A Usability Evaluation of Qubes OS

Austin Shafer
amshafe2@ncsu.edu
North Carolina State University
Raleigh, North Carolina

CCS CONCEPTS

« Computing Security; - Human-Computer Interactions;

KEYWORDS
Computer Security, Usability

1 ABSTRACT

The Qubes operating system [7] is somewhat unique in that it
constrains applications in individual virtual machines, requir-
ing the user to change the way they think about interacting
with the desktop. In this system usability has a profound
effect on security, as user mistakes can undermine the strict
isolation Qubes provides. We evaluate if Qubes has success-
fully incorporated virtual machines into its user interface in
order to determine whether other operating systems should
consider incorporating their own security primitives. We
use Nielsen’s heuristics [14] as a framework for analyzing
common tasks in Qubes, and find that in most situations
Qubes follows usability best practices. Additionally we find
room for improvement in system dialogues and the ability to
accommodate new users. Our results show that it is possible
to design a usable interface around isolation mechanisms,
and that there is more progress to be made in this field.

2 INTRODUCTION

Qubes is an operating system built on the Xen hypervisor [1]
that follows the "security by compartmentalization” ideol-
ogy. All applications are run inside of virtual machines, also
known as AppVMs, which the user has full control over. Ap-
pVMs communicate with the privileged Xen domain (domo0)
where the desktop environment runs as a traditional X11
server. An application running in an AppVM is visually the
same except for a colored border around the window iden-
tifying what virtual machine it is running in. Qubes even
takes this a step further, running system resources like the
network stack and firewall inside their own VMs to increase
security.

Any graphical desktop interface takes the technical abili-
ties of an operating system and allows the user to interact
with them in an easy and non-technical manner. The desk-
top environment needs to handle both implementation and
usability problems associated with running applications in a
workspace. It needs to handle graphical presentation, client
communication, multiple applications and workspaces, and

other sensitive tasks. This interface is the stage on which an
operating system presents its features.

Most popular operating systems are interacted with through
a traditional set of windows and menus, but Qubes requires
its users to learn a slightly new way of thinking. Security
primitives such as virtual machines are usually ignored by
all but the most technical personnel on popular operating
systems, but they are a basic building block in Qubes that the
user regularly interacts with. It tries to decrease the friction
required to access security features in an effort to increase
their use in day to day tasks. This comes with its own draw-
backs, as the user needs to be much more knowledgeable
on both the interface and the virtual machine technology it
uses.

Qubes is an interesting case study because it has placed an
emphasis on developing the usability of the system despite
deliberately targeting a user base experienced in security.
Qubes is well known for its security contributions, but less
heralded for its attempts to make those contributions easily
accessible to the user.

In this study we will be performing a usability evaluation
of Qubes using Nielsen and Molich’s nine usability heuristics
[14]. These heuristics will provide a framework for analysing
particular tasks that a user might commonly be required to
do. The tasks chosen were creating an AppVM, launching an
application, and copying a file between two AppVMs.

In this paper we present the following contributions:

e Perform a heuristic evaluation on common operations
in Qubes OS

e Provide feedback on how Qubes’ security related in-
terfaces may be improved

e Based on the results of the heuristic evaluation, rec-
ommend if and how other desktop interfaces should
consider incorporating their own security primitives.

We find that Qubes does its best to follow usability best
practices, and makes some exceptions in areas where security
would be negatively impacted. We explain the reasoning
behind these deviations and document areas of concern in
the interface. Finally, we argue that this security-centered
usability design can be adopted by other projects.

3 METHODOLOGY

Our goal in this study is to examine the usability of the Qubes
operating system through expert analysis. In order to reduce

Conference’17, July 2017, Washington, DC, USA

the scope of this analysis, we will only examine a few short
tasks that are common in any use of the system: creating an
AppVM, launching an application, and copying data from
one AppVM to another.

