
Optimizing Multi-Processor Operating Systems Software

Research Review

Jonathan Appavoo

1



In this paper we review general purpose multiprocessor operating systems research that is
relevant to maximizing performance, focusing on the exploitation of locality in large scale systems.
We cover three areas in particular:

1. A historical review of multiprocessor operating systems research.

2. A discussion of disciplined approaches to applying distributed data structures to systems
construction.

3. A review of modern operating systems research that addresses the unique characteristics of
scalable hardware platforms.

Utilizing concurrency to improve performance is not new and certainly not restricted to the
domain of operating systems. Many of the features introduced into microprocessor architectures
attempt to extract parallelism at the instruction level in order to hide latencies and improve the
number of instructions executed per cycle. Increasingly scientific users split their calculations into
independent components which can be executed in parallel in order to decrease absolute runtime.
Operating systems are unique, from a software perspective, in their requirement to support and
enable parallelism rather than exploiting it to improve their own performance. An operating sys-
tem (OS) must ensure good overall system utilization and high degrees of parallelism for those
applications which demand it. To do this, operating systems must: 1) utilize the characteristics of
the hardware to exploit concurrency in general purpose workloads and 2) facilitate concurrent ap-
plications, which include providing models and facilities for applications to exploit the concurrency
available in the hardware.

It is critical that an OS reflect the parallelism of the workloads and individual applications to
ensure that the OS facilities do not hinder overall system or individual application performance.
This is often overlooked. Smith[117] alludes to the individual application requirements, noting that
the tension between protection and performance is particularly salient and difficult in a parallel
system and that the parallelism in one protection domain must be reflected in another. In other
words, to ensure that a parallel application within one protection domain can realize its potential
performance, all services in the system domains that the concurrent application depends on, must
be provided in an equally parallel fashion. It is worth noting that this is true not only for individual
applications but also for all applications forming the current workload on a parallel system: the
demands of all concurrently executing applications must be satisfied with equal parallelism in order
to ensure good overall system performance.

Much of the research into multiprocessor operating systems has been concerned with how to
support new, different or changing requirements in OS services, specifically focusing on user level
models of parallelism, resource management and hardware configuration. We will generically refer
to this as support for flexibility. In contrast, the research done at the University of Toronto has
pursued a performance oriented approach. The group has suggested two primary goals for the
success of multiprocessor operating systems:

1. Provide a structure which allows for good performance to be achieved with standard tools,
programming models and workloads without impacting the user or programmer. Therefore
the OS must support standards while efficiently mapping any available concurrency and
independence to the hardware without impacting the user level view of the system.

2



2. Enable high performance applications to side step standards to utilize advanced models and
facilities in order to reap maximum benefits without being encumbered by traditional inter-
faces or policies which do not scale.

Surveying the group’s work over the last several years two general requirements for high per-
formance systems software have been identified:

1 Reflect the Hardware:

• Match scalability of the hardware in the systems software. Ensure software representa-
tions, management and access methods do not limit system scale, for example, software
service centers required to manage additional hardware resources should increase with
the scale of the system.

• Reflect unique performance characteristics of MP hardware to maximize performance.
Mirror locality attributes of the hardware in the software structures and algorithms:
avoid contention on global busses and memory modules, avoid shared cache-line access
and efficiently utilize replicated hardware resources.

2 Reflect the Workload:

• Map independence between applications in systems structure.

• Match the concurrency within applications in the systems structures.

This paper examines the relevant research work which lead to these requirements and the approaches
advocated for their satisfaction by the group at the University of Toronto. We begin with a review
of the history of MP OS research, then look at systems work directly related to the use of distributed
data structures and finally conclude with a look at modern research into MP OSes.

1 Multiprocessor Operating Systems Review

One can find many definitions of operating systems in the literature[105, 115, 123]. On closer
inspection, rather than a precise definition, one typically is given a list of roles, responsibilities
and services that operating systems provide. There is really no one definition of what an operating
system is or even what it does. Over time we have seen the roles and services provided by operating
systems grow as the expected software environment accompanying a general purpose computer has
increased both in size and complexity.

Despite the lack of a clear definition there appear to be two general requirements for an operating
system: 1) Provide useful abstractions and mechanisms that facilitate and simplify the use of a
computer system and 2) Provide functionality in a high performance manner, having minimal
impact on applications utilizing the system. Unfortunately, these requirements are often at odds. A
set of rich abstractions often leads to complex implementations which result in increased overheads
and greater performance penalties. To this end operating system designs have tended to advocate
the use of a small set of simple abstractions and mechanisms which can be implemented efficiently
and re-applied across the system. For example, Plan 9[99] uses the file system and file abstraction
to represent all resources including CPU’s. Unfortunately, such religious application of a single
abstraction often leads to difficulties when the abstraction does not map naturally.

3



Another approach that systems designers have taken in order to try and find a balance between
the requirement for rich abstractions and high performance is to separate the common from un-
common paths in the system. Effort is then taken to ensure that the common paths are kept short
and efficient while the uncommon ones are permitted greater leeway in order to support a richer
abstraction.

A complicating factor in the balancing act of designing and building an operating system is
the nature of the hardware system and how users expect to leverage it. The more complex the
hardware, the greater the challenge it is to develop useful abstractions which simplify the use of the
system while still allowing all aspects of the system to be exploited. Additionally, achieving high
performance on complex hardware tends to require more subtle implementations which account for
the nuances of the system. As such, the hardware of a computer system has significant impact on
operating systems. Hardware features may require new abstractions and demand more complex
and intricate systems software support.

Arguably the most complex computer systems are those with multiple processing units. The
advent of Multiprocessor computer systems presented operating systems designers with four inter-
twined issues:

1. True parallelism,

2. new and more complex hardware features, such as multiple caches, multi-staged interconnects
and complex memory and interrupt controllers,

3. subtle and sensitive performance characteristics,

4. and the demand to facilitate user exploitation of the system’s parallelism while providing
standard environments and tools.

Based on the success of early multiprogramming and time sharing systems and what was viewed
as fundamental limits of uniprocessor performance, early systems researchers proposed multipro-
cessors as the obvious approach to meeting the increasing demands for general purpose computers.
The designers of multics, in 1965, went so far as to say:

...it is clear that systems with multiple processors and multiple memory units are
needed to provide greater capacity. This is not to say that fast processor units are un-
desirable, but that extreme system complexity to enhance this single parameter among
many appears neither wise nor economic.

Perhaps the modern obsession with uniprocessor performance for commodity systems is the strongest
evidence of our inability to have successfully leveraged large scale multiprocessors for general pur-
pose computing. Large multiprocessors are predominately now considered as platforms for special-
ized super-computing applications1.

Real world experimentation with general purpose multiprocessors began as simple dual processor
extensions of general purpose commercial uniprocessor hardware[7]. An attendant side effect was
to extend the uniprocessor operating system to function correctly on the evolved hardware. The

1This is slowly changing, albeit at small scale. Over 10% of Sun’s workstations being sold are now multiprocessor
workstations. Increasingly, Intel-based servers with 2-4 processors are being used. The new PlayStation-3 expected
for release in 2005 will have 4 PowerPC processors. Nevertheless, larger MP’s with 8-30 processors are still rare and
considered special purpose.

4



primary focus was to achieve correctness in the presence of true parallelism. This precipitated the
major trend in industrial operating systems. They start with a standard uniprocessor system, whose
programming models and environments are accepted and understood, and extend it to operate on
multiprocessor hardware. Various techniques for coping with the challenges of true parallelism have
been explored, starting with simple techniques which ensured correctness but yielded little or no
parallelism in the operating system itself. As hardware and workloads evolved, the demand to
achieve greater parallelism in the operating systems forced OS implementors to pursue techniques
which would ensure correctness but also achieve higher performance in the face of concurrent
workload demands.

The fundamental approach taken was to apply synchronization primitives to the uniproces-
sor code base in order to ensure correctness. Predominately the primitive adopted was a shared
memory lock, implemented on top of the atomic primitives offered by the hardware platform. The
demand for higher performance lead to successively finer grain application of locks to the data
structures of the operating systems. Doing so increased concurrency in the operating system at the
expense of considerable complexity and loss of platform generality. The degree of locking resulted
in systems whose performance was best matched to systems of a particular scale and workload de-
mands. Despite having potentially subtle and sensitive performance profiles, the industrial systems
preserved the defacto standard computing environments and achieved reasonable performance for
small scale systems, which have now become widely available. It is unclear if the lack of acceptance
of large scale systems is due to the lack of demand or the inability to extend the standard computing
environments to achieve good performance on such systems for general purpose workloads.

In general, the industrial experience can be summarized as a study into how to evolve standard
uniprocessor operating systems with the introduction of synchronization primitives. Firstly, this
ensures correctness and secondly, permits higher degrees of concurrency in the basic OS primitives.
This is in contrast to the majority of the research work, which has focused on flexibility and
improved synchronization. In the remainder of this section we will look at early systems research
which focused on flexibility as well as later work into: Lock-Free/Non-Blocking Kernels, Distributed
Operating Systems and Hybrid Distributed Systems which influenced modern research.

1.1 Flexibility

The Hydra[34, 78, 133, 134] research system done at Carnegie Mellon University (CMU) in the
1970’s set the trend for many of the multiprocessor research operating systems that would follow.
Given that there was little experience with the newly emerging general purpose multiprocessors and
the field of parallel computing, the Hydra team concluded that an MP OS capable of exploiting and
exploring the potential inherent in multiprocessor systems would have to be uniquely focused on
flexibility. Their key focus was on a radical system structure which permitted degrees of flexibility
not available in contemporary systems. The approach taken was to apply, in concert, two emerging
trends of the time: 1) a kernel based system structure[59] which enables flexibility by encouraging
a separation of mechanism from policy and 2) object oriented design[93] which permits flexibility
through modularization. They proposed one of the first designs for a multiprocessor operating
system utilizing a per-resource based decomposition and vertical structure in the context of what
today would be called a micro-kernel.

Despite being targeted at exploring the potential for multiprocessors, Hydra’s aggressive goal to
utilize a radical new design for flexibility resulted in a novel philosophical study of micro-kernels and

5



object oriented design. Some of the observations they made and features they proposed included2:

• conceptualizing resources, both physical and abstract, as central system abstractions repre-
senting individual resource instances as independent object instances,

• vertical structuring on a per-user basis, where each user views the system as a set of objects,

• protection on a per-object basis via capabilities,

• resources are the fundamental unit of sharing for the system,

• a small kernel which only implements the essential mechanisms enabling the construction of
the capability based object oriented structure,

• the majority of system functionality should be implemented by objects outside of the kernel,

• the use of specialization to permit multiple implementations of a service to coexist,

• leverage specialization to permit implementations to be optimized for particular scenarios,

• other object oriented features: type system, abstraction, polymorphism, opaque types and
garbage collection.

Although very unique and forward-looking, the Hydra work does not appear to have explored or
even justified the decomposition or flexibility with respect to multiprocessor system issues. It is
unclear if the project proceeded past the implementation of the micro-kernel. Nevertheless, the
focus on flexibility and basic system structure of Hydra carried on to the majority of research
systems which followed.

Two projects closely related to Hydra were StarOS[34] and Medusa[92], also developed at CMU.
Both systems were targeted for the CM* multiprocessor architecture which was one of the first sys-
tems designed for scalability utilizing clustered distributed memory with a NUMA model. StarOS
was primarily concerned with exploring a specific model for structuring parallel computations in
order to effectively exploit a large number of processors. Although abstract in nature with few
conclusive results or clear suggestions, the StarOS authors appear to have been among the first to
raise locality as an issue in exploiting the nature of NUMA architectures. They were also among
the first to identify the need for scalable software which matches the scalability of the hardware.
The actual kernel structure advocated in StarOS was heavily influenced by Hydra although the
authors more explicitly adopted object oriented design principles from FAMOS[56]3.

Medusa’s main focus was to address scalability and robustness by partitioning the system into
disjoint utilities which execute on specific processors. The system was built around the notion
of function shipping. The system services are decomposed into modules which are distributed
to specific locations in the system and accessed via a cross processor asynchronous function call
facility. By distributing the modules of the system, the authors intended to minimize contention
and increase robustness. It is unclear that either was achieved but it is interesting to note that

2The Toronto group ultimately came to develop similar structures in the Tornado and K42 operating systems,
based on the experiences gained from the Hurricane operating system

3One of the first attempts to leverage a modular structure in order to produce a system which can be specialized
to meet the needs of a particular workload in the context of a general purpose operating system.

6



Medusa utilized a per-processor indirection table to locate the system modules. A similar approach
was used many years after by Tornado and K42 to facilitate per-processor distribution of data-
structures and services.

In 1985 the Tunis[44] operating system, done by another group at the University of Toronto
under the direction of Ric Holt, was one of the first systems to focus on the importance of locality
rather than flexibility. One of the aims of the project was to explore the potential for cheap
multiprocessor systems, constructed from commodity single board microprocessors interconnected
via a standard backplane bus. Each microprocessor board contained local memory and an additional
bus connected memory board provided shared global memory. Given the limited global resources,
the designers focused on structuring the system more like independent local operating system
instances. This would prove to be a precursor of much later work like Hurricane which attempted to
apply distributed system principles to the problem of constructing a shared memory multiprocessor
operating system. Although limited in nature, the system is one of the first to provide uniprocessor
UNIX compatibility while employing a novel internal structure.

It is worth noting that the early 1980’s not only saw the emergence of tightly coupled shared
memory multiprocessor systems such as the CM* but also loosely coupled distributed systems
composed of commodity workstations interconnected via local area networking. Projects such as
Thoth[29] and V[30] attempted to provide a unified environment for constructing software and
managing the resources of a loosely coupled distributed system. Unlike the operating systems
for the emerging shared memory multiprocessors, operating systems for distributed systems could
not rely on hardware support for sharing. As such, they typically were constructed as a set of
autonomous light-weight independent uniprocessor OS’s which cooperated via network messages to
provide a loosely coupled unified environment. Although dealing with very different performance
tradeoffs, the distributed systems work influenced and intertwined with SMP operating systems
research over the years. For example one of the key contributions of Thoth[29] and V[30] were
micro-kernel support of light-weight user-level threads that were first-class and kernel visible.

