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Abstract. In this paper we present the first DL cryptanalysis on 4-
round Xoodyak and the first related-key DL cryptanalysis on 5-round
Xoodyak. We present the first DL distinguishers on 4- and 5-round
Xoodoo, and then perform key-recovery attacks on 4- and 5-round Xoodyak
using two recent techniques: the partitioning technique and the neutral
bits idea. The data complexity of the 4-round DL attack is about 223.34

nonces and the times complexity is about 223.34 4-round Xoodoo calls.
The data complexity of the 5-round related-key DL attack is about 222.04

nonces and the time complexity is about 222.04 5-round Xoodoo calls.

1 Introduction

1.1 Differential-Linear Cryptanalysis

Differential-Linear (DL in short) cryptanalysis [8] studies the relation between
the parity of state bits of two ciphertexts generated from two plaintexts with
a fixed difference. More precisely, given a difference ΩI and state bits λO, DL
cryptanalysis considers plaintexts pair (P, P ′ = P ⊕ ΩI), and checks whether
the corresponding ciphertext pair (C,C ′) satisfies C · λO = C ′ · λO.

For a DL distinguisher, a cipher E is treated as a decomposition E = E1◦E0.

A differential characteristic with a probability of p on E0 is denoted by ΩI
p−−→
E0

ΩM and a linear approximation with a bias of ϵ on E1 is denoted by λM
ϵ−−→
E1

λO.

A DL characteristic on the entire cipher E relies on such differential characteristic
and linear approximation, and its probability is:

Pr[C · λO = C ′ · λO | P ⊕ P ′ = ΩI ] =
1

2
+ 2pϵ2.

Therefore, such a DL characteristic is denoted by ΩI
2pϵ2−−−→
E

λO.

Recently, two techniques produced to improve DL attacks: the partitioning
technique of Leurent [9] and the neutral bits idea of Beierle et al. [2]. We now
describe these techniques which are used in our attacks.

1.2 DL Cryptanalysis with Partitioning

The partitioning technique was first suggested to improve the cryptanalysis of
ARX ciphers. In [3] Biham and Carmeli suggest the partitioning technique to
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improve linear cryptanalysis on FEAL-8X [11]. Leurent [9] extends this technique
to DL cryptanalysis, and uses it to improve a DL attack on 7-round Chaskey [12].
We present here the technique in the DL settings.

The main idea of the partitioning technique is as follows: Let ΩI

1
2±2pϵ2

−−−−−→ λO

be a DL characteristic, based on ΩI
p−−→
E0

ΩM , λM
ϵ−−→
E1

λO. The data complex-

ity of an attack based on such a characteristic is O(p−2ϵ−4). Assume that one
can partition the data into s disjoint subsets F = {A1, A2, . . . , As}, such that
there is one right subset Ai in which the differential characteristic holds with
significantly higher probability pi ≫ p, while for all other subsets the differential
characteristic does not hold. One can now run the DL attack in each subset Ai

independently, resulting in data complexity of O(s · p−2
i ϵ−4): Generating about

s ·p−2
i ϵ−4 plaintext pairs, and performing the original attack on each subset. The

highest bias points on the right subset and the key material defines it. Therefore,
if s · p−2

i < p−2 then the attack’s complexity is reduced.1

1.3 DL Cryptanalysis with Neutral Bits

In [4] Biham and Chen suggest the neutral bits technique to improve collision
and near-collision attacks on SHA-0 [1]. This idea is used also in secret key
cryptanalysis (e.g., in [7]). Here we adapt the definitions of Biham and Chen to
differential characteristics on block ciphers.

Definition 1 Let ΩI → ΩO be a differential characteristic, the i’th bit of the
block is called a neutral bit (w.r.t. ΩI → ΩO) if for each input pair (P, P ′) that
satisfies the characteristic, the pair (P ⊕ ei, P

′ ⊕ ei) also satisfies the character-
istic. In this case ei is called a neutral vector.

