
man pages section 3: Basic Library
Functions

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 816–0213–10
May 2002

Copyright 2002 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or service marks
of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2002 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, ou
marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des
marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques
SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

020313@3332

Contents

Preface 13

Basic Library Functions 19

a64l(3C) 20
abort(3C) 21
abs(3C) 22
addsev(3C) 23
addseverity(3C) 24
assert(3C) 26
atexit(3C) 27
attropen(3C) 28
basename(3C) 29
bsdmalloc(3MALLOC) 30
bsd_signal(3C) 32
bsearch(3C) 33
bstring(3C) 35
btowc(3C) 36

catgets(3C) 37

catopen(3C) 38

cfgetispeed(3C) 41

cfsetispeed(3C) 42

clock(3C) 43

closedir(3C) 44

closefrom(3C) 45

confstr(3C) 47

crypt(3C) 51

3

cset(3C) 52

ctermid(3C) 53

ctime(3C) 54

ctype(3C) 59

cuserid(3C) 62

dbm(3UCB) 63

decimal_to_floating(3C) 65

difftime(3C) 67

directio(3C) 68

dirname(3C) 70

div(3C) 72

dladdr(3DL) 73

dlclose(3DL) 75

dldump(3DL) 76

dlerror(3DL) 82

dlinfo(3DL) 83

dlopen(3DL) 87

dlsym(3DL) 91

drand48(3C) 93

dup2(3C) 95

econvert(3C) 96

ecvt(3C) 98

encrypt(3C) 100

end(3C) 101

euclen(3C) 102

exit(3C) 103

fattach(3C) 104

__fbufsize(3C) 106

fclose(3C) 108

fdetach(3C) 110

fdopen(3C) 112

ferror(3C) 114

fflush(3C) 115

ffs(3C) 117

fgetc(3C) 118

fgetpos(3C) 121

fgetwc(3C) 122

floating_to_decimal(3C) 124

4 man pages section 3: Basic Library Functions • May 2002

flock(3UCB) 126

flockfile(3C) 128

fmtmsg(3C) 130

fnmatch(3C) 135

fopen(3C) 137

fopen(3UCB) 140

fpgetround(3C) 142

fputc(3C) 144

fputwc(3C) 147

fputws(3C) 149

fread(3C) 150

freopen(3C) 152

frexp(3C) 154

fseek(3C) 155

fsetpos(3C) 158

fsync(3C) 159

ftell(3C) 161

ftime(3C) 162

ftok(3C) 163

ftw(3C) 165

fwide(3C) 169

fwprintf(3C) 170

fwrite(3C) 177

fwscanf(3C) 178

getcpuid(3C) 185

getcwd(3C) 186

getdate(3C) 188

getdtablesize(3C) 194

getenv(3C) 195

getexecname(3C) 196

getgrnam(3C) 197

gethostid(3C) 201

gethostname(3C) 202

gethrtime(3C) 203

getloadavg(3C) 204

getlogin(3C) 205

getmntent(3C) 207

getnetgrent(3C) 209

Contents 5

getopt(3C) 212

getpagesize(3C) 215

getpagesizes(3C) 216

getpass(3C) 217

getpriority(3C) 218

getpw(3C) 220

getpwnam(3C) 221

getrusage(3C) 225

gets(3C) 228

getspnam(3C) 229

getsubopt(3C) 233

gettext(3C) 236

gettimeofday(3C) 240

gettimeofday(3UCB) 242

gettxt(3C) 243

getusershell(3C) 245

getutent(3C) 246

getutxent(3C) 249

getvfsent(3C) 253

getwc(3C) 255

getwchar(3C) 256

getwd(3C) 257

getwidth(3C) 258

getws(3C) 259

glob(3C) 260

grantpt(3C) 264

hsearch(3C) 265

iconv(3C) 268

iconv_close(3C) 273

iconv_open(3C) 274

index(3C) 276

initgroups(3C) 277

insque(3C) 278

isaexec(3C) 279

isastream(3C) 280

isatty(3C) 281

isnan(3C) 282

iswalpha(3C) 284

6 man pages section 3: Basic Library Functions • May 2002

iswctype(3C) 286

killpg(3C) 288

lckpwdf(3C) 289

ldexp(3C) 290

lfmt(3C) 291

localeconv(3C) 295

lockf(3C) 299

_longjmp(3C) 302

lsearch(3C) 303

madvise(3C) 305

makecontext(3C) 307

makedev(3C) 308

malloc(3C) 309

malloc(3MALLOC) 312

mapmalloc(3MALLOC) 315

mblen(3C) 317

mbrlen(3C) 318

mbrtowc(3C) 320

mbsinit(3C) 322

mbsrtowcs(3C) 323

mbstowcs(3C) 325

mbtowc(3C) 326

mctl(3UCB) 327

memory(3C) 329

mkfifo(3C) 331

mkstemp(3C) 333

mktemp(3C) 334

mktime(3C) 335

mlock(3C) 338

mlockall(3C) 340

modf(3C) 342

monitor(3C) 343

msync(3C) 345

mtmalloc(3MALLOC) 347

ndbm(3C) 350

nice(3UCB) 354

nlist(3UCB) 355

nl_langinfo(3C) 356

Contents 7

offsetof(3C) 357

opendir(3C) 358

perror(3C) 360

pfmt(3C) 361

plock(3C) 364

popen(3C) 365

printf(3C) 367

printf(3UCB) 376

pset_getloadavg(3C) 380

psignal(3C) 381

psignal(3UCB) 382

ptsname(3C) 383

putenv(3C) 384

putpwent(3C) 385

puts(3C) 386

putspent(3C) 387

putws(3C) 388

qsort(3C) 389

raise(3C) 391

rand(3C) 392

rand(3UCB) 393

random(3C) 394

rctlblk_set_value(3C) 397

rctl_walk(3C) 401

readdir(3C) 403

readdir(3UCB) 407

realpath(3C) 409

reboot(3C) 411

re_comp(3C) 412

regcmp(3C) 413

regcomp(3C) 415

remove(3C) 421

rewind(3C) 422

rewinddir(3C) 423

scandir(3UCB) 424

scanf(3C) 425

seekdir(3C) 432

select(3C) 433

8 man pages section 3: Basic Library Functions • May 2002

setbuf(3C) 437

setbuffer(3C) 439

setcat(3C) 440

setjmp(3C) 441

setjmp(3UCB) 444

setkey(3C) 447

setlabel(3C) 448

setlocale(3C) 449

sigblock(3UCB) 452

sigfpe(3C) 453

siginterrupt(3UCB) 455

signal(3C) 456

signal(3UCB) 458

sigsetops(3C) 460

sigstack(3C) 462

sigstack(3UCB) 464

sigvec(3UCB) 465

sleep(3C) 470

sleep(3UCB) 471

ssignal(3C) 472

stdio(3C) 473

str2sig(3C) 477

strcoll(3C) 478

strerror(3C) 479

strfmon(3C) 480

strftime(3C) 484

string(3C) 489

string_to_decimal(3C) 493

strptime(3C) 496

strsignal(3C) 501

strtod(3C) 502

strtol(3C) 505

strtoul(3C) 508

strtows(3C) 510

strxfrm(3C) 511

swab(3C) 513

sync_instruction_memory(3C) 514

syscall(3UCB) 515

Contents 9

sysconf(3C) 516

syslog(3C) 523

system(3C) 527

tcdrain(3C) 528

tcflow(3C) 529

tcflush(3C) 530

tcgetattr(3C) 531

tcgetpgrp(3C) 532

tcgetsid(3C) 533

tcsendbreak(3C) 534

tcsetattr(3C) 535

tcsetpgrp(3C) 537

tell(3C) 538

telldir(3C) 539

termios(3C) 540

times(3UCB) 541

tmpfile(3C) 542

tmpnam(3C) 543

toascii(3C) 545

_tolower(3C) 546

tolower(3C) 547

_toupper(3C) 548

toupper(3C) 549

towctrans(3C) 550

towlower(3C) 551

towupper(3C) 552

truncate(3C) 553

tsearch(3C) 556

ttyname(3C) 559

ttyslot(3C) 561

ualarm(3C) 562

ungetc(3C) 563

ungetwc(3C) 564

unlockpt(3C) 565

usleep(3C) 566

vfwprintf(3C) 567

vlfmt(3C) 568

vpfmt(3C) 570

10 man pages section 3: Basic Library Functions • May 2002

vprintf(3C) 572

vsyslog(3C) 574

wait3(3C) 575

wait(3UCB) 578

walkcontext(3C) 582

watchmalloc(3MALLOC) 584

wcrtomb(3C) 587

wcscoll(3C) 589

wcsftime(3C) 590

wcsrtombs(3C) 591

wcsstr(3C) 593

wcstod(3C) 594

wcstol(3C) 596

wcstombs(3C) 598

wcstoul(3C) 599

wcstring(3C) 601

wcswidth(3C) 606

wcsxfrm(3C) 607

wctob(3C) 609

wctomb(3C) 610

wctrans(3C) 611

wctype(3C) 612

wcwidth(3C) 613

wmemchr(3C) 614

wmemcmp(3C) 615

wmemcpy(3C) 616

wmemmove(3C) 617

wmemset(3C) 618

wordexp(3C) 619

wsprintf(3C) 623

wsscanf(3C) 624

wstring(3C) 625

Index 627

Contents 11

12 man pages section 3: Basic Library Functions • May 2002

Preface

Both novice users and those familar with the SunOS operating system can use online
man pages to obtain information about the system and its features. A man page is
intended to answer concisely the question “What does it do?” The man pages in
general comprise a reference manual. They are not intended to be a tutorial.

Overview
The following contains a brief description of each man page section and the
information it references:

� Section 1 describes, in alphabetical order, commands available with the operating
system.

� Section 1M describes, in alphabetical order, commands that are used chiefly for
system maintenance and administration purposes.

� Section 2 describes all of the system calls. Most of these calls have one or more
error returns. An error condition is indicated by an otherwise impossible returned
value.

� Section 3 describes functions found in various libraries, other than those functions
that directly invoke UNIX system primitives, which are described in Section 2.

� Section 4 outlines the formats of various files. The C structure declarations for the
file formats are given where applicable.

� Section 5 contains miscellaneous documentation such as character-set tables.
� Section 6 contains available games and demos.
� Section 7 describes various special files that refer to specific hardware peripherals

and device drivers. STREAMS software drivers, modules and the
STREAMS-generic set of system calls are also described.

13

� Section 9 provides reference information needed to write device drivers in the
kernel environment. It describes two device driver interface specifications: the
Device Driver Interface (DDI) and the Driver⁄Kernel Interface (DKI).

� Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point routines a
developer can include in a device driver.

� Section 9F describes the kernel functions available for use by device drivers.
� Section 9S describes the data structures used by drivers to share information

between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual section
generally follow this order, but include only needed headings. For example, if there
are no bugs to report, there is no BUGS section. See the intro pages for more
information and detail about each section, and man(1) for more information about man
pages in general.

NAME This section gives the names of the commands or
functions documented, followed by a brief
description of what they do.

SYNOPSIS This section shows the syntax of commands or
functions. When a command or file does not exist
in the standard path, its full path name is shown.
Options and arguments are alphabetized, with
single letter arguments first, and options with
arguments next, unless a different argument order
is required.

The following special characters are used in this
section:

[] Brackets. The option or argument
enclosed in these brackets is optional. If
the brackets are omitted, the argument
must be specified.

. . . Ellipses. Several values can be provided
for the previous argument, or the
previous argument can be specified
multiple times, for example, "filename
. . ." .

| Separator. Only one of the arguments
separated by this character can be
specified at a time.

{ } Braces. The options and/or arguments
enclosed within braces are
interdependent, such that everything
enclosed must be treated as a unit.

14 man pages section 3: Basic Library Functions • May 2002

PROTOCOL This section occurs only in subsection 3R to
indicate the protocol description file.

DESCRIPTION This section defines the functionality and behavior
of the service. Thus it describes concisely what the
command does. It does not discuss OPTIONS or
cite EXAMPLES. Interactive commands,
subcommands, requests, macros, and functions are
described under USAGE.

IOCTL This section appears on pages in Section 7 only.
Only the device class that supplies appropriate
parameters to the ioctl(2) system call is called
ioctl and generates its own heading. ioctl calls
for a specific device are listed alphabetically (on the
man page for that specific device). ioctl calls are
used for a particular class of devices all of which
have an io ending, such as mtio(7I).

OPTIONS This secton lists the command options with a
concise summary of what each option does. The
options are listed literally and in the order they
appear in the SYNOPSIS section. Possible
arguments to options are discussed under the
option, and where appropriate, default values are
supplied.

OPERANDS This section lists the command operands and
describes how they affect the actions of the
command.

OUTPUT This section describes the output – standard output,
standard error, or output files – generated by the
command.

RETURN VALUES If the man page documents functions that return
values, this section lists these values and describes
the conditions under which they are returned. If a
function can return only constant values, such as 0
or –1, these values are listed in tagged paragraphs.
Otherwise, a single paragraph describes the return
values of each function. Functions declared void do
not return values, so they are not discussed in
RETURN VALUES.

ERRORS On failure, most functions place an error code in
the global variable errno indicating why they
failed. This section lists alphabetically all error
codes a function can generate and describes the
conditions that cause each error. When more than

Preface 15

one condition can cause the same error, each
condition is described in a separate paragraph
under the error code.

USAGE This section lists special rules, features, and
commands that require in-depth explanations. The
subsections listed here are used to explain built-in
functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

EXAMPLES This section provides examples of usage or of how
to use a command or function. Wherever possible a
complete example including command-line entry
and machine response is shown. Whenever an
example is given, the prompt is shown as
example%, or if the user must be superuser,
example#. Examples are followed by explanations,
variable substitution rules, or returned values. Most
examples illustrate concepts from the SYNOPSIS,
DESCRIPTION, OPTIONS, and USAGE sections.

ENVIRONMENT VARIABLES This section lists any environment variables that
the command or function affects, followed by a
brief description of the effect.

EXIT STATUS This section lists the values the command returns to
the calling program or shell and the conditions that
cause these values to be returned. Usually, zero is
returned for successful completion, and values
other than zero for various error conditions.

FILES This section lists all file names referred to by the
man page, files of interest, and files created or
required by commands. Each is followed by a
descriptive summary or explanation.

ATTRIBUTES This section lists characteristics of commands,
utilities, and device drivers by defining the
attribute type and its corresponding value. See
attributes(5) for more information.

SEE ALSO This section lists references to other man pages,
in-house documentation, and outside publications.

16 man pages section 3: Basic Library Functions • May 2002

DIAGNOSTICS This section lists diagnostic messages with a brief
explanation of the condition causing the error.

WARNINGS This section lists warnings about special conditions
which could seriously affect your working
conditions. This is not a list of diagnostics.

NOTES This section lists additional information that does
not belong anywhere else on the page. It takes the
form of an aside to the user, covering points of
special interest. Critical information is never
covered here.

BUGS This section describes known bugs and, wherever
possible, suggests workarounds.

Preface 17

18 man pages section 3: Basic Library Functions • May 2002

Basic Library Functions

19

a64l, l64a – convert between long integer and base-64 ASCII string

#include <stdlib.h>

long a64l(const char *s);

char *l64a(long l);

These functions maintain numbers stored in base-64 ASCII characters that define a
notation by which long integers can be represented by up to six characters. Each
character represents a “digit” in a radix-64 notation.

The characters used to represent “digits” are as follows:

Character Digit

. 0

/ 1

0-9 2-11

A-Z 12-37

a-z 38-63

The a64l() function takes a pointer to a null-terminated base-64 representation and
returns a corresponding long value. If the string pointed to by s contains more than
six characters, a64l() uses the first six.

The a64l() function scans the character string from left to right with the least
significant digit on the left, decoding each character as a 6-bit radix-64 number.

The l64a() function takes a long argument and returns a pointer to the
corresponding base-64 representation. If the argument is 0, l64a() returns a pointer
to a null string.

The value returned by l64a() is a pointer into a static buffer, the contents of which
are overwritten by each call. In the case of multithreaded applications, the return
value is a pointer to thread specific data.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

attributes(5)

a64l(3C)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

20 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

abort – terminate the process abnormally

#include <stdlib.h>

void abort(void);

The abort() function causes abnormal process termination to occur, unless the signal
SIGABRT is being caught and the signal handler does not return. The abnormal
termination processing includes at least the effect of fclose(3C) on all open streams
and message catalogue descriptors, and the default actions defined for SIGABRT. The
SIGABRT signal is sent to the calling process as if by means of the raise(3C) function
with the argument SIGABRT.

The status made available to wait(2) or waitpid(2) by abort will be that of a
process terminated by the SIGABRT signal. abort will override blocking or ignoring
the SIGABRT signal.

The abort() function does not return.

No errors are defined.

Catching the signal is intended to provide the application writer with a portable
means to abort processing, free from possible interference from any
implementation-provided library functions. If SIGABRT is neither caught nor ignored,
and the current directory is writable, a core dump may be produced.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

exit(2), getrlimit(2), kill(2), wait(2), waitpid(2), fclose(3C), raise(3C),
signal(3C), attributes(5)

abort(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

Basic Library Functions 21

abs, labs, llabs – return absolute value of integer

#include <stdlib.h>

int abs(int val);

long labs(long lval);

long long llabs(long long llval);

The abs() function returns the absolute value of its int operand.

The labs() function returns the absolute value of its long operand.

The llabs() function returns the absolute value of its long long operand.

In 2’s-complement representation, the absolute value of the largest magnitude
negative integral value is undefined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

attributes(5)

abs(3C)

NAME

SYNOPSIS

DESCRIPTION

USAGE

ATTRIBUTES

SEE ALSO

22 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

addsev – define additional severities

#include <pfmt.h>

int addsev(int int_val, const char *string);

The addsev() function defines additional severities for use in subsequent calls to
pfmt(3C) or lfmt(3C). It associates an integer value int_val in the range [5-255] with a
character string, overwriting any previous string association between int_val and
string.

If int_val is OR-ed with the flags argument passed to subsequent calls to pfmt() or
lfmt(), string will be used as severity. Passing a null string removes the severity.

Upon successful completion, addsev() returns 0. Otherwise it returns−1.

Only the standard severities are automatically displayed for the locale in effect at
runtime. An application must provide the means for displaying locale-specific
versions of add-on severities. Add-on severities are only effective within the
applications defining them.

EXAMPLE 1 Example of addsev() function.

The following example

#define Panic 5
setlabel("APPL");
setcat("my_appl");
addsev(Panic, gettxt(":26", "PANIC"));
/* . . . */

lfmt(stderr, MM_SOFT|MM_APPL|PANIC, ":12:Cannot locate database\n");

will display the message to stderr and forward to the logging service

APPL: PANIC: Cannot locate database

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-safe

gettxt(3C), lfmt(3C), pfmt(3C), attributes(5)

addsev(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

EXAMPLES

ATTRIBUTES

SEE ALSO

Basic Library Functions 23

addseverity – build a list of severity levels for an application for use with fmtmsg

#include <fmtmsg.h>

int addseverity(int severity, const char *string);

The addseverity() function builds a list of severity levels for an application to be
used with the message formatting facility fmtmsg(). The severity argument is an
integer value indicating the seriousness of the condition. The string argument is a
pointer to a string describing the condition (string is not limited to a specific size).

If addseverity() is called with an integer value that has not been previously
defined, the function adds that new severity value and print string to the existing set
of standard severity levels.

If addseverity() is called with an integer value that has been previously defined,
the function redefines that value with the new print string. Previously defined severity
levels may be removed by supplying the null string. If addseverity() is called with
a negative number or an integer value of 0, 1, 2, 3, or 4, the function fails and returns
−1. The values 0−4 are reserved for the standard severity levels and cannot be
modified. Identifiers for the standard levels of severity are:

MM_HALT Indicates that the application has encountered a severe fault and is
halting. Produces the print string HALT.

MM_ERROR Indicates that the application has detected a fault. Produces the
print string ERROR.

MM_WARNING Indicates a condition that is out of the ordinary, that might be a
problem, and should be watched. Produces the print string
WARNING.

MM_INFO Provides information about a condition that is not in error.
Produces the print string INFO.

MM_NOSEV Indicates that no severity level is supplied for the message.

Severity levels may also be defined at run time using the SEV_LEVEL environment
variable (see fmtmsg(3C)).

Upon successful completion, addseverity() returns MM_OK. Otherwise it returns
MM_NOTOK.

EXAMPLE 1 Example of addseverity() function.

When the function call

addseverity(7,"ALERT")

is followed by the call

fmtmsg(MM_PRINT, "UX:cat", 7, "invalid syntax", "refer to manual",

"UX:cat:001")

addseverity(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

EXAMPLES

24 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

EXAMPLE 1 Example of addseverity() function. (Continued)

the resulting output is

UX:cat: ALERT: invalid syntax

TO FIX: refer to manual UX:cat:001

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

fmtmsg(1), fmtmsg(3C), gettxt(3C), printf(3C), attributes(5)

addseverity(3C)

ATTRIBUTES

SEE ALSO

Basic Library Functions 25

assert – verify program assertion

#include <assert.h>

void assert(int expression);

The assert() macro inserts diagnostics into applications. When executed, if
expression is FALSE (zero), assert() prints the error message

Assertion failed: expression, file xyz, line nnn

on the standard error output and aborts. In the error message, xyz is the name of the
source file and nnn the source line number of the assert() statement. These are
respectively the values of the preprocessor macros __FILE__ and __LINE__.

Since assert() is implemented as a macro, the expression may not contain any string
literals.

