systems) has uncovered phenomena 
- usually called thrashing - having great detrimental 
effects on overall system performance and throughput. 
In this paper we study thrashing in the context of an 
ISPN architecture such as that proposed in [2]. 

This work represents a first study of what we be- 
lieve to be an important phenomena; we establish sev- 
eral necessary conditions to induce thrashing, including 
inter-reservation resource dependencies, and allowable 
reservation setup and teardown delays. With reserva- 
tions, admission control will deny access if there are not 
sufficient unreserved resources available. Once reserva- 
tion blocking occurs, the end-user application may ex- 

and how reservation requests are requeued. We look at 
the effects different user behavior can have on system 
performance. We then look at more complex multi- 
cast reservations and multipoint-to-multipoint appli- 
cations, which have not been studied in previous net- 
work reservation setup investigations [l, 141. Finally 
we propose end-user/application behavioral character- 
istics for reservation request retry backoff which result 
in significant improvements in system stability. 

We first, in 
Section 2 define the model of thrashing we consider 
and introduce our intuition as to its cause. Next we 
introduce the network model, topologies studied, and 
our simulation methodology in Section 3. We then, in 
Sections 4 thru 6 evaluate reservation system through- 
put using simulations. We begin by establishing the 
underlying principles of the thrashing phenomena and 
demonstrate its existence using a simple uni-directional 
point-to-point reservation model (Section 4). In Sec- 
tion 5 we look at the effects of more complex reser- 
vations and application styles, and finally at methods 
to improve system stability (Section 6). Our current 
results represent a simple progression through several 
initial thrashing scenarios; it is far from a complete 
understanding of the entire network resource reserva- 
tion thrashing space. In Section 7 we summarize our 
findings from the current scenarios studied, introduce 
several additional scenarios currently under investiga- 
tion, and outline a number of outstanding issues for 
future investigation. 

2 Thrashing 
Thrashing has been observed in a number of dif- 

ferent domains where there is contention for a set of 
shared resources [l, 9, 151. Tay [15] showed that, in 
databases with a fixed transaction length and total re- 
sources, scaling up the resource demand results in an 

hibit several different styles of be h avior in regard to if 
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initial increase in throughput to a point and then a 
steady decrease due to contention. We believe that 
this model is most similar to the allocation of hop-by- 
hop reservations in the ISPN architecture. 

Our rationale as to why thrashing may be exhibited 
by the reservation mechanism of the ISPN architecture 
is based upon the fact that resources are wasted when 
they are reserved but not used, we call these resources 
provisional Provisional resources can be accumulated 
in several ways: such as during the setup process due to 
long end-to-end propagation and admission control de- 
lays, or due to long teardown delays after a request has 
been blocked or a receiver has completed service. Ac- 
cumulation of any provisional resources increases the 
system usage level while not contributing to through- 
put, and in turn increases the probability of blocking 
for other independent reservation requests. In essence, 
blocking begets more blocking. 

In addition to the accumulation of provisional re- 
sources due to initial blocking, we also believe that 
circularity in the resource dependencies of indepen- 
dent reservations can have a detrimental effect. We 
mean, looking at the set of network resources re- 

uired to establish a set of n independent reservations 
4.1 1 r 2  , ..., r,} then r1 may require resources held by 
7-2, r2 may require resources held by r3, ..., r, may re- 
quire resources held by r1. This is the familiar circular 
wait condition described in the deadlock detection lit- 
erature [12], and can in fact lead to deadlock among 
the set of reservations involved in the cycle. 

Our thesis is that the accumulation of significant 
levels of provisional resources can occur, with the effect 
of significant throughput degradation as the resource 
demand is increased. We follow a strategy of first find- 
ing the basic phenomena in simple if perhaps unrealis- 
tic settings and then studying its dependence on var- 
ious factors. In later sections we show that thrashing 
can arise in more realistic, but more complicated, sit- 
uations. All results presented rely on reservation tear- 
down delay as the primary source of delays introduced 
into the system, we have performed some analysis of 
the effects of propagation and admission control delays 
but much work is left to future research. 

3 Network model 
In this work we assume an Integrated Services 

Packet Network (ISPN) architecture such as that pro- 
posed in [2]. Critical components of this architecture 
include: (1) a flow specification defining the source 
traffic stream and receiver service requirements; (2) 
a routing protocol supporting QoS and multicast data 
distribution; (3) a reservation protocol to create and 
maintain resource reservations; (4) an admission con- 
trol algorithm to maintain network load at a proper 
level; and (5) a packet service algorithm to schedule 
packet transmissions in an order that maintains ser- 
vice guarantees for individual data streams. 

