Subtyping

Outline

(27) Simple Types

(28) Recursive Types
(29) Bibliography

Outline

(27) Simple Types

(28) Recursive Types

(29) Bibliography

Simply Typed λ-calculus

Syntax

| Types $\quad T:$ | $T=T$ | T | function types |
| ---: | ---: | ---: | :--- | ---: |
| | | Bool \mid Int \mid Real $\mid \ldots$ | basic types |

Reduction

Contexts $C[]::=$ [] | a[] | []a | $\lambda x:$.[]

$$
\begin{aligned}
& \text { BETA } \\
& (\lambda x: T . a) b \longrightarrow a[b / x]
\end{aligned}
$$

Context

$$
\frac{a \longrightarrow b}{C[a] \longrightarrow C[b]}
$$

Type system

Typing

$$
\begin{array}{ll}
\text { VAR } & \rightarrow \text { INTRO } \\
\Gamma \vdash x: \Gamma(x) & \frac{\Gamma, x: S \vdash a: T}{\Gamma \vdash \lambda x: S . a: S \rightarrow T}
\end{array}
$$

$$
\rightarrow \text { ELIM }
$$

$$
\ulcorner\vdash a: S \rightarrow T \quad\ulcorner\vdash b: S
$$

$$
\Gamma \vdash a b: T
$$

(plus the typing rules for constants).

Type system

Typing

$$
\begin{array}{lll}
\text { VAR } & \rightarrow \text { INTRO } \\
\Gamma \vdash x: \Gamma(x) & \frac{\Gamma, x: S \vdash a: T}{\Gamma \vdash \lambda x: S . a: S \rightarrow T}
\end{array} \quad \frac{\overrightarrow{\text { ELIM }}}{\Gamma \vdash a: S \rightarrow T} \quad \Gamma \vdash b: S
$$

(plus the typing rules for constants).

Type system

Typing

$$
\begin{array}{ll}
\text { VAR } & \rightarrow \text { INTRO } \\
\Gamma \vdash x: \Gamma(x) & \frac{\Gamma, x: S \vdash a: T}{\Gamma \vdash \lambda x: S . a: S \rightarrow T}
\end{array} \quad \frac{\overrightarrow{\text { ELIM }}}{\Gamma \vdash a: S \rightarrow T} \quad \Gamma \vdash b: S
$$

(plus the typing rules for constants).

Theorem (Subject Reduction)

If $\Gamma \vdash a: T$ and $a \longrightarrow{ }^{*} b$, then $\Gamma \vdash b: T$.
We will essentially focus on the subject reduction property (a.k.a. type preservation), though well-typed programs also satisfy progress:

Theorem (Progress)

If $\varnothing \vdash \mathrm{a}: T$ and $a \nrightarrow$, then a is a value
where a value is either a constant or a lambda abstraction

$$
v::=\lambda x: T . a \mid \text { true } \mid \text { false }|1| 2 \mid \ldots
$$

Type checking algorithm

The deduction system is syntax directed and satisfies the subformula property. As such it describes a deterministic algorithm.

Type checking algorithm

The deduction system is syntax directed and satisfies the subformula property. As such it describes a deterministic algorithm.

```
let rec typecheck gamma = function
    | x -> gamma(x) (* Var rule *)
    | \lambdax:T.a -> typecheck (gamma, x:T) a
    | ab -> let }\mp@subsup{T}{1}{}->\mp@subsup{T}{2}{}=\mathrm{ typecheck gamma a in
        let }\mp@subsup{T}{3}{}=\mathrm{ typecheck gamma b in
    if }\mp@subsup{T}{1}{}==\mp@subsup{T}{3}{}\mathrm{ then }\mp@subsup{T}{2}{}\mathrm{ else fail
```


Type checking algorithm

The deduction system is syntax directed and satisfies the subformula property. As such it describes a deterministic algorithm.

```
let rec typecheck gamma = function
    | x -> gamma(x) (* Var rule *)
    | \lambdax:T.a -> typecheck (gamma, x:T) a
    | ab -> let }\mp@subsup{T}{1}{}->\mp@subsup{T}{2}{}=\mathrm{ typecheck gamma a in (* Elim rule *)
        let }\mp@subsup{T}{3}{}=\mathrm{ typecheck gamma b in
            if }\mp@subsup{T}{1}{}==\mp@subsup{T}{3}{}\mathrm{ then }\mp@subsup{T}{2}{}\mathrm{ else fail
```

Exercise. Write the typecheck function for the following definitions:

```
type stype = Int | Bool | Arrow of stype * stype
```

type term =
Num of int | BVal of bool | Var of string
| Lam of string * stype * term | App of term * term
exception Error

Use List. assoc for environments.

Subtyping

The rule for application requires the argument of the function to be exactly of the same type as the domain of the function:

$$
\frac{\overrightarrow{\Gamma \vdash a} \operatorname{ELIM}: S \rightarrow T \quad \Gamma \vdash b: S}{\Gamma \vdash a b: T}
$$

So, for instance, we cannot:

Subtyping

The rule for application requires the argument of the function to be exactly of the same type as the domain of the function:

$$
\frac{\overrightarrow{\Gamma \vdash} \mathrm{ELIM}}{\stackrel{\rightharpoonup}{\Gamma}: S \rightarrow T \quad \Gamma \vdash b: S}
$$

So, for instance, we cannot:

- Apply a function of type Int \rightarrow Int to an argument of type Odd even though every odd number is an integer number, too.

Subtyping

The rule for application requires the argument of the function to be exactly of the same type as the domain of the function:

$$
\frac{\overrightarrow{\text { ELIM }}}{\stackrel{\Gamma \vdash a: S \rightarrow T}{\Gamma \vdash b: S}} \underset{\Gamma \vdash a b: T}{ }
$$

So, for instance, we cannot:

- Apply a function of type Int \rightarrow Int to an argument of type Odd even though every odd number is an integer number, too.
- If we have records, apply the function $\lambda x:\{\ell:$ Int $\}$. $(3+x . \ell)$ to a record of type $\left\{\ell:\right.$ Int, $\ell^{\prime}:$ Bool $\}$

Subtyping

The rule for application requires the argument of the function to be exactly of the same type as the domain of the function:

$$
\frac{\overrightarrow{\text { ELIM }}}{\stackrel{\Gamma \vdash a: S \rightarrow T}{\Gamma \vdash b: S}} \underset{\Gamma \vdash a b: T}{ }
$$

So, for instance, we cannot:

- Apply a function of type Int \rightarrow Int to an argument of type Odd even though every odd number is an integer number, too.
- If we have records, apply the function $\lambda x:\{\ell:$ Int $\}$. $(3+x . \ell)$ to a record of type $\left\{\ell\right.$: Int, ℓ^{\prime} : Bool $\}$
- If we are in OOP, send a message defined for objects of the class Persons to an instance of the subclass Students.

Subtyping

The rule for application requires the argument of the function to be exactly of the same type as the domain of the function:

$$
\frac{\overrightarrow{\Gamma \vdash a} \operatorname{ELIM}: S \rightarrow T \quad \Gamma \vdash b: S}{\Gamma \vdash a b: T}
$$

So, for instance, we cannot:

- Apply a function of type Int \rightarrow Int to an argument of type Odd even though every odd number is an integer number, too.
- If we have records, apply the function $\lambda x:\{\ell:$ Int $\}$. $(3+x . \ell)$ to a record of type $\left\{\ell\right.$: Int, $\ell^{\prime}:$ Bool $\}$
- If we are in OOP, send a message defined for objects of the class Persons to an instance of the subclass Students.

Subtyping polymorphism

We need a kind of polymorphism different from the ML one (parametric polymorphism).

Subtyping relation

- Define a pre-order (ie, a reflexive and transitive binary relation) \leq on types: $\leq \subset$ Types \times Types (some literature uses the notation <:)

Subtyping relation

- Define a pre-order (ie, a reflexive and transitive binary relation) \leq on types: $\leq \subset$ Types \times Types (some literature uses the notation <:)
- This subtyping relation has two possible interpretations:

Subtyping relation

- Define a pre-order (ie, a reflexive and transitive binary relation) \leq on types: $\leq \subset$ Types \times Types (some literature uses the notation <:)
- This subtyping relation has two possible interpretations:

Containment: If $S \leq T$, then every value of type S is also of type T.
For instance an odd number is also an integer, a student is also a person.
Sometimes called a "is_a" relation.

Subtyping relation

- Define a pre-order (ie, a reflexive and transitive binary relation) \leq on types: $\leq \subset$ Types \times Types (some literature uses the notation <:)
- This subtyping relation has two possible interpretations:

Containment: If $S \leq T$, then every value of type S is also of type T.
For instance an odd number is also an integer, a student is also a person.
Sometimes called a "is_a" relation.
Substitutability: If $S \leq T$, then every value of type S can be safely used where a value of type T is expected.
Where "safely" means, without disrupting type preservation and progress.

Subtyping relation

- Define a pre-order (ie, a reflexive and transitive binary relation) \leq on types: $\leq \subset$ Types \times Types (some literature uses the notation <:)
- This subtyping relation has two possible interpretations:

Containment: If $S \leq T$, then every value of type S is also of type T.
For instance an odd number is also an integer, a student is also a person.
Sometimes called a "is_a" relation.
Substitutability: If $S \leq T$, then every value of type S can be safely used where a value of type T is expected.
Where "safely" means, without disrupting type preservation and progress.

- We'll see how each interpretation has a formal counterpart.

Subtyping for simply typed λ-calculus

- We suppose to have a predefined preorder $\mathcal{B} \subset$ Basic \times Basic for basic types (given by the language designer).

For instance take the reflexive and transitive closure of $\{($ Odd, Int), (Even, Int), (Int, Real) $\}$

Subtyping for simply typed λ-calculus

- We suppose to have a predefined preorder $\mathcal{B} \subset$ Basic \times Basic for basic types (given by the language designer).