Applications execute in their own virtual machines, called
AppVMs. AppVMs can run one application or many, and can
be persistent or disposed of as soon as their application(s)
finish executing. Because an AppVM is an important build-
ing block of the Qubes desktop we will be analysing how
intuitive it is to create and manage a new AppVM. Although
users may have experience with virtual machines they prob-
ably are not used to managing them as part of a graphical
desktop.

Launching an application in an AppVM is also one of the
basic tasks all users in Qubes will perform. We include it
for analysis because it is unique compared to other desktop
environments. Users are not normally required to think about
what context their applications are executing in, and this
new mindset should be communicated as comfortably as
possible.

Likewise, copying data between applications should be
both functional and easy to understand or else users will not
be productive when using the system. Although AppVMs
are meant to be separate, using a file from one application in
another is still a must-have feature. We evaluate two types
of data transfer: copying a file to a different AppVM, and
copy/pasting between AppVMs. This is conceptually the
simplest task, but it is important that the user can understand
where data is located and why access is so restricted.

We will use Nielsen’s nine usability heuristics[14] to form
the basis for our comparison, as they are a well established
set of best practices. Each task will be compared against all
of the heuristics to see if the recommended practices are
followed or ignored. While completing a task we will first
explore the interface naturally, without help. If we are stuck
and do not know how to complete the task we will then refer
to the official online documentation.

Nielsen and Molich’s Usability Heuristics
Simple and natural dialogue
Speak the user’s language
Minimize user memory load
Be consistent
Provide feedback
Provide clearly marked exits
Provide shortcuts
Good error messages
Prevent errors

For each task under analysis we will label each heuristic
as being followed or ignored, along with some comments as
to why that heuristic was labelled such. The comments will
also communicate if a heuristic is only partly followed or

Austin Shafer

ignored. After commenting on each heuristic there will be a
discussion of specific examples of the interface and how they
impact both the heuristic evaluation and the user experience.

We will try to document any cases where the recom-
mended practices were intentionally disobeyed for a clear
reason. In some cases decisions like this might actually make
sense. This should hopefully give us an idea of how focused
and intentional the developers were on usability as they
developed the user interface.

The author will complete the same general tasks as will be
examined as part of the expert evaluation: create an AppVM,
launch an application, and move data from one AppVM to
another. Although it is important that they do all three tasks
at some point, they will be encouraged to explore the system
and try to use it however they see fit. We are interested in
how much conflict arises when a new user is dropped into an
interface they are not familiar with, and how accommodating
Qubes makes the transition.

By analysing the usability of basic tasks we can recom-
mend if other desktop-based operating systems should ex-
pose security related functionality in the graphical interface.

4 EXPERIMENT SETUP

All testing was done with Qubes 3.2.1 in VirtualBox 6.0.18
running on MacOS Catalina 10.15.2. Unfortunately virtualiza-
tion was required as Qubes was unable to run on the testing
laptop we prepared. The laptop we planned on testing with
was an old macbook, which Xen does not support. Qubes is
not meant to be installed inside of a virtualized environment,
and the latest version (4.0.3) did not work in VirtualBox.
Unfortunately this means that the version of Qubes tested
is noticeably far behind the current development status of
Qubes.

Running Qubes in a virtual machine does impact the eval-
uation. Firstly, it means we are not evaluating the latest
version of Qubes. This is obviously an issue if the latest ver-
sion has fixed or updated interface components that we are
evaluating. The host environment also impacts some of the
keystrokes recorded by Qubes. Certain shortcuts will not be
possible inside the VM, such as fullscreen operations.

Evaluation was performed by the author, who is a grad-
uate student in computer science experienced in operating
system development. They have regularly used MacOS, Win-
dows, Linux, and FreeBSD in a desktop setting for multiple
years and have contributed to FreeBSD, JunOS, and the seL4
microkernel. The evaluator is familiar with virtualization
technologies, and has used Virtualbox and KVM regularly.

5 RESULTS

Three tasks were evaluated: creating an AppVM, launching
an application in an AppVM, and copying data between two

A Usability Evaluation of Qubes OS

AppVMs. Each task has been broken down based on the
usability heuristics observed, with comments per heuristic.