We consider a reservation to be a uni-directional 
point-to-multipoint stream using a source-rooted mul- 
ticast distribution tree. Reservation requests are re- 
ceiver initiated as in the RSVP reservation protocol 
[3, 171, the request is merged with the multicast dis- 
tribution tree at the first branch where sufficient re- 
sources are already allocated for the requested stream. 

We arbitrarily set the amount of bandwidth requested 
for each reservation to be the unit bandwidth, that 
is each independent reservation consumes one unit of 
bandwidth.’ We also arbitrarily select a 60 second 
holding time for all successful reservation requests. 
The effect of varying the reservation holding time is 
to perturb the total network resource demand for a 
specific request arrival rate, but this does not affect 
whether thrashing occurs. 

The underlying building block in our investigations 
is the individual resource reservation, however we also 
consider more complex scenarios that include multi- 
cast data distribution and multipoint-to-multipoint ap- 
plications. When discussing these complex scenarios 
we often find it useful to refer to the grouping of all 
reservations associated with the application. We use 
the term session throughout the paper when referring 
to a group of related source and receivers and the set 
of related individual reservations. In addition, a ses- 
sion typically exhibits a specific behavior in regard to 
the coordination of establishment of all the component 
reservations. We define the details of these behavior 
in Section 5 where we consider the session models in 
detail. 

All simulations reported in this paper were per- 
formed using a discrete event simulation package im- 
plementing a receiver-initiated soft state reservation 
protocol’similar to that specified in 3 . The term 
soft-state was first used by Clark in [ I  4 and, in our 
context, refers to reservation state maintained at each 
network switch which is periodically refreshed by end 
applications; in the absence of refresh messages, such 
as in case of route changes or end host crashes, the 
reservation state times out and removes itself. The 
soft-state approach can add both adaptivity and ro- 
bustness to reservation protocols, however at the added 
overhead of periodic refreshing messages. Therefore to 
keep the overhead low the refresh period should not 
be too short, and the timeout period also needs to be 
set accordingly. In our simulation a “teardown” delay 
is introduced to model the reservation removal delay. 
Explicit reservation teardown requests result in zero 
teardown delay; absence of explicit requests leads to a 
teardown delay greater than zero seconds. 

We consider two distinct classes of network topol- 
ogy, cyclic and acyclic. The cyclic network is com- 
posed of four switching nodes each connected to two 
neighbors, forming a simple square topology. Each of 
the interconnection links in the cyclic network is pro- 
visioned with sufficient capacity to accommodate 23 
simultaneous reservations.’ We assume minimal link 
propagation and node processing delays of 1 millisec- 
ond each, thus our current work focuses exclusively on 
the effects of teardown delays. Source and receivers 
were placed at each of the four switching nodes wlth 
all reservations being between a source and receiver 

lNote that we are using a rather primitive model of reser- 
vations, using only bandwidth to describe the reservation. In 
practice, the flow specification [11, 161 will likely be somewhat 
more complex. 

We have also performedpreliminary simulations on networks 
with higher degrees of multiplexing and we found similar thrash- 
ing behavior. 
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at opposite diagonals of the network, thu,3 all reserva- 
tions are of length two hops. For the acyclic network 
we consider a binary tree topology of depth four, again 
all links have a capacity of 23 simultaneous reserva- 
tions. Source and receivers are placed only at the 16 
leaf nodes of the tree with reservations between source 
and receiver at each pair of leaf nodes, this results in 
a mix of 2-, 4-, 6-, and 8-hop paths. 

When studying a single network and h,omogeneous 
reservations the resource demand can be quantified by 
{session arrival rate alone. In this study we look at 
multiple network topologies, heterogeneous numbers 
of sessions and path lengths, multipoint-to-multipoint 
sessions and multicast distribution trees. Assuming all 
reservation requests are for the unit bandmidth, we can 
calculate a normalized loading metric for the network 
as the product of the session arrival rate and the num- 
lber of link reservations required to successfully allocate 
the session distribution mesh. Calculating the normal- 
iized load for a specific simulation scenario results in 
an estimate of the average number of new link reser- 
vation requests injected into the network per unit of 
time. We use the normalized load measure throughput 
this paper when contrasting results that are dependent 
on network loading level. 

