
Cryptographic Hash-Function Basics:
Definitions, Implications, and Separations for

Preimage Resistance, Second-Preimage Resistance,
and Collision Resistance

P. Rogaway
∗

T. Shrimpton
†

February 12, 2004

Appears in Fast Software Encryption(FSE 2004), Lecture Notes in Computer Science, Vol. ????, Springer-Verlag.
This is the full version.

Abstract

We consider basic notions of security for cryptographic hash functions: collision resistance,
preimage resistance, and second-preimage resistance. We give seven different definitions that
correspond to these three underlying ideas, and then we work out all of the implications and
separations among these seven definitions within the concrete-security, provable-security frame-
work. Because our results are concrete, we can show two types of implications, conventional and
provisional , where the strength of the latter depends on the amount of compression achieved by
the hash function. We also distinguish two types of separations, conditional and unconditional .
When constructing counterexamples for our separations, we are careful to preserve specified
hash-function domains and ranges; this rules out some pathological counterexamples and makes
the separations more meaningful in practice. Four of our definitions are standard while three
appear to be new; some of our relations and separations have appeared, others have not. Here
we give a modern treatment that acts to catalog, in one place and with carefully-considered
nomenclature, the most basic security notions for cryptographic hash functions.

Key words: collision resistance, cryptographic hash functions, preimage resistance, provable
security, second-preimage resistance.

∗ Dept. of Computer Science, University of California, Davis, California 95616, USA; and Dept. of Computer
Science, Faculty of Science, Chiang Mai University, 50200 Thailand. E-mail: rogaway@cs.ucdavis.edu WWW:
www.cs.ucdavis.edu/~rogaway/

† Dept. of Electrical and Computer Engineering, University of California, Davis, California 95616, USA. E-mail:
teshrim@ucdavis.edu WWW: www.ece.ucdavis.edu/~teshrim/

Contents

1 Introduction 1

2 Preliminaries 3

3 Definitions of Hash-Function Security 4
3.1 Preimage resistance . 4
3.2 Second-preimage resistance . 6
3.3 Collision resistance . 6

4 Equivalent Formalizations with a Two-Stage Adversary 7

5 Implications 8

6 Separations 9

Acknowledgments 11

References 11

A Brief History 13

B Proofs 14
B.1 Proof of Theorem 7 . 14
B.2 Proof of Proposition 9 . 15
B.3 Proof of Proposition 10 . 16
B.4 Proof of Theorem 11 . 16
B.5 Proof of Proposition 12 . 18
B.6 Proof of Theorem 13 . 18
B.7 Proof of Theorem 14 . 19

1 Introduction

This paper casts some new light on an old topic: the basic security properties of cryptographic hash
functions. We provide definitions for various notions of collision-resistance, preimage resistance,
and second-preimage resistance, and then we work out all of the relationships among the definitions.
We adopt a concrete-security, provable-security viewpoint, using reductions and definitions as the
basic currency of our investigation.

Informal treatments of hash functions. Informal treatments of cryptographic hash func-
tions can lead to a lot of ambiguity, with informal notions that might be formalized in very different
ways and claims that might correspondingly be true or false. Consider, for example, the following
quotes, taken from our favorite reference on cryptography [9, pp. 323–330]:

preimage-resistance — for essentially all pre-specified outputs, it is computationally infeasible
to find any input which hashes to that output, i.e., to find any preimage x′ such that h(x′) = y
when given any y for which a corresponding input is not known.

2nd-preimage resistance — it is computationally infeasible to find any second input which has
the same output as any specified input, i.e., given x, to find a 2nd-preimage x′ �= x such that
h(x) = h(x′).

collision resistance — it is computationally infeasible to find any two distinct inputs x, x′ which
hash to the same output, i.e., such that h(x) = h(x′).

Fact Collision resistance implies 2nd-preimage resistance of hash functions.

Note (collision resistance does not guarantee preimage resistance)

In trying to formalize and verify such statements, certain aspects of the English are problematic and
other aspects aren’t. Consider the first statement above. Our community understands quite well
how to deal with the term computationally infeasible. But how is it meant to specify the output y?
(What, exactly, do “essentially all” and “pre-specified outputs” mean?) Is hash function h to be a
fixed function or a random element from a set of functions? Similarly, for the second quote, is it
really meant that the specified point x can be any domain point (e.g., it is not chosen at random)?
As for the bottom two claims, we shall see that the first is true under two formalizations we give
for 2nd-preimage resistance and false under a third, while the second statement is true only if one
insists on allowing the degenerate case of hash functions that do not actually compress.1

Scope. In this paper we are going to examine seven different notions of security for a hash function
family H : K ×M → {0, 1}n. For a more complete discussion of nomenclature, see Appendix A
and reference [9].

1We emphasize that it is most definitely not our intent here to criticize one of the most useful books on cryptography; we
only use it to help illustrate that there are many ways to go when formalizing notions of hash-function security, and how one
chooses to formalize things matters for making even the most basic of claims.

1

Name Find Experiment Some Aliases

Pre Find a preimage random key, random challenge OWF
ePre Find a preimage random key, fixed challenge
aPre Find a preimage fixed key, random challenge
Sec Find a second-preimage random key, random challenge weak collision resistance
eSec Find a second-preimage random key, fixed challenge UOWHF
aSec Find a second-preimage fixed key, random challenge
Coll Find a collision random key (no challenge) strong collision resistance,

collision-free

How did we arrive at exactly these seven notions? We set out to be exhaustive. For two of our
goals—finding a preimage and finding a second preimage—it makes sense to think of three different
settings: the key and the challenge being random; the key being random and the challenge being
fixed; or the key being fixed and the challenge being random. It makes no sense to think of the
key and the challenge as both being fixed, for a trivial adversary would then succeed. For the final
goal—finding a collision—there is no challenge and one is compelled to think of the key as being
random, for a trivial adversary would prevail if the key were fixed. We thus have 2 · 3 + 1 = 7
sensible notions, which we name Pre, ePre, aPre, Sec, eSec, aSec, and Coll. The leading “a” in the
name of a notion is meant to suggest always: if a hash function is secure for any fixed key, then it
is “always” secure. The leading “e” in the name of a notion is meant to suggest everywhere: if a
hash function is secure for any fixed challenge, then it is “everywhere” secure. Notions Coll, Pre,
Sec, eSec are standard; variants ePre, aPre, and aSec would seem to be new.

Comments. The aPre and aSec notions may be useful for designing higher-level protocols that
employ hash functions that are to be instantiated with SHA1-like objects. Consider a protocol that
uses an object like SHA1 but says it is using a collision-resistant hash function, and proves security
under such an assumption. There is a problem here, because there is no natural way to think of
SHA1 as being a random element drawn from some family of hash functions. If the protocol could
instead have used an aSec-secure hash-function family, doing the proof from that assumption, then
instantiating with SHA1 would seem to raise no analogous, foundational issues. In short, assuming
that your hash function is aSec- or aPre-secure serves to eliminate the mismatch of using a standard
cryptographic hash function after having done proofs that depend on using a random element from
a hash-function family.

Contributions. Despite the numerous papers that construct, attack, and use cryptographic hash
functions, and despite a couple of investigations of cryptographic hash functions whose purpose was
close to ours [15, 16], the area seems to have more than its share of conflicting terminology, informal
notions, and assertions of implications and separations that are not supported by convincing proofs
or counterexamples. Our goal has been to help straighten out some of the basics. See Appendix A
for an abbreviated exposition of related work.

We begin by giving formal definitions for our seven notions of hash-function security. Our
definitions are concrete (no asymptotics) and treat a hash function H as a family of functions,
H: K ×M→ {0, 1}n.

After defining the different notions of security we work out all of the relationships among
them. Between each pair of notions xxx and yyy we provide either an implication or a separation.
Informally, saying that xxx implies yyy means that if H is secure in the xxx-sense then it is also

2

secure in the yyy-sense. To separate notions, we say, informally, that xxx nonimplies yyy if H can
be secure in the xxx-sense without being secure in the yyy-sense.2 Our implications and separations
are quantitative, so we provide both an implication and a separation for the cases where this makes
sense. Since we are providing implications and separations, we adopt the strongest feasible notions
of each, in order to strengthen our results.