In the mid 1980’s the Mach operating system was developed at CMU based on the distributed
systems of Rig and Accent[15, 68, 101, 102, 137]. One of the key features that was a major factor
in Mach’s success was the early commitment to UNIX compatibility while supporting user-level
parallelism. In spirit, the basic structure of Rig, Accent and Mach is similar to Hydra and StarOS.
All systems are built around a fundamental IPC model and in the case of Mach the basic IPC
primitives are ports and messages. Processes provide services via ports to which messages are
sent using capabilities and access rights. Mach advocates an object oriented-like model of services
which are provided/located in servers. Rashid[102] states that Mach was, “designed to better
accommodate the kind of general purpose shared-memory multiprocessors which appear to be on
their way to becoming the successors of traditional general purpose uniprocessor workstations and
timesharing systems”. Mach’s main contribution with respect to multiprocessor issues was its user-
level model for fine grain parallelism via threads and shared memory within the context of a UNIX
process. This model became the standard model for user level parallelism in most UNIX systems.
Otherwise, Mach takes the traditional approach of fine grain locking of centralized data structures
to improve concurrency on multiprocessors4. The later Mach work does provide a good discussion
of the difficulties associated with fine grain locking, discussing issues of existence, mutual exclusion,
lock hierarchies and locking protocols[15].

4Contemporary industrial systems such as Sequent’s Dynix[13, 49, 67] were employing fine grain locking and
exploring its challenges.

7



Many of the operating systems developed in the 1980’s state the importance of multiprocessors
and generally appeal to issues of flexibility which they argue is addressed by one form of modularity
or another. Some systems such as Peace[106] were more abstract in nature, discussing general
architectures for system modularity, while others tended to focus on the applications of a specific
model or set of techniques for leveraging some form of object orientation. The following is a brief
description of some of the systems:

Choices[21, 20, 70] focused on leveraging modern object oriented software engineering principles
and techniques when designing and implementing an operating system. Although the work
claims multiprocessor support, no insights or novel multiprocessor observations are made. The
later work[70] does however describe a monitoring infrastructure which leverages distributed
per-processor buffers in order to improve performance, however the infrastructure seems to
have been built outside of their object oriented framework.

Elmwood[75] By the late 1980’s the BBN Butterfly, a large scale commercial multiprocessor, had
been accessible to researchers at the University of Rochester for experimentation. LeBlanc
et al. [76] identified locality, Amdahl’s law, and flexibility as key influences on software for
large scale machines. The Rochester group would go on to explore the aspects of flexibility in
great detail but to a large extent leave locality unexplored. Elmwood was a small prototype
operating system for the BBN Butterfly. The key focus was on protection and user defined
abstractions. Elmwood also adopted an object based design but with a focus on the flexible
support for multiple parallel computations models. The design would heavily influence the
later work done on Psyche.

Presto[14] perhaps best captures the intent of many of the parallel systems of the time which
adopted an object oriented design. Object orientation is viewed as a tool for coping with
the complexity of supporting new and unknown parallel computation models. Specifically,
the authors argue that a single fixed model of parallel computation is insufficient and that
a general parallel system must allow the application programmers to construct the parallel
model which is appropriate. However, since computation models require system support
and can be very complex to implement, a compositional approach is advocated. In the
case of Presto an object oriented user level library is offered as the solution. Here the basic
complexity is captured by the components of the library and flexibility is achieved by allowing
the application programmer to construct her desired computational model via composition
and specialization.

Psyche[109, 110, 111, 112] unlike Presto, aimed to provide a complete operating system environ-
ment for supporting multiple parallel programming models while providing traditional OS
enforced protection and isolation. Similar to Mach, Psyche advocated a micro-kernel design
but pursued user-level functionality of traditional OS models and services more aggressively.
The key focus was to provide a minimal kernel which supported the construction of the system
by isolated object-like modules which could be protected via a combination of capabilities and
virtual memory protection. The goal again was to allow user defined execution environments
by enabling the majority of system policies to be implemented at user level. The authors
noted that locality is critical for good performance but decided it was premature to enable
automatic support for locality management. They advocated for explicit programmer man-
agement via careful software construction but did not provide support or guidance for locality

8



optimizations beyond cross-processor function shipping.

Clouds[36, 37], unlike many of the distributed systems of the time that utilized a message passing
model and as a side effect an object oriented like service model, adopted an object oriented
approach as a first class way of building a distributed system. Each system service was pro-
vided by a course grain object contained in its own protection domain. Threads executed
methods of an object and synchronization primitives where used to control concurrency in-
ternal to an object. Unlike many systems, an object in Clouds was globally accessible on
all nodes of the distributed system. Software support for distributed shared memory was
built into the base system which allowed an object’s memory to be accessible in a coher-
ent fashion on all nodes of the system. Clouds used an object oriented decomposition as a
uniform model for distributed systems construction which enforced encapsulation and pro-
tection. Objects in Clouds were passive and did not presume an execution model; rather
any number of threads could access an object in parallel, with concurrency control internal
to the object. Many later systems, including Tornado, K42, Spring [57, 58], Mach-US [121]
and others [38, 41, 136], adopted a similar object oriented structure albeit with variations in
object grain, communication paradigms and protection.

In the late 1980’s and early 1990’s, projects arose which focused on aspects of building parallel
systems beyond flexibility and modularity. The remainder of this section categorizes and discusses
these efforts.

1.2 Lock-Free/Non-Blocking Kernels

Gottlieb et al. [52] present operating system-specific synchronization techniques based on replace-
add hardware support. The techniques attempt to increase concurrency by avoiding the use of
traditional lock or semphore-based critical sections. The techniques they propose are generalized
in later work by Herlihy[61, 62]. Edler et al. [42] in the Symunix II system, claim to have used
the techniques of Gottlieb et al. as part of their design for supporting large scale shared memory
multiprocessors. Unfortunately, it is not clear to what extent the implementation of Symunix II was
completed or to what extent the non-blocking techniques were applied. The main focus of Edler’s
work [42] was on Symunix II’s support for parallelism in a UNIX framework, and specifically issues
of parallel virtual memory management.

The later work of Massalin[83, 84, 85] explicitly studies the elimination of all locks in sys-
tem software via the use of lock-free techniques. Massalin motivates the application of lock-free
techniques for operating systems, pointing out some of the problems associated with locking:

Overheads: spin locks waste cycles and blocking locks have costs associated with managing the
queue of waiters,

Contention: potential for poor performance due to lock contention on global data structures,

Deadlocks: care must be taken to avoid dead locks which adds considerable complexity to the
system,

Priority Inversion: scheduling anomalies associated with locking, especially for real-time sys-
tems, introduce additional complexity.

9



One of the key methods used for applying lock free techniques was the construction of system
objects which encapsulated a standard data structure and associated synchronization implemented
with lock free techniques. Massalin argues that such an encapsulation enables the construction of a
system in which the benefits of lock free techniques can be leveraged while minimizing the impact
of its complexity. Despite showing that the lock-free data structures have better performance
compared to versions implemented with locks, scalability is not established. Massalin’s work was
done in the context of the Synthesis operating system on a dual processor hardware platform,
so the degree of parallelism studied was very limited. Furthermore, although the Synthesis work
advocates for first reducing the need for synchronization, there is little guidance given or emphasis
placed on this aspect5. The lock-free structures developed do not in themselves lead to less sharing
or improved locality and hence although having better performance than lock based versions, the
large scale benefits are likely limited.

Although the scalability of lock-free techniques is not obvious, the work does add evidence
to the feasibility of constructing an operating system around objects which encapsulate standard
data structures along with synchronization semantics. Such an approach enables the separation of
concerns with respect to concurrency, system structure and reuse of complex parallel optimizations
in the Synthesis operating system.

1.3 Distributed Operating Systems

Distributed Operating systems attempt to provide a single system image out of a distributed col-
lection of network connect computers. The general structure and techniques are typified by such
systems as: V[30] Accent[102], Sprite[60] and Amoeba[124]. These systems attempt to manage
and coordinate the distributed resource in order to present the user with a unified environment in
which the distribution is hidden. The nature of the computing environment (eg. local area net-
works versus wide area networks, homogeneous versus heterogeneous) and the techniques used (eg.
explicit message passing versus remote procedure calls, custom versus standard/UNIX compatible
environments) vary from system to system. These systems often deal with issues of robustness,
flexibility and latency of network operations, however even early systems address issues common
to multiprocessors with respect to concurrency and scalability[107].

In general, a client-server model is employed for service construction, where a common micro-
kernel is run on each machine on top of which servers and clients execute. Multiple clients access a
centralized server which is responsible for ensuring correctness by arbitrating the multiple requests
while providing adequate concurrency for some number of clients. To ensure scalability, techniques
guaranteeing that a given service does not become a bottleneck must be applied. The two primary
approaches have been to utilize a multi-threading architecture for servers and the distribution of
a service via replication and partitioning. Multi-threading allows multiple requests to be in-flight
in a server thus increasing concurrency by overlapping computation with IO. Various different
techniques have been used to distribute a service to increase concurrency and availability. These
include partitioning of a service across multiple servers and client side caching as in the case of file

5Primarily, two approaches are advocated; 1) Code Isolation and 2) Procedure Chaining. Massalin argues for the
specialization of code paths which operate on independent data in a single threaded fashion thus avoiding the need
for synchronization. This approach however, is explored in a limited fashion in Synthesis and relies on runtime code
generation. Tornado’s object oriented structure explores the parallel advantages independent data in a more gener-
alized and structured manner. Procedure Chaining, the enqueueing of parallel work, does not improve concurrency
or reduce sharing but simply enforces serialization via a scheduling discipline.

10



systems[64, 91], or the use of distributed data structures in the case of Globe[127] and SOS[114]
which enable distributed implementation of services (this approach is discussed in more detail in
section 2.1. To a large extent the techniques of distributed systems underlie web technologies albeit
in a less structured manner.

1.3.1 MOSIX[10, 11]

MOSIX focuses on the scalability issues associated with scaling a single UNIX system image to
a large number of distributed nodes. Barak et al. strive to ensure that the design of the internal
management and control algorithms impose a fixed amount of overhead on each processor, regardless
of the number of nodes in the system. Probabilistic algorithms are employed to ensure that all
kernel interactions involve a limited number of processors and that the network activity is bounded
at each node.

Unlike many of the other distributed systems, MOSIX is designed around a symmetric archi-
tecture where each node is capable of operating as an independent system, making its own control
decisions independently. Randomized algorithms are used to disseminate information such as load
without requiring global communication that would inhibit scaling. This allows each node to base
its decisions on partial knowledge about the state of the other nodes without global consensus.

Although MOSIX is targeted at a distributed environment with limited sharing and coarse grain
resource management, its focus on limiting communication and use of partial information to ensure
scalability is worth noting. Any system which is going to scale in the large must avoid algorithms
which require global communications leveraging partial or approximate information where possible.

1.3.2 Sprite[60]

Like Mach, the Sprite kernel[60], although designed for distributed systems, was designed to execute
on shared memory multiprocessor nodes of a network. It employed both course and fine grain
locking. The researchers at Berkeley conducted a number of macro and micro benchmarks to
evaluate the scalability of Sprite on a 5 processor system. They made the following observations:

• The system was able to demonstrate acceptable scalability for the macro benchmarks up to
the five processors tested. Considerable contention was experienced in the micro benchmarks
however, indicating that macro benchmark results will not extend past 7 processors.

• Even a small number of coarse grain locks can severely impact performance. A running Sprite
kernel contains 500 to 1000 locks but consistently two coarse grain locks suffered the most
contention and were primary limiting factors to scalability. At 5 processors a coarse grain
lock was suffering 70% contention.

• Coarse grain locks are a natural result of incremental development and locking. Developers,
when first implementing a service, will acquire the coarsest grain lock in order to avoid
synchronization bugs and simplify debugging, only subsequently do they split the locks to
obtain better scalability.

• Lock performance is difficult to predict even for knowledgeable kernel developers who de-
signed the system. They found that locks which they expected to be problematic were not

11



and unexpected locks were. Further, performance was brittle with performance cliffs occur-
ring at unpredictable thresholds, for example, good performance on 5 processors and poor
performance on 7.

• The authors advocate for better tools to help developers understand and modify locking
structures.

1.4 Hybrid Distributed Systems

In the 1990’s a number of research groups, motivated by distributed systems research, proposed
the use of multiple autonomous instances of micro-kernels in the construction of a multiprocessor
operating system environment. Such hybrid systems attempt to leverage the distributed systems
techniques to bound and cope with the complexity of constructing a single scalable kernel, while try-
ing to exploit the tight coupling available on a multiprocessor in order to enable scalable application
performance. Many variations were explored including applying distributed systems architectures
to message passing architectures[6, 90] and attempts to build distributed shared memory abstrac-
tions on top of a set of kernels in order to provide a unified environment for both shared memory
and message passing systems[132]. The Hurricane[126] and Hive[24] projects both focused on the
construction of operating systems for large scale shared memory multiprocessors, and the results of
both would directly influence the later research and are discussed separately in Section 3.2.1. The
remainder of this subsection will discuss Paradigm, a pre-cursor to the Hurricane and Hive work.