Compiling with the preprocessor option -DNDEBUG (see cc(1B)), or with the
preprocessor control statement #define NDEBUG ahead of the #include
<assert.h> statement, will stop assertions from being compiled into the program.

If the application is linked with -lintl, messages printed from this function are in
the native language specified by the LC_MESSAGES locale category; see
setlocale(3C).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

cc(1B), abort(3C), gettext(3C), setlocale(3C), attributes(5)

assert(3C)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

26 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

atexit – register a function to run at process termination or object unloading

#include <stdlib.h>

int atexit(void (*func)(void));

The atexit() function registers the function pointed to by func to be called without
arguments on normal termination of the program or when the object defining the
function is unloaded.

Normal termination occurs by either a call to the exit(3C) function or a return from
main(). Object unloading occurs when a call to dlclose(3DL) results in the object
becoming unreferenced.

The number of functions that may be registered with atexit() is limited only by
available memory (refer to the _SC_ATEXIT_MAX argument of sysconf(3C)).

After a successful call to any of the exec(2) functions, any functions previously
registered by atexit() are no longer registered.

On process exit, functions are called in the reverse order of their registration. On object
unloading, any functions belonging to an unloadable object are called in the reverse
order of their registration.

Upon successful completion, the atexit() function returns 0. Otherwise, it returns a
non-zero value.

The atexit() function may fail if:

ENOMEM Insufficient storage space is available.

The functions registered by a call to atexit() must return to ensure that all
registered functions are called.

There is no way for an application to tell how many functions have already been
registered with atexit().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Safe

exec(2), dlclose(3DL), exit(3C), sysconf(3C), attributes(5)

atexit(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

Basic Library Functions 27

attropen – open a file

#include <sys/types.h>
#include <sys/stat.h>

#include <fcntl.h>

int attropen(const char *path, const char *attrpath, int oflag, /*
mode_t mode */...);

The attropen() function is similar to the open(2) function except that it takes a
second path argument, attrpath, that identifies an extended attribute file associated
with the first path argument. This function returns a file descriptor for the extended
attribute rather than the file named by the initial argument.

The O_XATTR flag is set by default for attropen() and the attrpath argument is
always interpreted as a reference to an extended attribute. Extended attributes must be
referenced with a relative path; providing an absolute path results in a normal file
reference.

Refer to open(2).

Refer to open(2).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

open(2), attributes(5), fsattr(5)

attropen(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

28 man pages section 3: Basic Library Functions • Last Revised 1 Aug 2001

basename – return the last element of a path name

#include <libgen.h>

char *basename(char *path);

The basename() function takes the pathname pointed to by path and returns a
pointer to the final component of the pathname, deleting any trailing ’/’ characters.

If the string consists entirely of the ’/’ character, basename() returns a pointer to the
string "/" .

If path is a null pointer or points to an empty string, basename() returns a pointer to
the string "." .

The basename() function returns a pointer to the final component of path.

The basename() function may modify the string pointed to by path, and may return
a pointer to static storage that may then be overwritten by a subsequent call to
basename().

When compiling multithreaded applications, the _REENTRANT flag must be defined
on the compile line. This flag should only be used in multithreaded applications.

EXAMPLE 1 Examples for Input String and Output String

Input String Output String

"/usr/lib" "lib"

"/usr/" "usr"

"/" "/"

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

basename(1), dirname(3C), attributes(5)

basename(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

EXAMPLES

ATTRIBUTES

SEE ALSO

Basic Library Functions 29

bsdmalloc – memory allocator

cc [flag ...] file ... -lbsdmalloc [library ...]

char *malloc(size);

unsigned size;

int free(ptr);

char *ptr;

char *realloc(ptr, size);

char *ptr;
unsigned size;

These routines provide a general-purpose memory allocation package. They maintain
a table of free blocks for efficient allocation and coalescing of free storage. When there
is no suitable space already free, the allocation routines call sbrk(2) to get more
memory from the system. Each of the allocation routines returns a pointer to space
suitably aligned for storage of any type of object. Each returns a null pointer if the
request cannot be completed.

The malloc() function returns a pointer to a block of at least size bytes, which is
appropriately aligned.

The free() function releases a previously allocated block. Its argument is a pointer to
a block previously allocated by malloc() or realloc().

The realloc() function changes the size of the block referenced by ptr to size bytes
and returns a pointer to the (possibly moved) block. The contents will be unchanged
up to the lesser of the new and old sizes. If unable to honor a reallocation request,
realloc() leaves its first argument unaltered. For backwards compatibility,
realloc() accepts a pointer to a block freed since the most recent call to malloc()
or realloc().

The malloc() and realloc() functions return a null pointer if there is not enough
available memory. When realloc() returns NULL, the block pointed to by ptr is left
intact.

If malloc() or realloc() returns unsuccessfully, errno will be set to indicate the
following:

ENOMEM size bytes of memory cannot be allocated because it exceeds the
physical limits of the system.

EAGAIN There is not enough memory available at this point in time to
allocate size bytes of memory; but the application could try again
later.

brk(2), malloc(3C), malloc(3MALLOC), mapmalloc(3MALLOC)

Use of libbsdmalloc renders an application non-SCD compliant.

bsdmalloc(3MALLOC)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

SEE ALSO

WARNINGS

30 man pages section 3: Basic Library Functions • Last Revised 11 Feb 1993

The libbsdmalloc routines are incompatible with the memory allocation routines in
the standard C-library (libc): malloc(3C), alloca(3C), calloc(3C), free(3C),
memalign(3C), realloc(3C), and valloc(3C).

Using realloc() with a block freed before the most recent call to malloc() or
realloc() results in an error.

The malloc() and realloc() functions return a non-null pointer if size is 0. These
pointers should not be dereferenced.

Always cast the value returned by malloc() and realloc().

Comparative features of bsdmalloc, malloc(3MALLOC), and malloc(3C):

� The bsdmalloc() routines afford better performance but are space-inefficient.

� The malloc(3MALLOC) routines are space-efficient but have slower performance.

� The standard, fully SCD-compliant malloc(3C) routines are a trade-off between
performance and space-efficiency.

The free() function does not set errno.

bsdmalloc(3MALLOC)

NOTES

Basic Library Functions 31

bsd_signal – simplified signal facilities

#include <signal.h>

void (*bsd_signal(int sig, void (*func)(int)))(int);

The bsd_signal() function provides a partially compatible interface for programs
written to historical system interfaces (see USAGE below).

The function call bsd_signal(sig, func) has an effect as if implemented as:

void (*bsd_signal(int sig, void (*func) (int))) (int)
{

struct sigaction act, oact;

act.sa_handler = func;
act.sa_flags = SA_RESTART;
sigemptyset(&act.sa_mask);
sigaddset(&act.sa_mask, sig);
if (sigaction(sig, &act, &oact) == −1)

return(SIG_ERR);
return(oact.sa_handler);

}

The handler function should be declared:

void handler(int sig);

where sig is the signal number. The behavior is undefined if func is a function that
takes more than one argument, or an argument of a different type.

Upon successful completion, bsd_signal() returns the previous action for sig.
Otherwise, SIG_ERR is returned and errno is set to indicate the error.

Refer to sigaction(2).

This function is a direct replacement for the BSD signal(3UCB) function for simple
applications that are installing a single-argument signal handler function. If a BSD
signal handler function is being installed that expects more than one argument, the
application has to be modified to use sigaction(2). The bsd_signal() function
differs from signal (3UCB) in that the SA_RESTART flag is set and the
SA_RESETHAND will be clear when bsd_signal() is used. The state of these flags is
not specified for signal(3UCB).

sigaction(2), sigaddset(3C), sigemptyset(3C), signal(3UCB)

bsd_signal(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

SEE ALSO

32 man pages section 3: Basic Library Functions • Last Revised 29 Mar 1996

bsearch – binary search a sorted table

#include <stdlib.h>

void *bsearch(const void *key, const void *base, size_t nel, size_t
size, int (*compar)(const void *,const void *));

The bsearch() function is a binary search routine generalized from Knuth (6.2.1)
Algorithm B. It returns a pointer into a table (an array) indicating where a datum may
be found or a null pointer if the datum cannot be found. The table must be previously
sorted in increasing order according to a comparison function pointed to by compar.

The key argument points to a datum instance to be sought in the table. The base
argument points to the element at the base of the table. The nel argument is the
number of elements in the table. The size argument is the number of bytes in each
element.

The comparison function pointed to by compar is called with two arguments that point
to the key object and to an array element, in that order. The function must return an
integer less than, equal to, or greater than 0 if the key object is considered, respectively,
to be less than, equal to, or greater than the array element.

The bsearch() function returns a pointer to a matching member of the array, or a
null pointer if no match is found. If two or more members compare equal, which
member is returned is unspecified.

The pointers to the key and the element at the base of the table should be of type
pointer-to-element.

The comparison function need not compare every byte, so arbitrary data may be
contained in the elements in addition to the values being compared.

If the number of elements in the table is less than the size reserved for the table, nel
should be the lower number.

EXAMPLE 1 Examples for searching a table containing pointers to nodes.

The example below searches a table containing pointers to nodes consisting of a string
and its length. The table is ordered alphabetically on the string in the node pointed to
by each entry.

This program reads in strings and either finds the corresponding node and prints out
the string and its length, or prints an error message.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
struct node { /* these are stored in the table */

char *string;
int length;

};
static struct node table[] = { /* table to be searched */

bsearch(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

EXAMPLES

Basic Library Functions 33

EXAMPLE 1 Examples for searching a table containing pointers to nodes. (Continued)

{ "asparagus", 10 },
{ "beans", 6 },
{ "tomato", 7 },
{ "watermelon", 11 },

};

main()
{

struct node *node_ptr, node;
/* routine to compare 2 nodes */
static int node_compare(const void *, const void *);
char str_space[20]; /* space to read string into */

node.string = str_space;
while (scanf("%20s", node.string) != EOF) {

node_ptr = bsearch(&node,
table, sizeof(table)/sizeof(struct node),
sizeof(struct node), node_compare);

if (node_ptr != NULL) {
(void) printf("string = %20s, length = %d\n",

node_ptr−>string, node_ptr−>length);
} else {

(void)printf("not found: %20s\n", node.string);
}

}
return(0);

}

/* routine to compare two nodes based on an */
/* alphabetical ordering of the string field */
static int
node_compare(const void *node1, const void *node2) {

return (strcmp(
((const struct node *)node1)−>string,
((const struct node *)node2)−>string));

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

hsearch(3C), lsearch(3C), qsort(3C), tsearch(3C), attributes(5)

bsearch(3C)

ATTRIBUTES

SEE ALSO

34 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

bstring, bcopy, bcmp, bzero – bit and byte string operations

#include <strings.h>

void bcopy(const void *s1, void *s2, size_t n);

int bcmp(const void *s1, const void *s2, size_t n);

void bzero(void *s, size_t n);

The bcopy(), bcmp(), and bzero() functions operate on variable length strings of
bytes. They do not check for null bytes as do the functions described on the
string(3C) manual page.

The bcopy() function copies n bytes from string s1 to the string s2. Overlapping
strings are handled correctly.

The bcmp() function compares byte string s1 against byte string s2, returning 0 if they
are identical, 1 otherwise. Both strings are assumed to be n bytes long. The bcmp()
function always returns 0 when n is 0.

The bzero() function places n null bytes in the string s.

The bcmp() and bcopy() routines take parameters backwards from strcmp() and
strcpy(), respectively. See string(3C).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

memory(3C), string(3C), attributes(5)

bstring(3C)

NAME

SYNOPSIS

DESCRIPTION

WARNINGS

ATTRIBUTES

SEE ALSO

Basic Library Functions 35

btowc – single-byte to wide-character conversion

#include <stdio.h>

#include <wchar.h>

wint_t btowc(int c);

The btowc() function determines whether c constitutes a valid (one-byte) character in
the initial shift state.

The behavior of this function is affected by the LC_CTYPE category of the current
locale. See environ(5).

The btowc() function returns WEOF if c has the value EOF or if (unsigned char)c
does not constitute a valid (one-byte) character in the initial shift state. Otherwise, it
returns the wide-character representation of that character.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

setlocale(3C), wctob(3C), attributes(5), environ(5)

The btowc() function can be used safely in multithreaded applications, as long as
setlocale(3C) is not being called to change the locale.

btowc(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

36 man pages section 3: Basic Library Functions • Last Revised 3 Feb 1998

catgets – read a program message

#include <nl_types.h>

char *catgets(nl_catd catd, int set_num, int msg_num, const char
*s);

The catgets() function attempts to read message msg_num, in set set_num, from the
message catalog identified by catd. The catd argument is a catalog descriptor returned
from an earlier call to catopen(). The s argument points to a default message string
which will be returned by catgets() if the identified message catalog is not
currently available.

If the identified message is retrieved successfully, catgets() returns a pointer to an
internal buffer area containing the null terminated message string. If the call is
unsuccessful for any reason, catgets() returns a pointer to s and errno may be set
to indicate the error.

The catgets() function may fail if:

EBADF The catd argument is not a valid message catalogue descriptor
open for reading.

EINTR The read operation was terminated due to the receipt of a signal,
and no data was transferred.

EINVAL The message catalog identified by catd is corrupted.

ENOMSG The message identified by set_id and msg_id is not in the message
catalog.

The catgets() function can be used safely in multithreaded applications, as long as
setlocale(3C) is not being called to change the locale.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

gencat(1), catclose(3C), catopen(3C), gettext(3C), setlocale(3C),
attributes(5)

International Language Environments Guide

catgets(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

Basic Library Functions 37

catopen, catclose – open/close a message catalog

#include <nl_types.h>

nl_catd catopen(const char *name, int oflag);

int catclose(nl_catd catd);

The catopen() function opens a message catalog and returns a message catalog
descriptor. name specifies the name of the message catalog to be opened. If name
contains a “/”, then name specifies a complete pathname for the message catalog;
otherwise, the environment variable NLSPATH is used and
/usr/lib/locale/locale/LC_MESSAGES must exist. If NLSPATH does not exist in
the environment, or if a message catalog cannot be opened in any of the paths
specified by NLSPATH, then the default path
/usr/lib/locale/locale/LC_MESSAGES is used. In the "C" locale, catopen() will
always succeed without checking the default search path.

The names of message catalogs and their location in the filesystem can vary from one
system to another. Individual applications can choose to name or locate message
catalogs according to their own special needs. A mechanism is therefore required to
specify where the catalog resides.

The NLSPATH variable provides both the location of message catalogs, in the form of a
search path, and the naming conventions associated with message catalog files. For
example:

NLSPATH=/nlslib/%L/%N.cat:/nlslib/%N/%L

The metacharacter % introduces a substitution field, where %L substitutes the current
setting of either the LANG environment variable, if the value of oflag is 0, or the
LC_MESSAGES category, if the value of oflag is NL_CAT_LOCALE, and %N substitutes
the value of the name parameter passed to catopen(). Thus, in the above example,
catopen() will search in /nlslib/$LANG/name.cat, if oflag is 0, or in
/nlslib/{LC_MESSAGES}/name.cat, if oflag is NL_CAT_LOCALE.

The NLSPATH variable will normally be set up on a system wide basis (in
/etc/profile) and thus makes the location and naming conventions associated
with message catalogs transparent to both programs and users.

The full set of metacharacters is:

%N The value of the name parameter passed to catopen().

%L The value of LANG or LC_MESSAGES.

%l The value of the language element of LANG or LC_MESSAGES.

%t The value of the territory element of LANG or LC_MESSAGES.

%c The value of the codeset element of LANG or LC_MESSAGES.

%% A single %.

catopen(3C)

NAME

SYNOPSIS

DESCRIPTION

38 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

The LANG environment variable provides the ability to specify the user’s requirements
for native languages, local customs and character set, as an ASCII string in the form

LANG=language[_territory[.codeset]]

A user who speaks German as it is spoken in Austria and has a terminal which
operates in ISO 8859/1 codeset, would want the setting of the LANG variable to be

LANG=De_A.88591

With this setting it should be possible for that user to find any relevant catalogs should
they exist.

Should the LANG variable not be set, the value of LC_MESSAGES as returned by
setlocale() is used. If this is NULL, the default path as defined in <nl_types.h>
is used.

A message catalogue descriptor remains valid in a process until that process closes it,
or a successful call to one of the exec functions. A change in the setting of the
LC_MESSAGES category may invalidate existing open catalogues.

If a file descriptor is used to implement message catalogue descriptors, the
FD_CLOEXEC flag will be set; see <fcntl.h>.

If the value of oflag argument is 0, the LANG environment variable is used to locate the
catalogue without regard to the LC_MESSAGES category. If the oflag argument is
NL_CAT_LOCALE, the LC_MESSAGES category is used to locate the message catalogue.

The catclose() function closes the message catalog identified by catd. If a file
descriptor is used to implement the type nl_catd, that file descriptor will be closed.

Upon successful completion, catopen() returns a message catalog descriptor for use
on subsequent calls to catgets() and catclose(). Otherwise it returns
(nl_catd) −1.

Upon successful completion, catclose() returns 0. Otherwise it returns −1 and sets
errno to indicate the error.

The catopen() function may fail if:

EACCES Search permission is denied for the component of the path prefix
of the message catalogue or read permission is denied for the
message catalogue.

EMFILE There are OPEN_MAX file descriptors currently open in the calling
process.

ENAMETOOLONG The length of the pathname of the message catalogue exceeds
PATH_MAX, or a pathname component is longer than NAME_MAX.

ENAMETOOLONG Pathname resolution of a symbolic link produced an intermediate
result whose length exceeds PATH_MAX.

catopen(3C)

RETURN VALUES

ERRORS

Basic Library Functions 39

ENFILE Too many files are currently open in the system.

ENOENT The message catalogue does not exist or the name argument points
to an empty string.

ENOMEM Insufficient storage space is available.

ENOTDIR A component of the path prefix of the message catalogue is not a
directory.

The catclose() function may fail if:

EBADF The catalogue descriptor is not valid.

EINTR The catclose() function was interrupted by a signal.

The catopen() and catclose() functions can be used safely in multithreaded
applications, as long as setlocale(3C) is not being called to change the locale.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

gencat(1), catgets(3C), gettext(3C), nl_types(3HEAD), setlocale(3C),
attributes(5), environ(5)

catopen(3C)

USAGE

ATTRIBUTES

SEE ALSO

40 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

cfgetispeed, cfgetospeed – get input and output baud rate

#include <termios.h>

speed_t cfgetispeed(const struct termios *termios_p);

speed_t cfgetospeed(const struct termios *termios_p);

The cfgetispeed() function extracts the input baud rate from the termios
structure to which the termios_p argument points.

The cfgetospeed() function extracts the output baud rate from the termios
structure to which the termios_p argument points.

These functions returns exactly the value in the termios data structure, without
interpretation.

Upon successful completion, cfgetispeed() returns a value of type speed_t
representing the input baud rate.

Upon successful completion, cfgetospeed() returns a value of type speed_t
representing the output baud rate.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe, and Async-Signal-Safe

cfgetospeed(3C), tcgetattr(3C), attributes(5), termio(7I)

cfgetispeed(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Basic Library Functions 41

cfsetispeed, cfsetospeed – set input and output baud rate

#include <termios.h>

int cfsetispeed(struct termios *termios_p, speed_t speed);

int cfsetospeed(struct termios *termios_p, speed_t speed);

The cfsetispeed() function sets the input baud rate stored in the structure pointed
to by termios_p to speed.

The cfsetospeed() function sets the output baud rate stored in the structure
pointed to by termios_p to speed.

There is no effect on the baud rates set in the hardware until a subsequent successful
call to tcsetattr(3C) on the same termios structure.

Upon successful completion, cfsetispeed() and cfsetospeed() return 0.
Otherwise −1 is returned, and errno may be set to indicate the error.

The cfsetispeed() and cfsetospeed() functions may fail if:

EINVAL The speed value is not a valid baud rate.

EINVAL The value of speed is outside the range of possible speed values as
specified in <termios.h>.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe, and Async-Signal-Safe

cfgetispeed(3C), tcsetattr(3C), attributes(5), termio(7I)

cfsetispeed(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

42 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

clock – report CPU time used

#include <time.h>

clock_t clock(void);

The clock() function returns the amount of CPU time (in microseconds) used since
the first call to clock() in the calling process. The time reported is the sum of the
user and system times of the calling process and its terminated child processes for
which it has executed the wait(2) function, the pclose(3C) function, or the
system(3C) function.

Dividing the value returned by clock() by the constant CLOCKS_PER_SEC, defined
in the <time.h> header, will give the time in seconds. If the process time used is not
available or cannot be represented, clock returns the value (clock_t) −1.

The value returned by clock() is defined in microseconds for compatibility with
systems that have CPU clocks with much higher resolution. Because of this, the value
returned will wrap around after accumulating only 2147 seconds of CPU time (about
36 minutes).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

times(2), wait(2), popen(3C), system(3C), attributes(5)

clock(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

Basic Library Functions 43

closedir – close a directory stream

#include <sys/types.h>

#include <dirent.h>

int closedir(DIR *dirp);

The closedir() function closes the directory stream referred to by the argument
dirp. Upon return, the value of dirp may no longer point to an accessible object of the
type DIR. If a file descriptor is used to implement type DIR, that file descriptor will be
closed.

Upon successful completion, closedir() returns 0. Otherwise, −1 is returned and
errno is set to indicate the error.

The closedir() function may fail if:

EBADF The dirp argument does not refer to an open directory stream.