Qubes VM Manager

One of the most central applications in Qubes is the virtual
machine manager, which is used to create domains to execute
applications in. It handles AppVM templating, permissions,
network settings, and VM settings. Due to its importance
we evaluated a common task required of users: creating an
AppVM. Some additional interactions were also evaluated,
such as viewing all VMs, as they are a part of the natural use
of the Qubes VM manager.

Overall this task went smoothly, but when technical is-
sues were encountered the dialogues were significantly less
friendly. One of the error messages observed when starting
an AppVM was "qrexec not connected". This message is com-
pletely unintelligible to any casual user, and gives them no
clues as to what action they need to perform. Even if they
look up gqrexec and understand its role in Qubes’ communi-
cation model between AppVMs, they still have no clue what
they did wrong and what remedy is required.

System VM View About

x ODOE@E cECY L 288 O

Search: |

Name ~ state Template NetvM MEM
o domo . Admin\ nia 1985 ME
& evalvm . fedora-28 sys-firewall 539 MB
- 419 MB

(4] & sysfirewall . fedora-28 sys-net 473 MB

@ Q sysnet . fedora-28 nia 301 MB

Figure 1: The Qubes VM Manager

Simple and natural dialogue: Overall the dialogues contain
the minimum amount of info needed to effectively process
the system. Messages, such as starting a VM, are intended
to be simple and quickly understood. Pop-up dialogues are
terse and easy to read at a glance.

Speak the user’s language: Lots of Qubes specific vocabulary
is used in the VM creation dialog, such as AppVM, HVM,
DisposableVM. Most of the definitions may not be clear to
new users, but they would be obvious to experienced ones.
This might not be considered the language of a new user, but
it is all vocabulary that they will quickly learn.

Error messages related to technical failures are extremely
foreign to any user not involved in the development of Qubes,
which is a real problem. The most obvious of these is the
’qrexec not connected’ message mentioned in the task sum-
mary. Technical error messages should be hidden in the
system logs for more tech-savy users to read.

Conference’17, July 2017, Washington, DC, USA

Minimize user memory load: Running many virtual machines
increases the load on the end user as they need to manage
and update all VMs individually. However, most of the mem-
ory load required of the user involves mentally tracking what
data is in what AppVM. Users have full control over where
they place data and where they install applications. The com-
plexity is entirely dependent on how the user organizes their
AppVMs. The VM manager by default only shows running
VMs, but can also display all active and inactive VMs.

Be consistent: There are obvious patterns and notifications
in the interfaces icons that the manager communicates to
the user. Colored dots naturally convey the running state of
each AppVM. Graphically the system is consistent, with all
actions using the color assigned to their respective domain.
Most any icon can be hovered over to display a text hint of
its function, which is especially helpful to a new user.

One exception to this is the VM state, a colored dot show-
ing if the AppVM is running, which does not show any text
hints. Most of the status colors are obvious (i.e. green for
running) but some of them, such as grey signifying a paused
VM, are not.

Provide feedback: Most actions are confirmed with a change
in icon state or a popup window. Sometimes the pop shows
that an action has completed, but the result of the action is
not visible. An example of this is observed when a new VM
is created. The manager is only showing active VMs so the
newly created VM will not be on the list.

Provide clearly marked exits: Qubes provides window con-
trols similar to most common operating systems. Users can
always press the exit button in the top right of a window
and can find buttons to cancel or confirm an action before it
takes place.

Provide shortcuts: AppVM creation is too complicated for any
keyboard shortcut system. Qubes does allow for template
VMs, which act as a shortcut allowing the user to quickly cre-
ate VMs of a well-known type. Many templates are provided
in the base installation, most of which are common Linux
distributions that the user can try. Creating a new VM from
a template streamlines the process and reduces the workload
on the user.

Good error messages: Error messages related to user actions
are easily understood, such as there not being enough avail-
able memory to launch VM. Usually the problem is trivial
and is easily identified, such as not having enough memory
to start a VM. Technical error messages are a completely
different story, as they seem to be written for the designers
instead of the end users. Again, a good example of this is the
grexec message mentioned in the summary.