In 1991 Cheriton et al. proposed an aggressive distributed shared memory parallel hardware
architecture called Paradigm and also described OS support for it based on multiple co-operating
instances of the V micro-kernel, a simple hand-tuned kernel designed for distributed systems con-
struction, with the majority of OS function implemented as user-level system servers [28]. The
primary approach to supporting sharing and application coordination on top of the multiple micro-
kernel instances was through the use of a distributed file system. The authors state abstractly that
kernel data structures such as dispatch queues are to be partitioned across the system to minimize
interprocessor interference and to exploit efficient sharing, using the system’s caches. Furthermore,
they state that cache behavior is to be taken into account by using cache-friendly locking and data
structures designed to minimize misses with cache alignment taken into consideration. Finally they
also assert cheap UNIX emulation. It is unclear to what extent the system was completed. The
authors identified key attributes and observed the importance of accounting for cache performance
in the design of a modern multiprocessor operating system.

In 1994, as part of the Paradigm project, an alternative OS structure dubbed the Cache
Kernel[27] was explored by Cheriton et al. At the heart of the Cache Kernel model was the desire
to provide a finer grain layering of the system, where user-level application kernels are built on top
of a thin cache kernel which only supports basic memory mapping and trap reflection facilities via
an object model. From a multiprocessor point of view however, its architecture remained the same
as the previous work. Each cluster of processors of the Paradigm system ran a separate instance of
a Cache Kernel. The authors explicitly point out that such an architecture simplifies kernel design
by limiting the degree of parallelism that the kernel needs to support. Assuming a standard design,
the approach results in reduced lock contention and eliminates the need for pursuing aggressive
locking strategies. The authors also allude to the fact that such an approach has the potential for
improving robustness via limiting the impact of a fault to a single kernel instance and only the
applications which depend on it. Although insightful, the Cache Kernel work did not explore or

12



validate its claims. Hurricane[126] and Hive[24], contemporaries of the cache kernel did explore
these issues in greater detail adopting the high-level architecture proposed by the Paradigm group.

1.5 Summary

To summarize, it is worthwhile reviewing the experiences of the RP3 researchers[17] attempting
to use the Mach micro kernel to enable multiprocessor research. After all, the real test for oper-
ating systems research is its ability to be used by others. The RP3 authors state that a familiar
programming environment was a factor in choosing Mach as it was BSD Unix compatible while
it still promised flexibility and multiprocessor support. The RP3 hardware was designed to try
and minimize contention in the system by providing hardware support for distributing addresses
of a page across physical memory modules, under control of the OS. There was no hardware cache
coherency, but RP3 did have support for specifying uncached access on a page basis and user mode
control of caches, including the ability to mark data for later manual eviction. The OS strategy
was to start with the Mach micro-kernel, which supported a standard UNIX personality on top of
it, and progressively extend it to provide: gang scheduling, processor allocation facilities and the
ability to exploit the machine specific memory management features.

The authors found that they needed to restructure the OS to utilize the hardware more effi-
ciently in order to improve performance, specifically needing to reduced memory contention. Some
interesting points made by the authors include:

• Initially throughput of page faults to independent pages degraded when more that three
processors touched new pages because of contention due to the spin lock algorithm. Spin
locks create contention in the memory system especially in the memory modules in which
the lock is located and performance worsens with the number of spinners. “Essentially,
lock contention results in memory contention that in turn exacerbates the lock contention.”
By utilizing memory interleaving it was possible to distribute data and hence reducing the
likelihood of co-locating lock and data and hence improve the performance.

• Contention induced by slave processors spinning on a single shared word degraded boot
performance to 2.5 hours. Eliminating this reduced boot time to 1/2 hour.

• The initial use of a global free list did not scale, so the authors had to introduce distributed
per processor free lists to yield efficient allocation performance.

• The authors found bottlenecks in both UNIX and Mach code with congestion in memory
modules being the major source of slowdown. To reduce contention, the authors used hard-
ware specific memory interleaving, low contention locks and localized free lists. We contend
that the same benefits could have been achieved if locality had been explicitly exploited in
the basic design.

Critical to the RP3 team were UNIX compatibility and performance. In the end the flexibility
provided by Mach did not seem to be salient to the RP3 researchers. Mach’s internal traditional
shared structure limited performance and its flexibility did not help to address these problems.
To a large extent, this experience summarizes the fact that the early multiprocessor work was too
focused on flexibility which had not proven to be justified. High performance support for a standard
software environment appears to be more important.

13



Based on the work covered in this section we note that high performance multiprocessor oper-
ating systems should:

1. enable high performance not only for large scale applications but also for standard UNIX
workloads which can stress traditional implementations and

2. avoid contention and promote locality to ensure scalability.

2 Distributed Data Structures and Adaptation

In this section we focus on the research related to the use of distributed data structures and
associated work into adaptation.

2.1 Distributed Data Structures

A number of systems proposed the use of distributed data structures albeit for varied motivations.
In this section we review some of the more prominent systems related work.

2.1.1 Distributed Systems: FOs and DSOs

Fragmented Objects(FOs)[16, 80, 114] and Distributed Shared Objects(DSOs)[8, 63, 127] both
explore the use of a partitioned object model as a programming abstraction for coping with the
latencies in a distributed network environment. Fragmented Objects represent an object as a
set of fragments which exists in address spaces distributed across the machines of a local area
network but appears to the client as a single object. When a client invokes a method of an
object it does so by invoking a method of a fragment local to its address space. The fragments,
transparently to the client, communicate amongst each other, to ensure a consistent global view
of the object. Local access to an object is synchronized via a local lock which guards all accesses.
The Fragmented Objects work focuses on how to codify flexible consistency protocols within a
general framework. This allows developers to implement objects composed of distributed replicas
which hide their distributed nature while co-ordinating as necessary via network messages. In the
case of Distributed Shared Objects, distributed processes communicate by accessing a distributed
shared object instance. Each instance has a unique id and one or more interfaces. In order to
improve performance, an instance can be physically distributed with its state partitioned and/or
replicated across multiple machines at the same time. All protocols for communication, replication,
distribution and migration are internal to the object and hidden from clients. This work focuses
on the nature of wide area network applications and protocols such as that of the world wide
web. For example, global uniform naming and binding is addressed while a course grain model of
communication is assumed.

2.1.2 Language Support: CAs and pSather

Chien et al. introduced Concurrent Aggregates(CAs)[31] as a language abstraction for expressing
parallel data structures in a modular fashion. The work is concerned with the language issues of
supporting a distributed parallel object model for efficient construction of parallel applications in
a message passing environment. As is typical of many concurrent object oriented programming
systems, an Actor model[1] is adopted. In this model objects are self-contained, independent

14



components of a computing system that communicate by asynchronous message passing. Such
models typically impose a serialization of message processing by the use of message queues, thus
simplifying the programmer’s task by eliminating concurrency issues internal to an object. Chien
et al. studied a language extension called an Aggregate that permits object invocation to occur
in parallel. An instance of an Aggregate has a single external name and interface, however each
invocation is translated by a runtime environment to an invocation on an arbitrary representative
of the aggregate. The number of representatives for an aggregate is declared by the programmer
as a constant. Each representative contains local instances of the Aggregate fields. The language
supports the ability for one representative of an Aggregate to name/locate and invoke methods of
the other representatives in order to permit scatter and gather operations via function shipping
and more complex cooperation.

Rather than focusing on an Actor based object oriented model, pSather[79] explores language
and associated runtime extensions for data distribution on NUMA multiprocessors to Sather, an
Eiffel-like research language. Specifically, it adds threads, synchronization and data distribution
to Sather. Unlike the previous work discussed, pSather advocates orthogonality between object
orientation and parallelism; it introduces new language constructs independent of the object model
for data distribution. Unlike Chien’s Concurrent Aggregates, it does not impose a specific pro-
cessing/synchronization model nor does it assume the use of system-provided consistency mod-
els/protocols like Distributed Shared Objects or Fragmented Objects. In his thesis Chu-Cheo
proposes two primitives for replicating reference variables and data structures such that a replica
is located in each cluster of a NUMA multiprocessor. Since the data distribution primitives are not
integrated into the object model, there is no native support for hiding the distribution behind an
interface. There is also no support for dynamic instantiation or initialization of replicas, nor facil-
ities for distributed reclamation. Note that this work assumes that every replicated data element
will have a fixed mapping of one local representative for every cluster with respect to the hardware
organization and that initialization, in general, will be done for all replicas at once prior to the
data element’s use.

The author of pSather does explore the advantages of several distributed data structures built on
top of the primitives introduced for a set of data parallel applications on a NUMA multiprocessor.
Given the regular and static parallelism of data parallel applications, the semantics of the data
structures explored are limited and restricted. The data structures considered at include: a workbag
(a distributed work queue), a distributed hash table, a distributed matrix and a distributed quad
tree. The primary focus is to validate pSather implementations of various applications; this includes
the construction of the distributed data structures and the applications themselves. Although a
primary focus is on evaluating the overall programmer experience using the parallel primitives
and the resulting library of data structures, Choew does evaluate the performance of the resulting
applications with respect to scale. The author highlights some of the tradeoffs in performance
with respect to remote accesses given variations in the implementation of the data structures and
algorithms of the applications. He points out that minimizing remote accesses, thus enhancing
locality, is key to good performance for the applications studied. Unfortunately it appears that
the author does not compare the performance of the distributed data structures to centralized
implementations so it is difficult to get a feeling for the exact benefits of distribution.

Finally it is not clear that the distributed data structures that are explored in the pSather work
are appropriate for systems software which is dynamic and event-driven in nature, as opposed to
the regular and static parallelism of scientific applications. For example consider the semantics of

15



the distributed hash table studied by Chu-Choe:

• state stored in the hash table is monotonically increasing; once inserted an item will never be
removed

• each local hash table employs coarse grain locking

• there are no facilities for modifying stored state

• there are no facilities for hashing distributed state

The restrictions are not necessarily problematic for data parallel applications which would utilize
such a hash table to publish progressive results of a large distributed calculation. However, it would
be difficult to use such a hash table as the cache of page descriptors for the resident memory pages,
when implementing an operating system. Systems code, in general, cannot predict the parallel
demand on any given data structure instance and hence the data structure creation, initialization,
sizing and concurrency must be dynamic in nature. Additionally, systems software must be free to
exploit aggressive optimizations which simple semantics may not permit. For example, once it is
determined that a distributed hash table is going to be used, there may be other optimizations that
present themselves by distributing the data fields of the elements that are being stored. In the case
of page descriptors, rather than just storing a reference to a page descriptor in the local replicas of
the hash table, one might want to allow each replica to store local versions of the access bits of the
page descriptor in order to avoid global memory access and synchronization on the performance
critical resident page fault path.

2.1.3 Topologies and DSAs

In the early 1990’s there was considerable interest in message passing architectures which typically
leveraged a point to point interconnection network and the promise of unlimited scalability. Such
machines, however, did not provide a shared memory abstraction. They were typically used for
custom applications, organized as a collection of threads which communicate via messages, aware
and tuned for the underlying interconnection geometry of the hardware platform. In an attempt
to ease the burden and generalize the use of such machines, Bo et al. proposed OS support for
a distributed primitive called a Topology[108]. It attempts to isolate and encapsulate the com-
munication protocol and structure among a number of identified communicating processes via a
shared object oriented abstraction. A topology’s structure is described as a set of vertices and edges
where the vertices are mapped to physical nodes of the hardware and edges capture the communi-
cation structure between vertices. An example would be an inverse broadcast which encapsulates
the necessary communication protocol to enable the aggregation of data from a set of distributed
processes. The Topology is implemented to minimize the number of nonlocal communications for
the given architecture being used. They are presented as heavy-weight OS abstractions requiring
considerable OS support for their management and scheduling. Applications make requests to the
operating system to instantiate, configure and use a Topology. Each type encapsulates a fixed
communication protocol predefined by the OS implementors. Applications utilize a Topology by
creating, customizing and invoking an instance; binding the application processes to the its vertices,
specifying application functions for message processing, specifying the state associated with each
vertex and invoking the specified functions by sending messages to the instance.

16



Motivated by significant performance improvements obtained with distributed data structures
and algorithms on a NUMA multiprocessor for Traveling Sales Person (TSP) programs[89], Clemen-
con et al.[32, 33] proposed a distributed object model called Distributed Shared Abstractions
(DSAs). This work is targeted at increasing the scalability and portability of parallel programs
via a reusable user level library which supports the construction of objects which encapsulate a
DSA. Each object is composed of a set of distributed fragments similar to Fragmented Objects
and Distributed Shared Objects discussed earlier. The runtime implementation and model are,
however, built on the author’s previous work on Topologies.

Akin to the work in pSather, Clemencon et al. specifically cited distribution as a means for
improving performance by improving locality and reducing remote access on a multiprocessor. The
authors asserted the following benefits:

• potential reductions in contention of access to an object, since many operations on the object
will access only locally stored copies of its distributed state

• decreases in invocation latencies, since local accesses are faster than remote accesses, and

• the ability to implement objects such that they may be used on both distributed and shared
memory platforms, therefore increasing the portability of applications using them.

As implied by the last two points, influenced by their earlier work and motivated by portability
to distributed systems, the authors assumed a message passing communication model between
fragments. Despite the message passing focus, the performance results and analysis presented are
very relevant to the Clustered Object work done at the University of Toronto[3, 4, 5, 47, 48].

The authors observed two factors which affect performance of shared data structures on a
NUMA multiprocessor:

1. contention due to concurrent access (synchronization overhead) and

2. remote memory access costs (communication overhead).

They observed that distribution of state is key to reducing contention and improving locality. When
comparing multiple parallel versions of the TSP program they found that using a centralized work
queue protected by a single spin lock was limited to a 4 times speedup whereas a 10 times speed
up was possible with a distributed work queue. Further, they found that by leveraging application
specific knowledge they were able to specialize the distributed data structure implementation to
further improve performance. This demonstrated that despite additional complexities, distributed
implementations with customized semantics can significantly improve application performance.
Note that in the results presented, the authors do not isolate the influence of synchronization
overhead versus remote access in their results6.