The normalized loading metric tells us that for a 
llarger session size fewer arrivals are required to main- 
tain a fixed loading level, for this reason we scale the 
llength of our simulation runs for scenarioti with larger 
session sizes. All of our simulation runs are for 10,000, 
'20,000, or 40,000 simulated seconds depending on the 
session size. We found these simulation 1t:ngths to be 
~wfficient to ensure consistent simulation results. When 
reporting any results we discard the data from the first 
lhalf of the simulation run and calculate all statistics 
from the data following the warmup period. 

4 Point-to-point reservations 
The basic reservation model of the ISPN architec- 

ture is that of a uni-directional point-to-multipoint 
stream. However, we begin our investigation by look- 
ing at the simplest case, that of uni-direclional point- 
to-point reservations. When a reservation request is 
blocked the end-user/application does not attempt to 
requeue the request; that is, there are nc reservation 
request retry attempted. 

Our intuition tells us that in a system with acyclic 
ordering of resources there should be a guaranteed level 
of successes; as resource demand is increased we expect 
system throughput to be strictly non-decreasing, and 
if throughput asymptotes we expect the value to be 
non-zero. We believe that in order to obtain depen- 
dencies among independent reservations that lead to 
thrashing requires a circularity in the resource depen- 
dencies of the individual reservations. Note that un- 
der the simple uni-directional point-to-point reserva- 
tion model this circularity in inter-reservation resource 
dependencies can occur only if the network itself con- 
tains cycles.3 

We note that in fact in the real world most topologies are 
likely to contain cycles to avoid the single point of failure prob- 
lems of a purely acyclic network, however the cyclic resource 
dependency may still be rare although the possibility is always 

0 1 2 3 4 5 6  
Network Load (link reservation requests Is) 

7 8 

Figure 1: Number of successful reservation requests on 
the square topology for mi-directional point-to-point 
reservations. 

14000 , I 

0 5 10 15 20 25 30 35 40 
Network Loadl (li "vatinn requests I s )  

Figure 2: Number of successful reservation requests on 
the binary tree topology for uni-directional point-to- 
point reservations. 

Figure 1 and Figure 2 present the number of suc- 
cessful reservation requests for simulations of the uni- 
directional point-to-point reservations on the square 
and binary tree topologies. The larger size and capac- 
ity of the binary tree topology required much higher 
loading to induce blocking, however the important dis- 
tinction is in the different shapes of the plots in the two 
figures. We see that as predicted the cyclic resource 
dependencies introduced by the cyclic topology can re- 
sult in a decline in network throughput as the load 
is increased, while the acyclic topology always shows 
increasing throughput. 

The results in Figure 1 do establish that the thrash- 
ing phenomena can occur within the simple uni- 
directional point-to-point reservation scenario inves- 
tigated, however the degradation was only observed 
for extremely long delays and network overload. For 
systems within reasonable operational ranges it seems 

there. 

7c.l.3 
873 

Authorized licensed use limited to: UCLA Library. Downloaded on August 05,2020 at 19:17:12 UTC from IEEE Xplore.  Restrictions apply. 



quite stable. One situation where these long delays 
may actually be encountered is within a soft state pro- 
tocol that requires large timer values to control proto- 
col overhead. The lesson to be learned here is that a 
soft state mechanism should not rely on timers alone, 
explicit messages should be incorporated to effect state 
changes. Soft state timers should only be relied upon 
to maintain consistency in exceptional cases such as 
when messages are lost or systems crash. We note that 
in fact the RSVP soft state reservation protocol does 
employ this model with explicit teardown messages. 
4.1 Point-to-point reservations with 

In the simple reservation scenario explored in Sec- 
tion 4 we noted that whenever a reservation request 
was blocked no further action was taken by the end- 
user/application. An extension to this scenario is to 
recognize that a common mode of operation might 
be for the end-user/application to retry its reserva- 
tion setup request after a short delay in the hope that 
network conditions have changed in the interim. In 
this section we investigate the effect of adding reser- 
vation request retries to the uni-directional point-to- 
point reservation model. We arbitrarily selected a 
reservation request retry interval of one second.* 

We assume that each reservation request retry at- 
tempts to build upon the provisional resource alloca- 
tion obtained during earlier requests if the reservation 
is still in place; this leads to two distinct regions of 
operation. Whenever the teardown delay is greater 
than the reservation request retry interval, each retry 
can build upon the previously established partial path 
reservation. If the teardown delay is less than the retry 
interval, then the provisional resources have already 
timed out and each new request must once again con- 
tend for resources along every link in the end-to-end 
path. 

