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In this paper, we describe a simple language for parallel programming. Its semantics is studied thor-
oughly. The desirable properties of this language and its deficiencies are exhibited by this theoret-
ical study. Basic results on parallel program s.:hemata are given. We hope in this way to make a case
for a more formal (i.e. mathematical) approach tc-the design of languages for systems programming and

the design of operating systems.

. There is a wide disagreement among systems designers
as to what are the best primitives for writing sys-
tems programs. In this paper, we describe a simple
language for parallel programming and study its
mathematical properties.

1. A SIMPLE LANGUAGE FOR PARALLEL PROGRAMMING.

The features of our mini-language are exhibited on
the sample program S on fig.l. The conventions are
close to Algol and we only insist upon the new
features. The program S consists of a set of decla-
" rations and a body. Variables of type integer
channel are declared at ‘line (1), and for ary simple
type o (bcolean, real, etc...) we could have decla-
- red a 0 channel. Then processes f, g and h are
declared, much like procedures. Aside from usual
parameters (passed by value in this example, like
INIT at line (3)), we can declare in the heading of
the process how it is linked to other processes : at
line (2) £ is stated to communicate via two input
* lines that can carry integers, and one similar out-
put line.
The body of a process is an usual Algol program except
for invocation of wait onan input line (e.g. at (4))
or gend a variable on a line of compatible type
(e.g. at (5)). The process stays blocked on a watt
until something is being sent on this line by ano-
ther process, but nothing can prevent a process
from performing a send on a line. i
In other words, processes communicate via first-in
first-out (fifo) queues.
Calling instances of the processes is done in the
. body of the main program at line (6) where the
actual names of the channels are bound to the formal
parameters of the processes. The infix operator par
initiates the concurrent activation of the processes.
Such a style of programming is close to may systems
using EVENT mechanisms ([1],02],03],04]). A picto-
rial representation of the program is the schema P
on fig.2., where the nodes represent processes and
the arcs communication channels between these pro-
cesses., :
What sort of things would we like to prove on a
program like S ? Firstly, that all processes in S
run forever. Secondly, more precisely, that S prints
out (at line (7)) an alternating sequence of 0's
and 1's forever. Third, that if one of the processes
were to stop at some time for an extraneous reason,
the whole system would stop.
The ability to state formally this kind of property
of a parallel program and to prove them within a
formal logical framework is the central motivation
for the theoretical study of the next sections.

2. PARALLEL COMPUTATION.

Informally speaking, a parallel computation is orga-
nized in the following way : some autonomous compu-
ting stations are connected to each other in a net-
work by communication lines. Computing stations
exchange information through these lines. A given
station computes on data coming along its input lines,

Begin
(1) Integer channel X, Y, 2, T1, T2 ;
(2) Process f(integer <in U,V; integer out W) ;
Begin integer 1 ; logical B ;
B := true ;
Repeat Begin

%) I := if B then wait(U) else wait(V) ;
) print (1) ;
(5) gend Ton W ;
B :=—TB ;
End end ;

L
Process g(integer in U ; integer out V, W) ;
Begin integer 1 ; logical B ; .
B := true ;
Repeat Begin
I := wait (U) ;
if B then send 1 on V else send I on W ;
B :=7B ;
Erd ;
End ; .
(3) Process h(integer in Ujinteger out V; integer INIT);
Begin integer 1 ;
send INIT on V ;
Repeat Begin
I := watt(U) ;
send 1 onV ;
End ;
End ;

Comment : body of mainprogram ;
(6) £(Y,Z,X) par g(X,T1,T2) par h(T!,Y,0) par h(T2,2,1
End ;
Fig.!. Sample parallel program S.
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Fig.2. The schema P for the program S.
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using some memory of its own, to produce output on
some or all of its output lines. It is assumed that :
i) Communication lines are the only way by which
computmg stations may communicate.
ii) A communication line transmits information within
an impredictable but finite amount of time.
Restrictions are meoud on the behaviour of compu-
ting stations :
iii) At any given tm&, a computing station is either
computmg or waiting for information on ome of

R its input lines.

iv) Each computing station follows a sequential
program. (We call here sequential program what is
usually called a program elsewﬁere).

