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1 Unconditionally Secure Authentication

The key issue addressed in this lecture is that of authentication; how can Bob be sure
that the message he has received was actually sent by Alice? In addition, how can he
be sure that the message was not corrupted en route by Eve?

1.1 Message Authentication Code (MAC)

The idea here is to send the message M along with a MAC, f(M, k), that is a function
of the message M and the secret key k. How does the MAC allow Bob to assure himself
that the message M is really from Alice? Alice and Bob share the secret key k. Bob
recomputes the MAC and confirms that the message M was from Alice.

Note: Authentication is a separate goal from privacy; here, we are not concerned
with confidentiality. M is sent cleartext over the channel, and we do not care who
hears it.

It is also important that a new key k is used every time. For instance, this prevents
replay attacks. Eve cannot resend the message the next day; Bob will not accept it.

GOAL: Eve should not be able to generate a valid pair M',f(M’,k) even after
hearing one valid pair M, f(M, k).

IDEA: The one-time key k is a pair (a,b) of coefficients: k = (a,b) and then we
define f(M,k) =y = aM + b. Having seen one (M, y) pair is of no help in figuring
out the appropriate y for a different message M .

More formally: Suppose |M|=n (i.e. M has n bits).
Let p be a prime, with |p| > n.
Then Z, = {0,1,...,p — 1} forms a field in modulo p with respect to +, —, *, /.

e + is associative and commutative with identity 0
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e x is associative and commutative with identity 1

all elements have additive inverses: —5 = 12(mod17)

all nonzero elements have multiplicative inverses: 51 = 7(mod17)

division: 2/5 = 2 % 7 = 14(mod17) since 57! =7

Now choose a and b uniformly at random from Z,, and define f(M,k) = aM +
b(modp).

Note: |f(M, k)| = |p|, so the MAC is as long as the message.

Suppose Eve hears (M, y), where y = aM + b(modp). What has she learned? She
knows M, y, and p, but not a and b. There are p pairs of coefficients (a, b) that are
consistent with the equation y = aM + b(modp). Suppose Eve picks some a; € Z,.
Then b; = y — a; M (modp) satisfies the above equation. All such choices (a;, b;) are
equally likely, as far as Eve knows.

Suppose Eve wants Bob to accept a different message M’ # M. She must compute a
new MAC that Bob will accept.

F(M', k) = ;M + (y — a;M)(modp) = a;(M" — M) + y(modp)

where a; is Eve’s guess. BUT, these give different values for different choices of a;,
since:

a;(M' = M) +y=a;(M —M)+y
a; = @y

Thus, f(M', k) is equally likely to be any value in Z,. Therefore, Eve’s chance of
getting f(M', k) right is 1/p.

One-time Key £k

What happens if Alice and Bob use the same secret key k£ to compute the MAC’s
for two separate messages M and M'? Then they are computing the two equations
y = f(M,k) and 3y = f(M', k). This gives the two following equations:

y = aM + b(modp)
y = aM' + b(modp)
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But that gives Eve two equations in two unknowns, and she can solve for a and b.
a=(y—vy)/(M—M)and b=y —aM. Then Eve knows both a and b! Therefore,
do not reuse a key.

Length of the MAC

Both the key and the MAC have length proportional to |M|. Having |k| = |M] is
unavoidable. However, the length of the MAC is long, and it would be nice if we
could improve this.

Ideas to shorten MAC:

e only send low-order 64 bits of y = aM + b(modp)

e choose small p (64, 65 bits)
divide M into chunks M = My, Ms, ..., M; where 0 <= M, < p
k = (a1, as,...,a;,b) where 0 <=a; < p,and 0 <=b < p
f(M, k) =3 a; M; + b(modp)

1.2 Privacy and Authentication

Previously, we were only concerned with authentication. Alice was sending her mes-
sage M cleartext over the channel, and Eve could read it. Now we want to consider
the case where Alice wants her message to be private so that only Bob can read it, and
she wants to authenticate the message. Now we combine the One-Time Pad (OTP)
and the One-Time MAC (OTM). We have two choices:

e encrypt M with OTP, then append MAC of ciphertext: M @ k, f(M @ k, k')

e append MAC to M, use OTP to encrypt (M,y) pair: (M, f(M, k")) @ k

There are two advantages of the first choice, where we encrypted the message M and
then appended the MAC of the ciphertext. First of all, Bob can check the MAC
before decrypting. If it is garbage, then he does not have to waste time decrypting
M & k. Second, encrypting the message first uses fewer random bits off the pad:



4 1 UNCONDITIONALLY SECURE AUTHENTICATION

e M@k, f(MDkK)

k| =n
K] =n
n+2n = 3n

o (M, f(M,K))®k

k| =2n
|k| = 2n
2n +2n = 4n

1.3 Length of One-Time Key £

Is it possible to shorten the length of the one-time key k, |k|, needed for privacy or
authentication? To do so, we must start making assumptions about computational
difficulty.

Alice encrypts a message M that is n bits long with a key & that is ¢ bits long,
resulting in ciphertext C', which is also n bits long. Imagine that Eve hears C' and
has an infinite amount of computing power. Eve tries all 2¢ keys and examines the
resulting plaintext M. She then gets 2! candidate messages. Assume that the number
of reasonable messages of length M is o™ (1 <= a < 2) (e.g. English @ = 1.1). The
expected number of keys giving a reasonable result is thus:

2(a/2)"

Thus, when t + n(lg(a) — 1) < 0 then the number of keys giving reasonable results
<= 1. When:

n>t/(1-1lg(a))

then there is only one key that works (n > 7t for English). This argues that uncondi-
tional security requires growing the length of the keys with the length of the message.
Thus, unconditional security requires long one-time keys.