For instance take the reflexive and transitive closure of $\{($ Odd, Int) , (Even, Int), (Int, Real) $\}$

- To extend it to function types, we resort to the sustitutability interpretation. We will try to deduce when we can safely replace a function of some type by a term of a different type

Subtyping of arrows: intuition

Problem

Determine for which type S we have $S \leq T_{1} \rightarrow T_{2}$
Let $g: S$ and $f: T_{1} \rightarrow T_{2}$. Let us follow the substitutability interpretation:

Subtyping of arrows: intuition

Problem

Determine for which type S we have $S \leq T_{1} \rightarrow T_{2}$

Let $g: S$ and $f: T_{1} \rightarrow T_{2}$. Let us follow the substitutability interpretation:
(1) If $a: T_{1}$, then we can apply f to a. If $S \leq T_{1} \rightarrow T_{2}$, then we can apply g to a, as well.
$\Rightarrow g$ is a function, therefore $S=S_{1} \rightarrow S_{2}$

Subtyping of arrows: intuition

Problem

Determine for which type S we have $S \leq T_{1} \rightarrow T_{2}$

Let $g: S$ and $f: T_{1} \rightarrow T_{2}$. Let us follow the substitutability interpretation:
(1) If $a: T_{1}$, then we can apply f to a. If $S \leq T_{1} \rightarrow T_{2}$, then we can apply g to a, as well.
$\Rightarrow g$ is a function, therefore $S=S_{1} \rightarrow S_{2}$
(2) If $a: T_{1}$, then $f(a)$ is well typed. If $S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2}$, then also $g(a)$ is well-typed. g expects arguments of type S_{1} but a is of type T_{1} \Rightarrow we can safely use T_{1} where S_{1} is expected, ie $T_{1} \leq S_{1}$

Subtyping of arrows: intuition

Problem

Determine for which type S we have $S \leq T_{1} \rightarrow T_{2}$

Let $g: S$ and $f: T_{1} \rightarrow T_{2}$. Let us follow the substitutability interpretation:
(1) If $a: T_{1}$, then we can apply f to a. If $S \leq T_{1} \rightarrow T_{2}$, then we can apply g to a, as well.
$\Rightarrow g$ is a function, therefore $S=S_{1} \rightarrow S_{2}$
(2) If $a: T_{1}$, then $f(a)$ is well typed. If $S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2}$, then also $g(a)$ is well-typed. g expects arguments of type S_{1} but a is of type T_{1}
\Rightarrow we can safely use T_{1} where S_{1} is expected, ie $T_{1} \leq S_{1}$
(3) $f(a): T_{2}$, but since g returns results in S_{2}, then $g(a): S_{2}$. If I use g where f is expected, then it must be safe to use S_{2} results where T_{2} results are expected
$\Rightarrow S_{2} \leq T_{2}$ must hold.

Subtyping of arrows: intuition

Problem

Determine for which type S we have $S \leq T_{1} \rightarrow T_{2}$

Let $g: S$ and $f: T_{1} \rightarrow T_{2}$. Let us follow the substitutability interpretation:
(1) If $a: T_{1}$, then we can apply f to a. If $S \leq T_{1} \rightarrow T_{2}$, then we can apply g to a, as well.
$\Rightarrow g$ is a function, therefore $S=S_{1} \rightarrow S_{2}$
(2) If $a: T_{1}$, then $f(a)$ is well typed. If $S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2}$, then also $g(a)$ is well-typed. g expects arguments of type S_{1} but a is of type T_{1}
\Rightarrow we can safely use T_{1} where S_{1} is expected, ie $T_{1} \leq S_{1}$
(3) $f(a): T_{2}$, but since g returns results in S_{2}, then $g(a): S_{2}$. If I use g where f is expected, then it must be safe to use S_{2} results where T_{2} results are expected
$\Rightarrow S_{2} \leq T_{2}$ must hold.

Solution

$$
S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2} \quad \Leftrightarrow \quad T_{1} \leq S_{1} \wedge S_{2} \leq T_{2}
$$

Covariance and contravariance

$$
S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2} \quad \Leftrightarrow \quad T_{1} \leq S_{1} \wedge S_{2} \leq T_{2}
$$

Notice the different orientation of containment on domains and co-domains. We say that the type constructor \rightarrow is

- covariant on codomains, since it preserves the direction of the relation;
- contravariant on domains, since it reverses the direction of the relation.

Covariance and contravariance

$$
S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2} \quad \Leftrightarrow \quad T_{1} \leq S_{1} \wedge S_{2} \leq T_{2}
$$

Notice the different orientation of containment on domains and co-domains.
We say that the type constructor \rightarrow is

- covariant on codomains, since it preserves the direction of the relation;
- contravariant on domains, since it reverses the direction of the relation.

Containment interpretation:

The containment interpretation yields exactly the same relation as obtained by the substitutability interpretation. For instance a function that maps integers to integers ...

Covariance and contravariance

$$
S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2} \quad \Leftrightarrow \quad T_{1} \leq S_{1} \wedge S_{2} \leq T_{2}
$$

Notice the different orientation of containment on domains and co-domains.
We say that the type constructor \rightarrow is

- covariant on codomains, since it preserves the direction of the relation;
- contravariant on domains, since it reverses the direction of the relation.

Containment interpretation:

The containment interpretation yields exactly the same relation as obtained by the substitutability interpretation. For instance a function that maps integers to integers ...

- is also a function that maps integers to reals: it returns results in Int so they will be also in Real.
Int \rightarrow Int \leq Int \rightarrow Real (covariance of the codomains)

Covariance and contravariance

$$
S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2} \quad \Leftrightarrow \quad T_{1} \leq S_{1} \wedge S_{2} \leq T_{2}
$$

Notice the different orientation of containment on domains and co-domains.
We say that the type constructor \rightarrow is

- covariant on codomains, since it preserves the direction of the relation;
- contravariant on domains, since it reverses the direction of the relation.

Containment interpretation:

The containment interpretation yields exactly the same relation as obtained by the substitutability interpretation. For instance a function that maps integers to integers ...

- is also a function that maps integers to reals: it returns results in Int so they will be also in Real.
Int \rightarrow Int \leq Int \rightarrow Real (covariance of the codomains)
- is also a function that maps odds to integers: when fed with integers it returns integers, so will do the same when fed with odd numbers.
Int \rightarrow Int \leq Odd \rightarrow Int (contravariance of the codomains)

Subtyping deduction system

BASIC $\frac{\left(B_{1}, B_{2}\right) \in \mathcal{B}}{B_{1} \leq B_{2}}$

$$
\text { ARROW } \frac{T_{1} \leq S_{1} \quad S_{2} \leq T_{2}}{S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2}}
$$

REFL $\overline{T \leq T}$

$$
\text { TRANS } \frac{T_{1} \leq T_{2} \quad T_{2} \leq T_{3}}{T_{1} \leq T_{3}}
$$

Subtyping deduction system

$$
\begin{array}{ll}
\text { BASIC } \frac{\left(B_{1}, B_{2}\right) \in \mathcal{B}}{B_{1} \leq B_{2}} & \text { ARROW } \frac{T_{1} \leq S_{1} r}{S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2}} \\
\text { REFL } \frac{T_{2}}{T \leq T} & \text { TRANS } \frac{T_{1} \leq T_{2} \quad T_{2} \leq T_{3}}{T_{1} \leq T_{3}}
\end{array}
$$

This system is neither syntax directed nor satisfies the subformula property

Subtyping deduction system

$$
\begin{array}{lr}
\text { BASIC } \frac{\left(B_{1}, B_{2}\right) \in \mathcal{B}}{B_{1} \leq B_{2}} & \text { ARROW } \frac{T_{1} \leq S_{1} r}{S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2}} \\
\text { REFL } \frac{T_{2}}{T \leq T} & \text { TRANS } \frac{T_{1} \leq T_{2} \quad T_{2} \leq T_{3}}{T_{1} \leq T_{3}}
\end{array}
$$

This system is neither syntax directed nor satisfies the subformula property How do we define an algorithm to check the subtyping relation?

Subtyping deduction system

$$
\text { BASIC } \frac{\left(B_{1}, B_{2}\right) \in \mathcal{B}}{B_{1} \leq B_{2}}
$$

$$
\text { ARRow } \frac{T_{1} \leq S_{1} \quad S_{2} \leq T_{2}}{S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2}}
$$

How do we define an algorithm to check the subtyping relation?

Subtyping deduction system

$$
\text { BASIC } \frac{\left(B_{1}, B_{2}\right) \in \mathcal{B}}{B_{1} \leq B_{2}} \quad \text { ARrow } \frac{T_{1} \leq S_{1} \quad S_{2} \leq T_{2}}{S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2}}
$$

These rules describe a deterministic and terminating algorithm (we say that the system is algorithmic).

How do we define an algorithm to check the subtyping relation?

Subtyping deduction system

$$
\text { BASIC } \frac{\left(B_{1}, B_{2}\right) \in \mathcal{B}}{B_{1} \leq B_{2}} \quad \text { ARROW } \frac{T_{1} \leq S_{1} \quad S_{2} \leq T_{2}}{S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2}}
$$

These rules describe a deterministic and terminating algorithm (we say that the system is algorithmic).

How do we define an algorithm to check the subtyping relation?

Theorem (Admissibility of Refl and Trans)

In the system composed just by the rules Arrow and Basic:

1) $T \leq T$ is provable for all types T
2) If $T_{1} \leq T_{2}$ and $T_{2} \leq T_{3}$ are provable, so is $T_{1} \leq T_{3}$.

The rules Refl and Trans are admissible

Type system

We defined the subtyping relation and we know how to decide it. How do we use it for typing our programs?

