
The LINPACK Benchmark: Past, Present, and Future�

Jack J. Dongarray, Piotr Luszczeky, and Antoine Petitetz

December 2001

1 LINPACK Benchmark History

1.1 Introduction

In this paper we will clear up some of the confusion and mystery surrounding the LINPACK
Benchmark [57] and some of its variations. We will cover the \original" LINPACK 100 benchmark,
the TOP500 [59], the HPL [64] program that can be used in the TOP500 measurement. We will
examine what is measured and describe how to interpret the results of the programs' execution.
But �rst a bit of history.

The original LINPACK Benchmark is, in some sense, an accident. It was originally designed
to assist users of the LINPACK package [25] by providing information on execution times required
to solve a system of linear equations. The �rst \LINPACK Benchmark" report appeared as an
appendix in the LINPACK Users' Guide [25] in 1979. The appendix comprised data for one
commonly used path in the LINPACK software package. Results were provided for a matrix
problem of size 100, on a collection of widely used computers (23 computers in all). This was done
so users could estimate the time required to solve their matrix problem by extrapolation.

Over the years additional performance data was added, more as a hobby than anything else,
and today the collection includes over 1300 di�erent computer systems. In addition to the number
of computers increasing, the scope of the benchmark has also expanded. The benchmark report
describes the performance for solving a general dense matrix problem Ax = b at three levels of
problem size and optimization opportunity: 100 by 100 problem (inner loop optimization), 1000
by 1000 problem (three loop optimization - the whole program), and a scalable parallel problem.

1.2 The LINPACK Package

The LINPACK package is a collection of Fortran subroutines for solving various systems of linear
equations. The software in LINPACK is based on a decompositional approach to numerical linear
algebra. The general idea is the following. Given a problem involving a matrix, A, one factors or
decomposes A into a product of simple, well-structured matrices which can be easily manipulated
to solve the original problem. The package has the capability of handling many di�erent matrix
types and di�erent data types, and provides a range of options.

�This research was supported in part by the Applied Mathematical Sciences Research Program of the OÆce
of Mathematical, Information, and Computational Sciences, U.S. Department of Energy under contract DE-AC05-
00OR22725 with UT-Battelle, LLC and the SciDAC PERC DE-FC02-01ER25490 and NSF Alliance Subcontract 790,
Prime-ACI-961-019-07.

yUniversity of Tennessee, Department of Computer Science, Knoxville, TN 37996-3450, U.S.A., Phone: (+865)974-
8295, Fax: (+865)974-8296, E-mail: fdongarra,luszczekg@cs.utk.edu

zSun Microsystems, Inc., Paris, France

1

The package itself is based on another package, called the Level 1 Basic Linear Algebra Subrou-
tines (BLAS) [53]. The Level 1 BLAS address simple vector operations, such as adding a multiple
of a vector to another vector (SAXPY) or forming an inner product (SDOT). Most of the
oating-point
work within the LINPACK algorithms is carried out by the BLAS, which makes it possible to take
advantage of special computer hardware without having to modify the underlying algorithm. This
approach thus achieves transportability and clarity of software without sacri�cing reliability.

1.3 Selection of the Algorithm

Solving a system of equations requires O(n3)
oating-point operations, more speci�cally, 2=3n3 +
2n2 + O(n)
oating-point additions and multiplications. Thus, the time required to solve such
problems on a given machine can be approximated by

timen =
time100 � n

3

1003
:

In the LINPACK Benchmark, a matrix of size 100 was originally used because of memory limitations
with the computer that were in use in 1979; the matrix has O(1002)
oating-point elements and
could be accommodated in most environments of that time. At the time it represented a \large
enough" problem. (We will always assume 64-bit
oating point arithmetic.)

The algorithm used in the timings is based on LU decomposition with partial pivoting. The
matrix type is real, general, and dense, with matrix elements randomly distributed between �1
and 1. (The random number generator used in the benchmark is not sophisticated; rather its major
attribute is its compactness.)

2 The LINPACK Benchmark

2.1 Operations

The LINPACK benchmark features two routines: DGEFA and DGESL (these are the double precision
versions, usually 64-bit
oating point arithmetic, SGEFA and SGESL are the single-precision counter
parts, usually 32 bit
oating point arithmetic); DGEFA performs the decomposition with partial
pivoting, and DGESL uses that decomposition to solve the given system of linear equations. Most of
the execution time - O(n3)
oating-point operations - is spent in DGEFA. Once the matrix has been
decomposed, DGESL is used to �nd the solution; this requires O(n2)
oating-point operations.

DGEFA and DGESL in turn call three BLAS routines: DAXPY, IDAMAX, and DSCAL. By far the major
portion of time - over 90% at order 100 - is spent in DAXPY. DAXPY is used to multiply a scalar, �,
times a vector, x, and add the results to another vector, y. It is called approximately n2=2 times
by DGEFA and 2n times by DGESL with vectors of varying length. The statement yi yi + � � xi,
which forms an element of the DAXPY operation, is executed approximately n3=3 + n2 times, which
gives rise to roughly 2=3n3
oating-point operations in the solution. Thus, the n = 100 benchmark
requires roughly 2/3 million
oating-point operations.

The statement yi yi + � � xi, besides the
oating-point addition and
oating-point mul-
tiplication, involves a few one-dimensional index operations and storage references. While the
LINPACK routines DGEFA and DGESL involve two-dimensional arrays references, the BLAS re-
fer to one-dimensional arrays. The LINPACK routines in general have been organized to access
two-dimensional arrays by column. In DGEFA, the call to DAXPY passes an address into the two-
dimensional array A, which is then treated as a one-dimensional reference within DAXPY. Since the
indexing is down a column of the two-dimensional array, the references to the one-dimensional array

2

are sequential with unit stride. This is a performance enhancement over, say, addressing across the
column of a two-dimensional array. Since Fortran dictates that two-dimensional arrays be stored by
column in memory, accesses to consecutive elements of a column lead to simple index calculations.
References to consecutive elements di�er by one word instead of by the leading dimension of the
two-dimensional array.

2.2 Detailed Operation Counts

The results re
ect only one problem area: solving dense systems of equations using the LINPACK
programs in a Fortran environment. Since most of the time is spent in DAXPY, the benchmark is
really measuring the performance of DAXPY. The average vector length for the algorithm used to
compute LU decomposition with partial pivoting is 2=3n. Thus in the benchmark with n = 100,
the average vector length is 66.

In order to solve this matrix problem it is necessary to perform almost 700,000
oating point
operations. The time required to solve the problem is divided into this number to determine the
mega
ops rate.

The routines DGEFA calls IDAMAX, DSCAL and DAXPY. Routine IDAMAX, which computes the index
of a vector with largest modulus, is called 99 times, with a vector lengths running from 2 to 100.
Each call to IDAMAX gives rise to n double precision absolute value computation and n� 1 double
precision comparisons. The total number of operations is 5364 double precision absolute values and
4950 double precision comparisons.

DSCAL is called 99 times, with vector lengths running from 1 to 99. Each call to DSCAL performs
n double precision multiplies, for a total of 4950 multiplies.

DAXPY does the bulk of the work. It is called n times, where n varies from 1 to 99. Each call to
DAXPY gives rise to one double precision comparison with zero, n double precision additions, and n
double precision multiplications. This leads to 4950 comparisons against 0, 328350 additions and
328350 multiplications. In addition, DGEFA itself does 99 double precision comparisons against 0,
and 99 double precision reciprocals. The total operation count for DGEFA is given in Table 1.

Operation Operation
type count

add 328350
multiply 333300
reciprocal 99
absolute value 5364
� 4950
6= 0 5247

Table 1: Double precision operations counts for LINPACK 100's DGEFA routine.

Routine DGESL, which is used to solve a system of equations based on the factorization from
DGEFA, does much more modest amount of
oating point operations. In DGESL, DAXPY is called in
two places, once with vector lengths running from 1 to 99 and once with vector lengths running
from 0 to 99. This leads to a total of 9900 double precision additions, the same number of double
precision multiplications, and 199 compares against 0. DGESL does 100 divisions and 100 negations
as well. The total operation count for DGESL is given in Table 2.

This leads to a total operation count for the LINPACK benchmark given in Table 3 or a
grand total of 697509
oating point operations. (The LINPACK uses approximately 2=3n3 + 2n2

3

Operation Operation
type count

add 9900
multiply 9900
divide 100
negate 100
6= 0 199

Table 2: Double precision operations counts for LINPACK 100's DGESL routine.

Operation Operation
type count

add 338250
multiply 343200
reciprocal 99
divide 100
negate 100
absolute value 5364
� 4950
6= 0 5446

Total 697509

Table 3: Double precision operations counts for LINPACK 100 benchmark.

operations, which for n = 100 has the value of 686667.)
It is instructive to look just at the contribution due to DAXPY. Of these
oating point operations,

the calls to DAXPY from DGEFA and DGESL account for a total of 338160 adds, 338160 multiplies,
and 5147 comparisons with zero. This gives a total of 681467 operations, or over 97% of all the

oating point operations that are executed.

The total time is taken up with more than arithmetic operations. In particular, there is quite a
lot of time spent loading and storing the operands of the
oating point operations. We can estimate
the number of loads and stores by assuming that all operands must be loaded into registers, but
also assuming that the compiler will do a reasonable job of promoting loop-invariant quantities
out of loops, so that they need not be loaded each time within the loop. Then DAXPY accounts
for 681468 double precision loads and 338160 double precision stores. IDAMAX accounts for 4950
loads, DSCAL for 5049 loads and 4950 stores, DGEFA outside of the loads and stores in the BLAS
does 9990 loads and 9694 stores and DGESL for 492 loads and 193 stores. Thus, the total number of
loads is 701949 and 352997 stores. Here again DAXPY dominates the statistics. The other overhead
that must be accounted for is the load indexing, address arithmetic, and the overhead of argument
passing and calls.

2.3 Precision

In discussions of scienti�c computing, one normally assumes that
oating-point computations will
be carried out to full precision or 64-bit
oating point arithmetic. Note that this is not an issue of
single or double precision as some system have 64-bit
oating point arithmetic as single precision.
It is a function of the arithmetic used.

4

2.4 Loop Unrolling

It is frequently observed that the bulk of the central processor time for a program is localized in 3%
or less of the source code [62]. Often the critical code (from a timing perspective) consists of one
or a few short inner loops typi�ed, for instance, by the scalar product of two vectors. On scalar
computers a simple technique for optimizing of such loops should then be most welcome. \Loop
unrolling" (a generalization of \loop doubling") applied selectively to time-consuming loops is just
such a technique [31, 52].

