
NDN.JS: A JavaScript Client Library
for Named Data Networking

Wentao Shang∗, Jeff Thompson‡, Meki Cherkaoui∗, Jeff Burke† and Lixia Zhang∗
∗Department of Computer Science, UCLA. {wentao,meki,lixia}@cs.ucla.edu.

‡Los Angeles, California. jeff@thefirst.org.
†Center for Research in Engineering, Media and Performance, UCLA. jburke@ucla.edu.

Abstract—NDN.JS is the first JavaScript implementation of a
client library for Named Data Networking (NDN). It facilitates
NDN experimentation and usage by enabling end nodes to
interact with an NDN network without installing the CCNx
code package. It is also a first step towards exploring an NDN-
based Web architecture. NDN.JS is wire format compatible with
CCNx and supports the basic NDN functions of content fetching
and publishing using Interest/Data exchange. NDN.JS works
with modern Web browsers, including some browsers on mobile
devices, that support JavaScript and HTML5 WebSocket. The
client communicates with existing CCN routers via a simple
Websocket proxy. As a use case study, we create a Firefox Add-
On over NDN.JS to enable content fetching using an ‘ndn:/’ URI
scheme and identify several research issues in bringing NDN into
existing browsers.

I. INTRODUCTION

Named Data Networking (NDN) [1] [2] is a recently-
proposed networking architecture that shifts the “thin waist”
of the Internet from IP’s host-centric model to a data-centric
model, together with two important consequences. First, data
are named by applications, and the network routes directly
on these data names, rather than host addresses. Second, each
name is associated with a cryptographic key, which is used to
secure data directly. NDN is one of the major research efforts
in the broader area of information-centric networking (ICN).

Web services today provide global data dissemination, yet
its implementation is still based on the TCP/IP architecture
developed over 30 years ago, creating a disconnect between
the host-based addressing of the underlying TCP/IP stack
and the data-focused naming schemes of URIs. NDN is a
promising solution to address this mismatch in the current
Web architecture. However, a major obstacle along the road
towards an NDN-based Web is that current Web browsers do
not have inherent NDN support. To effectively address this
need in as many browsers as possible, we have created a pure
JavaScript NDN library.

In this paper, we describe the NDN.JS project, which
addresses both the high-level goal of exploring an NDN-based
web and a practical need for browser support in NDN research.
Pragmatically, it aims to enable more widespread dissemina-
tion of the NDN protocol and applications by reducing the
complexity of usage for both users and developers. Because it
is implemented in JavaScript, it enables researchers to easily
build NDN-based applications that can be delivered into one
of the most ubiquitous platforms on the Internet – the Web

browser.
NDN.JS provides a JavaScript API that can be used to

embed NDN data access and publishing at the client-side of
existing Web applications. It requires only the addition of
WebSockets [3] support in NDN routers, which is currently
achieved by a simple JavaScript-based proxy. NDN.JS is a first
step in our exploration of how the Web may evolve through the
use of data-centric protocols. It does not assume a particular
overarching approach to Web applications, but is intended
to bridge the Web services of today with NDN application
experimentation. One of the first tools built with NDN.JS was
a Mozilla Firefox Add-On, which enables Firefox to process
URIs in the NDN scheme (e.g. “ndn:/foo/bar/file.html”) and
brings NDN features “up to the user”.1

This paper is organized as follows: Section II briefly reviews
NDN; Section III introduces the NDN.JS system design; in
Section IV we present the performance evaluation of the
current NDN.JS release in various Web browsers. Section V
introduces the Firefox Add-On. Finally Sections VI and VII
discuss remaining challenges and our future plan.

II. NDN BACKGROUND AND AVAILABLE LIBRARIES

NDN retrieves data based on application-defined names
rather than host addresses. To retrieve data, the consumer
must know the name, instead of location, of that data. NDN
communication involves two packet types: Interest and Data.
An Interest packet is issued by the consumer to express what
set of data is needed. A Data packet is returned by the data
producer in response to an Interest. Both Interest and Data
packets use names to identify the data being exchanged. An
Interest is “satisfied” when a Data packet is received with a
Content Name that falls within the name prefix specified in
the Interest packet. For more detail, see [1].