Using such neutral bits, an adversary could create many right pairs given
one right pair. In addition, Beierle et al. [2] use t neutral bits to create neutral
linear subspace with 2t neutral vectors: Given t neutral bits i1, . . . , it they use
all the vectors of the linear subspace U = span{ei1 , . . . , eit} (i.e., vectors of the
form v =

∑t
j=1 αj · eij , αj ∈ {0, 1}) as neutral vectors.2

1.4 Our Contributions

In this paper we produce the first DL cryptanalysis on round reduced Xoodyak
using these two previous techniques: partitioning and neutral bits. We give a
brief description of Xoodyak in Section 2. Then we present the first DL attack
on 4-round Xoodyak in Section 3. Finally, we present the first related-key DL
attack on 5-round Xoodyak in Section 4.

1 The partitioning can be applied to plaintexts, ciphertexts, or any other criteria. For
example, in [9] the partitioning is performed also on the ciphertexts.

2 It should be noted that not always all the vectors in such linear subspace are neutral
(see [4] that discusses such examples). However, in all of the cases discussed here
this is the scenario.
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Fig. 1. A Xoodoo state.

2 A Brief Description of Xoodyak [6].

Xoodyak is a cryptographic primitive for hashing, authenticated encryption,
and MAC computation, and is one of the finalists of the NIST LightWeight
Cryptography (LWC) competition. Xoodyak relies on Xoodoo, a family of 384-
bit to 384-bit permutations [5]. A 384-bit state is represented by three planes,
each consists of four 32-bit lanes. The lanes within a plane are indexed by x,
the planes are indexed by y, and the bits within a lane are indexed by z (see
Figure 1). In addition, the i’th bit (0 ≤ i ≤ 384) of a state S is denoted by
Si. Given a state of three planes S = (A0, A1, A2), each round is defined by the
following 5 steps:

θ :
P ← A0 ⊕A1 ⊕A2

E ← P ≪ (1, 5)⊕ P ≪ (1, 14)
Ay ← Ay ⊕ E, y ∈ {0, 1, 2}

ρwest :
A1 ← A1 ≪ (1, 0)
A2 ← A2 ≪ (0, 11)

ι :
A0 ← A0 ⊕ Ci

χ :
B0 ← A1 ∧A2

B1 ← A2 ∧A0

B2 ← A0 ∧A1

Ay ← Ay ⊕By, y ∈ {0, 1, 2}
ρeast :

A1 ← A1 ≪ (0, 1)
A2 ← A2 ≪ (2, 8)

Where Ay ≪ (i, j) denotes the left rotation which moves the bit in (x, z) to the
new position (x + i (mod 4), z + j (mod 32)), Ci is a round constant, and Ay

denotes the bitwise complement of Ay. All operations but χ are affine.

Xoodyak uses two modes: hash mode and keyed mode. Here, we discuss
the keyed mode, and in particular the initialization phase: The first plane is
initialized by an 128-bit key, and the additional two planes by a 256-bit nonce.
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Then, Xoodoo is performed on the initialized state, and the first 192 bits are
visible and XORed to the first block of the plaintext.

3 The 4-Round DL Attack

We now present the first DL distinguisher3 on 4-round Xoodoo, and then a DL
attack that based on it. Recall that the first plane A0 is initialized by an 128-bit
key, and the last two planes A1, A2 are initialized by a 256-bit nonce. Therefore,
to mount a DL attack on Xoodoo, the DL characteristic is restricted: the input
difference can be only in the last two planes, and the active bits of the output
mask can be only in the first 192 bits, which are visible.

3.1 Description of Our Distinguisher.

To choose the input difference we examine the first two steps of the round func-
tion: θ and ρwest. We note that given an input difference with two active bits in
one column, then θ does not change the difference, and ρwest shifts each bit by a
different number of positions, resulting in two active S-boxes in the S-box layer χ
(the constant addition does not change the difference). For comparison, if the in-
put difference contains only one active bit, then after θ, in addition to this active
bit, there are three additional active bits at two columns, and ρwest shifts each
bit by a different number of positions, resulting in 7 active S-boxes in the S-box
layer χ. We thus consider an input difference of the form (0, ei, ei), 0 ≤ i < 128.