EINTR The closedir() function was interrupted by a signal.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

opendir(3C), attributes(5)

closedir(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

44 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

closefrom, fdwalk – close or iterate over open file descriptors

#include <stdlib.h>

void closefrom(int lowfd);

int fdwalk(int (*func)(void *, int), void *cd);

The closefrom() function calls close(2) on all open file descriptors greater than or
equal to lowfd.

The effect of closefrom(lowfd) is the same as the code

#include <sys/resource.h>
struct rlimit rl;
int i;

getrlimit(RLIMIT_NOFILE, &rl);
for (i = lowfd; i < rl.rlim_max; i++)

(void) close(i);

except that close() is called only on file descriptors that are actually open, not on
every possible file descriptor greater than or equal to lowfd, and close() is also called
on any open file descriptors greater than or equal to rl.rlim_max (and lowfd),
should any exist.

The fdwalk() function first makes a list of all currently open file descriptors. Then
for each file descriptor in the list, it calls the user-defined function, func(cd, fd), passing
it the pointer to the callback data, cd, and the value of the file descriptor from the list,
fd. The list is processed in file descriptor value order, lowest numeric value first.

If func() returns a non-zero value, the iteration over the list is terminated and
fdwalk() returns the non-zero value returned by func(). Otherwise, fdwalk()
returns 0 after having called func() for every file descriptor in the list.

The fdwalk() function can be used for fine-grained control over the closing of file
descriptors. For example, the closefrom() function can be implemented as:

static int
close_func(void *lowfdp, int fd)
{

if (fd >= *(int *)lowfdp)
(void) close(fd);

return (0);
}

void
closefrom(int lowfd)
{

(void) fdwalk(close_func, &lowfd);
}

The fdwalk() function can then be used to count the number of open files in the
process.

closefrom(3C)

NAME

SYNOPSIS

DESCRIPTION

Basic Library Functions 45

No return value is defined for closefrom(). If close() fails for any of the open file
descriptors, the error is ignored and the file descriptors whose close() operation
failed might remain open on return from closefrom().

The fdwalk() function returns the return value of the last call to the callback
function func(), or 0 if func() is never called (no open files).

No errors are defined. The closefrom() and fdwalk() functions do not set errno
but errno can be set by close() or by another function called by the callback
function, func().

/proc/self/fd directory (list of open files)

The act of closing all open file descriptors should be performed only as the first action
of a daemon process. Closing file descriptors that are in use elsewhere in the current
process normally leads to disastrous results.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

close(2), getrlimit(2), proc(4), attributes(5)

closefrom(3C)

RETURN VALUES

ERRORS

FILES

USAGE

ATTRIBUTES

SEE ALSO

46 man pages section 3: Basic Library Functions • Last Revised 27 Apr 2000

confstr – get configurable variables

#include <unistd.h>

size_t confstr(int name, char *buf, size_t len);

The confstr() function provides a method for applications to get
configuration-defined string values. Its use and purpose are similar to the
sysconf(3C) function, but it is used where string values rather than numeric values
are returned.

The name argument represents the system variable to be queried.

If len is not 0, and if name has a configuration-defined value, confstr() copies that
value into the len-byte buffer pointed to by buf. If the string to be returned is longer
than len bytes, including the terminating null, then confstr() truncates the string to
len−1 bytes and null-terminates the result. The application can detect that the string
was truncated by comparing the value returned by confstr() with len.

If len is 0, and buf is a null pointer, then confstr() still returns the integer value as
defined below, but does not return the string. If len is 0 but buf is not a null pointer, the
result is unspecified.

The confstr() function supports the following values for name, defined in
<unistd.h>, for both SPARC and IA:

_CS_LFS64_CFLAGS
If _LFS64_LARGEFILE is defined in <unistd.h>, this value is the set of initial
options to be given to the cc and c89 utilities to build an application using the
Large File Summit transitional compilation environment (see lfcompile64(5)).

_CS_LFS64_LDFLAGS
If _LFS64_LARGEFILE is defined in <unistd.h>, this value is the set of final
options to be given to the cc and c89 utilities to build an application using the
Large File Summit transitional compilation environment (see lfcompile64(5)).

_CS_LFS64_LIBS
If _LFS64_LARGEFILE is defined in <unistd.h>, this value is the set of libraries
to be given to the cc and c89 utilities to build an application using the Large File
Summit transitional compilation environment (see lfcompile64(5)).

_CS_LFS64_LINTFLAGS
If _LFS64_LARGEFILE is defined in <unistd.h>, this value is the set of options
to be given to the lint utility to check application source using the Large File
Summit transitional compilation environment (see lfcompile64(5)).

_CS_LFS_CFLAGS
If _LFS_LARGEFILE is defined in <unistd.h>, this value is the set of initial
options to be given to the cc and c89 utilities to build an application using the
Large File Summit large file compilation environment for 32-bit applications (see
lfcompile(5)).

confstr(3C)

NAME

SYNOPSIS

DESCRIPTION

Basic Library Functions 47

_CS_LFS_LDFLAGS
If _LFS_LARGEFILE is defined in <unistd.h>, this value is the set of final
options to be given to the cc and c89 utilities to build an application using the
Large File Summit large file compilation environment for 32-bit applications (see
lfcompile(5)).

_CS_LFS_LIBS
If _LFS_LARGEFILE is defined in <unistd.h>, this value is the set of libraries to
be given to the cc and c89 utilities to build an application using the Large File
Summit large file compilation environment for 32-bit applications (see
lfcompile(5)).

_CS_LFS_LINTFLAGS
If _LFS_LARGEFILE is defined in <unistd.h>, this value is the set of options to
be given to the lint utility to check application source using the Large File
Summit large file compilation environment for 32-bit applications (see
lfcompile(5)).

_CS_PATH
If the ISO POSIX.2 standard is supported, this is the value for the PATH
environment variable that finds all standard utilities. Otherwise the meaning of this
value is unspecified.

_CS_XBS5_ILP32_OFF32_CFLAGS
If sysconf(_SC_XBS5_ILP32_OFF32) returns −1 the meaning of this value is
unspecified. Otherwise, this value is the set of initial options to be given to the cc
and c89 utilities to build an application using a programming model with 32-bit
int, long, pointer, and off_t types.

_CS_XBS5_ILP32_OFF32_LDFLAGS
If sysconf(_SC_XBS5_ILP32_OFF32) returns −1 the meaning of this value is
unspecified. Otherwise, this value is the set of final options to be given to the cc
and c89 utilities to build an application using a programming model with 32-bit
int, long, pointer, and off_t types.

_CS_XBS5_ILP32_OFF32_LIBS
If sysconf(_SC_XBS5_ILP32_OFF32) returns −1 the meaning of this value is
unspecified. Otherwise, this value is the set of libraries to be given to the cc and
c89 utilities to build an application using a programming model with 32-bit int,
long, pointer, and off_t types.

_CS_XBS5_ILP32_OFF32_LINTFLAGS
If sysconf(_SC_XBS5_ILP32_OFF32) returns −1 the meaning of this value is
unspecified. Otherwise, this value is the set of options to be given to the lint
utility to check application source using a programming model with 32-bit int,
long, pointer, and off_t types.

_CS_XBS5_ILP32_OFFBIG_CFLAGS
If sysconf(_SC_XBS5_ILP32_OFFBIG) returns −1 the meaning of this value is
unspecified. Otherwise, this value is the set of initial options to be given to the cc
and c89 utilities to build an application using a programming model with 32-bit
int, long, and pointer types, and an off_t type using at least 64 bits.

confstr(3C)

48 man pages section 3: Basic Library Functions • Last Revised 14 Apr 1998

_CS_XBS5_ILP32_OFFBIG_LDFLAGS
If sysconf(SC_XBS5_ILP32_OFFBIG) returns −1 the meaning of this value is
unspecified. Otherwise, this value is the set of final options to be given to the cc
and c89 utilities to build an application using a programming model with 32-bit
int, long, and pointer types, and an off_t type using at least 64 bits.

_CS_XBS5_ILP32_OFFBIG_LIBS
If sysconf(_SC_XBS5_ILP32_OFFBIG) returns −1 the meaning of this value is
unspecified. Otherwise, this value is the set of libraries to be given to the cc and
c89 utilities to build an application using a programming model with 32-bit int,
long, and pointer types, and an off_t type using at least 64 bits.

_CS_XBS5_ILP32_OFFBIG_LINTFLAGS
If sysconf(_SC_XBS5_ILP32_OFFBIG) returns −1 the meaning of this value is
unspecified. Otherwise, this value is the set of options to be given to the lint
utility to check an application using a programming model with 32-bit int, long,
and pointer types, and an off_t type using at least 64 bits.

The confstr() function supports the following values for name, defined in
<unistd.h>, for SPARC only:

_CS_XBS5_LP64_OFF64_CFLAGS
If sysconf(_SC_XBS5_LP64_OFF64) returns −1 the meaning of this value is
unspecified. Otherwise, this value is the set of initial options to be given to the cc
and c89 utilities to build an application using a programming model with 64-bit
int, long, pointer, and off_t types.

_CS_XBS5_LP64_OFF64_LDFLAGS
If sysconf(_SC_XBS5_LP64_OFF64) returns −1 the meaning of this value is
unspecified. Otherwise, this value is the set of final options to be given to the cc
and c89 utilities to build an application using a programming model with 64-bit
int, long, pointer, and off_t types.

_CS_XBS5_LP64_OFF64_LIBS
If sysconf(_SC_XBS5_LP64_OFF64) returns −1 the meaning of this value is
unspecified. Otherwise, this value is the set of libraries to be given to the cc and
c89 utilities to build an application using a programming model with 64-bit int,
long, pointer, and off_t types.

_CS_XBS5_LP64_OFF64_LINTFLAGS
If sysconf(_SC_XBS5_LP64_OFF64) returns −1 the meaning of this value is
unspecified. Otherwise, this value is the set of options to be given to the lint
utility to check application source using a programming model with 64-bit int,
long, pointer, and off_t types.

_CS_XBS5_LPBIG_OFFBIG_CFLAGS
If sysconf(_SC_XBS5_LPBIG_OFFBIG) returns −1 the meaning of this value is
unspecified. Otherwise, this value is the set of initial options to be given to the cc
and c89 utilities to build an application using a programming model with an int
type using at least 32 bits and long, pointer, and off_t types using at least 64
bits.

confstr(3C)

Basic Library Functions 49

_CS_XBS5_LPBIG_OFFBIG_LDFLAGS
If sysconf(_SC_XBS5_LPBIG_OFFBIG) returns −1 the meaning of this value is
unspecified. Otherwise, this value is the set of final options to be given to the cc
and c89 utilities to build an application using a programming model with an int
type using at least 32 bits and long, pointer, and off_t types using at least 64
bits.

_CS_XBS5_LPBIG_OFFBIG_LIBS
If sysconf(_SC_XBS5_LPBIG_OFFBIG) returns −1 the meaning of this value is
unspecified. Otherwise, this value is the set of libraries to be given to the cc and
c89 utilities to build an application using a programming model with an int type
using at least 32 bits and long, pointer, and off_t types using at least 64 bits.

_CS_XBS5_LPBIG_OFFBIG_LINTFLAGS
If sysconf(_SC_XBS5_LPBIG_OFFBIG) returns −1 the meaning of this value is
unspecified. Otherwise, this value is the set of options to be given to the lint
utility to check application source using a programming model with an int type
using at least 32 bits and long, pointer, and off_t types using at least 64 bits.

If name has a configuration-defined value, the confstr() function returns the size of
buffer that would be needed to hold the entire configuration-defined value. If this
return value is greater than len, the string returned in buf is truncated.

If name is invalid, confstr() returns 0 and sets errno to indicate the error.

If name does not have a configuration-defined value, confstr() returns 0 and leaves
errno unchanged.

The confstr() function will fail if:

EINVAL The value of the name argument is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Mt-Safe

pathconf(2), sysconf(3C), attributes(5), lfcompile(5), lfcompile64(5)

confstr(3C)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

50 man pages section 3: Basic Library Functions • Last Revised 14 Apr 1998

crypt – string encoding function

#include <crypt.h>

char *crypt(const char *key, const char *salt);

#include <unistd.h>

char *crypt(const char *key, const char *salt);

The crypt() function is a string encoding function, used primarily for password
encryption. It is based on a one-way encryption algorithm with variations intended
(among other things) to frustrate use of hardware implementations of a key search.

The key argument points to a string to be encoded (for example, the user’s password.)
Only the first eight characters are used; the rest are ignored. The salt is a two-character
string chosen from the set [a-zA-Z0-9. /]. This string is used to perturb the
hashing algorithm in one of 4096 different ways.

Upon successful completion, crypt() returns a pointer to the encoded string. The
first two characters of the returned value are those of the salt argument. Otherwise it
returns a null pointer and sets errno to indicate the error.

In multithreaded applications, the return value is a pointer to thread-specific data.

The crypt() function will fail if:

ENOSYS The functionality is not supported on this implementation.

The return value of crypt() points to static data that is overwritten by each call.

The values returned by this function may not be portable among XSI-conformant
systems.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Safe

passwd(1), crypt(3C), encrypt(3C), getpass(3C), setkey(3C), passwd(4),
attributes(5)

crypt(3C)

NAME

Default

Standard
conforming

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

Basic Library Functions 51

cset, csetlen, csetcol, csetno, wcsetno – get information on EUC codesets

#include <euc.h>

int csetlen(int codeset);

int csetcol(int codeset);

int csetno(unsigned char c);

#include <widec.h>

int wcsetno(wchar_t pc);

Both csetlen() and csetcol() take a code set number codeset, which must be 0, 1,
2, or 3. The csetlen() function returns the number of bytes needed to represent a
character of the given Extended Unix Code (EUC) code set, excluding the single-shift
characters SS2 and SS3 for codesets 2 and 3. The csetcol() function returns the
number of columns a character in the given EUC code set would take on the display.

The csetno() function is implemented as a macro that returns a codeset number (0,
1, 2, or 3) for the EUC character whose first byte is c. For example,

#include<euc.h>
. . .
x+=csetcol(csetno(c));

increments a counter “x” (such as the cursor position) by the width of the character
whose first byte is c.

The wcsetno() function is implemented as a macro that returns a codeset number (0,
1, 2, or 3) for the given process code character pc. For example,

#include<euc.h>
#include<widec.h>
. . .
x+=csetcol(wcsetno(pc));

increments a counter “x” (such as the cursor position) by the width of the Process
Code character pc.

The cset(), csetlen(), csetcol(), csetno(), and wcsetno() functions can be
used safely in multithreaded applications, as long as setlocale(3C) is not being
called to change the locale.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

setlocale(3C) euclen(3C), attributes(5)

cset(3C)

NAME

SYNOPSIS

DESCRIPTION

USAGE

ATTRIBUTES

SEE ALSO

52 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

ctermid, ctermid_r – generate path name for controlling terminal

#include <stdio.h>

char *ctermid(char *s);

char *ctermid_r(char *s);

The ctermid() function generates the path name of the controlling terminal for the
current process and stores it in a string.

If s is a null pointer, the string is stored in an internal static area whose address is
returned and whose contents are overwritten at the next call to ctermid().
Otherwise, s is assumed to point to a character array of at least L_ctermid elements.
The path name is placed in this array and the value of s is returned. The constant
L_ctermid is defined in the header <stdio.h>.

The ctermid_r() function behaves as ctermid() except that if s is a null pointer,
the function returns NULL.

The difference between ctermid() and ttyname(3C) is that ttyname() must be
passed a file descriptor and returns the actual name of the terminal associated with
that file descriptor, while ctermid() returns a string (/dev/tty) that will refer to
the terminal if used as a file name. The ttyname() function is useful only if the
process already has at least one file open to a terminal.

The ctermid() function is unsafe in multithreaded applications. The ctermid_r()
function is MT-Safe and should be used instead.

When compiling multithreaded applications, the _REENTRANT flag must be defined
on the compile line. This flag should be used only with multithreaded applications.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability ctermid() is Standard

MT-Level ctermid() is Unsafe; ctermid_r() is
MT-Safe

ttyname(3C), attributes(5)

ctermid(3C)

NAME

SYNOPSIS

ctermid()

ctermid_r()

USAGE

ATTRIBUTES

SEE ALSO

Basic Library Functions 53

ctime, ctime_r, localtime, localtime_r, gmtime, gmtime_r, asctime, asctime_r, tzset –
convert date and time to string

#include <time.h>

char *ctime(const time_t *clock);

struct tm *localtime(const time_t *clock);

struct tm *gmtime(const time_t *clock);

char *asctime(const struct tm *tm);

extern time_t timezone, altzone;
extern int daylight;

extern char *tzname[2];

void tzset(void);

char *ctime_r(const time_t *clock, char *buf, int buflen);

struct tm *localtime_r(const time_t *clock, struct tm *res);

struct tm *gmtime_r(const time_t *clock, struct tm *res);

char *asctime_r(const struct tm *tm, char *buf, int buflen);

cc [flag...] file... -D_POSIX_PTHREAD_SEMANTICS [library...]

char *ctime_r(const time_t *clock, char *buf);

char *asctime_r(const struct tm *tm, char *buf);

The ctime() function converts the time pointed to by clock, representing the time in
seconds since the Epoch (00:00:00 UTC, January 1, 1970), to local time in the form of a
26-character string, as shown below. Time zone and daylight savings corrections are
made before string generation. The fields are in constant width:

Fri Sep 13 00:00:00 1986\n\0

The ctime() function is equivalent to:

asctime(localtime(clock))

The ctime(), asctime(), gmtime(), and localtime() functions return values in
one of two static objects: a broken-down time structure and an array of char.
Execution of any of the functions can overwrite the information returned in either of
these objects by any of the other functions.

The ctime_r() function has the same functionality as ctime() except that the caller
must supply a buffer buf with length buflen to store the result; buf must be at least 26
bytes. The POSIX ctime_r() function does not take a buflen parameter.

ctime(3C)

NAME

SYNOPSIS

POSIX

DESCRIPTION

54 man pages section 3: Basic Library Functions • Last Revised 23 Dec 1999

The localtime() and gmtime() functions return pointers to tm structures (see
below). The localtime() function corrects for the main time zone and possible
alternate (“daylight savings”) time zone; the gmtime() function converts directly to
Coordinated Universal Time (UTC), which is what the UNIX system uses internally.

The localtime_r() and gmtime_r() functions have the same functionality as
localtime() and gmtime() respectively, except that the caller must supply a buffer
res to store the result.

The asctime() function converts a tm structure to a 26-character string, as shown in
the previous example, and returns a pointer to the string.

The asctime_r() function has the same functionality as asctime() except that the
caller must supply a buffer buf with length buflen for the result to be stored. The buf
argument must be at least 26 bytes. The POSIX asctime_r() function does not take a
buflen parameter. The asctime_r() function returns a pointer to buf upon success. In
case of failure, NULL is returned and errno is set.

Declarations of all the functions and externals, and the tm structure, are in the
<time.h> header. The members of the tm structure are:

int tm_sec; /* seconds after the minute — [0, 61] */
/* for leap seconds */

int tm_min; /* minutes after the hour — [0, 59] */
int tm_hour; /* hour since midnight — [0, 23] */
int tm_mday; /* day of the month — [1, 31] */
int tm_mon; /* months since January — [0, 11] */
int tm_year; /* years since 1900 */
int tm_wday; /* days since Sunday — [0, 6] */
int tm_yday; /* days since January 1 — [0, 365] */

int tm_isdst; /* flag for alternate daylight savings time */

The value of tm_isdst is positive if daylight savings time is in effect, zero if daylight
savings time is not in effect, and negative if the information is not available.
Previously, the value of tm_isdst was defined as non-zero if daylight savings was in
effect.

The external time_t variable altzone contains the difference, in seconds, between
Coordinated Universal Time and the alternate time zone. The external variable
timezone contains the difference, in seconds, between UTC and local standard time.
The external variable daylight indicates whether time should reflect daylight
savings time. Both timezone and altzone default to 0 (UTC). The external variable
daylight is non-zero if an alternate time zone exists. The time zone names are
contained in the external variable tzname, which by default is set to:

char *tzname[2] = { "GMT", " " };

These functions know about the peculiarities of this conversion for various time
periods for the U.S. (specifically, the years 1974, 1975, and 1987). They start handling
the new daylight savings time starting with the first Sunday in April, 1987.

ctime(3C)

Basic Library Functions 55

The tzset() function uses the contents of the environment variable TZ to override
the value of the different external variables. It is called by asctime() and can also be
called by the user. See environ(5) for a description of the TZ environment variable.

Starting and ending times are relative to the current local time zone. If the alternate
time zone start and end dates and the time are not provided, the days for the United
States that year will be used and the time will be 2 AM. If the start and end dates are
provided but the time is not provided, the time will be 2 AM. The effects of tzset()
change the values of the external variables timezone, altzone, daylight, and
tzname.

Note that in most installations, TZ is set to the correct value by default when the user
logs on, using the local /etc/default/init file (see TIMEZONE(4)).

The ctime_r() and asctime_r() functions will fail if:

ERANGE The length of the buffer supplied by the caller is not large enough
to store the result.

These functions do not support localized date and time formats. The strftime(3C)
function can be used when localization is required.

The localtime(), localtime_r(), gmtime(), gmtime_r(), ctime(), and
ctime_r() functions assume Gregorian dates. Times before the adoption of the
Gregorian calendar will not match historial records.

EXAMPLE 1 Examples of the tzset() function.

