
Reservations for Aggregate Traffic:
Experiences from an RSVP Tunnels Implement at ion

Andreas Terzis, Lixia Zhang
University of California, Los Angeles, CA

Ellen L. Hahne
Bell Laboratories, Holmdel, NJ

Abstract
Among its various uses, lip-in-IP tunneling is a simple way
to aggregate the data flows from multiple sources to multiple
destinations into one flow, to cross part of the Internet. In
this paper we report our design and implementation of RSVP
support for resource reservations over IP-in-IP tunnels, and
our experience from this effort that revealed a number of
issues related to making resource reservations for aggregate
data flows. First, aggregation and de-aggregation go in pairs,
thus the exit point of the tunnel must have adequate in-
formation to ,be able to de-multiplex the aggregate tunnel
reservation back to reservations for individual flows. Sec-
ond, if multiple reserved sessions exist over one tunnel, the
two tunnel end points need mechanisms to synchronize on
which end-to-end reservation is bound to which tunnel reser-
vation; on the other hand mapping all reservations of the
same traffic class into one tunnel session can substantially
simplify the protocol. Furthermore, one must also properly
map error reports from the aggregate reservation back to the
ends of individual flows.

1 RSVP Tunnels

1.1 Encapsulation Tunnels
Many large corporations we moving their networking infras-
tructure away from leased lines to the public Internet, as
a way of cutting down communication costs. Responding
to this market demand, most nation-wide Internet Service
Providers offer today Virtual Private Network (VPN) ser-
vices.

A VPN provides the ill usion of a private network overlaid
over the public Internet. In a VPN scenario, the company’s
sites are connected over the public Internet with virtual links
called “tunnels”. Packets that have to cross sites enter one
end of the virtual link anti are transported, through the com-
mon infrastructure, to the other end of the link.

IP tunneling uses a simple encapsulation technique. The
tunnel “entry” point adds an outer IP header in front of the
original IP header of each packet, givning all intermediate
routers an illusion that packets are delivered between the
outer source and destina1Lion addresses. When the encapsu-

lated packet reaches the tunnel exit point, the outer header
is thrown away and the packet is further routed towards its
final destination.

VPNs seem a prime environment for the deployment of
QoS support (such as Integrated Services and RSVP [3])
since they support business critical applications and are re-
placing a more controllable environment (the private network
created by leased lines).

Using the current IP-in-IP encapsulation model, RSVP
reservations are not possible. Since all the packets that reach
one of the tunnel end-points are encapsulated before being
sent to the other side, two main problems arise. First, the
end-to-end RSVP messages become invisible to intermedi-
ate RSVP-capable routers residing between the tunnel end-
points. Second, the usual RSVP filters cannot be used, since
data packets are also encapsulated with an outer IP header,
making the original IP (and UDP or TCP) header(s) invisible
to intermediate routes between the two tunnel end points.

1.2 Mechanism Description

The proposal of providing RSVP support over IP-in-IP Tun-
nels [5] was born from the need to support resource reserva-
tions over IP-in-IP tunnels.

Fig. 1 shows a simple tunnel topology, where the senders
and receivers of an RSVP session are connected through a
tunnel between Rentry and Resit. An RSVP session may be
in place between Rentry and Resit to provide resource reser-
vation over the tunnel. We refer to the first RSVP session
as the end-to-end session, and the second the tunnel RSVP
session.

A tunnel RSVP session may exist independently from any
end-to-end sessions. One may create, for example through
some network management interface, an RSVP session over
the tunnel to provide QoS support for data flows from 5’1 to
RI, even when no end-to-end RSVP session exists between
SI and RI.

When an end-to-end RSVP session crosses an RSVP-
capable tunnel, there are two possibilities to support the
end-to-end reservation over the tunnel: mapping the end-to-
end session to an existing tunnel RSVP session, and creating
a new tunnel RSVP session. In either case, the picture looks
like a recursive application of RSVP. The tunnel RSVP ses-

0-7803-4482-0/98/$10.00 0 1998 IEEE 23

Authorized licensed use limited to: UCLA Library. Downloaded on August 05,2020 at 19:19:49 UTC from IEEE Xplore. Restrictions apply.

Rentr y Rexit
/ Tunnel \ Rentr y Rexit
/ Tunnel \

n \

Core Network i;, 0
fi Sender SI Receiver RI t]

Figure 1: RSVP-Tunnels Model

sion views the two tunnel endpoints as two end hosts with a
unicast Fixed-Filter style reservation in between. The orig-
inal, end-to-end RSVP session views the tunnel as a single
(logical) link along the path between the source(s) and desti-
nation(s). The PATH and RESV messages of the end-to-end
session are encapsulated at one tunnel end-point and get de-
capsulated at the other end, where they get forwarded as
usual.