Figure 3 presents the number of successful reserva- 
tion requests for simulations on the square topology 
for uni-directional point-to-point reservations with a 
one second reservation request retry interval. It might 
seem logical that the performance in the region where 
retries attempt to build upon earlier provisional alloca- 
tions (i.e., the teardown delay is greater than the retry 
interval) would be superior to that of the region where 
each request must contend for new resources at every 
link, however this is obviously not true. The problem 
with attempting to build upon the earlier partial path 
reservation is that once a sufficient blocking level is 
reached every retry continues to block and the provi- 
sional allocation is held forever. Thus we see that sys- 
tem performance for all teardown delays greater than 
the retry interval is exactly identical, the entire sys- 
tem deadlocks and throughput immediately drops to 
zero. Note that because the allowable teardown delay 
is directly dependent on the retry interval, system in- 
stability can be induced for arbitrarily small teardown 
delays by aggressive end-users/applications. 

blocked reservation retry 

4The effect of the selection of the reservation request retry 
interval is shown to partition the system performance into two 
distinct operational regions, however it does not affect our re- 
sults in terms of whether the network can be made to exhibit 
thrashing. 

Network 
Load 

0.7 

0.5 1 1.5 2 2.5 3 3.5 4 
Network Load (fink resemation requests / s) 

Figure 3: Number of successful reservation requests on 
the square topology for uni-directional point-to-point 
reservations with a one second reservation request retry 
interval. 

Total Blocked S uccessful 
Requests Requests Requests 

1725 0 1725 

Network 
Load 

4 

1636 0 I 43929 I 54?4ti I I1 577949 

Total Blocked S uccessful 
Requests Requests Requests 

1528 0 1528 

Table 1: Summary of reservation success and failures 
on the square topology for uni-directional point-to- 
point reservations with a one second reservation re- 
quest retry interval and 60 second teardown delay. 

5 
6 

For the operational region where earlier provisional 
allocations are released the deadlock condition can be 
avoided. We observe for teardown delays only slightly 
less than the retry interval thrashing can still occur, 
while smaller delays result in strictly non-decreasing 
throughput. This transition from thrashing to non- 
decreasing throughput is dependent on a number of 
factors including network topology, capacity and de- 
lays, and resource demands. We have not completely 
modeled this transition phenomena at the present time. 

Table 1 and Table 2 summarize the total numbers 
of reservation request success and failure on the square 
and binary tree topologies for uni-directional point-to- 
point reservations with a one second reservation re- 
quest retry interval and 60 second teardown delay. 
We see that the total reservation requests behavior is 
similar under both network topologies. As the net- 

6057 4146 1911 
163105 161007 2098 

Table 2: Summary of reservation success and failures 
on the binary tree topology for mi-directional point- 
to-point reservations with a one second reservation re- 
quest retry interval and 60 second teardown delay. 
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Figure 4: Number of successful reservation requests 
on the binary tree topology for uni-directional point- 
to-point reservations with a one second reservation re- 
quest retry interval. 

work load is increased and blocking begirts to occur 
the total number of reservation requests irjected into 
the system begins to increase exponentially. Figure 4 
presents the number of successful reservation requests 
for simulations on the binary tree topology for uni- 
directional point-to-point reservations with a one sec- 
ond reservation request retry interval. Nobe that even 
with the much greater reservation request rate intro- 
duced by the retry policy, the system throughput is still 
n'on-decreasing . These binary tree results differ sig- 
nificantly from the throughput performance observed 
for the cyclic topology (see Figure 3) where thrash- 
ing was observed as the network load increased. This 
further re-enforces our initial intuition that the inter- 
reservation resource dependency circularity is a neces- 
sary condition to induce thrashing. 