Type system

We defined the subtyping relation and we know how to decide it. How do we use it for typing our programs?

$$
\begin{array}{lll}
\text { VAR } & \rightarrow \text { INTRO } & \rightarrow \text { ELIM } \\
\Gamma \vdash x: \Gamma(x) & \frac{\Gamma, x: S \vdash a: T}{\Gamma \vdash \lambda x: S . a: S \rightarrow T} & \frac{\Gamma \vdash a: S \rightarrow T}{\Gamma \vdash a b: T}
\end{array}
$$

Type system

We defined the subtyping relation and we know how to decide it. How do we use it for typing our programs?

$$
\begin{aligned}
& \begin{array}{l}
\text { VAR } \\
\Gamma \vdash x: \Gamma(x) \\
\frac{\rightarrow \text { INTRO }}{\Gamma, x: S \vdash a: T} \\
\Gamma \vdash \lambda x: S . a: S \rightarrow T
\end{array} \frac{\rightarrow \text { ELIM }}{\Gamma \vdash a: S \rightarrow T \quad \Gamma \vdash b: S} \\
& \\
& \\
& \\
& \\
& \\
& \\
& \text { SUBSUMPTION } \\
& \Gamma \vdash a: S \\
& \Gamma \vdash a: T
\end{aligned}
$$

Type system

We defined the subtyping relation and we know how to decide it. How do we use it for typing our programs?

$$
\begin{array}{ll}
\text { VAR } \\
\Gamma \vdash x: \Gamma(x) & \rightarrow \text { INTRO } \\
\frac{\Gamma, x: S \vdash a: T}{\Gamma \vdash \lambda x: S . a: S \rightarrow T} & \frac{\rightarrow \text { ELIM }}{\Gamma \vdash a: S \rightarrow T} \quad \Gamma \vdash b: S \\
& \frac{\Gamma \vdash a b: T}{\text { SUBSUMPTION }} \\
& \frac{\Gamma \vdash a: S}{\Gamma \vdash a: T}
\end{array}
$$

This corresponds to the containment relation:

$$
\text { if } S \leq T \text { and } a \text { is of type } S \text { then a is also of type } T
$$

Type system

We defined the subtyping relation and we know how to decide it. How do we use it for typing our programs?

$$
\begin{aligned}
& \text { VAR } \\
& \Gamma \vdash x: \Gamma(x) \\
& \begin{array}{ll}
\rightarrow \begin{array}{l}
\rightarrow \text { INTRO } \\
\Gamma, x: S \vdash a: T \\
\Gamma \vdash \lambda x: S . a: S \rightarrow T
\end{array} & \overrightarrow{\Gamma \vdash a: S \rightarrow T} \quad \Gamma \vdash b: S \\
\Gamma \vdash a b: T
\end{array} \\
& \text { SUBSUMPTION } \\
& \frac{\Gamma \vdash a: S \quad S \leq T}{\Gamma \vdash a: T}
\end{aligned}
$$

This corresponds to the containment relation:
if $S \leq T$ and a is of type S then a is also of type T

Subject reduction: If $\Gamma \vdash a: T$ and $a \longrightarrow^{*} b$, then $\Gamma \vdash b: T$. Progress property: If $\varnothing \vdash a: T$ and $a \nrightarrow$, then a is a value

Typing algorithm

$$
\begin{array}{lll}
\begin{array}{ll}
\text { VAR } \\
\Gamma \vdash \\
\Gamma \vdash \Gamma(x) & \\
& \frac{\Gamma \text { INTRO }}{\Gamma, x: S \vdash a: T} \\
& \frac{\rightarrow \text { ELIM }}{\Gamma \vdash \lambda x: S . a: S \rightarrow T}
\end{array} & \\
& \frac{\Gamma \vdash a: S \rightarrow T \quad \Gamma \vdash b: S}{\Gamma \vdash a b: T} & \frac{\Gamma \vdash a: S}{\Gamma \vdash a: T} S \leq T
\end{array}
$$

Typing algorithm

Subsumption makes the type system non-algorithmic:

- it is not syntax directed: subsumption can be applied whatever the term.
- it does not satisfy the subformula property: even if we know that we have to apply subsumption which T shall we choose?

Typing algorithm

$$
\begin{aligned}
& \rightarrow \text { IntRo } \\
& \stackrel{\text { VAR }}{\Gamma \vdash x: \Gamma(x)} \frac{\begin{array}{l}
\text { Г, } x: S \vdash \\
\Gamma \vdash \lambda x: S . a: S \rightarrow T
\end{array}}{}
\end{aligned}
$$

Subsumption makes the type system non-algorithmic:

- it is not syntax directed: subsumption can be applied whatever the term.
- it does not satisfy the subformula property: even if we know that we have to apply subsumption which T shall we choose?

How do we define the typechecking algorithm?

Typing algorithm

Subsumption makes the type system non-algorithmic:

- it is not syntax directed: subsumption can be applied whatever the term.
- it does not satisfy the subformula property: even if we know that we have to apply subsumption which T shall we choose?

How do we define the typechecking algorithm?

Typing algorithm

$$
\begin{array}{ll}
\rightarrow \text { INTRO } & \rightarrow E \mathrm{ELIM} \leq \\
\Gamma, x: S \vdash_{\mathfrak{A}} a: T \\
\Gamma \vdash_{\mathcal{A}} \lambda x: S . a: S \rightarrow T & \frac{\Gamma \vdash_{\mathcal{A}} a: S \rightarrow T \quad \Gamma \vdash_{\mathfrak{A}} b: U}{} \quad \begin{array}{l}
\Gamma \leq S \\
\mathscr{A} a b: T
\end{array}
\end{array}
$$

(1) The system is algorithmic: it describes a typing algorithm (exercise: program typecheck and subtype by using the previous structures)
(2) The system conforms the substitutability interpretation: we use an expression of a subtype U where a supertype S is expected (note "use" = elimination rule).

Typing algorithm

$$
\begin{array}{ll}
\rightarrow \text { INTRO } & \rightarrow E \mathrm{ELIM} \leq \\
\Gamma, x: S \vdash_{\mathcal{A}} a: T \\
\Gamma \vdash_{\mathcal{A}} \lambda x: S . a: S \rightarrow T & \frac{\Gamma \vdash_{\mathcal{A}} a: S \rightarrow T \quad \Gamma \vdash_{\mathcal{A}} b: U}{} \quad \begin{array}{l}
\Gamma \vdash_{\mathcal{A}} a b: T
\end{array}
\end{array}
$$

(1) The system is algorithmic: it describes a typing algorithm (exercise: program typecheck and subtype by using the previous structures)
(2) The system conforms the substitutability interpretation: we use an expression of a subtype U where a supertype S is expected (note "use" = elimination rule).

How do we relate the two systems?

Typing algorithm

$$
\begin{array}{ll}
\rightarrow \text { INTRO } & \overrightarrow{\mathrm{I}, x: S \vdash_{\mathcal{A}} a: T} \\
\Gamma \vdash_{\mathcal{A}} \lambda x: S . a: S \rightarrow T
\end{array} \quad \begin{aligned}
& \Gamma \vdash_{\mathcal{A}} a: S \rightarrow T \quad \Gamma \vdash_{\mathcal{A}} b: U
\end{aligned} \quad \mathrm{\Gamma} 5
$$

(1) The system is algorithmic: it describes a typing algorithm (exercise: program typecheck and subtype by using the previous structures)
(2) The system conforms the substitutability interpretation: we use an expression of a subtype U where a supertype S is expected (note "use" = elimination rule).

How do we relate the two systems?

For subtyping, admissibility ensured that the system and the algorithm prove the same judgements. Here it is no longer true. For instance:
$\varnothing \vdash \lambda x$:Int. $x:$ Odd \rightarrow Real but
$\varnothing \vdash_{\mathcal{A}} \lambda x:$ Int. $x:$ Odd \rightarrow Real.

Typing algorithm

$$
\begin{array}{llll}
\operatorname{VAR} & \rightarrow \text { INTRO } & \rightarrow E \mathrm{ELIM} \leq \\
\Gamma \vdash_{\mathcal{A}} x: \Gamma(x) & \frac{\Gamma, x: S \vdash_{\mathcal{A}} a: T}{\Gamma \vdash_{\mathcal{A}} \lambda x: S . a: S \rightarrow T} & \frac{\Gamma \vdash_{\mathcal{A}} a: S \rightarrow T}{} \quad \Gamma \vdash_{\mathcal{A}} b: U & \Gamma \leq S \\
\Gamma \vdash_{\mathcal{A}} a b: T
\end{array}
$$

(1) The system is algorithmic: it describes a typing algorithm (exercise: program typecheck and subtype by using the previous structures)
(2) The system conforms the substitutability interpretation: we use an expression of a subtype U where a supertype S is expected (note "use" = elimination rule).

How do we relate the two systems?

For subtyping, admissibility ensured that the system and the algorithm prove the same judgements. Here it is no longer true. For instance:

$$
\varnothing \vdash \lambda x: \text { Int. } x: \text { Odd } \rightarrow \text { Real } \quad \text { but } \quad \varnothing \nvdash \mathcal{A} \lambda x: \text { Int. } x: \text { Odd } \rightarrow \text { Real. }
$$

This is expected: Algorithm = one type returned for each typable term.

Soundness and completeness of the typing algorithm

a is typable by $\vdash \Leftrightarrow a$ is typable by $\vdash_{\mathcal{A}}$

$\Leftarrow=$ soundness
\Rightarrow = completeness

Soundness and completeness of the typing algorithm

 a is typable by $\vdash \Leftrightarrow a$ is typable by $\vdash_{\mathcal{A}}$$\Leftarrow=$ soundness
\Rightarrow = completeness
Theorem (Soundness)
If $\Gamma \vdash_{\mathcal{A}} a: T$, then $\Gamma \vdash a: T$

Theorem (Completeness)
If $\Gamma \vdash a: T$, then $\Gamma \vdash_{\mathcal{A}}$ a $: S$ with $S \leq T$

Minimum type and soundness

Corollary (Minimum type)

$$
\text { If } \Gamma \vdash_{\mathfrak{A}} a: T \text { then } T=\min \{S \mid \Gamma \vdash a: S\}
$$

Proof. Let $\mathcal{S}=\{S \mid \Gamma \vdash a: S\}$. Soundness ensures that \mathcal{S} is not empty. Completeness states that T is a lower bound of \mathcal{S}. Minimality follows by using soundness once more.

