Sharing mHealth Data via Named Data Networking

Haitao Zhang Zhehao Wang Christopher Scherb
~ UCLA UCLA University of Basel
zhtaoxiang@gmail.com zhehao@remap.ucla.edu christopher.scherb@unibas.ch
Claudio Marxer Jeff Burke Lixia Zhang
University of Basel UCLA UCLA

claudio.marxer@unibas.ch jburke@remap.ucla.edu

ABSTRACT

This paper introduces NDNFit, a distributed mobile health
(mHealth) application built to use the newly proposed Named
Data Networking (NDN) architecture instead of TCP/IP.
The design is inspired by the Open mHealth ecosystem.
Open mHealth uses a traditional cloud-enabled mobile ar-
chitecture, but aspires to provide users with direct control
of how their personal health data is used by applications
and shared with other users within the ecosystem. NDNFit
names and secures users’ health data directly using NDN
network primitives, a more effective building block towards
the ideal of user control than IP-based solutions. Its design
illustrates that NDN’s data-centric approach to networking
can be a better fit than current networking approaches for
mobile health applications, especially those that foreground
individuals’ control over their own data and, at the same
time, target interoperability. This paper discusses the de-
sign and initial implementation of an NDNFit prototype,
which offers end-users a mobile fitness tracking application.
The paper identifies important differences between NDN and
TCP/IP for mHealth, concluding with a discussion of future
work and research opportunities.

CCS Concepts

eNetworks — Network properties; eComputer sys-
tems organization — Distributed architectures;

Keywords
mHealth, Security, Named Data Networking

1. INTRODUCTION

Advances in personal mobile technology are enabling users
to collect and share health-related information outside of
clinical settings in unprecedented ways. Recent surveys sug-
gest there are more than 13,000 health-related apps avail-
able to Apple iPhone users and more than 6,000 to Android
users [3]. Millions now use smartphones to count steps,
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

ICN’16, September 26-28, 2016, Kyoto, Japan
© 2016 ACM. ISBN 978-1-4503-4467-8/16/09. .. $15.00
DOL: http://dx.doi.org/10.1145/2984356.2984379

lixia@cs.ucla.edu

& @

Patient/Caregivers

analysis/
visualization/
feedback

Processing

Data transport
Data capture

Reusable health data
and knowledge services

specific data exchange
protocols

Standardized personal
{data vaults and health

Mobile ﬁlatforms

Figure 1: The data-centric hourglass Open mHealth
architecture, adapted from [4].

check heart rates and blood pressures, and share fitness ac-
tivities. To achieve this functionality, most mHealth appli-
cations rely on cloud services built over TCP /IP networks to
store and manage data. In doing so, they inherit an admin-
istratively centralized—if technically distributed—approach to
sharing and managing access to health information that is
collected from and owned by individuals.

Open mHealth [4] leverages the public’s everyday mobile
devices (e.g., smartphones and tablets) to extend evidence-
based interventions beyond the reach of traditional care, and
thereby improve disease management and prevention. Cen-
tral to its Internet-inspired model is using data exchange as
the thin waist, or common layer, of interoperability, as shown
in Figure 1. Another crucial part of this vision is data ex-
change being user-controlled and privacy-aware across users,
devices, applications, and vendor boundaries. However, this
vision is challenging to achieve over existing cloud services
that are built up from TCP/IP’s host-centric approach to
communication, which emphasizes hosts, sessions, and con-
nections as the fundamental building blocks of distributed
services.

NDN is a proposed future Internet architecture that makes
exchange of named data packets the “thin waist” of informa-
tion dissemination, in contrast to TCP/IP’s host-to-host se-
mantics. Further, NDN incorporates security building blocks
at the network layer through signatures on every data packet.
While a full description of the NDN architecture is outside
the scope of this paper!, even this basic description con-

!The reader is referred to [1] for more information.

tains a motivation for exploring Open mHealth on NDN.
Both use named data for interoperability-Open mHealth as
an application ecosystem, and NDN at the level of network
architecture. Both seek to empower data owners to exer-
cise control over their data without reliance on a particular
secure channel, type of storage, or communications medium.

NDNFit is a prototype mHealth ecosystem designed and
implemented to explore these alignments and investigate
how NDN may be more effective than TCP/IP for certain
types of modern applications. This paper provides prelimi-
nary results of this effort—an initial design, operational pro-
totype (NDNFit), and discussions of what has been learned
so far in creating an Open mHealth ecosystem on NDN.