When a loop is unrolled, its contents are replicated one or more times, with appropriate ad-
justments to array indices and loop increments. Consider, for instance, the DAXPY sequence, which
adds a multiple of one vector to a second vector:

DO 10 i = 1,n

y(i) = y(i) + alpha*x(i)

10 CONTINUE

Unrolled to a depth of four, it would assume the following form:

m = n - MOD(n, 4)

DO 10 i = 1, m, 4

y(i) = y(i) + alpha*x(i)

y(i+1) = y(i+1) + alpha*x(i+1)

y(i+2) = y(i+2) + alpha*x(i+2)

y(i+3) = y(i+3) + alpha*x(i+3)

10 CONTINUE

In this recoding, four terms are computed per loop iteration, with the loop increment modi�ed to
count by fours. Additional code has to be added to process the MOD(n, 4) elements remaining upon
completion of the unrolled loop, should the vector length not be a multiple of the loop increment.
The choice of four was for illustration, with the generalization to other orders obvious from the
example. Actual choice of unrolling depth in a given instance would be guided by the contribution
of the loop to total program execution time and by consideration of architectural constraints.

Why does unrolling enhance loop performance? First, there is the direct reduction in loop
overhead { the increment, test, and branch function { which, for short loops, may actually dominate
execution time per iteration. Unrolling simply divides the overhead by a factor equal to the unrolling
depth, although additional code required to handle \leftovers" will reduce this gain somewhat.
Clearly, savings should increase with increasing unrolling depth, but the marginal savings fall o�
rapidly after a few terms. The reduction in overhead is the primary source of improvement on
\simple" computers.

Second, for advanced architectures employing segmented functional units, the greater density of
non-overhead operations permits higher levels of concurrency within a particular segmented unit.
Thus, in the DAXPY example, unrolling would allow more than one multiplication to be concurrently
active on a segmented machine such as the IBM Power processor. Optimal unrolling depth on such
machines might well be related to the degree of functional unit segmentation.

Third, and related to the above, unrolling often increases concurrency between independent
functional units on computers so equipped or ones with fused multiple-add instructions. Thus, in
our DAXPY example, an IBM Power processor, which has independent multiplier and adder units,
could obtain concurrency between addition for one element and multiplication for the following
element, besides the segmentation concurrency obtainable within each unit.

5

However, machines with vector instructions and their compilers trying to detect vector opera-
tions, the unrolling technique had the opposite e�ect. The unrolling inhibited the detection of vector
operations in the loop, the resulting vector code might have become scalar, and the performance
degraded.

2.5 Performance

The performance of a computer is a complicated issue, a function of many interrelated quantities.
These quantities include the application, the algorithm, the size of the problem, the high-level
language, the implementation, the human level of e�ort used to optimize the program, the compiler's
ability to optimize, the age of the compiler, the operating system, the architecture of the computer,
and the hardware characteristics. The results presented for benchmark suites should not be extolled
as measures of total system performance (unless enough analysis has been performed to indicate a
reliable correlation of the benchmarks to the workload of interest) but, rather, as reference points
for further evaluations.

Performance is often measured in terms of Mega
ops, millions of
oating point operations per
second (M
op/s). We usually include both additions and multiplications in the count of M
op/s,
and the reference to an operation is assumed to be on 64-bit operands.

The manufacturer usually refers to peak performance when describing a system. This peak
performance is arrived at by counting the number of
oating-point additions and multiplications
that can be completed in a period of time, usually the cycle time of the machine. As an example,
a Pentium III with a cycle time of 750 MHz. During a cycle the results of either the adder or
multiplier can be completed:

1 operation

1 cycle
� 750MHz = 750M
op/s:

Table 4 shows the peak performance for a number of high-performance computers.

Cycle Peak
Machine time Performance

[MHz] [M
op/s]

Intel Pentium III 750 750
Intel Pentium 4 1,700 1,700
Intel Itanium 800 3,200
AMD Athlon 1,200 2,400
Compaq Alpha 500 1,000
IBM RS/6000 450 1,800
NEC SX-5 250 8,000
Cray SV-1 300 1,200

Table 4: Theoretical Peak Performance of various CPUs.

By peak theoretical performance we mean only that the manufacturer guarantees that programs
will not exceed these rates, sort of a speed of light for a given computer. At one time, a programmer
had to go out of his way to code a matrix routine that would not run at nearly top eÆciency on any
system with an optimizing compiler. Owing to the proliferation of exotic computer architectures,
this situation is no longer true.

6

Peak LINPACK 100 System
Machine Performance Performance EÆciency

[M
op/s] [M
op/s] [%]

Intel Pentium III 750 138 18.4
Intel Pentium 4 1,700 313 18.4
Intel Itanium 3,200 600 18.5
AMD Athlon 2,400 557 23.3
Compaq Alpha 1,000 440 44.0
IBM RS/6000 1,800 503 27.9
NEC SX-5 8,000 856 10.7
Cray SV-1 1,200 549 45.7

Table 5: LINPACK benchmark solving a 100 by 100 matrix problem.

The LINPACK Benchmark illustrates this point quite well. In practice, as Table 5 shows, there
may be a signi�cant di�erence between peak theoretical and actual performance [24].

If we examine the algorithm used in LINPACK and look at how the data are referenced, we see
that at each step of the factorization process there are vector operations that modify a full submatrix
of data. This update causes a block of data to be read, updated, and written back to central
memory. The number of
oating-point operations is 2=3n3, and the number of data references,
both loads and stores, is 2=3n3. Thus, for every add/multiply pair we must perform a load and
store of the elements, unfortunately obtaining no reuse of data. Even though the operations are
fully vectorized, there is a signi�cant bottleneck in data movement, resulting in poor performance.
On vector computers this translates into two vector operations and three vector-memory references,
usually limiting the performance to well below peak rates. On super-scalar computers this results in
a large amount of data movement and updates. To achieve high-performance rates, this operation-
to-memory-reference rate must be higher.

In some sense this is a problem with doing simple vector operations on a vector or super-scalar
machine. The bottleneck is in moving data and the rate of execution is limited by this quantities.
We can see this by examining the rate of data transfers and the peak performance.

To understand why the performance is so poor, considering the basic operation performed, a
DAXPY. There is one parameter, R1, that re
ects the hardware performance of the idealized generic
computer and gives a �rst-order description of any real computer. This characteristic parameter is
de�ned as follows:

R1 - the maximum or asymptotic performance - the maximum rate of computation in
units of equivalent scalar operations performed per second (M
op/s) [48].

The information on DAXPY and DDOT presented in Tables 6 and 7 was generated by running the
following loops as in-line code and measuring the time to perform the operations:

DAXPY DDOT

DO 10 i = 1,n DO 10 i = 1,n

y(i) = y(i) + alpha * x(i) s = s + x(i) * y(i)

10 CONTINUE 10 CONTINUE

The Level 1 BLAS operate only on vectors. The algorithms as implemented tend to do more
data movement than is necessary. As a result, the performance of the routines in LINPACK su�ers
on high-performance computers where data movement is as costly as
oating-point operations.

7

Machine DAXPY R1 Peak
[M
op/s] [M
op/s]

Intel Pentium III 56 750
Intel Pentium 4 178 1,700
Intel Itanium 28 3,200
AMD Athlon 66 2,400
Compaq Alpha 92 1,000
IBM RS/6000 100 1,800

Table 6: DAXPY's asymptotic and peak performance.

Machine DDOT R1 Peak
[M
op/s] [M
op/s]

Intel Pentium III 82 750
Intel Pentium 4 277.5 1,700
Intel Itanium 33 3,200
AMD Athlon 80 2,400
Compaq Alpha 150 1,000
IBM RS/6000 143 1,800

Table 7: DDOT's asymptotic and peak performance

2.6 Restructuring Algorithms

Today's computer architectures usually have multiple stages in the memory hierarchy. By restruc-
turing algorithms to exploit this hierarchical organization, one can gain high performance.

A hierarchical memory structure involves a sequence of computer memories, or caches, ranging
from a small, but very fast memory at the bottom to a large, but slow memory at the top. Since a
particular memory in the hierarchy (call it M) is not as big as the memory at the next level (M 0),
only part of the information in M 0 will be contained in M . If a reference is made to information
that is in M , then it is retrieved as usual. However, if the information is not in M , then it must
be retrieved from M 0, with a loss of time. To avoid repeated retrieval, information is transferred
from M 0 to M in blocks, the supposition being that if a program references an item in a particular
block, the next reference is likely to be in the same block. Programs having this property are said
to have locality of reference. Typically, there is a certain startup time associated with getting the
�rst memory reference in a block. This startup is amortized over the block move.

To come close to gaining peak performance, one must optimize the use of the lowest level
of memory (i.e., retain information as long as possible before the next access to main memory),
obtaining as much reuse as possible.

2.7 Matrix-Vector Operations

One approach to restructuring algorithms to exploit hierarchical memory involves expressing the
algorithms in terms of matrix-vector operations. These operations have the bene�t that they can
reuse data and achieve a higher rate of execution than the vector counterpart. In fact, the number
of
oating-point operations remains the same; only the data reference pattern is changed. This
change results in a operation-to-memory-reference rate on vector computers of e�ectively 2 vector

8

oating-point operations and 1 vector-memory reference.
The Level 2 BLAS were proposed in order to support the development of software that would

be both portable and eÆcient across a wide range of machine architectures, with emphasis on
vector-processing machines. Many of the frequently used algorithms of numerical linear algebra
can be coded so that the bulk of the computation is performed by calls to Level 2 BLAS routines;
eÆciency can then be obtained by utilizing tailored implementations of the Level 2 BLAS routines.
On vector-processing machines one of the aims of such implementations is to keep the vector lengths
as long as possible, and in most algorithms the results are computed one vector (row or column)
at a time. In addition, on vector register machines performance is increased by reusing the results
of a vector register, and not storing the vector back into memory.

Unfortunately, this approach to software construction is often not well suited to computers with
a hierarchy of memory (such as global memory, cache or local memory, and vector registers) and
true parallel-processing computers. For those architectures it is often preferable to partition the
matrix or matrices into blocks and to perform the computation by matrix-matrix operations on the
blocks. By organizing the computation in this fashion we provide for full reuse of data while the
block is held in the cache or local memory. This approach avoids excessive movement of data to and
from memory and gives a surface-to-volume e�ect for the ratio of operations to data movement. In
addition, on architectures that provide for parallel processing, parallelism can be exploited in two
ways: (1) operations on distinct blocks may be performed in parallel; and (2) within the operations
on each block, scalar or vector operations may be performed in parallel.