Conference’17, July 2017, Washington, DC, USA

Prevent errors: The VM manager does an effective job of
walking the user through any particular action. Because the
process is very structured, it is both easy to use and hard
to trigger errors. The manager only presents valid options
during configuration, so anything the user chooses will work.
Usually the user is choosing from a list of templates, which
are all valid and supported configurations.

Launching an Application

Launching an application in an AppVM is a mandatory in-
teraction for any user of Qubes. Luckily the process is very
simple, and is communicated well. As part of this task, we
also evaluate the presentation mechanism of the launched
application, as users need to be able to interact with it in a
clear and secure manner.

Qubes provides a shortcut menu for quickly launching
applications through a list of AppVM Shortcuts. These ap-
plications are sorted by AppVM, so the user can know what
domain they are launching the application in. There is some
basic automated detection of applications, so if the user in-
stalls a new program in a VM it will show up in the shortcuts

menu.

Open in New Window R Prograr...

Terminal Emulator

|| Create Launcher..
== Create URL Link...

£ system Tools >
[create Folder... N
| Create Document > & Disposablevh . >
& Domain: anon-whonix >
|£ “% eval-vm: Add more shortcuts...

§4;, Arrange Desktop Icons
34 Desktop Settings...
|l Properties...

& Domain: my-new-vm)m ke
Domain: personal > @ eval-vm: Firefox)

& Domain: untrusted > M eval-vm: Terminal

& Domain: vault

& Domain: work >
Qubes VM Manager

& ServiceVM: sys-firewall

& ServiceVM: sys-net

& ServicewM: sysrwhnmx

& Template: debian-9

& Ternplate: fedora-28

& Template: whonix-gw-14

& Ternplate: whonix-ws-14

Log Out

WOV W WV W W

Figure 2: The application shortcuts menu.

Simple and natural dialogue: Due to its mostly graphical na-
ture, there is limited dialog in this task. The application
shortcut menu is well organized and the titlebars hold the
name of the domain the application is executing in for ad-
ditional clarity. The shortcuts themselves have their names
derived from the application they launch.

Speak the user’s language: Users will find that this task fol-
lows the keywords and actions that they have come to expect.
Right clicking shows an application menu, which shows a
sorted list of programs. Most of the dialog encountered is
common to other windowing systems or, in the case of VM
names, is set by the user themselves.

Austin Shafer

Minimize user memory load: The cognitive requirements for
this are minimal, as all of the information is presented graph-
ically. The user might need to remember in which AppVM
they installed the application they want to launch, but this
can easily be found by poking around in the shortcuts menu.

Be consistent: Both the window controls and the shortcut
menu follow consistent design patterns. The window title-
bar has minimize/maximize/close buttons familiar with any
desktop user, and the titlebar matches the color assigned to
the AppVM. The shortcut menu also displays assigned colors
for each AppVM, and common utilities such as file browsers
show up in all AppVMs.

Provide feedback: While Qubes does provide application and
VM launch feedback in the form of pop notifications, some-
times an AppVM might have to be started before the appli-
cation can execute. If the VM takes a long time to start up, it
may seem like nothing is happening. Feedback on the state
of the AppVM can be seen in the VM manager, but the user
needs to know to look there.

Provide clearly marked exits: For normal operation this prac-
tice is followed, as all titlebars have a close button.

However this goes downhill quickly if the user makes an
application fullscreen. The usual titlebar is no longer visible,
there are no visual indicators for how to undo the fullscreen
operation. The user needs to know the non-obvious keyboard
shortcut to undo this (Ctrl-F8 and Ctrl-F9). This shortcut did
not work in Virtualbox on MacOS during our evaluation.
The user can still Alt-Tab to escape, meaning this is only a
usability problem not a security issue.

File Edit View Search Terminal Help
[us: new-vm ~1$ [

BOEFS I E@H 6Lt

Figure 3: The terminal application in fullscreen mode with
no apparent method of escape.