2. DESIGN OF NDNFIT

NDNFit was designed to offer end-users a familiar fitness
tracking application, and simultaneously serve as a proto-
type mobile health ecosystem that uses NDN to communi-
cate. To limit the problem scope, it focuses specifically on
physical activity data, e.g., records of walking or running
collected in a consumer (non-clinical) context. From an end-
user’s perspective, NDNFit is currently experienced as a mo-
bile and web-based application that 1) the user runs on their
phone while exercising to capture and report time-location
traces using GPS data; 2) manually or automatically classi-
fies and segments the data to identify walking, jogging, and
running activity; 3) reports activity statistics back to the
user on a mobile website; and 4) provides identity manage-
ment, data verification, and data access control features.

Unlike a traditional fitness application, NDNFit is de-
signed to enable end-users to select from many possible com-
ponents for data storage, processing, and visualization, each
potentially operated by a different provider. Following the
philosophy of Open mHealth, NDNFit aims to be an ecosys-
tem of value-added services, from which users essentially
compose their own health data processing networks. While
one can aspire to this using the TCP/IP Internet, there
are significant challenges. For example, scalable data stor-
age and reliable access control are hard to achieve outside
of cloud services from major providers, which are inter-
nally quite complex. Further, interoperability requires not
only defining common data taxonomies and formats, but
also mapping them to service and authentication APIs and
specific IP endpoints, potentially across different providers.
These dependencies and mappings, which become increas-
ingly complex in large-scale deployments with real-world se-
curity requirements, limit innovation.

With NDNFit, the aim is to show that NDN’s primi-
tives simplify how a distributed application ecosystem can
be brought to life, with lower barriers to entry for innova-
tive services. NDNFit uses consistent data naming alone
to achieve interoperability, rather than also having to de-
fine service APIs like Open mHealth’s RESTful interfaces.
It achieves authentication and access control of the data
directly at the packet level, instead of inferring data au-
thenticity from TLS connections. This reduces reliance on
perimeter-based security and simplifies service chaining. Be-
low, NDNFit’s naming conventions are described, followed
by brief descriptions of how named data is leveraged to sup-
port verification, access control, and distributed processing.

2.1 Namespace design
Figure 2 illustrates the NDNFit namespace, which was de-

signed iteratively to meet several requirements: 1) to name
the data from an application perspective, i.e., to name the
physical activity samples themselves as the “thin waist” of
interoperability; 2) to make common data requests efficient
using only Interest-Data exchange; 3) to reflect the trust re-
lationships between different system elements in data names;
and 4) to enable name-based access control.

Our initial approach is to name the data in a way that
makes sense for the application. The first two components,
/org/openmhealth, identify the ecosystem and provide a
trust anchor, openmhealth/key, for its components and, as
will be seen in Section 2.4, also for users’ health data. Each
user has one or more unique identifiers in this namespace,
e.g., <user-id>.> Bach user namespace has four children:
key, devices, data, and read, containing data on crypto-
graphic identity, devices acting as health data sources, the
(fitness) data samples themselves, and read-authorization
data for name-based access control, respectively.

Fitness data consists of time-location series samples
data/fitness/physical_activity/time_location named
with their timestamp, which enable Interests to be easily
constructed to retrieve data for any given time intervals. In
cases when the number of samples that an application wishes
to store for a given timestamp range exceeds the NDN packet
size, the data is further split into named segments.® Follow-
ing approaches in past participatory sensing work [2], these
time-location traces are asynchronously annotated with ad-
ditional metadata by various services in the ecosystem, an
example of which is the bout, which describes a time range
of activity samples that has been classified by a data pro-
cessing unit as running, walking, etc.

Sections 2.3, 2.4, and 2.5 describe modifications and ad-
ditions to the namespace to support efficient data transport
for intermittently connected sources, identity and trust man-
agement, and data-centric access control, respectively.*

2.2 Application architecture

The NDNFit namespace names the data operated on by
various components of the NDNFit prototype. Following
the Open mHealth application architecture, NDNFit defines
four main components, shown in Figure 3: Capture Apps
that collect health data and publish it according to names-
pace and payload conventions described in the previous sec-
tions; Data Storage Units (DSUs) that are responsible
for the persistent storage of users’ health data; Data Pro-
cessing Units (DPUs) that provide composable, value-
added post-processing of that data; and Data Visualiza-
tion Units (DVUs), which enable the user to visualize and
interact with their personal health data.