Remarks : first, since several computing stations

may be computing simultaneously, this model indeed
exhibits some form of parallelism. Second, restric-
tion iii) means that a computing station cannot be

. wnt:mg on data coming from one or another of its

mput lines, or alternately that no two computing
stations are allowed to send data on the same charnel
Third, we do not restrict the computing stations to
have a finite memory.

The reader who is mathematically inclined can think
of a set of Turing machines connected via-one-way

‘ tapes, where each machine can use its own working

tape.
We formalize now the notion of parallel computation
introduced above.

"'2.1. Syntax

A parallel program schema is an oriented graph with
labeled nodes and edges, togett-er with some supple-
incoming edges with

only end vernces. meant to Tepresent the 1nput lines,

. and cutcoming ‘edges, with only origin vertices, the

. ‘output lines.

2.2, Semantics
2.2.1, Outline

Edges in a schema are thought of as pipes : each
edge is able to carry data of a given type D(e.g :
integer, boolean,.pointer, procedure etc... ).

An observer placed on the line witnesses its traffic,
a (possibly infinite) sequence of objects of type D :
it is called the history of the line. Since a compu-
ting ‘station has its own memory, it is not a partial
function from the domains of the inputs into the
domain of the outputs, but rather a function from the
histories of its input lines into the histories of
its ou:put lmes. ;

2 2,2, Seguence domains

Let D :be.the set of finite or denumerably infinite.
sequencu of ‘elements over a set D. In D” we include
‘the empty sequence’ A. The relation £ defined by

Xl £. Y- iff X is an’ uutial ugment of Y
is a: partxal order on D”. The mmbmal element of DY
is A, 'Any 1ncreumg chain £ in D

X ‘€ X,S...8 x LE et ht’s a least upper bound which
we calf' hm € .. Hence' D - is a complete partizl order
(c.p.o)’( ~pY ,

2.2.37Domain of interpretation
To~ each cdge e.in.a; schema, we associate a set D , the
type of the obJecu it ‘may cargy. The hutory of

line e*is:then an’element of D .t ¢ I
20204

A mappmg from a. ccmplete partul o:det A 1-to a
complete. partinl c:der B.is continuous iff, £ur any
increasing chain.a of A .

£(lim a) = lim’ f.(a)
A

Contmuoua mapoings .

Note that'a continuous napping is also nonotomc, i.e.
x £y => £(x)*g £(y) .

The following mappings : F(for first), Rifor ramamder)'
and A(for append) are e:.anples of continuous mappings :

- F : to any sequence'x in DY, F'associates the

-(unit length) scquence constituted of the lertmost

element of x.

Formal Models of Parallé! Computation

Fig.3. A parallel program schema.
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Fig.4. The complete partial order D“, when D-(al‘,iz‘-)

- R : to any sequence x in Dw, R associate the
sequence of the right of its leftmost element.’

- A : takes two arguments L] and L2 in D to pro-
duce the sequence : (leftmost element of L1) follo-
‘wed by L2.

More precisely, F,R, and 4 obey the axioms :
1) R(A) = A 2) A(A,X) = A 3) A(X,A) = F(X)
4) F(A(X,Y) = F(X) 5) A(F(X),R(X)) =X

6) X = A v R(A(X,Y)) = Y

For properties such as deadlock, we shall need to
talk formally about the length of a sequence. An
elegant way to do so within our formalism is to take
the integers with their usual order and complete
them with an extra element = to obtain the complete
partial order N (fig.5).

The wapping length from D“ to N which maps a sequen-
ce into its length is continuous ; note also that
addition in N is continuous.