2.8 Matrix-Matrix Operations

A set of Level 3 BLAS have been proposed; targeted at the matrix-matrix operations [26]. If
the vectors and matrices involved are of order n, then the original BLAS include operations that
are of order O(n), the extended or Level 2 BLAS provide operations of order O(n2), and the
current proposal provides operations of order O(n3); hence the use of the term Level 3 BLAS. Such
implementations can, we believe, be portable across a wide variety of vector and parallel computers
and also eÆcient (assuming that eÆcient implementations of the Level 3 BLAS are available). The
question of portability has been much less studied but we hope, by having a standard set of building
blocks, research into this area will be encouraged.

In the case of matrix factorization, one must perform matrix-matrix operations rather than
matrix-vector operations [28, 30, 33]. There is a long history of block algorithms for such matrix
problems. Both the NAG and the IMSL libraries, for example, include such algorithms (F01BTF
and F01BXF in NAG; LEQIF and LEQOF in IMSL). Many of the early algorithms utilized a small
main memory, with tape or disk as secondary storage [7, 17, 18, 23, 36, 58]. Similar techniques
were later used to exploit common page-swapping algorithms in virtual-memory machines. Indeed,
such techniques are applicable wherever there exists a hierarchy of data storage (in terms of access
speed). Additionally, full blocks (and hence the multiplication of full matrices) might appear as a
subproblem when handling large sparse systems of equations [23, 29, 37, 42].

More recently, several researchers have demonstrated the e�ectiveness of block algorithms on a
variety of modern computer architectures with vector-processing or parallel-processing capabilities,
on which potentially high performance can easily be degraded by excessive transfer of data between
di�erent levels of memory (vector registers, cache, local memory, main memory, or solid-state
disks) [8, 9, 16, 17, 30, 33, 50, 65, 67].

Our own e�orts have been twofold: First, we are attempting to recast the algorithms from
linear algebra in terms of the Level 3 BLAS (matrix-matrix operations). This involves modifying
the algorithm to perform more than one step of the decomposition process at a given loop iteration.

9

Second, to facilitate the transport of algorithms to a wide variety of architectures and to achieve
high performance, we are isolating the computationally intense parts in high-level modules. When
the architecture changes, we deal with the modules separately, rewriting them in terms of machine-
speci�c operations; however, the basic algorithm remains the same. By doing so we can achieve
the goal of a high operation-to-memory-reference ratio.

Recently it has been shown that matrix-matrix operations can be exploited further. LU factor-
ization, which is usually the method of choice for the LINPACK benchmark code, can be formulated
recursively [45]. The recursive formulation performs better [70] than block algorithm [4]. It is due
to a lower memory traÆc of the recursive method which is achieved through better utilization of
Level 3 BLAS.

2.9 Concluding Remarks on the LINPACK Benchmark

Over the past several years, the LINPACK Benchmark has evolved from a simple listing for one
matrix problem to an expanded benchmark describing the performance at three levels of problem
size on several hundred computers. The benchmark today is used by scientists worldwide to evaluate
computer performance, particularly for innovative advanced-architecture machines.

Nevertheless, a note of caution is needed. Benchmarking, whether with the LINPACK Bench-
mark or some other program, must not be used indiscriminately to judge the overall performance
of a computer system. Performance is a complex issue, dependent on a variety of diverse quantities
including the algorithm, the problem size, and the implementation. The LINPACK Benchmark
provides three separate benchmarks that can be used to evaluate computer performance on a dense
system of linear equations: the �rst for a 100 by 100 matrix, the second for a 1000 by 1000 matrix.
The third benchmark, in particular, is dependent on the algorithm chosen by the manufacturer and
the amount of memory available on the computer being benchmarked.

3 The Parallel LINPACK Benchmark

In the past several years, the emergence of Distributed Memory (DM) computers [48] and their po-
tential for the numerical solution of Grand Challenge problems [22, 51, 60, 61] has led to extensive
research in benchmarking. Examples of DM computers include the IBM Scalable POWERparal-
lel SP-2, the Intel Paragon, the Cray T3E, Networks and Clusters of Workstations (NoWs and
CoWs). The key feature they have achieved is scalable performance. These scalable parallel com-
puters comprise an ensemble of Processing Units (PUs) where each unit consists of a processor,
local memories organized in a hierarchical manner, and other supporting devices. These PUs are
interconnected by a point-to-point (direct) or switch-based (indirect) network. Without modify-
ing the basic machine architecture, these distributed memory systems are capable of proportional
increases in performance as the number of PUs, their memory capacity and bandwidth, and the
network and I/O bandwidth are increased. As of today, DM computers are still being produced and
their success is apparent when considering how common they have become. Still, their limitations
have been revealed and their successors have already appeared. The latter are constructed from a
small number of nodes, where each node is a small DM computer featuring a virtual shared mem-
ory. These nodes are interconnected by a simple bus- or crossbar-based interconnection network.
Programming these machines as well as their production is facilitated by the relative simplicity
of the interconnection network. In addition, increasing the computational capabilities of the PUs
appears to be an easier task than increasing the performance of the network. As opposed to large
scale DM computers where all processors are much less powerful than the whole, the collection
of nodes of this hierarchical architecture is only slightly more powerful than its components. The

10

SGI SMP Power Challenge is an existing example of such an architecture. The scalability of these
machines can simultaneously take advantage of the progresses made by the processor and network
technologies as well as the hardware and/or software mechanisms implementing the virtual shared
memory. It is still unclear how these machines will be programmed. Whether these machines will
in the future completely replace DM computers is also a question that is diÆcult to answer today.
In this paper, these machines will also be considered as DM computers.

In order to fully exploit the increasing computational power of DM computers, the application
software must be scalable, that is, able to take advantage of larger machine con�gurations to solve
larger problems with the same eÆciency. The LINPACK benchmark addresses scalability by an
introduction of a new category of testing rules and environment. This new category is referred to
as a Highly-Parallel LINPACK (HPL) NxN benchmark [10, 13, 14, 15, 24, 71, 44, 74]. It requires
solution of systems of linear equations by some method. The problem size is allowed to vary, and
the best
oating-point execution rate should be reported. In computing the execution rate, the
number of operations should be 2n3=3 + 2n2 independent of the actual method used. If Gaussian
elimination is chosen, partial pivoting must be used. A residual for the accuracy of solution, given
as kAx � bk=(kAk � kxk), should also be reported. The following quantities of the benchmark are
reported in the TOP500 list:

� Rmax the performance in G
op/s for the largest problem run on a machine,

� Nmax the size of the largest problem run on a machine,

� N1=2 the size where half the Rmax execution rate is achieved,

� Rpeak the theoretical peak performance G
op/s for the machine.

To the performance of the HPL NxN benchmark contributes eÆciency of the serial code executed
on a single CPU as well as the parallel algorithm which makes all the CPUs cooperate. The former
may be designed with the use of the optimization techniques mentioned earlier. The essential
ingredients of the latter are load balancing and network latency hiding. Assuming that all of the
CPUs are the same, an even work and data load may is usually achieved with a block-cyclic data
layout [34, 47]. Latency hiding is most often performed with computation and communication
overlapping which is facilitated by an appropriate choice of virtual CPU topology, computational
sequences of LU factorization, and an implementation of collective communication algorithms.
Large body of literature exists on eÆcient parallel implementation of BLAS [1, 2, 3, 20, 21, 38, 39,
40, 43, 49, 56, 72, 63], the factorization algorithm [5, 6, 11, 19, 34, 41, 47, 66, 68, 69, 73], and its
components [12, 46, 54, 55].

4 The TOP500 List

Statistics on high-performance computers are of major interest to manufacturers, and potential
users. They wish to know not only the number of systems installed, but also the location of the
various supercomputers within the high-performance computing community and the applications
for which a computer system is being used. Such statistics can facilitate the establishment of
collaborations, the exchange of data and software, and provide a better understanding of the high-
performance computer market.

Statistical lists of supercomputers are not new. Every year since 1986, Hans Meuer [59] has
published system counts of the major vector computer manufacturers, based principally on those
at the Mannheim Supercomputer Seminar. Statistics based merely on the name of the manufac-
turer are no longer useful, however. New statistics are required that re
ect the diversi�cation of

11

supercomputers, the enormous performance di�erence between low-end and high-end models, the
increasing availability of massively parallel processing (MPP) systems, and the strong increase in
computing power of the high-end models of workstation suppliers (SMP).

To provide this new statistical foundation, the TOP500 list was created in 1993 to assemble
and maintain a list of the 500 most powerful computer systems. The list is compiled twice a year
with the help of high-performance computer experts, computational scientists, manufacturers, and
the Internet community in general.

In the list, computers are ranked by their performance on the HPL NxN benchmark.

5 The HPL Code

5.1 Overview

HPL [64] is a software package that generates and solves a random dense linear system of equations
on distributed-memory computers as it is outlined in Fig. 1. The package uses 64-bit
oating point
arithmetic and portable routines for linear algebra operations and message passing. Also, it gives a
possibility of selecting one of multiple factorization algorithms and provides timing and an estimate
of accuracy of the solution. Consequently, it can be regarded as a portable implementation of the
HPL NxN benchmark. It requires implementations of MPI and either BLAS or Vector Signal Image
Processing Library (VSIPL).

/* Generate and partition matrix data among MPI

computing nodes. */

/* ... */

/* All the nodes start at the same time. */

MPI_Barrier(...);

/* Start wall-clock timer. */

HPL_ptimer(...);

HPL_pdgesv(...); /* Solve system of equations. */

/* Stop wall-clock timer. */

HPL_ptimer(...);

/* Obtain the maximum wall-clock time. */

MPI_Reduce(...);

/* Gather statistics about performance rate

(base on the maximum wall-clock time) and

accuracy of the solution. */

/* ... */

Figure 1: Main computational steps performed by HPL to obtain the HPL NxN bench-

mark rating.

The HPL package is written in C and requires implementation of either the BLAS [26, 27] or

12

the Vector Signal Image Processing Library (VSIPL).

5.2 Algorithm

HPL solves a linear system of equations of order n:

Ax = b; A 2 Rn�n; x; b 2 Rn

by �rst computing LU factorization with row partial pivoting of the n by n+ 1 coeÆcient matrix:

P [A; b] = [[L;U]; y]:

Since the row pivoting (represented by the permutation matrix P) and the lower triangular factor
L are applied to b as the factorization progresses, the solution x is obtained in one step by solving
the upper triangular system:

Ux = y:

The lower triangular matrix L is left unpivoted and the array of pivots is not returned.
Fig. 2 shows 2-D cyclic block data distribution used by HPL. The data is distributed onto a

two-dimensional grid (of dimensions P by Q) of processes according to the block-cyclic scheme to
ensure good load balance as well as the scalability of the algorithm. The n by n + 1 coeÆcient
matrix is logically partitioned into blocks (each of dimension NB by NB), that are cyclically dealt
onto the P by Q process grid. This is done in both dimensions of the matrix.