The tzset() function scans the contents of the environment variable and assigns the
different fields to the respective variable. For example, the most complete setting for
New Jersey in 1986 could be:

EST5EDT4,116/2:00:00,298/2:00:00

or simply

EST5EDT

An example of a southern hemisphere setting such as the Cook Islands could be

KDT9:30KST10:00,63/5:00,302/20:00

In the longer version of the New Jersey example of TZ, tzname[0] is EST, timezone
is set to 5*60*60, tzname[1] is EDT, altzone is set to 4*60*60, the starting date of the
alternate time zone is the 117th day at 2 AM, the ending date of the alternate time zone
is the 299th day at 2 AM (using zero-based Julian days), and daylight is set positive.
Starting and ending times are relative to the current local time zone. If the alternate
time zone start and end dates and the time are not provided, the days for the United
States that year will be used and the time will be 2 AM. If the start and end dates are
provided but the time is not provided, the time will be 2 AM. The effects of tzset()
are thus to change the values of the external variables timezone, altzone,
daylight, and tzname. The ctime(), localtime(), mktime(), and strftime()
functions also update these external variables as if they had called tzset() at the

ctime(3C)

ERRORS

USAGE

EXAMPLES

56 man pages section 3: Basic Library Functions • Last Revised 23 Dec 1999

EXAMPLE 1 Examples of the tzset() function. (Continued)

time specified by the time_t or struct tm value that they are converting.

The zoneinfo timezone data files do not transition past Tue Jan 19 03:14:07 2038
UTC. Therefore for 64-bit applications using zoneinfo timezones, calculations
beyond this date might not use the correct offset from standard time, and could return
incorrect values. This affects the 64-bit version of localtime(), localtime_r(),
ctime(), and ctime_r().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

CSI Enabled

time(2), Intro(3), getenv(3C), mktime(3C), printf(3C), putenv(3C),
setlocale(3C), strftime(3C), TIMEZONE(4), attributes(5), environ(5)

When compiling multithreaded programs, see Intro(3), Notes On Multithreaded
Applications.

The return values for ctime(), localtime(), and gmtime() point to static data
whose content is overwritten by each call.

Setting the time during the interval of change from timezone to altzone or vice
versa can produce unpredictable results. The system administrator must change the
Julian start and end days annually.

The asctime(), ctime(), gmtime(), and localtime() functions are unsafe in
multithread applications. The asctime_r() and gmtime_r() functions are MT-Safe.
The ctime_r(), localtime_r(), and tzset() functions are MT-Safe in
multithread applications, as long as no user-defined function directly modifies one of
the following variables: timezone, altzone, daylight, and tzname. These four
variables are not MT-Safe to access. They are modified by the tzset() function in an
MT-Safe manner. The mktime(), localtime_r(), and ctime_r() functions call
tzset().

Solaris 2.4 and earlier releases provided definitions of the ctime_r(),
localtime_r(), gmtime_r(), and asctime_r() functions as specified in
POSIX.1c Draft 6. The final POSIX.1c standard changed the interface for ctime_r()
and asctime_r(). Support for the Draft 6 interface is provided for compatibility
only and might not be supported in future releases. New applications and libraries
should use the POSIX standard interface.

ctime(3C)

BUGS

ATTRIBUTES

SEE ALSO

NOTES

Basic Library Functions 57

For POSIX.1c-compliant applications, the _POSIX_PTHREAD_SEMANTICS and
_REENTRANT flags are automatically turned on by defining the _POSIX_C_SOURCE
flag with a value >= 199506L.

ctime(3C)

58 man pages section 3: Basic Library Functions • Last Revised 23 Dec 1999

ctype, isdigit, isxdigit, islower, isupper, isalpha, isalnum, isspace, iscntrl, ispunct,
isprint, isgraph, isascii – character handling

#include <ctype.h>

int isalpha(int c);

int isupper(int c);

int islower(int c);

int isdigit(int c);

int isxdigit(int c);

int isalnum(int c);

int isspace(int c);

int ispunct(int c);

int isprint(int c);

int isgraph(int c);

int iscntrl(int c);

int isascii(int c);

These macros classify character-coded integer values. Each is a predicate returning
non-zero for true, 0 for false. The behavior of these macros, except isascii(), is
affected by the current locale (see setlocale(3C)). To modify the behavior, change
the LC_TYPE category in setlocale(), that is, setlocale(LC_CTYPE, newlocale).
In the "C" locale, or in a locale where character type information is not defined,
characters are classified according to the rules of the US-ASCII 7-bit coded character
set.

The macro isascii() is defined on all integer values; the rest are defined only where
the argument is an int, the value of which is representable as an unsigned char, or
EOF, which is defined by the <stdio.h> header and represents end-of-file.

Functions exist for all the macros defined below. To get the function form, the macro
name must be undefined (for example, #undef isdigit).

For macros described with Default and Standard conforming versions,
standard-conforming behavior will be provided for standard-conforming applications
(see standards(5)) and for applications that define __XPG4_CHAR_CLASS__ before
including <ctype.h>.

isalpha() Tests for any character for which isupper() or islower() is
true.

isalpha() Tests for any character for which isupper() or islower() is
true, or any character that is one of the current locale-defined set of
characters for which none of iscntrl(), isdigit(),

ctype(3C)

NAME

SYNOPSIS

DESCRIPTION

Default

Standard
conforming

Basic Library Functions 59

ispunct(), or isspace() is true. In "C" locale, isalpha()
returns true only for the characters for which isupper() or
islower() is true.

isupper() Tests for any character that is an upper-case letter or is one of the
current locale-defined set of characters for which none of
iscntrl(), isdigit(), ispunct(), isspace(), or
islower() is true. In the "C" locale, isupper() returns true only
for the characters defined as upper-case ASCII characters.

islower() Tests for any character that is a lower-case letter or is one of the
current locale-defined set of characters for which none of
iscntrl(), isdigit(), ispunct(), isspace(), or
isupper() is true. In the "C" locale, islower() returns true only
for the characters defined as lower-case ASCII characters.

isdigit() Tests for any decimal-digit character.

isxdigit() Tests for any hexadecimal-digit character ([0−9], [A−F], or
[a−f]).

isxdigit() Tests for any hexadecimal-digit character ([0−9], [A−F], or
[a−f] or the current locale-defined sets of characters representing
the hexadecimal digits 10 to 15 inclusive). In the "C" locale, only

0 1 2 3 4 5 6 7 8 9 A B C D E F a b c d e f

are included.

isalnum() Tests for any character for which isalpha() or isdigit() is
true (letter or digit).

isspace() Tests for any space, tab, carriage-return, newline, vertical-tab or
form-feed (standard white-space characters) or for one of the
current locale-defined set of characters for which isalnum() is
false. In the C locale, isspace() returns true only for the
standard white-space characters.

ispunct() Tests for any printing character which is neither a space (" ") nor a
character for which isalnum() or iscntrl() is true.

isprint() Tests for any character for which ispunct(), isupper(),
islower(), isdigit(), and the space character (" ") is true.

isprint() Tests for any character for which iscntrl() is false, and
isalnum(), isgraph(), ispunct(), the space character (" "),
and the characters in the current locale-defined "print" class are
true.

isgraph() Tests for any character for which ispunct(), isupper(),
islower(), and isdigit() is true.

ctype(3C)

Default

Standard
conforming

Default

Standard
conforming

Default

60 man pages section 3: Basic Library Functions • Last Revised 26 Feb 1997

isgraph() Tests for any character for which isalnum() and ispunct() are
true, or any character in the current locale-defined "graph" class
which is neither a space (" ") nor a character for which iscntrl()
is true.

iscntrl() Tests for any ‘‘control character’’ as defined by the character set.

isascii() Tests for any ASCII character, code between 0 and 0177 inclusive.

If the argument to any of the character handling macros is not in the domain of the
function, the result is undefined. Otherwise, the macro/function will return non-zero
if the classification is TRUE, and 0 for FALSE.

The isdigit(), isxdigit(), islower(), isupper(), isalpha(), isalnum(),
isspace(), iscntrl(), ispunct(), isprint(), isgraph(), and isascii()
macros can be used safely in multithreaded applications, as long as setlocale(3C) is
not being called to change the locale.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

CSI Enabled

setlocale(3C), stdio(3C), ascii(5), environ(5), standards(5)

ctype(3C)

Standard
conforming

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

Basic Library Functions 61

cuserid – get character login name of the user

#include <stdio.h>

char *cuserid(char *s);

The cuserid() function generates a character-string representation of the login name
under which the owner of the current process is logged in. If s is a null pointer, this
representation is generated in an internal static area whose address is returned.
Otherwise, s is assumed to point to an array of at least L_cuserid characters; the
representation is left in this array. The constant L_cuserid is defined in the
<stdio.h> header.

In multithreaded applications, the caller must always supply an array s for the return
value.

If the login name cannot be found, cuserid() returns a null pointer. If s is not a null
pointer, the null character ‘\0’ will be placed at s[0].

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

getlogin(3C), getpwnam(3C), attributes(5)

cuserid(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

62 man pages section 3: Basic Library Functions • Last Revised 30 Dec 1996

dbm, dbminit, dbmclose, fetch, store, delete, firstkey, nextkey – data base subroutines

/usr/ucb/cc [flag ...] file ... -ldbm
#include <dbm.h>
typedef struct {

char *dptr;
int dsize;

}datum;

int dbminit(file);

char *file;

int dbmclose();

datum fetch(key);

datum key;

int store(key, dat);

datum key, dat;

int delete(key);

datum key;
datum firstkey()

datum nextkey(key);

datum key;

The dbm() library has been superseded by ndbm (see ndbm(3C)).

These functions maintain key/content pairs in a data base. The functions will handle
very large (a billion blocks) databases and will access a keyed item in one or two file
system accesses.

key/dat and their content are described by the datum typedef. A datum specifies a
string of dsize bytes pointed to by dptr. Arbitrary binary data, as well as normal ASCII
strings, are allowed. The data base is stored in two files. One file is a directory
containing a bit map and has .dir as its suffix. The second file contains all data and
has .pag as its suffix.

Before a database can be accessed, it must be opened by dbminit(). At the time of
this call, the files file.dir and file.pag must exist. An empty database is created by
creating zero-length .dir and .pag files.

A database may be closed by calling dbmclose(). You must close a database before
opening a new one.

dbm(3UCB)

NAME

SYNOPSIS

DESCRIPTION

Basic Library Functions 63

Once open, the data stored under a key is accessed by fetch() and data is placed
under a key by store. A key (and its associated contents) is deleted by delete(). A
linear pass through all keys in a database may be made, in an (apparently) random
order, by use of firstkey() and nextkey(). firstkey() will return the first key
in the database. With any key nextkey() will return the next key in the database.
This code will traverse the data base:

for (key = firstkey; key.dptr != NULL; key = nextkey(key))

All functions that return an int indicate errors with negative values. A zero return
indicates no error. Routines that return a datum indicate errors with a NULL (0) dptr.

ar(1), cat(1), cp(1), tar(1), ndbm(3C)

Use of these interfaces should be restricted to only applications written on BSD
platforms. Use of these interfaces with any of the system libraries or in multi-thread
applications is unsupported.

The .pag file will contain holes so that its apparent size may be larger than its actual
content. Older versions of the UNIX operating system may create real file blocks for
these holes when touched. These files cannot be copied by normal means (cp(1),
cat(1), tar(1), ar(1)) without filling in the holes.

dptr pointers returned by these subroutines point into static storage that is changed by
subsequent calls.

The sum of the sizes of a key/content pair must not exceed the internal block size
(currently 1024 bytes). Moreover all key/content pairs that hash together must fit on a
single block. store will return an error in the event that a disk block fills with
inseparable data.

delete() does not physically reclaim file space, although it does make it available
for reuse.

The order of keys presented by firstkey() and nextkey() depends on a hashing
function, not on anything interesting.

There are no interlocks and no reliable cache flushing; thus concurrent updating and
reading is risky.

The database files (file.dir and file.pag) are binary and are architecture-specific (for
example, they depend on the architecture’s byte order.) These files are not guaranteed
to be portable across architectures.

dbm(3UCB)

RETURN VALUES

SEE ALSO

NOTES

64 man pages section 3: Basic Library Functions • Last Revised 20 Feb 1997

decimal_to_floating, decimal_to_single, decimal_to_double, decimal_to_extended,
decimal_to_quadruple – convert decimal record to floating-point value

#include <floatingpoint.h>

void decimal_to_single(single *px, decimal_mode *pm,
decimal_record *pd, fp_exception_field_type *ps);

void decimal_to_double(double *px, decimal_mode *pm,
decimal_record *pd, fp_exception_field_type *ps);

void decimal_to_extended(extended *px, decimal_mode *pm,
decimal_record *pd, fp_exception_field_type *ps);

void decimal_to_quadruple(quadruple *px, decimal_mode *pm,
decimal_record *pd, fp_exception_field_type *ps);

The decimal_to_floating() functions convert the decimal record at *pd into a
floating-point value at *px, observing the modes specified in *pm and setting
exceptions in *ps. If there are no IEEE exceptions, *ps will be zero.

pd->sign and pd->fpclass are always taken into account. pd->exponent, pd->ds and
pd->ndigits are used when pd->fpclass is fp_normal or fp_subnormal. In these cases pd->ds
must contain one or more ascii digits followed by a NULL and pd->ndigits is assumed
to be the length of the string pd->ds. Notice that for efficiency reasons, the assumption
that pd->ndigits == strlen(pd->ds) is NEVER verified.

On output, *px is set to a correctly rounded approximation to

(pd->sign)*(pd->ds)*10**(pd->exponent)

Thus if pd->exponent == −2 and pd->ds == "1234", *px will get 12.34 rounded to storage
precision. pd->ds cannot have more than DECIMAL_STRING_LENGTH−1 significant
digits because one character is used to terminate the string with a NULL. If pd->more
!= 0 on input then additional nonzero digits follow those in pd->ds; fp_inexact is set
accordingly on output in *ps.

*px is correctly rounded according to the IEEE rounding modes in pm->rd. *ps is set to
contain fp_inexact, fp_underflow, or fp_overflow if any of these arise.

pm->df and pm->ndigits are not used.

strtod(3C), scanf(3C), fscanf(3C), and sscanf(3C) all use
decimal_to_double().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

decimal_to_floating(3C)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

Basic Library Functions 65

fscanf(3C), scanf(3C), sscanf(3C), strtod(3C), attributes(5)

decimal_to_floating(3C)

SEE ALSO

66 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

difftime – computes the difference between two calendar times

#include <time.h>

double difftime(time_t time1, time_t time0);

The difftime() function computes the difference between two calendar times.

The difftime() functions returns the difference (time1-time0) expressed in seconds
as a double.

The difftime() function is provided because there are no general arithmetic
properties defined for type time_t.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ctime(3C), attributes(5)

difftime(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

Basic Library Functions 67

directio – provide advice to file system

#include <sys/types.h>

#include <sys/fcntl.h>

int directio(int fildes, int advice);

The directio() function provides advice to the system about the expected behavior
of the application when accessing the data in the file associated with the open file
descriptor fildes. The system uses this information to help optimize accesses to the
file’s data. The directio() function has no effect on the semantics of the other
operations on the data, though it may affect the performance of other operations.

The advice argument is kept per file; the last caller of directio() sets the advice for
all applications using the file associated with fildes.

Values for advice are defined in <sys/fcntl.h>.

DIRECTIO_OFF Applications get the default system behavior when accessing file
data.

When an application reads data from a file, the data is first cached
in system memory and then copied into the application’s buffer
(see read(2)). If the system detects that the application is reading
sequentially from a file, the system will asynchronously "read
ahead" from the file into system memory so the data is
immediately available for the next read(2) operation.

When an application writes data into a file, the data is first cached
in system memory and is written to the device at a later time (see
write(2)). When possible, the system increases the performance of
write(2) operations by cacheing the data in memory pages. The
data is copied into system memory and the write(2) operation
returns immediately to the application. The data is later written
asynchronously to the device. When possible, the cached data is
"clustered" into large chunks and written to the device in a single
write operation.

The system behavior for DIRECTIO_OFF can change without
notice.

DIRECTIO_ON The system behaves as though the application is not going to reuse
the file data in the near future. In other words, the file data is not
cached in the system’s memory pages.

When possible, data is read or written directly between the
application’s memory and the device when the data is accessed
with read(2) and write(2) operations. When such transfers are
not possible, the system switches back to the default behavior, but
just for that operation. In general, the transfer is possible when the

directio(3C)

NAME

SYNOPSIS

DESCRIPTION

68 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

application’s buffer is aligned on a two-byte (short) boundary, the
offset into the file is on a device sector boundary, and the size of
the operation is a multiple of device sectors.

This advisory is ignored while the file associated with fildes is
mapped (see mmap(2)).

The system behavior for DIRECTIO_ON can change without notice.

Upon successful completion, directio() returns 0. Otherwise, it returns −1 and sets
errno to indicate the error.

The directio() function will fail if:

EBADF The fildes argument is not a valid open file descriptor.

ENOTTY The fildes argument is not associated with a file system that accepts
advisory functions.

EINVAL The value in advice is invalid.

Small sequential I/O generally performs best with DIRECTIO_OFF.

Large sequential I/O generally performs best with DIRECTIO_ON, except when a file
is sparse or is being extended and is opened with O_SYNC or O_DSYNC (see open(2)).

The directio() function is supported for the ufs file system type (see fstyp(1M)).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

fstyp(1M), mmap(2), open(2), read(2), write(2), attributes(5), fcntl(3HEAD)

Switching between DIRECTIO_OFF and DIRECTIO_ON can slow the system because
each switch to DIRECTIO_ON might entail flushing the file’s data from the system’s
memory.

directio(3C)

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

WARNINGS

Basic Library Functions 69

dirname – report the parent directory name of a file path name

#include <libgen.h>

char *dirname(char *path);

The dirname() function takes a pointer to a character string that contains a
pathname, and returns a pointer to a string that is a pathname of the parent directory
of that file. Trailing ’/’ characters in the path are not counted as part of the path.

If path does not contain a ’/’, then dirname() returns a pointer to the string "." . If
path is a null pointer or points to an empty string, dirname() returns a pointer to the
string "." .

The dirname() function returns a pointer to a string that is the parent directory of
path. If path is a null pointer or points to an empty string, a pointer to a string "." is
returned.

No errors are defined.

EXAMPLE 1 A sample code using the dirname() function.

Input String Output String

“/usr/lib"” “/usr”

“/usr/” “/”

“usr” “/”

“/” “/”

“.” “.”

“..” “.”

The following code fragment reads a path name, changes directory to the parent
directory of the named file (see chdir(2)), and opens the file.

char path[100], *pathcopy;
int fd;
gets (path);
pathcopy = strdup (path);
chdir (dirname (pathcopy));
free (pathcopy);

fd = open (basename (path), O_RDONLY);

The dirname() function may modify the string pointed to by path, and may return a
pointer to static storage that may then be overwritten by subsequent calls to
dirname().

dirname(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

EXAMPLES

USAGE

70 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

The dirname() and basename(3C) functions together yield a complete pathname.
The expression dirname(path) obtains the pathname of the directory where
basename(path) is found.

When compiling multithreaded applications, the _REENTRANT flag must be defined
on the compile line. This flag should only be used in multithreaded applications.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

basename(1), chdir(2), basename(3C), attributes(5)

dirname(3C)

ATTRIBUTES

SEE ALSO

Basic Library Functions 71

div, ldiv, lldiv – compute the quotient and remainder

#include <stdlib.h>

div_t div(int numer, int denom);

ldiv_t ldiv(long int numer, long int denom);

lldiv_t lldiv(long long numer, long long denom);

The div() function computes the quotient and remainder of the division of the
numerator numer by the denominator denom. It provides a well-defined semantics for
the signed integral division and remainder operations, unlike the
implementation-defined semantics of the built-in operations. The sign of the resulting
quotient is that of the algebraic quotient, and if the division is inexact, the magnitude
of the resulting quotient is the largest integer less than the magnitude of the algebraic
quotient. If the result cannot be represented, the behavior is undefined; otherwise,
quotient * denom + remainder will equal numer.

The ldiv() and lldiv() functions are similar to div(), except that the arguments
and the members of the returned structure are different. The ldiv() function returns
a structure of type ldiv_t and has type long int. The lldiv() function returns a
structure of type lldiv_t and has type long long.

The div() function returns a structure of type div_t, comprising both the quotient
and remainder:

int quot; /*quotient*/

int rem; /*remainder*/

The ldiv() function returns a structure of type ldiv_t and lldiv() returns a
structure of type lldiv_t, comprising both the quotient and remainder:

long int quot; /*quotient*/

long int rem; /*remainder*/

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

attributes(5)

div(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

72 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

dladdr, dladdr1 – translate address to symbolic information

cc [flag ...] file... -ldl [library ...]

#include <dlfcn.h>

int dladdr(void *address, Dl_info *dlip);

int dladdr1(void *address, Dl_info *dlip, void **info, int flags);

The dladdr() and dladdr1() functions determine if the specified address is located
within one of the mapped objects that make up the current applications address space.
An address is deemed to fall within a mapped object when it is between the base
address, and the _end address of that object. If a mapped object fits this criteria, the
symbol table made available to the runtime linker is searched to locate the nearest
symbol to the specified address. The nearest symbol is one that has a value less than or
equal to the required address.

The Dl_info structure must be preallocated by the user. The structure members are
filled in by dladdr() based on the specified address. The Dl_info structure includes
the following members:

const char * dli_fname;
void * dli_fbase;
const char * dli_sname;
void * dli_saddr;

Descriptions of these members appear below.

dli_fname Contains a pointer to the filename of the containing object.

dli_fbase Contains the base address of the containing object.

dli_sname Contains a pointer to the symbol name nearest to the specified
address. This symbol either has the same address, or is the nearest
symbol with a lower address.

dli_saddr Contains the actual address of the above symbol.

