
 
IEEE COMSOC MMTC E-Letter 

   
http://www.comsoc.org/~mmc/ 6/44    Vol.8, No.4, July 2013 
 

Video Streaming over Named Data Networking 
Derek Kulinski, UCLA Computer Science, kulinski@cs.ucla.edu 

Jeff Burke, UCLA REMAP, jburke@remap.ucla.edu 
Lixia Zhang, UCLA Computer Science, lixia@cs.ucla.edu 

1. Introduction 
Named Data Networking (NDN) is a proposed future 
Internet architecture that offers many advantages over 
TCP/IP [1], and holds significant promise for content 
distribution applications, such as video streaming. The 
TCP/IP architecture assigns IP addresses to hosts, 
making the Internet essentially a point-to-point 
communication system. NDN allows data consumers to 
retrieve desired content by directly using application-
specified hierarchical data names, enabling a general-
purpose distribution system. This approach, in 
combination with NDN’s  per-packet content signatures, 
permits any node in the network to cache named data 
packets and respond to requests for them. This is in 
sharp contrast to the current IP Internet, wherein a 
video producer sends data packets directly to every 
viewer, even when multiple viewers are watching the 
same video at the same time, and even when those 
consumers share the same upstream routers where the 
data could be easily cached. 
     Not only does NDN enable the use of storage in the 
network to cache popular data that are frequently 
requested by multiple users—reducing bandwidth and 
improving performance—it also enables video 
producers to easily provide a variety of other functions. 
For example, producers can assign meaningful names to 
video data (e.g., timecode frame indexes using a well-
established naming convention), so video consumers 
can simply request specific video content by names to 
seek (rewind or fast forward). Because of such 
properties, video streaming can benefit significantly 
from NDN.  
     In fact, video streaming has already received 
considerable attention in the CCN/NDN research 
community. Early developments include the CCNx 
VLC plug-in [2] and GStreamer plug-in [3] as test 
applications. A number of more recent research efforts 
have produced additional results. For example, Xu et al. 
compared HTTP live streaming with a CCNx-based 
approach on Android [8]. Others considered how 
devices can collaborate to share bandwidth for the same 
video [9] and rate adaptation [10], as well as additional 
topics in the context of NDN.   
     This paper provides an overview of NDNVideo, a 
complete software solution developed at UCLA for 
video and audio streaming over NDN that serves as a 
representative example of how content-centric 
applications can be implemented in this new 
architecture.   NDNVideo   takes   advantage   of   NDN’s 
features to provide highly scalable, random-access 

video from live and pre-recorded sources using a 
straightforward data publisher and consumer model 
without connection negotiation or session semantics. 
The application was built using PyCCN, Python 
bindings that we created for the CCNx library and 
software router by PARC [4, 7]. 
 

2. Design Goals 
NDNVideo was designed to support live and pre-
recorded video streaming with frame-accurate random 
access, while integrating persistent storage of live 
content and, eventually, enabling synchronized 
playback across multiple consumers. Driver 
applications are web video streaming services as well as 
applications in digital signage, live events, and 
professional media production. 
     Our design goals included 1) quality consistent with 
current Internet video expectations; 2) simple, low-
latency random access into streams, based on actual 
location in the video stream (by video frame), using a 
timecode-based namespace (i.e., the hour, minute, 
second, and frame of the stream); 3) consumer-side 
synchronization of streams using the timecode-based 
namespace (for multiple consumers and future digital 
signage, multi-camera, and interactive applications), 
and scalability without impact on the original source of 
video; and 4) on-the-fly archival of live streams, 
making them indistinguishable from pre-recorded 
streams for the purposes of most playback applications. 
Additionally, NDN's per-packet signatures on 
ContentObjects (data packets) provided a starting point 
for content verification and provenance in video 
applications, and we employ them in this application. 
     We use the GStreamer framework for capturing and 
rendering video. A GStreamer based application for 
video streaming was developed in [3], but treats video 
as an arbitrary binary stream of data, and consequently 
does not fully use the potential of the NDN architecture. 
Their approach is similar to streaming video by 
downloading a file over the HTTP protocol, as opposed 
to using protocols that leverage the content type, such 
as RTP.  In NDNVideo, we develop a namespace and 
protocol specifically for streaming video and audio. 
 