P0 P1 P0 P1

P2 P3 P2 P3

P0 P1 P0 P1

P2 P3 P2 P3

Figure 2: Ownership of dense subblocks in two-dimensional block cyclic data distri-

bution used by HPL. The number of processors is 4 (named P0, P1, P2, and P3),

they are organized in 2 by 2 grid (P = Q = 2). The number of subblocks is 4 in both

dimensions (N=NB = 4).

The right-looking variant has been chosen for the main loop of the LU factorization. This means
that, at each iteration of the loop, a panel of NB columns is factored, and the trailing submatrix
is updated. Therefore, this computation is logically partitioned with the same block size NB that
was used for the data distribution.

At a given iteration of the main loop, and because of the cartesian property of the distribution
scheme, each panel factorization occurs in one column of processes. This particular part of the
computation lies on the critical path of the overall algorithm. For this operation, the user is o�ered
a choice of three (Crout, left- and right-looking) recursive variants based on matrix-matrix multiply.
The software also allows the user to choose in how many sub-panels the current panel should be
divided at each recursion level. Furthermore, one can also select at run-time the recursion stopping
criterion in terms of the number of columns left to factor. When this threshold is reached, the
sub-panel will then be factored using one of the three (Crout, left- or right-looking) factorization
algorithms based on matrix-vector operations. Finally, for each panel's column, the pivot search
and the associated swap and broadcast operations of the pivot row are combined into one single
communication step. A binary-exchange (leave-on-all) reduction performs these three operations
at once.

13

Once the panel factorization has been performed, the factored panel of columns is broadcast
to the other process columns. There are many possible broadcast algorithms and the software
currently o�ers the following variants:

� Increasing ring,

� Modi�ed increasing ring,

� Increasing two-ring,

� Modi�ed increasing two-ring,

� Bandwidth-reducing,

� Modi�ed bandwidth-reducing.

The modi�ed variants relieve the next processor (the one that would participate in factorization
of the panel after the current one) from the burden of sending messages (otherwise it has to receive
as well as send matrix update data). The ring variants propagate the update data in a single
pipeline fashion, whereas the two-ring variants propagate data in two pipelines concurrently. The
bandwidth-reducing variants divide a message to be sent into a number of pieces and scatters
it across a single row of the grid of processors so that more messages are exchanged but the
total volume of communication is independent of number of processors. This becomes particularly
important when the computing nodes are relatively much faster than the interconnect.

Once the current panel has been broadcast (or during the broadcast operation) the trailing
submatrix has to be updated. As mentioned before, the panel factorization lies on the critical
path. This means that when the kth panel has been factored and then broadcast, the next most
urgent task to complete is the factorization and broadcast of the panel k+1. This technique is often
referred to as a look-ahead (or send-ahead) in the literature. HPL allows to select various depths
of look-ahead. By convention, a depth of zero corresponds to having no look-ahead, in which case
the trailing submatrix is updated by the panel currently broadcast. Look-ahead consumes some
extra memory to keep all the panels of columns currently in the look-ahead pipe. A look-ahead of
depth 1 or 2 is most likely to achieve the best performance gain.

The update of the trailing submatrix by the last panel in the look-ahead pipe is performed
in two phases. First, the pivots must be applied to form the current row panel of U . Second,
upper triangular solve using the column panel occurs. Finally, the updated part of U needs to be
broadcast to each process within a single column so that the local rank update of size NB can take
place. It has been decided to combine the swapping and broadcast of U at the cost of replicating
the solve. The following algorithms are available for this communication operation:

� binary-exchange,

� bandwidth-reducing.

The �rst variant is a modi�ed leave-on-all reduction operation. The second one has communi-
cation volume complexity that solely depends on the size of U (the number of process rows only
impacts the number of messages being exchanged) and, consequently, should outperform the pre-
vious variant for large problems on large machine con�gurations. In addition, both of the previous
variants may be combined in a single run of the code.

After the factorization has ended, the backward substitution remains to be done. HPL uses
look-ahead of depth one to do this. The right hand side is forwarded in process rows in a decreasing-
ring fashion, so that we solve Q � NB entries at a time. At each step, this shrinking piece of the

14

right-hand-side is updated. The process just above the one owning the current diagonal block of
the matrix updates its last NB entries of vector x, forwards it to the previous process column, and
then broadcasts it in the process column in a decreasing-ring fashion. The solution is then updated
and sent to the previous process column. The solution of the linear system is left replicated in
every process row.

To verify the result, the input matrix and right-hand side are regenerated. The following scaled
residuals are computed (� is the relative machine precision):

rn =
kAx� bk1
kAk1 � n � �

r1 =
kAx� bk1
kAk1 � kxk1 � �

r1 =
kAx� bk1

kAk1 � kxk1 � �

A solution is considered numerically correct when all of these quantities are of order O(1).

5.3 Scalability

HPL was designed for distributed-memory computers. They consist of processors that are connected
using a message passing interconnection network. Each processor has its own memory called the
local memory, which is accessible only to that processor. As the time to access a remote memory
is longer than the time to access a local one, such computers are often referred to as Non-Uniform
Memory Access (NUMA) machines. The interconnection network of our machine model is static,
meaning that it consists of point-to-point communication links among processors. This type of
network is also referred to as a direct network as opposed to dynamic networks. The latter are
constructed from switches and communication links. These links are dynamically connected to
one another by the switching elements to establish, at run-time, the paths between processors'
memories. The interconnection network of the two-dimensional machine model considered here is a
static, fully connected physical topology. It is also assumed that processors can be treated equally
in terms of local performance and that the communication rate between two processors depends
only on the processors being considered. Our model assumes that a processor can send or receive
data on only one of its communication ports at a time (assuming it has more than one). In the
literature, this assumption is also referred to as a one-port communication model. The time spent
to communicate a message between two given processors is called the communication time Tc. In
our machine model, Tc is approximated by a linear function of the number L of double precision

oating point numbers being communicated. Tc is the sum of the time to prepare the message for
transmission � and the time �L taken by the message of length L to traverse the network to its
destination:

Tc = �+ �L:

Finally, the model assumes that the communication links are bi-directional, i.e., the time for two
processors to send each other a message of length L is also Tc. A processor can send and/or receive
a message on only one of its communication links at a time. In particular, a processor can send a
message while receiving another message from the processor it is sending to at the same time.

Since this document is only concerned with regular local dense linear algebra operations, the
time taken to perform one
oating point operation is assumed to be modeled by three constants:

1,
2, and
3. These quantities are single processor approximations of
oating point operation
(FLOP) rates of the vector-vector, matrix-vector and matrix-matrix operations, respectively. This

15

approximation describes all the steps performed by a processor to complete its portion of matrix
factorization. Such a model neglects all the phenomena occurring in the processor components,
such as cache misses, pipeline start-ups, memory load or store,
oating point arithmetic, TLB
misses etc. They may in
uence the value of the constants and may vary as, e.g. a function of the
problem size.

Similarly, the model does not make any assumptions on the amount of physical memory available
on a single node. It is assumed that if a process has been spawn on a processor, one has ensured
that enough memory was available on that processor. In other words, swapping will not occur
during the modeled computation.

Consider an M by N panel distributed over a column of P processors. Because of the recursive
formulation of the panel factorization, it is reasonable to consider that the
oating point operations
will be performed at matrix-matrix multiply rate. For every column in the panel a binary-exchange
is performed on 2N data items. When this panel is broadcast, what matters is the time that
the next process column will spend in this communication operation. Assuming one chooses the
modi�ed increasing ring variant, only one message needs to be taken into account. The execution
time of the panel factorization and broadcast can thus be approximated by:

Tpfact(M;N) =
3

�
M

P
�
N

3

�
N2 +N logP (�+ 2�N) + �+

�MN

P
:

The update phase of an N by N trailing submatrix distributed on a P by Q process grid is
achieved with a triangular solve of N right hand sides and a local update of rank NB of the trailing
submatrix. Assuming that the long variant is chosen, the execution time of the update operation
can be approximated by:

Tupdate(N;NB) =
3

N �N2

B

Q
+
2N2 �NB

PQ

!
+ �(log P + P � 1) +

3�N �NB

Q
:

The constant 3 in front of the � term is obtained by counting one for the logarithmic spread phase
and two for the rolling phase. In the case of bi-directional links this constant should be replaced
by 2.

The number of
oating point operations performed during the backward substitution is given by
N2=(P �Q). Because of the look-ahead, the communication cost can be approximated at each step
by two messages of length NB, i.e. the time to communicate the piece of size NB of the solution
vector from one diagonal block of the matrix to another. It follows that the execution time of the
backward substitution can be approximated by:

Tbacks(N;NB) =

2N

2

PQ
+N

�
�

NB
+ 2�

�
:

The total execution time of the algorithm described above is given by:

NX
k=0

[Tpfact(N � k �NB ; NB) + Tupdate(N � (k � 1) �NB; NB)] + Tbacks(N;NB):

By considering only the dominant term in �, � and
3:

THPL =
3
2N3

3PQ
+ �

N2(3P +Q)

2PQ
+ �

N((NB + 1) log P + P)

NB
:

16

The serial execution time is given by Tser =
2

3

3N

3. If we de�ne the parallel eÆciency E as the
ratio Tser=(PQ � THPL), we obtain:

E =

�
1 + �

3(3P +Q)

4
3N
+ �

3PQ((NB + 1) logP + P)

2N2 �NB
3

��1
:

This last equality shows that when the memory usage per processor N2=(PQ) is maintained
constant, the parallel eÆciency slowly decreases only because of the � term. The communication
volume (the � term), however, remains constant. Due to these results, HPL is said to be scalable
not only with respect to the amount of computation, but also with respect to the communication
volume.

5.4 Performance Results

Tables 8 and 9 show system parameters and performance results of HPL for a cluster of workstations
based on an AMD Athlon processor. Similarly, Tables 10 and 11 describe a cluster based on the
Intel Pentium III processor. Performance tests were also performed on a Compaq cluster installed
at Oak Ridge National Laboratory in Tennessee, U.S.A. This cluster is listed at position 90 on
the June 2001 TOP500 list. Its description and performance is given in Tables 12 and 13. The
LINPACK benchmark numbers for this system are presented in Table 14.