Users interact with the data via their mobile devices, which
run the capture application (fitness data producer) as well as
the “identity manager” and “authorization manager” to se-
lect signing keys and configure access control. These mobile
devices also access DVUs that visualize and display fitness
data from the NDNFit namespace.

One or more data storage units (DSUs) serve as reposi-
tories for users’ health data. Conceptually, DSUs are simi-

2Services are similarly identified.
3Data payloads are outside of the scope of this paper, but
typically JSON in our prototype.
4Supporting producer mobility and multiple DSU providers
is outside this paper’s scope, but will be addressed in future
work, likely through techniques like those described in [12].

/org/openmhealth

[key]

[<user-id> | [<service-id>(DPU, DVU) |

[<version>] [devices |

key [_key |

[<device-id> |

["<version> | [<version> |

key

<version>

read

[okey | EkeY |
T T

[fitness |

[Physical_activity] [D-KEY | E-KEY |
I I

[bt] [time_location | [oKev | [Ekev |

‘ time_location

Physical_activity

[okey | [E-kEY |

<timestamp>

D-KEY I E—KE’\’(|

\ \ \
** [<timestamp>] [catalog \\\ C-KEY |
\ [\

‘ <start_timestamp_hour> ‘ ‘ <start_timestamp_hour> ‘ ‘ <segment>(opt.) |[ti

|| <start_timestamp_hour> | [<begin> |

‘ <end> ‘ ‘ ‘ ‘<start,' ,hour>‘

[<end_timestamp_hour> | [<end_ _hour> |

PUBLIC KEY™
DATA OBJECT

<consumer-id>

ENCRYPTED™
PRIVATE KEY

\ [
DATA OBJECjT <version> ‘ <end_timestamp_hour> ‘ ‘sta(istic‘ ‘ source ‘ ‘ type ‘
o~

[(<version> | <end_timestamp_hour>

FOR

<E-KEY name>

running || walking | stiting || DATA OBJECT
DATA OBJECT

Calories expended,
etc.

<E-KEY name>

SYM KEY'—

SYM KEYT=
ENCRYPTED
BY E-KEY

ENCRYPTED
BY E-KEY

Figure 2: NDNFit namespace and data objects.

User’s mobile device

Capture Application | | ID manager
Configuration Website
=
ccess
Control Name Management
r TN[m'b_ ||_A — fT — [Name Assignment]
J jorary uto config Register [Certificate Issuing |
and
$ Syne configure System Configuration
Data Storage Unit (DSU) Recist [_DPU & DVU configuration |
egister|
[Sync with others 9 [Application Dispatch |
| Storage
[Packet Encapsulation] Sync T Register
Data Visualization Unit (DVU)
$ Sync | |
R Sync with DSU
Data Processing Unit (DPU) egister -
- [Result Display |
[Sync with DSU |

[Data Process |

Figure 3: NDNFit application architecture.

lar to Personal Data Vaults (PDVs) described in [5]. DSU
providers offer health data storage under a fiduciary respon-
sibility to protect and not to profit from the user’s data, and
enable selective sharing with other users and services. Sim-
plifying provisioning, interoperability, and selection of DSUs
empowers users through more options—e.g., one could run a
personal repo transparently replicated by a commercial data
vault provider in a friendly jurisdiction.

Data processing units (DPUs) are entrusted by users to
consume raw data and produce derived data on demand,
such as the classification annotations in the bout namespace.
Using Named Function Networking (see Section 2.6), DPUs
produce derived data in response to requests from DVUs.

Finally, a set of processes manage the /org/openmhealth
namespace, acting as a root of trust and assigning identities
to users, DSUs, DPUs, and DVUs.?

5The administrative structure of these processes is an impor-
tant open question; for now we envision a non-profit consor-
tium that manages the namespace simply to avoid collision.

2.3 Data transport protocol

NDN employs a request-response model. Instead of rely-
ing on application-layer protocols to determine which host
has desired data, consumers issue Interests to the network
layer directly for named data and rely on the network to
provide matching Data packets if available. NDNFit data
consumers issue Interests in the namespace described in Sec-
tion 2.1. In it, physical activity samples are named uniquely
with the time they are generated. These timestamp-containing
names are descriptive from an application perspective, allow
asynchronous publishing (unlike sequence numbers), and en-
able random access simply by constructing appropriate In-
terest names. However, consumers may not know the exact
timestamp they wish to retrieve, and it can be difficult to
determine through Interest-Data exchange alone when new
data become available within a time interval, e.g., as post-
processed data become available asynchronously.