Following the rotation-invariant property of Xoodoo’s characteristics, and for
sake of clarity, we consider the input difference (0, e0, e0), but this characteristic
can be easily rotated. This input difference leads to two active S-boxes before χ:
S-box 11 with an input difference of 4 and S-box 32 with an input difference of
2. Denote the output differences (after χ) at S-box 11 by Ω11, and the output
differences (after χ) at S-box 32 by Ω32. According to the DDT of χ we have:
Ω11 ∈ {4, 5, 6, 7}, Ω32 ∈ {2, 3, 6, 7} in a uniform distribution. We experimentally
tested the bias of each DL characteristic with each of the 16 possible differences
(Ω11, Ω32) after the first χ layer, and output mask of one or two active bits after
4.5 more rounds of Xoodoo. The best result was obtained for the output mask4

(0, e15, 0). As reported in Table 1, the combination (Ω11, Ω32) = (4, 2) results
with a bias of +2−6, where as (Ω11, Ω32) = (4, 6) results with a bias of +2−8. The

3 Liu et al. [10] present a 4-round rotational DL distinguisher, with the highest possible
bias of 1

2
, without any attack that uses it. Beyond the difference between a DL

distinguisher and a rotational DL distinguisher, in this paper we focus on DL attacks
(and not just distinguishers) using additional techniques. We give in Appendix A
the rotational DL distinguisher used by Liu et al.

4 In detail, for each 0 ≤ i < 128, when the input difference is (0, ei, ei), the best
results occurs for the output mask (0, e32·⌊ i

32
⌋+(15+i (mod 32)), 0). It should be noted

that since the mask is in the second plane and only the first 64 bits of this plane are
visible, we can not use all the 128 characteristics, but only the 64 characteristics for
which 0 ≤ i < 64. However, this fact does not impact our analysis.
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The differences (Ω11, Ω32) (4, 2) (4, 6) ̸= (4, 2), (4, 6)

Signed Bias +2−6 +2−8 ≈ 0

Table 1. The bias of (0, e32, ∆) → (0, e15, 0) (where ∆ ∈ {e11, e11,32}) DL
characteristic on 4-round Xoodoo, starting just after the first χ. The differences
at columns 11 and 32 after the first χ is denoted by (Ω11, Ω32).

other differences have a bias of about zero. Summing all of these characteristics,
we get the following DL characteristic:

(0, e0, e0)
≈2−9.68

−−−−−−−−−−→
4-round Xoodoo

(0, e15, 0).

The bias is calculated as follows: 1
16 · 2

−6 + 1
16 · 2

−8 + 14
16 · 0 ≈ 2−9.68. In terms

of state indexes, the input difference is e128,256 and the output mask is e143. We
experimentally verified the bias, using 228 pairs, observing a bias of about 2−9.7.

3.2 Improving the Distinguisher Using Neutral Bits

We now look for bits of the initial state, and in particular bits that are initialized
by the nonce, that do not influence the output of the two active S-boxes in the
first χ: S-box 11 and S-box 32. Denote the initial state by S, and the state just
before the S-box layer χ by T (i.e., T = ι ◦ ρwest ◦ θ(S)). In these terms, the two
non-active bits of the 11’th S-box are: T11, T139, and the two non-active bits of
the 32’nd S-box are: T32, T288. Each of them could be represented as the XOR
of 7 bits of the initial state, as follows (see Figure 2):

T11 = ⊕
i∈I11

Si, I11 = {11, 102, 125, 230, 253, 358, 381},

T139 = ⊕
i∈I139

Si, I139 = {70, 93, 198, 221, 235, 326, 349},

T32 = ⊕
i∈I32

Si, I32 = {18, 27, 32, 146, 155, 274, 283},

T288 = ⊕
i∈I288

Si, I288 = {7, 16, 135, 144, 263, 272, 309}.