The dladdr1() function provides for addition information to be returned as specified
by the flags argument:

RTLD_DL_SYMENT Obtain the ELF symbol table entry for the matched
symbol. The info argument points to a symbol pointer
as defined in <sys/elf.h> (Elf32_Sym **info or
Elf64_Sym **info).

RTLD_DL_LINKMAP Obtain the Link_map for the matched file. The info
argument points to a Link_map pointer as defined in
<sys/link.h> (Link_map **info).

If the specified address cannot be matched to a mapped object, a 0 is returned.
Otherwise, a non-zero return is made and the associated Dl_info elements are filled.

dladdr(3DL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

Basic Library Functions 73

The dladdr() and dladdr1() functions are one of a family of functions that give
the user direct access to the dynamic linking facilities (see Linker and Libraries Guide)
and are available to dynamically-linked processes only.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ld(1), dlclose(3DL), dldump(3DL), dlerror(3DL), dlopen(3DL), dlsym(3DL),
attributes(5)

Linker and Libraries Guide

The Dl_info pointer elements point to addresses within the mapped objects. These
may become invalid if objects are removed prior to these elements being used (see
dlclose()).

If no symbol is found to describe the specified address, both the dli_sname and
dli_saddr members are set to 0.

dladdr(3DL)

USAGE

ATTRIBUTES

SEE ALSO

NOTES

74 man pages section 3: Basic Library Functions • Last Revised 24 Sep 2001

dlclose – close a shared object

cc [flag ...] file ... -ldl [library ...]

#include <dlfcn.h>

int dlclose(void *handle);

The dlclose() function disassociates a shared object previously opened by
dlopen() from the current process. Once an object has been closed using
dlclose(), its symbols are no longer available to dlsym(). All objects loaded
automatically as a result of invoking dlopen() on the referenced object are also
closed. handle is the value returned by a previous invocation of dlopen().

If the referenced object was successfully closed, dlclose() returns 0. If the object
could not be closed, or if handle does not refer to an open object, dlclose() returns a
non-zero value. More detailed diagnostic information will be available through
dlerror().

The dlclose() function is one of a family of functions that give the user direct access
to the dynamic linking facilities (see Linker and Libraries Guide) and are available to
dynamically-linked processes only.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ld(1), dladdr(3DL), dldump(3DL), dlerror(3DL), dlopen(3DL), dlsym(3DL),
attributes(5)

Linker and Libraries Guide

A successful invocation of dlclose() does not guarantee that the objects associated
with handle will actually be removed from the address space of the process. Objects
loaded by one invocation of dlopen() may also be loaded by another invocation of
dlopen(). The same object may also be opened multiple times. An object will not be
removed from the address space until all references to that object through an explicit
dlopen() invocation have been closed and all other objects implicitly referencing that
object have also been closed.

Once an object has been closed by dlclose(), referencing symbols contained in that
object can cause undefined behavior.

dlclose(3DL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

NOTES

Basic Library Functions 75

dldump – create a new file from a dynamic object component of the calling process

cc [flag ...] file ... -ldl [library ...]

#include <dlfcn.h>

int dldump(const char * ipath, const char * opath, int flags);

The dldump() function creates a new dynamic object opath from an existing dynamic
object ipath that is bound to the current process. An ipath value of 0 is interpreted as
the dynamic object that started the process. The new object is constructed from the
existing objects’ disc file. Relocations can be applied to the new object to pre-bind it to
other dynamic objects, or fix the object to a specific memory location. In addition, data
elements within the new object may be obtained from the objects’ memory image as it
exists in the calling process.

These techniques allow the new object to be executed with a lower startup cost, either
because there are less relocations required to load the object, or because of a reduction
in the data processing requirements of the object. However, it is important to note that
limitations may exist in using these techniques. Applying relocations to the new
dynamic object opath may restrict its flexibility within a dynamically changing
environment. In addition, limitations regarding data usage may make dumping a
memory image impractical (see EXAMPLES).

The runtime linker verifies that the dynamic object ipath is mapped as part of the
current process. Thus, the object must either be the dynamic object that started the
process (see exec(2)), one of the process’s dependencies, or an object that has been
preloaded (see ld.so.1(1)).

As part of the runtime processing of a dynamic object, relocation records within the
object are interpreted and applied to offsets within the object. These offsets are said to
be relocated. Relocations can be categorized into two basic types: non-symbolic and
symbolic.

The non-symbolic relocation is a simple relative relocation that requires the base address
at which the object is mapped to perform the relocation. The symbolic relocation
requires the address of an associated symbol, and results in a binding to the dynamic
object that defines this symbol. This symbol definition may originate from any of the
dynamic objects that make up the process, that is, the object that started the process,
one of the process’s dependencies, an object that has been preloaded, or the dynamic
object being relocated.

The flags parameter controls the relocation processing and other attributes of
producing the new dynamic object opath. Without any flags, the new object is
constructed solely from the contents of the ipath disc file without any relocations
applied.

Various relocation flags may be or’ed into the flags parameter to affect the relocations
applied to the new object. Non-symbolic relocations can be applied using the following:

RTLD_REL_RELATIVE Relocation records from the object ipath, that define
relative relocations, are applied to the object opath.

dldump(3DL)

NAME

SYNOPSIS

DESCRIPTION

76 man pages section 3: Basic Library Functions • Last Revised 2 Sept 1999

A variety of symbolic relocations can be applied using the following flags (each of these
flags also implies RTLD_REL_RELATIVE is in effect):

RTLD_REL_EXEC Symbolic relocations that result in binding ipath to the
dynamic object that started the process (commonly a
dynamic executable) are applied to the object opath.

RTLD_REL_DEPENDS Symbolic relocations that result in binding ipath to any
of the dynamic dependencies of the process are applied
to the object opath.

RTLD_REL_PRELOAD Symbolic relocations that result in binding ipath to any
objects preloaded with the process are applied to the
object opath. (See LD_PRELOAD in ld.so.1(1)).

RTLD_REL_SELF Symbolic relocations that result in binding ipath to itself
are applied to the object opath.

RTLD_REL_WEAK Weak relocations that remain unresolved are applied to
the object opath as 0.

RTLD_REL_ALL All relocation records defined in the object ipath are
applied to the new object opath (this is basically a
concatenation of all the above relocation flags).

Note that for dynamic executables, RTLD_REL_RELATIVE, RTLD_REL_EXEC, and
RTLD_REL_SELF have no effect (see EXAMPLES).

If relocations, knowledgeable of the base address of the mapped object, are applied to
the new object opath, then the new object will become fixed to the location that the
ipath image is mapped within the current process.

Any relocations applied to the new object opath will have the original relocation record
removed so that the relocation will not be applied more than once. Otherwise, the new
object opath will retain the relocation records as they exist in the ipath disc file.

The following additional attributes for creating the new dynamic object opath can be
specified using the flags parameter:

RTLD_MEMORY The new object opath is constructed from the current
memory contents of the ipath image as it exists in the
calling process. This option allows data modified by
the calling process to be captured in the new object.
Note that not all data modifications may be applicable
for capture; significant restrictions exist in using this
technique (see EXAMPLES). By default, when
processing a dynamic executable, any allocated
memory that follows the end of the data segment is
captured in the new object (see malloc (3C) and
brk(2)). This data, which represents the process heap,
is saved as a new .SUNW_heap section in the object

dldump(3DL)

Basic Library Functions 77

opath. The objects’ program headers and symbol
entries, such as _end, are adjusted accordingly. See also
RTLD_NOHEAP. When using this attribute, any
relocations that have been applied to the ipath memory
image that do not fall into one of the requested
relocation categories are undone, that is, the relocated
element is returned to the value as it existed in the ipath
disc file.

RTLD_STRIP Only collect allocatable sections within the object opath;
sections that are not part of the dynamic objects’
memory image are removed. This parameter reduces
the size of the opath disc file and is comparable to
having run the new object through strip(1).

RTLD_NOHEAP Do not save any heap to the new object. This option is
only meaningful when processing a dynamic
executable with the RTLD_MEMORY attribute and allows
for reducing the size of the opath disc file. In this case,
the executable must confine its data initialization to
data elements within its data segment and must not
use any allocated data elements that comprise the heap.

It should be emphasized that an object created by dldump() is simply an updated
ELF object file. No additional state regarding the process at the time dldump() is
called is maintained in the new object. dldump() does not provide a panacea for
checkpoint/resume. A new dynamic executable, for example, will not start where the
original executable called dldump(); it will gain control at the executable’s normal
entry point (see EXAMPLES).

On successful creation of the new object, dldump() returns 0. Otherwise, a non-zero
value is returned and more detailed diagnostic information is available through
dlerror().

EXAMPLE 1 Sample code using dldump().

The following code fragment, which can be part of a dynamic executable a.out, can
be used to create a new shared object from one of the dynamic executables’
dependencies libfoo.so.1:

const char * ipath = "libfoo.so.1";
const char * opath = "./tmp/libfoo.so.1";
...
if (dldump(ipath, opath, RTLD_REL_RELATIVE) != 0)

(void) printf("dldump failed: %s\n", dlerror());

The new shared object opath is fixed to the address of the mapped ipath bound to the
dynamic executable a.out. All relative relocations are applied to this new shared
object, which will reduce its relocation overhead when it is used as part of another
process.

dldump(3DL)

RETURN VALUES

EXAMPLES

78 man pages section 3: Basic Library Functions • Last Revised 2 Sept 1999

EXAMPLE 1 Sample code using dldump(). (Continued)

By performing only relative relocations, any symbolic relocation records remain
defined within the new object, and thus the dynamic binding to external symbols will
be preserved when the new object is used.

Use of the other relocation flags can fix specific relocations in the new object and thus
can reduce even more the runtime relocation startup cost of the new object. However,
this will also restrict the flexibility of using the new object within a dynamically
changing environment, as it will bind the new object to some or all of the dynamic
objects presently mapped as part of the process.

For example, the use of RTLD_REL_SELF will cause any references to symbols from
ipath to be bound to definitions within itself if no other preceding object defined the
same symbol. In other words, a call to foo() within ipath will bind to the definition foo
within the same object. Therefore, opath will have one less binding that must be
computed at runtime. This reduces the startup cost of using opath by other
applications; however, interposition of the symbol foo will no longer be possible.

Using a dumped shared object with applied relocations as an applications dependency
normally requires that the application have the same dependencies as the application
that produced the dumped image. Dumping shared objects, and the various flags
associated with relocation processing, have some specialized uses. However, the
technique is intended as a building block for future technology.

The following code fragment, which is part of the dynamic executable a.out, can be
used to create a new version of the dynamic executable:

static char * dumped = 0;
const char * opath = "./a.out.new";
...
if (dumped == 0) {

char buffer[100];
int size;
time_t seconds;
...
/* Perform data initialization */
seconds = time((time_t *)0);
size = cftime(buffer, (char *)0, &seconds);
if ((dumped = (char *)malloc(size + 1)) == 0) {

(void) printf("malloc failed: %s\n", strerror(errno));
return (1);

}
(void) strcpy(dumped, buffer);
...
/*
* Tear down any undesirable data initializations and
* dump the dynamic executables memory image.
*/
_exithandle();
_exit(dldump(0, opath, RTLD_MEMORY));

}

dldump(3DL)

Basic Library Functions 79

EXAMPLE 1 Sample code using dldump(). (Continued)

(void) printf("Dumped: %s\n", dumped);

Any modifications made to the dynamic executable, up to the point the dldump() call
is made, are saved in the new object a.out.new. This mechanism allows the
executable to update parts of its data segment and heap prior to creating the new
object. In this case, the date the executable is dumped is saved in the new object. The
new object can then be executed without having to carry out the same (presumably
expensive) initialization.

For greatest flexibility, this example does not save any relocated information. The
elements of the dynamic executable ipath that have been modified by relocations at
process startup, that is, references to external functions, are returned to the values of
these elements as they existed in the ipath disc file. This preservation of relocation
records allows the new dynamic executable to be flexible, and correctly bind and
initialize to its dependencies when executed on the same or newer upgrades of the OS.

Fixing relocations by applying some of the relocation flags would bind the new object
to the dependencies presently mapped as part of the process calling dldump(). It may
also remove necessary copy relocation processing required for the correct initialization
of its shared object dependencies. Therefore, if the new dynamic executables’
dependencies have no specialized initialization requirements, the executable may still
only interact correctly with the dependencies to which it binds if they were mapped to
the same locations as they were when dldump() was called.

Note that for dynamic executables, RTLD_REL_RELATIVE, RTLD_REL_EXEC, and
RTLD_REL_SELF have no effect, as relocations within the dynamic executable will
have been fixed when it was created by ld(1).

When RTLD_MEMORY is used, care should be taken to insure that dumped data
sections that reference external objects are not reused without appropriate
re-initialization. For example, if a data item contains a file descriptor, a variable
returned from a shared object, or some other external data, and this data item has been
initialized prior to the dldump() call, its value will have no meaning in the new
dumped image.

When RTLD_MEMORY is used, any modification to a data item that is initialized via a
relocation whose relocation record will be retained in the new image will effectively be
lost or invalidated within the new image. For example, if a pointer to an external
object is incremented prior to the dldump() call, this data item will be reset to its disc
file contents so that it can be relocated when the new image is used; hence, the
previous increment is lost.

Non-idempotent data initializations may prevent the use of RTLD_MEMORY. For
example, the addition of elements to a linked-list via init sections can result in the
linked-list data being captured in the new image. Running this new image may result
in init sections continuing to add new elements to the list without the prerequisite

dldump(3DL)

80 man pages section 3: Basic Library Functions • Last Revised 2 Sept 1999

EXAMPLE 1 Sample code using dldump(). (Continued)

initialization of the list head. It is recommended that _exithandle(3C) be called
before dldump() to tear down any data initializations established via initialization
code. Note that this may invalidate the calling image; thus, following the call to
dldump(), only a call to _exit(2) should be made.

The dldump() function is one of a family of functions that give the user direct access
to the dynamic linking facilities (see Linker and Libraries Guide) and are available to
dynamically-linked processes only.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

MT-Level MT-Safe

ld(1), ld.so.1(1), strip(1), _exit(2), brk(2), exec(2), _exithandle(3C),
dladdr(3DL), dlclose(3DL), dlerror(3DL), dlopen(3DL), dlsym(3DL), end(3C),
malloc(3C), attributes(5)

Linker and Libraries Guide

These functions are available to dynamically-linked processes only.

Any NOBITS sections within the ipath are expanded to PROGBITS sections within the
opath. NOBITS sections occupy no space within an ELF file image. They declare
memory that must be created and zero-filled when the object is mapped into the
runtime environment. .bss is a typical example of this section type. PROGBITS sections,
on the other hand, hold information defined by the object within the ELF file image.
This section conversion reduces the runtime initialization cost of the new dumped
object but increases the objects’ disc space requirement.

When a shared object is dumped, and relocations are applied which are
knowledgeable of the base address of the mapped object, the new object is fixed to this
new base address and thus its ELF type is reclassified to be a dynamic executable. This
new object can be processed by the runtime linker, but is not valid as input to the
link-editor.

If relocations are applied to the new object, any remaining relocation records will be
reorganized for better locality of reference. The relocation sections are renamed to
.SUNW_reloc and the association to the section they were to relocate is lost. Only the
offset of the relocation record itself is meaningful. This change does not make the new
object invalid to either the runtime linker or link-editor, but may reduce the objects
analysis with some ELF readers.

dldump(3DL)

USAGE

ATTRIBUTES

SEE ALSO

NOTES

Basic Library Functions 81

dlerror – get diagnostic information

cc [flag ...] file ... -ldl [library ...]

#include <dlfcn.h>

char *dlerror(void);

The dlerror() function returns a null-terminated character string (with no trailing
newline) that describes the last error that occurred during dynamic linking processing.
If no dynamic linking errors have occurred since the last invocation of dlerror(),
dlerror() returns NULL. Thus, invoking dlerror() a second time, immediately
following a prior invocation, will result in NULL being returned.

The dlerror() function is one of a family of functions that give the user direct access
to the dynamic linking facilities (see Linker and Libraries Guide) and are available to
dynamically-linked processes only.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ld(1), dladdr(3DL), dlclose(3DL), dldump(3DL), dlopen(3DL), dlsym(3DL),
attributes(5)

Linker and Libraries Guide

The messages returned by dlerror() may reside in a static buffer that is overwritten
on each call to dlerror(). Application code should not write to this buffer. Programs
wishing to preserve an error message should make their own copies of that message.

dlerror(3DL)

NAME

SYNOPSIS

DESCRIPTION

USAGE

ATTRIBUTES

SEE ALSO

NOTES

82 man pages section 3: Basic Library Functions • Last Revised 31 Dec 1996

dlinfo – dynamic load information

cc [flag ...] file ... -ldl [library ...]
#include <dlfcn.h>
#include <link.h>

#include <limits.h>

int dlinfo(void *handle, int request, void *p);

The dlinfo() function extracts information about a dynamically-loaded object. This
function is loosely modeled after the ioctl() function. The request argument and a
third argument of varying type are passed to dlinfo(). The action taken by
dlinfo() depends on the value of the request provided.

A handle argument, required for all requests except RTLD_DI_CONFIGADDR, is either
the value returned from a dlopen() or dlmopen() call, or the special handle
RTLD_SELF. If handle is the value returned from a dlopen() or dlmopen() call, the
information returned by the dlinfo() call pertains to the specified object. If handle is
the special handle RTLD_SELF, the information returned by the dlinfo() call
pertains to the caller itself.

The following are possible values for request to be passed into dlinfo():

RTLD_DI_CONFIGADDR Obtain the configuration file name and the address at
which it has been loaded. The p argument is a
Dl_info pointer (Dl_info *p). The following
elements from this structure are initialized:

dli_fname The full name of the configuration
file.

dli_fbase The base address of the
configuration file loaded into
memory.

RTLD_DI_LINKMAP Obtain the Link_map for the handle specified. The p
argument points to a Link_map pointer (Link_map
**p). The actual storage for the Link_map structure is
maintained by ld.so.1.

The Link_map structure includes the following
members:

unsigned long l_addr; /* base address */
char *l_name; /* object name */
Elf32_Dyn *l_ld; /* .dynamic section */
Link_map *l_next; /* next link object */
Link_map *l_prev; /* previous link object */
char *l_refname; /* filter reference name */

l_addr The base address of the object
loaded into memory.

dlinfo(3DL)

NAME

SYNOPSIS

DESCRIPTION

Basic Library Functions 83

l_name The full name of the loaded object.
This is the filename of the object as
referenced by ld.so.1.

l_ld Points to the SHT_DYNAMIC
structure.

l_next The next Link_map on the
link-map list, other objects on the
same link-map list as the current
object may be examined by
following the and l_prev fields.

l_prev The previous Link_map on the
link-map list.

l_refname If the object referenced is a filter this
field points to the name of the
object being filtered. If the object is
not a filter, this field will be 0. See
Linker and Libraries Guide.

RTLD_DI_LMID Obtain the ID for the link-map list upon which the
handle is loaded. The p argument is a Lmid_t pointer (
Lmid_t *p).

RTLD_DI_SERINFO Obtain the library search paths for the handle specified.
The p argument is a Dl_serinfo pointer (
Dl_serinfo *p). A user must first initialize the
Dl_serinfo structure with a
RTLD_DI_SERINFOSIZE request. See EXAMPLES.

The returned Dl_serinfo structure contains dls_cnt
Dl_serpath entries. Each entry’s dlp_name field
points to the search path. The corresponding
dlp_info field contains one of more flags indicating
the origin of the path (see the LA_SER_* flags defined
in <link.h>).

RTLD_DI_SERINFOSIZE Initialize a Dl_serinfo structure for use in a
RTLD_DI_SERINFO request. Both the dls_cnt and
dls_size fields are returned to indicate the number of
search paths applicable to the handle, and the total size
of a Dl_serinfo buffer required to hold dls_cnt
Dl_serpath entries and the associated search path
strings.

dlinfo(3DL)

84 man pages section 3: Basic Library Functions • Last Revised 11 Aug 2000

To obtain the complete path information, a new
Dl_serinfo buffer of size dls_size should be
allocated, initialized with the dls_cnt and dls_size
entries, and passed to a RTLD_DI_SERINFO request.
See EXAMPLES.

RTLD_DI_ORIGIN Obtain the origin of the dynamic object associated with
the handle. The p argument is a char pointer (char
*p). The dirname(3C) of the associated object’s
realpath(3C), which can be no bigger than
PATH_MAX, is copied to the pointer p.

If the request is invalid, the parameter p is null, handle does not refer to a valid object
opened by dlopen() or is not the special handle RTLD_SELF, or the Dl_serinfo
structure is uninitialized for a RTLD_DI_SERINFO request, then dlinfo() returns −1.
More detailed diagnostic information is available through dlerror(3DL).

EXAMPLE 1 Using dlinfo() to obtain the library search paths

The following example shows how a dynamic object can inspect the library search
paths that would be used to locate a simple filename with dlopen(). For simplicity,
error checking has been omitted.

Dl_serinfo _info, *info = &_info;
Dl_serpath *path;
uint_t cnt;

/* determine search path count and required buffer size */
dlinfo(RTLD_SELF, RTLD_DI_SERINFOSIZE, (void *)info);

/* allocate new buffer and initialize */
info = malloc(_info.dls_size);
info->dls_size = _info.dls_size;
info->dls_cnt = _info.dls_cnt;

/* obtain sarch path information */
dlinfo(RTLD_SELF, RTLD_DI_SERINFO, (void *)info);

path = &info->dls_serpath[0];

for (cnt = 1; cnt <= info->dls_cnt; cnt++, path++) {
(void) printf("%2d: %s\\n", cnt, path->dls_name);

}

The dlinfo() function is one of a family of functions that give the user direct access
to the dynamic linking facilities (see Linker and Libraries Guide) and are available to
dynamically-linked processes only.