Thus, the namespace also includes a data catalog provid-
ing one level of indirection to consumers that can benefit
from it. Catalogs are data packets similar to manifests [6],
with the structure given in Figure 4 and naming shown in
Figure 2. Like packets containing fitness samples, they are
named with a timestamp, but are published by data pro-
ducers at a predefined interval. For example, if the prede-
fined interval is ten minutes, the catalog packet with ISO
8601 timestamp 20160101T100000 will contain the names
of data packets produced between 20160101T100000 and
20160101T101000. Catalogs are versioned so they can be
updated when new data for a given time interval are made
available. Consumers wishing to use catalogs send Interests
to fetch the catalog first, extract the data names, then issue
further Interests for the constituent Data packets.

2.4 Identity and trust management

Authenticity of health data is critical. In most deployed
services for consumer mobile health, including Open mHealth,
data authenticity is established through interactive authen-
tication to trusted servers, e.g., via TLS with implicitly

Catalog name

meta info

data name 1 (produced)

data name n (produced)

signature

Figure 4: The catalog packet format.

Signed by <
Signed by <
Signed by <|

Figure 5: Trust relationship for NDNFit application.

/org/openmhealth/<user-id>/<device-id>/<app-id>
(The identity of an application running on a mobile device)

/org/openmhealth/<user-id>/<device-id>
(The identity of a mobile device)

/org/openmbhealth/<user-id>
(The identity of a user)

/org/openmhealth
(The root identity of openmhealth)

trusted certificates. This ties the trust in the data to the
connection over which it is received, as opposed to making
it inherent in the data itself [8]. This poses challenges for cre-
ating an interoperable ecosystem in which sharing authentic
data is a key concern. These challenges can be addressed by
data-centric security in NDN.

In NDNFit, the root of trust authorizes a user (or a ser-
vice) to publish data under the /org/openmhealth names-
pace by signing a key the user controls. Keys are held in
NDN named data objects using a standard certificate format
that binds keys and namespaces. A user signs a device’s key,
and the device signs application keys with its own key to au-
thorize the apps. Health data is acquired and published by
authorized applications on authorized devices.

That is, processes producing health data, like the mobile
capture app, sign the data they produce using keys from a
trust chain with the user’s key at the root. Applications,
such as the DPU and DVU, can then verify the data’s va-
lidity by traversing this chain—either to the user’s root key,
or all the way to the Open mHealth root key, depending on
their trust policies—and caching the result for further use.
The starting point to this chain is obtained from a data
packet’s Key Locator field. The hierarchical relationship
used by NDNFit is shown in Figure 5. How NDN enables
such relationships to be easily described and verified is dis-
cussed below.

Verifying data using this trust model leverages the NDN
team’s prior work in schematized trust[10], in which the re-
lationship between data names and their expected signing
key names can be expressed using regular expressions. ND-
NFit has a preconfigured trust schema that can be pub-
lished as named, signed data in the application ecosystem,
and then suggested or selected by services (or end-users),
enabling data consumers to consult the schema and verify
any received data consistently, regardless of where it comes
from or where it is stored, eliminating the dependency on
“connection-based” security. This model can be easily ex-
tended to the non-hierarchical, web-of-trust style models ex-
pected for users, which are not discussed here.

Section 3 describes how the NDNFit prototype manages
the creation and assignment of certificates and keys.

2.5 Access control

In conversations with Open mHealth developers, OAuth-
style authentication has been described as a significant pain
point in its implementation over the existing Internet, es-
pecially when considering service chaining. NDN provides
important, if still under development, advantages over such
approaches. Per-packet signatures and schematized trust,
described above, enables data verification without connec-
tion or session authentication. Similarly, encrypting data
at creation enables access control to be achieved indepen-
dently of how data is exchanged. Name-based access con-
trol (NAC) [11], which was developed with NDNFit as a
potential use case, is adopted to test its applicability and
effectiveness.