A Usability Evaluation of Qubes OS

Provide shortcuts: There are some normal keyboard shortcuts
for closing windows and such, but the fullscreen related
keybindings are terrible. Qubes inherits these keybindings
from KDE, since it is the desktop environment Qubes is
derived from. The user is free to rebind these shortcuts by
modifying a configuration file, but that is hardly a usability
focused solution.

A much better way to handle this problem is MacOS’ ap-
proach. When the user hovers their cursor near the top of
the screen the titlebar reappears, and the user can minimize
the window. A graphical solution like this would prevent
users from getting lost in a fullscreen application.

Good error messages: Because this test was conducted using
the file browser from an AppVM template, no specific errors
were encountered. Any errors during AppVM startup will
mirror the previous task where we evaluated the Qubes VM
Manager.

Prevent errors: Again, no errors of any kind were observed.
The file browser was chosen because it was known to work,
and the application launcher only showed valid options to
prevent any issues.

Copying Data Between AppVMs

AppVMs provide security through their isolation, but certain
tasks require data to be accessed from a separate VM. It
is important that data movement capabilities are provided
in a secure manner as this has the potential to interfere
with the strict isolation normally provided by Qubes. We
analyse two common ways of sharing data: copying files
between AppVMs and Copy/Paste. We find that Qubes does
a very good job of ensuring the security of the user while
performing these actions, but could still use some minor
usability improvements.

One of the recurring techniques used is the use of explicit
actions to prevent accidental mistakes. File copy requires
the user to type the full name of the destination VM and
copy/paste requires extra keystrokes. This aids security at
the expense of usability. In most systems this trade-off would
not be worth it, but leaking data between AppVMs in Qubes
undermines the strict isolation of the system.

Simple and natural dialogue: Although there is limited dialog,
it is succinct and to the point. When fetching the AppVM’s
clipboard, popups inform the user of the next action they
should perform. These popups usually time out and disappear
before the user has enough time to read the entire message,
but the user can hover their cursor over the message to
prevent this.

Conference’17, July 2017, Washington, DC, USA

[DomO0] Question

Do you allow domain "personal" to execute
qubes Filecopy operation on the domain "eval-
vm'"?

"Yes to All" option will automatically allow this
operation in the future.

[mwo || vestoall || ves |

Figure 5: Requesting confirmation to perform a copy opera-
tion.

Speak the user’s language: All dialog is built on established
vocab. There is some new vocab related to clipboards, but
this is identical to other desktop systems the user is familiar
with. Again there is opportunity to provide an introduction
or help text to aid a new user who might not have read the
manual yet.

Minimize user memory load: Copying data isn’t a trivial or
effortless operation, but this is by design. Qubes forces the
user to be purposeful about the transfer they are initiating,
whether that be by making them type the destination AppVM
name or explicitly sharing the copy buffer. The user has to
actively think while performing both tasks, decreasing the
likely hood that they make a mistake and leak sensitive
information. The load on the user might be increased, but
the potential for disaster has been decreased.

Be consistent: Copying files between VMs had excellent us-
ability, security, and consistency. Right clicking in the file
browser to share between AppVMs is the type of interface
the user expects, and even new users can complete this with
relative ease.

Enter the destination domain name:

eval-vm|

Cancel OK
s

Figure 4: Initiating a file copy requires explicit specification
of the destination AppVM.

Conference’17, July 2017, Washington, DC, USA

QOpen Return

|

— Open In New Tab Ctrl+Return
Open In New Window ift+Return
Open With Other Application

Cut Crl+.

W Copy Cri+C
Move to...

Copy to.

Pictt Move to Trash

Rename...

BN compress.

Move To Other AppVM

Copy To Other AppVM... [
i

=

Open In DisposableVM
Send to..

Properties Ctrls

Figure 6: Right clicking in the file browser shows an intu-
itive copy dialog.