5 Multipoint session models 
In Section 4 we looked at scenarios where each 

source and receiver represented an independent uni- 
directional point-to-point reservation. 111 fact, the 
ISPN reservation model directly supports more com- 
plex point-to-multipoint reservations associated with 
multicast data distribution. Additionally we believe 
tlhat multipoint-to-multipoint applications may be- 
come quite common and these may require coordina- 
tiion in establishment of multiple reservations. We call 
the set of source and receivers composing a multipoint- 
to-multipoint application a sessaon and assume the ex- 
istence of a session controller element which applies 
specific policies to the coordinated resource reservation 
rleq~ests.~ 

In the remainder of this section we look at the ef- 
fects of the session model on the reservalion system 

5Note that the multipoint application and session controller 
irisues are actually independent. One could theoretically imagine 
a point-to-multipoint application with a session controller that 
nequired all end-points to succeed; however, such applications 
appear to be less common. 

0-- 
0 1 2  3 4 5 6 7 8 9 1 0 1 1  

Netwnrk Load (link reservation requests / s) 

Figure 5: Number of successful session reservation re- 
quests on the binary tree topology for 2-way sessions 
with a one second reservation request retry interval and 
retry-all-receivers session retry policy. 

performance. We assume an N-way conferencing ses- 
sion model with a session controller that requires all 
reservation requests to succeed before session estab- 
lishment is completed. We believe this model is most 
appropriate in capturing the effects of small video tele- 
conferencing sessions.6 We will quantify the effects of 
the more complex resource dependencies inherent in 
the session model and the effects of increased session 
sizes. 
5.1 Bi-directional session model 

The simplest extension to the reservation model is to 
pair two uni-directional point-to-point reservations to 
form a bi-directional session. That is, if there is a reser- 
vation requested from A to B then there must also be 
a reservation requested froim B to A and both requests 
must successfully complete for the session to be estab- 
lished. This session model is likely to be quite common 
(e.g., telephone conversations). Note the major impli- 
cation inherent in this simple session model extension, 
now for any two independent sessions traversing a link 
there is an inter-session resource dependency circular- 
ity. Our conjecture is that thrashing is now possible 
even on the acyclic network topology. 

Figure 5 presents the number of successful session 
reservation requests on the binary tree topology for 
2-way sessions with a one second reservation request 
retry interval. We assume that when a session is 
blocked and provisional resources are to be released 
(i.e., the teardown delay is less than the retry interval) 
that the session controller causes both end-points of the 
session to simultaneously release their provisional allo- 
cations. System performance is now similar to that ob- 
served earlier in Figure 3 €or the uni-directional point- 
to-point reservations on the cyclic topology. The ses- 
sion model has introduced resource dependency circu- 

6We recognize that there are other classes of applications, 
particularly ones with very large membership, that do not have 
this strict model of success. Analysis of these session models is 
another area for future investigation. 
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Network 2-way 
Load Session 

1 0.00 
5 0.00 

10 0.13 

4-way 8-way 
Session Session 

0.00 0.01 
0.07 0.17 
0.32 0.42 

Table 3: Blocking probability for various N-way session 
sizes on the binary tree topology for no blocked reser- 
vation retry and immediate blocked reservation tear- 
down. 

15 
20 

larities, which in turn induces thrashing and system 
deadlock for teardown delays greater than the retry 
interval. This is quite significant in the fact that with 
the introduction of the session model it is now possible 
to induce thrashing on any network topology, not just 
those with physical cycles. 
5.2 Scaling session size 

The simplest session model, as presented in Sec- 
tion 5.1, is the combination of two uni-directional 
point-to-point reservations to form a bi-directional ses- 
sion, however we expect larger N-way sessions to be 
quite common too. A consequence of these larger ses- 
sion models is that each source must now establish a 
multicast distribution tree to each of the other ( N  - 1) 
session members, and N of these reservations must 
be obtained before session establishment is completed. 
Even with the increased efficiency in multicast distri- 
bution over multiple point-to-point connections, the ef- 
fect of the larger session sizes is to greatly increase the 
total number of link reservations required for session 
establishment. For example, for all combinations of 2- 
way sessions on the binary tree topology we find that 
the average number of link reservations required for 
session establishment is 13, for 4-way sessions this in- 
creases to 54, and for %way sessions 172 link reserva- 
tions are required. 

The net effect of larger session sizes is that each 
session arrival: 1) represents a larger independent re- 
source demand and 2) involves many more admission 
control decisions, failure of any one can result in block- 
ing of the entire session. For these reasons we believe 
that as the session size is increased the probability of 
session blocking will also increase for a fixed network 
loading level. Table 3 shows the blocking probabil- 
ity for various N-way session sizes on the binary tree 
topology when there are no blocked reservation retry 
attempts and immediate blocked reservation teardown. 
As expected, the blocking probability is significantly 
increased for fixed load level as the session size is in- 
creased. 