CPU AMD Athlon K7 500 Mhz

Main memory 256 MB

Interconnect 100 Mbps Switched
2 NICs per node (channel bonding)

OS RedHat Linux 6.2 (kernel 2.2.14)

C compiler gcc ver. 2.91.66 (egcs-1.1.2 release)

C
ags -fomit-frame-pointer -O3 -funroll-loops

MPI MPICH 1.2.1

BLAS ATLAS 3.0 beta

Date September 2000

Table 8: Description of the AMD cluster used in tests.

Processor Grid Matrix Dimension
Dimension 2000 5000 8000 10000

1 by 4 1.28 1.73 1.89 1.95

2 by 2 1.17 1.68 1.88 1.93

4 by 1 0.81 1.43 1.70 1.80

Table 9: Performance (in G
op/s) of HPL on an AMD cluster with 4 computing nodes.

5.5 Running and Tuning

In order to �nd the best performance of a given system, the largest problem size �tting in memory
should be used. The amount of memory used by HPL is essentially the size of the coeÆcient matrix.

17

CPU Intel Pentium III 550 Mhz

Main memory 512 MB

Interconnect Myrinet

OS RedHat Linux 6.1 (kernel 2.2.15)

C compiler gcc ver. 2.91.66 (egcs-1.1.2 release)

C
ags -fomit-frame-pointer -O3 -funroll-loops

MPI MPI GM ver. 1.2.3

BLAS ATLAS ver. 3.0 beta

Date September 2000

Table 10: Description of the Pentium cluster used in tests.

Processor Grid Matrix Dimension
Dimension 2000 5000 8000 10000 15000 20000

2 by 4 1.76 2.32 2.51 2.58 2.72 2.73

4 by 4 2.27 3.94 4.46 4.68 5.00 5.16

Table 11: Performance (in G
op/s) of HPL on a Pentium cluster with up to 16 computing nodes.

HPL uses the block size NB for the data distribution as well as for the computational gran-
ularity. From a data distribution point of view, the smallest NB , the better the load balance,
so, consequently, one de�nitely should avoid very large values of NB . From a local computation
point of view, too small value of NB may limit the computational performance by a large factor
because almost no data reuse will occur in the fastest level of the memory hierarchy. The number of
messages will also increase. EÆcient matrix-multiply routines are often internally blocked. Small
multiples of this blocking factor are likely to be good block sizes for HPL.

6 Acknowledgements

The authors acknowledge the use of the Oak Ridge National Laboratory Compaq cluster, funded
by the Department of Energy's OÆce of Science and Energy EÆciency programs and IBM su-
percomputer based on Power4 microprocessor provided as a part of the Department of Energy's
Scienti�c Discovery through Advanced Computing (SCiDAC) program. The use of UltraSparc III
server at the Department of Mathematics and Computer Science at Emory University is also greatly

CPU EV67 667 Mhz

OS True64 ver. 5

C compiler cc ver. 6.1

C
ags -arch host -tune host -std -O5

MPI native (linker
ags: -lmpi -lelan)

BLAS CXML

Date September 2000

Table 12: Description of the Compaq cluster used in tests.

18

Processor Grid Matrix Dimension
Dimension 5000 10000 25000 53000

8 by 8 26.37 45.00.73 60.99 66.93

Table 13: Performance (in G
op/s) of HPL on a Compaq cluster with 64 computing nodes.

CPUs/Nodes N1=2 Nmax Rmax E

[G
op/s] [%]

1/1 150 6625 1.14 -

4/1 800 12350 4.36 95.6

16/4 2300 26500 17.0 93.2

64/16 5700 53000 67.5 92.5

256/64 14000 106000 263.6 90.1

Table 14: LINPACK benchmark numbers for the Compaq cluster obtained using HPL.

appreciated.

References

[1] M. Aboelaze, N. Chrisochoides, and E. Houstis. The parallelization of Level 2 and 3 BLAS
operations on distributed-memory machines. Technical Report CSD-TR-91-007, Purdue Uni-
versity, West Lafayette, IN, 1991.

[2] R. Agarwal, S. Balle, F. Gustavson, M. Joshi, and P. Palkar. A three-dimensional approach
to parallel matrix multiplication. IBM Journal or Research and Development, 39(5):575{582,
1995.

[3] R. Agarwal, F. Gustavson, and M. Zubair. A high performance matrix multiplication algorithm
on a distributed-memory parallel computer, using overlapped communication. IBM Journal

or Research and Development, 38(6):673{681, 1994.

[4] E. Anderson, Z. Bai, C. Bischof, Suzan L. Blackford, James W. Demmel, Jack J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and Danny C. Sorensen. LAPACK
User's Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, Third edi-
tion, 1999.

[5] Cleve Ashcraft. The distributed solution of linear systems using the torus-wrap data mapping.
Technical Report ECA-TR-147, Boeing Computer Services, Seattle, WA, 1990.

[6] Cleve Ashcraft. A taxonomy of distributed dense LU factorization methods. Technical Report
ECA-TR-161, Boeing Computer Services, Seattle, WA, 1991.

[7] D. W. Barron and H. P. F. Swinnerton-Dyer. Solution of simultaneous linear equations using
a magnetic tape store. Computer J., 3:28{33, 1990.

[8] M. Berry, K. Gallivan, W. Harrod, W. Jalby, S. Lo, U. Meier, B. Philippe, and A. Sameh.
Parallel algorithms on CEDAR system. Technical Report Report No. 581, CSRD, 1986.

19

[9] C. Bischof and Charles F. Van Loan. The WY representation for products of Householder
matrices. SIAM SISSC, 8(2), March 1987.

[10] R. Bisseling and L. Loyens. Towards peak parallel LINPACK performance on 400. Supercom-

puter, 45:20{27, 1991.

[11] R. Bisseling and J. van der Vorst. Parallel LU decomposition on a transputer network. In
Eds. G. van Zee and J. van der Vorst, editors, Lecture Notes in Computer Sciences, volume
384, pages 61{77. Springer-Verlag, 1989.

[12] R. Bisseling and J. van der Vorst. Parallel triangular system solving on a mesh network of
transputers. SIAM Journal on Scienti�c and Statistical Computing, 12:787{799, 1991.

[13] J. Bolen, A. Davis, B. Dazey, S. Gupta, G. Henry, D. Robboy, G. Schi�er, D. Scott, M. Stall-
cup, A. Taraghi, S. Wheat (from Intel SSD), L. Fisk, G. Istrail, C. Jong, R. Riesen, and
L. Shuler (from Sandia National Laboratories). Massively parallel distributed computing:
World's �rst 281 Giga
op supercomputer. In Proceedings of the Intel Supercomputer Users

Group, 1995.

[14] R. Brent. The LINPACK benchmark on the AP 1000. Frontiers, pages 128{135, 1992.

[15] R. Brent and P. Strazdins. Implementation of BLAS Level 3 and LINPACK benchmark on
the AP1000. Fujitsu Scienti�c and Technical Journal, 5(1):61{70, 1993.

[16] I. Bucher and T. Jordan. Linear algebra programs for use on a vector computer with a
secondary solid state storage device. In R. Vichnevetsky and R. Stepleman, editors, Advances
in Computer Methods for Practical Di�erential Equations, pages 546{550. IMACS, 1984.

[17] D. A. Calahan. Block-oriented local-memory-based linear equation solution on the CRAY-2:
Uniprocessor algorithms. In U. Schendel, editor, Proceedings International Conference on

Parallel Processing, pages 375{378. IEEE Computer Society Press, August 1986.

[18] B. Chartres. Adaption of the Jacobi and Givens methods for a computer with magnetic tape
backup store. Technical Report 8, University of Sydney, 1960.

[19] J. Choi, Jack J. Dongarra, Susan Ostrouchov, Antione Petitet, David Walker, and R. Clint
Whaley. The design and implementation of the ScaLAPACK LU, QR, and Cholesky factor-
ization routines. Scienti�c Programming, 5:173{184, 1996.

[20] J. Choi, Jack J. Dongarra, and David Walker. Pumma: Parallel universal matrix multipli-
cation algorithms on distributed-memory concurrent computers. Concurrency: Practice and

Experience, 6(7):543{570, 1994.

[21] A. Chtchelkanova, J. Gunnels, G. Morrow, J. Overfelt, and R. van de Geijn. Parallel imple-
mentation of blas: General techniques for level 3 blas. Concurrency: Practice and Experience,
9(9):837{857, 1997.

[22] Mathematical Committee on Physical and Engineering Sciences, editors. Grand Challenges:

High Performance Computing and Communications. NSF/CISE, 1800 G Street NW, Wash-
ington, DC, 20550, 1991.

[23] A. K. Dave and Iain S. Du�. Sparse matrix calculations on the CRAY-2. Technical Report
Report CSS 197, AERE Harwell, 1986.

20

[24] Jack J. Dongarra. Performance of various computers using standard linear equations software.
Technical Report CS-89-85, University of Tennessee, 1989. (An updated version of this report
can be found at http://www.netlib.org/benchmark/performance.ps).

[25] Jack J. Dongarra, J. Bunch, Cleve Moler, and G. W. Stewart. LINPACK User's Guide. SIAM,
Philadelphia, PA, 1979.

[26] Jack J. Dongarra, J. Du Croz, Iain S. Du�, and S. Hammarling. A set of Level 3 FORTRAN
Basic Linear Algebra Subprograms. ACM Transactions on Mathematical Software, 16:1{17,
March 1990.

[27] Jack J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. An extended set of FORTRAN
Basic Linear Algebra Subprograms. ACM Transactions on Mathematical Software, 14:1{17,
March 1988.

[28] Jack J. Dongarra, Iain S. Du�, Danny C. Sorensen, and Henk A. van der Vorst. Numerical

Linear Algebra for High-Performance Computers. SIAM, Philadelphia, PA, 1998.

[29] Jack J. Dongarra, Victor Eijkhout, and Piotr Luszczek. Recursive approach in sparse matrix
LU factorization. In Proceedings of the 1st SGI Users Conference, pages 409{418, Cracow,
Poland, October 2000. ACC Cyfronet UMM. Accepted for publication in Scienti�c Program-
ming.

[30] Jack J. Dongarra and T. Hewitt. Implementing dense linear algebra algorithms using mutli-
tasking on CRAY X-MP-4. SIAM J. Sci Stat Comp., 7(1):347{350, January 1986.

[31] Jack J. Dongarra and A. Hinds. Unrolling loops in Fortran. Software-Practice and Experience,
9:219{226, 1979.

[32] Jack J. Dongarra, Antoine Petitet, and Clint R. Whaley. Automated empirical optimization
of software and the ATLAS project. Parallel Computing, 27(1-2):3{25, 2001.