Based on performance studies of TSP on two different NUMA systems, the authors state that,
“Any large scale parallel machine exhibiting NUMA memory properties must be used in a fashion
similar to distributed memory machines, including the explicit distribution of the state and func-
tionality of programs’ shared abstractions.” They further note that machines with cache coherency
such as the KSR do not alleviate the need for distribution. Cache coherency overheads further en-
force the need for explicit distribution of state and its application-specific management, in order to

6Concurrent centralized implementations which employ fine grain locking or lock free techniques were not
considered.

17



achieve high performance. Based on initial measurements done on small scale SGI multiprocessors,
the authors predicted that given the trends in the disparity between processor speeds and mem-
ory access times, distributed data structures will be necessary even on small scale multiprocessors.
They point out an often over-looked aspect of the use of shared memory multiprocessors:

Multiprocessors are adopted for high performance and shared memory multiprocessors
are claimed as superior to message passing systems as they offer a simple convenient
programming model. However, to achieve high performance on shared memory multi-
processors requires the use of complex distributed implementations akin to those used
on message passing systems.

This aspect motivates the DSA work and to a partial extent the Clustered Object work, which
attempts to encapsulate, help limit the impact and permit reuse of the additional complexity.

The actual detailed model and implementation of the DSA runtime appears to have been
strongly influenced by: 1) the previous Topology work, 2) assumptions about application use and
3) the desire to be portable to distributed systems. This resulted in a heavy-weight facility which
is only appropriate for coarse grain, long lived, fully distributed application objects whose access
pattern is well known. Limiting characteristics include:

• expensive message based interface to objects where object access is 6 times more expensive
than procedure invocation,

• a restricted scheduling and thread model,

• support only for inter-fragment communication via remote procedure calls and no support
for direct shared memory inter-fragment access,

• expensive binding operations that preclude short lived threads,

• no support for efficient allocation or deallocation of objects, and

• manual initialization that is serial in nature.

The use of the DSA library seems to have been very limited with only the distributed work queue
explored in the context of the TSP application. Given limited use and lack of experience in a
distributed systems environment, it is unclear if the restrictive fully distributed message passing
model is justified.

In summary there are three key results from the DSA work:

1. A shared memory multiprocessor parallel application’s performance can greatly benefit from
the use of distributed data structures.

2. Better performance can be achieved by exploiting application-specific knowledge to tailor
distributed implementations, as opposed to generic object implementations or general dis-
tributed methodologies which impose fixed models for the sake of generality.

3. Locality optimization can be effectively employed at the level of abstract data types.

18



2.1.4 Clustered Objects

In 1995, the University of Toronto group proposed the use of Clustered Objects[94] to encapsulate
distributed data structures for the construction of NUMA multiprocessor systems software. Like
the Concurrent Aggregates, Fragmented Objects, Distributed Shared Objects and DSAs; Clustered
Objects enable distribution within an object oriented model with the motivation to enable NUMA
locality optimizations, like those advocated by pSather and DSAs but accounting for the unique
requirements of systems software. Unlike the previous approaches, Clustered Objects were designed
for systems level software and uniquely targeted at ubiquitous use, where every object in the system
is a Clustered Object with its own potentially unique structure. They are designed to support
both centralized and distributed implementations, fully utilizing the hardware support for shared
memory where appropriate and do not impose any constraints on the access model or computational
model either externally or internally to an object. The supporting mechanisms are light-weight and
employ lazy semantics to ensure high performance for short lived system threads. Clustered Objects
are discussed in more detail in section 3.3.1.

2.1.5 Distributed Hash Tables

Finally, there has been a body of work which has looked at the use of distributed hash tables in
the context of specific distributed applications, including distributed databases[43], cluster based
internet services[54], peer-to-peer systems[35] and general distributed data storage and look up
services[22]. In general, the work done on distributed data structures for distributed systems is
primarily concerned with the exploration of the distributed data structure as a convenient abstrac-
tion for constructing network based applications, increasing robustness via replication. Like the
Fragmented Object and Distributed Shared Object work, the use of distributed hash tables seeks
a systematic way of reducing and hiding network latencies. The coarse grain nature and network
focus to this type of work results in few insights for the construction of performance critical and
latency sensitive shared memory multiprocessor systems software.

2.2 Adaptation for Parallelism

Motivated by the sensitive and dynamic demands of parallel software, researchers have proposed
leveraging the strict modularity imposed by object orientation in order to facilitate adaptability
and autonomic systems/computing. Unlike the previous work discussed, which focused on object
orientation for the sake of flexibility in system composition and configuration, the work on adapta-
tion focuses on using the encapsulation enforced by object boundaries to isolate the computations
which can have sensitive parallel performance profiles. Adaptation is enabled by introducing mech-
anisms which allow reconfiguration of the isolated components either by adjusting parameters of
the component or complete replacement. The most appropriate configuration can then be chosen
in order to maximize the performance based on the current demands. There has been considerable
work in the area of adaptable or autonomic computing. We restrict our discussion to the work on
adaptation for the sake of parallel performance.

In CHAOSarc[51], the authors explore a parallel real-time system for robot control using an
object oriented decomposition. The work studies predictability within the context of a highly
configurable parallel programming environment. The focus on predictability leads to a fine grain
classification of computation and locking semantics in order to be able to match application demand
to performance characteristics of systems software. This resulted in a large configuration space in

19



which the components used to implement a computation must match the runtime constraints and
aspects of the computation. This lead the authors to consider reconfiguration of objects and the
use of adaptive objects[89].

Mukherjee et al. explore the costs, factors and tradeoffs with building adaptive systems in the
context of implementing parallel solutions to the Traveling Sales Person problem. They attempt
to construct and formalize a theory of adaptation, proposing a categorization of objects as: non-
configurable, reconfigurable, and adaptable. Reconfigurable objects permit external changes to
mutable properties which affect their operation. Adaptable objects encapsulate a reconfigurable
object, monitoring facility, adaption policy and reconfiguration mechanism. The utility of the
formalization proposed is unclear and no concrete implementation or mechanisms for supporting it
is given. The authors do provide strong motivation with respect to parallel performance of the TSP
applications. They illustrate the benefits of an adaptive lock object which modifies its spin and
blocking behavior based on the demands it experiences versus using a static lock object. A 17%
performance improvement was observed when studying a centralized algorithm of TSP which uses
shared data structures and a 6.5% improvement when considering a distributed implementation of
TSP. The authors do point out that the distributed implementation has better base performance
and has less dependency on lock implementation but they only consider adaptation of the lock
object itself.

Motivated by the results above, the authors attempted to extend the single application benefits
observed to the entire system by enabling adaptation in the system layers. They proposed an
architecture for a reconfigurable parallel micro-kernel called KTK[50]. They assert that:

• Run-time behavior differs across multiple applications and across multiple phases of a single
application.

• Operating system kernel configurations can provide high-performance applications with the
policies and mechanisms best suited to their characteristics and to their target hardware. The
authors appeal to the standard flexibility arguments of previous object oriented systems.

• Dynamic kernel reconfiguration can improve performance by satisfying each application’s
behavior.

• Efficient application state monitoring can detect changes in application requirements which
are not known prior to program execution time.

The KTK architecture proposes a number of core kernel components which support configuration,
reconfiguration and adaptation. Each object identifies a set of attributes which are mutable and
support some form of arbitration with respect to the attribute change. The micro-kernel should
provide monitoring of kernel components in order to facilitate adaptation policies and also provide
support for application defined adaptation policies. Although the case for system reconfiguration
is compelling it is unclear to what extent the KTK prototype achieved the goals set out or to what
extent application performance was improved or facilitated.

Motivated by KTK, Silva et al. attempt to factor the support for reconfiguration of a parallel
object-based software into a library called CTK[116] in order to facilitate a programming model
that enables the expression and implementation of program configuration and the runtime support
for performance improvements by changing configuration. Building on the KTK model, CTK
adopts a model which incorporates specification of mutable attributes and policies for attribute

20



change. It also supports efficient on-line capture of performance data in order to enable dynamic
configuration. Utilizing the group’s previous work, CTK explores a distributed work queue DSA(see
2.1.3) with respect to reconfiguration in the solution of Traveling Sales Person solutions. The work
proposes the use of a custom language that incorporates the expression of object attributes and
other facilities. CTK focuses on expressive and general support for the specification of dynamic
policies and attribute change. Evaluation was limited to a single user-level application and the
suitability of CTK in an operating system is unclear.

Based on similar motivations, the K42 group has explored the integration of mechanisms for
enabling runtime adaptation of Clustered Objects [4, 5, 65, 66, 118]. Unlike the KTK and CTK
work, the K42 work focuses on the mechanism for enabling efficient replacement of a distributed
object rather than general issues of adaptation. The work is uniquely focused on ensuring low
overheads so that the use of object replacement can be used pervasively in the systems software.
Furthermore the K42 work explores the use of adaptation with respect to system objects which are
in critical operating system paths and are subject to unpredictable dynamic concurrent access.

2.3 Summary

Previous work on distributed data structures and adaptation suggests that a high performance
operating system should:

• Enable data distribution, as highly concurrent shared memory multiprocessor software re-
quires distributed data structures to ensure high concurrency and low latency. Since operat-
ing systems must reflect the concurrency of the workload they, by definition, need to enable
the highest possible degree of concurrency in order not to limit application performance.

• Utilize object orientation to help cope with the complexity introduced by data distribution
but ensure low overhead.

• Support adaptation in order to support variability in parallel workloads and OS demands.

3 Modern Multiprocessor Operating Systems Research

Many of the research systems discussed in section 1 attempted to explore meta ideas on structure
and mechanisms for OS’s to achieve scalability but few of these systems have had significant impact
on main stream multiprocessor computing. This is in part due to the nonstandard programming
environments advocated, resulting in an inability to evaluate the systems within the context of
standard workloads. The research that has had an impact has either addressed isolated synchro-
nization problems whose solutions can be directly applied to current industrial systems or, as in
the case of the Mach project, have had commercial compatibility as a primary goal. Given the
large effort required to produce a compatible system, Mach has primarily been the only research
MP OS to have been explored by the research community. Mach’s main goal was to explore the
use of a micro-kernel architecture for flexibility while supporting a UNIX compatible interface. A
number of groups opted to use Mach as a platform for multiprocessor research, hoping to leverage
its portability and UNIX compatibility, while being able to explore novel ideas given its flexible
structure. Unfortunately, the lack of a multiprocessor performance focus in Mach’s infrastructure
resulted in systems whose performance for standard workloads were inferior to commercial systems
and hence any benefits to the new systems where dismissed.

21



There have been a number of papers published on performance issues in shared-memory multi-
processor operating systems, but mostly in the context of resolving specific problems in a specific
system [19, 23, 27, 87, 100, 122]. These systems were mostly uniprocessor or small-scale multiproces-
sor systems trying to scale up to larger systems. Other work on locality issues in operating system
structure was mostly either done in the context of earlier non-cache-coherent NUMA systems [25],
or, as in the case of Plan 9, was not published [98]. Two projects that were aimed explicitly at
large-scale multiprocessors were Hive [24], and Hurricane [126]/Tornado [48]. Both independently
chose a clustered approach by connecting multiple small-scale systems to form either, in the case of
Hive, a more fault tolerant system, or, in the case of Hurricane, a more scalable system. However,
both groups ran into complexity problems with this approach and both have moved on to other
approaches; namely Disco [18] and Tornado, respectively.

3.1 Characteristics of Scalable Machines

SMP architectures present the programmer with the familiar notion of a single address space within
which multiple processes exist, possibly running on different processors. Unlike a message-passing
architecture, an SMP does not require the programmer to use explicit primitives for the sharing of
data. Hardware-supported shared memory is used to share data between processes, even if running
on different processors. Many modern SMP systems provide hardware cache coherence to ensure
that the multiple copies of data in the caches of different processors (which arise from sharing) are
kept consistent.

Physical limits, cost efficiency and desire for scalability have lead to SMP architectures that are
formed by inter-connecting clusters of processors. Each cluster typically contains a set of processors
and one or more memory modules. The total physical memory of the system is distributed as
individual modules across the clusters, but each processor in the system is capable of accessing
any of these memory modules in a transparent way, although it may suffer increased latencies
when accessing memory located on remote clusters. SMPs with this type of physical memory
organization are called Non-Uniform Memory Access (NUMA) SMPs. Examples of such NUMA
SMP architectures include Stanford’s Dash[77] and Flash [72] architectures, University of Toronto’s
Hector [131] and NUMAchine [130] architectures, Sequent’s NUMA-Q [113] architecture and SGI’s
Cray Origin2000[74]. NUMA SMPs that implement cache coherency in hardware are called CC-
NUMA SMPs. In contrast, multiprocessors based on a single bus have Uniform Memory Access
times and are called UMA SMPs.

It can be difficult to realize the performance potential of a CC-NUMA SMP. The programmer
must not only develop algorithms that are parallel in nature, but must also be aware of the subtle
effects of sharing both in terms of correctness and in terms of performance. These effects include:

• Increased communication latencies due to the coherence protocols and distribution of physical
memory

• The use of explicit synchronization, needed to ensure correctness of shared data, can induce
additional computation and communication overheads

• False sharing reduces the effectiveness of the hardware caches and results in the same high
cache coherence overhead as true sharing. False sharing happens when independently accessed
data is co-located in the same cache line are requires careful data layout in memory to avoid.

22



Memory latencies and cache consistency overheads can often be reduced substantially by de-
signing software that maximizes the locality of data accesses. Replication and partitioning of data
are primary techniques used to improve locality. Both techniques allow processes to access localized
instances of data in the common case. They decrease the need for remote memory accesses and
lead to local synchronization points that are less contended.

Other more course-grain approaches for improving locality in general SMP software include
automated support for memory page placement, replication and migration [73, 81, 129] and cache
affinity aware process scheduling [40, 55, 82, 119, 128].