Minimum type and soundness

Corollary (Minimum type)

If $\Gamma \vdash_{\mathcal{A}} a: T$ then $T=\min \{S \mid \Gamma \vdash a: S\}$
Proof. Let $\mathcal{S}=\{S \mid \Gamma \vdash a: S\}$. Soundness ensures that \mathcal{S} is not empty. Completeness states that T is a lower bound of \mathcal{S}. Minimality follows by using soundness once more.

The corollary above explains that the typing algorithm works with the minimum types of the terms. It keeps track of the best type information available

Minimum type and soundness

Corollary (Minimum type)

If $\Gamma \vdash_{\mathcal{A}} a: T$ then $T=\min \{S \mid \Gamma \vdash a: S\}$
Proof. Let $\mathcal{S}=\{S \mid \Gamma \vdash a: S\}$. Soundness ensures that \mathcal{S} is not empty. Completeness states that T is a lower bound of \mathcal{S}. Minimality follows by using soundness once more.

The corollary above explains that the typing algorithm works with the minimum types of the terms. It keeps track of the best type information available

```
Theorem (Algorithmic subject reduction)
If \Gamma }\mp@subsup{\vdash}{\mathcal{A}}{}a:T\mathrm{ and }a\longrightarrow\mp@subsup{\longrightarrow}{}{*}b\mathrm{ , then }\Gamma\mp@subsup{\vdash}{\mathcal{A}}{}b:S\mathrm{ with }S\leqT
```

The theorem above explains that the computation reduces the minimum type of a program. As such it increases the type information about it.

Summary for simply-typed λ-calculs $+\leq$

- The containment interpretation of the subtyping relation corresponds to the "logical" view of the type system embodied by subsumption.
- The substitutability interpretation of the subtyping relation corresponds to the "algorithmic" view of the type system.

Summary for simply-typed λ-calculs $+\leq$

- The containment interpretation of the subtyping relation corresponds to the "logical" view of the type system embodied by subsumption.
- The substitutability interpretation of the subtyping relation corresponds to the "algorithmic" view of the type system.
- To define the type system one usually starts from the "logical" system, which is simpler since subtyping is concentrated in the subsumption rule
- To implement the type system one passes to the substitutability view. Subsumption is eliminated and the check of the subtyping relation is distributed in the places where values are used/consumed. This in general corresponds to embed subtype checking into elimination rules.

Summary for simply-typed λ-calculs $+\leq$

- The containment interpretation of the subtyping relation corresponds to the "logical" view of the type system embodied by subsumption.
- The substitutability interpretation of the subtyping relation corresponds to the "algorithmic" view of the type system.
- To define the type system one usually starts from the "logical" system, which is simpler since subtyping is concentrated in the subsumption rule
- To implement the type system one passes to the substitutability view. Subsumption is eliminated and the check of the subtyping relation is distributed in the places where values are used/consumed. This in general corresponds to embed subtype checking into elimination rules.
- The obtained algorithm works on the minimum types of the logical system
- Computation reduces the (algorithmic) type thus increasing type information (the result of a computation represents the best possible type information: it is the singleton type containing the result).
- The last point makes dynamic dispatch (aka, dynamic binding) meaningful.

Products I

Syntax

Types	T	$::=$	$\ldots \mid T \times T$	product types
Terms $a, b:$	$:=$	\ldots		
		(a, a)	pair	
		$\pi_{i}(a) \quad(i=1,2)$	projection	

Reduction

$$
\pi_{i}\left(\left(a_{1}, a_{2}\right)\right) \longrightarrow a_{i} \quad(i=1,2)
$$

Typing

$$
\begin{array}{ll}
\times \text { INTRO } & \\
\Gamma \vdash a_{1}: T_{1} & \Gamma \vdash a_{2}: T_{2} \\
\Gamma \vdash\left(a_{1}, a_{2}\right): T_{1} \times T_{2} & \frac{\times \text { ELIM }_{i}}{\Gamma \vdash a: T_{1} \times T_{2}} \\
\Gamma \vdash \pi_{i}(a): T_{i}
\end{array}(i=1,2)
$$

Products II

Subtyping

$$
\begin{aligned}
& \begin{array}{l}
\text { PROD } \\
S_{1} \leq T_{1} \quad S_{2} \leq T_{2} \\
S_{1} \times S_{2} \leq T_{1} \times T_{2}
\end{array} .
\end{aligned}
$$

Exercise: Check whether the above rule is compatible with the containement and/or the substitutability interpretation of the subtyping relation.

The subtyping rule above is also algorithmic. Similarly, for the typing rules there is no need to embed subtyping in the elimination rules since π_{i} is an operator that works on all products, not a particular one (cf. with the application of a function, which requires a particular domain).

Of course subject reduction and progress still hold.
Exercise: Define values and reduction contexts for this extension.

Records

Up to now subtyping rules « lift » the subtyping relation \mathcal{B} on basic types to constructed types. But if \mathcal{B} is the identity relation, so is the whole subtyping relation. Record subtyping is non-trivial even when \mathcal{B} is the identity relation.
Syntax

| Types $r:$ | $:=$ | $\ldots \mid\{\ell: T, \ldots, \ell: T\}$ | record types |
| ---: | ---: | ---: | ---: | ---: |
| Terms $a, b::=$ | | | |
| | | $\{\ell=a, \ldots, \ell=a\}$ | record |
| | | a. ℓ | field selection |

Reduction

$$
\{\ldots, \ell=a, \ldots\} \cdot \ell \longrightarrow a
$$

Typing
\{\}Intro
$\frac{\Gamma \vdash a_{1}: T_{1} \ldots \Gamma \vdash a_{n}: T_{n}}{\Gamma \vdash\left\{\ell_{1}=a_{1}, \ldots, \ell_{n}=a_{n}\right\}:\left\{\ell_{1}: T_{1}, \ldots, \ell_{n}: T_{n}\right\}}$
\{\}Еடім
$\frac{\Gamma \vdash a:\{\ldots, \ell: T, \ldots\}}{\Gamma \vdash a \cdot \ell: T}$

Record Subtyping

To define subtyping we resort once more on the substitutability relation. A record is "used" by selecting one of its labels.

Record Subtyping

To define subtyping we resort once more on the substitutability relation. A record is "used" by selecting one of its labels.

We can replace some record by a record of different type if in the latter we can select the same fields as in the former and their contents can substitute the respective contents in the former.

Subtyping

$$
\begin{aligned}
& \operatorname{RECORD} \\
& \left\{\ell_{1}: S_{1}, \ldots, \ell_{n}: S_{n}, \ldots, \ell_{n+k}: S_{n+k}\right\} \leq\left\{\ell_{1}: T_{1}, \ldots, \ell_{n}: T_{n}\right\}
\end{aligned}
$$

Exercise. Which are the algorithmic typing rules?

Outline

(27) Simple Types
(28) Recursive Types
(29) Bibliography

Iso-recursive and Equi-recursive types

Lists are a classic example of recursive types:

$$
X \approx(\operatorname{Int} \times X) \vee \operatorname{Nil}
$$

also written as $\mu X .((\operatorname{Int} \times X) \vee$ Nil $)$
Two different approaches according to whether \approx is interpreted as an isomorphism or an equality:
Iso-recursive types: μX. $((\operatorname{Int} \times X) \vee \operatorname{Nil})$ is considered isomorphic to its one-step unfolding $(\operatorname{Int} \times \mu X .((\operatorname{Int} \times X) \vee$ Nil $)) \vee$ Nil $)$. Terms include a pair of built-in coercion functions for each recursive type $\mu X . T$:

$$
\text { unfold }: \mu X . T \rightarrow T[\mu X . T / X] \quad \text { fold }: T[\mu X . T / X] \rightarrow \mu X . T
$$

Equi-recursive types: $\mu X .((\operatorname{Int} \times X) \vee$ Nil $)$ is considered equal to its one-step unfolding $(\operatorname{Int} \times \mu X .((\operatorname{Int} \times X) \vee \mathrm{Nil})) \vee \mathrm{Nil})$. The two types are completely interchangeable. No support needed from terms.

Iso-recursive and Equi-recursive types

Lists are a classic example of recursive types:

$$
X \approx(\operatorname{Int} \times X) \vee \operatorname{Nil}
$$

also written as $\mu X .((\operatorname{Int} \times X) \vee$ Nil $)$
Two different approaches according to whether \approx is interpreted as an isomorphism or an equality:
Iso-recursive types: $\mu X .((\operatorname{Int} \times X) \vee \mathrm{Nil})$ is considered isomorphic to its one-step unfolding $($ Int $\times \mu X$. ($\operatorname{Int} \times X) \vee$ Nil $)) \vee$ Nil $)$. Terms include a pair of built-in coercion functions for each recursive type $\mu X . T$:

$$
\text { unfold }: \mu X . T \rightarrow T[\mu X . T / X] \quad \text { fold }: T[\mu X . T / X] \rightarrow \mu X . T
$$

Equi-recursive types: μX. ((Int $\times X) \vee$ Nil) is considered equal to its one-step unfolding $(\operatorname{Int} \times \mu X .((\operatorname{Int} \times X) \vee \mathrm{Nil})) \vee \mathrm{Nil})$. The two types are completely interchangeable. No support needed from terms.