An existing reference implementation of the NDN protocol
is the CCNx package [4] from PARC, which is written in C.
It is used by the CCN routers and low-level utilities. Intended
for developers and experts, it requires the skills to compile,
configure and run from the command line.

The CCNx Java libraries [5] provide useful higher-level
abstractions for manipulating segmented files, exploring the
CCN Repo and enforcing profiles for versioning and meta-
data conventions. However, in our experience, the abstractions

1The source code for NDN.JS and the Firefox Add-On is available at
http://github.com/remap/ndn-js.



2

of the Java API have not always been appropriate for our
applications research, which often explores specific protocol
features. Additionally, running NDN-based Java Applets at
the browser-side (one of our goals) requires installation of
Java, download of the library, explicit authorization from the
Web users, and integration with HTML page delivery – a
long series of steps which we believe will limit uptake and
experimentation.

The Python API (PyCCN) [6] provides a middle ground:
it offers a set of easy-to-use wrappers on top of the high-
performance C libraries. It provides object-oriented classes for
Interest, ContentObject, etc., and uses callback functions to
implement asynchronous communications. However, PyCCN
still requires manual installation of the CCNx package and
lacks native support in Web browsers, which makes it unsuit-
able for Web development. We expect to use a combination
of PyCCN and the NDN.JS libraries to do rapid prototyping
of NDN applications.

III. SYSTEM DESIGN

A. Design Goals

NDN.JS is created with the following design goals:
• Pure (and Compatible) JavaScript: In order to run on the

widest number of browsers and machine types, without
user intervention, no native code or code that required
user authorization (such as Java) should be used.

• Developer-friendly API: The API should clearly represent
the basic protocol components directly (Name, Interest,
ContentObject, and Key), while not burdening everyday
development with wire format details.

• Content Signing and Verification: The library must sup-
port content signing and verification as currently imple-
mented in CCNx using RSA signatures and SHA-256
hashes.

• CCNx Compatibility: The library should be wire format
compatible with CCNx routing and forwarding, facilitate
use in the NDN project testbed, and enable performance
comparisons.

• Lightweight: Because it is intended to be used in
browsers, the library should be as simple and low-
overhead as possible, while still implementing key NDN
features.

B. Use Cases

We describe below a few basic use cases envisioned for
NDN.JS. We are making NDN.JS package publicly available
and hope many more to be developed by others.

• Web content fetching and publishing: Web users can
use NDN.JS to communicate with CCN routers to fetch
and/or publish content conveniently using the browser.
The Firefox Add-On, described later in this paper, ex-
plores the fetching of content using an “ndn:” scheme,
which can be integrated into existing web pages.

• User interfaces to NDN applications: Browser integration
enables easy development of rich, cross-platform user in-
terfaces for NDN applications that currently exist. These

NDN

Interest Content Object

Name

KeyLocator

SignedInfo Signature

PublisherPublicKeyDigest

Security LibSecurity Lib

Encoding/Decoding LibEncoding/Decoding Lib

Transport Closure

Fig. 1. NDN.JS library architecture

may run natively on the same host as the browser, or
run elsewhere in the network and communicate with the
browser through NDN Interest/Data exchanges.

• Peer-to-peer chatting and file sharing: NDN.JS allows
Web users to act as both content producer and consumer,
which is expected to enable NDN-based P2P communi-
cation among Web users.

• Mobile Web applications: NDN-based mobile applica-
tions can be easily developed in JavaScript and quickly
delivered into Web browsers on a wide variety of mobile
devices without native application installation or manual
configuration.

C. Architecture

NDN.JS includes most of the core functionality of the
CCNx client libraries, including data fetching and publishing,
content signing and verification, exclusion filters, and binary
name storage.

The architecture of the NDN.JS library is shown in Fig. 1.
The “NDN” class is the top level abstraction, which interacts
with other components of the protocol (Interest, ContentOb-
ject, etc.). NDN.JS provides a set of security libraries, based
on open source implementations of RSA/SHA algorithms,
to perform data signing and verification. It also implements
encoding and decoding of Interests and Content Objects to
and from a CCNx-compatible wire format. Transport service
classes lie in the bottom of the stack, which communicate
with encoding/decoding libraries to process NDN packets on
the wire.