The two key factors affecting multiprocessor software and in particular OS performance, besides
the policies it provides and the algorithms it uses, are memory system and locking behaviors. The
key to maximizing memory system performance on a multiprocessor is to minimize the amount of
(true and false) sharing, particularly for read-write data structures. Not paying careful attention
to sharing patterns can cause excessive cache coherence traffic, resulting in potentially terrible
performance due to the direct effect of the extra cache misses and to the secondary effect of
contention in the processor-memory interconnection network and at the memory itself. For example,
in a study of IRIX on a 4-processor system, Torrellas found that misses due to sharing dominated
all other types of misses, accounting for up to 50 percent of all data cache misses [125]. Similarly,
Rosenblum noted in a study of an 8 processor system that 18 percent of all coherence misses were
caused by the false sharing of a single cache line containing a highly shared lock in the IRIX
operating system [104].

In larger systems the secondary effects become more significant. Moreover, in large NUMA
systems, it is also necessary to take memory access latencies into account, considering that accesses
to remote memory modules can cost several times as much as accesses to local memory modules.
The significance of this was observed by Unrau et al., where, due to the lack of physical locality in
the data structures used, the uncontended cost of a page fault increased by 25 percent when the
system was scaled from 1 to 16 processors [126].

The sharing of cache lines can often be reduced by applying various replication and partitioning
strategies, whereby each processor (or set of processors) is given a private copy or portion of the data
structure. The same strategy also helps increase locality, aiding larger NUMA systems. However,
replication and partitioning requires greater work in managing and coordinating the multiple data
structures.

Despite disputes about the details, it is widely accepted that scalable large multiprocessor
hardware is realizable, given a hardware supported distributed shared memory architecture. But
such hardware will have properties which require special attention on the part of systems software
if general purpose workloads are to be supported.

3.2 Operating Systems Performance

Poor performance of the operating system can have considerable impact on application performance.
For example, for parallel workloads studied by Torrellas et al., the operating system accounted for
as much as 32-47% of the non-idle execution time[125]. Similarly Xia and Torrellas showed that
for a different set of workloads, 42-54% of time was spent in the operating system [135], while
Chapin et al. found that 24% of total execution time was spent in the operating system[23] for
their workload.

To avoid the operating system from limiting application performance, it must be highly con-
current. The traditional approach to developing SMP operating systems has been to start with a

23



uniprocessor operating system and to then successively tune it for concurrency. This is achieved
by adding locks to protect critical resources. Performance measurements are then used to identify
points of contention. As bottlenecks are identified, additional locks are introduced to increase con-
currency, leading to finer-grained locking. Several commercial SMP operating systems have been
developed as successive refinements of a uniprocessor code base. Denham et al. provides an excel-
lent account of one such development effort [39]. This approach is ad hoc in nature, however, and
leads to complex systems, while providing little flexibility. Adding more processors to the system,
or changing access patterns, may require significant re-tuning.

The continual addition of locks can also lead to excessive locking overheads. In such cases,
it is often necessary to design new algorithms and data structures that do not depend so heavily
on synchronization. Examples include: Software Set Associative Cache architecture developed by
Peacock et al.[95, 96], kernel memory allocation facilities developed by McKenny et al.[88], fair
fast scalable reader-writer locks developed by Krieger et al.[71], performance measurement kernel
device driver developed by Anderson et al.[2] and the intra-node data structures used by Stets et
al.[120].

The traditional approach of adding locks and selectively redesigning also does not explicitly lead
to increased locality. Chapin et al. studied the memory system performance of a commercial Unix
system, parallelized to run efficiently on the 64 processor-large Stanford DASH multiprocessor[23].
They found that the time spent servicing operating system data misses was three times higher than
time spent executing operating system code. Of the time spent servicing operating system data
misses, 92% was due to remote misses. Kaeli et al. showed that careful tuning of their operating
system to improve locality allowed them to obtain linear speedups on their prototype CC-NUMA
system, running OLTP benchmarks[69].

In the early to mid 1990’s, researchers identified memory performance as critical to system
performance [23, 26, 86, 104, 125]. They noted that cache performance and coherency are critical
aspects of SMMP hardware which must be taken into account by software and that focusing on
concurrency and synchronization, and its performance, is not enough.

Rosenblum et al. [104] explicitly advocated that operating systems must be optimized to meet
the demands of users for high performance. However, they point out that operating systems are
large and complex and the optimization task is difficult and, without care, tuning can result in in-
creased complexity with little impact to the end-user performance. The key is to focus optimization
by identifying performance problems. They studied three important workloads:

1. Program Development Workload

2. Database Workload

3. Large simulations which stress the memory subsystem

They predicted that even for small scale SMMP’s, coherency overheads induced by communica-
tions and synchronization overheads would result in MP OS services consuming 30% - 70% more
resources than uniprocessor counterparts. They also observed that larger caches do not help allevi-
ate coherency, so the performance gap between MP OSs and UP OSs will grow unless there is focus
on kernel restructuring to reduce unnecessary communication. They pointed out that as the relative
cost of coherency misses goes up, programmers must focus on data layout to avoid false sharing and
that preserving locality in scheduling is critical to ensuring effectiveness of caches. Rescheduling

24



1 2 4 8 12 16

Processors

80

1

10

Sl
ow

 D
ow

n

a)

sgi
convex
ibm
sun

1 2 4 8 12 16

Processors

80

1

10

Sl
ow

 D
ow

n

b)

1 2 4 8 12 16

Processors

80

1

10

Sl
ow

 D
ow

n

c)

1 2 4 8 12 16
Processors

5

1

Sl
ow

 D
ow

n

d)
1 2 4 8 12 16

Processors

5

1

e)
1 2 4 8 12 16

Processors

5

1

f)

Figure 1: Microbenchmarks across all tests and systems. The top row (a–c) depicts the multi-
threaded tests with n threads in one process. The bottom row (d–f) depicts the multiprogrammed
tests with n processes, each with one thread. The leftmost set (a,d) depicts the slowdown for in-core
page fault handling, the middle set (b,e) depicts the slowdown for file stat, and the rightmost set
depicts the slowdown for thread creation/destruction. The systems on which the tests were run
are: SGI Origin 2000 running IRIX 6.4, Convex SPP-1600 running SPP-UX 4.2, IBM 7012-G30
PowerPC 604 running AIX 4.2.0.0, Sun 450 UltraSparc II running Solaris 2.5.1.

processes on different processors can result in coherency traffic on kernel data structures. The
research at the University of Toronto has been targeted at addressing these issues.

Figure 1 presents results gathered by Gamsa et al.[46] of simple micro-benchmarks run on
a number of commercial SMP operating systems. The micro-benchmarks are of three separate
tests: in-core page faults, file stat and thread creation, each with n worker threads performing the
operation being tested:

Page Fault Each worker thread accessed a set of in-core unmapped pages in independent (separate
mmap) memory regions.

File Stat Each worker thread repeatedly fstated an independent file.

Thread Creation Each worker successively created and then joined with a child thread (the child
does nothing but exit).

Each test was run in two different ways; multi-threaded and multi-programmed. In the multi-
threaded case the test was run as described above. In the multi-programmed tests, n instances of
the test were started with one worker thread per instance. Although the commercial systems do
reasonably well on the multiprogrammed tests in general, they suffer considerable slow downs on
the multithreaded tests. This evidence implies that the existing techniques used by commercial

25



systems are insufficient in their ability to exploit the concurrency of these simple multi-threaded
micro-benchmark applications.

Given that the currently accepted architecture for building large scalable multiprocessors is
as an interconnection of clusters of computation nodes, both the groups at UofT and Stanford,
wanting to explicitly explore large scale machines, chose to directly reflect the hardware structure
in the operating system.

3.2.1 Hurricane

Unlike much of the previous MP OS research efforts, the University of Toronto chose to first focus on
multiprocessor performance, thereby uniquely motivating, justifying and evaluating the operating
system design and implementation based on the structure and properties of scalable multiprocessor
hardware. Motivated by the Hector multiprocessor[131], representative of the architectures for
large scale multiprocessors of the time[12, 45, 77, 97], the group choose a simple structuring for the
operating system which directly mirrored the architecture of the hardware, hoping to leverage the
strengths of the hardware structure while minimizing its weakness.

By focusing on performance rather than flexibility, the Hurricane group was motivated to ac-
knowledge, analyze and identify the unique operating system requirements with respect to scalable
performance. Particularly, based on previous literature and queuing theory analysis the following
guidelines where identified[126]:

Preserving parallelism The operating system must preserve the parallelism afforded by the appli-
cations. If several threads of an executing application (or of independent applications running
at the same time) request independent operating system services in parallel, then they must
be serviced in parallel; otherwise the operating system becomes a bottleneck, limiting scala-
bility and application speedup. Critically, it was observed that an operating system is demand
driven and it’s services do not utilize parallelism, thus parallelism can only come from appli-
cation demand. Therefore, the number of operating system service points must increase with
the size of the system and the concurrency available in accessing the data structures must
grow with the size of the system to make it possible for the overall throughput to increase
proportionally.

Bounded overhead The overhead for each independent operating system service call must be
bounded by a constant, independent of the number of processors. If the overhead of each
service call increases with the number of processors, the system will ultimately saturate, so
the demand on any single resource cannot increase with the number of processors. For this
reason, system wide ordered queues cannot be used and objects cannot be located by linear
searches if the queue lengths or search lengths increase with the size of the system. Broadcasts
cannot be used for the same reason.

Preserve locality The operating system must preserve the locality of the applications. It is im-
portant to consider the memory access locality in large-scale systems because, for example,
many large-scale shared memory multiprocessors have non-uniform access (NUMA) times,
where the costs of accessing memory is a function of the distance between the accessing
processor and the target memory, and because cache consistency incurs more overhead in a
large system. Specifically it was noted that locality can be increased a) by properly choosing
and placing data structures within the operating system, b) by directing requests from the

26



application to nearby service points, and c) by enacting policies that increase locality in the
applications’ memory accesses. For example, policies should attempt to run the processes of
a single application on processors close to each other, place memory pages in proximity to
the processes accessing them, and direct file I/O to devices close by. Within the operating
system, descriptors of processes that interact frequently should lie close together, and mem-
ory mapping information should lie close to the processors which must access them to handle
page faults.

Although some of these guidelines have been identified by other researchers[9, 117] we are not
aware of other general purpose shared memory multiprocessor operating systems which pervasively
utilize them in their design. Over the years, these guidelines have been refined but have remained
a central focus of the body of research work done at the University of Toronto.

Hurricane, in particular, employed a course grain approach to scalability, where a single large
scale SMMP was partitioned into clusters of a fixed number of processors. Each cluster ran a
separate instance of a small scale SMMP operating system, cooperatively providing a single system
image. This approach is now being used in one form or another by several commercial systems, for
example in SGI’s Cellular IRIX. Hurricane, attempted to directly reflect the hardware structure,
utilizing a collection of separate instances of a small-scale SMP operating system, one per-hardware
cluster. Implicit use of shared memory is only allowed within a cluster. Any co-ordination/sharing
between clusters occurs using a more expensive explicit facility. It was hoped that any given request
by an application could in the common case be serviced on the cluster on which the request was
made with little or no interaction with other clusters. The fixed clustering approach limits the
number of concurrent processes that can contend on any given lock to the number of processors
in a cluster. Similarly, it limits the number of per-processor caches that need to be kept coherent.
The clustered approach also ensures that each data structure is replicated into the local memory
of each cluster.

Despite many of the positive benefits of clustering, it was found that[48]: (i) the traditional
within-cluster structures exhibit poor locality which severely impacts performance on modern mul-
tiprocessors, (ii) the rigid clustering results in increased complexity as well as high overhead or
poor scalability for some applications, and (iii) the traditional structures as well as the clustering
strategy make it difficult to support the specialized policy requirements of parallel applications.

Related work at Stanford into the Hive operating system[24] focused on locality, firstly as a
means of providing fault containment and secondly as a means for improving scalability.

3.3 Virtual Machine Partitioning

Some groups have pursued strict partitioning as a means for leveraging the resources of a multiprocessor[18,
53, 103]. Rather than trying to construct a kernel which can efficiently support a single system
image they pursue the construction of a kernel which can support the execution of multiple virtual
machines (VMs). By doing so, the software within the virtual machines is responsible for extracting
the degree of parallelism it requires from the resource allocated to the VM it is executing in. Rather
than wasting the resources of a large scale machine on a single OS instance, incapable of efficiently
utilizing all the resources, the resources are partitioned across multiple OS instances. There are
three key advantages to this approach:

1. The underlying systems software which enables the partitioning does not itself require high
concurrency.

27



2. Standard workloads can be run by leveraging the Virtual Machine approach to run standard
OS instances.

3. Resources of a large scale machine can be efficiently utilized with standard software albeit
without native support for large scale applications and limited sharing between partitions.

To some extent this approach can be viewed as a tradeoff which permits large scale machines to be
leveraged using standard systems software.

The Wisconsin Wind Tunnel[103] was one of the first projects to explore the use of Virtual
Machines in the construction of a multiprocessor operating system environment. The goal was
to create a parallel simulation environment for studying parallel computing. In order to study
cache coherent shared memory multiprocessors on top of the Thinking Machines CM-5, a large
scale distributed memory message passing system, a virtual machine-like architecture was used.
Building on top of the CM-5 architecture and software base, a small kernel, which partitioned the
system among multiple virtual machine-like executives, was developed. Each executive provided
a virtual machine environment to the software running on top of it. The underlying kernel which
partitioned the machine among the executives also provided a shared memory abstraction. Given
the goal of simulation, the approach of partitioning an MP system across multiple VM instances
was not pursued as a general system architecture. The authors do note that the approach of
using a shared kernel, which provides coarse grain scheduling and memory arbitration to provide
autonomy of multiple executives, is unique with respect to the approach of starting with multiple
autonomous micro-kernels which then co-operate to provide a shared abstraction. They argue that
this approach allows each partition the flexibility of matching the necessary scheduling and resource
sharing required for the applications running in it.