Copy/Paste was a much different experience. There is no
right click menu for sharing the AppVM’s copy buffer and
the user needs to know a non-trivial set of keyboard short-
cuts without being provided any hints. The documentation
online is quite nice, but unless a user actively searches online
they might not even realize that inter-AppVM copy/paste is
possible.

Provide feedback: When copying a file to another AppVM,
there is no feedback on where that file went. The user needs
to know files are always copied to the ’QubesIncoming’ folder
in the destination VM. This could easily be solved with a
popup saying that the copy completed and the file was placed
in ’QubesIncoming’.

[my-new-vm] Qubesincoming

r Home = Qubesincoming

personal

Figure 7: The ’QubesIncoming’ folder showing a directory
holding files copied from the ’personal’ AppVM.

When performing the keyboard shortcuts for copy/paste,
popups will display that the copy buffer has been shared.
These popups timeout quickly, which is appropriate consid-
ering that users will only want to read the popup the first
time they perform a copy.

Austin Shafer

Provide clearly marked exits: Windows related to file sharing
are familiar, and Qubes has designed their interface to make
sure that there is no easy way to accidentally share informa-
tion. If the user wants to stop a copy they can just close the
window, or not perform the 4 shortcuts needed to copy and
paste data.

Provide shortcuts: The shortcuts for copy/paste are more
complicated than other systems. The user must copy the
data to the AppVM’s copy buffer, then fetch that buffer and
share it with another AppVM. Finally they perform a paste
in the destination AppVM. Although this hurts usability it is
motivated by security, as it ensures that copy buffers are not
shared without user intervention.

Good error messages: If an incorrect VM name is specified
Qubes will inform the user. There is potentially one missing
error message: if the user tries to share a clipboard when none
has been selected nothing will happen. Ideally this should
create a popup saying that there was no fetched clipboard
to share.

Prevent errors: No errors were observed. This is another ex-
ample of Qubes only presenting valid operations to the user.
Because of the complexity of these seemingly normal opera-
tions the user is less likely to make a mistake and compromise
their security.

6 FUTURE WORK

Due to our evaluation being performed on an out-of-date
version of Qubes, it is hard to recommend Qubes-specific
improvements. The problems found in our evaluation were
minor, and fixes like changing shortcut keys are trivial. The
developers have obviously kept usability in mind, and are
continuing to do so moving forward.

The Qubes interface is easy to explore and discover, but
there is room for improvement in the way they introduce new
users to the interface. After booting for the first time Qubes
could open the top-level documentation page in an AppVM’s
web browser to help the user get their bearings. The online
documentation is very helpful, and routing confused users
to it would help them learn the system easier. There are
many popups providing feedback on Qubes specific actions.
Allowing an ability to click on such a popup to open the
relevant documentation would also be a useful measure.

The interface design present in Qubes does afford some
possibility for reuse by others, although direct applications
are not trivial. One major problem is the overhead that Ap-
pVMs incur, which could be solved by using a more light-
weight security primitive such as a container or sandbox.
Most modern desktops provide mechanisms to sandbox ap-
plications, and Qubes provides a reference implementation
of how to expose information to the user about the execution

A Usability Evaluation of Qubes OS

context of their programs. Other interesting ideas, such as
Qubes’ approach to copy buffer sharing, could also be used
by other operating systems due to their efficient prevention
of accidents which could compromise security.

7 RELATED WORK

There are a variety of desktop environments and operating
systems focusing on isolation. CapDesk[10] runs applica-
tions and application subcomponents in "caplets" which are
isolated from each other. CapDesk tries to aid usability by
making all caplet operations completely invisible to the user,
and it is the first capability based desktop with a traditional
point and click interface.

Virtics[16] is a virtualization based operating system whose
design is similar to Qubes[7]. Both projects are built on the
Xen Hypervisor[1] and run applications in virtual machines,
which communicate over the X11 protocol[19]. A hypervi-
sor was chosen for its effective isolation of virtual machines
while still retaining flexibility[12].

Unlike Virtics, Qubes also runs some core operating sys-
tem facilities, such as the networking stack and firewall, in
separate virtual machines. The authors of Virtics do value
usability as a primary feature, and they perform a simple
usability evaluation.