In the remainder of this section we look at the ef- 
fects on system performance of this higher blocking 
probability for larger sessions. 

0.27 0.51 0.59 
0.38 0.60 0.65 

5.2.1 Retry-all-receivers session retry policy 

As noted in Section 5.1 during simulation of the 2- 
way sessions, one possible session retry policy is for 
the session controller to force all receivers to simul- 

Tree 
Depth 

1 
2 
3 
4 

0' \ . .  i 
1 2 3 4 5 6 I 

Network Load (link reservation quests / s) 

Figure 6: Number of successful session reservation re- 
quests on the binary tree topology for 4-way sessions 
with a one second reservation request retry interval and 
retry-all-receivers session retry policy. 

2-way 4-way &way 
Session Session Session 

0.16 0.00 

0.33 0.61 0.72 
0.06 0.19 0.21 

0.45 0.20 E 

taneously release their provisional resource allocations 
after a session block. We call this session retry policy 
retry-&receivers since the retry policy applies to all 
session receivers independent of whether their individ- 
ual requests succeeded. 

Figure 6 presents the number of successful session 
reservation requests on the binary tree topology for 
4way  sessions with a one second reservation request 
retry interval and retry-all-receivers session retry pol- 
icy. We see that the shape of the plots are similar to 
those observed for the 2-way sessions in Figure 5, that 
is both 0.95 and 1 second teardown induce thrashing 
while the smaller teardown delays do not. However, 
note the effect of the higher blocking probabilities in 
the 4way sessions, the onset point for thrashing has 
been significantly reduced. For a one second teardown 
delay we see that the maximum network loading has 
been reduced from a load level of 8 down to a load level 
of 4. 

An interesting observation was discovered after his- 
togramming the tree depths at which blocking was oc- 
curring. As the session size is increased the total num- 
ber of flows traversing the network backbone links sig- 
nificantly increases. This would lead one to believe 
that in a homogeneous network, such a.s the one we 
simulated, the backbone becomes more of a bottleneck 
as the session size is increased. Further, one might as- 
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siume that scaling the capacity of links closer to the 
backbone would be beneficial in maintainling uniform 
utilization levels throughout the network. In fact, we 
found that the opposite is true. Table 4 shows the per- 
centage of session reservation requests blocked at the 
various tree depth levels (level 1 is at the root of the 
tree while larger values of tree depth are iowards the 
leaves) for different N-way session sizes at 1,he network 
loading level that induced thrashing. We see that as 
tlhe session size is increased each receiver requests a 
larger aggregate reservation on its local access links, 
pushing the bottleneck and associated blocking out to- 
wards the leaves, and thereby reducing blocking on the 
backbone links. 

5.2.2 Retry-blocked-receivers session retry 

A m  alternative to the retry-all-receivers srssion retry 
policy investigated in Section 5.2.1 is to incorporate 
a session controller that coordinates reservation retry 
for only those session receivers that had their previ- 
ous reservation request blocked, all successful receivers 
maintain their resource allocations while waiting for 
the other receivers to complete session establishment. 
We call this session retry policy retry-blocked-receivers. 
The retry-blocked-receivers session retry policy might 
appear beneficial to developers of multipoint applica- 
tions because, as we noted earlier, as the session size 
iincreases it becomes much more difficult to establish 
a complete session as a single request. Retxy-blocked- 
receivers eliminates the need for all session receivers to 
re-contend for resources for every retry request, while 
incrementally adlding receivers to complete session es- 
tablishment. 

Figure 7 preslents the number of successful session 
reservation requests on the binary tree topology for 
%way sessions with a one second reservation request 
retry interval and retry-blocked-receivers session retry 
policy. Although the retry-blocked-receivers session 
retry policy intuitively seemed better suited to estab- 
lishing multipoint sessions than the retry-all-receivers 
policy, we see this is not true. Similar to the effect ob- 
served in the uni-directional point-to-point retry model 
(see Section 4.1) where teardown delays greater than 
the retry interval1 led to system deadlock, we see that 
the effect of successful receivers holding onto their re- 
source allocations is to significantly increase the level 
of provisional resources, resulting in further system 
degradation. In fact, now we see that even if there are 
no delays in blocked reservation teardown For those re- 
ceivers performing retries, the system deadlocks. The 
exact same effects were observed in the 4-  and $-way 
session simulations with the incorporation of the retry- 
blocked-receivers session retry policy. 