We actually give two kinds of implications. We do this because, in some cases, the strength of
an implication crucially depends on the amount of compression achieved by the hash function. For
these provisional implications, if the hash function is substantially compressing (e.g., mapping 256
bits to 128 bits) then the implication is a strong one, but if the hash function compresses little or
not at all, then the implication effectively vanishes. It is a matter of interpretation whether such
a provisional implication is an implication with a minor “technical” condition, or if a provisional
implication is fundamentally not an implication at all. A conventional implication is an ordinary
one; the strength of the implication does not depend on how much the hash function compresses.

We will also use two kinds of separations, but here the distinction is less dramatic, as both flavors
of separations are strong. The difference between a conventional separation and an unconditional
separation lies in whether or not one must effectively assume the existence of an xxx-secure hash
function in order to show that xxx nonimplies yyy.

When we give separations, we are careful to impose the hash-function domain and range first;
we don’t allow these to be chosen so as to make for convenient counterexamples. This makes the
problem of constructing counterexamples harder, but it also make the results more meaningful.
For example, if a protocol designer wants to know if collision-resistance implies preimage-resistance
for a 160-bit hash function H, what good is a counterexample that uses H to make a 161-bit
hash function H ′ that is collision resistant but not preimage-resistant? It would not engender any
confidence that collision-resistance fails to imply preimage-resistance when all hash functions of
interest have 160-bit outputs.

Some of the counterexamples we use may appear to be unnatural, or to exhibit behavior unlike
“real world” hash functions. This is not a concern; our goal is to demonstrate when one notion
does not imply another by constructing counterexamples that respect imposed domain and range
lengths; there is no need for the examples to look natural.

Our findings are summarized in Figure 1, which shows when one notion implies the other (drawn
with a solid arrow), when one notion provisionally implies the other (drawn with a dotted arrow),
and when one notion nonimplies the other (we use the absence of an arrow and do not bother
to distinguish between the two types of nonimplications). In Figure 2 we give a more detailed
summary of the results of this paper.

2 Preliminaries

We write M
$←S for the experiment of choosing a random element from the distribution S and

calling it M . When S is a finite set it is given the uniform distribution. The concatenation of
strings M and M ′ is denoted by M ‖M ′ or MM ′. When M = M1 · · ·Mm ∈ {0, 1}m is an m-bit
string and 1 ≤ a ≤ b ≤ m we write M [a..b] for Ma · · ·Mb. The bitwise complement of a string M
is written M . The empty string is denoted by ε. When a is an integer we write 〈a〉r for the r-bit
string that represents a.

A hash-function family is a function H: K ×M→ Y where K and Y are finite nonempty sets
and M and Y are sets of strings. We insist that Y = {0, 1}n for some n > 0. The number n is

2We say “nonimplies” rather than “does not imply” because a separation is not the negation of an implication; a separation
is effectively stronger and more constructive than that.

3

aPre

Coll

Pre

Sec

aSec eSec

ePre

Figure 1: Summary of the relationships among seven notions of hash-function security. Solid arrows represent
conventional implications, dotted arrows represent provisional implications (their strength depends on the relative
size of the domain and range), and the lack of an arrow represents a separation.

called the hash length of H. We also insist that if M ∈ M then {0, 1}|M | ⊆ M (the assumption
is convenient and any reasonable hash function would certainly have this property). Often we will
write the first argument to H as a subscript, so that HK(M) = H(K, M) for all M ∈M.

When H: K × M → Y and {0, 1}m ⊆ M we denote by TimeH,m the minimum, over all
programs PH that compute H, of the length of PH plus the worst-case running time of PH over all
inputs (K, M) where K ∈ K and M ∈ {0, 1}m; plus the the minimum, over all programs PK that
sample from K, of the time to compute the sample plus the size of PK . We insist that PH read its
input, so that TimeH,m will always be at least m. Some underlying RAM model of computation
must be fixed.

An adversary is an algorithm that takes any number of inputs. Some of these inputs may be long
strings and so we establish the convention that the adversary can read the ith bit of argument j by
writing (i, j), in binary, on distinguished query tape. The resulting bit is returned to the adversary
in unit time. If A is an adversary and Advxxx

H (A) is a measure of adversarial advantage already
defined then we write Advxxx

H (R) to mean the maximal value of Advxxx
H (A) over all adversaries A

that use resources bounded by R. In this paper it is sufficient to consider only the resource t, the
running time of the adversary. By convention, the running time is the actual worst case running
time of A (relative to some fixed RAM model) plus the description size of A (relative to some fixed
encoding of algorithms).

3 Definitions of Hash-Function Security

Here we give formal definitions for seven notions of hash-function security. The definitions fall under
the general categories of preimage-resistance, second-preimage resistance, and collision-resistance.

3.1 Preimage resistance

One would like to speak of the difficulty with which an adversary is able to find a preimage for a
point in the range of a hash function. Several definitions make sense for this intuition of inverting.

4

Pre ePre aPre Sec eSec aSec Coll

Pre → �→ to δ3 (d) �→ to δ4 (e) �→ (h) �→ (h) �→ (h) �→ (h)

ePre → (l) → �→ to δ4 (e) �→ (h) �→ (h) �→ (h) �→ (h)

aPre → (l) �→ to δ3 (d) → �→ (h) �→ (h) �→ (h) �→ (h)

Sec
→ to δ1 (a)

�⇀ to δ2 (b)
�→ to δ3 (d) �→ to δ4 (e) → �→ to δ5 (i) �→ to δ4 (e) �→ to δ5 (i)

eSec
→ to δ1 (a)

�⇀ to δ2 (c)
�→ (f) �→ to δ4 (e) → (l) → �→ to δ4 (e)

�⇀ to δ5 (j)

�→ (k)

aSec
→ to δ1 (a)

�⇀ to δ2 (b)
�→ to δ3 (d)

→ to δ1 (a)

�⇀ to δ2 (b)
→ (l) �→ to δ5 (i) → �→ to δ5 (i)

Coll → to δ1 (a) �→ (g) �→ to δ4 (e) → (l) → (l) �→ to δ4 (e) →
Figure 2: Summary of results. The entry at row xxx and column yyy gives the relationships we establish
between notions xxx and yyy. Here δ1 = 2n−m, δ2 = 1 − 2n−m−1, δ3 = 2−m, δ4 = 1/|K|, and δ5 = 21−m.
The hash functions H1, . . . , H6 and G1, G2, G3 are specified in Figure 3. The annotations (a)-(j) mean: (a)
see Theorem 7; (b) by G1, see Proposition 9; (c) by G3, see Proposition 10; (d) by H1, see Theorem 15; (e) by
H2, see Theorem 15 (f) by H6, see Theorem 14; (g) by H6, see Theorem 13; (h) by H3, see Theorem 15; (i)
by H4, see Theorem 15; (j) by G2, see Theorem 11; (k) by H5, see Theorem 11; (l) see Proposition 6

H1K(M) =

{
0n if M = 0m

HK(M) otherwise

H2K(M) =

{
0n if K = K0

HK(M) otherwise

H3b
K(M) = HK(M [1..m− 1] ‖ b)

H4K(M) =

{
0n if M = 0m or M = 1m

HK(M) otherwise

H5c
K(M) =

{
HK(0m−n ‖ HK(c)) if M = 1m−n ‖ HK(c) (1)
HK(M) otherwise (2)

H6K(M) =




0n if M = 0m (1)
HK(M) if M �= 0m and HK(M) �= 0n (2)
HK(0m) otherwise (3)

G1K(M) =

{
M [1..n] if M [n + 1..m] = 0m−n

0n otherwise

G2K(M) =

{
1n−m ‖ K if M ∈ {K, K}
0n−m ‖M otherwise

G3K(M) =

{
〈i〉n if M = 〈(K + i) mod 2m〉m for some i ∈ [1..2n − 1]
0n otherwise

Figure 3: Given a hash function H: K × {0, 1}m → {0, 1}n we construct hash functions H1, . . . , H6: K ×
{0, 1}m → {0, 1}n for our conditional separations. The value K0 ∈ K is fixed and arbitrary. The hash functions
G1: {ε}×{0, 1}m → {0, 1}n, G2: {0, 1}m×{0, 1}m → {0, 1}n, G3: {1, . . . , 2m− 1}×{0, 1}m → {0, 1}n, are
used in our unconditional separations.