In the late 1990’s the same general approach was used to define a general systems architecture
by the Disco[18, 53] project at Stanford based on the Hive experience. Specifically, they attempted
to address the problem of extending modern operating systems to run efficiently on large scale
shared memory multiprocessors by partitioning the system into a virtual cluster, thus avoiding
scalability bottlenecks in standard operating systems. The authors clearly acknowledged the trade-
off of such an approach and the orthogonal need to continue pursuing scalable single system image
operating systems research. The authors emphatically asserted that the limiting factor to general
use of large scale machines has been poor systems software support. The approach they took side
steps the limitations by efficiently partitioning such systems to enable the execution of multiple
instances of commodity operating systems. Despite acknowledging the need to pursue scalable op-
erating systems research such as Tornado and K42 they pointed out that considerable investment
in development effort and time was required before such systems can reach commercial maturity.

It is worth noting two fundamental points raised by this research:

1. Standard operating systems do not effectively support large scale multiprocessors.

2. Despite point 1, the standard environment offered by commodity systems is compelling enough
to justify partitioning of the hardware.

This implies that a new scalable system must support the standard operating environment of a
commodity system if it is to be effective.

28



3.3.1 Tornado

One of the key observations made by the Hurricane group was that fixed cluster sizes were too re-
strictive, did not perform well for all workloads, and introduced considerable complexity. Although
an attempt was made to determine the optimal configuration, it was realized that each service
and its data structures required different degrees of clustering. Some data structures (eg. Page
Descriptor Index) are best shared across the entire system, while other data structures (eg. Ready
Queues) have better performance if they were replicated on a per-processor basis. This implied
that greater flexibility with respect to the cluster sizes was required than was offered by the fixed
clustering of Hurricane and Hive. It was concluded from the experiences with Hurricane that the
locality attributes of data structures need to be expressed and managed on a per-data structure
basis. This was a key motivation for Tornado.

The natural outgrowth of the Hurricane experience was to build an operating system in which
each data structure could specify its own clustering size. Tornado served as the operating system
for the NUMAchine multiprocessor [130]. In Tornado, unlike Hurricane, there is only one operating
system instance, but clustering is provided for on a per-object basis. Tornado is implemented in
C++ using an object oriented structure, with all operating system components being developed
from scratch specifically for multiprocessors. The system components were designed with the
primary overriding design principle of mapping any locality and independence that might exist in
OS requests from applications to locality and independence in the servicing of these requests in the
operating systems and system servers.

The object oriented design was chosen for multiprocessor performance benefits. More specifi-
cally, the design of Tornado was based on the observations that: (i) operating systems are driven by
the request of applications on virtual resources, (ii) to achieve good performance on multiproces-
sors, requests to different resources should be handled independently, that is, without accessing any
common data structures and without acquiring any common locks, and (iii) the requests should,
in the common case, be serviced on the same processor they are issued on. This is achieved in
Tornado by adopting an object oriented approach where each virtual and physical resource in the
system is represented by an independent object so that accesses on different processors to different
objects do not interfere with each other. Details of the Tornado operating system can be found in
[46, 48].

Tornado introduced Clustered Objects[3, 48, 94], which allow an object to be partitioned into
representative objects, where independent requests on different processors are handled by different
representatives of the object in the common case. Thus, simultaneous requests from a parallel
application to a single virtual resource (i.e., page faults to different pages of the same memory
region) can be handled efficiently preserving as much locality as possible. However, a CO, despite
potentially being distributed, appears to the client as a single object.

A Clustered Object is identified by an address space unique identifier. The identifier locates a
per-processor representative object for the Clustered Object. All accesses to a Clustered Object
on a processor are directed to a specific representative. To allow for more efficient use of resources,
the representatives of a Clustered Object can be instantiated on first use. All the representatives
of a Clustered Object are managed via a special per-Clustered Object management object. The
management object is responsible for instantiation, deletion and assignment of representatives to
processors. A Clustered Object can have a single shared representative that is assigned to all
processors, a representative per-processor or any a configuration in between.

An operating system infrastructure is needed to implement Clustered Objects efficiently. In

29



Tornado this includes:

• an Object Translation Facility

• a Semi-automatic garbage collection scheme

• a Kernel Memory Allocation Facility (KMA)

• a Protected Procedure Call Facility (PPC)

The Object Translation Facility of Tornado is used to locate the processor-specific representative
object when a Clustered Object is accessed on a given processor. It is implemented with two sets
of tables per address space, a global table of pointers to per-Clustered Object management objects,
and per-processor tables of pointers to representatives. The identifier for a Clustered Object is a
common offset into the tables. If no representative exists for a given processor the global table is
consulted to locate the Clustered Object’s management object that manages all the representatives
of the Clustered Object.

Tornado uses a semi-automatic garbage collection scheme that facilitates localizing lock accesses
and greatly simplifies locking protocols. As a matter of principle, all locks are internal to the
objects (or more precisely their representatives) they are protecting, and no global locks are used.
In conjunction with Clustered Object structures, the contention on a lock is thus bounded by the
clients of the representative being protected by the lock. With the garbage collection scheme, no
additional (existence) locks are needed to protect the locks internal to the objects. As a result,
Tornado’s locking strategy results in much lower locking overhead, simpler locking protocols, and
can often eliminate the need to worry about lock hierarchies.

The Kernel Memory Allocation facility manages the free pool of global and per-processor mem-
ory using a design similar to that of [88] with small block and NUMA extensions. It is capable of
allocating memory from pages that are local to a target processor. By overloading the default new
operator with a version that calls the localized memory allocation routines of the Kernel Memory
Allocation facility, Tornado ensures that default object instantiation occurs with processor local
memory. Hence, representatives and the data they allocate, automatically reside on the processors
on which they are instantiated. This helps to reduce false sharing across clusters.

The Protected Procedure Call facility of Tornado supports interprocess communication. Pro-
tected Procedure calls allow one process within an address space to invoke the methods of an Object
in another address space. A Protected Procedure Call is implemented as a light-weight protection
domain crossing, executed on the same processor from which it is called. The Protected Procedure
Call facility also provides the ability for a process executing on one processor, to invoke a procedure
to be executed on another processor within the same address space, although at higher cost. This
form of cross-processor Protected Procedure Calls is referred to as Remote Procedure Calls. Clus-
tered Objects can use Remote Procedure Calls to implement function shipping as another form of
cooperation between representatives.

In Tornado the majority of the system’s objects were naive Clustered Objects using just a
single representative. The Clustered Object work in Tornado focused on developing the underlying
infrastructure and basic mechanisms[48] as well as an initial performance evaluation.[3].

30



4 Current Work at Toronto

The Hurricane work, and related efforts at characterizing multiprocessor performance, established
the need to account for the characteristics of multiprocessor hardware in the OS structure. Tornado
established that the parallel demands of the workload must also be reflected in the OS structure,
showing that an object oriented decomposition could be utilized to map independence in the work-
load to a runtime which leverages locality aspects of the hardware to reduce sharing and improve
scalability. Given the object oriented structure, Tornado also proposed mechanisms for integrating
the use of distributed data structures in the basic object oriented support in order to permit more
aggressive multiprocessor tuned implementations.

IBM began an effort to develop K42, a research operating system to explore scalability and
novel user-level structure while providing both API and ABI compatibility with a standard OS. In
an attempt to account for scalability within the basic design and structure IBM chose to base K42
on Tornado. Our group at the University of Toronto has closely collaborated with IBM to design
and implement K42, with Toronto focusing on K42’s scalability.

We are currently exploring the use of distributed data structures in K42. Our effort attempts to
standardize the use of the Clustered Object mechanisms proposed in Tornado via a set of protocols
which provide a distributed object oriented model, permitting incremental development while fully
leveraging hardware-supported shared memory. Doing so, this work builds upon the lessons of
previous research:

• focus on performance over flexibility

• provide an accepted software environment

• maximize concurrency, focusing on structures and algorithms rather than improved synchro-
nization as done in earlier systems

• maximize hardware locality

• reflect workload independence using an object oriented structure

• utilize distributed data structures

• enable adaptation in order to cope with variability in parallel demands on an instance by
instance basis.

31



References

[1] Gul Agha. Concurrent object-oriented programming. Communications of the ACM,
33(9):125–141, 1990.

[2] Jennifer M. Anderson, Lance M. Berc, Jeffrey Dean, Sanjay Ghemawat, Monika R. Henzinger,
Shun-Tak A. Leung, Richard L. Sites, Mark T. Vandervoorde, Carl A. Waldspurger, and
William E. Weihl. Continuous profiling: Where have all the cycles gone? In Proceedings of
the 16th Symposium on Operating Systems Principles (SOSP-97), volume 31,5 of Operating
Systems Review, pages 1–14, New York, October5–8 1997. ACM Press.

[3] J. Appavoo. Clustered objects: Initial design, implementation and evaluation. Master’s
thesis.

[4] Jonathan Appavoo, Kevin Hui, Craig A. N. Soules, Robert W. Wisniewski, Dilma da Silva,
Orran Krieger, Marc Auslander, David Edelsohn, Ben Gamsa, Gregory R. Ganger, Paul
McKenney, Michal Ostrowski, Bryan Rosenburg, Michael Stumm, and Jimi Xenidis. Enabling
autonomic system software with hot-swapping. IBM Systems Journal, 42(1):60–76, 2003.

[5] Jonathan Appavoo, Kevin Hui, Michael Stumm, Robert Wisniewski, Dilma da Silva, Orran
Krieger, and Craig Soules. An infrastructure for multiprocessor run-time adaptation. In
WOSS - Workshop on Self-Healing Systems, 2002.

[6] P. Austin, K. Murray, and A. Wellings. The design of an operating system for a scalable
parallel computing engine. Software, Practice and Experience, 21(10):989–1014, [10] 1991.

[7] M. J. Bach and S. J. Buroff. Multiprocessor UNIX operating systems. AT&T Bell Laboratories
Technical Journal, 63(8):1733–1749, October 1984.

[8] H. E. Bal, M. F. Kaashoek, and A. S. Tanenbaum. A distributed implementation of the shared
data-object model. In Eugene Spafford, editor, Proc. First USENIX/SERC Workshop on
Experiences with Building Distributed and Multiprocessor Systems, pages 1–19, Ft. Lauderdale
FL (USA), 1989.

[9] Amnom Barak and Yoram Kornatzky. Design principles of operating systems for large scale
multicomputers. Technical report, IBM Research Division, T.J. Watson Research Center,
Yorktown Heights, NY, 1987.

[10] Amnon Barak and Oren La’adan. The MOSIX multicomputer operating system for high per-
formance cluster computing. Future Generation Computer Systems, 13(4–5):361–372, 1998.

[11] Amnon Barak and Richard Wheeler. MOSIX: An integrated multiprocessor UNIX. In
USENIX Association, editor, Proceedings of the Winter 1989 USENIX Conference: Jan-
uary 30–February 3, 1989, San Diego, California, USA, pages 101–112, Berkeley, CA, USA,
Winter 1989. USENIX.

[12] BBN Advanced Computers, Inc. Overview of the Butterfly GP1000, 1988.

[13] Bob Beck and Bob Kasten. VLSI assist in building a multiprocessor UNIX system. In
USENIX Association, editor, Summer conference proceedings, Portland 1985: June 11–14,

32



1985, Portland, Oregon USA, pages 255–275, P.O. Box 7, El Cerrito 94530, CA, USA, Summer
1985. USENIX.

[14] Brian N. Bershad, Edward D. Lazowska, Henry M. Levy, and David B. Wagner. An open en-
viornment for building parallel programming systems. In Proceedings of the ACM/SIGPLAN
conference on Parallel programming: experience with applications, languages and systems,
pages 1–9. ACM Press, 1988.

[15] David L. Black, Jr. Avadis Tevanian, David B. Golub, and Michael W. Young. Locking and
reference counting in the Mach kernel. In Proceedings of the 1991 International Conference
on Parallel Processing, volume II, Software, pages II–167–II–173, Boca Raton, FL, August
1991. CRC Press.

[16] Georges Brun-Cottan and Mesaac Makpangou. Adaptable replicated objects in distributed
environments. Technical Report BROADCAST#TR95-100, ESPRIT Basic Research Project
BROADCAST, June 1995.

[17] R. M. Bryant, H.-Y. Chang, and B. S. Rosenburg. Operating system support for parallel pro-
gramming on RP3. IBM Journal of Research and Development, 35(5/6):617–634, September/
November 1991.

[18] Edouard Bugnion, Scott Devine, and Mendel Rosenblum. Disco: Running commodity operat-
ing systems on scalable multiprocessors. In Proceedings of the 16th Symposium on Operating
Systems Principles (SOSP-97), volume 31,5 of Operating Systems Review, pages 143–156,
New York, October 5–8 1997. ACM Press.

[19] M. Campbell et al. The parallelization of UNIX system V release 4.0. In Proc. USENIX
Technical Conference, pages 307–324, 1991.

[20] Roy H. Campbell, Nayeem Islam, David Raila, and Peter Madany. Designing and implement-
ing Choices: An object-oriented system in C++. Communications of the ACM, 36(9):117–126,
September 1993.

[21] Roy H. Campbell, Gary M. Johnston, Peter W. Madany, and Vincent F. Russo. Principles
of object-oriented operating system design. Technical Report UIUCDCS-R-89-1510,TTR89-
14, Department of Computer Science, University of Illinois, Urbana, IL 61801, April 1989.
TTR89-14.

[22] J. Cates. Robust and efficient data management for a distributed hash table. Master’s thesis,
Massachusetts Institute of Technology, 2003.

[23] J. Chapin, S. A. Herrod, M. Rosenblum, and A. Gupta. Memory system performance of UNIX
on CC-NUMA multiprocessors. In Proc. of the 1995 ACM SIGMETRICS Joint Int’l Conf. on
Measurement and Modeling of Computer Systems (SIGMETRICS’95/PERFORMANCE’95),
pages 1–13, May 1995.