2.2.5. Computing stations

We are now ready to interpret the nodes in a parallel
schema. To each node with input lines carrying data

in Dl,Dz‘, cesy D and producing data in D;,Di,...bl')
ve usocute P connnuous functions from

D x 13'2 X ..o D into (respectively) D'm +D) ,D‘u

For example, in fig.6, we specify two continuous
functions fi and £, in order to interpret node f :

B

R R ) W . W
fl. Dlxbszs-'l)'

1
) w w W
fz. Dl xszns*Dz
. -
1
]
)
.
1
H
3
Py D2 .05
2
1
0 _ D' D'
Fig.5. The c.p.o N. ! Fig.6.
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Examples :

The process f of program. S is associated to the
continuous function £ in N“ x N’ + N* defined
recursively by :
£(U,V) = A(P(U),A(F(V),£(R(U),R(V)))).

The process g is associated to two functions, one per
outputline, defined recursively by :

Gl(U) =A(F(U),g, (R(R(U)))) and

8,() = ACF R, 8, RERW).

Similarly the function h maps N into N’ : .
h(U,x) = A({x},U) where x is in N and the notation
{x} means the unit length sequence whose first
element is x.

In these examples, not much cofputation is actually
performed on the inputs, but an arbitrary amount of

computation could be performed by a computing station,

requiring possibly an unbounded amount of memory.

The restriction of the interpretation of nodes to

continuous functions can be understood in concrete
terms :

a) Monotonicitz means that receiving more input at
a computing station can only provoke it to send more
output. Indeed this a crucial property since it
allows parallel operation : a machine need not have
all of its input to start computing, since future
input concerns only future putput.

b) Furthermore continuity prevents any station
from deciding to send some output only after it has
received an infinite amount of input,

Ay process written in the simple programmirg langua-
ge of section l. corresponds to a set of continuous
functions. The recursive definition of -these func~— -
tions is obtained by the usual method of McCarthy for
converting flow-chart programs to recursive defini-
tions.

3. FIXPOINT EQUATIONS.

Rather than studying the behaviour of a complex ma-
chine, we want to study the properties of the solu-
tion of a set of equations. To each parallel program
(i.e. interpreted schema) we associate a set.E; of
equations on sequence domains in such a way that a
set of sequences is a possible solution of the sys-
tem iff it is a possible set of histories for the
comunication's lines of the program :

i) To every line e, of type D , associate a

variable X ranging over D_.
ii) If xl,xz, ?... xn are the variables associated

to the input lines and i], e ik are the se-

quences fed as inputs on the lines include the
equations :
X =i
LS
X =iy
iii) For each node f, interpreted with the functions
£, «.uf_, with input variables X ,..., X
| P | n

ousf:t variables X;, e X; include p equatioms
in

1

' -
X fl(xl':"xn)
)(P = fp(xl .. .Xn)

ines of the program P
have to satisfy the system .Eip is a set of fix-
point equations over c.p.o.'s, where the operators
are continuous. It is a well-known mathematical result
(see for example Milner [6]) that such a system admits
a unique minimal solution. It is outside the scope of
this paper to show that this minimal solution consti-
tutes indeed the vector of histories of the communi-
cation's lines, given a suitable implementation. Such
a proof can be found in Cadiou [5] in a similar set
up. :

The first property of this minimal solution gives us
access to the most powerful rule of induction used

Clearly, the histories of tﬁ;

X =i

= f(xl,xa)
= g,(x,)
x,‘ - gz(xz)

1
X
X5

3 - h‘(x .xs)

fig.7. The program P and the associated system EEP'

in prowing programs correct (see Manna, Ness,
Vuillemin [9]), i.e. Scott's rule :

Property 1 [Kleene]
The minimal solution {Y(X, ),¥(X.)..., Y(X )} of the
system 2: - (X; = r;(x:....x“) | i e [1,n])  where

the t. are terms :ullt out of continuous operators
is lim (3?, ... X°) where
1-++4o )

3: = A(i € ['!“]) (Strictly speaking there
.l ;smight be n different A's)

S 1.0 IO, | . :
5& r;(x:, ool an_(x e [1,n]).