Table I shows a list of browsers that can run NDN.JS
successfully. The version number of the browsers we used in
the compatibility test is also shown in the list (earlier versions
may also work).

D. WebSockets Transport Service

Conventional HTTP-based Web implementations, such as
synchronous GET/POST or asynchronous XMLHttpRequest,
are not suited for NDN communications due to the lack



3

TABLE I
TESTED BROWSER SUPPORT OF NDN.JS

Brower Version Test Platform

Chrome 23.0 Windows / MacOSX

Firefox 17.0.1 Windows / MacOSX

Safari 6.0.2 MacOSX

Internet Explorer 10.0 Windows

Firefox Mobile 17.0 Android

Safari Mobile 6.0.1 iOS

Browser 
Client

NDN TestBed

CCN RouterCCN Router

Browser 
Client

WebSocket ProxyWebSocket Proxy

NDN over 
TCP/UDP

NDN over 
WebSocket

CCN RouterCCN Router

CCN RouterCCN Router

CCN RouterCCN Router

NDN over 

W
ebSocket

CCN RouterCCN Router WebSocket ProxyWebSocket Proxy

NDN over 
TCP/UDP

NDN over 

WebSocket

Fig. 2. WebSocket proxies connecting browsers to the NDN testbed

of “server push” capability.2 The WebSocket protocol [3],
on the other hand, provides a generic JavaScript interface
to enable full-duplex TCP connections to any remote host.
NDN.JS adopts WebSocket as the default transport for NDN
packet exchange. It also provides a flexible interface for
developers to implement their own transport services using
other technologies. For example, a XPCOM-based transport,
described in Section V, provides optional, higher-performance
native TCP and UDP functionality for Firefox Add-Ons.

Since current CCN routers do not support the WebSocket
protocol, we have developed a WebSocket proxy that accepts
WebSocket connections from NDN.JS instances and passes
the packets over TCP/UDP to CCN routers. We expect the
WebSocket transport to be supported by CCNx in near future
to provide a more efficient and higher-performance solution.

Fig. 2 illustrates the relationship between the three entities:
client Web browsers, WebSocket proxies and CCN routers in
an NDN testbed. The client browser establishes WebSocket
connection to the proxy, which in turn maintains the TCP/UDP
connection to the router. Upon receiving a WebSocket frame,
the proxy extracts the original NDN packet and forwards
the packet to the CCN router via TCP or UDP. When an
NDN packet is received from the router, the proxy encodes
the packet into WebSocket frames before forwarding to the
browser. The proxy is also responsible for fragmentation
and reassembly if the NDN packet cannot fit into a single
WebSocket frame.

The WebSocket proxy is implemented in straightforward

2A HTTP server cannot initiate communication to a client: it cannot send
data to the client without the client sending a request first, nor can it send a
request to the client.

JavaScript code running on Node.js [7], a widely used
JavaScript execution platform, and using an open source
WebSocket library [8]. The proxy listens on TCP port number
9696, one port number above the CCN daemon (9695). This
allows operators to deploy the WebSocket proxy and the CCN
daemon on the same device.

E. Application Programming Interface
As discussed above, currently there are three versions of

NDN API available to developers. The C API provided in
CCNx package exposes low-level details of the protocol (e.g.
parsing wire format ccnb), while the Java API in that package
is, in our experience, abstracts away too far from the core
features of the protocol for many application experiments.
PyCCN [6], the Python wrapper of the C API, has the key
elements of the protocol represented in a straightforward way,
facilitating experimentation without requiring one to deal with
the wire format in applications unless necessary. NDN.JS
follows the PyCCN approach, aiming to further reduce the
development and deployment effort needed to use NDN. We
feel this is especially important during this early stage of
NDN experimentation, even given the performance implica-
tions. Note the Web community is making continuous efforts
to improve the performance of JavaScript engines, that this
project can leverage.

The programming interface in NDN.JS is designed to be
consistent with PyCCN. The library is first initialized with the
hostname or IP address of a WebSocket proxy or other trans-
port provider. By default, the library will select an available
router from the NDN testbed. For the time being this is done
by randomly selecting a running proxy while we are waiting
for NDN autoconfiguration to be deployed that can provide a
most appropriate selection.