See attributes(5) for descriptions of the following attributes:

dlinfo(3DL)

RETURN VALUES

EXAMPLES

USAGE

ATTRIBUTES

Basic Library Functions 85

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ld(1), ioctl(2), dirname(3C), dlclose(3DL), dldump(3DL), dlerror(3DL),
dlmopen(3DL), dlopen(3DL), dlsym(3DL), realpath(3C), attributes(5)

Linker and Libraries Guide

dlinfo(3DL)

SEE ALSO

86 man pages section 3: Basic Library Functions • Last Revised 11 Aug 2000

dlopen, dlmopen – gain access to an executable object file

cc [flag...] file... -ldl [library...]
#include <dlfcn.h>

#include <link.h>

void * dlopen(const char *pathname, int mode);

void * dlmopen(Lmid_t lmid, const char *pathname, int mode);

The dlopen() function makes an executable object file available to a running process.
It returns to the process a handle which the process may use on subsequent calls to
dlsym() and dlclose(). The value of this handle should not be interpreted in any
way by the process. The pathname argument is the path name of the object to be
opened. A path name containing an embedded ’/ ’ is interpreted as an absolute path
or relative to the current directory; otherwise, the set of search paths currently in effect
by the runtime linker will be used to locate the specified file. See NOTES below.

Any dependencies recorded within pathname are also loaded as part of the dlopen().
These dependencies are searched, in the order they are loaded, to locate any additional
dependencies. This process will continue until all the dependencies of pathname are
loaded. This dependency tree is referred to as a group.

If the value of pathname is 0, dlopen() provides a handle on a global symbol object.
This object provides access to the symbols from an ordered set of objects consisting of
the original program image file, together with any dependencies loaded at program
startup, and any objects that were loaded using dlopen() together with the
RTLD_GLOBAL flag. As the latter set of objects can change during process execution,
the set identified by handle can also change dynamically.

The dlmopen() function is identical to the dlopen() routine, except that an
identifying link-map id (lmid) is passed into it. This link-map id informs the dynamic
linking facilities upon which link-map list to load the object. See Linker and Libraries
Guide.

The mode argument describes how dlopen() will operate upon pathname with respect
to the processing of reference relocations and the scope of visibility of the symbols
provided by pathname and its dependencies.

When an object is brought into the address space of a process, it can contain references
to symbols whose addresses are not known until the object is loaded. These references
must be relocated before the symbols can be accessed and can be categorized as either
immediate or lazy references. immediate references are typically to data items used by
the object code, pointers to functions, and even calls to functions made from position
dependent shared objects. lazy references are typically calls to global functions made
from a position independent shared objects. For more information on these types of
reference seeLinker and Libraries Guide. The mode argument governs when these
references take place and can have the following values:

RTLD_LAZY Only immediate symbol references are relocated when the object is
first loaded. lazy references are not relocated until a given function

dlopen(3DL)

NAME

SYNOPSIS

DESCRIPTION

Basic Library Functions 87

is invoked for the first time. This mode should improve
performance, since a process cannot require all lazy references in
any given object. This behavior mimics the normal loading of
dependencies during process initialization.

RTLD_NOW All necessary relocations are performed when the object is first
loaded. This may waste some processing, if relocations are
performed for lazy references that are never used. This behavior
can be useful for applications that need to know as soon as an
object is loaded that all symbols referenced during execution will
be available. This option mimics the loading of dependencies
when the environment variable LD_BIND_NOW is in effect.

To determine the scope of visibility for symbols loaded with a dlopen() invocation,
the mode parameter should be bitwise or’ed with one of the following values:

RTLD_GLOBAL The object’s global symbols are made available for the relocation
processing of any other object. In addition, symbol lookup using
dlopen(0, mode) and an associated dlsym(), allows objects
loaded with RTLD_GLOBAL to be searched.

RTLD_LOCAL The object’s globals symbols are only available for the relocation
processing of other objects that comprise the same group.

The program image file, and any objects loaded at program startup, have the mode
RTLD_GLOBAL. The mode RTLD_LOCAL is the default mode for any objects acquired
with dlopen(). A local object may be a dependency of more then one group. Any
object of mode RTLD_LOCAL that is referenced as a dependency of an object of mode
RTLD_GLOBAL will be promoted to RTLD_GLOBAL. In other words, the RTLD_LOCAL
mode is ignored.

Any object loaded by dlopen() that requires relocations against global symbols can
reference the symbols in any RTLD_GLOBAL object, which are at least the program
image file and any objects loaded at program startup, from the object itself, and from
any dependencies the object references. However, the mode parameter may also be
bitwise OR-ed with the following values to affect the scope of symbol availability:

RTLD_GROUP Only symbols from the associated group are made available for
relocation. A group is established from the defined object and all
the dependencies of that object. A group must be completely
self-contained. All dependency relationships between the members
of the group must be sufficient to satisfy the relocation
requirements of each object that comprises the group.

RTLD_PARENT The symbols of the object initiating the dlopen() call are made
available to the objects obtained by dlopen() itself. This option is
useful when hierarchical dlopen() families are created. Note that
although the parent object can supply symbols for the relocation of
this object, the parent object is not available to dlsym() through
the returned handle.

dlopen(3DL)

88 man pages section 3: Basic Library Functions • Last Revised 8 Nov 2001

RTLD_WORLD Only symbols from RTLD_GLOBAL objects are made available for
relocation.

The default modes for dlopen() are both RTLD_WORLD and RTLD_GROUP. These
modes are or’ed together if an object is required by different dependencies specifying
differing modes.

The following modes provide additional capabilities outside of relocation processing:

RTLD_NODELETE The specified object will not be deleted from the address space as
part of a dlclose().

RTLD_NOLOAD The specified object is not loaded as part of the dlopen(), but a
valid handle is returned if the object already exists as part of the
process address space. Additional modes can be specified and will
be or’ed with the present mode of the object and its dependencies.
The RTLD_NOLOAD mode provides a means of querying the
presence, or promoting the modes, of an existing dependency.

The lmid passed to dlmopen() identifies the link-map list where the object will be
loaded. This can be any valid Lmid_t returned by dlinfo() or one of the following
special values:

LM_ID_BASE Load the object on the applications link-map list.

LM_ID_LDSO Load the object on the dynamic linkers (ld.so.1) link-map list.

LM_ID_NEWLM Causes the object to create a new link-map list as part of loading. It
is vital that any object opened on a new link-map list have all of its
dependencies expressed because there will be no other objects on
this link-map.

If pathname cannot be found, cannot be opened for reading, is not a shared or
relocatable object, or if an error occurs during the process of loading pathname or
relocating its symbolic references, dlopen() will return NULL. More detailed
diagnostic information will be available through dlerror().

The dlopen() and dlmopen() functions are members of a family of functions that
give the user direct access to the dynamic linking facilities (see Linker and Libraries
Guide) and are available to dynamically-linked processes only.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT−Level MT−Safe

ld(1), ld.so.1(1), dladdr(3DL), dlclose(3DL), dldump(3DL), dlerror(3DL),
dlinfo(3DL), dlsym(3DL), attributes(5)

dlopen(3DL)

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

Basic Library Functions 89

Linker and Libraries Guide

If other objects were link-edited with pathname when pathname was built, that is, the
pathname has dependencies on other objects, those objects will automatically be loaded
by dlopen(). The directory search path used to find both pathname and the other
needed objects may be affected by setting the environment variable
LD_LIBRARY_PATH, which is analyzed once at process startup, and from a runpath
setting within the object from which the call to dlopen() originated. These search
rules will only be applied to path names that do not contain an embedded ’/ ’.
Objects whose names resolve to the same absolute or relative path name may be
opened any number of times using dlopen(); however, the object referenced will
only be loaded once into the address space of the current process.

When loading shared objects the application should open a specific version of the
shared object, as opposed to relying on the version of the shared object pointed to by
the symbolic link.

When building objects that are to be loaded on a new link-map list (see
LM_ID_NEWLM), some precautions need to be taken. In general, all dependencies must
be included when building an object. Also, include /usr/lib/libmapmalloc.so.1
before /usr/lib/libc.so.1 when building an object.

When an object is loaded into memory on a new link-map list, it is isolated from the
main running program. There are certain global resources that are only usable from
one link-map list. A few examples of these would be the sbrk() based malloc(),
libthread(), and the signal vectors. Because of this, care must be taken not to use
any of these resources on any but the primary link-map list. These issues are discussed
in further detail in the Linker and Libraries Guide.

Some symbols defined in dynamic executables or shared objects may not be available
to the runtime linker. The symbol table created by ld for use by the runtime linker
might contain only a subset of the symbols defined in the object.

dlopen(3DL)

NOTES

90 man pages section 3: Basic Library Functions • Last Revised 8 Nov 2001

dlsym – get the address of a symbol in a shared object or executable

cc [flag ...] file ... -ldl [library ...]

#include <dlfcn.h>

void *dlsym(void *handle, const char *name);

The dlsym() function allows a process to obtain the address of a symbol defined
within a shared object or executable. The handle argument is either the value returned
from a call to dlopen() or one of the special handles RTLD_DEFAULT, RTLD_NEXT,
or RTLD_SELF. The name argument is the symbol’s name as a character string.

In the case of a handle returned from dlopen(), the corresponding shared object
must not have been closed using dlclose(). The dlsym() function searches for the
named symbol in all shared objects loaded automatically as a result of loading the
object referenced by handle. See dlopen(3DL).

In the case of the special handle RTLD_DEFAULT, dlsym() searches for the named
symbol starting with the first object loaded and proceeding through the list of initial
loaded objects, and any global objects obtained with dlopen(3DL), until a match is
found. This search follows the default model employed to relocate all objects within
the process.

In the case of the special handle RTLD_NEXT, dlsym() searches for the named symbol
in the objects that were loaded following the object from which the dlsym() call is
being made.

In the case of the special handle RTLD_SELF, dlsym() searches for the named symbol
in the objects that were loaded starting with the object from which the dlsym() call is
being made.

In the case of RTLD_DEFAULT, RTLD_NEXT, and RTLD_SELF, if the objects being
searched have been loaded from dlopen() calls, dlsym() searches the object only if
the caller is part of the same dlopen() dependency hierarchy, or if the object was
given global search access. See dlopen(3DL) for a discussion of the RTLD_GLOBAL
mode.

If handle does not refer to a valid object opened by dlopen(), is not the special handle
RTLD_DEFAULT, RTLD_NEXT, or RTLD_SELF, or if the named symbol cannot be
found within any of the objects associated with handle, dlsym() will return NULL.
More detailed diagnostic information is available through dlerror(3DL).

EXAMPLE 1 Using dlopen() and dlsym() to access a function or data objects.

The following example shows how one can use dlopen() and dlsym() to access
either function or data objects. For simplicity, error checking has been omitted.

void *handle;
int *iptr, (*fptr)(int);

/* open the needed object */
handle = dlopen("/usr/home/me/libfoo.so.1", RTLD_LAZY);

dlsym(3DL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

EXAMPLES

Basic Library Functions 91

EXAMPLE 1 Using dlopen() and dlsym() to access a function or data objects.
(Continued)

/* find the address of function and data objects */
fptr = (int (*)(int))dlsym(handle, "my_function");
iptr = (int *)dlsym(handle, "my_object");

/* invoke function, passing value of integer as a parameter */

(*fptr)(*iptr);

EXAMPLE 2 Using dlsym() to verify that a particular function is defined.

The following code fragment shows how dlsym() can be used to verify that a
particular function is defined and to call it only if it is.

int (*fptr)();

if ((fptr = (int (*)())dlsym(RTLD_DEFAULT,
"my_function")) != NULL) {

(*fptr)();

}

The dlsym() function is one of a family of functions that give the user direct access to
the dynamic linking facilities (see Linker and Libraries Guide) and are available to
dynamically-linked processes only.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ld(1), dladdr(3DL), dlclose(3DL), dldump(3DL), dlerror(3DL), dlopen(3DL),
attributes(5)

Linker and Libraries Guide

dlsym(3DL)

USAGE

ATTRIBUTES

SEE ALSO

92 man pages section 3: Basic Library Functions • Last Revised 13 Mar 2000

drand48, erand48, lrand48, nrand48, mrand48, jrand48, srand48, seed48, lcong48 –
generate uniformly distributed pseudo-random numbers

#include <stdlib.h>

double drand48(void);

double erand48(unsigned short xi[3]);

long lrand48(void);

long nrand48(unsigned short xi[3]);

long mrand48(void);

long jrand48(unsigned short xi[3]);

void srand48(long seedval);

unsigned short *seed48(unsigned short seed16v[3]);

void lcong48(unsigned short param[7]);

This family of functions generates pseudo-random numbers using the well-known
linear congruential algorithm and 48-bit integer arithmetic.

Functions drand48() and erand48() return non-negative double-precision
floating-point values uniformly distributed over the interval [0.0, 1.0).

Functions lrand48() and nrand48() return non-negative long integers uniformly
distributed over the interval [0, 2 31].

Functions mrand48() and jrand48() return signed long integers uniformly
distributed over the interval [-2 31 , 2 31].

Functions srand48(), seed48(), and lcong48() are initialization entry points, one
of which should be invoked before either drand48(), lrand48(), or mrand48() is
called. (Although it is not recommended practice, constant default initializer values
will be supplied automatically if drand48(), lrand48(), or mrand48() is called
without a prior call to an initialization entry point.) Functions erand48(),
nrand48(), and jrand48() do not require an initialization entry point to be
called first.

All the routines work by generating a sequence of 48-bit integer values, Xi , according
to the linear congruential formula

X n+1= (aX n+c) mod m n>=0.

The parameter m = 248; hence 48-bit integer arithmetic is performed. Unless
lcong48() has been invoked, the multiplier value aand the addend value care given
by

a = 5DEECE66D16 = 2736731631558

drand48(3C)

NAME

SYNOPSIS

DESCRIPTION

Basic Library Functions 93

c = B16 = 138 .

The value returned by any of the functions drand48(), erand48(), lrand48(),
nrand48(), mrand48(), or jrand48() is computed by first generating the next
48-bit Xi in the sequence. Then the appropriate number of bits, according to the type of
data item to be returned, are copied from the high-order (leftmost) bits of Xi and
transformed into the returned value.

The functions drand48(), lrand48(), and mrand48() store the last 48-bit Xi

generated in an internal buffer. Xi must be initialized prior to being invoked. The
functions erand48(), nrand48(), and jrand48() require the calling program to
provide storage for the successive Xi values in the array specified as an argument
when the functions are invoked. These routines do not have to be initialized; the
calling program must place the desired initial value of Xi into the array and pass it as
an argument. By using different arguments, functions erand48(), nrand48(), and
jrand48() allow separate modules of a large program to generate several independent
streams of pseudo-random numbers, that is, the sequence of numbers in each stream
will not depend upon how many times the routines have been called to generate
numbers for the other streams.

The initializer function srand48() sets the high-order 32 bits of Xi to the 32 bits
contained in its argument. The low-order 16 bits of Xi are set to the arbitrary value
330E16 .

The initializer function seed48() sets the value of Xi to the 48-bit value specified in
the argument array. In addition, the previous value of Xi is copied into a 48-bit internal
buffer, used only by seed48(), and a pointer to this buffer is the value returned by
seed48(). This returned pointer, which can just be ignored if not needed, is useful if
a program is to be restarted from a given point at some future time — use the pointer
to get at and store the last Xi value, and then use this value to reinitialize using
seed48() when the program is restarted.

The initialization function lcong48() allows the user to specify the initial Xi the
multiplier value a, and the addend value c. Argument array elements param[0-2]
specify Xi, param[3-5] specify the multiplier a, and param[6] specifies the 16-bit addend
c. After lcong48() has been called, a subsequent call to either srand48() or
seed48() will restore the ‘‘standard’’ multiplier and addend values, a and c, specified
above.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

rand(3C), attributes(5)

drand48(3C)

ATTRIBUTES

SEE ALSO

94 man pages section 3: Basic Library Functions • Last Revised 12 Jun 2000

dup2 – duplicate an open file descriptor

#include <unistd.h>

int dup2(int fildes, int fildes2);

The dup2() function causes the file descriptor fildes2 to refer to the same file as fildes.
The fildes argument is a file descriptor referring to an open file, and fildes2 is a
non-negative integer less than the current value for the maximum number of open file
descriptors allowed the calling process. See getrlimit(2). If fildes2 already refers to
an open file, not fildes, it is closed first. If fildes2 refers to fildes, or if fildes is not a valid
open file descriptor, fildes2 will not be closed first.

The dup2() function is equivalent to fcntl(fildes, F_DUP2FD, fildes2).

Upon successful completion a non-negative integer representing the file descriptor is
returned. Otherwise, −1 is returned and errno is set to indicate the error.

The dup2() function will fail if:

EBADF The fildes argument is not a valid open file descriptor.

EBADF The files2 argument is negative or is not less than the current
resource limit returned by getrlimit(RLIMIT_NOFILE,
. . .).

EINTR A signal was caught during the dup2() call.

EMFILE The process has too many open files. See fcntl(2).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

close(2), creat(2), exec(2), fcntl(2), getrlimit(2), open(2), pipe(2), lockf(3C),
attributes(5)

dup2(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Basic Library Functions 95

econvert, fconvert, gconvert, seconvert, sfconvert, sgconvert, qeconvert, qfconvert,
qgconvert – output conversion

#include <floatingpoint.h>

char *econvert(double value, int ndigit, int *decpt, int *sign, char
*buf);

char *fconvert(double value, int ndigit, int *decpt, int *sign, char
*buf);

char *gconvert(double value, int ndigit, int trailing, char *buf);

char *seconvert(single *value, int ndigit, int *decpt, int *sign, char
*buf);

char *sfconvert(single *value, int ndigit, int *decpt, int *sign, char
*buf);

char *sgconvert(single *value, int ndigit, int trailing, char *buf);

char *qeconvert(quadruple *value, int ndigit, int *decpt, int *sign,
char *buf);

char *qfconvert(quadruple *value, int ndigit, int *decpt, int *sign,
char *buf);

char *qgconvert(quadruple *value, int ndigit, int trailing, char *buf);

The econvert() function converts the value to a null-terminated string of ndigit
ASCII digits in buf and returns a pointer to buf. buf should contain at least ndigit+1
characters. The position of the decimal point relative to the beginning of the string is
stored indirectly through decpt. Thus buf == "314" and *decpt == 1 corresponds to the
numerical value 3.14, while buf == "314" and *decpt == −1 corresponds to the numerical
value .0314. If the sign of the result is negative, the word pointed to by sign is nonzero;
otherwise it is zero. The least significant digit is rounded.

The fconvert() function works much like econvert(), except that the correct digit
has been rounded as if for sprintf(%w.nf) output with n=ndigit digits to the right
of the decimal point. ndigit can be negative to indicate rounding to the left of the
decimal point. The return value is a pointer to buf. buf should contain at least
310+max(0,ndigit) characters to accomodate any double-precision value.

The gconvert() function converts the value to a null-terminated ASCII string in buf
and returns a pointer to buf. It produces ndigit significant digits in fixed-decimal
format, like sprintf(%w.nf), if possible, and otherwise in floating-decimal format,
like sprintf(%w.ne); in either case buf is ready for printing, with sign and
exponent. The result corresponds to that obtained by

(void) sprintf(buf,‘‘%w.ng’’,value) ;

If trailing = 0, trailing zeros and a trailing point are suppressed, as in sprintf(%g). If
trailing != 0, trailing zeros and a trailing point are retained, as in sprintf(%#g).

econvert(3C)

NAME

SYNOPSIS

DESCRIPTION

96 man pages section 3: Basic Library Functions • Last Revised 3 May 1999

The seconvert(), sfconvert(), and sgconvert() functions are single-precision
versions of these functions, and are more efficient than the corresponding
double-precision versions. A pointer rather than the value itself is passed to avoid C’s
usual conversion of single-precision arguments to double.

The qeconvert(), qfconvert(), and qgconvert() functions are
quadruple-precision versions of these functions. The qfconvert() function can
overflow the decimal_record field ds if value is too large. In that case, buf[0] is set to zero.

The ecvt(), fcvt() and gcvt() functions are versions of econvert(),
fconvert(), and gconvert(), respectively, that are documented on the ecvt(3C)
manual page. They constitute the default implementation of these functions and
conform to the X/Open CAE Specification, System Interfaces and Headers, Issue 4,
Version 2.

IEEE Infinities and NaNs are treated similarly by these functions. ‘‘NaN’’ is returned
for NaN, and ‘‘Inf’’ or ‘‘Infinity’’ for Infinity. The longer form is produced when ndigit
>= 8.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ecvt(3C),sprintf(3C), attributes(5)

econvert(3C)

USAGE

ATTRIBUTES

SEE ALSO

Basic Library Functions 97

ecvt, fcvt, gcvt – convert floating-point number to string

#include <stdlib.h>

char *ecvt(double value, int ndigit, int *decpt, int *sign);

char *fcvt(double value, int ndigit, int *decpt, int *sign);

char *gcvt(double value, int ndigit, char *buf);

The ecvt(), fcvt() and gcvt() functions convert floating-point numbers to
null-terminated strings.