[33] Jack J. Dongarra and Danny C. Sorensen. Linear algebra on high-performance computers. In
U. Schendel, editor, Proceedings Parallel Computing 85, pages 3{32. North Holland, 1986.

[34] Jack J. Dongarra, R. van de Geijn, and David Walker. Scalability issues in the design of a
library for dense linear algebra. Journal of Parallel and Distributed Computing, 22(3):523{537,
1994. (Also LAPACK Working Note No. 43).

[35] Jack J. Dongarra and Clint R. Whaley. Automatically tuned linear algebra software (ATLAS).
In Proceedings of SC'89 Conference, 1989.

[36] J. DuCroz, S. Nugent, J. Reid, and D. Taylor. Solving large full sets of linear equations in a
paged virtual store. ACM Transactions on Mathematical Software, 7(4):527{536, 1981.

[37] Iain S. Du�. Full matrix techniques in sparse Gaussian elimination. In Numerical Analy-

sis Proceedings, number 912 in Lecture Notes in Mathematics, pages 71{84, Dundee, 1981.
Springer-Verlag, Berlin, 1981.

[38] A. Elster. Basic matrix subprograms for distributed-memory systems. In David Walker and
Q. Stout, editors, Proceedings of the Fifth Distributed-Memory Computing Conference, pages
311{316. IEEE Press, 1990.

21

[39] R. Falgout, A. Skjellum, S. Smith, and C. Still. The multicomputer toolbox approach to
concurrent BLAS and LACS. In Proceedings of the Scalable High Performance Computing

Conference SHPCC-92. IEEE Computer Society Press, 1992.

[40] G. Fox, S. Otto, and A. Hey. Matrix algorithms on a Hypercube I: Matrix multiplication.
Parallel Computing, 3:17{31, 1987.

[41] G. Geist and C. Romine. Lu factorization algorithms on distributed-memory multiprocessor
architectures. SIAM Journal on Scienti�c and Statistical Computing, 9:639{649, 1988.

[42] A. George and H. Rashwan. Auxiliary storage methods for solving �nite element systems.
SIAM SISSC, 6:882{910, 1985.

[43] B. Grayson and R. van de Geijn. A high performance parallel Strassen implementation. Parallel
Processing Letters, 6(1):3{12, 1996.

[44] B. Greer and G. Henry. High performance software on Intel Pentium Pro processors or micro-
ops to TeraFLOPS. In Proceedings of the SuperComputing 1997 Conference, San Jose, Cali-
fornia, 1997. ACM SIGARCH, IEEE Computer Society Press. ISBN: 0-89791-985-8.

[45] Fred G. Gustavson. Recursion leads to automatic variable blocking for dense linear-algebra
algorithms. IBM Journal of Research and Development, 41(6):737{755, November 1997.

[46] M. Heath and C. Romine. Parallel solution triangular systems on distributed-memory multi-
processors. SIAM Journal on Scienti�c and Statistical Computing, 9:558{588, 1988.

[47] B. Hendrickson and D. Womble. The torus-wrap mapping for dense matrix calculations on
massively parallel computers. SIAM Journal on Scienti�c and Statistical Computing, 15:1201{
1226, 1994.

[48] R. W. Hockney and C. R. Jesshope. Parallel Computers. Adam Hilger Ltd, Bristol, 1981.

[49] S. Huss-Lederman, E. Jacobson, A. Tsao, and G. Zhang. Matrix multiplication on the Intel
Touchstone DELTA. Concurrency: Practice and Experience, 6(7):571{594, 1994.

[50] IBM. Engineering and Scienti�c Subroutine Library. IBM, 1986. Program Number: 5668-863.

[51] W. Kaufmann and L. Smarr. Supercomputing and the Transformation of Science. Scienti�c
American Library, 1993.

[52] Donald Knuth. An empirical study of Fortran programs. Software-Practice and Experience,
1:105{133, 1971.

[53] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic Linear Algebra Subprograms for
Fortran usage. ACM Transactions on Mathematical Software, 5:308{323, 1979.

[54] G. Li and T. Coleman. A parallel triangular solver for a distributed-memory multiprocessor.
SIAM Journal on Scienti�c and Statistical Computing, 9(3):485{502, 1988.

[55] G. Li and T. Coleman. A new method for solving triangular systems on distributed-memory
message-passing multiprocessor. SIAM Journal on Scienti�c and Statistical Computing,
10(2):382{396, 1989.

22

[56] J. Li, R. Falgout, and A. Skjellum. A poly-algorithm for parallel dense matrix multiplication on
two-dimensional process grid topologies. Concurrency: Practice and Experience, 9(5):345{389,
1997.

[57] The LINPACK 1000x1000 benchmark program. (See http://www.netlib.org/benchmark/

1000d for source code.).

[58] A. C. McKellar and E. G. Co�man Jr. Organizing matrices and matrix operations for paged
memory systems. Communications of the ACM, 12(3):153{165, 1969.

[59] Hans W. Meuer, Erik Strohmaier, Jack J. Dongarra, and H.D. Simon. Top500 Supercomputer

Sites, 17th edition edition, November 2 2001. (The report can be downloaded from http://

www.netlib.org/benchmark/top500.html).

[60] OÆce of Science and Technology Policy, editors. A Research and Development Strategy for

High Performance Computing. Executive OÆce of the President, 1987.

[61] OÆce of Science and Technology Policy, editors. The Federal High Performance Computing

Program. Executive OÆce of the President, 1989.

[62] D. Pager. Some notes on speeding up certain loops by software, �rmware, and hardware means.
IEEE Trans. on Comp., pages 97{100, January 1972.

[63] Antoine Petitet. Algorithmic Redistribution Methods for Block Cyclic Decompositions. Com-
puter Science Department, University of Tennessee Knoxville, 1996. Ph.D. thesis.

[64] Antoine Petitet, R. Clint Whaley, Jack J. Dongarra, and Andy Cleary. HPL { A Portable

Implementation of the High-Performance Linpack Benchmark for Distributed-Memory Com-

puters. Innovative Computing Laboratory, September 2000. Available at http://icl.cs.

utk.edu/hpl/ and http://www.netlib.org/hpl/.

[65] Y. Robert and P. Suguazerro. The LU decomposition algorithm and its eÆcient fortran imple-
mentation on the IBM 3090 vector multiprocessor. Technical Report ECSEC Report ICE-0006,
IBM, March 1987.

[66] Youcef Saad. Communication complexity of the Gaussian elimination algorithm on multipro-
cessors. Linear Algebra and Its Applications, 77:315{340, 1986.

[67] R. Schreiber. Engineering and Scienti�c Subroutine Library. Module Design Speci�cation.
SAXPY Computer Corporation, 255 San Geronimo Way, Sunnyvale, CA 94086, 1986.

[68] P. Strazdins. Matrix factorization using distributed panels on the Fujitsu AP1000. In Proceed-

ings of the IEEE First International Conference on Algorithms And Architectures for Parallel

Processing ICA3PP-95, Brisbane, 1995.

[69] P. Strazdins. Lookahead and algorithmic blocking techniques compared for parallel matrix
factorization. In Proceedings of the 10th International Conference on Parallel and Distributed

Computing and Systems, IASTED, Las Vegas, 1998.

[70] S. Toledo. Locality of reference in LU decomposition with partial pivoting. SIAM Journal on

Matrix. Anal. Appl., 18(4), 1997.

23

[71] R. van de Geijn. Massively parallel LINPACK benchmark on the Intel Touchstone DELTA
and iPSC/860 systems. In 1991 Annual Users Conference Proceedings, Dallas, Texas, 1991.
Intel Supercomputer Users Group.

[72] R. van de Geijn and J. Watts. SUMMA: Scalable universal matrix multiplication algorithm.
Concurrency: Practice and Experience, 9(4):255{274, 1997.

[73] E. van de Velde. Experiments with multicomputer LU-decomposition. Concurrency: Practice
and Experience, 2:1{26, 1990.

[74] D. Womble, D. Greenberg, D. Wheat, and S. Riesen. LU factorization and the LINPACK
benchmark on the Intel Paragon. Technical report, Sandia National Laboratories, 1994.

24

Appendix

Description

In the following, a number of performance results is presented for variety of CPUs. The results
show:

� asymptotic performance graphs of BLAS routines relevant to the HPL NxN benchmark,

� single-CPU LINPACK benchmark numbers for 1000 by 1000 problem,

� selected hardware parameters of the systems used in tests.

The original LINPACK benchmark used Level 1 BLAS routines: DDOT and DAXPY. As the fol-
lowing graphs show, their performance is severely limited on contemporary superscalar processors.
The Level 2 BLAS DGEMV routine may be used in an implementation of a LINPACK benchmark
code. As the results indicate, however, this should also be avoided as its performance is limited by
the system bus throughput. The Level 3 BLAS DGEMM routine achieves the highest fraction of peak
performance and, consequently, should be the preferred BLAS to use for the LINPACK benchmark
code.

The LINPACK benchmark numbers for each of the CPUs were obtained by solving a system
of 1000 simultaneous linear equations so they may be easily compared to each other. The label
\Linpack source" refers to the self contained LINPACK benchmark code (available at http://www.
netlib.org/benchmark/1000d) which relies only on compiler optimizations to increase the rate of
execution. The code labeled \Linpack BLAS" requires external (possibly optimized) BLAS. The
codes \Right-looking", \Left-looking", and \Crout" represent variants of LU factorization based
on Level 2 BLAS routines. \Right-looking" relies on DGER and is equivalent to LAPACK's DGETF2
routine [4]. \Left-looking" variant uses DTRSV and DGEMV routines. And �nally, \Crout" variant
uses DGEMV routine only. Two codes that use Level 3 BLAS are \Lapack" (which solves the problem
by using LAPACK's DGETRF and DGETRS routines [4]) and \Recursive LU" which calls DTRSM and
DGEMM routines and is based on recursive formulation of LU factorization.

Unless stated otherwise, all codes use BLAS provided by ATLAS [32, 35] version 3.2.1 or higher
(available at http://www.netlib.org/atlas/ and http://math-atlas.sourceforge.net/).