After connection to the NDN network, the top level “NDN”
class provides two important methods:

• expressInterest: fetch the named data from CCN routers.
• registerPrefix: publish local content by registering the

content name to CCN routers.
These two methods are asynchronous, which is appropriate
both for NDN Interest/Data exchange and JavaScript pro-
gramming. Application developers provide callback functions
(encapsulated as ‘Closure’ objects) to handle the responses.
The following two pieces of JavaScript codes shows skeleton
examples of using NDN.JS to fetch and publish contents.

var ndn = new NDN(); // Use default proxy selection
var DataReceivedClosure = function

DataReceivedClosure() { Closure.call(this); };
DataReceivedClosure.prototype.upcall =
function(kind, upcallInfo) {
if (kind == Closure.UPCALL_CONTENT) {

var content = upcallInfo.contentObject;
console.log(content);

}
return Closure.RESULT_OK;

};

ndn.onopen = function() { // ’open’ event callback
ndn.expressInterest(new Name(’/ucla.edu/foobar’),

new DataReceivedClosure()); };



4

ndn.transport.connectWebSocket(ndn);

Listing 1. Content retrieval example

var ndn = new NDN(); // Use default proxy selection
var ReturnDataClosure = function ReturnDataClosure()

{ Closure.call(this); };
ReturnDataClosure.prototype.upcall =
function(kind, upcallInfo) {

if (kind == Closure.UPCALL_INTEREST) {
// Respond to interest that generates the upcall
var name = upcallInfo.interest.name;
var co = new ContentObject(name,

’Hello, world! This is NDN.JS.’,
new SignedInfo(), new Signature());

co.sign();
upcallInfo.contentObject = co;
// Content will be sent out by NDN.JS
return Closure.RESULT_INTEREST_CONSUMED;

}
return Closure.RESULT_OK;

};

ndn.onopen = function() { // ’open’ event callback
ndn.registerPrefix(new Name(’/ucla.edu/foobar’),

new ReturnDataClosure()); };
ndn.transport.connectWebSocket(ndn);

Listing 2. Content publishing example

IV. EVALUATION

In this section, we analyze the performance of NDN.JS
by measuring the throughput of content retrieval in different
Web browsers. We compare the throughput with that of
HTTP asynchronous GET and the C implementation of the
CCNx command-line utilities. We also study the impact of
the signature verification functionality in NDN.JS.

A. Methodology

To conduct the throughput test, we set up an isolated
network environment with two Macintosh machines, the CCN
router and the CCN client, directly connected to each other
via a 100Mbps link. We configured the WebSocket proxy
to run on the CCN router together with ccnd, which is the
common practice on the current NDN testbed. To test the
HTTP throughput, we also ran an Apache HTTP daemon on
the router machine.

During the test, the client pulls down two images of different
sizes (742KB and 28.7 MB). These files were pre-installed on
the router using ‘ccnputfile’ utility, which automatically cuts
the input file into small chunks (4096 bytes per chunk by
default) with consecutive segment numbers.

We ran the test scripts on the latest versions of three popular
Web browsers available in MacOSX: Firefox, Chrome and
Safari. Each test is repeated for 10 times in order to take the
average result. To test NDN.JS, we implemented a Closure that
automatically fetches all the chunks of the file. For HTTP, we
simply issued an XMLHttpRequest (XHR) call that fetches the
image file from the Web server. To compute the throughput, we
recorded the start and stop time of the entire fetching process
in JavaScript. To test the C library, we use the ‘ccncatchunks2’
command in CCNx to fetch the segmented file, and then read

TABLE III
PERFORMANCE IMPACT OF CONTENT VERIFICATION IN NDN.JS

Browser Throughput (Mbps) with Throughput (Mbps) with
Type Verification Disabled Verification Enabled

Chrome 46.01 10.15

Firefox 48.66 2.313

Safari 65.66 3.319

the throughput from the log information. To keep consistent
with NDN.JS and HTTP, content dumping (which introduces
file I/O overhead) in this utility is disabled.