5

Definition 1 [Types of preimage resistance] Let H = K×M→ Y be a hash-function family
and let m be a number such that {0, 1}m ⊆M. Let A be an adversary. Then define:

AdvPre [m]
H (A) = Pr

[
K

$←K; M
$←{0, 1}m; Y ←HK(M); M ′ $←A(K, Y) : HK(M ′) = Y

]
AdvePre

H (A) = max
Y ∈Y

{
Pr

[
K

$←K; M
$←A(K) : HK(M) = Y

]}
AdvaPre [m]

H (A) = max
K∈K

{
Pr

[
M

$←{0, 1}m; Y ←HK(M); M ′ $←A(Y) : HK(M ′) = Y
]}

The first definition, preimage resistance (Pre), is the usual way to define when a hash-function
family is a one-way function. (Of course the notion is different from a function f : M→ Y being
a one-way function, as these are syntactically different objects.) The second definition, everywhere
preimage-resistance (ePre), most directly captures the intuition that it is infeasible to find the
preimage of range points: for whatever range point is selected, it is computationally hard to find its
preimage. The final definition, always preimage-resistance (aPre), strengthens the first definition
in the way needed to say that a function like SHA1 is one-way: one regards SHA1 as one function
from a family of hash functions (keyed, for example, by the initial chaining value) and we wish to
say that for this particular function from the family it remains hard to find a preimage of a random
point.

3.2 Second-preimage resistance

It is likewise possible to formalize multiple definitions that might be understood as technical mean-
ing for second-preimage resistance. In all cases a domain point M and a description of a hash
function HK are known to the adversary, whose job it is to find an M ′ different from M such that
H(K, M) = H(K, M ′). Such an M and M ′ are called partners.

Definition 2 [Types of second-preimage resistance] Let H: K×M→ Y be a hash-function
family and let m be a number such that {0, 1}m ⊆M. Let A be an adversary. Then define:

AdvSec [m]
H (A) = Pr

[
K

$←K; M
$←{0, 1}m; M ′ $←A(K, M) : (M �= M ′) ∧ (HK(M) = HK(M ′))

]
AdveSec [m]

H (A) = max
M∈{0,1}m

{
Pr

[
K

$←K; M ′ $←A(K) : (M �= M ′) ∧ (HK(M) = HK(M ′))
]}

AdvaSec [m]
H (A) = max

K∈K

{
Pr

[
M

$←{0, 1}m; M ′ $←A(M) : (M �= M ′) ∧ (HK(M) = HK(M ′))
]}

The first definition, second-preimage resistance (Sec), is the standard one. The second definition,
everywhere second-preimage resistance (eSec), most directly formalizes that it is hard to find a
partner for any particular domain point. This notion is also called a universal one-way hash-
function family (UOWHF) and it was first defined by Naor and Yung [12]. The final definition,
always second-preimage resistance (aSec), strengthens the first in the way needed to say that a
function like SHA1 is second-preimage resistant: one regards SHA1 as one function from a family
of hash functions and we wish to say that for this particular function it is remains hard to find a
partner for a random point.

3.3 Collision resistance

Finally, we would like to speak of the difficulty with which an adversary is able to find two distinct
points in the domain of a hash function that hash to the same range point.

6

Definition 3 [Collision resistance] Let H: K×M→ Y be a hash-function family and let A be
an adversary. Then we define:

AdvColl
H (A) = Pr

[
K

$←K; (M, M ′) $←A(K) : (M �= M ′) ∧ (HK(M) = HK(M ′))
]

It does not make sense to think of strengthening this definition by maximizing over all K ∈ K: for
any fixed function h: M→ Y with |M| > |Y| there is is an efficient algorithm that outputs an M
and M ′ that collide under h. While this program might be hard to find in practice, there is no
known sense in which this can be formalized.

4 Equivalent Formalizations with a Two-Stage Adversary

Four of our definitions (ePre, aPre, eSec, aSec) maximize over some quantity that one may imagine
the adversary to know. In each of these cases it possible to modify the definition so as to have
the adversary itself choose this value. That is, in a “first phase” of the adversary’s execution it
chooses the quantity in question, and then a random choice is made by the environment, and then
the adversary continues from where it left off, but now given this randomly chosen value. The
corresponding definitions are then as follows:

Definition 4 [Equivalent versions of ePre, aPre, eSec, aSec] Let H = K ×M→ Y be a
hash-function family and let m be a number such that {0, 1}m ⊆M. Let A be an adversary. Then
define:

AdvePre
H (A) = Pr

[
(Y, S) $←A(); K

$←K; M
$←A(K, S) : HK(M) = Y

]
AdvaPre [m]

H (A) = Pr
[
(K, S) $←A(); M

$←{0, 1}m; Y ←HK(M); M ′ $←A(Y, S) : HK(M ′) = Y
]

AdveSec [m]
H (A) = Pr

[
(M, S) $←A(); K

$←K; M ′ $←A(K, S) : (M �= M ′) ∧ (HK(M) = HK(M ′))
]

AdvaSec [m]
H (A) = Pr

[
(K, S) $←A(); M

$←{0, 1}m; M ′ $←A(M, S) : (M �= M ′) ∧ (HK(M) = HK(M ′))
]

In the two-stage definition of AdveSec [m]
H (A) we insist that the message M output by A is of

length m bits, that is M ∈ {0, 1}m. Each of these four definitions are extended to their resource-
parameterized version in the usual way.

The two-stage definitions above are easily seen to be equivalent to their one-stage counterparts.
Saying here that definitions xxx and yyy are equivalent means that there is a constant C such that
Advxxx [m]

H (t) ≤ Advyyy [m]
H (C(t + m + n)) and Advyyy [m]

H (t) ≤ Advxxx [m]
H (C(t + m + n)). Omit

mention of +m and [m] in the definition for everywhere preimage resistance since this does not
depend on m. Since the exact interpretation of time t was model-dependent anyway, two measures
of adversarial advantage that are equivalent need not be distinguished.

We give an example of the equivalence of one-stage and two-stage adversaries, explaining why
eSec and eSec2 are equivalent, where eSec2 temporarily denotes the version of eSec defined in
Definition 4 (and eSec refers to what is given in Definition 2). Let A attack hash function H in
the eSec sense. For every fixed M there is a two-stage adversary A2 that does as well as A at
finding a partner for M . Specifically, let A2 be an adversary with the value M “hardwired in” to it.
Adversary A2 prints out M and when it resumes it behaves like A. Similarly, let A2 be a two-stage
adversary attacking H in the eSec2 sense. Consider the random coins used by A2 during its first
stage and choose specific coins that maximize the probability that A2 will subsequently succeed.
For these coins there is a specific pair (M, S) that A2 returns. Let A be a (one-stage) adversary
that on input (K, M) runs exactly as A2 would on input (K, S).

7

5 Implications

Definitions of implications. In this section we investigate which of our notions of security
(Pre, aPre, ePre, Sec, aSec, eSec, and Coll) imply which others. First we explain our notion of an
implication.

Definition 5 [Implications] Fix K,M, m, and n where {0, 1}m ⊆M. Suppose that xxx and yyy
are labels for which Advxxx ·

H and Advyyy ·
H have been defined for any H: K ×M→ {0, 1}n.

• Conventional implication. We say that xxx implies yyy, written xxx→ yyy, if Advyyy ·
H (t) ≤

cAdvxxx ·
H (t′) for all hash functions H: K ×M → {0, 1}n where c is an absolute constant

and t′ = t + c TimeH,m.