The ecvt() function converts value to a null-terminated string of ndigit digits (where
ndigit is reduced to an unspecified limit determined by the precision of a double) and
returns a pointer to the string. The high-order digit is non-zero, unless the value is 0.
The low-order digit is rounded. The position of the radix character relative to the
beginning of the string is stored in the integer pointed to by decpt (negative means to
the left of the returned digits). The radix character is not included in the returned
string. If the sign of the result is negative, the integer pointed to by sign is non-zero,
otherwise it is 0.

If the converted value is out of range or is not representable, the contents of the
returned string are unspecified.

The fcvt() function is identical to ecvt() except that ndigit specifies the number of
digits desired after the radix point. The total number of digits in the result string is
restricted to an unspecified limit as determined by the precision of a double.

The gcvt() function converts value to a null-terminated string (similar to that of the
%g format of printf(3C)) in the array pointed to by buf and returns buf. It produces
ndigit significant digits (limited to an unspecified value determined by the precision of
a double) in %f if possible, or %e (scientific notation) otherwise. A minus sign is
included in the returned string if value is less than 0. A radix character is included in
the returned string if value is not a whole number. Trailing zeros are suppressed where
value is not a whole number. The radix character is determined by the current locale. If
setlocale(3C) has not been called successfully, the default locale, POSIX, is used.
The default locale specifies a period (.) as the radix character. The LC_NUMERIC
category determines the value of the radix character within the current locale.

The ecvt() and fcvt() functions return a pointer to a null-terminated string of
digits.

The gcvt() function returns buf.

No errors are defined.

The return values from ecvt() and fcvt() may point to static data which may be
overwritten by subsequent calls to these functions.

For portability to implementations conforming to earlier versions of this document,
sprintf(3C) is preferred over this function.

ecvt(3C)

NAME

SYNOPSIS

DESCRIPTION

ecvt()

fcvt()

gcvt()

RETURN VALUES

ERRORS

USAGE

98 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

printf(3C), setlocale(3C), sprintf(3C), attributes(5)

ecvt(3C)

ATTRIBUTES

SEE ALSO

Basic Library Functions 99

encrypt – encoding function

#include <crypt.h>

void encrypt(char block[64], int edflag);

#include <unistd.h>

void encrypt(char block[64], int edflag);

The encrypt() function provides (rather primitive) access to the hashing algorithm
employed by the crypt(3C) function. The key generated by setkey(3C) is used to
encrypt the string block with encrypt().

The block argument to encrypt() is an array of length 64 bytes containing only the
bytes with numerical value of 0 and 1. The array is modified in place to a similar array
using the key set by setkey(3C). If edflag is 0, the argument is encoded. If edflag is 1,
the argument may be decoded (see the USAGE section below); if the argument is not
decoded, errno will be set to ENOSYS.

The encrypt() function returns no value.

The encrypt() function will fail if:

ENOSYS The functionality is not supported on this implementation.

In some environments, decoding may not be implemented. This is related to U.S.
Government restrictions on encryption and decryption routines: the DES decryption
algorithm cannot be exported outside the U.S.A. Historical practice has been to ship a
different version of the encryption library without the decryption feature in the
routines supplied. Thus the exported version of encrypt() does encoding but not
decoding.

Because encrypt() does not return a value, applications wishing to check for errors
should set errno to 0, call encrypt(), then test errno and, if it is non-zero, assume
an error has occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Safe

crypt(3C), setkey(3C), attributes(5)

encrypt(3C)

NAME

Default

Standard
conforming

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

100 man pages section 3: Basic Library Functions • Last Revised 2 May 2001

end, _end, etext, _etext, edata, _edata – last locations in program

extern _etext;

extern _edata;

extern _end;

These names refer neither to routines nor to locations with interesting contents; only
their addresses are meaningful.

_etext The address of _etext is the first location after the program text.

_edata The address of _edata is the first location after the initialized data
region.

_end The address of _end is the first location after the uninitialized data
region.

When execution begins, the program break (the first location beyond the data)
coincides with _end, but the program break may be reset by the brk(2), malloc(3C),
and the standard input/output library (see stdio(3C)), functions by the profile (-p)
option of cc(1B), and so on. Thus, the current value of the program break should be
determined by sbrk ((char *)0).

References to end, etext, and edata, without a preceding underscore will be aliased
to the associated symbol that begins with the underscore.

cc(1B), brk(2), malloc(3C), stdio(3C)

end(3C)

NAME

SYNOPSIS

DESCRIPTION

USAGE

SEE ALSO

Basic Library Functions 101

euclen, euccol, eucscol – get byte length and display width of EUC characters

#include <euc.h>

int euclen(const unsigned char *s);

int euccol(const unsigned char *s);

int eucscol(const unsigned char *str);

The euclen() function returns the length in bytes of the Extended Unix Code (EUC)
character pointed to by s, including single-shift characters, if present.

The euccol() function returns the screen column width of the EUC character
pointed to by s.

The eucscol() function returns the screen column width of the EUC string pointed
to by str.

For the euclen() and euccol(), functions, s points to the first byte of the character.
This byte is examined to determine its codeset. The character type table for the current
locale is used for codeset byte length and display width information.

These functions will work only with EUC locales.

These functions can be used safely in multithreaded applications, as long as
setlocale(3C) is not called to change the locale.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

getwidth(3C), setlocale(3C), attributes(5)

euclen(3C)

NAME

SYNOPSIS

DESCRIPTION

USAGE

ATTRIBUTES

SEE ALSO

102 man pages section 3: Basic Library Functions • Last Revised 20 Dec 1996

exit, _exithandle – terminate process

#include <stdlib.h>

void exit(int status);

void _exithandle(void);

The exit() function terminates a process by calling first _exithandle() and then
_exit() (see exit(2)).

The _exithandle() function calls any functions registered through the atexit(3C)
function in the reverse order of their registration. This action includes executing all
finalization code from the .fini sections of all objects that are part of the process.

The _exithandle() function is intended for use only with _exit(), and allows for
specialized processing such as dldump(3DL) to be performed. Normal process
execution should not be continued after a call to _exithandle() has occurred, as
internal data structures may have been torn down due to atexit() or .fini
processing.

The symbols EXIT_SUCCESS and EXIT_FAILURE are defined in the header
<stdlib.h> and may be used as the value of status to indicate successful or
unsuccessful termination, respectively.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

exit(2), atexit(3C), dldump(3DL), attributes(5)

exit(3C)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

Basic Library Functions 103

fattach – attach a STREAMS-based file descriptor to an object in the file system name
space

#include <stropts.h>

int fattach(int fildes, const char *path);

The fattach() function attaches a STREAMS-based file descriptor to an object in the
file system name space, effectively associating a name with fildes. fildes must be a valid
open file descriptor representing a STREAMS file. path is a path name of an existing
object and the user must have appropriate privileges or be the owner of the file and
have write permissions. All subsequent operations on path will operate on the
STREAMS file until the STREAMS file is detached from the node. fildes can be attached
to more than one path, that is, a stream can have several names associated with it.

The attributes of the named stream (see stat(2)), are initialized as follows: the
permissions, user ID, group ID, and times are set to those of path, the number of links
is set to 1, and the size and device identifier are set to those of the streams device
associated with fildes. If any attributes of the named stream are subsequently changed
(for example, chmod(2)), the attributes of the underlying object are not affected.

Upon successful completion, fattach() returns 0. Otherwise it returns −1 and sets
errno to indicate an error.

The fattach() function will fail if:

EACCES The user is the owner of path but does not have write
permissions on path or fildes is locked.

EBADF The fildes argument is not a valid open file descriptor.

EBUSY The path argument is currently a mount point or has a
STREAMS file descriptor attached it.

EINVAL The path argument is a file in a remotely mounted
directory.

EINVAL The fildes argument does not represent a STREAMS file.

ELOOP Too many symbolic links were encountered in
translating path.

ENAMETOOLONG The size of path exceeds {PATH_MAX}, or the
component of a path name is longer than {NAME_MAX}
while {_POSIX_NO_TRUNC} is in effect.

ENOENT The path argument does not exist.

ENOTDIR A component of a path prefix is not a directory.

EPERM The effective user ID is not the owner of path or a user
with the appropriate privileges.

See attributes(5) for descriptions of the following attributes:

fattach(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

104 man pages section 3: Basic Library Functions • Last Revised 16 Jan 1997

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

fdetach(1M), chmod(2), mount(2), stat(2), fdetach(3C), isastream (3C),
attributes(5), streamio(7I)

STREAMS Programming Guide

fattach(3C)

SEE ALSO

Basic Library Functions 105

__fbufsize, __flbf, __fpending, __fpurge, __freadable, __freading, __fsetlocking,
__fwritable, __fwriting, _flushlbf – interfaces to stdio FILE structure

#include <stdio.h>

#include <stdio_ext.h>

size_t __fbufsiz(FILE *stream);

int __flbf(FILE *stream);

size_t __fpending(FILE *stream);

void __fpurge(FILE *stream);

int __freadable(FILE *stream);

int __freading(FILE *stream);

int __fsetlocking(FILE *stream, int type);

int __fwritable(FILE *stream);

int __fwriting(FILE *stream);

void _flushlbf(void);

These functions provide portable access to the members of the stdio(3C) FILE
structure.

The __fbufsize() function returns in bytes the size of the buffer currently in use by
the given stream.

The __flbf() function returns non-zero if the stream is line-buffered.

The __fpending function returns in bytes the amount of output pending on a stream.

The __fpurge() function discards any pending buffered I/O on the stream.

The __freadable() function returns non-zero if it is possible to read from a stream.

The __freading() function returns non-zero if the file is open readonly, or if the last
operation on the stream was a read operation such as fread(3C) or fgetc(3C).
Otherwise it returns 0.

The __fsetlocking() function allows the type of locking performed by stdio on a
given stream to be controlled by the programmer.

If type is FSETLOCKING_INTERNAL, stdio performs implicit locking around every
operation on the given stream. This is the default system behavior on that stream.

If type is FSETLOCKING_BYCALLER, stdio assumes that the caller is responsible for
maintaining the integrity of the stream in the face of access by multiple threads. If
there is only one thread accessing the stream, nothing further needs to be done. If
multiple threads are accessing the stream, then the caller can use the flockfile(),

__fbufsize(3C)

NAME

SYNOPSIS

DESCRIPTION

106 man pages section 3: Basic Library Functions • Last Revised 5 Feb 1998

funlockfile(), and ftrylockfile() functions described on the flockfile(3C)
manual page to provide the appropriate locking. In both this and the case where type
is FSETLOCKING_INTERNAL, __fsetlocking() returns the previous state of the
stream.

If type is FSETLOCKING_QUERY, __fsetlocking() returns the current state of the
stream without changing it.

The __fwritable() function returns non-zero if it is possible to write on a stream.

The __fwriting() function returns non-zero if the file is open write-only or
append-only, or if the last operation on the stream was a write operation such as
fwrite(3C) or fputc(3C). Otherwise it returns 0.

The _flushlbf() function flushes all line-buffered files. It is used when reading
from a line-buffered file.

Although the contents of the stdio FILE structure have always been private to the
stdio implementation, some applications have needed to obtain information about a
stdio stream that was not accessible through a supported interface. These
applications have resorted to accessing fields of the FILE structure directly, rendering
them possibly non-portable to new implementations of stdio, or more likely,
preventing enhancements to stdio that would cause those applications to break.

In the 64-bit environment, the FILE structure is opaque. The functions described here
are provided as a means of obtaining the information that up to now has been
retrieved directly from the FILE structure. Because they are based on the needs of
existing applications (such as mh and emacs), they may be extended as other
programs are ported. Although they may still be non-portable to other operating
systems, they will be compatible from each Solaris release to the next. Interfaces that
are more portable are under development.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level __fsetlocking() is Unsafe; all others are
MT-Safe

Interface Stability Evolving

fgetc(3C), flockfile(3C), fputc(3C), fread(3C), fwrite(3C), stdio(3C),
attributes(5)

__fbufsize(3C)

USAGE

ATTRIBUTES

SEE ALSO

Basic Library Functions 107

fclose – close a stream

#include <stdio.h>

int fclose(FILE *stream);

The fclose() function causes the stream pointed to by stream to be flushed and the
associated file to be closed. Any unwritten buffered data for the stream is written to
the file; any unread buffered data is discarded. The stream is disassociated from the
file. If the associated buffer was automatically allocated, it is deallocated.

The fclose() function marks for update the st_ctime and st_mtime fields of the
underlying file if the stream is writable and if buffered data has not yet been written to
the file. It will perform a close(2) operation on the file descriptor that is associated
with the stream pointed to by stream.

After the call to fclose(), any use of stream causes undefined behavior.

The fclose() function is performed automatically for all open files upon calling
exit(2).

Upon successful completion, fclose() returns 0. Otherwise, it returns EOF and sets
errno to indicate the error.

The fclose() function will fail if:

EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying
stream and the process would be delayed in the write operation.

EBADF The file descriptor underlying stream is not valid.

EFBIG An attempt was made to write a file that exceeds the maximum file
size or the process’s file size limit; or the file is a regular file and an
attempt was made to write at or beyond the offset maximum
associated with the corresponding stream.

EINTR The fclose() function was interrupted by a signal.

EIO The process is a member of a background process group
attempting to write to its controlling terminal, TOSTOP is set, the
process is neither ignoring nor blocking SIGTTOU and the process
group of the process is orphaned.

ENOSPC There was no free space remaining on the device containing the
file.

EPIPE An attempt is made to write to a pipe or FIFO that is not open for
reading by any process. A SIGPIPE signal will also be sent to the
process.

The fclose() function may fail if:

ENXIO A request was made of a non-existent device, or the request was
beyond the limits of the device.

fclose(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

108 man pages section 3: Basic Library Functions • Last Revised 22 Apr 1997

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

close(2), exit(2), getrlimit(2), ulimit(2), fopen(3C), stdio(3C),
attributes(5)

fclose(3C)

ATTRIBUTES

SEE ALSO

Basic Library Functions 109

fdetach – detach a name from a STREAMS-based file descriptor

#include <stropts.h>

int fdetach(const char *path);

The fdetach() function detaches a STREAMS-based file from the file to which it was
attached by a previous call to fattach(3C). The path argument points to the
pathname of the attached STREAMS file. The process must have appropriate
privileges or be the owner of the file. A successful call to fdetach() causes all
pathnames that named the attached STREAMS file to again name the file to which the
STREAMS file was attached. All subsequent operations on path will operate on the
underlying file and not on the STREAMS file.

All open file descriptions established while the STREAMS file was attached to the file
referenced by path, will still refer to the STREAMS file after the fdetach() has taken
effect.

If there are no open file descriptors or other references to the STREAMS file, then a
successful call to fdetach() has the same effect as performing the last close(2) on
the attached file.

Upon successful completion, fdetach() returns 0. Otherwise, it returns −1 and sets
errno to indicate the error.

The fdetach() function will fail if:

EACCES Search permission is denied on a component of the
path prefix.

EPERM The effective user ID is not the owner of path and the
process does not have appropriate privileges.

ENOTDIR A component of the path prefix is not a directory.

ENOENT A component of path does not name an existing file or
path is an empty string.

EINVAL The path argument names a file that is not currently
attached.

ENAMETOOLONG The size of a pathname exceeds PATH_MAX, or a
pathname component is longer than NAME_MAX while
_POSIX_NO_TRUNC is in effect.

ELOOP Too many symbolic links were encountered in
resolving path.

The fdetach() function may fail if:

ENAMETOOLONG Pathname resolution of a symbolic link produced an
intermediate result whose length exceeds PATH_MAX.

fdetach(1M), close(2), fattach(3C), streamio(7I)

fdetach(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

SEE ALSO

110 man pages section 3: Basic Library Functions • Last Revised 1 Mar 1996

STREAMS Programming Guide

fdetach(3C)

Basic Library Functions 111

fdopen – associate a stream with a file descriptor

#include <stdio.h>

FILE *fdopen(int fildes, const char *mode);

The fdopen() function associates a stream with a file descriptor fildes.

The mode argument is a character string having one of the following values:

r or rb Open a file for reading.

w or wb Open a file for writing.

a or ab Open a file for writing at end of file.

r+ or rb+ or r+b Open a file for update (reading and writing).

w+ or wb+ or w+b Open a file for update (reading and writing).

a+ or ab+ or a+b Open a file for update (reading and writing) at end of file.

The meaning of these flags is exactly as specified for the fopen(3C) function, except
that modes beginning with w do not cause truncation of the file.

The mode of the stream must be allowed by the file access mode of the open file. The
file position indicator associated with the new stream is set to the position indicated
by the file offset associated with the file descriptor.

The fdopen() function preserves the offset maximum previously set for the open file
description corresponding to fildes.

The error and end-of-file indicators for the stream are cleared. The fdopen() function
may cause the st_atime field of the underlying file to be marked for update.

If fildes refers to a shared memory object, the result of the fdopen() function is
unspecified.

Upon successful completion, fdopen() returns a pointer to a stream. Otherwise, a
null pointer is returned and errno is set to indicate the error.

The fdopen() function may fail and not set errno if there are no free stdio
streams.

The fdopen() function may fail if:

EBADF The fildes argument is not a valid file descriptor.

EINVAL The mode argument is not a valid mode.

EMFILE The number of streams currently open in the calling process is
either FOPEN_MAX or STREAM_MAX.

fdopen(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

112 man pages section 3: Basic Library Functions • Last Revised 30 Dec 1996

ENOMEM Insufficient space to allocate a buffer.

The number of streams that a process can have open at one time is STREAM_MAX. If
defined, it has the same value as FOPEN_MAX.

File descriptors are obtained from calls like open(2), dup(2), creat(2) or pipe(2),
which open files but do not return streams. Streams are necessary input for almost all
of the Section 3S library routines.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

creat(2), dup(2), open(2), pipe(2), fclose(3C), fopen(3C), attributes(5)

fdopen(3C)

USAGE

ATTRIBUTES

SEE ALSO

Basic Library Functions 113

ferror, feof, clearerr, fileno – stream status inquiries

#include <stdio.h>

int ferror(FILE *stream);

int feof(FILE *stream);

void clearerr(FILE *stream);

int fileno(FILE *stream);

The ferror() function returns a non-zero valuewhen an error has previously
occurred reading from or writing to the named stream (see intro(3)). It returns 0
otherwise.

The feof() function returns a non-zero value when EOF has previously been
detected reading the named input stream. It returns 0 otherwise.

The clearerr() function resets the error indicator and EOF indicator to 0 on the
named stream.

The fileno() function returns the integer file descriptor associated with the named
stream; see open(2).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

open(2), intro(3), fopen(3C), stdio(3C), attributes(5)

ferror(3C)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

114 man pages section 3: Basic Library Functions • Last Revised 30 Dec 1996

fflush – flush a stream

#include <stdio.h>

int fflush(FILE *stream);

If stream points to an output stream or an update stream in which the most recent
operation was not input, fflush() causes any unwritten data for that stream to be
written to the file, and the st_ctime and st_mtime fields of the underlying file are
marked for update.

If stream is a null pointer, fflush() performs this flushing action on all streams for
which the behavior is defined above. Additionally, an input stream or an update
stream into which the most recent operation was input is also flushed if it is seekable
and is not already at end-of-file. Flushing an input stream discards any buffered input
and adjusts the file pointer such that the next input operation accesses the byte after
the last one read. A stream is seekable if the underlying file is not a pipe, FIFO, socket,
or TTY device. An input stream, seekable or non-seekable, can be flushed by explicitly
calling fflush() with a non-null argument specifying that stream.

Upon successful completion, fflush() returns 0. Otherwise, it returns EOF and sets
errno to indicate the error.

The fflush() function will fail if:

EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying
stream and the process would be delayed in the write operation.

EBADF The file descriptor underlying stream is not valid.

EFBIG An attempt was made to write a file that exceeds the maximum file
size or the process’s file size limit; or the file is a regular file and an
attempt was made to write at or beyond the offset maximum
associated with the corresponding stream.

EINTR The fflush() function was interrupted by a signal.

EIO The process is a member of a background process group
attempting to write to its controlling terminal, TOSTOP is set, the
process is neither ignoring nor blocking SIGTTOU, and the process
group of the process is orphaned.

ENOSPC There was no free space remaining on the device containing the
file.

EPIPE An attempt is made to write to a pipe or FIFO that is not open for
reading by any process. A SIGPIPE signal will also be sent to the
process.

The fflush() function may fail if:

ENXIO A request was made of a non-existent device, or the request was
beyond the limits of the device.

fflush(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Basic Library Functions 115

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

getrlimit(2), ulimit(2), attributes(5)

fflush(3C)

ATTRIBUTES

SEE ALSO

116 man pages section 3: Basic Library Functions • Last Revised 27 Mar 2001

ffs – find first set bit

#include <strings.h>

int ffs(const int i);

The ffs() function finds the first bit set (beginning with the least significant bit) and
returns the index of that bit. Bits are numbered starting at one (the least significant
bit).

The ffs() function returns the index of the first bit set. If i is 0, then ffs() returns 0.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

attributes(5)

ffs(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Basic Library Functions 117

fgetc, getc, getc_unlocked, getchar, getchar_unlocked, getw – get a byte from a stream

#include <stdio.h>

int fgetc(FILE *stream);

int getc(FILE *stream);

int getc_unlocked(FILE *stream);

int getchar(void);

int getchar_unlocked(void);

int getw(FILE *stream);

The fgetc() function obtains the next byte (if present) as an unsigned char
converted to an int, from the input stream pointed to by stream, and advances the
associated file position indicator for the stream (if defined).

The fgetc() function may mark the st_atime field of the file associated with stream
for update. The st_atime field will be marked for update by the first successful
execution of fgetc(), fgets(3C), fgetwc(3C), fgetws(3C), fread(3C),
fscanf(3C), getc(), getchar(), gets(3C) or scanf(3C) using stream that returns
data not supplied by a prior call to ungetc(3C) or ungetwc(3C).