3. Architecture 
Overview. The NDNVideo protocol has two types of 
participants: publisher and consumer. The streaming 
relationship is one-to-many (i.e. a single publisher 
publishes data that is received by many consumers). 
Unlike IP, NDN is pull-based, in which data consumers 
issue request   packets,   or   “Interests”   that   indicate   the  



 
IEEE COMSOC MMTC E-Letter 

http://www.comsoc.org/~mmc/ 7/44    Vol.8, No.4, July 2013 
 

name of the content that they wish to receive.  Any 
entity on the network may respond with a 
corresponding data packet. This request/response 
approach enables the video publisher and consumers to 
utilize the Interest-Data exchange of the NDN protocol 
directly. NDNVideo requires no direct interaction 
between consumer and producer; the publisher simply 
prepares data packets, signs them, and stores them in a 
repository (persistent store) for retrieval by consumers. 
Consumers no longer need to establish a session with 
the publisher, nor inform the publisher about their 
Quality of Service requirements. Instead, they are in 
full control of how much data they receive, and at what 
rate. If, for any reason, a consumer needs to upgrade or 
downgrade its bit rate, it can do so seamlessly by 
requesting data from a different namespace for the same 
timecode in the video. 
     Namespace. Like all NDN applications, a 
fundamental   facet   of   NDNVideo’s   design   is   its  
namespace, illustrated in Figure 1. During packet 
preparation, the video producer segments the stream 
using semantically meaningful names, e.g. frames for 
video and samples for audio, organized by bitrates and 
encodings that can be enumerated by the consumer via 
a metadata file to list all children nodes in a namespace 
tree. Such structuring of data provides many benefits, 
one of which is enabling the publisher to uniquely name 
every frame and, in turn, allows the consumer to easily 
seek to a specific place in the stream. A key design goal 
was to provide this random-access via video timecode, 
in which video is indexed by frames (e.g., 
HH:MM:SS:FF). To allow more efficient playback 
after seeking, the data is also provided using 
consecutive segment names. 
     Encoding and Packet format.  NDNVideo supports 
all of the many encoding formats supported by 
GStreamer, although our implementation focuses on 
H.264 video and MP3 audio. The NDNVideo publisher 
generates signed ContentObjects from an input video 
stream, which can be either live or pre-recorded, and 

places them immediately into a local repository—a 
persistent, disk-based storage that is another 
fundamental component in the NDN architecture. 
Consumers’   data requests go to that repository or are 
otherwise satisfied by caches in the network.  
     NDNVideo handles large (video) and small (audio) 
samples by packing data in two layers. The inner layer 
contains all information necessary for the playback of a 
data buffer, such as timestamp, duration, and length in 
bytes. The timestamp tells the player at what point in 
time the buffer is supposed to be played, while the 
duration tells how long, making NDNVideo compatible 
with variable frame rate codecs. Then, multiple buffers 
are put inside one packet by trying to fill it completely. 
If a buffer does not fit into one packet, it is split into 
multiple packets. The outer layer of the packet contains 
two additional fields: offset and count. The count 
indicates how many buffers begin in a given packet, 
and the offset is used to tell where the first buffer starts. 
The offset is used only when there is a packet loss, and 
it lets the consumer quickly resume processing from the 
next available buffer.  
     Random access.  A player seeks in NDNVideo by 
simply issuing an Interest in the index namespace 
corresponding to the desired timecode (e.g., 
“HH:MM:SS:FF”), with Interest “selector  fields” set to 
return the nearest keyframe1 ContentObject, which in 
turn maps timecode to segment number using a simple 
ASCII text payload. NDN's Interest selector fields 
enable a consumer to express requests that are more 
sophisticated than just name prefixes; they are 
described in detail in [5]. The ChildSelector is set to 
RIGHTMOST, instructing the responding node to 
return the last element it has in the index namespace, 
and AnswerOriginKind is set to NONE, to tell the 

                                                 
1  The publisher indexes only keyframes, since the 
closest preceding keyframe is needed to properly 
decode a specific frame of the video. 

 
Figure 1. NDNVideo namespace, providing multiple encoding rates and both time and segment-based data access.  

.../<content root>/<timestamp>

video0 video1 audio0 subtitles0

h264-1024k h264-512k aac-128k mp3-198k ...

stream_info segments index stream_info segments index

%37 %39 ... %5701:02:03:04 timestamp
(nanoseconds)



 
IEEE COMSOC MMTC E-Letter 

http://www.comsoc.org/~mmc/ 8/44    Vol.8, No.4, July 2013 
 

library to fetch content from the network rather than 
any local cache. Finally, the Exclusion Filter is used to 
tell the network to return the latest index entry, just 
before the desired frame. (This requires timecode be 
expressed in a format that sorts properly according to 
the NDN architecture.) For example, to seek to 
00:00:05:00, the Interest excludes all indexes after this 
point and, through the rightmost child selector, requests 
the next largest index. Thus, nodes on the network will 
respond with the nearest keyframe ContentObject they 
have, without any direct negotiation with the publisher.  
 