In both cases, it is necessary to coordinate the actions
of the two RSVP sessions when both exist, to determine
whether or when the tunnel RSVP session should be cre-
ated and torn down, and how to correctly map the errors,
Adspec and other reservation related information from the
tunnel RSVP session to the end-to-end RSVP session. The
association between the end-to-end and the tunnel sessions is
conveyed through the newly defined SESSIONASSOC ob-
ject in the tunnel PATH messages. This object associates
an end-to-end session to a tunnel session. The tunnel exit
point Rexit records this association, so that when it receives
reservations for the end-to-end session, it translates them to
reservations for the corresponding tunnel session.

Treating the two tunnel end-points as a source and des-
tination host, one can easily set up a FF-style reservation
between them. Now the question is what kind of filterspec
to use for the tunnel reservation, which directly relates to
how packets get encapsulated over the tunnel. We discuss
two cases below.

If all the packets traversing a tunnel can use the reserved
resources, then the current IP-in-IP encapsulation could suf-
fice. The RSVP session over the tunnel simply specifies a FF
style reservation with Rentry as the source address and Rezit
as the destination address and zero as source and destination
ports.

However if only part of the packets traversing the tunnel
can use the reservation, we encapsulate the qualified packets
not only with an IP header but also with a UDP header. This
allows intermediate routers to use standard RSVP filterspec
handling without knowing the existence of tunnels.

To simplify the implementation by reducing special case
checking and handling, we decided that all data packets us-

ing reservations are encapsulated in IP+UDP. The source
port for the UDP header is chosen by the tunnel entry point
R e n l r y when it establishes the initial PATH state for the new
tunnel session. The destination UDP port used in tunnel ses-
sions is a well known port, assigned by IANA.

1.3 Session Association and Error Mapping

In the previous section we described two possibilities to to
associate end-to-end sessions with corresponding tunnel ses-
sions: mapping all the end-to-end sessions of the same traffic
class to a single tunnel session, or allowing multiple sessions
for each traffic class, with an extreme case of creating a one-
to-one mapping between end-to-end sessions and tunnel ses-
sions. In general, deciding which end-to-end sessions map
to which tunnel sessions is a policy issue that is up to the
network managers to decide. Numerous other modes of ag-
gregation are also possible, for example aggregating all traffic
for one customer. However we notice that, if we limit RSVP
to support only the simplest mapping of all the end-to-end
sessions of the same traffic class to a single tunnel session, we
eliminate the need for the SESSION-ASSOC object which is
exchanged between the two tunnel ends to associate end-to-
end sessions with corresponding tunnel sessions.

Another type of mapping between the two levels of RSVP
sessions is error reports. When Rezit receives a RESV for
an end-to-end session, it first sends or refreshes (with pos-
sibly changed parameters) the corresponding tunnel RESV
message and waits for a confirmation from Rentry that the
reservation was successful before forwarding the end-to-end
reservation request. If Rezit immediately forwarded the end-
to-end request over the tunnel, then if the tunnel reservation
failed, it would have to explicitly tear down, the installed
reservation “past” Rentry. When a tunnel session RESV re-
quest fails, an error message is returned to Resit. Rerat must
treat this as an error crossing the logical link and forward
the error back to the receiver.

2 Scaling Issues

Recently, a concern has been raised regarding RSVP’s scal-
ability. Since RSVP reservations are initiated by individual
applications, which are identified by their IP addresses, pro-
tocol, and port numbers, all the RSVP routers on the path
from the senders to the receivers have to keep state per ap-
plication data flow. This can be burdensome, especially for
backbone routers that connect to high speed links and may
carry hundreds of thousands of flows simultaneously.

Some recent works [4], [l], [2] have identified this problem
and suggested some possible solutions. In the rest of this
section, we discuss the scaling properties of RSVP reserva-
tion over tunnels. We show that tunnel reservations, when
used properly, can substantially reduce the amount of RSVP
control state at backbone routers and reduce the number of
RSVP messages exchanged across backbone routers.

Authorized licensed use limited to: UCLA Library. Downloaded on August 05,2020 at 19:19:49 UTC from IEEE Xplore. Restrictions apply.

2.1 State reduction 3 Conclusions

When one makes RSVP reservation over tunnels, state aggre-
gation is achieved for the intermediate routers because they
are no longer aware of end-to-end RSVP sessions, instead
they handle only the RSVP messages generated by Rentry
and Rexit.