• Provisional implication. We say that xxx implies yyy to ε, written xxx → yyy to ε, if
Advyyy ·

H (t) ≤ cAdvxxx ·
H (t′) + ε for all hash functions H: K ×M → {0, 1}n where c is an

absolute constant and t′ = t + c TimeH,m.

In the definition above, and later, the · is a placeholder which is either [m] (for Pre, aPre, Sec,
aSec, eSec) or empty (for ePre, Coll).

Conventional implications are what one expects: xxx → yyy means that if a hash function is
secure in the xxx-sense, then it is secure in the yyy-sense. Whether or not a provisional implication
carries the usual semantics of the word implication depends on the value of ε. Below we will
demonstrate provisional implications with a value of ε = 2n−m and so the interpretation of such a
result is that we have demonstrated a “real” implication for hash functions that are substantially
compressing (e.g., if the hash function maps 256 bits to 128 bits) while we have given a non-result
if the hash function is length-preserving, length-increasing, or it compresses just a little.

Conventional implications. The conventional implications among our notions are straightfor-
ward, so we quickly dispense with those, omitting the proofs. In particular, the following are easily
verified.

Proposition 6 [Conventional implications] Fix K,M, m, such that {0, 1}m ⊆M, and n > 0.
Let Coll, Pre, aPre, ePre, Sec, aSec, eSec be the corresponding security notions. Then:

(1) Coll→ Sec
(2) Coll→ eSec
(3) aSec→ Sec
(4) eSec→ Sec
(5) aPre→ Pre
(6) ePre→ Pre

In addition to the above, of course xxx→ xxx for each notion xxx that we have given.

Provisional implications. We now give five provisional implications. The value of ε implicit
in these claims depends on the relative difference of the domain length m and the hash length n.
Intuitively, one can follow paths through the graph in Figure 1, composing implications to produce
the five provisional implications. The formal proof of these five results appears in Appendix B.1.

8

Theorem 7 [Provisional implications] Fix K, M, m, such that {0, 1}m ⊆M, and n > 0. Let
Coll, Pre, aPre, Sec, aSec, eSec be the corresponding security notions. Then:

(1) Sec→ Pre to 2n−m

(2) aSec→ Pre to 2n−m

(3) eSec→ Pre to 2n−m

(4) Coll→ Pre to 2n−m

(5) aSec→ aPre to 2n−m

6 Separations

Definitions. We now investigate separations among our seven security notions. We emphasize
that asserting a separation—which we will also call a nonimplication—is not the assertion of a lack
of an implication (though it does effectively imply this for any practical hash function). In fact,
we will show that both a separation and an implication can exist between two notions, the relative
strength of the separation/implication being determined by the amount of compression performed
by the hash function. Intuitively, xxx nonimplies yyy if it is possible for something to be xxx-
secure but not yyy-secure. We provide two variants of this idea. The first notion, a conventional
nonimplication, says that if H is a hash function that is secure in the xxx-sense then H can be
converted into a hash function H ′ having the same domain and range that is still secure in the xxx-
sense but that is now completely insecure in the yyy-sense. The second notion, an unconditional
nonimplication, says that there is a hash function H that is secure in the xxx-sense but completely
insecure in the yyy-sense. Thus the first kind of separation effectively assumes an xxx-secure hash
function in order to separate xxx from yyy, while the second kind of separation does not need to
do this.3

Definition 8 [Separations] Fix K,M, m, and n where {0, 1}m ⊆M. Suppose that xxx and yyy
be labels for which Advxxx ·

H and Advyyy ·
H have been defined for any H: K ×M→ {0, 1}n.

• Conventional separation. We say that xxx nonimplies yyy to ε, in the conventional sense,
written xxx �→ yyy to ε, if for any H: K×M→ {0, 1}n there exists an H ′: K×M→ {0, 1}n
such that Advxxx ·

H′ (t) ≤ cAdvxxx ·
H (t′) + ε and yet Advyyy ·

H′ (t′) = 1 where c is an absolute
constant and t′ = t + c TimeH,m.

• Unconditional separation. We say that xxx nonimplies yyy to ε, in the unconditional sense,
written xxx �⇀ yyy to ε, if there exists an H: K×M→ {0, 1}n such that Advxxx ·

H (t) ≤ ε for
all t and yet Advyyy ·

H (t′) = 1 where t′ = c TimeH,m for some absolute constant c.

When ε = 0 above we say that we have a strong separation and we omit saying “to ε” in speaking
of it. When ε > 0 above we say that we have a provisional separation. The degree to which a
provisional separation should be regarded as a “real” separation depends on the value ε.

Some provisional separations. The following separations depend on the relative values of the
domain size m and the range size n. As an example, if the hash-function family H is length-
preserving, meaning H: K×{0, 1}n → {0, 1}n, then it being second preimage resistant won’t imply
it being preimage resistant: just consider the identify function, which is perfectly second preimage

3That unconditional separations are (sometimes) possible in this domain is a consequence of the fact that, for some values
of the domain and range, secure hash functions trivially exist (e.g., the identity function HK(M) = M is collision-free).

9

resistant (no domain point has a partner) but trivially breakable in the sense of finding preimages.
This counterexample is well-known. We now generalize and extend this counterexample, giving a
“gap” of 1 − 2n−m−1 for three of our pairs of notions. Thus we have a strong separation when
m = n and a rapidly weakening separation as m exceeds n by more and more. Taken together
with Proposition 7 we see that this behavior is not an artifact of the proof: as m exceeds n, the
2n−m-implication we have given effectively takes over.

Proposition 9 [Separations, part 1a] Fix m ≥ n > 0 and let Sec, Pre, aSec, aPre be the
corresponding security notions. Then:

(1) Sec �⇀ Pre to 1− 2n−m−1

(2) aSec �⇀ Pre to 1− 2n−m−1

(3) aSec �⇀ aPre to 1− 2n−m−1

The proof is given in Appendix B.2.

Proposition 10 [Separations, part 1b] Fix m ≥ n > 0, and let Pre and eSec be the corre-
sponding security notions. Then eSec �⇀ Pre to 1− 2n−m−1.

The proof is given in Appendix B.3.

Additional Separations. We now give some further nonimplications. Unlike those just given,
these nonimplications do not have a corresponding provisional implication. Here, the separation is
the whole story of the relationship between the notions, and the strength of the separation is not
dependent on the amount of compression performed by the hash function.

Theorem 11 [Separations, part 2A] Fix m > n > 0 and let eSec and Coll be the corresponding
security notions. Then eSec �→ Coll.

The proof is in Appendix B.4. Because of the structure of the counterexample used in Theorem 11,
we give the following proposition for completeness.

Proposition 12 Fix n > 0 and m ≤ n, and let eSec and Coll be the corresponding security
notions. Then eSec �⇀ Coll to 2−(m+1).

The proof appears in Appendix B.5

Theorem 13 [Separations, part 2B] Fix m, n such that n > 0, and let Coll and ePre be the
corresponding security notions. Then Coll �→ ePre.

The proof of the theorem above is in Appendix B.6.

Theorem 14 [Separations, part 2C] Fix m, n such that n > 0, and let eSec and ePre be the
corresponding security notions. Then eSec �→ ePre.

The proof of the theorem above is in Appendix B.7.
The remaining 28 separations are not as hard to show those given so far, so we present them

as one theorem and without proof. The specific constructions H1, H2, H3, H4 are those given
in Figure 3.