Subtyping for recursive types generalizes the equi-recursive approach.
The \approx relation corresponds to subtyping in both directions:

$$
\mu X . T \leq T[\mu X . T / X] \quad T[\mu X . T / X] \leq \mu X . T
$$

Recursive types are weird

- To add (equi-)recursive types you do not need to add any new term

Recursive types are weird

- To add (equi-)recursive types you do not need to add any new term
- You don't even need to have recursion on terms:

$$
\mu X .((\operatorname{Int} \times X) \vee \operatorname{Nil})
$$

interpret the type above as the finite lists of integers.
Then μX. (Int $\times X$) is the empty type.

Recursive types are weird

- To add (equi-)recursive types you do not need to add any new term
- You don't even need to have recursion on terms:

$$
\mu X .((\operatorname{Int} \times X) \vee \operatorname{Nil})
$$

interpret the type above as the finite lists of integers.
Then μX. (Int $\times X)$ is the empty type.

- Actually if you have recursive terms and allow infinite values you can easily jeopardize decidability of the subtyping relation (which resorts to checking type emptiness)
- This contrasts with their intuition which looks simple: we always informally applied a rule such as:

$$
\frac{A, X \leq Y \vdash S \leq T}{A \vdash \mu X . S \leq \mu Y . T}
$$

Subtyping recursive types

Syntax

Types	T : $:=$	Any	top type
	\|	$T \rightarrow T$	function types
		$T \times T$	product types
		X	type variables
		$\mu X . T$	recursive types

where T is contractive, that is (two equivalent definitions):
(1) T is contractive iff for every subexpression $\mu X . \mu X_{1} \ldots \mu X_{n}$. S it holds $S \neq X$.
(2) T is contractive iff every type variable X occurring in it is separated from its binder by a \rightarrow or a \times.

Subtyping recursive types

The subtyping relation is defined COINDUCTIVELY by the rules

$$
\begin{aligned}
& \text { Top } \frac{\operatorname{Prod} \frac{S_{1} \leq T_{1} \quad S_{2} \leq T_{2}}{T \leq \text { Any }} \quad \text { Arrow } \frac{T_{1} \leq S_{1} \quad S_{2} \leq T_{2}}{S_{1} \times S_{2} \leq T_{1} \times T_{2}} \quad}{\text { UNFOLD LEFT } \frac{S[\mu X . S / X] \leq T}{\mu X . S \leq T} \quad \text { UNFOLD RIGHT } \frac{S \leq T[\mu X . T / X]}{S \leq \mu X . T}}
\end{aligned}
$$

Subtyping recursive types

The subtyping relation is defined COINDUCTIVELY by the rules

$$
\text { TOP } \overline{T \leq \text { Any }} \quad \text { PROD } \frac{S_{1} \leq T_{1} \quad S_{2} \leq T_{2}}{S_{1} \times S_{2} \leq T_{1} \times T_{2}} \quad \text { ARROW } \frac{T_{1} \leq S_{1} \quad S_{2} \leq T_{2}}{S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2}}
$$

Unfold Left $\frac{S[\mu X . S / X] \leq T}{\mu X . S \leq T}$
Unfold Right $\frac{S \leq T[\mu X . T / X]}{S \leq \mu X . T}$

Coinductive definition

(1) Why coinduction?
(2) Why no reflexivity/transitivity rules?
(3) Why no rule to compare two μ-types?

Subtyping recursive types

The subtyping relation is defined COINDUCTIVELY by the rules

$$
\text { TOP } \overline{T \leq \text { Any }} \quad \text { PROD } \frac{S_{1} \leq T_{1} \quad S_{2} \leq T_{2}}{S_{1} \times S_{2} \leq T_{1} \times T_{2}} \quad \text { ARROW } \frac{T_{1} \leq S_{1}}{S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2}}
$$

$$
\text { Unfold Left } \frac{S[\mu X . S / X] \leq T}{\mu X . S \leq T} \quad \text { Unfold Right } \frac{S \leq T[\mu X . T / X]}{S \leq \mu X . T}
$$

Coinductive definition

(1) Why coinduction?
(2) Why no reflexivity/transitivity rules?
(3) Why no rule to compare two μ-types?

Short answers (more detailed answers to come):
(1) Because we compare infinite expansions
(2) Because it would be unsound
(3) Useless since obtained by coinduction and unfold

Example of coinductive derivation

$$
\begin{array}{r}
\text { ArRow } \frac{\text { Even } \leq \text { Int } \quad \mu X . \text { Int } \rightarrow X \leq \mu Y \text {.Even } \rightarrow Y}{\text { Int } \rightarrow(\mu X . \text { Int } \rightarrow X) \leq \text { Even } \rightarrow(\mu Y \text {.Even } \rightarrow Y)} \\
\text { UnFOLD RIGHT } \frac{\text { Int } \rightarrow(\mu X \text {.Int } \rightarrow X) \leq \mu Y \text {.Even } \rightarrow Y}{\mu X \text {.Int } \rightarrow X \leq \mu Y \text {.Even } \rightarrow Y}
\end{array}
$$

Example of coinductive derivation

$$
\begin{array}{r}
\text { ArRow } \frac{\text { Even } \leq \text { Int } \quad \mu X \text {.Int } \rightarrow X \leq \mu Y \text {.Even } \rightarrow Y}{\text { Int } \rightarrow(\mu X \text {.Int } \rightarrow X) \leq \text { Even } \rightarrow(\mu Y \text {.Even } \rightarrow Y)} \\
\text { UNFOLD RIGHT } \frac{\text { Int } \rightarrow(\mu X \text {.Int } \rightarrow X) \leq \mu Y \text {.Even } \rightarrow Y}{\mu X . \text { Int } \rightarrow X \leq \mu Y \text {.Even } \rightarrow Y}
\end{array}
$$

Notice the use of coinduction

Amadio and Cardelli's subtyping algorithm

Let $A \subset$ Types \times Types

$$
\begin{gathered}
\overline{A \vdash S \leq T}(S, T) \in A \\
\frac{A \vdash S \leq \text { Any }}{}(S, \text { Any }) \notin A \\
\frac{A^{\prime} \vdash S_{1} \leq T_{1} \quad A^{\prime} \vdash S_{2} \leq T_{2}}{A \vdash S_{1} \times S_{2} \leq T_{1} \times T_{2}} A^{\prime}=A \cup\left(S_{1} \times S_{2}, T_{1} \times T_{2}\right) ; A \neq A^{\prime} \\
\frac{A^{\prime} \vdash T_{1} \leq S_{1} \quad A^{\prime} \vdash S_{2} \leq T_{2}}{A \vdash S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2}} A^{\prime}=A \cup\left(S_{1} \rightarrow S_{2}, T_{1} \rightarrow T_{2}\right) ; A \neq A^{\prime} \\
\frac{A^{\prime} \vdash S[\mu X . S / X] \leq T}{A \vdash \mu X . S \leq T} A^{\prime}=A \cup(\mu X . S, T) ; A \neq A^{\prime} ; T \neq \text { Any } \\
\frac{A^{\prime} \vdash S \leq T[\mu X . T / X]}{A \vdash S \leq \mu X . T} A^{\prime}=A \cup(S, \mu X . T) ; A \neq A^{\prime} ; S \neq \mu Y . U
\end{gathered}
$$

Amadio and Cardelli's subtyping algorithm

Determinization of the rules

$$
\begin{gathered}
\overline{A \vdash S \leq T}(S, T) \in A \\
\frac{A \vdash S \leq \operatorname{Any}}{}(S, \text { Any }) \notin A \\
\frac{A^{\prime} \vdash S_{1} \leq T_{1} \quad A^{\prime} \vdash S_{2} \leq T_{2}}{A \vdash S_{1} \times S_{2} \leq T_{1} \times T_{2}} A^{\prime}=A \cup\left(S_{1} \times S_{2}, T_{1} \times T_{2}\right) ; A \neq A^{\prime} \\
\frac{A^{\prime} \vdash T_{1} \leq S_{1} \quad A^{\prime} \vdash S_{2} \leq T_{2}}{A \vdash S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2}} A^{\prime}=A \cup\left(S_{1} \rightarrow S_{2}, T_{1} \rightarrow T_{2}\right) ; A \neq A^{\prime} \\
\frac{A^{\prime} \vdash S[\mu X . S / X] \leq T}{A \vdash \mu X . S \leq T} A^{\prime}=A \cup(\mu X . S, T) ; A \neq A^{\prime} ; T \neq \text { Any } \\
\frac{A^{\prime} \vdash S \leq T[\mu X . T / X]}{A \vdash S \leq \mu X . T} A^{\prime}=A \cup(S, \mu X . T) ; A \neq A^{\prime} ; S \neq \mu Y . U
\end{gathered}
$$

Amadio and Cardelli's subtyping algorithm

Memoization

$$
\begin{gathered}
\overline{A \vdash S \leq T}(S, T) \in A \\
\frac{A \vdash S \leq \operatorname{Any}}{}(S, \text { Any }) \notin A \\
\frac{A^{\prime} \vdash S_{1} \leq T_{1} \quad A^{\prime} \vdash S_{2} \leq T_{2}}{A \vdash S_{1} \times S_{2} \leq T_{1} \times T_{2}} A^{\prime}=A \cup\left(S_{1} \times S_{2}, T_{1} \times T_{2}\right) ; A \neq A^{\prime} \\
\frac{A^{\prime} \vdash T_{1} \leq S_{1} \quad A^{\prime} \vdash S_{2} \leq T_{2}}{A \vdash S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2}} A^{\prime}=A \cup\left(S_{1} \rightarrow S_{2}, T_{1} \rightarrow T_{2}\right) ; A \neq A^{\prime} \\
\frac{A^{\prime} \vdash S[\mu X . S / X] \leq T}{A \vdash \mu X . S \leq T} A^{\prime}=A \cup(\mu X . S, T) ; A \neq A^{\prime} ; T \neq \text { Any } \\
\frac{A^{\prime} \vdash S \leq T[\mu X . T / X]}{A \vdash S \leq \mu X . T} A^{\prime}=A \cup(S, \mu X . T) ; A \neq A^{\prime} ; S \neq \mu Y . U
\end{gathered}
$$