(1)

It means that there are 28 bits of the initial state that influence the two active
S-boxes (i.e., that influence the two non active bits of each active S-box), and 18
of them are initialized by the nonce. Therefore, we have 256− 18 = 238 neutral
bits. By fixing all the 18 bits that influence these active S-boxes (i.e., all the non-
neutral bits) in all of the nonces, we get the same values at the active S-boxes,
which yields the same output difference. Hence, by generating about 24 sets of
about 213.34 nonce pairs (this number was calculated according to [13]), each is
defined by another fixed value of the non-neutral bits, the good values (i.e., the
values which satisfy (Ω11, Ω32) = (4, 2)) are expected to appear in about one
set, which has the highest bias.
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Fig. 2. The non-neutral bits that used in the DL attack on 4-round Xoodyak.
Each colored bit of the state before χ is defined as the XOR of the appropriate
colored bits of the initialized state.

3.3 Attacking 4-Round Xoodyak Using the Partitioning Technique

We now describe how the partitioning technique allows us to link between the
good set (or, in other words, the good values for the non-neutral bits) and four
key bits. As mentioned above, given a good pair (i.e., a pair that satisfies the
first round) S = K ∥ N,S′ = K ∥ N ′ (where, K is the key, and N,N ′ are
the nonces), we know that (Ω11, Ω32) = (4, 2). According to the DDT of χ, the
transition 4 → 4 occurs when the input values are 2 and 6 and the transition
2→ 2 occurs when the input values are 1 and 3. Thus, according to Table 1:

T11 ⊕ T ′
11 = 0,

T139 ⊕ T ′
139 = 1,

T32 ⊕ T ′
32 = 1,

T288 ⊕ T ′
288 = 0,

where T = ι ◦ ρwest ◦ θ(S), T ′ = ι ◦ ρwest ◦ θ(S′). Therefore, we get the following
four equations:

K11 ⊕K102 ⊕K125 = N230 ⊕N253 ⊕N358 ⊕N381,
K70 ⊕K93 = N198 ⊕N221 ⊕N235 ⊕N326 ⊕N349 ⊕ 1,
K18 ⊕K27 ⊕K32 = N146 ⊕N155 ⊕N274 ⊕N283 ⊕ 1,
K7 ⊕K16 = N135 ⊕N144 ⊕N263 ⊕N272 ⊕N309,

(2)



Differential-Linear Cryptanalysis on Xoodyak 7

Algorithm 1 DL Attack on 4-Round Xoodyak (Recovering 4 key bits).

Set an array keyOptions of 24 key values to zeroes. The keyOptions bits are
defined as the XOR of the key bits from Eq. (2).
for all k ∈ {0, 1}4 do

Fix values for the non-neutral nonce bits, that satisfy Eq. (2).
for all 1 ≤ i ≤ 213.34 do

Generate a nonce (according to the fixed bits) Ni, and set the pairs
(S = K ∥ Ni, S

′ = K ∥ Ni ⊕ e128,256) as two initial states.
Request the output of these initial states after the first performance of

Xoodoo, denoted by (Oi, O
′
i).

if Oi143 = O′
i143

then
Increment keyOptions[k].

end if
end for

end for
Output the key k such that keyOptions[k] = max{keyOptions[j]}.

where the key bits are indexed by 0 ≤ i < 128 and the nonce bits are indexed by
128 ≤ i < 320. It means that there is a partitioning of the space to 16 subsets,
depending on four key values:

k0 = K11 ⊕K102 ⊕K125,
k1 = K70 ⊕K93,
k2 = K18 ⊕K27 ⊕K32,
k3 = K7 ⊕K16.