10

Theorem 15 [Separations, part 3] Fix m, n such that n > 0, and let Coll, Pre, aPre, ePre, Sec,
aSec, eSec be the corresponding security notions. Let H: K×{0, 1}m → {0, 1}n be a hash function
and define H1, . . . , H6 from it according to Figure 3. Then:

(1) Pre �→ ePre to 2−m : AdvPre
H1 (t) ≤ 1/2m + AdvPre

H (t) and AdvePre
H1 (t′) = 1

(2) Pre �→ aPre to 1/|K| : AdvPre
H2 (t) ≤ 1/|K|+ AdvPre

H (t) and AdvaPre
H2 (t′) = 1

(3) Pre �→ Sec: AdvPre
H3 (t) ≤ 2 ·AdvPre

H (t) and AdvSec
H3(t′) = 1

(4) Pre �→ eSec: AdvPre
H3 (t) ≤ 2 ·AdvPre

H (t) and AdveSec
H3 (t′) = 1

(5) Pre �→ aSec: AdvPre
H3 (t) ≤ 2 ·AdvPre

H (t) and AdvaSec
H3 (t′) = 1

(6) Pre �→ Coll : AdvPre
H3 (t) ≤ 2 ·AdvPre

H (t) and AdvColl
H3 (t′) = 1

(7) ePre �→ aPre to 1/|K| : AdvePre
H2 (t) ≤ 1/|K|+ AdvePre

H (t) and AdvaPre [m]
H2 (t′) = 1

(8) ePre �→ Sec: AdvePre
H3 (t) ≤ 2 ·AdvePre

H (t) and AdvSec [m]
H3 (t′) = 1

(9) ePre �→ eSec: AdvePre
H3 (t) ≤ 2 ·AdvePre

H (t) and AdveSec [m]
H3 (t′) = 1

(10) ePre �→ aSec: AdvePre
H3 (t) ≤ 2 ·AdvePre

H (t) and AdvaSec [m]
H3 (t′) = 1

(11) ePre �→ Coll : AdvePre
H3 (t) ≤ 2 ·AdvePre

H (t) and AdvColl
H3 (t′) = 1

(12) aPre �→ ePre to 2−m : AdvaPre [m]
H1 (t) ≤ 1/2m + AdvaPre [m]

H (t) and AdvePre
H1 (t′) = 1

(13) aPre �→ Sec: AdvaPre [m]
H3 (t) ≤ 2 ·AdvaPre [m]

H (t) and AdvSec [m]
H3 (t′) = 1

(14) aPre �→ eSec: AdvaPre [m]
H3 (t) ≤ 2 ·AdvaPre [m]

H (t) and AdveSec [m]
H3 (t′) = 1

(15) aPre �→ aSec: AdvaPre [m]
H3 (t) ≤ 2 ·AdvaPre [m]

H (t) and AdvaSec [m]
H3 (t′) = 1

(16) aPre �→ Coll : AdvaPre [m]
H3 (t) ≤ 2 ·AdvaPre [m]

H (t) and AdvColl
H3 (t′) = 1

(17) Sec �→ ePre to 2−m : AdvSec [m]
H1 (t) ≤ 1/2m + AdvSec [m]

H (t) and AdvePre
H1 (t′) = 1

(18) Sec �→ aPre to 1/|K| : AdvSec [m]
H2 (t) ≤ 1/|K|+ AdvSec [m]

H (t) and AdvaPre [m]
H2 (t′) = 1

(19) Sec �→ eSec to 2−m+1 : AdvSec [m]
H4 (t) ≤ 1/2m−1 + AdvSec [m]

H (t) and AdveSec [m]
H4 (t′) = 1

(20) Sec �→ aSec to 2−m : AdvSec [m]
H2 (t) ≤ 1/|K|+ AdvSec [m]

H (t) and AdvaSec [m]
H2 (t′) = 1

(21) Sec �→ Coll to 2−m+1 : AdvSec [m]
H4 (t) ≤ 1/2m−1 + AdvSec [m]

H (t) and AdvColl
H4 (t′) = 1

(22) eSec �→ aPre to 1/|K| : AdveSec [m]
H2 (t) ≤ 1/|K|+ AdveSec [m]

H (t) and AdvaPre [m]
H2 (t′) = 1

(23) eSec �→ aSec to 1/|K| : AdveSec [m]
H2 (t) ≤ 1/|K|+ AdveSec [m]

H (t) and AdvaSec [m]
H2 (t′) = 1

(24) aSec �→ ePre to 2−m : AdvaSec [m]
H1 (t) ≤ 1/2m + AdvaSec [m]

H (t) and AdvePre
H1 (t′) = 1

(25) aSec �→ eSec to 2−m : AdvaSec [m]
H4 (t) ≤ 1/2m−1 + AdvaSec [m]

H (t) and AdveSec [m]
H4 (t′) = 1

(26) aSec �→ Coll to 2−m+1 : AdvaSec [m]
H4 (t) ≤ 1/2m−1 + AdvaSec [m]

H (t) and AdvColl
H4 (t′) = 1

(27) Coll �→ aPre to 1/|K| : AdvColl
H2 (t) ≤ 1/|K|+ AdvColl

H (t) and AdvaPre
H2 (t′) = 1

(28) Coll �→ aSec to 1/|K| : AdvColl
H2 (t) ≤ 1/|K|+ AdvColl

H (t) and AdvaSec
H2 (t′) = 1

where t′ = c TimeH,m for some absolute constant c.

Acknowledgments

Thanks to Mihir Bellare and to various anonymous reviewers, who provided useful comments on
an earlier draft of this paper.

This work was supported by NSF 0085961, NSF 0208842, and a gift from Cisco Systems. Many
thanks to the NSF and Cisco for their support. Work on this paper was carried out while the
authors were at Chiang Mai University, Chulalongkorn University, and UC Davis.

11

References

[1] R. Anderson. The classification of hash functions. In IMA Conference in Cryptography and
Coding IV, pages 83–94, December 1993.

[2] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of secu-
rity for public-key encryption schemes. In H. Krawczyk, editor, Advances in Cryptology –
CRYPTO ’98, volume 1462 of Lecture Notes in Computer Science, pages 232–249. Springer-
Verlag, 1998.

[3] M. Bellare and P. Rogaway. Collision-resistant hashing: Towards making UOWHFs practical.
In Advances in Cryptology – CRYPTO 97, volume 1294 of Lecture Notes in Computer Science,
pages 470–484, 1997.

[4] J. Black, P. Rogaway, and T. Shrimpton. Black-box analysis of the block-cipher-based hash-
function constructions from PGV. In Advances in Cryptology – CRYPTO ’02, volume 2442 of
Lecture Notes in Computer Science. Springer-Verlag, 2002.

[5] D. Brown and D. Johnson. Formal security proofs for a signature scheme with partial message
recovery. Lecture Notes in Computer Science, 2020:126–144, 2001.

[6] I. Damg̊ard. Collision free hash fucntions and public key signature schemes. In Advances in
Cryptology – EUROCRYPT ’87, volume 304 of Lecture Notes in Computer Science. Springer-
Verlag, 1988.

[7] I. Damg̊ard. A design principle for hash functions. In G. Brassard, editor, Advances in
Cryptology – CRYPTO ’89, volume 435 of Lecture Notes in Computer Science. Springer-Verlag,
1990.

[8] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System
Sciences, 28:270–299, April 1984.

[9] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography. CRC
Press, 1996.

[10] R. Merkle. One way hash functions and DES. In G. Brassard, editor, Advances in Cryptology –
CRYPTO ’89, volume 435 of Lecture Notes in Computer Science. Springer-Verlag, 1990.

[11] I. Mironov. Hash functions: From Merkle-Damg̊ard to Shoup. In Advances in Cryptology –
EUROCRYPT ’01, Lecture Notes in Computer Science. Springer-Verlag, 2001.

[12] M. Naor and M. Yung. Universal one-way hash functions and their cryptographic applications.
In Proceedings of the Twenty-first ACM Symposium on Theory of Computing, pages 33–43,
1989.

[13] B. Preneel. Cryptographic hash functions. Katholieke Universiteit Leuven (Belgium), 1993.

[14] P. Rogaway and T. Shrimpton. Cryptographic hash-function basics: Definitions, implications
and separations for preimage resistance, second-preimage resistance, and collision resistance.
Full version of this paper,www.cs.ucdavis.edu/˜rogaway, 2004.

12

[15] D. Stinson. Some observations on the theory of cryptographic hash functions. Technical Report
2001/020, University of Waterloo, 2001.