NAC provides a data-centric access control mechanism
with the basic relationships between keys and data shown
in Figure 6. Data is divided into minimum access units
(MAUS) based on the acceptable granularity of access con-
trol. Each MAU is encrypted with a unique symmetric con-
tent key (C-KEY) when it is produced, for example, by the
capture application or DPU. The data owner, which may be
different from the data producer, generates a list of asym-
metric key pairs (key-encrypt key KEK and key-decrypt key
KDK), each of which is a consumption credential for accessing
a given set of MAUs. The owner encrypts the KDK for ev-
ery authorized consumer (e.g., a DPU or DVU) using that
consumer’s public key. Data producers fetch and use data
owners’ KEKs to encrypt the C-KEYs of the data covered by
the consumption credentials’ access authority. To read en-
crypted data, consumers fetch the data, C-KEY, and KDK,
decrypting them in reverse order. More details, including
the management of consumption credentials and duration
of access, are described in [11].

NAC provides a building block to enable data owners to
control access right as their data is produced, independently
of how they are exchanged. Granting access to MAUs of user
data requires no online service negotiation. Access is granted
by encrypting data’s C-KEYs for the consumption credentials
whose access authority covers the data, and encrypting KDKs
of those consumption credentials for authorized consumers.®
This process is handled close to the network layer, using
naming convention to deal with the problems of data signing,
encryption, and key publishing, rather than in higher level
protocols and services.” Users direct how data is encrypted
by describing 1) relationships between data and consump-
tion credentials and 2) for whom the consumption creden-
tials’ KDKs are encrypted. End-users can grant entities in the
ecosystem—e.g., a DSU, DPU or DVU-access to their data
directly by key naming, signing, and encrypting alone. At
the same time, end-users can also delegate access manage-
ment authority of part or all of their data to other services,
which grant access to other entities according to user-defined
rules—if users do not want to do it themselves.

The NDNFit prototype design incorporates NAC into each
component, and implements it throughout, with some limi-
tations in the DPUs described below. The namespace shown
in Figure 2 incorporates the corresponding keys for data (C-
KEY branches) and consumption credential (KEKs as E-KEY
branches, and KDKs as D-KEY branches) at different levels in

SFor now, this is done at the producing application or in a
trusted DSU.

"More so than with schematized trust, how to present these
capabilities in user interfaces poses some human-computer
interaction (HCI) challenges that we are still exploring.

Consumer’s key pair [Public key H Private key
a

KEK KDK

a

C-KEY

a

DATA

Figure 6: Key relationship in name-based access
control.

Consumption credential key pair

Minimum access unit’s key

the data hierarchy.

2.6 Named Functions and the DPU

Data capture in NDNFit is complemented by data deriva-
tion and aggregation in DPUs, which have the role of trans-
forming captured data according to the user’s requirements
and depending on available processing functionality—e.g., of-
fered by third parties. This requires an open framework
where data is produced on demand and new processing func-
tions are added over time by service providers. Named Func-
tion Networking (NFN) [7] achieves these requirements at
the network level. In NFN, processing expressions become
an interest’s “name”, for which the network has to produce
the result in a matching Data packet. In other words, NFN’s
approach is to name results. Instead of using a single data
reference, NFN operates on complex expressions which can
reference named functions as well as (NDN or NFN) param-
eters. An NFN-enabled node is able to analyze such expres-
sions, forward partial sub-expressions and combine retrieved
intermediate results, pull executable code if the named func-
tion is mobile, or even directly compute the final result, de-
pending on its capabilities. In the spirit of named data,
results are expressed in a location-agnostic way that lets the
named function network orchestrate the computation.

The name of a NFN-enhanced Interest consists of a routable
prefix and a workflow definition. The routable prefix is the
name of the input data or the name of the function call.
Since NDN networks apply the longest prefix matching the
Interest name, the Interest is routed to a node which has
a copy of the Data or, in case of a function, is capable of
executing it. The rest of the name, carrying the workflow,
is not relevant for the forwarding decision.