Each value for the bits k0, k1, k2, k3 determines another subset of the non-neutral
nonce bits, in which the characteristic has a bias of 2−6 instead of 2−9.7, when
the nonces are generated randomly. Algorithm 1 describes the attack. The data
complexity required to revealed four key bit is about 24 ·213.34 ·2 = 218.34 nonces,
and the time complexity is about 218.34 4-round Xoodoo calls. We experimen-
tally verified the attack using 100 different keys. The observed success rate was
85%. Following the rotation-invariant property of Xoodoo’s characteristics, it is
possible to recover the entire key with data complexity of about 223.34 nonces
and time complexity of about 223.34 4-round Xoodoo calls.

4 The 5-Round Related-Key DL Attack

We now present the first DL distinguisher on 5-round Xoodoo [5], and then a
related-key DL attack based on it. To construct our 5-round DL distinguisher
we first construct a 4-round DL distinguisher and then add additional round at
the beginning.
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4.1 Description of Our Distinguisher

Similarly to the input difference (0, ei, ei) of the 4-round DL characteristic that
described in Section 3, the input differences of the form (ei, ei, 0) and (ei, 0, ei)
are also good candidates, with an additional requirement: Due to the fact that
there is an active bit in the first plane, initialized by a key, an attack using these
characteristics requires related keys. Our experiments show that (ei, 0, ei) offers
better results than (ei, ei, 0) and thus the reminder of our analysis concentrates
on input difference of this form.

Following the rotation-invariant property of Xoodoo’s characteristics, and for
sake of clarity, we consider the input difference (e0, 0, e0), but this characteristic
can be easily rotated. This input difference leads to two active S-boxes before
χ: S-box 0 with an input difference of 1 and S-box 11 with an input difference
of 4. Denote the output differences (after χ) at S-box 0 by Ω0, and the output
differences (after χ) at S-box 11 by Ω11. According to the DDT of χ we have:
Ω0 ∈ {1, 3, 5, 7}, Ω11 ∈ {4, 5, 6, 7} in a uniform distribution. We experimentally
tested the bias of each DL characteristic with each of the 16 possible differences
(Ω0, Ω11) after the first χ layer and output mask of one or two active bits after
3.5 more rounds of Xoodoo. The best result was obtained for the output mask
(e0, 0, 0). As reported in Table 2, the combinations (Ω0, Ω11) ∈ {(1, 4), (1, 6)} re-
sult with a bias of−2−3, the combinations (Ω0, Ω11) ∈ {(1, 5), (1, 7), (3, 4), (3, 6)}
result with a bias of−2−5, and the combinations (Ω0, Ω11) ∈ {(3, 5), (3, 7)} result
with a bias of −2−7. The other differences have a bias of about zero. Summing
all of these characteristics, we get the following DL characteristic:

(e0, 0, e0)
≈−2−5.36

−−−−−−−−−−→
4-round Xoodoo

(e0, 0, 0).

The bias is calculated as follows: − 2
16 ·2

−3− 4
16 ·2

−5− 2
16 ·2

−7+ 8
16 ·0 ≈ −2

−5.36.
In terms of state indexes, the input difference is e0,256 and the output mask is
e0. We experimentally verified the bias, using 228 pairs.5

We now add one round at the beginning, by performing the inverse of the
round function step by step. First, ρ−1

east transforms (e0, 0, e0) to (e0, 0, e88). Then
χ−1 maintains this difference with probability of 2−4 (i.e., 2−2 for each S-box),
which is not changed by ι−1. Finally, the difference (e0, 0, e88) is transformed by
θ−1 ◦ ρ−1

west to ΩI = (ΩA0, ΩA1, ΩA2), where

ΩA0 = a8b23b19 98810919 52674513 95a876f3x
ΩA1 = a8b23b18 98810919 52674513 95a876f3x
ΩA2 = a8b23b18 98810919 52676513 95a876f3x.

Therefore, the entire DL distinguisher for 5-round Xoodoo is:

(ΩA0, ΩA1, ΩA2)
−2−9.36

−−−−−−−−−−→
5-round Xoodoo

(e0, 0, 0).