Amadio and Cardelli's subtyping algorithm

Determinization of the rules

$$
\begin{gathered}
\overline{A \vdash S \leq T}(S, T) \in A \\
\frac{A \vdash S \leq \operatorname{Any}}{}(S, \text { Any }) \notin A \\
\frac{A^{\prime} \vdash S_{1} \leq T_{1} \quad A^{\prime} \vdash S_{2} \leq T_{2}}{A \vdash S_{1} \times S_{2} \leq T_{1} \times T_{2}} A^{\prime}=A \cup\left(S_{1} \times S_{2}, T_{1} \times T_{2}\right) ; A \neq A^{\prime} \\
\frac{A^{\prime} \vdash T_{1} \leq S_{1} \quad A^{\prime} \vdash S_{2} \leq T_{2}}{A \vdash S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2}} A^{\prime}=A \cup\left(S_{1} \rightarrow S_{2}, T_{1} \rightarrow T_{2}\right) ; A \neq A^{\prime} \\
\frac{A^{\prime} \vdash S[\mu X . S / X] \leq T}{A \vdash \mu X . S \leq T} A^{\prime}=A \cup(\mu X . S, T) ; A \neq A^{\prime} ; T \neq \text { Any } \\
\frac{A^{\prime} \vdash S \leq T[\mu X . T / X]}{A \vdash S \leq \mu X . T} A^{\prime}=A \cup(S, \mu X . T) ; A \neq A^{\prime} ; S \neq \mu Y . U
\end{gathered}
$$

Amadio and Cardelli's subtyping algorithm

Memoization

$$
\begin{gathered}
\overline{A \vdash S \leq T}(S, T) \in A \\
\frac{A \vdash S \leq \operatorname{Any}}{}(S, \text { Any }) \notin A \\
\frac{A^{\prime} \vdash S_{1} \leq T_{1} \quad A^{\prime} \vdash S_{2} \leq T_{2}}{A \vdash S_{1} \times S_{2} \leq T_{1} \times T_{2}} A^{\prime}=A \cup\left(S_{1} \times S_{2}, T_{1} \times T_{2}\right) ; A \neq A^{\prime} \\
\frac{A^{\prime} \vdash T_{1} \leq S_{1} \quad A^{\prime} \vdash S_{2} \leq T_{2}}{A \vdash S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2}} A^{\prime}=A \cup\left(S_{1} \rightarrow S_{2}, T_{1} \rightarrow T_{2}\right) ; A \neq A^{\prime} \\
\frac{A^{\prime} \vdash S[\mu X . S / X] \leq T}{A \vdash \mu X . S \leq T} A^{\prime}=A \cup(\mu X . S, T) ; A \neq A^{\prime} ; T \neq \text { Any } \\
\frac{A^{\prime} \vdash S \leq T[\mu X . T / X]}{A \vdash S \leq \mu X . T} A^{\prime}=A \cup(S, \mu X . T) ; A \neq A^{\prime} ; S \neq \mu Y . U
\end{gathered}
$$

Amadio and Cardelli's subtyping algorithm

The rest is similar

$$
\begin{gathered}
\overline{A \vdash S \leq T}(S, T) \in A \\
\frac{A \vdash S \leq A n y}{}(S, \text { Any }) \notin A \\
\frac{A^{\prime} \vdash S_{1} \leq T_{1} \quad A^{\prime} \vdash S_{2} \leq T_{2}}{A \vdash S_{1} \times S_{2} \leq T_{1} \times T_{2}} A^{\prime}=A \cup\left(S_{1} \times S_{2}, T_{1} \times T_{2}\right) ; A \neq A^{\prime} \\
\frac{A^{\prime} \vdash T_{1} \leq S_{1} \quad A^{\prime} \vdash S_{2} \leq T_{2}}{A \vdash S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2}} A^{\prime}=A \cup\left(S_{1} \rightarrow S_{2}, T_{1} \rightarrow T_{2}\right) ; A \neq A^{\prime} \\
\frac{A^{\prime} \vdash S[\mu X . S / X] \leq T}{A \vdash \mu X . S \leq T} A^{\prime}=A \cup(\mu X . S, T) ; A \neq A^{\prime} ; T \neq \text { Any } \\
\frac{A^{\prime} \vdash S \leq T[\mu X . T / X]}{A \vdash S \leq \mu X . T} A^{\prime}=A \cup(S, \mu X . T) ; A \neq A^{\prime} ; S \neq \mu Y . U
\end{gathered}
$$

Amadio and Cardelli's subtyping algorithm

Let $A \subset$ Types \times Types

$$
\begin{gathered}
\overline{A \vdash S \leq T}(S, T) \in A \\
\frac{A \vdash S \leq \text { Any }}{}(S, \text { Any }) \notin A \\
\frac{A^{\prime} \vdash S_{1} \leq T_{1} \quad A^{\prime} \vdash S_{2} \leq T_{2}}{A \vdash S_{1} \times S_{2} \leq T_{1} \times T_{2}} A^{\prime}=A \cup\left(S_{1} \times S_{2}, T_{1} \times T_{2}\right) ; A \neq A^{\prime} \\
\frac{A^{\prime} \vdash T_{1} \leq S_{1} \quad A^{\prime} \vdash S_{2} \leq T_{2}}{A \vdash S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2}} A^{\prime}=A \cup\left(S_{1} \rightarrow S_{2}, T_{1} \rightarrow T_{2}\right) ; A \neq A^{\prime} \\
\frac{A^{\prime} \vdash S[\mu X . S / X] \leq T}{A \vdash \mu X . S \leq T} A^{\prime}=A \cup(\mu X . S, T) ; A \neq A^{\prime} ; T \neq \text { Any } \\
\frac{A^{\prime} \vdash S \leq T[\mu X . T / X]}{A \vdash S \leq \mu X . T} A^{\prime}=A \cup(S, \mu X . T) ; A \neq A^{\prime} ; S \neq \mu Y . U
\end{gathered}
$$

Properties

Theorem (Soundness and Completeness)

Let S and T be closed types. $S \leq T$ belongs the relation coinductively defined by the rules in slide 374 if and only if $\varnothing \vdash S \leq T$ is provable

Properties

Theorem (Soundness and Completeness)

Let S and T be closed types. $S \leq T$ belongs the relation coinductively defined by the rules in slide 374 if and only if $\varnothing \vdash S \leq T$ is provable

To see the proof of the above theorem you can refer to the following reference Pierce et al. Recursive types revealed, Journal of Functional Programming, 12(6):511-548, 2002.

Properties

Theorem (Soundness and Completeness)

Let S and T be closed types. $S \leq T$ belongs the relation coinductively defined by the rules in slide 374 if and only if $\varnothing \vdash S \leq T$ is provable

To see the proof of the above theorem you can refer to the following reference Pierce et al. Recursive types revealed, Journal of Functional Programming, 12(6):511-548, 2002.

Notice that the algorithm above is exponential. We will show how to define an $O\left(n^{2}\right)$ algorithm to decide $S \leq T$, where n is the total number of different subexpressions of $S \leq T$.

Induction and coinduction

Intuition

Given a deduction system, it characterizes two possible distinct sets (of provable judgements) according to whether an inductive or a coinductive approach is used.

Induction and coinduction

Intuition

Given a deduction system, it characterizes two possible distinct sets (of provable judgements) according to whether an inductive or a coinductive approach is used.

Given a decution system \mathcal{F} and a universe, $\mathcal{U l}$ a set $X \in \mathcal{P}(\mathcal{U})$ is:
\mathcal{F}-closed if it contains all the elements that can be deduced by \mathcal{F} with hypothesis in X.
\mathcal{F}-consistent if every element of X can be deduced by \mathcal{F} from other elements in X.

Induction and coinduction

Intuition

Given a deduction system, it characterizes two possible distinct sets (of provable judgements) according to whether an inductive or a coinductive approach is used.

Given a decution system \mathcal{F} and a universe, $\mathcal{U l}$ a set $X \in \mathscr{P}(\mathcal{U})$ is:
\mathcal{F}-closed if it contains all the elements that can be deduced by \mathcal{F} with hypothesis in X.
\mathcal{F}-consistent if every element of X can be deduced by \mathcal{F} from other elements in X.

Induction and coinduction

A deduction system

- inductively defines the least \mathcal{F}-closed set
- coinductively defines the greatest \mathcal{F}-consistent set

Induction and coinduction

induction: start from \varnothing, add all the consequences of the deduction system, and iterate.
coinduction: start from \mathcal{U}, remove all elements that are not consequence of other elements, and iterate.

Induction and coinduction

induction: start from \varnothing, add all the consequences of the deduction system, and iterate.
coinduction: start from \mathcal{U}, remove all elements that are not consequence of other elements, and iterate.

Observation

In all the (algorithimic, ie without refl and trans) subtyping system met so far, the two coincide. This is not true in general, due to the presence of self-justifying sets, that is sets in which the deductions do not start just by axioms.

Induction and coinduction

induction: start from \varnothing, add all the consequences of the deduction system, and iterate.
coinduction: start from \mathcal{U}, remove all elements that are not consequence of other elements, and iterate.

Observation

In all the (algorithimic, ie without refl and trans) subtyping system met so far, the two coincide. This is not true in general, due to the presence of self-justifying sets, that is sets in which the deductions do not start just by axioms.

Example:

$$
\mathcal{U}=\{a, b, c, d, e, f, g\} \quad \frac{a}{b} \quad \frac{b}{c} \quad \frac{c}{a} \quad \bar{d} \quad \frac{d}{e} \quad \frac{f}{g}
$$

Induction and coinduction

induction: start from \varnothing, add all the consequences of the deduction system, and iterate.
coinduction: start from \mathcal{U}, remove all elements that are not consequence of other elements, and iterate.