25

Performance Results for Pentium III 550MHz

35

40

45

50

55

60

65

70

75

0 100 200 300 400 500 600 700 800 900 1000

M
F

L
O

P
/s

Vector dimension

Level 1 BLAS: DDOT

DDOT

30

32

34

36

38

40

42

0 100 200 300 400 500 600 700 800 900 1000

M
F

L
O

P
/s

Vector dimension

Level 1 BLAS: DAXPY

DAXPY

40

50

60

70

80

90

100

110

120

0 200 400 600 800 1000 1200 1400 1600 1800

M
F

L
O

P
/s

Matrix dimension

Level 2 BLAS: DGEMV

DGEMV

100

150

200

250

300

350

400

450

0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
F

L
O

P
/s

Matrix dimension

Level 3 BLAS: DGEMM

DGEMM

Linpack benchmark numbers

Code MFLOP/s kAx� bk kAx�bk
kAk�kxkn�

Level 1 BLAS

Linpack source 41.4 10�12 10.5
Linpack BLAS 55.4 10�12 10.5

Level 2 BLAS

Right-looking 51.4 10�13 2.3
Left-looking 74.7 10�13 1.4
Crout 84.0 10�13 1.4

Level 3 BLAS

Lapack 278.6 10�13 1.3
Recursive LU 324.6 10�13 1.3

System parameters

Clock rate [MHz] 550
Bus speed [MHz] 100
L1 cache [KB] 16+16
L2 cache [KB] 512

26

Performance Results for Pentium III 933MHz

50

55

60

65

70

75

80

85

0 100 200 300 400 500 600 700 800 900 1000

M
F

L
O

P
/s

Vector dimension

Level 1 BLAS: DDOT

DDOT

40

42

44

46

48

50

52

54

56

58

0 100 200 300 400 500 600 700 800 900 1000

M
F

L
O

P
/s

Vector dimension

Level 1 BLAS: DAXPY

DAXPY

40

60

80

100

120

140

160

180

200

0 200 400 600 800 1000 1200 1400 1600 1800

M
F

L
O

P
/s

Matrix dimension

Level 2 BLAS: DGEMV

DGEMV

100

200

300

400

500

600

700

0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
F

L
O

P
/s

Matrix dimension

Level 3 BLAS: DGEMM

DGEMM

Code MFLOP/s kAx� bk kAx�bk
kAk�kxkn�

Level 1 BLAS

Linpack source 49.3 10�12 10.5
Linpack BLAS 53.6 10�12 10.5

Level 2 BLAS

Right-looking 86.1 10�13 2.9
Left-looking 144.7 10�13 1.8
Crout 115.7 10�13 2.0

Level 3 BLAS

Lapack 410.2 10�13 1.5
Recursive LU 506.6 10�13 1.2

System parameters

Clock rate [MHz] 933
Bus speed [MHz] 133
L1 cache [KB] 16+16
L2 cache [KB] 256

27

Performance Results for Intel P4 1700MHz

255

260

265

270

275

280

285

290

0 100 200 300 400 500 600 700 800 900 1000

M
F

L
O

P
/s

Vector dimension

Level 1 BLAS: DDOT

DDOT

145

150

155

160

165

170

175

180

185

0 100 200 300 400 500 600 700 800 900 1000

M
F

L
O

P
/s

Vector dimension

Level 1 BLAS: DAXPY

DAXPY

50

100

150

200

250

300

350

400

450

0 200 400 600 800 1000 1200 1400 1600 1800

M
F

L
O

P
/s

Matrix dimension

Level 2 BLAS: DGEMV

DGEMV

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
F

L
O

P
/s

Matrix dimension

Level 3 BLAS: DGEMM

DGEMM

Code MFLOP/s kAx� bk kAx�bk
kAk�kxkn�

Level 1 BLAS

Linpack source 182.2 10�12 10.5
Linpack BLAS 238.8 10�12 10.5

Level 2 BLAS

Right-looking 199.6 10�13 2.2
Left-looking 290.7 10�13 1.7
Crout 312.5 10�13 2.8

Level 3 BLAS

Lapack 1262.0 10�13 8.4
Recursive LU 1393.0 10�13 7.2

System parameters

Clock rate [MHz] 1700
Bus speed [MHz] 400
L1 cache [KB] 12(I)+8(D)
L2 cache [KB] 256

28

Performance Results for Intel/HP Itanium 800MHz

30

30.5

31

31.5

32

32.5

33

33.5

0 100 200 300 400 500 600 700 800 900 1000

M
F

L
O

P
/s

Vector dimension

Level 1 BLAS: DDOT

DDOT

25.8

26

26.2

26.4

26.6

26.8

27

27.2

27.4

0 100 200 300 400 500 600 700 800 900 1000

M
F

L
O

P
/s

Vector dimension

Level 1 BLAS: DAXPY

DAXPY

20

40

60

80

100

120

140

160

180

0 200 400 600 800 1000 1200 1400 1600 1800

M
F

L
O

P
/s

Matrix dimension

Level 2 BLAS: DGEMV

DGEMV

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
F

L
O

P
/s

Matrix dimension

Level 3 BLAS: DGEMM

DGEMM

Code MFLOP/s kAx� bk kAx�bk
kAk�kxkn�

Level 1 BLAS

Linpack source 39.3 10�12 9.4
Linpack BLAS 36.9 10�12 9.4

Level 2 BLAS

Right-looking 40.5 10�13 6.3
Left-looking 108.5 10�12 10.0
Crout 123.7 10�13 10.2

Level 3 BLAS

Lapack 624.2 10�13 8.5
Recursive LU 801.8 10�13 6.5

System parameters

Clock rate [MHz] 800
Bus speed [MHz] 100
L1 cache [KB] 16+16
L2 cache [KB] 96
L3 cache [MB] 2

29

Performance Results for AMD Athlon 1200MHz

66

68

70

72

74

76

78

80

82

84

0 100 200 300 400 500 600 700 800 900 1000

M
F

L
O

P
/s

Vector dimension

Level 1 BLAS: DDOT

DDOT

48

50

52

54

56

58

60

62

64

66

68

0 100 200 300 400 500 600 700 800 900 1000

M
F

L
O

P
/s

Vector dimension

Level 1 BLAS: DAXPY

DAXPY

40

60

80

100

120

140

160

180

200

220

240

0 200 400 600 800 1000 1200 1400 1600 1800

M
F

L
O

P
/s

Matrix dimension

Level 2 BLAS: DGEMV

DGEMV

200

400

600

800

1000

1200

1400

1600

1800

0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
F

L
O

P
/s

Matrix dimension

Level 3 BLAS: DGEMM

DGEMM

Code MFLOP/s kAx� bk kAx�bk
kAk�kxkn�

Level 1 BLAS

Linpack 1000 (source) 63.0 10�12 10.5
Linpack 1000 (BLAS) 91.0 10�12 10.5

Level 2 BLAS

Right-looking 124.3 10�13 6.6
Left-looking 173.7 10�13 7.4
Crout 137.0 10�13 8.8

Level 3 BLAS

Lapack 835.8 10�13 1.6
Recursive LU 998.3 10�13 1.1

System parameters

Clock rate [MHz] 1200
Bus speed [MHz] 200
L1 cache [KB] 64+64
L2 cache [KB] 256

30

Performance Results for IBM Power3 375MHz

60

70

80

90

100

110

120

130

140

150

0 100 200 300 400 500 600 700 800 900 1000

M
F

L
O

P
/s

Vector dimension

Level 1 BLAS: DDOT

DDOT

50

60

70

80

90

100

110

0 100 200 300 400 500 600 700 800 900 1000

M
F

L
O

P
/s

Vector dimension

Level 1 BLAS: DAXPY

DAXPY

50

100

150

200

250

300

350

0 200 400 600 800 1000 1200 1400 1600 1800

M
F

L
O

P
/s

Matrix dimension

Level 2 BLAS: DGEMV

DGEMV

0

200

400

600

800

1000

1200

1400

1600

0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
F

L
O

P
/s

Matrix dimension

Level 3 BLAS: DGEMM

DGEMM

Code MFLOP/s kAx� bk kAx�bk
kAk�kxkn�

Level 1 BLAS

Linpack source 169.3 10�12 4.7
Linpack BLAS 165.9 10�12 4.7

Level 2 BLAS

Right-looking 174.6 10�13 4.0
Left-looking 298.5 10�12 4.7
Crout 290.7 10�12 4.7

Level 3 BLAS

Lapack 941.8 10�13 4.0
Recursive LU 1078.0 10�13 4.5

System parameters

Clock rate [MHz] 375
Bus speed [MHz] 100
L1 cache [KB] 32(I)+64(D)
L2 cache [MB] 8

31

Performance Results for IBM Power4 1300MHz

300

350

400

450

500

550

600

650

0 100 200 300 400 500 600 700 800 900 1000

M
F

L
O

P
/s

Vector dimension

Level 1 BLAS: DDOT

DDOT

200

220

240

260

280

300

320

340

0 100 200 300 400 500 600 700 800 900 1000

M
F

L
O

P
/s

Vector dimension

Level 1 BLAS: DAXPY

DAXPY

100

200

300

400

500

600

700

800

900

1000

0 200 400 600 800 1000 1200 1400 1600 1800

M
F

L
O

P
/s

Matrix dimension

Level 2 BLAS: DGEMV

DGEMV

500

1000

1500

2000

2500

3000

3500

4000

4500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
F

L
O

P
/s

Matrix dimension

Level 3 BLAS: DGEMM

DGEMM

Code MFLOP/s kAx� bk kAx�bk
kAk�kxkn�

Level 1 BLAS

Linpack source 301.2 10�12 4.7
Linpack BLAS 294.6 10�12 4.7

Level 2 BLAS

Right-looking 288.2 10�12 5.8
Left-looking 625.0 10�12 6.4
Crout 566.7 10�12 4.8

Level 3 BLAS

Lapack 2157.0 10�12 5.8
Recursive LU 2388.0 10�13 6.8

System parameters

Clock rate [MHz] 1300
Bus speed [MHz] 333
L1 cache [KB] 64(I)+32(D)
L2 cache [MB] 1.4
L3 cache [MB] 32

32

Performance Results for IBM Power4 1300MHz (ESSL BLAS)

100

150

200

250

300

350

400

450

500

550

600

0 100 200 300 400 500 600 700 800 900 1000

M
F

L
O

P
/s

Vector dimension

Level 1 BLAS: DDOT

DDOT

100

150

200

250

300

350

400

0 100 200 300 400 500 600 700 800 900 1000

M
F

L
O

P
/s

Vector dimension

Level 1 BLAS: DAXPY

DAXPY

300

400

500

600

700

800

900

1000

0 200 400 600 800 1000 1200 1400 1600 1800

M
F

L
O

P
/s

Matrix dimension

Level 2 BLAS: DGEMV

DGEMV

500

1000

1500

2000

2500

3000

3500

4000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
F

L
O

P
/s

Matrix dimension

Level 3 BLAS: DGEMM

DGEMM

Code MFLOP/s kAx� bk kAx�bk
kAk�kxkn�

Level 1 BLAS

Linpack 1000 (source) 302.6 10�12 4.7
Linpack 1000 (BLAS) 331.0 10�12 4.7

Level 2 BLAS

Right-looking 339.4 10�12 7.1
Left-looking 825.5 10�12 7.1
Crout 668.7 10�12 7.1

Level 3 BLAS

Lapack 1000 2477.0 10�12 7.1
Recursive LU 1000 2786.0 10�12 6.8

System parameters

Clock rate [MHz] 1300
Bus speed [MHz] 333
L1 cache [KB] 64(I)+32(D)
L2 cache [MB] 1.4
L3 cache [MB] 32