5 In detail, for each 0 ≤ i ≤ 128, when the input difference is (ei, 0, ei), the best results
occurs for the output mask (ei, 0, 0).
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(1, 5) Differences of the form

The differences (1, 4) (1, 7) (3, 5) (5, Ω11), (7, Ω11)

(Ω0, Ω11) (1, 6) (3, 4) (3, 7) where

(3, 6) Ω11 ∈ {4, 5, 6, 7}
Signed Bias −2−3 −2−5 −2−7 ≈ 0

Table 2. The bias of e0,11 → e0 DL characteristic on 5-round Xoodoo, starting
just after the first χ. The differences at columns 0 and 11 after the first χ is
denoted by (Ω0, Ω11).

4.2 Improving the Distinguisher Using Neutral Bits

We now present an attack on 5-round Xoodyak, which reveals four key bits of
the initial state. We look for bits of the initial state, and in particular those
initialized by the nonce, that not influence the output of the two active S-boxes
in the first χ layer: S-box 0 with an input difference of 1 and S-box 88 with
an input difference of 4. Denote the output differences (after χ) by Ω0, Ω88,
respectively. As mentioned above, we need (Ω0, Ω88) = (1, 4), which happens
with a probability of 2−4 using random data. Denote the initial state by S, and
the state just before the S-box layer χ by T (i.e., T = ι ◦ ρwest ◦ θ(S)). In these
terms, the two non-active bits of the 0’th S-box are: T128, T256 and the two non-
active bits of the 88’th S-box are: T88, T216. Each of them could be represented
as the XOR of 7 bits of the initial state, as follows:

T128 = ⊕
i∈I128

Si, I128 = {82, 91, 210, 219, 224, 338, 347},

T256 = ⊕
i∈I256

Si, I256 = {103, 112, 231, 240, 277, 359, 368},

T88 = ⊕
i∈I88

Si, I88 = {42, 51, 88, 170, 179, 298, 307},

T216 = ⊕
i∈I216

Si, I216 = {10, 19, 138, 147, 184, 266, 275}.

(3)

It means that there are 28 bits of the initial state that influence the two active
S-boxes (i.e., that influence the two non active bits of each active S-box), and
19 of them are initialized by a nonce. Therefore, we have 256− 19 = 237 neutral
bits. By fixing all the 19 bits that influence these active S-boxes (i.e., all the
non-neutral bits) in all of the nonces, we get the same values at the active S-
boxes, which yields the same output difference. Hence, by generating about 24

sets of about 212.04 initial state pairs (this number was calculated according
to [13]), each is defined by another fixed value of the non-neutral bits, the good
values (i.e., the values which satisfy (Ω0, Ω88) = (1, 4)) are expected to appear
in about one set, which has the highest bias. To produce an attack using this
characteristic, we need also the partitioning technique.
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Fig. 3. The non-neutral bits that used in the related-key DL attack on 5-round
Xoodyak. Each colored bit of the state before χ is defined as the XOR of the
appropriate colored bits of the initialized state.

4.3 Attacking 5-Round Xoodyak Using the Partition Technique

We now describe how the partitioning technique allows us to link between the
good set (or, in other words, the good values for the non-neutral bits) and four
key bits. As mentioned above, given a good pair (i.e., a pair that satisfies the
first round) S = K ∥ N,S′ = (K ∥ N) ⊕ ΩI , we know that (Ω0, Ω88) = (1, 4).
According to the DDT of χ, the transition 1→ 1 occurs when the input values
are 4 and 5 and the transition 4→ 4 occurs when the input values are 2 and 6.
Thus, according to Table 3:

T128 ⊕ T ′
128 = 0

T256 ⊕ T ′
256 = 1

T88 ⊕ T ′
88 = 0

T216 ⊕ T ′
216 = 1

where T = ι ◦ ρwest ◦ θ(S), T ′ = ι ◦ ρwest ◦ θ(S′). Therefore, we get the following
four equations:

K82 ⊕K91 = N210 ⊕N219 ⊕N224 ⊕N338 ⊕N347,
K103 ⊕K112 = N231 ⊕N240 ⊕N277 ⊕N359 ⊕N368 ⊕ 1,
K42 ⊕K51 ⊕K88 = N170 ⊕N179 ⊕N298 ⊕N307,
K10 ⊕K19 = N138 ⊕N147 ⊕N184 ⊕N266 ⊕N275 ⊕ 1.