Both the NDN.JS closure and the C command implement
the same pipelining algorithm similar to TCP slow start to
issue multiple outstanding Interests. The Closure maintains
a sliding window that constrains the number of un-replied
Interests. The window size starts from 1 and is bounded by
a maximum value of 32 segments. Every time a segment
is returned within the Interest lifetime the window size is
increased by 1 to allow more Interests to be sent. When a
timeout happens, the window is shrinked to 1 to slow down
the transmission speed.

B. Results

1) Transport Throughput: We first show the transport
performance with signature verification turned off (for both
NDN.JS and C utility). Table II summarizes the test results.
The performance of NDN.JS varies across browsers due to
different efficiency of the JavaScript engines. It is interesting
to see that the performances of NDN.JS and C library are
comparable, especially in the large file case. The throughput of
fetching small file versus large file with NDN.JS has noticeable
difference because in longer data transmission the initial ‘slow
start’ phase has less impact on the overall performance. Note
that since the test machines are on the same Ethernet link,
there is no Interest timeout throughout the fetching process.

As expected, XHR (HTTP) generally achieves better per-
formance than NDN.JS and the C utility, The most significant
factor for NDN’s much lower performance than HTTP is
the parsing of CCNx packet header for every packet, as
opposed to HTTP transfer where image file is considered one
object and the browser only parses HTTP header once. In the
current untuned implementation, CCNx header parsing incurs
significant overhead.

2) Signature Verification Speed: We repeated the small
file throughput test with signature verification turned on. The
comparison with the previous result is shown in Table III.
We can see that the signature verification operations greatly
reduces the performance of content fetching. Among the three
browsers, Chrome gives the best performance when verifica-
tion is turned on. However, the throughput is still about 5 times
slower than in the non-verification case. This is due to the
fact that JavaScript is not optimized for computation-intensive
tasks, which makes signature verification the bottleneck in
content processing.



5

TABLE II
THROUGHPUT TEST RESULTS (UNIT: MBPS)

File Size
NDN.JS (WebSocket) Native HTTP (XHR) ccncatchunks2

Chrome Firefox Safari Chrome Firefox Safari (C utility)

742 KB 46.01 48.66 65.66 83.6 84.73 82.51 71.22

28.7 MB 62.26 71.07 74.75 88.71 89.33 89.02 75.41

V. APPLICATION EXAMPLE:
FIREFOX NDN PROTOCOL AND TOOLBAR ADD-ON

A. Basic Design

We leverage the core library of NDN.JS to create a Firefox
NDN Add-On in JavaScript that implements an ‘ndn:’ URI
scheme, which can be entered in the browser location bar or
used in HTML anchor tags. Its goals are to exercise the library
and provide a familiar browser interface for experimenting
with NDN.

For this Add-On, an Interest is converted into a URI using
the following conventions.

• The Name field of the Interest (including content ver-
sion and segment number) is encoded in the URI
according to the CCNx URI scheme. For example,
ndn:/ucla.edu/contact.html/%00%01 refers to the second
segment of /ucla.edu/contact.html.

• Interest selector fields, such as the ChildSelector,
AnswerOriginKind, etc. are appended to the URI
in the form of ?ndn.SelectorField=value. For exam-
ple, ndn:/ucla.edu/maps.html?ndn.ChildSelector=1 se-
lects the rightmost child of the corresponding content.
This exposes significant features of NDN.

When processing a URI beginning with ‘ndn:’, Firefox
automatically calls the add-on to retrieve the content. The
add-on converts the URI to an Interest packet and requests
the content from upstream. If the content is fragmented (i.e.,
the name of the first packet returned contains a segment
number) while no segment number is specified in the original
Interest name, all the segments of that content will be fetched
sequentially until the last segment is met. This approach works
directly with files stored in the CCN Repo using its standard
naming conventions.

B. Additional features of the Firefox Add-On

In addition to immediately enable content fetching via NDN
with potential benefit of multicast delivery and in-network
caching, the Add-On also helps us to explore how to provide
various application-level possibilities to content publishers and
consumers via NDN. A few such features are described below,
implemented in JavaScript using NDN.JS.