[16] Y. Zheng, T. Matsumoto, and H. Imai. Connections among several versions of one-way hash
functions. In Special Issue on Cryptography and Information Security, Proceedings of IEICE
of Japan, 1990.

A Brief History

It is beyond the scope of the current work to give a full survey of the many hash-function security-
notions in the literature, formal an informal, and the many relationships that have (and have not)
been shown among them. We touch upon some of the more prominent work that we know.

The term universal one-way hash function(UOWHF) was introduced by Naor and Yung [12]
to name their asymptotic definition of second-preimage resistance. Along with Damg̊ard [6, 7],
who introduced the notion of collision freeness, these papers were the first to put notions of hash-
function security on a solid formal footing by suggesting to study keyed family of hash functions.
This was a necessary step for developing a meaningful formalization of collision-resistance. Con-
temporaneously, Merkle [10] describes notions of hash-function security: weak collision resistance
and strong collision resistance, which refer to second-preimage and collision resistance, respectively.
Damg̊ard also notes that a compressing collision-free hash function has one-wayness properties (our
pre notion), and points out some subtleties in this implication.

Merkle and Damg̊ard [7, 10] each show that if one properly iterates a collision-resistant function
with a fixed domain, then one can construct a collision-resistant hash-function with an enlarged
domain. This iterative method is now called the Merkle-Damg̊ard construction.

Preneel [13] describes one-way hash functions (those which are both preimage-resistant and
second-preimage resistant) and collision-resistant hash functions (those which are preimage, second-
preimage and collision resistant). He identifies four types of attacks and studies hash functions
constructed from block ciphers.

Bellare and Rogaway [3] give concrete-security definitions for hash-function security and study
second-preimage resistance and collision resistance. Their target collision-resistance(TCR) coin-
cides with a UOWHF (eSec) and their any collision-resistance(ACR) coincides with Coll-security.

Brown and Johnson [5] define a strong hash that, if properly formalized in the concrete setting,
would include our ePre notion.

Mironov [11] investigates a class of asymptotic definitions that bridge between conventional
collision resistance and UOWHF. He also looks at which members of that class are preserved by
the Merkle-Damg̊ard constructions.

Anderson [1] discusses some unconventional notions of security for hash functions that might
arise when one considers how hash functions might interact with higher-level protocols.

Black, Rogaway, and Shrimpton [4] use a concrete definition of preimage resistance that requires
inversion of a uniformly selected range point.

Two papers set out on a program somewhat similar to ours [15] and [16]. Stinson [15] considers
hash function security from the perspective that the notions of primary interest are those related
to producing digital signatures. He considers four problems (zero-preimage, preimage, second-
preimage, collision) and describes notions of security based on them. He considers in some depth
the relationship between the preimage problem and the collision problem.

Zheng, Matsumoto and Imai [16] examine some asymptotic formalizations of the notions of
second-preimage resistance and collision resistance. In particular, they suggest five classes of second-

13

preimage resistant hash functions and three classes of collision resistant hash functions, and then
consider the relationships among these classes.

Our focus on provable security follows a line that begins with Goldwasser and Micali [8]. In
defining several related notions of security and then working out all relations between them, we
follow work like that of Bellare, Desai, Pointcheval, and Rogaway [2].

B Proofs

B.1 Proof of Theorem 7

We prove the first statement from the theorem; the other proof the others follows from this one.
Let H: K ×M→ {0, 1}n be a hash-function family. We will show that

AdvPre [m]
H (t) ≤ 2 AdvSec [m]

H (t′) + 2n−m

where t′ = t + c TimeH,m for some absolute constant c.
Let B be an adversary attacking H in the Pre-sense and let δm = AdvPre [m]

H (B) be its advantage
and let t be its running time. We construct as follows an adversary A for attacking H in the Sec-
sense: let A, on input (K, M), compute Y ←HK(M), run B(K, Y), and return the value M ′

that B outputs. We now analyze the probability that A finds a partner for a random point M and
a random hash function HK .

Let IK(M) be the event that a point M ∈ {0, 1}m has no partner under HK—that is, the event
that there exists no M ′ �= M such that HK(M) = HK(M ′). Let PrK,M [·] denote the probability of
an event in an experiment which begins by choosing M

$←{0, 1}m and K
$←K. Now

δm = Pr
K,M

[
Y ←HK(M); M ′ $←B(K, Y) : HK(M ′) = Y

]
= Pr

K,M

[
Y ←HK(M); M ′ $←B(K, Y) : IK(M) ∧ (HK(M ′) = Y)

]
+ Pr

K,M

[
Y ←HK(M); M ′ $←B(K, Y) : IK(M) ∧ (M �= M ′) ∧ (HK(M ′) = Y)

]
+ Pr

K,M

[
Y ←HK(M); M ′ $←B(K, Y) : IK(M) ∧ (M = M ′) ∧ (HK(M ′) = Y)

]
≤ Pr

K,M
[IK(M)] + Pr

K,M

[
Y ←HK(M); M ′ $←B(K, Y) : IK(M) ∧ (M �= M ′) ∧ (HK(M ′) = Y)

]
+ Pr

K,M

[
Y ←HK(M); M ′ $←B(K, Y) : IK(M) ∧ (M = M ′) ∧ (HK(M ′) = Y)

]
≤ 2n

2m
+ Pr

K,M

[
Y ←HK(M); M ′ $←B(K, Y) : IK(M) ∧ (M �= M ′) ∧ (HK(M ′) = Y)

]
+ Pr

K,M

[
Y ←HK(M); M ′ $←B(K, Y) : IK(M) ∧ (M = M ′) ∧ (HK(M ′) = Y)

]

That PrK,M [IK(M)] ≤ 2n−m can be seen as follows. For any key K ∈ K there are at most 2n

points M such that IK(M) occurs. The domain of HK has 2m ≥ 2n points so for any K ∈ K we
have that Prx[IK(M)] ≤ 2n/2m. Therefore PrK,M [IK(M)] ≤ 2n/2m as well. Continuing,

δm − 2n

2m
≤ Pr

K,M

[
Y ←HK(M); M ′←B(K, Y) : IK(M) ∧ (M �= M ′) ∧ (HK(M ′) = Y)

]
+ Pr

K,M

[
Y ←HK(M); M ′←B(K, Y) : IK(M) ∧ (M = M ′) ∧ (HK(M ′) = Y)

]

14

We claim that the first probability above is at least as large as the second. This is so because we
choose M at random from {0, 1}m and B has no information about M except its image under HK .
We know that HK(M) has at least two preimages so B’s chance to name the one which is M is at
most B’s chance to name one that is not M . We conclude that

δm − 2n

2m
≤ 2

(
Pr

K,M

[
Y ←HK(M); M ′←B(K, Y) : IK(M) ∧ (M �= M ′) ∧ (HK(M ′) = Y)

])

≤ 2
(

Pr
K,M

[
Y ←HK(M); M ′←B(K, Y) : (M �= M ′) ∧ (HK(M ′) = Y)

])

= 2
(

Pr
K,M

[
M ′←A(h, x) : (M �= M ′) ∧ (HK(M ′) = HK(M))

])

= 2 AdvSec [m]
H (A)

Thus AdvPre [m]
H (A) ≤ 2 AdvSec [m]

H (B) + 2n−m and we are done.

B.2 Proof of Proposition 9

We prove the first statement, the next two statements being very similar. We show that there is a
function H: K ×M→ {0, 1}n such that

AdvSec [m]
H (t) ≤ 1− 2n−m−1 and AdvPre [m]

H (cm) = 1

for some absolute constant c. Let H: K×M→ {0, 1}n be the function G1: {ε}×{0, 1}m → {0, 1}n
given in Figure 3. For convenience, we write H for Hε. We begin by exhibiting an adversary B

that runs in time cm and achieves advantage AdvPre [m]
H (B) = 1. Adversary B takes input (K, Y).