The performance results presented in Figure 7 show 
that the retry-blocked-receivers session resry policy is 
very detrimental to the network. However, the retry- 
blocked-receivers session retry policy is veiry beneficial 
t,o the individual sessions that adopt it. The incremen- 
tal addition of session receivers always results in fewer 
retries, and theirefore lower session establishment de- 
1 ays, than retry- all-receivers. 
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Figure 7: Number of successful session reservation re- 
quests on the binary tree topology for 2-way sessions 
with a one second reservation request retry interval and 
retry-blocked-receivers session retry policy. 
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Figure 8: Number of successful reservation requests on 
the square topology with uni-directional point-to-point 
reservations with exponential retry backoff. 

6 Reservation retry backoff 
In the previous sections we have seen that reserva- 

tion thrashing can occur due to the backlog of users 
retrying their reservation requests. Previous work on 
arbitrating access to shared resources (e.g., Ethernet 
CSMA/CD, TCP congestion control) has shown an ex- 
ponential retry backoff policy to be highly effective in 
improving system stability. 

In this section we investigate the effects on reserva- 
tion system stability when an exponential retry backoff 
policy is added to the reservation retry scenarios ex- 
plored in earlier sections. Our model for incorporating 
exponential reservation retry backoff is to assume a set 
of cooperating end-applications each of which doubles 
its retry interval timer each time a blocked reservation 
request indication is received. 

7c.l.7 
877 

Authorized licensed use limited to: UCLA Library. Downloaded on August 05,2020 at 19:17:12 UTC from IEEE Xplore.  Restrictions apply. 



m ,  t 7.- 

3500 

3000 

2500 

2000 

1500 

loo0 

500 

- 

- 

- 
- 

- 

- 

- 

n l  I 
n 2 4 6 8 in 12 

Network Load (link reservation requests I s) 

Figure 9: Number of successful session reservation re- 
quests on the binary tree topology for 2-way sessions 
with exponential retry backoff and retry-all-receivers 
session retry policy. 

6.1 Unidirectional point-to-point reserva- 

Figure 8 presents the number of successful reserva- 
tion requests for simulations on the square topology 
with uni-directional point-to-point reservations and 
the exponential retry backoff. Comparing the results 
to those found earlier for the similar scenario with fixed 
retry interval (see Figure 3) we see that the retry in- 
terval backoff has a dramatic effect on improving sys- 
tem stability. With the retry backoff in place, once 
a reservation request begins to block the retry inter- 
val is quickly pushed to a level greater than the tear- 
down delay, thus eliminating the deadlock problem. In- 
terestingly, measurements of the average setup delays 
showed both scenarios to be nearly equivalent. The 
total number of reservation request retries was signifi- 
cantly lower with the backoff, however the exponential 
increase in retry interval resulted in virtually identical 
elapsed times. 
6.2 Session reservations with exponential 

Figure 9 presents the number of successful session 
reservation requests for simulations of the binary tree 
topology with 2-way sessions, the exponential retry 
backoff and retry-all-receivers. Once again when com- 
pared to the earlier results for the similar scenario with 
fixed retry interval (see Figure 5) we see a substantial 
improvement in system stability. Throughput is now 
strictly non-decreasing even for very long teardown de- 
lays. In fact, for reasonable teardown delays (e.g., less 
than 1 second) we see that throughput is almost iden- 
tical to the immediate teardown case in Figure 5. We 
also saw similar results for the larger session sizes. 

Figure 10 presents the number of successful session 
reservation requests for simulations of the binary tree 
topology with 2-way sessions, the exponential retry 
backoff and retry-blocked-receivers. We see that in 
this case the exponential retry interval backoff is in- 
sufficient to stabilize the system. The problem here is 

tions with exponential retry backoff 
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Figure 10: Number of successful session reservation 
requests on the binary tree topology for 2-way ses- 
sions with exponential retry backoff and retry-blocked- 
receivers session retry policy. 

that the backoff policy is only applied to those receivers 
performing retries. Once a receiver has successfully ob- 
tained its reservation request it continues to consume 
resources while any remaining session members are still 
attempting to obtain their requested reservations. This 
accumulation of provisional resources is sufficient to in- 
terfere with the requests of additional session arrivals. 