The larger the degree of aggregation at the tunnel end-
points the larger the gain in reduced RSVP state in the net-
work backbone routers. At one end of the spectrum, we have
individual end-to-end RSVP sessions getting mapped to sep-
arate tunnel senders, thus achieving no state reduction in the
intermediate routers. At the opposite end of the spectrum,
we can achieve the largesi; amount of state aggregation pos-
sible by mapping all end-to-end sessions of the same traffic
class to a single tunnel fiession. In this case intermediate
routers in the tunnel only see one aggregate session per tun-
nel per traffic class.

2.2 Reducing the number of messages

Along with the memory requirements, the other source of
overhead imposed on routers is the processing of RSVP mes-
sages.

Let us consider the RS’JP message exchanges for the tun-
nel sessions. Although erid-to-end RSVP messages are still
sent through the tunnel, due to encapsulation they are in-
visible to intermediate rcuters in the tunnel and therefore
require no RSVP processing.

In the case of tunnel PATH messages, Rentry collects the
PATH information from all the senders of end-to-end sessions
that map to the same tunnel session and sends one PATH
message per tunnel session per refresh period. The Tspec in
the tunnel PATH message is equivalent to the sum of Tspecs
of all the senders belonging to end-to-end sessions mapped
to the specific tunnel session.

According to [5], end-to-end RESV messages will trigger
an immedidate tunnel RESV message only if they represent
changes from the originally reserved value, which presumbly
do not happen very often We can further reduce the tunnel
RESV message frequencys by changing the above rule so
that the tunnel end pointtr can only send RESV messages for
specific increments (for example only in the order of hundreds
of kilobits), then Rexit will send additional tunnel RESV
message only when the a,ggregate amount from end-to-end
reservations changed by more than this threshold value. We
call this scheme, the threhold scheme.

The threshold scheme does not affect the soft-state char-
acter of the protocol. ARer a crash Rexit will have to re-
acquire the PATH state and send RESV messages to restore
the amount of reserved n:sources in any case. Once Rentry

becomes alive after the crash, the end-to-end RESV mes-
sages will drive the amount of the tunnel reservations to the
level that existed before the crash.

*

As large corporations move their networking infrastructure
away from leased lines to the public Internet, IP-in-IP tun-
nels are becoming a common tool used by the Internet
Service Providers (ISPs) to build Virtual Private Networks
(VPNs) to meet such demands. We have designed and imple-
mented RSVP support for resource reservations over IP-in-IP
tunnels, which can be used to provide VPNs with quality of
service guarantees.

This undertaking not only produced a useful tool, but also
helped us identify several issues related to making resource
reservations for aggregate data flows. First, aggregation and
de-aggregation go in pairs, thus the exit point of the tunnel
must have adequate information to be able to de-multiplex
the aggregate tunnel reservation back to reservations for in-
dividual flows; one way to convey the information about in-
dividual end-to-end reservation information to the exit point
of the tunnel is to encaptulate end-to-end RSVP messages
through the tunnel. Second, if multiple reserved sessions
exist over the tunnel, the two tunnel end points need mech-
anisms to synchronize on which end-to-end session is bound
to which reservation over the tunnel; on the other hand map-
ping all flows of the same class into one tunnel session can
substantially simplify the protocol. Third, one must also
properly map error reports from the tunnel back to the end
user reservations.

We believe these are common issues one encounters when
making reservations for aggregate flows, and our approaches
in RSVP tunneling implementation can be applied to more
general cases.

4 Acknowledgments
This work is partially supported by a research grant from In-
tel corporation. Part of this work was done while Andreas
Terzis was a summer intern at Bell Labs last year. The au-
thors would like to thank Henning Schulzrinne for numerous
discussions of RSVP tunnels as well as the anonymous re-
viewers for their insightful comments.

References
[l] S. Berson and S. Vincent. Aggregation of Internet Integrated

Services State. Internet-Draft, work in progress, November
1997.

[2] J. Boyle. RSVP extensions for CIDR aggregated data flows.
Internet-Draft, work in progress, June 1997.

[3] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin.
Resource Reservation Protocol (RSVP), Version 1 Functional
Specification. RFC 2205, September 1997.

[4] R. Guerin, S. Blake, and S. Herzog. Aggregating RSVP-based
QoS Requests. Internet-Draft, work in progress, November
1997.

[5] L. Zhang, J. Wroclawski, J. Krawczyk, and A. Terzis. RSVP
Operation Over IP Tunnels. Internet-Draft, work in progress,
February 1998.

25

Authorized licensed use limited to: UCLA Library. Downloaded on August 05,2020 at 19:19:49 UTC from IEEE Xplore. Restrictions apply.