[24] J. Chapin, M. Rosenblum, S. Devine, T. Lahiri, D. Teodosiu, and A. Gupta. Hive: Fault con-
tainment for shared-memory multiprocessors. In Proc. of the 15th ACM Symp. on Operating
Systems Principles (SOSP-15), pages 12–25, December 1995.

33



[25] E. M. Jr. Chaves, P. C. Das, T. J. Leblanc, B. D. Marsh, and M. L. Scott. Kernel-kernel
communication in a shared-memory multiprocessor. Concurrency: Practice and Experience,
5(3):171–191, May 1993.

[26] J. Bradley Chen and Brian N. Bershad. The impact of operating system structure on memory
system performance. In Proc. Fourteenth SOSP., pages 120–133, 1993.

[27] David R. Cheriton and Kenneth J. Duda. A caching model of operating system kernel
functionality. In Operating Systems Design and Implementation, pages 179–193, 1994.

[28] David R. Cheriton, Hendrik A. Goosen, and Patrick D. Boyle. Paradigm: A highly scalable
shared-memory multicomputer architecture. Computer, 24(2):33–46, February 1991.

[29] David R. Cheriton, Michael A. Malcolm, Lawrence S. Melen, and Gary R. Sager. Thoth, a
portable real-time operating system. Communications of the ACM, 22(2):105–115, 1979.

[30] David R. Cheriton and Willy Zwaenepoel. The distributed v kernel and its performance for
diskless workstations. In Proceedings of the ninth ACM symposium on Operating systems
principles, pages 129–140. ACM Press, 1983.

[31] Andrew A. Chien and William J. Dally. Concurrent aggregates (CA). In Proc. Second ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (2nd PPOPP’90),
ACM SIGPLAN Notices, pages 187–196, March 1990. Published as Proc. Second ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (2nd PPOPP’90),
ACM SIGPLAN Notices, volume 25, number 3.

[32] Christian Clemencon, Bodhisattwa Mukherjee, and Karsten Schwan. Distributed shared
abstractions (DSA) on large-scale multiprocessors. In Proceedings of the Symposium on Ex-
perience with Distributed and Multiprocessor Systems, pages 227–246, San Diego, CA, USA,
September 1993. USENIX Association.

[33] Christian Clémençon, Bodhisattwa Mukherjee, and Karsten Schwan. Distributed shared ab-
stractions (DSA) on multiprocessors. IEEE Transactions on Software Engineering, 22(2):132–
152, February 1996.

[34] Ellis Cohen and David Jefferson. Protection in the hydra operating system. In Proceedings
of the fifth symposium on Operating systems principles, pages 141–160, 1975.

[35] Frank Dabek, Emma Brunskill, M. Frans Kaashoek, David Karger, Robert Morris, Ion Stoica,
and Hari Balakrishnan. Building peer-to-peer systems with chord, a distributed lookup ser-
vice. In Proceedings of the 8th Workshop on Hot Topics in Operating Systems (HotOS-VIII),
Schloss Elmau, Germany, May 2001. IEEE Computer Society.

[36] P. Dasgupta, R. J. LeBlanc, and W. F. Appelbe. The clouds distributed operating SYstem:
Functional description, implementation details and related work. In Proc. 8th Int’l. Conf. on
Distr. Computing Sys., page 2, 1988.

[37] Partha Dasgupta, Richard J. LeBlanc, Jr., Mustaque Ahamad, and Umakishore Ramachan-
dran. The Clouds Distributed Operating System. Computer, 24(11):34–44, November 1991.

34



[38] Alan Dearle, Rex di Bona, James Farrow, Frans Kenskens, Anders Lindström, John Rosen-
berg, and Francis Vaughan. Grasshopper: An orthogonally persistent operating system.
7(3):289–312, 1994.

[39] Jeffrey M. Denham, Paula Long, and James A. Woodward. DEC OSF/1 version 3.0 symmetric
multiprocessing implementation. Digital Technical Journal of Digital Equipment Corporation,
6(3):29–43, Summer 1994.

[40] Murthy Devarakonda and Arup Mukherjee. Issues in implementation of cache-affinity schedul-
ing. In Proceedings of the Usenix Winter 1992 Technical Conference, pages 345–358, Berkeley,
CA, USA, January 1991. Usenix Association.

[41] P. Druschel. Efficient support for incremental customization of OS services. In Proc. of the
Third International Workshop on Object Orientation in Operating Systems, pages 186–190,
Asheville, NC, December 1993.

[42] Jan Edler, Jim Lipkis, and Edith Schonberg. Memory management in symunix II: A de-
sign for large-scale shared memory multiprocessors. In UNIX and Supercomputers Workshop
Proceedings, pages 151–168, Pittsburgh, PA, September 26-27 1988. USENIX.

[43] Carla Schlatter Ellis. Extensible hashing for concurrent operations and distributed data.
In Proceedings of the 2nd ACM SIGACT-SIGMOD symposium on Principles of database
systems, pages 106–116. ACM Press, 1983.

[44] P. Ewens, D. R. Blythe, M. Funkenhauser, and R. C. Holt. Tunis: A distributed multipro-
cessor operating system. In USENIX Association, editor, Summer conference proceedings,
Portland 1985: June 11–14, 1985, Portland, Oregon USA, pages 247–254, P.O. Box 7, El
Cerrito 94530, CA, USA, Summer 1985. USENIX.

[45] S. Frank, J. Rothnie, and H. Burkhardt. The KSR1: Bridging the gap between shared
memory and MPPs. In IEEE Compcon 1993 Digest of Papers, pages 285–294, 1993.

[46] B. Gamsa, O. Krieger, J. Appavoo, and M. Stumm. Tornado: maximizing locality and
concurrency in a shared memory multiprocessor operating system. pages 87–100.

[47] B. Gamsa, O. Krieger, E. Parsons, and M. Stumm. Performace issues for multiprocessor
operating systems. Unpublished, University of Toronto, 1996.

[48] Ben Gamsa. Tornado: Maximizing Locality and Concurrency in a Shared-Memory Multipro-
cessor Operating System. PhD thesis, University of Toronto, 1999.

[49] Arun Garg. Parallel STREAMS: a multi-processor implementation. In USENIX, editor,
Proceedings of the Winter 1990 USENIX Conference, January 22–26, 1990, Washington,
DC, USA, pages 163–176, Berkeley, CA, USA, 1990. USENIX.

[50] Ahmed Gheith, Bodhisattwa Mukherjee, Dilma Silva, and Karsten Schwan. KTK: Kernel
support for configurable objects and invocations. Technical Report GIT-CC-94-11, Georgia
Institute of Technology. College of Computing.

35



[51] Ahmed Gheith and Karsten Schwan. Chaosarc: kernel support for multiweight objects,
invocations, and atomicity in real-time multiprocessor applications. ACM Transactions on
Computer Systems (TOCS), 11(1):33–72, 1993.

[52] Allan Gottlieb, Boris D. Lubachevsky, and Larry Rudolph. Basic techniques for the efficient
coordination of very large numbers of cooperating sequential processors. ACM Transactions
on Programming Languages and Systems (TOPLAS), 5(2):164–189, 1983.

[53] Kingshuk Govil, Dan Teodosiu, Yongqiang Huang, and Mendel Rosenblum. Cellular disco:
resource management using virtual clusters on shared-memory multiprocessors. In Proceedings
of the 17th Symposium on Operating Systems Principles (SOSP-99), volume 34,5 of Operating
Systems Review, pages 154–169, New York, December 1999. ACM Press.

[54] Steven D. Gribble, Eric A. Brewer, Joseph M. Hellerstein, and David Culler. Scalable, dis-
tributed data structures for internet service construction. In Proceedings of the 4th Symposium
on Operating Systems Design and Implementation (OSDI-00), pages 319–332, Berkeley, CA,
October 23–25 2000. The USENIX Association.

[55] A. Gupta, A. Tucker, and S. Urushibara. The impact of operating system scheduling policies
and synchronization methods of the performance of parallel applications. In Proc. 1991 ACM
SIGMETRICS Conf. on Measurement and Modeling of Computer Systems, page 120, San
Diego, California, USA, May 21-24 1991. Stanford Univ.

[56] A. N. Habermann, Lawrence Flon, and Lee Cooprider. Modularization and hierarchy in a
family of operating systems. Communications of the ACM, 19(5):266–272, 1976.

[57] Graham Hamilton and Panos Kougiouris. The Spring nucleus: A microkernel for objects. In
USENIX Conference Proceedings, pages 147–59, 1993.

[58] Graham Hamilton, Michael L. Powell, and James G. Mictchell. Subcontract: A flexible base
for distributed programming. pages 69–79, Asheville, NC (USA), December 1993.

[59] Per Brinch Hansen. The nucleus of a multiprogramming system. Communications of the
ACM, 13(4):238–241, 1970.

[60] John H. Hartman and John K. Ousterhout. Performance measurements of a multiprocessor
sprite kernel. In Proc. Summer 1990 USENIX Conf., pages 279–287, Anaheim, CA (USA),
June 1990. USENIX.

[61] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages
and Systems, 13(1):124–149, January 1991.

[62] Maurice Herlihy. A methodology for implementing highly concurrent objects. ACM Trans-
actions on Programming Languages and Systems, 15(5):745–770, November 1993.

[63] P. Homburg, L. van Doorn, M. van Steen, A. S. Tanenbaum, and W. de Jonge. An object
model for flexible distributed systems. In First Annual ASCI Conference, pages 69–78, Heijen,
Netherlands, May 1995. http://www.cs.vu.nl/˜steen/globe/publications.html.

36



[64] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M. Satyanarayanan, R. N. Side-
botham, and M. J. West. Scale and performance in a distributed file system. ACM Trans.
on Computer Sys., 6(1):51, February 1988.

[65] K. Hui. Design and implementation of k42’s dynamic clustered object switching mechanism.
Master’s thesis, University of Toronto, 2001.

[66] Kevin Hui, Jonathan Appavoo, Robert Wisniewski, Marc Auslander, David Edelsohn, Ben
Gamsa, Orran Krieger, Bryan Rosenburg, and Michael Stumm. Position summary: Support-
ing hot-swappable components for system software. In HotOS, 2001.

[67] Jack Inman. Implementing loosely coupled functions on tightly coupled engines. In USENIX
Association, editor, Summer conference proceedings, Portland 1985: June 11–14, 1985, Port-
land, Oregon USA, pages 277–298, P.O. Box 7, El Cerrito 94530, CA, USA, Summer 1985.
USENIX.

[68] M. B. Jones and R. F. Rashid. Mach and matchmaker: Kernel and language support for
object-oriented distributed systems. In N. Meyrowitz, editor, Proceedings of the Conference
on Object-Oriented Programming Systems, Languages and Applications, volume 21, pages
67–77, Portland, OR, November 1986. ACM, IEEE.

[69] D. R. Kaeli, L. L. Fong, R. C. Booth, K. C. Imming, and J. P. Weigel. Performance analysis
on a CC-NUMA prototype. IBM Journal of Research and Development, 41(3):205, 1997.

[70] D. R. Kohr, Jr., X. Zhang, D. A. Reed, and M. Rahman. A performance study of an object-
oriented, parallel operating system. In Hesham El-Rewini and Bruce D. Shriver, editors,
Proceedings of the 27th Annual Hawaii International Conference on System Sciences. Volume
2 : Software Technology, pages 76–85, Los Alamitos, CA, USA, January 1994. IEEE Computer
Society Press.

[71] Orran Krieger, Michael Stumm, Ron Unrau, and Jonathan Hanna. A fair fast scalable reader-
writer lock. In Proceedings of the 1993 International Conference on Parallel Processing,
volume II - Software, pages II–201–II–204, Boca Raton, FL, August 1993. CRC Press.

[72] Jeffrey Kuskin, David Ofelt, Mark Heinrich, John Heinlein, Richard Simoni, Kourosh Ghara-
chorloo, John Chapin, David Nakahira, Joel Baxter, Mark Horowitz, Anoop Gupta, Mendel
Rosenblum, and John Hennessy. The Stanford FLASH multiprocessor. In Proceedings of the
21st International Symposium on Computer Architecture, pages 302–313, Chicago, IL, April
1994.

[73] R. P. LaRowe and C. Schlatter Ellis. Page placement policies for NUMA multiprocessors.
Journal of Parallel and Distributed Computing, 11(2):112–129, [2] 1991.

[74] James Laudon and Daniel Lenoski. The SGI origin: A ccNUMA highly scalable server. In
Proceedings of the 24th Annual International Symposium on Computer Architecture (ISCA-
97), volume 25,2 of Computer Architecture News, pages 241–251, New YOrk, June2–4 1997.
ACM Press.

37



[75] T. J. Leblanc, J. M. Mellor-Crummey, N. M. Gafter, L. A. Crowl, and P. C. Dibble. The
elmwood multiprocessor operating system. Software, Practice and Experience, 19(11):1029–
1056, [11] 1989.

[76] T. J. LeBlanc, M. L. Scott, and C. M. Brown. Large-scale parallel programming: Experience
with the BBN butterfly parallel processor. Proceedings of the ACM/SIGPLAN PPEALS
1988, pages 161–172, July 1988.

[77] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Wolf-Dietrich Weber, Anoop Gupta,
John Hennessy, Mark Horowitz, and Monica S. Lam. The Stanford Dash multiprocessor.
Computer, 25(3):63–80, March 1992.

[78] R. Levin, E. Cohen, W. Corwin, F. Pollack, and W. Wulf. Policy/mechanism separation in
hydra. In Proceedings of the fifth symposium on Operating systems principles, pages 132–140,
1975.

[79] Chu-Cheow Lim. A Parallel Object-Oriented System for Realizing Reusable and Efficient
Data Abstractions. Technical Report TR-93-063, Berkeley, CA, Oct 93.