If Y = 0n then it returns 1m; otherwise, it returns Y ‖ 0m−n.
We now consider an arbitrary partner-finding adversary A and bound its maximal advan-

tage. Let PrM [·] denote the probability of an event in an experiment which begins by choosing
M

$←{0, 1}m. Let Z(M) be shorthand for M [n + 1..m] = 0m−n. Then

AdvSec [m]
H (A) = Pr

M
[M ′ $←A(ε, M) : (M �= M ′) ∧ (H(M) = H(M ′))]

= Pr
M

[M ′ $←A(ε, M) : (M �= M ′) ∧ (H(M) = H(M ′)) | Z(M) ∧ M �= 0m]

·Pr
M

[Z(M) ∧ M �= 0m]

+ Pr
M

[M ′ $←A(ε, M) : (M �= M ′) ∧ (H(M) = H(M ′)) | Z(M) ∨ M = 0m]

·Pr
M

[Z(M) ∨ M = 0m]

= Pr
M

[M ′ $←A(ε, M) : (M �= M ′) ∧ (H(M) = H(M ′)) | Z(M) ∨ M = 0m]

·Pr
M

[Z(M) ∨ M = 0m]

where the last equality is true because if M [n + 1..m] = 0m−n and M �= 0m then A has no chance
to find a partner for M . Continuing we have that AdvSec [m]

H (A) ≤ (1)(1 − (2n/2m) + 1/2m) =
1− (2n − 1)/2m ≤ 1− 2n/2m+1 and we are done.

15

B.3 Proof of Proposition 10

We show that there is a hash function H: K × {0, 1}m → {0, 1}n such that

AdveSec [m]
H (t) ≤ 1− 2n−m−1 and AdvPre [m]

H (cm) = 1

for some absolute constant c.
Let H: K×M→ {0, 1}n be the function G3: {1, . . . , 2m − 1} × {0, 1}m → {0, 1}n in Figure 3.

Notice that the key K defines a set of (2n − 1) domain points that are bijectively mapped under
HK , and all other domain points are mapped to 0n.

First we show that there exists an adversary B that runs in time cm for some absolute constant c

and achieves advantage AdvPre [m]
H (B) = 1. Adversary B takes as input (K, Y) and returns 〈K +

i mod 2m〉m where Y = 〈i〉n.
We now consider an arbitrary partner-finding adversary A and bound its maximal advantage.

AdveSec [m]
H (A) = Pr

[
(M, S) $←A(); K

$←K; M ′ $←A(K, S) : (M �= M ′) ∧ (HK(M) = HK(M ′))
]

≤ Pr
[
(M, S) $←A(); K

$←K; M ′ $←A(K, S) : (M �= M ′) ∧ (HK(M) = 0n)
]

≤ Pr
[
(M, S) $←A(); K

$←K; M ′ $←A(K, S) : HK(M) = 0n
]

≤ 1− 2n − 1
2m

≤ 1− 2n

2m+1

where the first inequality holds because if HK(M) �= M then the adversary has no chance to find
a partner M ′ for M .

B.4 Proof of Theorem 11

Let H: K×{0, 1}m → {0, 1}n be a hash function family and let H5: K×{0, 1}m → {0, 1}n be the
function defined in Figure 3. We show that

AdveSec [m]
H5 (t) ≤ 2AdveSec [m]

H (t′) and AdvColl
H5 (t′) = 1

where t′ ≤ t + �TimeH,m for some absolute constant �.
Let PrK denote probability taken over K ∈ K. Given H we define for every c ∈ {0, 1}m an

n-bit string Yc and a real number δc as follows. Let Yc be the lexicographically first string that
maximizes δc = PrK [HK(c) = Yc]. Over all pairs c, c′ we select the lexicographically first pair c, c′

(when considered as the 2n-bit string c ‖ c′) such that c �= c′ and Yc = Yc′ and δc is maximized (ie,
PrK [HK(c) = HK(c′)] is maximized). Now let H5 = H5c be defined according to Figure 3.

We begin by exhibiting an adversary T that gains AdvColl
H5 (T) = 1 and runs in time �m for some

absolute constant �. On input K ∈ K, let T output M = 1m−n ‖ HK(c) and M ′ = 0m−n ‖ HK(c).
Now we show that if H is strong in the eSec-sense then so is H5. Let A be a two-stage

adversary that gains advantage δm = AdveSec [m]
H5 (A) and runs in time t. Let second-preimage-

finding adversaries B and C be constructed as follows:

16

Algorithm B
[Stage 1] On input ():

Run (M, S)←A()
return (M, S)

[Stage 2] On input (K, S):
Run M ′←A(K, S)
if M �= M ′ and M �= 1m−n ‖ HK(c)

then return M ′

else return 0m−n ‖ HK(c)

Algorithm C
[Stage 1] On input ():

return (c, ε)
[Stage 2] On input (K, S)

return c′

The central claim of the proof is as follows:

Claim: AdveSec [m]
H5 (A) ≤ AdveSec [m]

H (B) + AdveSec [m]
H (C)

Let us prove this claim. Recall that the job of A is to find an M and an M ′ such that M �= M ′

and H5(M) = H5(M ′). Referring to the line numbers in Figure 3, we say that u-v is a collision
if M caused H5 to output on line u ∈ {1, 2} and M ′ �= M caused H5 to output on line v ∈ {1, 2},
and H5(M) = H5(M ′). We analyze the four possible u-v collisions that A can create.
[Case 1-1] Adversary A does not win by creating a 1-1 collision because in this case M = M ′.
[Case 2-2] Assume A wins by causing a 2-2 collision. In this case M �= M ′ and M �= 1m−n ‖ HK(c)

and M ′ �= 1m−n ‖ HK(c). Thus HK(M) = HK(M ′) and so B finds a collision under H. We
have then that PrK [A wins by a 2-2 collision] ≤ AdveSec [m]

H (B).
[Case 1-2] Assume that A wins by creating a 1-2 collision. Then M �= M ′ and M = 1m−n ‖ HK(c).

We claim that in this case adversary C wins. To see this, note that Pr[M $←A(); K
$←K : M =

1m−n ‖ HK(c)] = PrK [HK(c) = Y] for some fixed Y ∈ {0, 1}n. By the way we chose c and c′

we have PrK [HK(c) = Y] ≤ PrK [HK(c) = Yc] = PrK [HK(c) = Yc′] = PrK [HK(c) = HK(c′)];
hence Pr[M $←A(); K

$←K : M = 1m−n ‖ HK(c)] ≤ PrK [HK(c) = HK(c′)]. The conclu-
sion is that PrK [A wins by a 1-2 collision] ≤ Pr[M $←A(); K

$←K : M = 1m−n ‖ HK(c)] ≤
AdveSec [m]

H (C).
[Case 2-1] Assume that A wins by creating a 2-1 collision. Then M �= M ′ and M ′ = 1m−n ‖ HK(c),

and so HK(M) = HK(0m−n ‖ HK(c)). We claim that in this case either adversary B wins, or C
does. Let BAD be the event that M = 0m−n ‖ HK(c). If M �= 0m−n ‖ HK(c) then clearly B

wins, so PrK [A wins by a 2-1 collision ∧ BAD] ≤ AdveSec [m]
H (B). If M = 0m−n ‖ HK(c)

then we have that PrK [A wins by a 2-1 collision ∧ BAD] ≤ Pr[M $←A(); K
$←K : M =

0m−n ‖ HK(c)] ≤ AdveSec [m]
H (C) by an argument nearly identical to that given for Case 1-

2,.