1) Long-term Secure Links: NDN support in the browser
may provide the option for consumers to verify that (static)
named content retrieved a long time after its creation is indeed
the content originally linked with a URI. This can be achieved
by including a content digest in the URI. Our implementation
supports this by enabling an application to create names with
a ContentDigest after the version, using the “guid” special

marker “%C1.M.G” [9]. E.g. a user may express an interest for
a license file ndn:/example.com/license.html which matches:

ndn:/example.com/license.html/%FD%05%0BZ%94%B4l/
%C1.M.G%C1<binary-XML-encoded ContentDigest>

In this case, the Add-On detects the special name component,
computes the digest of the received file, compares this to the
ContentDigest in the name and shows an error if they do not
match.

This could be used not only by web-based applications but
also by the browser itself. Say, for example, the user views
some content from the network and bookmarks the URI. The
browser can at that time append a ContentDigest to the URI.
If, much later, the user would like to view the same content
again, she can click the bookmark and retrieve the file, perhaps
from a caching repository. The digest can be verified against
the one in the bookmark, and the user will know if she is
viewing the exact same content, even if the signer’s private
key has been compromised in the meantime. This, of course,
assumes that the hash algorithm used to generate the digest is
secure at the time of retrieval.

2) Get Latest Version: In NDN, application-level protocols
for data retrieval often require more than one Interest/Data
exchange. Retrieving the latest version of named content is an
example; it is typically implemented by iterative requests for
named data using the ChildSelector and Exclusion fields in
the Interests to get the most recent version of the content.3

The Add-On implements this design pattern in JavaScript
and exposes it to the user of the browser. If a data name
(URI) uses the CCNx versioning strategy, the user can click
Get Latest in the NDN toolbar to request the latest, which
issues the appropriate requests, and still verifies the overall
ContentDigest if used. Such common routines may likely be
backported to the NDN.JS library.

3) Representing Other NDN Semantics in the UI: Through
the Add-On, we will also explore how best to convey NDN
semantics and common patterns to browser users and test
the direct application of NDN as an HTTP alternative. For
example, if the user puts a prefix in the address bar that
is matched with a longer name, the browser updates the
address bar with the full name (without segment number) after
retrieval. This is particularly important to show the version
number of content retrieved, where applicable.

4) XPCOM Transport Service: Taking advantage of the
modularity of NDN.JS, the add-on implements a new transport
service using the Firefox XPCOM interface [11]. The new

3For an example, see the discussion of live video streaming in [10].



6

transport allows the add-on to directly connect to CCN routers
via raw TCP or UDP socket, which eliminates the need of
proxy indirection.

VI. DISCUSSION

NDN.JS is both a practical solution to facilitate NDN
deployment by enabling the protocol in browsers, and an
exploratory step toward building an NDN-based Web ar-
chitecture. As such, the project raises many questions and
challenges.

An important challenge at the library level is to develop
appropriate security models in support of real applications,
and to establish sandboxing guidelines similar to those used by
JavaScript itself. A simple example is in the case of storage, a
critical feature of NDN nodes. Current Web browsers prohibit
Web pages from accessing local disk storage, which forces
NDN.JS to store all the fetched or published contents in the
memory. Although HTML5 provides a set of File API [12] for
Web APPs to access a sand-boxed file system, this API is not
yet widely supported. We envision that with the popularization
of the new File API it would be feasible to implement
persistent local storage for NDN.JS, to support both publishing
and caching of data when browsers are disconnected.

Another key challenge is how to interpret NDN ContentO-
bjects for rendering by the browser. MIME types are the
current standard for recognizing and rendering content “on the
Web”, and NDN.JS likely should integrate such content typing
(perhaps through a well-defined metadata naming scheme) so
that typical content can be rendered properly in the browser.
This issue is application-specific but a convention is still
necessary to guide the Web development with NDN.JS.

An open question arises from introducing NDN to existing
applications such as the Firefox Add-on, which exposes NDN
semantics directly to the user: how one should enable proper
specification of various components and selectors (content ver-
sioning, Interest, segment number, etc.) of the NDN Interest.
The Add-On makes an initial attempt by encoding Interests
into a single URI string and providing different features in the
UI (toolbar) to represent NDN capabilities.