[80] M. Makpangou, Y. Gourhant, J.-P. Le Narzul, and M Shapiro. Fragmented objects for
distributed abstractions. In Thoman L. Casavant and Mukesh Singhal, editors, Readings in
Distributed Computing Systems, pages 170–186. IEEE Computer Society Press, Los Alamitos,
California, 1994.

[81] Michael Marchetti, Leonidas Kontothanassis, Ricardo Bianchini, and Michael Scott. Using
simple page placement policies to reduce the cost of cache fills in coherent shared-memory
systems. In Proceedings of the 9th International Symposium on Parallel Processing (IPPS’95,
pages 480–485, Los Alamitos, CA, USA, April 1995. IEEE Computer Society Press.

[82] Evangelos P. Markatos and Thomas J. LeBlanc. Using processor affinity in loop scheduling
on shared-memory multiprocessors. IEEE Transactions on Parallel and Distributed Systems,
5(4):379–400, April 1994.

[83] H. Massalin. Synthesis: An Efficient Implementation of Fundamental Operating System Ser-
vices. PhD thesis, Columbia University, 1992.

[84] H. Massalin and C. Pu. Threads and input/output in the Synthesis kernel. In Proc. Twelfth
ACM Symp. on Operating Sys., Operating Systems Review, page 191, December 1989. Pub-
lished as Proc. Twelfth ACM Symp. on Operating Sys., Operating Systems Review, volume
23, number 5.

[85] Henry Massalin and Calton Pu. A lock-free multiprocessor OS kernel. Technical Report
CUCS-005-91, Dept. of Comp. Sc., Columbia U., New York, NY USA, April 1991.

[86] Ann Marie Grizzaffi Maynard, Colette M. Donnelly, and Bret R. Olszewski. Contrasting
characteristics and cache performance of technical and multi-user commercial workloads.
ACM SIGPLAN Notices, 29(11):145–156, November 1994.

[87] Drew McCrocklin. Scaling solaris for enterprise computing. In CUG 1995 Spring Proceedings,
pages 172–181, Denver, CO, March 1995. Cray User Group, Inc.

38



[88] Paul E. McKenney and Jack Slingwine. Efficient kernel memory allocation on shared-memory
multiprocessor. In USENIX Technical Conference Proceedings, pages 295–305, San Diego, CA,
Winter 1993. USENIX.

[89] Bodhisattwa C. Mukherjee and Karsten Schwan. Improving performance by use of adaptive
objects: experimentation with a configurable multiprocessor thread package. In Proceedings
the 2nd International Symposium on High Performance Distributed Computing, pages 59–66,
Spokane, WA, USA, 1993. IEEE.

[90] Kevin Murray. Wisdom: The foundation of a scalable parallel operating system. Technical
Report YCST-90-02, City Unviersity of York, 1990.

[91] Michael N. Nelson, Brent B. Welch, and John K. Ousterhout. Caching in the sprite network
file system. ACM Transactions on Computer Systems (TOCS), 6(1):134–154, 1988.

[92] J. K. Ousterhout, D. A. Scelza, and P. S. Sindhu. Medusa: An Experiment in Distributed
Operating System Structure. Communications of the ACM, 23(2):92–104, February 1980.

[93] D. L. Parnas. On the criteria to be used in decomposing systems into modules. Communica-
tions of the ACM, 15(12):1053–1058, 1972.

[94] E. Parsons, B. Gamsa, O. Krieger, and M. Stumm. (de)clustering objects for multiproces-
sor system software. In Fourth International Workshop on Object Orientation in Operating
Systems 95, pages 72–81, 1995.

[95] J. Kent Peacock. File system multithreading in System V Release 4 MP. In USENIX Con-
ference Proceedings, pages 19–30, San Antonio, TX, Summer 1992. USENIX.

[96] J. Kent Peacock, Sunil Saxena, Dean Thomas, Fred Yang, and Wilfred Yu. Experiences
from multithreading System V Release 4. In Symposium on Experiences with Distributed and
Multiprocessor Systems (SEDMS), pages 77–92. USENIX, Newport Beach, CA, March 26-27
1992.

[97] G. F. Pfister, W. C. Brantley, D. A. George, S. L. Harvey, W. J. Kleinfelder, K. P. McAuliffe,
E. A. Melton, V. A. Norton, and J. Weise. The IBM research parallel processor prototype
(RP3): Introduction. In Proc. Int. Conf. on Parallel Processing, August 1985.

[98] R. Pike. Personal communication.

[99] Rob Pike, Dave Presotto, Sean Dorward, Bob Flandrena, Ken Thompson, Howard Trickey,
and Phil Winterbottom. Plan 9 from Bell Labs. Computing Systems, 8(3):221–254, Summer
1995.

[100] David Leo Presotto. Multiprocessor streams for Plan 9. In Proc. Summer UKUUG Conf.,
pages 11–19, London, July 1990.

[101] R. Rashid, A. Tevanian, Jr., M. Young, D. Golub, R. Baron, D. Black, W. J. Bolosky, and
J. Chew. Machine-independent virtual memory management for paged uniprocessor and
multiprocessor architectures. IEEE Trans. on Computers, 37 8:896–908, August 1988.

39



[102] Richard Rashid. From RIG to accent to mach: The evolution of a network operating system.
In Proceedings of the ACM/IEEE Computer Society Fall Joint Computer Conference, pages
1128–1137, November 1986. Department of Computer Science, Carnegie Mellon University,
Pittsburgh, PA.

[103] Steven K. Reinhardt, Babak Falsafi, and David A. Wood. Kernel support for the wisconsin
wind tunnel. In Proceedings of the Symposium on Microkernels and Other Kernel Architec-
tures, pages 73–90, San Diego, CA, USA, September 1993. USENIX Association.

[104] Mendel Rosenblum, Edouard Bugnion, Stephen Alan Herrod, Emmett Witchel, and Anoop
Gupta. The impact of architectural trends on operating system performance. In Proceedings
of the 15th Symposium on Operating Systems Principles (15th SOSP’95), Operating Systems
Review, pages 285–298, Copper Mountain, CO, December 1995. ACM SIGOPS. Published
as Proceedings of the 15th Symposium on Operating Systems Principles (15th SOSP’95),
Operating Systems Review, volume 29, number 5.

[105] Curt Schimmel. Unix Systems for Modern Achitectures: Symmetric Multiprocessing and
Caching for Kernel Programmers. Addison-Wesley Publishing Company, 1994.

[106] Wolfgang Schröder-Preikschat. Design principles of parallel operating systems —A PEACE
case study—. Technical Report TR-93-020, International Computer Science Institute, Berke-
ley, CA, April 1993.

[107] Michael D. Schroeder, Andrew D. Birrell, and Roger M. Needham. Experience with grapevine:
the growth of a distributed system. ACM Transactions on Computer Systems (TOCS), 2(1):3–
23, 1984.

[108] Karsten Schwan and Win Bo. Topologies: distributed objects on multicomputers. ACM
Transactions on Computer Systems (TOCS), 8(2):111–157, 1990.

[109] M. L. Scott, T. J. LeBlanc, and B. D. Marsh. Design rationale for psyche, a general-purpose
multiprocessor operating system. In Proc. Intern. Conf. on Parallel Processing, page 255, St.
Charles, IL, August 1988. Penn. State Univ. Press. Also published in the Univ. of Rochester
1988-89 CS and Computer Engineering Research Review.

[110] M. L. Scott, T. J. LeBlanc, and B. D. Marsh. Evolution of an operating system for large-scale
shared-memory multiprocessors. Technical Report TR 309, URCSD, March 1989.

[111] M. L. Scott, T. J. LeBlanc, and B. D. Marsh. Implementation issues for the psyche multi-
processor operating system. USENIX Workshop on Distributed and Multiprocessor Systems,
pages 227–236, October 1989.

[112] M. L. Scott, T. J. LeBlanc, and B. D. Marsh. Multi-model parallel programming in psyche. In
Proc. ACM/SIGPLAN Symp. on Principles and Practice of Parallel Programming, page 70,
Seattle, WA, March 1990. In ACM SIGPLAN Notices 25:3.

[113] White Paper: Sequent’s NUMA-Q Architecture.

[114] Marc Shapiro, Yvon Gourbant, Sabine Habert, Laurence Mosseri, Michel Ruffin, and Celine
Valot. SOS: An object-oriented operating system - assessment and perspectives. Computing
Systems, 2(4):287–337, 1989.

40



[115] A. Silberschatz, J. Peterson, and P. Galvin. Operating Systems Concepts. Addison-Wesley,
Reading, MA, 1991.

[116] Dilma Silva, Karsten Schwan, and Greg Eisenhauer. CTK: Configurable object abstractions
for multiprocessors. Software Engineering, 27(6):531–549, 2001.

[117] Burton Smith. The quest for general-purpose parallel computing, 1994.

[118] Craig A. N. Soules, Jonathan Appavoo, Kevin Hui, Robert W. Wisniewski, Dilma da Silva,
Gregory R. Ganger, Orran Krieger, Michael Stumm, Marc Auslander, Michal Ostrowski,
Bryan Rosenburg, and Jimi Xenidis. System support for online reconfiguration. In USENIX,
pages 141–154, San Antonio, TX, June 9-14 2003.

[119] Mark S. Squillante and Edward D. Lazowska. Using processor-cache affinity information in
shared-memory multiprocessor scheduling. IEEE Transactions on Parallel and Distributed
Systems, 4(2):131–143, February 1993.

[120] R. Stets, S. Dwarkadas, N. Hardavellas, G. Hunt, L. Kontothanassis, S. Parthasarathy, and
Michael Scott. Cashmere-2L: Software coherent shared memory on a clustered remote-write
network. In Proc. of the 16th ACM Symp. on Operating Systems Principles (SOSP-16),
October 1997.

[121] J. Mark Stevenson and Daniel P. Julin. Client-server interactions in multi-server operat-
ing systems: The Mach-US approach. Technical Report CMU-CS-94-191, Carnegie-Mellon
University, September 1994.

[122] J. Talbot. Turning the AIX operating system into an MP-capable OS. In Proc. USENIX
Technical Conference, 1995.

[123] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall, 1992.

[124] Andrew S. Tanenbaum, Robbert van Renesse, Hans van Staveren, Gregory J. Sharp, and
Sape J. Mullender. Experiences with the amoeba distributed operating system. Communi-
cations of the ACM, 33(12):46–63, 1990.

[125] Josep Torrellas, Anoop Gupta, and John L. Hennessy. Characterizing the caching and syn-
chronization performance of a multiprocessor operating system. In Proceedings of the Fifth
International Conference on Architectural Support for Programming Languages and Operating
Systems, pages 162–174. Boston, Massachusetts, 1992.

[126] R. Unrau, M. Stumm, O. Krieger, and B. Gamsa. Hierarchical clustering: A structure for
scalable multiprocessor operating system design. Journal of Supercomputing. To appear. Also
available as technical report CSRI-268 from ftp.csri.toronto.edu.

[127] M. van Steen, P. Homburg, and A. S. Tanenbaum. The architectural design of globe: A
wide-area distributed sytem. Technical Report IR-442, vrige Universiteit, March 1997.

[128] Raj Vaswani and John Zahorjan. The implications of cache affinity on processor scheduling
for multiprogrammed, shared memory multiprocessors. In Proceedings of 13th ACM Sympo-
sium on Operating Systems Principles, pages 26–40. Association for Computing Machinery
SIGOPS, October 1991.

41



[129] Ben Verghese, Scott Devine, Anoop Gupta, and Mendel Rosemblum. Operating system
support for improving data locality on CC-NUMA compute servers. In Seventh International
Conference on Architectural Support for Programming Languages and Operating Systems,
pages 279–289, Cambridge, Massachusetts, 1–5 October 1996. ACM Press.

[130] Z. Vranesic, S. Brown, M. Stumm, S. Caranci, A. Grbic, R. Grindley, M. Gusat, O. Krieger,
G. Lemieux, K. Loveless, N. Manjikian, Z. Zilic, T. Abdelrahman, B. Gamsa, P. Pereira,
K. Sevcik, A. Elkateeb, and S. Srbljic. The NUMAchine multiprocessor. Technical Report
324, University of Toronto, April 1995.

[131] Zvonko G. Vranesic, Michael Stumm, David M. Lewis, and Ron White. Hector: A hierarchi-
cally structured shared-memory multiprocessor. Computer, 24(1):72–80, January 1991.

[132] Tim Wilkinson, Tom Stiemerling, Peter Osmon, Ashley Saulsbury, and Paul Kelly. Angel: A
proposed multiprocessor operating system kernel. In European Workshop on Parallel Com-
puting, March 1992.

[133] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pollack. HYDRA:
The kernel of a multiprocessor operating system. CACM, 17(6):337–345, June 1974.

[134] W. Wulf, R. Levin, and C. Pierson. Overview of the hydra operating system development.
In Proceedings of the fifth symposium on Operating systems principles, pages 122–131, 1975.

[135] C. Xia and J. Torrellas. Improving the performance of the data memory hierarchy for multi-
processor operating systems. In Proc. of the 2nd IEEE Symp. on High-Performance Computer
Architecture (HPCA-2), February 1996.

[136] Yasuhiko Yokote. The apertos reflective operating system — the concept and its imple-
mentation. In Andreas Paepcke, editor, Proceedings of the Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA), pages 414–434, Vancouver,
BC CD, [10] 1992. ACM Press , New York, NY , USA. Published as SIGPLAN Notices,
volume 27, number 10.

[137] M. Young, A. Tevanian, R. Rashid, D. Golub, J. Eppinger, J. Chew, W. Bolosky, D. Black,
and R. Baron. The duality of memory and communication in the implementation of a multi-
processor operating system. In Proceedings of the 11th ACM Symposium on Operating Systems
Principles, pages 63–76, [11] 1987. Published as Proceedings of the 11th ACM Symposium
on Operating Systems Principles, volume 21, number 5.

42