(4)
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Algorithm 2 DL Attack on 5-Round Xoodyak (Recovering 4 key bits).

Set an array keyOptions of 24 key values to zeroes. The keyOptions bits are
defined as the XOR of the key bits from Eq. (4).
for all k ∈ {0, 1}4 do

Fix values for the non-neutral nonce bits, that satisfy Eq. (4).
for all 1 ≤ i ≤ 212.04 do

Generate a nonce (according to the fixed bits) Ni, and set the pairs
(S = K ∥ Ni, S

′ = (K ∥ Ni)⊕ΩI) as two initial states.
Request the output of these initial states after the first performance of

Xoodoo, denoted by (Oi, O
′
i).

if Oi0 = O′
i0

then
Increment keyOptions[k].

end if
end for

end for
Output the key k such that keyOptions[k] = min{keyOptions[j]}.

where the key bits are indexed by 0 ≤ i < 128 and the nonce bits are indexed by
128 ≤ i < 320. It means that there is a partitioning of the space to 16 subsets,
depending on four key values:

k0 = K82 ⊕K91,
k1 = K103 ⊕K112,
k2 = K42 ⊕K51 ⊕K88,
k3 = K10 ⊕K19.

Each value for k0, k1, k2, k3 determines another subset of the non-neutral nonce
bits, in which the characteristic has the bias of 2−5.36, instead of 2−9.36 when
the nonces are generated randomly. Algorithm 2 describes the attack. The data
complexity required to reveal four key bits is about 24 · 212.04 · 2 = 217.04 nonces,
and the time complexity is about 217.04 5-round Xoodoo performances. We ex-
perimentally verified the attack using 100 different keys. The observed success
rate was 89%. Following the rotation-invariant property of Xoodoo’s character-
istics, it is possible to recover the entire key with data complexity of about 222.04

nonces and time complexity of about 222.04 5-round Xoodoo encryptions.
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A A Rotational DL Distinguisher On 4-Round
Xoodoo [10]

In [10] Liu et al. present the first rotational DL distinguisher on 4-round Xoodoo,
by constructing a 3-round rotational DL distinguisher and adding one round at
the beginning. They show that given a pair with all-zero difference and left-rotate
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mount of one bit (i.e., (P, P ′ = P ≪ 1)), then after 3-round Xoodoo there are
many high-biased bits, including the highest bias of half on the following masks:
10000x at lane (1, 0), 20000x at lane (1, 1), and 1000000x at lane (3, 2). To add
one round at the beginning they note that since the round constant is XORed
right after the two linear steps, it is possible to choose an input RX-difference
such that the injection of the round constant cancels the difference, resulting
with all-zero difference and left-rotate mount of one bit. For the first round
constant of 4-round Xoodoo C = 00000480x, the required input difference is
ΩI = (ΩA0, ΩA1, ΩA2) where

ΩA0 = 484ccc80 3ab9821a 37b6cde9 45a3f0cbx,
ΩA1 = 484cc800 3ab9821a 37b6cde9 45a3f0cbx,
ΩA2 = 484cc800 3ab9821a 37b6cde9 45a3f0cbx.

Therefore, given a plaintext pair (P, P ′ = (P ≪ 1)⊕ΩI), their ciphertext pair
(after 4-round Xoodoo) (C,C ′) satisfies:

λ · (C ≪ 1) = λ · C ′.