Observation

In all the (algorithimic, ie without refl and trans) subtyping system met so far, the two coincide. This is not true in general, due to the presence of self-justifying sets, that is sets in which the deductions do not start just by axioms.

Example:

$$
\mathcal{U}=\{a, b, c, d, e, f, g\} \quad \frac{a}{b} \quad \frac{b}{c} \quad \frac{c}{a} \quad \bar{d} \quad \frac{d}{e} \quad \frac{f}{g}
$$

Inductively:
\{\}

Induction and coinduction

induction: start from \varnothing, add all the consequences of the deduction system, and iterate.
coinduction: start from \mathcal{U}, remove all elements that are not consequence of other elements, and iterate.

Observation

In all the (algorithimic, ie without refl and trans) subtyping system met so far, the two coincide. This is not true in general, due to the presence of self-justifying sets, that is sets in which the deductions do not start just by axioms.

Example:

$$
\mathcal{U}=\{a, b, c, d, e, f, g\} \quad \frac{a}{b} \quad \frac{b}{c} \quad \frac{c}{a} \quad \bar{d} \quad \frac{d}{e} \quad \frac{f}{g}
$$

Inductively:
$\{d\}$

Induction and coinduction

induction: start from \varnothing, add all the consequences of the deduction system, and iterate.
coinduction: start from \mathcal{U}, remove all elements that are not consequence of other elements, and iterate.

Observation

In all the (algorithimic, ie without refl and trans) subtyping system met so far, the two coincide. This is not true in general, due to the presence of self-justifying sets, that is sets in which the deductions do not start just by axioms.

Example:

$$
\mathcal{U}=\{a, b, c, d, e, f, g\} \quad \frac{a}{b} \quad \frac{b}{c} \quad \frac{c}{a} \quad \bar{d} \quad \frac{d}{e} \quad \frac{f}{g}
$$

Inductively:
$\{d, e\}$

Induction and coinduction

induction: start from \varnothing, add all the consequences of the deduction system, and iterate.
coinduction: start from \mathcal{U}, remove all elements that are not consequence of other elements, and iterate.

Observation

In all the (algorithimic, ie without refl and trans) subtyping system met so far, the two coincide. This is not true in general, due to the presence of self-justifying sets, that is sets in which the deductions do not start just by axioms.

Example:

$$
\mathcal{U}=\{a, b, c, d, e, f, g\} \quad \frac{a}{b} \quad \frac{b}{c} \quad \frac{c}{a} \quad \bar{d} \quad \frac{d}{e} \quad \frac{f}{g}
$$

Inductively:
$\{d, e\}$

Induction and coinduction

induction: start from \varnothing, add all the consequences of the deduction system, and iterate.
coinduction: start from \mathcal{U}, remove all elements that are not consequence of other elements, and iterate.

Observation

In all the (algorithimic, ie without refl and trans) subtyping system met so far, the two coincide. This is not true in general, due to the presence of self-justifying sets, that is sets in which the deductions do not start just by axioms.

Example:

$$
\mathcal{U}=\{a, b, c, d, e, f, g\} \quad \frac{a}{b} \quad \frac{b}{c} \quad \frac{c}{a} \quad \bar{d} \quad \frac{d}{e} \quad \frac{f}{g}
$$

Inductively:
$\{d, e\}$

Induction and coinduction

induction: start from \varnothing, add all the consequences of the deduction system, and iterate.
coinduction: start from \mathcal{U}, remove all elements that are not consequence of other elements, and iterate.

Observation

In all the (algorithimic, ie without refl and trans) subtyping system met so far, the two coincide. This is not true in general, due to the presence of self-justifying sets, that is sets in which the deductions do not start just by axioms.

Example:

$$
\mathcal{U}=\{a, b, c, d, e, f, g\} \quad \frac{a}{b} \quad \frac{b}{c} \quad \frac{c}{a} \quad \bar{d} \quad \frac{d}{e} \quad \frac{f}{g}
$$

Inductively:
$\{d, e\}$

Induction and coinduction

induction: start from \varnothing, add all the consequences of the deduction system, and iterate.
coinduction: start from \mathcal{U}, remove all elements that are not consequence of other elements, and iterate.

Observation

In all the (algorithimic, ie without refl and trans) subtyping system met so far, the two coincide. This is not true in general, due to the presence of self-justifying sets, that is sets in which the deductions do not start just by axioms.

Example:

$$
\mathcal{U}=\{a, b, c, d, e, f, g\} \quad \frac{a}{b} \quad \frac{b}{c} \quad \frac{c}{a} \quad \bar{d} \quad \frac{d}{e} \quad \frac{f}{g}
$$

Inductively:
$\{d, e\}$

Induction and coinduction

induction: start from \varnothing, add all the consequences of the deduction system, and iterate.
coinduction: start from \mathcal{U}, remove all elements that are not consequence of other elements, and iterate.

Observation

In all the (algorithimic, ie without refl and trans) subtyping system met so far, the two coincide. This is not true in general, due to the presence of self-justifying sets, that is sets in which the deductions do not start just by axioms.

Example:

$$
\mathcal{U}=\{a, b, c, d, e, f, g\} \quad \frac{a}{b} \quad \frac{b}{c} \quad \frac{c}{a} \quad \bar{d} \quad \frac{d}{e} \quad \frac{f}{g}
$$

Inductively:
$\{d, e\}$

Induction and coinduction

induction: start from \varnothing, add all the consequences of the deduction system, and iterate.
coinduction: start from \mathcal{U}, remove all elements that are not consequence of other elements, and iterate.

Observation

In all the (algorithimic, ie without refl and trans) subtyping system met so far, the two coincide. This is not true in general, due to the presence of self-justifying sets, that is sets in which the deductions do not start just by axioms.

Example:

$$
\mathcal{U}=\{a, b, c, d, e, f, g\} \quad \frac{a}{b} \quad \frac{b}{c} \quad \frac{c}{a} \quad \bar{d} \quad \frac{d}{e} \quad \frac{f}{g}
$$

Inductively:
Coinductively:
$\{d, e\}$

Induction and coinduction

induction: start from \varnothing, add all the consequences of the deduction system, and iterate.
coinduction: start from \mathcal{U}, remove all elements that are not consequence of other elements, and iterate.

Observation

In all the (algorithimic, ie without refl and trans) subtyping system met so far, the two coincide. This is not true in general, due to the presence of self-justifying sets, that is sets in which the deductions do not start just by axioms.

Example:

$$
\mathcal{U}=\{a, b, c, d, e, f, g\} \quad \frac{a}{b} \quad \frac{b}{c} \quad \frac{c}{a} \quad \bar{d} \quad \frac{d}{e} \quad \frac{f}{g}
$$

Inductively:
$\{d, e\}$

Exercises

(1) Let $\mathcal{U}=\mathbb{Z}$ and take as deduction system all the instances of the rule

$$
\frac{n}{n+1}
$$

for $n \in \mathbb{Z}$. Which are the sets inductively and coinductively defined by it?
(2) Same question but with $\mathcal{U}=\mathbb{N}$.
(3) Same question but with $\mathcal{U}=\mathbb{N}^{2}$ and as deduction system all the rules instance of

$$
\frac{(m, n) \quad(n, o)}{(m, o)}
$$

for $m, n, o \in \mathbb{N}$

Why Coinduction for Recursive types?

We want to use $S=\mu X$.Int $\rightarrow X$ where $T=\mu Y$.Even $\rightarrow Y$ is expected.

Why Coinduction for Recursive types?

We want to use $S=\mu X$.Int $\rightarrow X$ where $T=\mu Y$.Even $\rightarrow Y$ is expected.
Use the substitutability interpretation.
Let $e: T$ then e :
(1) waits for an Even number,
(2) fed by an Even number returns a function that behaves similarly: (1) wait for an Even ...

Why Coinduction for Recursive types?

We want to use $S=\mu X$.Int $\rightarrow X$ where $T=\mu Y$.Even $\rightarrow Y$ is expected.
Use the substitutability interpretation.
Let $e: T$ then e :
(1) waits for an Even number,
(2) fed by an Even number returns a function that behaves similarly: (1) wait for an Even ...
Now consider f : S, then f :
(1) waits for an Int number,
(2) fed by an Int (or a Even) number returns a function that behaves similarly: (1) wait for ...

Why Coinduction for Recursive types?

We want to use $S=\mu X$. Int $\rightarrow X$ where $T=\mu Y$.Even $\rightarrow Y$ is expected.
Use the substitutability interpretation.
Let $e: T$ then e :
(1) waits for an Even number,
(2) fed by an Even number returns a function that behaves similarly: (1) wait for an Even ...
Now consider f : S, then f :
(1) waits for an Int number,
(2) fed by an Int (or a Even) number returns a function that behaves similarly: (1) wait for ...
S and T are in subtyping relation because their infinite expansions are in subtyping relation.

$$
S \leq T \quad \Longrightarrow \quad \text { Int } \rightarrow S \leq \text { Even } \rightarrow T \quad \Longrightarrow \quad S \leq T \wedge \text { Even } \leq \text { Int }
$$

This is exactly the proof we saw at the beginning:

This is exactly the proof we saw at the beginning:

Coinduction

$S \leq T$ is not an axiom but $\{S \leq T$, Even \leq Int $\}$ is a self-justifying set.

This is exactly the proof we saw at the beginning:

$$
\begin{aligned}
& \text { UnFoLd RIGHT } \frac{\text { Int } \rightarrow(\mu X \text {.Int } \rightarrow X) \leq \text { Even } \rightarrow(\mu Y \text {.Even } \rightarrow Y)}{\text { Int } \rightarrow(\mu X \text {.Int } \rightarrow X) \leq \mu Y \text {.Even } \rightarrow Y} \\
& \underbrace{\mu X \text {.Int } \rightarrow X}_{S} \leq \underbrace{\mu Y \text {.Even } \rightarrow Y}_{T}
\end{aligned}
$$

Coinduction

$S \leq T$ is not an axiom but $\{S \leq T$, Even \leq Int $\}$ is a self-justifying set.