A fourth challenge comes from JavaScript itself, which as
a scripting language does not achieve the high performance
of the C library nor provide direct memory management and
other opportunities for optimization. One of the major perfor-
mance hurdle is the signature verification functionality, which
requires JavaScript to manipulate large integer objects. We
expect that new standard API (such as the Web Crypotography
API [13] under development at W3C) may appear in the
future to offload some of the computational complexity to the
browser kernel.

Finally, we plan to explore how NDN offers certain revolu-
tionary, rather than evolutionary, changes for Web applications
– in particular through the availability of per-packet signatures
and typical use of encryption for access control. Traditional
Web security model enforces the “same origin policy (SOP)”,
which requires that the scripts and Web pages loaded from
one domain can normally only access resources published

from that domain. Modern JavaScript transports, such as the
WebSocket protocol, allow cross-origin resource access via
‘Origin’ header negotiation between client and server [14].
The NDN convention of encryption-based access control (e.g.
using signed Interest [15]) provides a more flexible and scal-
able alternative to the origin-based security model. Currently
we have only scratched the surface in this research field.

VII. CONCLUSION AND FUTURE WORK

This paper described NDN.JS, a JavaScript client library
for Named Data Networking, to facilitate the development and
deployment effort for NDN-based applications on the browser
platform. We also created a Firefox add-on as a first use case
of NDN.JS. This exercise helps shed new insights on how to
migrate existing platforms onto NDN data transport, as well
as remaining open issues.

We believe NDN.JS can also serve as the first step toward
redesigning the Web architecture with the data-centric seman-
tics provided by NDN. Our planned future work includes
completing the implementation of content verification and key
management functionalities, the development of applications
that explore the possibilities of an NDN-based Web, address-
ing the challenges discussed above, and improving the NDN.JS
design. The release of NDN.JS code serves as our invitation
to all interested parties to join us in this new exciting pursuit.

REFERENCES

[1] “Named Data Networking (NDN) Project,” Oct. 2010. [Online].
Available: http://www.named-data.net/techreport/TR001ndn-proj.pdf

[2] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proceedings of the
5th international conference on Emerging networking experiments and
technologies, ser. CoNEXT ’09. New York, NY, USA: ACM, 2009, pp.
1–12. [Online]. Available: http://doi.acm.org/10.1145/1658939.1658941

[3] I. Fette and A. Melnikov, “The WebSocket Protocol,” RFC 6455
(Proposed Standard), Internet Engineering Task Force, Dec. 2011.
[Online]. Available: http://www.ietf.org/rfc/rfc6455.txt

[4] “Content-centric networking in c documentation.” [Online]. Available:
http://www.ccnx.org/releases/latest/doc/ccode/html/

[5] “Content-centric networking in java documentation.” [Online].
Available: http://www.ccnx.org/releases/latest/doc/javacode/html/

[6] “Pyccn.” [Online]. Available: https://github.com/remap/PyCCN
[7] “Node.js.” [Online]. Available: http://nodejs.org/
[8] “ws: a node.js websocket implementation.” [Online]. Available:

http://einaros.github.com/ws/
[9] “Ccnx technical documentation.” [Online]. Available:

http://www.ccnx.org/releases/latest/doc/technical
[10] D. Kulinski and J. Burke, “NDN Video: Live and Prerecorded Streaming

over NDN,” Technical Report, The NDN Project Team, Sep. 2012.
[11] “Xpcom transport.” [Online]. Available: https://developer.mozilla.org/en-

US/docs/XPCOM Interface Reference/nsISocketTransportService
[12] E. Uhrhane, “File API: Directories and System,” World Wide Web

Consortium, Apr. 2012. [Online]. Available: http://www.w3.org/TR/file-
system-api/

[13] D. Dahl and R. Sleevi, “Web Cryptography API,” World
Wide Web Consortium, Jan. 2013. [Online]. Available:
http://www.w3.org/TR/2013/WD-WebCryptoAPI-20130108/

[14] A. van Kesteren, “Cross-Origin Resource Sharing,” World Wide Web
Consortium, Apr. 2012. [Online]. Available: http://www.w3.org/TR/cors/

[15] J. Burke, A. Horn, and A. Marianantoni, “Authenticated Lighting Control
Using Named Data Networking,” Technical Report, The NDN Project
Team, Oct. 2012.