17

Pulling together all of the cases yields the following:

AdveSec [m]
H5 (A) = Pr

K
[A wins by a 1-1 collision] Pr

K
[1-1 collision]

+Pr
K

[A wins by a 2-2 collision] Pr
K

[2-2 collision]

+Pr
K

[A wins by a 1-2 collision] Pr
K

[1-2 collision]

+Pr
K

[A wins by a 2-1 collision ∧ BAD] Pr
K

[2-1 collision ∧ BAD]

+Pr
K

[A wins by a 2-1 collision ∧ BAD] Pr
K

[2-1 collision ∧ BAD]

≤ 0 + AdveSec [m]
H (B) Pr

K
[2-2 collision] + AdveSec [m]

H (C) Pr
K

[1-2 collision]

+AdveSec [m]
H (B) Pr

K
[2-1 collision ∧ BAD]

+AdveSec [m]
H (C) Pr

K
[2-1 collision ∧ BAD]

≤ AdveSec [m]
H (B) + AdveSec [m]

H (C)

where the last inequality is because of convexity. This completes the proof of the claim.
Finally, since the running time of B is t +TimeH,m + �m for some absolute constant �, and this

is greater than the running time of C, we are done.

B.5 Proof of Proposition 12

Let H: K ×M→ {0, 1}n be the function G2: {0, 1}m × {0, 1}m → {0, 1}n in Figure 3.
Let T be a collision-finding adversary that on input K ∈ K returns the strings M = K and

M = K. Clearly AdvColl
H (T) = 1 and T runs in time �m for some absolute constant �. It remains

to show that AdveSec [m]
H (t) ≤ 1/2m−1. Let A be an adversary that runs in time t and gains

δ = AdveSec [m]
H (A). Then

δ = Pr
[
(M, S) $←A(); K

$←K; M ′ $←A(K, S) : (M �= M ′) ∧ (HK(M) = HK(M ′))
]

≤ Pr
[
(M, S) $←A(); K

$←K : (M = K) ∨ (M = K)
]

≤ 2/2m

The first inequality is true because if the adversary does not name a first point M that is either K
or K, then HK(M ′) �= HK(M) for every M ′ ∈ {0, 1}m. This completes the proof.

B.6 Proof of Theorem 13

Let H: K × {0, 1}m → {0, 1}n be a hash-function family. Consider H6: K × {0, 1}m → {0, 1}n
defined in Figure 3. We will show that

AdvColl
H6 (t) ≤ AdvColl

H (t′) and AdvePre
H6 (t′) = 1

where t′ = t + cTimeH,m for some absolute constant c. We begin by showing that H6 is trivially
breakable in the ePre-sense. Let T be an adversary that on input K ∈ K returns 0m.

Now we show that if H is strong in the Coll-sense, then so is H6. Let A be an adversary that
gains advantage δ = AdvColl

H6 (A) and that runs in time t. We construct an adversary B for finding
collisions under H as follows:

18

Algorithm B(K)
Run (M, M ′)←A(K)
if M = 0m and HK(M ′) = 0n then return (M, M ′)
if M �= 0m and HK(M) �= 0n and M ′ �= 0m and HK(M ′) = 0n then return (M, 0m)
if M �= 0m and HK(M) = 0n and M ′ = 0m then return (M, M ′)
if M �= 0m and HK(M) = 0n and M ′ �= 0m and HK(M ′) �= 0n then return (0m, M ′)
else return (M, M ′)

Note that the running time of B is at most t + cTimeH,m for some absolute constant c.
Let us verify that B returns a collision for H whenever A returns a collision for H6 and so

AdvColl
H6 (A) ≤ AdvColl

H (B). Referring to the line numbers in Figure 3, we say that u-v is a collision
if M caused H6 to output on line u ∈ {1, 2, 3} and M ′ �= M caused H6 to output on line v ∈ {1, 2, 3}
and H6(M) = H6(M ′). A 1-1 collision is impossible because then M = M ′, and both a 1-2 collision
and a 2-1 collision are impossible because line 2 always returns something different from 0n. This
leaves six cases to consider.
[Case 1-3] Assume A wins by making 1-3 collision. Then we have M = 0m and HK(M ′) = 0n and so

HK(0m) = 0n; in this case M ′ and 0m = M collide under H, and B wins by returning (M, M ′).
[Case 3-1] Symmetric to case 1-3.
[Case 2-3] Assume A wins by making a 2-3 collision. Then M �= 0m, HK(M) �= 0n, M ′ �= 0m,

HK(M ′) = 0n and so HK(0m) = HK(M). Hence B wins by returning (M, 0m).
[Case 3-2] Assume A wins by making a 3-2 collision. Then M �= 0m, HK(M) = 0n, M ′ �= 0m,

HK(M ′) �= 0n and so HK(0m) = HK(M ′). Hence B wins by returning (0m, M ′).
[Case 2-2] Assume A wins by returning a 2-2 collision. Then HK(M) = HK(M ′) and B wins by

returning (M, M ′).
[Case 3-3] Assume A wins by returning a 3-3 collision. Then HK(M) = HK(M ′) and B wins by

returning (M, M ′).
This completes the proof.

B.7 Proof of Theorem 14

Let H: K×{0, 1}m → {0, 1}n be a hash-function family. Consider the hash-function family H6: K×
{0, 1}m → {0, 1}n defined in Figure 3. We claim that

AdveSec [m]
H6 (t) ≤ 2AdveSec [m]

H (t′) and AdvePre
H6 (t′) = 1

where t′ ≤ t + c TimeH,m for some absolute constant c. We begin by showing that H6 is trivially
breakable in the ePre-sense. Let T be an adversary that on input K ∈ K returns 0m.

Now we show that if H is strong in the eSec-sense then so is H6. Let A be an adversary that
gains advantage δ = AdveSec [m]

H6 (A) and runs in time t. We construct an adversary B0 as follows:

19

Algorithm B0
[Stage 1] On input ():

Run (M, S)← A()
(*) return (M, S)

[Stage 2] On input (K, S):
Run M ′←A(K, S)
if M = 0m and HK(M ′) = 0n then return M ′

if M �= 0m and HK(M) �= 0n and M ′ �= 0m and HK(M ′) = 0n then return 0m

if M �= 0m and HK(M) = 0n and M ′ = 0m then return 0m

if M �= 0m and HK(M) = 0n and M ′ �= 0m and HK(M ′) �= 0n then return M ′

else return M ′

Let B1 be an adversary that is constructed identically to B0 except that line (*) is replaced by
“return (0m, S)”.

We claim that whenever A breaks H6 in the eSec-sense, then either B0 or B1 breaks H in the
eSec-sense. Referring to the line numbers in Figure 3, we say that u-v is a collision if M �= M ′

caused H6 to output on line u ∈ {1, 2, 3} and M ′ caused H6 to output on line v ∈ {1, 2, 3} and
H6(M) = H6(M ′). There are six cases to consider, since collisions 1-1, 1-2, and 2-1 are impossible.
[Case 1-3] Assume A wins by making a 1-3 collision. Then M = 0m and HK(M ′) = 0n and so

HK(0m) = 0n; in this case M ′ is a partner for 0m = M under H, and so B0 wins
[Case 2-3] Assume A wins by making a 2-3 collision. Then M �= 0m, HK(M) �= 0n, M ′ �= 0m and

HK(M ′) = 0n. In this case HK(M) = HK(0m), and so B0 wins.
[Case 3-1] Assume A wins by making a 3-1 collision. Then M �= 0m, HK(M) = 0n and M ′ = 0n,

and so HK(0m) = 0n. In this case HK(M) = HK(0m), and so B0 wins.
[Case 3-2] Assume A wins by making a 3-2 collision. Then M �= 0m, HK(M) = 0n, M ′ �= 0m and

HK(M ′) �= 0n. In this case HK(0m) = HK(M ′), and so B1 wins.
[Case 2-2] Assume A wins by making a 2-2 collision. Then HK(M) = HK(M ′), and so B0 wins.
[Case 3-3] Assume A wins by making a 3-3 collision. Then HK(M) = HK(M ′), and so B0 wins.

Let δ = δ0 + δ1 where δ1 is the probability that A wins (ie, finds a partner for M) by creating a
3-2 collision, and δ0 is the probability that A wins by creating a 1-3,2-3,3-1,2-2,or 3-3 collision. In
the case that δ0 ≥ δ/2 let B = B0; otherwise let B = B1. We conclude that AdveSec [m]

H6 (A) ≤
2AdveSec [m]

H (B) and the claim follows.

20