Observation:

(1) The deduction above shows why a specific rule for μ is useless (apply consecutively the two unfold rules).
(2) If we added reflexivity and/or transitivity rules, then \mathcal{U} would be \mathcal{F}-consistent (cf. the third exercise few slides before).

A naive implementation of the Amadio-Cardelli algorithm is exponential (why?). If we "thread" the computation of the memoization environments we obtain a quadratic complexity. This is done as follows:
$\operatorname{subtype}(A, S, T)=$ if $(S, T) \in A$ then A else

A naive implementation of the Amadio-Cardelli algorithm is exponential (why?). If we "thread" the computation of the memoization environments we obtain a quadratic complexity. This is done as follows:

$$
\begin{aligned}
\operatorname{subtype}(A, S, T)= & \text { if }(S, T) \in A \text { then } A \text { else } \\
& \text { let } A_{0}=A \cup\{(S, T)\} \text { in }
\end{aligned}
$$

A naive implementation of the Amadio-Cardelli algorithm is exponential (why?). If we "thread" the computation of the memoization environments we obtain a quadratic complexity. This is done as follows:

$$
\begin{aligned}
\operatorname{subtype}(A, S, T)= & \text { if }(S, T) \in A \text { then } A \text { else } \\
& \text { let } A_{0}=A \cup\{(S, T)\} \text { in } \\
& \text { if } T=\text { Any then } A_{0}
\end{aligned}
$$

A naive implementation of the Amadio-Cardelli algorithm is exponential (why?). If we "thread" the computation of the memoization environments we obtain a quadratic complexity. This is done as follows:

$$
\begin{aligned}
\operatorname{subtype}(A, S, T)= & \text { if }(S, T) \in A \text { then } A \text { else } \\
& \text { let } A_{0}=A \cup\{(S, T)\} \text { in } \\
& \text { if } T=\text { Any then } A_{0} \\
& \text { else if } S=S_{1} \times S_{2} \text { and } T=T_{1} \times T_{2} \text { then } \\
& \operatorname{subtype}\left(\operatorname{subtype}\left(A_{0}, S_{1}, T_{1}\right), S_{2}, T_{2}\right)
\end{aligned}
$$

A naive implementation of the Amadio-Cardelli algorithm is exponential (why?). If we "thread" the computation of the memoization environments we obtain a quadratic complexity. This is done as follows:

$$
\begin{aligned}
\text { subtype }(A, S, T)= & \text { if }(S, T) \in A \text { then } A \text { else } \\
& \text { let } A_{0}=A \cup\{(S, T)\} \text { in } \\
& \text { if } T=\text { Any then } A_{0} \\
& \text { else if } S=S_{1} \times S_{2} \text { and } T=T_{1} \times T_{2} \text { then } \\
& \text { subtype }\left(\operatorname{subtype}\left(A_{0}, S_{1}, T_{1}\right), S_{2}, T_{2}\right) \\
& \text { else if } S=S_{1} \rightarrow S_{2} \text { and } T=T_{1} \rightarrow T_{2} \text { then } \\
& \operatorname{subtype}\left(\operatorname{subtype}\left(A_{0}, T_{1}, S_{1}\right), S_{2}, T_{2}\right)
\end{aligned}
$$

A naive implementation of the Amadio-Cardelli algorithm is exponential (why?). If we "thread" the computation of the memoization environments we obtain a quadratic complexity. This is done as follows:

$$
\begin{aligned}
\text { subtype }(A, S, T)= & \text { if }(S, T) \in A \text { then } A \text { else } \\
& \text { let } A_{0}=A \cup\{(S, T)\} \text { in } \\
& \text { if } T=\text { Any then } A_{0} \\
& \text { else if } S=S_{1} \times S_{2} \text { and } T=T_{1} \times T_{2} \text { then } \\
& \text { subtype }\left(\operatorname{subtype}\left(A_{0}, S_{1}, T_{1}\right), S_{2}, T_{2}\right) \\
& \text { else if } S=S_{1} \rightarrow S_{2} \text { and } T=T_{1} \rightarrow T_{2} \text { then } \\
& \operatorname{subtype}\left(\operatorname{subtype}\left(A_{0}, T_{1}, S_{1}\right), S_{2}, T_{2}\right) \\
& \text { else if } T=\mu X . T_{1} \text { then } \\
& \operatorname{subtype}\left(A_{0}, S, T_{1}\left[\mu X . T_{1} / X\right]\right)
\end{aligned}
$$

A naive implementation of the Amadio-Cardelli algorithm is exponential (why?). If we "thread" the computation of the memoization environments we obtain a quadratic complexity. This is done as follows:

$$
\begin{aligned}
\text { subtype }(A, S, T)= & \text { if }(S, T) \in A \text { then } A \text { else } \\
& \text { let } A_{0}=A \cup\{(S, T)\} \text { in } \\
& \text { if } T=\text { Any then } A_{0} \\
& \text { else if } S=S_{1} \times S_{2} \text { and } T=T_{1} \times T_{2} \text { then } \\
& \text { subtype }\left(\operatorname{subtype}\left(A_{0}, S_{1}, T_{1}\right), S_{2}, T_{2}\right) \\
& \text { else if } S=S_{1} \rightarrow S_{2} \text { and } T=T_{1} \rightarrow T_{2} \text { then } \\
& \operatorname{subtype}\left(\operatorname{subtype}\left(A_{0}, T_{1}, S_{1}\right), S_{2}, T_{2}\right) \\
& \text { else if } T=\mu X . T_{1} \text { then } \\
& \operatorname{subtype}\left(A_{0}, S, T_{1}\left[\mu X . T_{1} / X\right]\right) \\
& \text { else if } S=\mu X . S_{1} \text { then } \\
& \operatorname{subtype}\left(A_{0}, S_{1}\left[\mu X . S_{1} / X\right], T\right)
\end{aligned}
$$

A naive implementation of the Amadio-Cardelli algorithm is exponential (why?). If we "thread" the computation of the memoization environments we obtain a quadratic complexity. This is done as follows:

```
\(\operatorname{subtype}(A, S, T)=\) if \((S, T) \in A\) then \(A\) else
                let \(A_{0}=A \cup\{(S, T)\}\) in
    if \(T=\) Any then \(A_{0}\)
    else if \(S=S_{1} \times S_{2}\) and \(T=T_{1} \times T_{2}\) then
    subtype \(\left(\operatorname{subtype}\left(A_{0}, S_{1}, T_{1}\right), S_{2}, T_{2}\right)\)
    else if \(S=S_{1} \rightarrow S_{2}\) and \(T=T_{1} \rightarrow T_{2}\) then
        subtype \(\left(\operatorname{subtype}\left(A_{0}, T_{1}, S_{1}\right), S_{2}, T_{2}\right)\)
    else if \(T=\mu X . T_{1}\) then
    \(\operatorname{subtype}\left(A_{0}, S, T_{1}\left[\mu X . T_{1} / X\right]\right)\)
    else if \(S=\mu X . S_{1}\) then
    subtype \(\left(A_{0}, S_{1}\left[\mu X . S_{1} / X\right], T\right)\)
    else fail
```

Compare the previous algorithm with the Amadio-Cardelli algorithm:

$$
\begin{gathered}
\overline{A \vdash S \leq T}(S, T) \in A \\
\frac{A \vdash S \leq \operatorname{Any}}{}(S, \text { Any }) \notin A \\
\frac{A^{\prime} \vdash S_{1} \leq T_{1} \quad A^{\prime} \vdash S_{2} \leq T_{2}}{A \vdash S_{1} \times S_{2} \leq T_{1} \times T_{2}} A^{\prime}=A \cup\left(S_{1} \times S_{2}, T_{1} \times T_{2}\right) ; A \neq A^{\prime} \\
\frac{A^{\prime} \vdash T_{1} \leq S_{1} \quad A^{\prime} \vdash S_{2} \leq T_{2}}{A \vdash S_{1} \rightarrow S_{2} \leq T_{1} \rightarrow T_{2}} A^{\prime}=A \cup\left(S_{1} \rightarrow S_{2}, T_{1} \rightarrow T_{2}\right) ; A \neq A \\
\frac{A^{\prime} \vdash S[\mu X . S / X] \leq T}{A \vdash \mu X . S \leq T} A^{\prime}=A \cup(\mu X . S, T) ; A \neq A^{\prime} ; T \neq \text { Any } \\
\frac{A^{\prime} \vdash S \leq T[\mu X . T / X]}{A \vdash S \leq \mu X . T} A^{\prime}=A \cup(S, \mu X . T) ; A \neq A^{\prime} ; S \neq \mu Y . U
\end{gathered}
$$

They both check containment in the relation coinductively defined by:

$$
\begin{aligned}
& \text { TOP } \frac{\operatorname{PrOd} \frac{S_{1} \leq T_{1} \quad S_{2} \leq T_{2}}{T \leq \text { Any }} \quad \text { ARROW } \frac{T_{1} \leq S_{1} \quad S_{2} \leq T_{2}}{S_{1} \times S_{2} \leq T_{1} \times T_{2}}}{S_{1} \leq T_{1} \rightarrow T_{2}} \\
& \text { UNFOLD LEFT } \frac{S[\mu X . S / X] \leq T}{\mu X . S \leq T} \quad \text { UNFOLD RIGHT } \frac{S \leq T[\mu X . T / X]}{S \leq \mu X . T}
\end{aligned}
$$

But the former is far more efficient.

Outline

(27) Simple Types
(28) Recursive Types
(29) Bibliography

References

目
R. Amadio and L. Cardelli. Subtyping recursive types. ACM Transactions on Programming Languages and Systems, 14(4):575-631, 1993.

囯 Pierce et al. Recursive types revealed, Journal of Functional Programming, 12(6):511-548, 2002.