SAFE-OS[9] is another predecessor to Qubes, but unlike
Virtics the authors do not evaluate the usability of their
created system. Their usability evaluation consists of a per-
formance benchmark to show that latencies are tolerable. Of
the three, Qubes is the only project seeing any continued
development or real world use.

Numerous frameworks for evaluating the usability of a sys-
tem have been proposed. One of the post popular is Nielsen
and Molich’s Heuristic Evaluation [13][14][11]. They out-
line 9 general heuristics by which an expert can use as a
guideline for analysis of a system. Other contributions, such
as [5], propose general principles which should be followed
during development to ensure that the resulting product. [5]
additionally tries to answer why certain "obvious" guidelines
are not followed in practice. Similar frameworks [21] instead
analyse security from a usability perspective in an attempt
to align both usability and security goals.

[8] and [3] are both examples of formal evaluations of
application usability in various Microsoft products. They
outline problems they found with the software under analysis
and draw comparisons to Nielsen’s heuristics[14].

User-defined access control [17] is a system for automati-
cally granting permission to resources based on user intent.
It provides an effective alternative to pop up dialog boxes,
which can condition the user to automatically accept them.

Other resources [15][4] try to provide an overview of the
history of usability and security. Although they document

Conference’17, July 2017, Washington, DC, USA

changes in interface design they do not focus much atten-
tion on desktop environments themselves. [18][6] provide
a collection of usability evaluation methods which can be
used in practice, and are very relevant to our evaluation of
Qubes.

The inspiration for this paper [20] examines the effective-
ness of automating complicated HTTPS configuration with
Certbot. It argues that Certbot noticeably reduces the friction
required to set up an HTTPS certificate, with the downside
that users aren’t as knowledgeable on what actions Certbot
performed. [2] investigates if this automation is harmful to
users in the long run, although they agree that automation
in security is necessary.

8 CONCLUSION

In this work we evaluated three essential tasks which are
part of the Qubes OS desktop interface. We evaluated the
tasks against nine usability heuristics, showing that Qubes
does its best to follow best practices in most situations, and
offer suggestions for improvement where appropriate. We
argue that other operating systems can learn from Qubes,
and can incorporate its ideas into their own interfaces.

REFERENCES

[1] Paul Barham, Boris Dragovic, Keir Fraser, Steven H, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. 2003. Xen and
the Art of Virtualization. ACM SIGOPS Operating Systems Review 37
(11 2003). https:/doi.org/10.1145/945445.945462

[2] W.Edwards, Erika Poole, and Jennifer Stoll. 2008. Security Automation
Considered Harmful? (01 2008). https://doi.org/10.1145/1600176.
1600182

[3] Steven Furnell. 2007. Making Security Usable: Are Things Improving?
ECU Publications 26 (09 2007). https://doi.org/10.1016/j.cose.2007.06.
003

[4] Simson Garfinkel and Heather Richter Lipford. 2014. Usable Security:
History, Themes, and Challenges. Synthesis Lectures on Information
Security, Privacy, and Trust 5 (09 2014), 1-124. https://doi.org/10.2200/
S00594ED1V01Y201408SPT011

[5] John Gould and Clayton Lewis. 1985. Design for Usability: Key Princi-
ples and What Designers Think. Commun. ACM 28 (03 1985), 300-311.
https://doi.org/10.1145/3166.3170

[6] James Hom. 1996. The Usability Methods Toolbox Handbook. (01
1996).