33

Performance Results for SGI Octane R12000 IP30 270MHz

35

40

45

50

55

60

65

0 100 200 300 400 500 600 700 800 900 1000

M
F

L
O

P
/s

Vector dimension

Level 1 BLAS: DDOT

DDOT

20

22

24

26

28

30

32

34

0 100 200 300 400 500 600 700 800 900 1000

M
F

L
O

P
/s

Vector dimension

Level 1 BLAS: DAXPY

DAXPY

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200 1400 1600 1800

M
F

L
O

P
/s

Matrix dimension

Level 2 BLAS: DGEMV

DGEMV

100

150

200

250

300

350

400

450

500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
F

L
O

P
/s

Matrix dimension

Level 3 BLAS: DGEMM

DGEMM

Code MFLOP/s kAx� bk kAx�bk
kAk�kxkn�

Level 1 BLAS

Linpack source 60.8 10�13 6.4
Linpack BLAS 31.8 10�13 6.4

Level 2 BLAS

Right-looking 38.1 10�13 7.3
Left-looking 93.0 10�13 8.3
Crout 88.5 10�13 7.9

Level 3 BLAS

Lapack 336.0 10�13 7.2
Recursive LU 400.4 10�13 6.9

System parameters

Clock rate [MHz] 270
Bus speed [MHz] 100
L1 cache [KB] 32+32
L2 cache [MB] 2

34

Performance Results for Compaq/DEC Alpha 21264 EV67 500MHz

90

100

110

120

130

140

150

160

0 100 200 300 400 500 600 700 800 900 1000

M
F

L
O

P
/s

Vector dimension

Level 1 BLAS: DDOT

DDOT

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000

M
F

L
O

P
/s

Vector dimension

Level 1 BLAS: DAXPY

DAXPY

60

80

100

120

140

160

180

200

220

240

260

0 200 400 600 800 1000 1200 1400 1600 1800

M
F

L
O

P
/s

Matrix dimension

Level 2 BLAS: DGEMV

DGEMV

200

300

400

500

600

700

800

900

1000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
F

L
O

P
/s

Matrix dimension

Level 3 BLAS: DGEMM

DGEMM

Code MFLOP/s kAx� bk kAx�bk
kAk�kxkn�

Level 1 BLAS

Linpack source 187.5 10�13 6.5
Linpack BLAS 167.9 10�13 6.5

Level 2 BLAS

Right-looking 159.2 10�13 7.2
Left-looking 188.4 10�13 8.0
Crout 214.6 10�13 8.0

Level 3 BLAS

Lapack 565.1 10�13 8.5
Recursive LU 636.9 10�13 7.7

System parameters

Clock rate [MHz] 500
Bus speed [MHz] 333
L1 cache [KB] 64+64
L2 cache [MB] 4

35

Performance Results for Compaq/DEC Alpha 21164 533MHz

21.5

22

22.5

23

23.5

24

24.5

25

25.5

26

0 100 200 300 400 500 600 700 800 900 1000

M
F

L
O

P
/s

Vector dimension

Level 1 BLAS: DDOT

DDOT

14

16

18

20

22

24

26

28

0 100 200 300 400 500 600 700 800 900 1000

M
F

L
O

P
/s

Vector dimension

Level 1 BLAS: DAXPY

DAXPY

30

35

40

45

50

55

60

65

70

75

80

0 200 400 600 800 1000 1200 1400 1600 1800

M
F

L
O

P
/s

Matrix dimension

Level 2 BLAS: DGEMV

DGEMV

100

200

300

400

500

600

700

800

900

0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
F

L
O

P
/s

Matrix dimension

Level 3 BLAS: DGEMM

DGEMM

Code MFLOP/s kAx� bk kAx�bk
kAk�kxkn�

Level 1 BLAS

Linpack source 34.0 10�13 6.5
Linpack BLAS 48.1 10�13 6.5

Level 2 BLAS

Right-looking 45.9 10�13 5.8
Left-looking 76.7 10�13 8.1
Crout 74.6 10�13 7.3

Level 3 BLAS

Lapack 425.6 10�13 8.1
Recursive LU 500.9 10�13 6.5

System parameters

Clock rate [MHz] 533
Bus speed [MHz] 88
L1 cache [KB] 8+8
L2 cache [KB] 96

36

Performance Results for Sun UltraSparc III 750MHz

70

80

90

100

110

120

130

0 100 200 300 400 500 600 700 800 900 1000

M
F

L
O

P
/s

Vector dimension

Level 1 BLAS: DDOT

DDOT

65

70

75

80

85

90

95

100

0 100 200 300 400 500 600 700 800 900 1000

M
F

L
O

P
/s

Vector dimension

Level 1 BLAS: DAXPY

DAXPY

40

60

80

100

120

140

160

180

200

220

240

0 200 400 600 800 1000 1200 1400 1600 1800

M
F

L
O

P
/s

Matrix dimension

Level 2 BLAS: DGEMV

DGEMV

0

100

200

300

400

500

600

700

800

900

1000

1100

0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
F

L
O

P
/s

Matrix dimension

Level 3 BLAS: DGEMM

DGEMM

Code MFLOP/s kAx� bk kAx�bk
kAk�kxkn�

Level 1 BLAS

Linpack source 171.5 10�13 6.5
Linpack BLAS 123.8 10�13 6.5

Level 2 BLAS

Right-looking 150.9 10�12 9.9
Left-looking 219.2 10�12 9.9
Crout 205.7 10�13 7.6

Level 3 BLAS

Lapack 675.4 10�12 9.9
Recursive LU 734.8 10�12 9.6

System parameters

Clock rate [MHz] 750
Bus speed [MHz] 150
L1 cache [KB] 64(I)+32(D)
L2 cache [MB] 1

37

Performance Results for Sun UltraSparc II 300MHz

22

24

26

28

30

32

34

36

0 100 200 300 400 500 600 700 800 900 1000

M
F

L
O

P
/s

Vector dimension

Level 1 BLAS: DDOT

DDOT

14

15

16

17

18

19

20

21

22

23

24

0 100 200 300 400 500 600 700 800 900 1000

M
F

L
O

P
/s

Vector dimension

Level 1 BLAS: DAXPY

DAXPY

25

30

35

40

45

50

55

60

0 200 400 600 800 1000 1200 1400 1600 1800

M
F

L
O

P
/s

Matrix dimension

Level 2 BLAS: DGEMV

DGEMV

50

100

150

200

250

300

350

400

450

500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
F

L
O

P
/s

Matrix dimension

Level 3 BLAS: DGEMM

DGEMM

Code MFLOP/s kAx� bk kAx�bk
kAk�kxkn�

Level 1 BLAS

Linpack source 42.2 10�13 6.5
Linpack BLAS 37.5 10�13 6.5

Level 2 BLAS

Right-looking 37.1 10�13 8.9
Left-looking 66.8 10�13 7.9
Crout 65.9 10�13 8.0

Level 3 BLAS

Lapack 285.8 10�13 8.8
Recursive LU 284.5 10�12 9.0

System parameters

Clock rate [MHz] 300
Bus speed [MHz] 100
L1 cache [KB] 16+16
L2 cache [MB] 2

38

Performance Results for Sun UltraSparc II 250MHz

4

6

8

10

12

14

16

18

20

22

24

26

0 100 200 300 400 500 600 700 800 900 1000

M
F

L
O

P
/s

Vector dimension

Level 1 BLAS: DDOT

DDOT

4

6

8

10

12

14

16

18

0 100 200 300 400 500 600 700 800 900 1000

M
F

L
O

P
/s

Vector dimension

Level 1 BLAS: DAXPY

DAXPY

14

16

18

20

22

24

26

28

30

32

0 200 400 600 800 1000 1200 1400 1600 1800

M
F

L
O

P
/s

Matrix dimension

Level 2 BLAS: DGEMV

DGEMV

0

20

40

60

80

100

120

140

160

180

200

0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
F

L
O

P
/s

Matrix dimension

Level 3 BLAS: DGEMM

DGEMM

Code MFLOP/s kAx� bk kAx�bk
kAk�kxkn�

Level 1 BLAS

Linpack source 21.4 10�13 6.5
Linpack BLAS 18.2 10�13 6.5

Level 2 BLAS

Right-looking 18.4 10�13 7.5
Left-looking 28.0 10�12 10.2
Crout 28.8 10�12 10.1

Level 3 BLAS

Lapack 109.3 10�13 7.5
Recursive LU 110.3 10�12 1.1

System parameters

Clock rate [MHz] 250
Bus speed [MHz] 83
L1 cache [KB] 16+16
L2 cache [MB] 1

39

Performance Results for PowerPC G4 533MHz

60

65

70

75

80

85

0 100 200 300 400 500 600 700 800 900 1000

M
F

L
O

P
/s

Vector dimension

Level 1 BLAS: DDOT

DDOT

30

35

40

45

50

55

0 100 200 300 400 500 600 700 800 900 1000

M
F

L
O

P
/s

Vector dimension

Level 1 BLAS: DAXPY

DAXPY

40

60

80

100

120

140

160

180

200

0 200 400 600 800 1000 1200 1400 1600 1800

M
F

L
O

P
/s

Matrix dimension

Level 2 BLAS: DGEMV

DGEMV

100

200

300

400

500

600

700

0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
F

L
O

P
/s

Matrix dimension

Level 3 BLAS: DGEMM

DGEMM

Code MFLOP/s kAx� bk kAx�bk
kAk�kxkn�

Level 1 BLAS

Linpack source 52.6 10�12 9.4
Linpack BLAS 76.2 10�12 9.4

Level 2 BLAS

Right-looking 85.2 10�13 8.1
Left-looking 125.2 10�13 7.4
Crout 120.6 10�13 8.2

Level 3 BLAS

Lapack 412.8 10�13 8.2
Recursive LU 477.6 10�12 7.2

System parameters

Clock rate [MHz] 533
Bus speed [MHz] 100
L1 cache [KB] 32+32
L2 cache [MB] 2

40