7 Summary 
We wish to  stress once again that the current re- 

sults presented are just an initial study. However, we 
think that our simple progression of reservation sce- 
narios uncovers a number or interesting dynamics in- 
troduced into the ISPN architecture by resource reser- 
vations and multipoint applications. 

Our earliest results establish that even the simplest 
reservation scenarios with no blocked reservation re- 
tries can exhibit throughput degradation. Because of 
the excessively long delays required this result most 
likely pertains only to  those developers of soft state 
protocols, who should heed the advice to incorporate 
explicit state change messages. We also found that 
the larger resource demand and number of admission 
control decisions as N-way conference session size is 
increased results in significant decreases in maximum 
throughput. 

The primary findings of our study is related to the 
effects the end-user/application behavior can exert on 
the network stability. It is reasonable that an appli- 
cation be allowed to retry its reservation request af- 
ter a failure, however we found that the retry inter- 
val selected has a direct influence on the allowable 
delays before entering the thrashing region. Aggres- 
sive applications can induce thrashing in a system 
with arbitrarily fast reservation setup and teardown. 
The retry-blocked-receivers session retry policy pro- 
vides another example of a behavior that is advanta- 
geous to an application but quite detrimental to  the 
network. We showed that retry-blocked-receivers also 
induced thrashing for arbitrarily small delays. 

7c.l.8 
878 

Authorized licensed use limited to: UCLA Library. Downloaded on August 05,2020 at 19:17:12 UTC from IEEE Xplore.  Restrictions apply. 



We assumed an environment with cooperative appli- 
czrtions employing an exponential reservation request 
retry backoff and found significant improvement. Ex- 
ponential backoff resulted in improved system stabil- 
it,y, maximized throughput, and setup delays consis- 
tent with the nom-backoff scenario. We did find that 
the exponential backoff was not sufficient to overcome 
the negative effects of every possible user behavior, the 
retry-blocked-receivers still showed significant degra- 
diition. 

We see a number of directions in which. this work 
can be extended to expand our understanding of the 
subject. A few of the topics we are considering for 
future investigation include: 

In the current work all significant delays are at- 
tributed to the teardown delay. In large net- 
works end-to-end propagation and admission con- 
trol may also introduce significant delays. We 
would like to quantify the effects these other delays 
have on network throughput. We have looked at 
several scenarios exhibiting significant reductions 
in throughput, but no deadlock. Are there scenar- 
ios that lead to thrashing? 

We were surprised by earlier results showing very 
similar performance for the 4- and 8-way session 
models. We believe this may be an artifact of the 
dense distribution of session members across the 
16 leaf nodes in the current network. We plan to 
look at larger networks with more sparse member- 
ship distributions to see if this differentiates the 
performance of the session models. We also recog- 
nize that the N-way success session model does not 
scale to very large groups, and there are many ap- 
plications that require only a subset of members 
to succeed. We would like to investigate the ef- 
fects of further scaling session size and the partial 
success model. 

Provided the retry-blocked-receivers session retry 
policy is beneficial from an applications point of 
view, it may be useful to consider a hybrid retry 
policy incorporating both the exponential backoff 
and a session idle threshold. Under this scheme af- 
ter a specified number of failed reservation request 
retry attempts, all session receivers would initiate 
retry in an attempt to preempt any deadlock con- 
ditions. What is the effect of this hyhid scheme 
on system stability, throughput, and session setup 
duration? 

We have investigated the problem of thrashing from 
a technical perspective; however, there is an important 
underlying incentive issue. If we were looking at this as 
a unified design problem, where we could design the be- 
havior of end users ag well as the network, then there is 
little question that we could easily prevent thrashing. 
When sessions use the retry-all-receivers policy, and 
the retry interval is significantly longer than the tear- 
down delay, we never observed thrashing. The problem 
is that sessions can determine their own sttssion retry 
policy, and own retry timing, and these decisions need 
not be taken with the overall health of the network in 
mind. The retry-blocked-receivers session ~e t ry  policy 

yields lower delays for the individual sessions adopting 
it. Reducing the retry interval also lowers delays. The 
result of each session optimizing its own performance 
is to send the network into a thrashing state. The ul- 
timate question, therefore, is whether it's possible for 
the network to actually proscribe specific user behavior 
by employing incentive mechanisms, or by isolating in- 
dividual sessions from each other similar to that done 
by Fair Queueing [6J for transport data streams. 
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