The workflow itself is represented as a A-expression. For
example, given the input data /fitness/data/runl to com-
pute the distance, one can “name the result” by writing
call /functionlib/distance /fitness/data/runl. The
syntactic construct of A-abstraction (where the @ replaces
the A) is used to prepend the input data name: /fit-
ness/data/runl (@x call /functionlib/distance x).
This results in a NDN name wherein the prefix points at
the data (or the function) and having additional name com-
ponents for the lambda abstraction and the workflow. Note
that this mapping is bidirectional. The NFN-enhanced NDN
name can be converted back into an expression that is equiv-
alent to the original input.®

In NDNFit, the DPU also acts as a proxy between NDN
and NFN as shown in Figure 7. It hides key handling and
encryption/decryption of raw data according to NAC, and
is responsible for tunneling NFN results that the requesting
DSU will cache. For example, if a DSU receives an Interest

8In practice, additional rewriting prepends the ecosystem
prefix to the function name and appends the suffix compo-
nents corresponding to the arguments.

DSU
Complex Expression P Secured Result
(Interest) ~N— — (Data)
R
\ Functions Input Data P%\/
A & A
I TReN L | NNAC

. KDK |
T —

V} oJ >

l Execution Environment

DPU

Figure 7: NDN and NFN interface, described in
Section 2.6.

for some mHealth data that have not yet been produced and
which has an ordinary NDN name, it rewrites this name into
the corresponding NFN computation request and delegates
execution to the DPU. The reply to this NFN query embeds
the final result, which the DSU extracts and puts into its
store. This mechanism enables the NFN back-end entity
to sign the result and bind it to the front-end NDN name,
instead of the NDN-encoded NFN name by which the result
was requested. A future version of NDNFit will provide
NFN-native support for NAC.

3. IMPLEMENTATION

The above design, including authentication via schema-
tized trust and encryption-based access control, has been
implemented in a proof-of-concept version of NDNFit. A
mobile data capture application and Identity Manager appli-
cation are implemented using Java, and run on the Android
platform. A DSU is implemented in C++ and a DPU is im-
plemented using Scala, both on the Linux platform. A DVU
is implemented using JavaScript, and was tested within the
Chrome web browser.

The NDNFit implementation also includes an identity sys-
tem, in which a certificate authority is the trust anchor and
is responsible for authorizing users and components through
a web interface. The authority website is implemented us-
ing Python, and runs on the Linux platform. End-users run
the Identity Manager to authorize applications and config-
ure trusted DSUs, DPUs and DVUs using the mechanisms
described in Section 2. Certificates are distributed as named
data, and they can be served by corresponding nodes, or by
the DSUs. The data capture application, upon first launch,
requests a chosen user identity to sign its certificate. The
identity manager receives these requests, and requests the
user makes a decision. Once the initial setup is finished, the
user can use the data capture application to produce data.
When the mobile device has a network connection, the DSU
will fetch data and store it.° Lastly, the DPU and DVU
fetch data and process or display it as needed.

4. DISCUSSION

The existing Open mHealth reference application, Ohmage[9],

uses a traditional cloud-based approach featuring web ser-

vices endpoints, OAuth authentication, and relational database

backends. Data exchange is standardized through a combi-

9For redundancy, we implement DSU replicas, synchronized
using ChronoSync[13].

nation of web APIs, data names, and data formats. With
Ohmage’s approach and the NDNFit team’s experience in
mind, the benefits of NDN and the open challenges for mo-
bile health are briefly described below.

Names have significant power in NDN. NDNFit uses
data names to organize data access, identity and trust man-
agement, distributed processing, and access control. Using
NDN allows these application-defined data names to be op-
erated on at the network layer, unifying application, proto-
col, and network behavior in a way that can’t be achieved
in TCP/IP. Our design practice in NDNFit suggests that
namespace design is of primary importance, and can be used
to drive development of each aspect of secure communica-
tions.

Named data simplifies protocols and security in a
data-centric ecosystem. To provide health data in the
NDNFit ecosystem, an application must obtain the appro-
priate keys, which can be done through standard Interest-
Data exchange, naming, signing, and encrypting the data
appropriately, and making it available on the network. To
consume health data, an application must obtain the ap-
propriate trust schema and decryption keys, and implement
the necessary pattern of Interests. While, for now, each step
in this process is new territory, there are already significant
simplifications over implementing similar functionality us-
ing a standard TCP/IP web services approach, especially
when data provenance and granular access control are re-
quired. Further, in NDN, various communication functions
are unified through expressive naming schemes visible to the
network layer. As such, health data, trust models, and ac-
cess control schemes can all be easily fetched using the same
primitives supported by any NDN network.