[7] Rafal Wojtczuk Joanna Rutkowska. [n.d.]. QUBES System Architec-
ture. https://www.qubes-os.org/attachment/wiki/QubesArchitecture/
arch-spec-0.3.pdf

[8] J. Johnston, J.H.P. Eloff, and Les Labuschagne. 2003. Security and
human computer interfaces. Computers Security 22 (12 2003), 675-684.
https://doi.org/10.1016/S0167-4048(03)00006-3

[9] Frangois Lesueur, Ala Rezmerita, Thomas Herault, Sylvain Peyronnet,
and Sebastien Tixeuil. 2010. SAFE-OS: A secure and usable desktop
operating system. 1-7. https://doi.org/10.1109/CRISIS.2010.5764916

[10] Mark S. Miller. [n.d.]. E and CapDesk: POLA for the Distributed
Desktop. http://www.combex.com/tech/edesk.html

[11] Rolf Molich, Rolf, Nielsen, and Jakob. 1990. Improving a Human-
Computer Dialogue. Commununications of ACM 33 (03 1990), 338-.
https://doi.org/10.1145/77481.77486

https://doi.org/10.1145/945445.945462
https://doi.org/10.1145/1600176.1600182
https://doi.org/10.1145/1600176.1600182
https://doi.org/10.1016/j.cose.2007.06.003
https://doi.org/10.1016/j.cose.2007.06.003
https://doi.org/10.2200/S00594ED1V01Y201408SPT011
https://doi.org/10.2200/S00594ED1V01Y201408SPT011
https://doi.org/10.1145/3166.3170
https://www.qubes-os.org/attachment/wiki/QubesArchitecture/arch-spec-0.3.pdf
https://www.qubes-os.org/attachment/wiki/QubesArchitecture/arch-spec-0.3.pdf
https://doi.org/10.1016/S0167-4048(03)00006-3
https://doi.org/10.1109/CRISIS.2010.5764916
http://www.combex.com/tech/edesk.html
https://doi.org/10.1145/77481.77486

Conference’17, July 2017, Washington, DC, USA

[12] Mihir Nanavati. 2011. Breaking up is hard to do : security and func-
tionality in a commodity hypervisor. (01 2011).

[13] Nielsen and Jacob. 2001. How to conduct a heuristic evaluation. (01
2001).

[14] Nielsen, Jakob, Rolf Molich, and Rolf. 1990. Heuristic evaluation of
user interfaces. https://doi.org/10.1145/97243.97281

[15] Bryan Payne and W. Edwards. 2008. A Brief Introduction to Usable
Security. Internet Computing, IEEE 12 (06 2008), 13-21. https://doi.
org/10.1109/MIC.2008.50

[16] Matt Piotrowski and Anthony Joseph. 2012. Virtics: A System for
Privilege Separation of Legacy Desktop Applications. (05 2012).

[17] Franziska Roesner, Tadayoshi Kohno, Alexander Moshchuk, Bryan
Parno, Helen Wang, and Crispin Cowan. 2012. User-Driven Access

(18]
[19]
[20]

[21]

Austin Shafer

Control: Rethinking Permission Granting in Modern Operating Sys-
tems. Proceedings - IEEE Symposium on Security and Privacy (05 2012),
224-238. https://doi.org/10.1109/SP.2012.24

Rubin, Jeffrey, and Dana Chisnell. 2008. Handbook of Usability Testing.
R. Scheifler. 1987. X Window System Protocol, Version 11. (01 1987).
Christian Tiefenau, Emanuel Zezschwitz, Maximilian Haring, Katha-
rina Krombholz, and Matthew Smith. 2019. A Usability Evaluation
of Let’s Encrypt and Certbot: Usable Security Done Right. 1971-1988.
https://doi.org/10.1145/3319535.3363220

Ka-ping Yee. 2003. User Interaction Design for Secure Systems. https:
//doi.org/10.1007/3-540-36159-6_24

https://doi.org/10.1145/97243.97281
https://doi.org/10.1109/MIC.2008.50
https://doi.org/10.1109/MIC.2008.50
https://doi.org/10.1109/SP.2012.24
https://doi.org/10.1145/3319535.3363220
https://doi.org/10.1007/3-540-36159-6_24
https://doi.org/10.1007/3-540-36159-6_24

	1 Abstract
	2 Introduction
	3 Methodology
	4 Experiment Setup
	5 Results
	Qubes VM Manager
	Launching an Application
	Copying Data Between AppVMs

	6 Future work
	7 Related Work
	8 Conclusion
	References