Scott's induction rule in this case can be stated -
as follows, if P is an admissible predicate (see
Manna, Ness, Vuillemin [9]) :

. P(A,...A)

) PCXy, ... X)> P(T:(X:...X“), e T (X 00 oX )
P(Y(Xl), . Y(xn))

A property of a parallel program is stated as a
relation between the input sequences and the output
sequences or in general between the histories of
some communication lines. Since we may use Scott's
rule, all the techniques for proving properties of
recursive programs studied in Vuillemin [10] are
available, in particular structural induction and
Tecursion induction.

Example : The system 2% associated with program S
18

X = £(Y,2)
Y= h(TI,O)
z Z= h('l'z,l)
T= 8, (X
T,= 8,(X)
vhere f, ) 8, and h are given in §2.2.5.

As an illustration, let us prove that the history X,
which 'is exactly what S prints out, is an infinite
alternating sequence of 0's and 1's. In other words,
if T is the minimal fixpoint of T= A({0},A((1}, T)),
then X = X,

The system ::s can be reduced to a single fixpoint
equation :

X = f(h(gl(x): 0).h(82(x).|)) (l)
Using the definition of £ and h, and the properties
of F and A we transform eq.(l) to

X = A({o}, Al{1), £(g, (%), 8,(X))) (2)
Lemma : For all U, U = f(gl(U),gz(U))
Proof :

By structural induction. The lemma is obviously true
for A, and for any sequence of length |. Assume
it is true for V, then :
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£(g,(A{a), Al{b},V))), g, (AU{a}, A(b},V)))
- A({al.A((b).f(g,(V).gz(V))))
= A({a},A {b},V)) by induction hypothesis.(]
From eq.(2) and the lemma above we deduce :
X ¢ X. '

With this Lemma again'it is trivial to see that
X € XL, which proves the result. Since the mapping
length is continuous, length (X) is the minimal
solution (in N) of

length(X) = 2 + length(X) :
which is obviously «. Hence T, and T, are infinite
sequences and so are Y and Z. We havé thus answered
the first two questions raised in sectionl. about
program S. O i -’
The simplicity of the program S and the proof produ-
ced should not induce the reader into believing that
only very simple minded proofs are feasible. Milner

and Weyrauch [7] used the system LCF, based on Sco:t's

induction rule, to check mechanically the complete
‘proof of the correctness of a small compiler, a very
large proof indeed. LCF can be readily used for ou:
purposes and very large and trustworthy proofs cou'l
be produced on this system. '

Property 2 [Scott]

The minimal solution ofz: is a continuous function
of the parameters of the System, in particular the
values of the input streams, or the operators of the
system.

In more concrete terms, Property 2 means that, in this

model of parallel computation :

1. Arbitrary interconnection of systems, as well as

processes, is legitimate. Hence, top-down design finds

_here a mathematical justification since we can post-
" pone the decision. to implement a given function by a
single process or a set of interconnected processes :
this decision will not introduce perturbations in the
remainder of the system.
. 2. A parallel program can be safely simulated on a
sequential machine, provided the scheduling algorithm
is fair enough, i.e. it eventually attributes some
more computing time to a process which wants it. If
this. algorithm’is not fair however, the only thing
that may happen is for the parallel program to pro-
duce less output than what could be expected. But
what Ts produced is correct.
This remark and a-simple argument on lengths answer
the last ‘question‘about program S raised in the first
section. )
- 4, RECURSION

The parallel programs introduced so far actually
exhibit a bounded parallelism : only a finite number
of processes may compute .simultaneously. It is
necessary and easy to introduce the recursive paral-
lel programs,: where an unbounded number of machines
may compute in parallel.

A recursive parallel schema is a set Fl,Fz,... Fl

of parallel schemata in which some nodes may be -
labeled FI,FZ,.;AFI.Qlfla parallel schema'Fj has
input lines labeled i};ié,;...ip and output lines

0130912400, ther'in each occurrence of F, the saae

8 v , - )
labels must occur on its input ‘and output lines. An
example is given on fig.8.

Fig .8. A recursive parallel schema.