5. Live Streaming 
    With NDN, the video publisher is far simpler than 
the corresponding one in IP; even for live streaming, it 
simply puts frames in a network-addressable content 
repository immediately after capture. Cooperation 
between publisher and consumer to maintain QoS (as 
done in RTP) is no longer needed. In the NDN case, the 
consumer knows exactly whether any data packet is lost, 
and there is no need to inform the publisher of how fast 
it needs to send the data, since it controls its own data 
fetch. However, some complexity is shifted to the 
stream consumer for certain cases, such as live 
streaming. The video consumer needs to pipeline 
Interest packets so that the data are fetched 
continuously as they are produced. However, it should 
not fetch the data too quickly and request segments that 
do not yet exist. To address this challenge, the player 
must determine what is the latest data and at which rate 
it should be requested. 
      When an NDN node receives an Interest, it does a 
longest-prefix match, also incorporating specified 
selectors, to see if it can be answered with data 
contained in its Content Store, only forwarding Interests 
to neighboring nodes when it cannot satisfy the request. 
Because different nodes can have different data in their 
Content Stores, the same request might result in 
different responses from different nodes. To 
accommodate this behavior, the consumer first issues 
Interests periodically during its video playback to 
determine the ever-increasing duration of the stream, by 
checking for the latest entry in the index namespace. It 
sets the exclusion filter in the Interest packet to only 
request Data packets with index name components 
greater than the last index it has seen. This forces the 
node providing the previous response to forward the 
Interest to its peers. Without this parameter, the 
consumer's Interest would retrieve previously received 
content cached in the network. Different nodes may 
respond with their   own   notion   of   what   is   “latest,” so 
these Interests must be issued more than once. In the 
worst case, this approach may take N queries, where N 
is number of connecting nodes accessed, before 
converging  on  the  correct  “latest  position.”  
     Second, to enable the consumer to determine the rate 

at which it should issue Interests, in addition to the 
timestamp of the buffer, each individual packet also 
contains a local time at which the packet was generated. 
While the consumer may or may not have a clock in 
sync with the publisher, this information is still useful, 
because it can be used to calculate the time difference 
between packets. The consumer can then estimate the 
mean time interval and dynamically adjust the rate of 
Interests after starting with the latest segment of the live 
stream previously determined. 
     If the player does not receive data fast enough to 
play back at the correct rate, instead of pausing the 
playback, it skips to the most recent segment and 
continues playback from there. To do so, it calculates 
the local time at which given content is supposed to be 
played back, as well as determining whether to send the 
data to the decoder or not.  
     Compared to the complexities in live video stream 
seeking and pipelining, archival/recorded playback is 
more   straightforward;;   the   video’s   length   is fixed. The 
only additional information needed for streaming from 
a pre-recorded file (or a live stream that is already 
completed) is a marker of the end of the stream. By 
convention, the publisher sets the value of the 
FinalBlockID field in the ContentObjects to the last 
segment number to signal the end of the stream. If the 
player uses multiple streams (e.g. audio and video), it 
stops playback after receiving the EOS (End of Stream) 
signal from all the streams. 
 

6. Handling Packet Loss 
Given the pull-based nature of NDN, NDNVideo lets 
the consumer be fully in charge of data it is receiving.  
Each data packet is named with the segment name plus 
segment numbers to make the data names predictable 
and enable the consumer to pipeline requests for the 
data. This is necessary to provide sufficient playback 
quality, especially when latency between the publisher 
and the consumer is high. If a single buffer is contained 
in multiple packets, the packet header information is 
used to put the buffer back together. In case of packet 
loss, the consumer can either request the same data 
again or issue an Interest for the next segment. If the 
segment is considered lost, the offset field is used to 
determine the point at which the next buffer starts. The 
code does not need to wait for the buffers that start at 
the beginning of packets (e.g., those of keyframes). 
     In an ideal case, the consumer will get responses to 
all the Interests it issues. Unfortunately, packets can be 
dropped due to network congestion or other causes. In 
order to provide seamless playback, it is important for 
the consumer to know how long to wait before 
assuming that an Interest or the corresponding data 
packet is lost. Interests for the data can then be quickly 
reissued or assumed unavailable, and the consumer can 
move on to the next segment. The NDNVideo 



 
IEEE COMSOC MMTC E-Letter 

http://www.comsoc.org/~mmc/ 9/44    Vol.8, No.4, July 2013 
 

consumer adjusts its Interest timeout based on previous 
RTT values, smoothed using a low pass filter similar to 
what is defined in RFC 2988 for TCP. 
 