Robustness to diverse communication situations
is more inherent. NDN provides intrinsic data caching,
multicast, multi-path forwarding, and disruption recovery
mechanisms. mHealth applications built on NDN should
not need to address these at the application layer, which
gives them the potential of being more efficient and robust
than those built on IP.

Open challenges. Further challenges remain in this
work. Many map to larger NDN research challenges, such
as choosing the right naming conventions, in particular how
best to balance the conflicts between application and net-
work’s preferences on naming giving it is now shared be-
tween the two. Some involve more formally evaluating the
benefits offered by building application over NDN. Others
involve how to make new approaches easily grasped and de-
bugged by developers, and communicated to users. NAC is
an example of this; it provides significant power to NDNF'it,
but requires work in making end-user configuration possible
and application development straightforward.

S. CONCLUSION

Motivated by Open mHealth’s vision of an interoperable
ecosystem of health data processing in which users have ul-
timate control over their data, NDNFit is a demonstration
application that illustrates potential benefits of the NDN
architecture for mobile health. Specifically, its design sug-
gests the power of networking via application-named data,
the usefulness of naming conventions to simplify applica-
tion architecture. The design also demonstrates the power
of securing data directly, which removes dependencies and
constraints emerging from relying on underlying transport

layers for security.

Acknowledgements

Many people contributed to NDNFit design discussions; the
authors particularly thank Yingdi Yu, Van Jacobson, Alex
Afanasyev, and Alex Halderman for their security-related
contributions. This work is supported by the National Sci-
ence Foundation through award CNS-1345318 and others.

6. ADDITIONAL AUTHORS

Additional authors: Christian Tschudin (University of Basel,
email: christian.tschudin@unibas.ch).

7. REFERENCES

[1] A. Afanasyev, J. Burke, L. Zhang, K. Claffy, L. Wang,
V. Jacobson, P. Crowley, C. Papadopoulos, and
B. Zhang. Named Data Networking. ACM SIGCOMM
Computer Communication Review, 44(3):66-73, 2014.

[2] J. A. Burke, D. Estrin, M. Hansen, A. Parker,

N. Ramanathan, S. Reddy, and M. B. Srivastava.
Participatory sensing. In Proc. Workshop on World
Sensor Web at SenSys (WSW’06), Oct., 2006.

[3] D. S. Eng and J. M. Lee. The promise and peril of
mobile health applications for diabetes and
endocrinology. Pediatr Diabetes, 14(4):231-238, 2013.

[4] D. Estrin and I. Sim. Open mHealth architecture: an
engine for health care innovation. Science,
330(6005):759-760, 2010.

[5] J. Kang, K. Shilton, D. Estrin, and J. Burke.
Self-surveillance privacy. lowa L. Rev., 97:809, 2011.

[6] 1. Moiseenko. Fetching Content in Named Data
Networking with Embedded Manifests. Technical
report, NDN Technical Report NDN-0025, 2014.

[7] M. Sifalakis, B. Kohler, C. Scherb, and C. Tschudin.
An Information Centric Network for Computing the
Distribution of Computations. In Proceedings of the
1st International Conference on Information-centric
Networking, ICN ’14, pages 137-146, 2014.

[8] D. Smetters and V. Jacobson. Securing network
content. Technical report, 2009.

[9] H. Tangmunarunkit, C. Hsieh, B. Longstaff, S. Nolen,
J. Jenkins, C. Ketcham, J. Selsky, F. Alquaddoomi,
D. George, J. Kang, et al. Ohmage: A general and
extensible end-to-end participatory sensing platform.
ACM Transactions on Intelligent Systems and
Technology (TIST), 6(3):38, 2015.

[10] Y. Yu, A. Afanasyev, D. Clark, V. Jacobson,

L. Zhang, et al. Schematizing Trust in Named Data
Networking. In Proceedings of the 2nd Conference on
Information-Centric Networking. ACM, 2015.

[11] Y. Yu, A. Afanasyev, and L. Zhang. Name-Based
Access Control. Technical report, NDN Technical
Report NDN-0034, 2015.

[12] Y. Zhang, A. Afanasyev, J. Burke, and L. Zhang. A
survey of mobility support in named data networking.
In Proceedings of the third Workshop on
Name-Oriented Mobility (NOM 2016).

[13] Z. Zhu and A. Afanasyev. Let’s chronosync:
Decentralized dataset state synchronization in named
data networking. In 21st IEEE International
Conference on Network Protocols, pages 1-10, 2013.