(N.B. : this is a way to ensure that the parallel
recursive programs are syntactically well formed.;
it is sufficient for our purposes although it may
give several labels to an edge). We comstruct nowa
set of fixpoint equations that contain variables in
two types : sequence domains, and continuous mappings
between sequence domains. a

Example : . .
To the schema on fig.8. we associate'the cy:tenz:

o = F(i) = g,(F(£(i,X)))
X = g, (F(£(1,00))

where X and F are respectively an unknown sequence
and an unknown continuous mapping between sequ;ncé
domains. The continuous mappings from a c.p.o into
a c.p.o constitute also a c.p.o. with the ordering
fcg iff ¥x £(x) ¢ g(x)

The existence of a minimal (now functional) solution
is still assured and Property | and Property 2 hold
along with their concrete interpretation. A little’
bit more care has to be exerted to make sure that
the implementation computes the minimal fixpoirt.
The only problem is to know when to start unfolding
a recursive call to a process. The good strategy-is
not to start when input is presented but when output
Ts requested. This-?ET: is gasicnlly the delay’?;¥:'
of Vuillemin [ 10].

5. SCHEMATOLOGY.

Structural properties of parallel prograris’ are-dis-
covered in studying parallel program schemata. For
example we can prove that the schemata on fig.9. )
are equivalent, i.e. whatever process f and g may be
the two resulting programs will be equivalent.

1

e

1

O— D)

Fig,9. Two équivalent schemata.

- (Nota : these schemata are partially interpreted :-

the node called a 2-plicator sends a copy of
each input™®n each output line. We allow such nodes

in schemata because they introduce no new fixpoint
equations).

We state the main results (Courcelle, Kahn,
Vuillemin [11]) :

Theorem | : The equivalence of schemata containing
uninterpreted processes and n-plicators
is decidable. : -

Theorem 2 : There exists a unique minimal schema S
(i.e. containing a minimum number of
process nodes) equivalent to a given
schema S. :

Theorem 3 : The systems of equations corresponding
to S containing the minimum number of
equations are obtained by taking minimal
cuts of S.

The results concerning recursive parallel schemata
are much harder. Restricting ourselves to recursive
processes with one input and one input we know
(Courcelle-Vuillemin [ 12]) :

Theorem &4 : Equivalence of recursive parallel sche-

mata is decidable.
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6. DISCUSSION AND CONCLUSION

The kind of parallel progrmmg we have studied in
- this paper is severely limited : it can produce only-=
determinate programs. We argue however that :
arge parts of operating systems are written so’
as to be determinate. The method of monitors
advocated by Hoare narrows down the possible
locations of non-~determinacy.

ii) the primitives watit and send x on y that we
studied are not too far from ruhty as exempli-
fied by (11,031,043,
theory to non-determinate parallel prograns,
although how to satisfactorily do so is far
from obvious.

iv) The programming language we have introduced can.
be extended by adding fiew primitive processes
(i.e. that cannot be programmed as processes
with wait and aend) A typical such process is
WARN (integer in X,Y ; logical out Z) that _
sends a true value on its output line each time
some mteger is received on either of its input
lines. The only condition to be verified by the
new primitive processes, and verified by WARN,
is that the history of the output line be a
continuous function of the histories of the
input lines.

- Looking now at the merits of our approach, we see the
essential one as the eradication of the notion of
- state of a complex system. More precisely, in Lauer .
[137 and Gilbert [1Z5 for example, a system is thought
of as havmg a huge "state vector” and making nonde-
terministic transitions from state to state. This
view leads to proofs growing exponentially with the
number of processes (we grow linearly) and is blind -
to the structure of the system, making the proofs
counter-intuitive. Furthermore is cannot deal with

an unbounded number of processes, something we get
almost "for free". Our proofs can be checked mecha-
m.cally in LCF [8], another non negligible advantage

since they will often be tedious but without great
mathematical depth.

Our last conclusion is to recall a principle that has
been so often fruitful in Computer Science and that
is central to Scott's theory of computation : a

good concept is one that is closed

I. under arb:.trary compos:.tlon :
2. under recursion.
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iii) We do not think it is impossible to extend the °
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