7. Implementation and Testing 
The implementation is written in Python, and uses the 
GStreamer [6] multimedia framework. It employs 
PARC’s   CCNx   [4]   implementation   of   the   NDN  
architecture and our PyCCN [7] bindings. Both 
NDNVideo and PyCCN are open source (as are CCNx 
and GStreamer) and can be retrieved from GitHub.  
     After a variety of tests using pre-recorded files and 
live   sources,   the   system   was   demonstrated   “live”   to a 
large audience in March 2012. A live, standard 
definition H.264-encoded stream (@ 1Mbit/sec) from a 
musical performance in the UCLA School of Theater, 
Film  and  Television’s  TV  Studio  #1 was published over 
the NDN testbed to our Washington University in St. 
Louis collaborators’ demonstration for the GENI 
Engineering Conference in Los Angeles. Broadcast 
quality audio and video feeds from three cameras were 
mixed live and published to a CCN repo at UCLA. The 
WUSTL team displayed the video using the NDNVideo 
player. In this and other tests with standard definition, 
H.264 video, the streaming works well for end-users.  
We have recently added support for high-definition 
(“1080p”)   resolution.   Additionally, we have deployed 
webcams connected to application servers at several 
geographic locations on the NDN testbed, which use 
NDNVideo.         
 

8. Current issues and future work 
The interval-based pipeline is being refined for 
deployment in the next series of demonstrations and 
tests. Additionally, the CCNx repository does not yet 
support deletion of specific data objects, which can be 
problematic for long-running live streams; this will be 
addressed in future versions.  
     Finally, we plan to enable the consumer to switch 
codec based on bandwidth or performance. For example, 
when the consumer detects that it cannot receive data at 
the desired rate, it could downgrade playback to a lower 
bit rate by simply changing a component of the Interest 
name it is requesting. An elegant way to do this would 
be to provide H.264 Scalable Video Coding (SVC) or a 
similar solution with enhancement layers expressed 
directly in the video namespace. We are exploring this 
solution. 
 

9. Conclusion 
We designed, implemented, and tested NDNVideo, a 
video streaming application that was conceived with 
NDN architecture in mind and demonstrates some 
immediate advantages of NDN. The protocol and 
namespace are equivalent for live and pre-recorded 
streams, requiring only additional logic at the consumer 

for live streaming. Reliable and rate-adaptive playback 
can be provided with no session semantics or 
negotiation necessary between the consumer and the 
producer. The approach leverages Content Stores in the 
network, which makes the video distribution more 
efficient. Video and audio streaming uses the intrinsic 
features of the architecture to scale without loading the 
publisher, and to provide efficient random-access, even 
to live streams. We believe that NDN-based streaming 
can enable a better user experience with less strain on 
the publisher when compared to TCP/IP, and that the 
approach could be used to enable serverless video 
publishing from resource-constrained mobile devices. 
 

References 
[1] Zhang, L., et al.,  “Named  data  networking  (ndn)  project,”  

http://named-data.net/techreport/TR001ndn-proj.pdf, 2010. 
[2] “CCNx  vlc  plugin,”  part   of   the  CCNx  package.   [Online]. 

Available: https://github.com/ProjectCCNx/ 
[3] Letourneau, J. “CCNxGST   - GStreamer plugin used to 

transport  media   traffic   over   a  CCNx  network.”   [Online].  
Available: https://github.com/johnlet/gstreamer-ccnx 

[4] “CCNx.”  [Online].  Available:  http://www.ccnx.org 
[5] CCNx Technical documentation. [Online]. 

http://www.ccnx.org/releases/latest/doc/index.html 
[6] “GStreamer   - open   source   multimedia   framework.”  

[Online]. Available: http://gstreamer.freedesktop.org 
[7] “PyCCN   - python   bindings   for   CCNx.”   [Online].  

Available: https://github.com/remap/PyCCN 
[8] Xu, H., et al. "Live Streaming with Content Centric 

Networking." IEEE 3rd Intl. Conf. on Networking and 
Distributed Computing (ICNDC), 2012. 

[9] Detti, A., et al. "Offloading cellular networks with 
Information-Centric Networking: The case of video 
streaming," IEEE WOMOM 2012, June, 2012. 

[10] Han, B. et al. "AMVS-NDN: Adaptive Mobile Video 
Streaming and Sharing in Wireless Named Data 
Networking," IEEE NOMEN 2013, April 19, 2013. 

 
Derek Kulinski is a Systems Engineer at 
Edmunds.com. He received his MS in Computer 
Science from UCLA, where he participated in research 
at the Center for Embedded Networked Sensing and on 
Named Data Networking. 
Jeff Burke is the Director of Technology Research 
Initiatives for the UCLA School of Theater, Film and 
Television and the Executive Director of the UCLA 
Center for Research in Engineering, Media and 
Performance. Jeff is the application team lead for NDN. 
Lixia Zhang is a professor in the UCLA Computer 
Science Department. She previously served as vice 
chair of ACM SIGCOMM, member of the editorial 
board for the IEEE/ACM Transactions on Networking, 
member of the Internet Architecture Board, and co-
chair of the Routing Research Group under IRTF. She 
is a fellow of ACM and IEEE, and holds the UCLA 
Postel Chair in Computer Science. 

 