The getc() routine is functionally identical to fgetc(), except that it is
implemented as a macro. It runs faster than fgetc(), but it takes up more space per
invocation and its name cannot be passed as an argument to a function call.

The getchar() routine is equivalent to getc(stdin). It is implemented as a macro.

The getc_unlocked() and getchar_unlocked() routines are variants of getc()
and getchar(), respectively, that do not lock the stream. It is the caller’s
responsibility to acquire the stream lock before calling these routines and releasing the
lock afterwards; see flockfile(3C) and stdio(3C). These routines are implemented
as macros.

The getw() function reads the next word from the stream. The size of a word is the
size of an int and may vary from environment to environment. The getw() function
presumes no special alignment in the file.

The getw() function may mark the st_atime field of the file associated with stream
for update. The st_atime field will be marked for update by the first successful
execution of fgetc(), fgets(3C), fread(3C), getc(), getchar(), gets(3C),
fscanf(3C) or scanf(3C) using stream that returns data not supplied by a prior call
to ungetc(3C).

Upon successful completion, fgetc(), getc(), getc_unlocked(), getchar(),
getchar_unlocked(), and getw() return the next byte from the input stream
pointed to by stream. If the stream is at end-of-file, the end-of-file indicator for the
stream is set and these functions return EOF. If a read error occurs, the error indicator
for the stream is set, EOF is returned, and errno is set to indicate the error.

fgetc(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

118 man pages section 3: Basic Library Functions • Last Revised 3 Feb 1998

The fgetc(), getc(), getc_unlocked(), getchar(), getchar_unlocked(),
and getw() functions will fail if data needs to be read and:

EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying
stream and the process would be delayed in the fgetc()
operation.

EBADF The file descriptor underlying stream is not a valid file descriptor
open for reading.

EINTR The read operation was terminated due to the receipt of a signal,
and no data was transferred.

EIO A physical I/O error has occurred, or the process is in a
background process group attempting to read from its controlling
terminal, and either the process is ignoring or blocking the
SIGTTIN signal or the process group is orphaned. This error may
also be generated for implementation-dependent reasons.

EOVERFLOW The file is a regular file and an attempt was made to read at or
beyond the offset maximum associated with the corresponding
stream.

The fgetc(), getc(), getc_unlocked(), getchar(), getchar_unlocked(),
and getw() functions may fail if:

ENOMEM Insufficient storage space is available.

ENXIO A request was made of a non-existent device, or the request was
outside the capabilities of the device.

If the integer value returned by fgetc(), getc(), getc_unlocked(), getchar(),
getchar_unlocked(), and getw() is stored into a variable of type char and then
compared against the integer constant EOF, the comparison may never succeed,
because sign-extension of a variable of type char on widening to integer is
implementation-dependent.

The ferror(3C) or feof(3C) functions must be used to distinguish between an error
condition and an end-of-file condition.

Functions exist for the getc(), getc_unlocked(), getchar(), and
getchar_unlocked() macros. To get the function form, the macro name must be
undefined (for example, #undef getc).

When the macro forms are used, getc() and getc_unlocked() evaluate the stream
argument more than once. In particular, getc(*f++); does not work sensibly. The
fgetc() function should be used instead when evaluating the stream argument has
side effects.

Because of possible differences in word length and byte ordering, files written using
getw() are machine-dependent, and may not be read using getw() on a different
processor.

fgetc(3C)

ERRORS

USAGE

Basic Library Functions 119

The getw() function is inherently byte stream-oriented and is not tenable in the
context of either multibyte character streams or wide-character streams. Application
programmers are recommended to use one of the character-based input functions
instead.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See NOTES below.

intro(3), fclose(3C), feof(3C), fgets(3C), fgetwc(3C), fgetws(3C),
flockfile(3C), fopen(3C), fread(3C), fscanf(3C), gets(3C), putc(3C),
scanf(3C), stdio(3C), ungetc(3C), ungetwc(3C), attributes(5)

The fgetc(), getc(), getchar(), and getw() routines are MT-Safe in
multithreaded applications. The getc_unlocked() and getchar_unlocked()
routines are unsafe in multithreaded applications.

fgetc(3C)

ATTRIBUTES

SEE ALSO

NOTES

120 man pages section 3: Basic Library Functions • Last Revised 3 Feb 1998

fgetpos – get current file position information

#include <stdio.h>

int fgetpos(FILE *stream, fpos_t *pos);

The fgetpos() function stores the current value of the file position indicator for the
stream pointed to by stream in the object pointed to by pos. The value stored contains
unspecified information usable by fsetpos(3C) for repositioning the stream to its
position at the time of the call to fgetpos().

Upon successful completion, fgetpos() returns 0. Otherwise, it returns a non-zero
value and sets errno to indicate the error.

The fgetpos() function may fail if:

EBADF The file descriptor underlying stream is not valid.

ESPIPE The file descriptor underlying stream is associated with a pipe, a
FIFO, or a socket.

EOVERFLOW The current value of the file position cannot be represented
correctly in an object of type fpos_t.

The fgetpos() function has a transitional interface for 64-bit file offsets. See lf64(5).

fopen(3C), fsetpos(3C), ftell(3C), rewind(3C), ungetc(3C), lf64(5)

fgetpos(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

SEE ALSO

Basic Library Functions 121

fgetwc – get a wide-character code from a stream

#include <stdio.h>

#include <wchar.h>

wint_t fgetwc(FILE*stream);

The fgetwc() function obtains the next character (if present) from the input stream
pointed to by stream, converts that to the corresponding wide-character code and
advances the associated file position indicator for the stream (if defined).

If an error occurs, the resulting value of the file position indicator for the stream is
indeterminate.

The fgetwc() function may mark the st_atime field of the file associated with
stream for update. The st_atime field will be marked for update by the first
successful execution of fgetwc(), fgetc(3C), fgets(3C), fgetws(3C), fread(3C),
fscanf(3C), getc(3C), getchar(3C), gets(3C), or scanf(3C) using stream that
returns data not supplied by a prior call to ungetc(3C) or ungetwc(3C).

Upon successful completion the fgetwc() function returns the wide-character code
of the character read from the input stream pointed to by stream converted to a type
wint_t.

If the stream is at end-of-file, the end-of-file indicator for the stream is set and
fgetwc() returns WEOF.

If a read error occurs, the error indicator for the stream is set, fgetwc() returns WEOF
and sets errno to indicate the error.

The fgetwc() function will fail if data needs to be read and:

EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying
stream and the process would be delayed in the fgetwc()
operation.

EBADF The file descriptor underlying stream is not a valid file descriptor
open for reading.

EINTR The read operation was terminated due to the receipt of a signal,
and no data was transferred.

EIO A physical I/O error has occurred, or the process is in a
background process group attempting to read from its controlling
terminal and either the process is ignoring or blocking the
SIGTTIN signal or the process group is orphaned.

EOVERFLOW The file is a regular file and an attempt was made to read at or
beyond the offset maximum associated with the corresponding
stream.

The fgetwc() function may fail if:

fgetwc(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

122 man pages section 3: Basic Library Functions • Last Revised 22 Apr 1997

ENOMEM Insufficient storage space is available.

ENXIO A request was made of a non-existent device, or the request was
outside the capabilities of the device.

EILSEQ The data obtained from the input stream does not form a valid
character.

The ferror(3C) or feof(3C) functions must be used to distinguish between an error
condition and an end-of-file condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

CSI Enabled

feof(3C), ferror(3C), fgetc(3C), fgets(3C), fgetws(3C), fopen(3C), fread(3C),
fscanf(3C), getc(3C), getchar(3C), gets(3C), scanf(3C), setlocale(3C),
ungetc(3C), ungetwc(3C), attributes(5)

fgetwc(3C)

USAGE

ATTRIBUTES

SEE ALSO

Basic Library Functions 123

floating_to_decimal, single_to_decimal, double_to_decimal, extended_to_decimal,
quadruple_to_decimal – convert floating-point value to decimal record

#include <floatingpoint.h>

void single_to_decimal(single *px, decimal_mode *pm,
decimal_record *pd, fp_exception_field_type *ps);

void double_to_decimal(double *px, decimal_mode *pm,
decimal_record *pd, fp_exception_field_type *ps);

void extended_to_decimal(extended *px, decimal_mode *pm,
decimal_record *pd, fp_exception_field_type *ps);

void quadruple_to_decimal(quadruple *px, decimal_mode *pm,
decimal_record *pd, fp_exception_field_type *ps);

The floating_to_decimal() functions convert the floating-point value at *px into
a decimal record at *pd, observing the modes specified in *pm and setting exceptions in
*ps. If there are no IEEE exceptions, *ps will be zero.

If *px is zero, infinity, or NaN, then only pd->sign and pd->fpclass are set. Otherwise
pd->exponent and pd->ds are also set so that

(sig)*(pd->ds)*10**(pd->exponent)is a correctly rounded approximation to *px, where
sig is +1 or −1, depending upon whether pd->sign is 0 or −1. pd->ds has at least one and
no more than DECIMAL_STRING_LENGTH−1 significant digits because one character is
used to terminate the string with a NULL.

pd->ds is correctly rounded according to the IEEE rounding modes in pm->rd. *ps has
fp_inexact set if the result was inexact, and has fp_overflow set if the string result does
not fit in pd->ds because of the limitation DECIMAL_STRING_LENGTH.

If pm->df == floating_form, then pd->ds always contains pm->ndigits significant digits.
Thus if *px == 12.34 and pm->ndigits == 8, then pd->ds will contain 12340000 and
pd->exponent will contain −6.

If pm->df == fixed_form and pm->ndigits >= 0, then pd->ds always contains pm->ndigits
after the point and as many digits as necessary before the point. Since the latter is not
known in advance, the total number of digits required is returned in pd->ndigits; if that
number >= DECIMAL_STRING_LENGTH, then ds is undefined. pd->exponent always
gets −pm->ndigits. Thus if *px == 12.34 and pm->ndigits == 1, then pd->ds gets 123,
pd->exponent gets −1, and pd->ndigits gets 3.

If pm->df == fixed_form and pm->ndigits < 0, then pd->ds always contains −pm->ndigits
trailing zeros; in other words, rounding occurs −pm->ndigits to the left of the decimal
point, but the digits rounded away are retained as zeros. The total number of digits
required is in pd->ndigits. pd->exponent always gets 0. Thus if *px == 12.34 and
pm->ndigits == −1, then pd->ds gets 10, pd->exponent gets 0, and pd->ndigits gets 2.

pd->more is not used.

floating_to_decimal(3C)

NAME

SYNOPSIS

DESCRIPTION

124 man pages section 3: Basic Library Functions • Last Revised 20 Apr 1998

econvert(3C), fconvert(3C), gconvert(3C), printf(3C), and sprintf(3C) all
use double_to_decimal().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

econvert(3C), fconvert(3C), gconvert(3C), printf(3C), sprintf(3C),
attributes(5)

floating_to_decimal(3C)

ATTRIBUTES

SEE ALSO

Basic Library Functions 125

flock – apply or remove an advisory lock on an open file

/usr/ucb/cc[flag ...] file ...

#include <sys/file.h>

int flock(fd, operation);

int fd, operation;

flock() applies or removes an advisory lock on the file associated with the file
descriptor fd. The compatibility version of flock() has been implemented on top of
fcntl(2) locking. It does not provide complete binary compatibility.

Advisory locks allow cooperating processes to perform consistent operations on files,
but do not guarantee exclusive access (that is, processes may still access files without
using advisory locks, possibly resulting in inconsistencies).

The locking mechanism allows two types of locks: shared locks and exclusive locks.
More than one process may hold a shared lock for a file at any given time, but
multiple exclusive, or both shared and exclusive, locks may not exist simultaneously
on a file.

A lock is applied by specifying an operation parameter LOCK_SH for a shared lock or
LOCK_EX for an exclusive lock. The operation paramerer may be ORed with LOCK_NB
to make the operation non-blocking. To unlock an existing lock, the operation should be
LOCK_UN.

Read permission is required on a file to obtain a shared lock, and write permission is
required to obtain an exclusive lock. Locking a segment that is already locked by the
calling process causes the old lock type to be removed and the new lock type to take
effect.

Requesting a lock on an object that is already locked normally causes the caller to
block until the lock may be acquired. If LOCK_NB is included in operation, then this will
not happen; instead, the call will fail and the error EWOULDBLOCK will be returned.

flock() returns:

0 on success.

−1 on failure and sets errno to indicate the error.

EBADF The argument fd is an invalid descriptor.

EINVAL operation is not a valid argument.

EOPNOTSUPP The argument fd refers to an object other than a file.

EWOULDBLOCK The file is locked and the LOCK_NB option was
specified.

lockd(1M), chmod(2), close(2), dup(2), exec(2), fcntl(2), fork(2), open(2),
lockf(3C)

flock(3UCB)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

SEE ALSO

126 man pages section 3: Basic Library Functions • Last Revised 19 Jul 1994

Use of these interfaces should be restricted to only applications written on BSD
platforms. Use of these interfaces with any of the system libraries or in multi-thread
applications is unsupported.

Locks are on files, not file descriptors. That is, file descriptors duplicated through
dup(2) or fork(2) do not result in multiple instances of a lock, but rather multiple
references to a single lock. If a process holding a lock on a file forks and the child
explicitly unlocks the file, the parent will lose its lock. Locks are not inherited by a
child process.

Processes blocked awaiting a lock may be awakened by signals.

Mandatory locking may occur, depending on the mode bits of the file. See chmod(2).

Locks obtained through the flock() mechanism under SunOS 4.1 were known only
within the system on which they were placed. This is no longer true.

flock(3UCB)

NOTES

Basic Library Functions 127

flockfile, funlockfile, ftrylockfile – acquire and release stream lock

#include <stdio.h>

void flockfile(FILE *stream);

void funlockfile(FILE *stream);

int ftrylockfile(FILE *stream);

The flockfile() function acquires an internal lock of a stream stream. If the lock is
already acquired by another thread, the thread calling flockfile() is suspended
until it can acquire the lock. In the case that the stream lock is available,
flockfile() not only acquires the lock, but keeps track of the number of times it is
being called by the current thread. This implies that the stream lock can be acquired
more than once by the same thread.

The funlockfile() function releases the lock being held by the current thread. In
the case of recursive locking, this function must be called the same number of times
flockfile() was called. After the number of funlockfile() calls is equal to the
number of flockfile() calls, the stream lock is available for other threads to
acquire.

The ftrylockfile() function acquires an internal lock of a stream stream, only if
that object is available. In essence ftrylockfile() is a non-blocking version of
flockfile().

The ftrylockfile() function returns 0 on success and non-zero to indicate a lock
cannot be acquired.

EXAMPLE 1 A sample program of flockfile().

The following example prints everything out together, blocking other threads that
might want to write to the same file between calls to fprintf(3C):

FILE iop;
flockfile(iop);
fprintf(iop, "hello ");
fprintf(iop, "world);
fputc(iop, ’a’);
funlockfile(iop);

An unlocked interface is available in case performance is an issue. For example:

flockfile(iop);
while (!feof(iop)) {

*c++ = getc_unlocked(iop);
}
funlockfile(iop);

See attributes(5) for descriptions of the following attributes:

flockfile(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

EXAMPLES

ATTRIBUTES

128 man pages section 3: Basic Library Functions • Last Revised 30 Dec 1996

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

intro(3), ferror(3C), fprintf(3C), getc(3C), putc(3C), stdio(3C), ungetc(3C),
attributes(5), standards(5)

The interfaces on this page are as specified in IEEE Std 1003.1c. See standards(5).

flockfile(3C)

SEE ALSO

NOTES

Basic Library Functions 129

fmtmsg – display a message on stderr or system console

#include <fmtmsg.h>

int fmtmsg(long classification, const char *label, int severity, const char
*text, const char *action, const char *tag);

The fmtmsg() function writes a formatted message to stderr, to the console, or to
both, on a message’s classification component. It can be used instead of the traditional
printf(3C) interface to display messages to stderr, and in conjunction with
gettxt(3C), provides a simple interface for producing language-independent
applications.

A formatted message consists of up to five standard components (label, severity, text,
action, and tag) as described below. The classification component is not part of the
standard message displayed to the user, but rather defines the source of the message
and directs the display of the formatted message.

classification Contains identifiers from the following groups of major
classifications and subclassifications. Any one identifier from a
subclass may be used in combination by ORing the values together
with a single identifier from a different subclass. Two or more
identifiers from the same subclass should not be used together,
with the exception of identifiers from the display subclass. (Both
display subclass identifiers may be used so that messages can be
displayed to both stderr and the system console).

� “Major classifications” identify the source of the condition.
Identifiers are: MM_HARD (hardware), MM_SOFT (software), and
MM_FIRM (firmware).

� “Message source subclassifications” identify the type of
software in which the problem is spotted. Identifiers are:
MM_APPL (application), MM_UTIL (utility), and MM_OPSYS
(operating system).

� “Display subclassifications” indicate where the message is to be
displayed. Identifiers are: MM_PRINT to display the message on
the standard error stream, MM_CONSOLE to display the message
on the system console. Neither, either, or both identifiers may
be used.

� “Status subclassifications” indicate whether the application will
recover from the condition. Identifiers are: MM_RECOVER
(recoverable) and MM_NRECOV (non-recoverable).

� An additional identifier, MM_NULLMC, indicates that no
classification component is supplied for the message.

label Identifies the source of the message. The format of this component
is two fields separated by a colon. The first field is up to 10
characters long; the second is up to 14 characters. Suggested usage
is that label identifies the package in which the application resides

fmtmsg(3C)

NAME

SYNOPSIS

DESCRIPTION

130 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

as well as the program or application name. For example, the label
UX:cat indicates the UNIX System V package and the cat(1)
utility.

severity Indicates the seriousness of the condition. Identifiers for the
standard levels of severity are:

� MM_HALT indicates that the application has encountered a
severe fault and is halting. Produces the print string HALT.

� MM_ERROR indicates that the application has detected a fault.
Produces the print string ERROR.

� MM_WARNING indicates a condition out of the ordinary that
might be a problem and should be watched. Produces the print
string WARNING.

� MM_INFO provides information about a condition that is not in
error. Produces the print string INFO.

� MM_NOSEV indicates that no severity level is supplied for the
message.

Other severity levels may be added by using the addseverity()
routine.

text Describes the condition that produced the message. The text string
is not limited to a specific size.

action Describes the first step to be taken in the error recovery process.
fmtmsg() precedes each action string with the prefix: TOFIX:.
The action string is not limited to a specific size.

tag An identifier which references on-line documentation for the
message. Suggested usage is that tag includes the label and a
unique identifying number. A sample tag is UX:cat:146.

The MSGVERB and SEV_LEVEL environment variables control the behavior of
fmtmsg() as follows:

MSGVERB This variable determines which message components fmtmsg()
selects when writing messages to stderr. Its value is a
colon-separated list of optional keywords and can be set as
follows:

MSGVERB=[keyword[:keyword[: . . .]]]
export MSGVERB

Valid keywords are: label, severity, text, action, and tag. If
MSGVERB contains a keyword for a component and the
component’s value is not the component’s null value, fmtmsg()
includes that component in the message when writing the message
to stderr. If MSGVERB does not include a keyword for a message
component, that component is not included in the display of the
message. The keywords may appear in any order. If MSGVERB is

fmtmsg(3C)

Environment
Variables

Basic Library Functions 131

not defined, if its value is the null string, if its value is not of the
correct format, or if it contains keywords other than the valid ones
listed above, fmtmsg() selects all components.

The first time fmtmsg() is called, it examines MSGVERB to
determine which message components are to be selected when
generating a message to write to the standard error stream,
stderr. The values accepted on the initial call are saved for future
calls.

The MSGVERB environment variable affects only those components
that are selected for display to the standard error stream. All
message components are included in console messages.

SEV_LEVEL This variable defines severity levels and associates print strings
with them for use by fmtmsg(). The standard severity levels
listed below cannot be modified. Additional severity levels can
also be defined, redefined, and removed using addseverity()
(see addseverity(3C)). If the same severity level is defined by
both SEV_LEVEL and addseverity(), the definition by
addseverity() takes precedence.

0 (no severity is used)

1 HALT

2 ERROR

3 WARNING

4 INFO

The SEV_LEVEL variable can be set as follows:

SEV_LEVEL=[description[:description[: . . .]]]
export SEV_LEVEL

where description is a comma-separated list containing three fields:

description=severity_keyword,level,printstring

The severity_keyword field is a character string that is used as the
keyword on the -s severity option to the fmtmsg(1) utility. (This
field is not used by the fmtmsg() function.)

The level field is a character string that evaluates to a positive
integer (other than 0, 1, 2, 3, or 4, which are reserved for the
standard severity levels). If the keyword severity_keyword is used,
level is the severity value passed on to the fmtmsg() function.

fmtmsg(3C)

132 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

The printstring field is the character string used by fmtmsg() in
the standard message format whenever the severity value level is
used.

If a description in the colon list is not a three-field comma list, or if
the second field of a comma list does not evaluate to a positive
integer, that description in the colon list is ignored.

The first time fmtmsg() is called, it examines the SEV_LEVEL
environment variable, if defined, to determine whether the
environment expands the levels of severity beyond the five
standard levels and those defined using addseverity(). The
values accepted on the initial call are saved for future calls.

One or more message components may be systematically omitted from messages
generated by an application by using the null value of the argument for that
component.

The table below indicates the null values and identifiers for fmtmsg() arguments.

Argument Type Null-Value Identifier

label char* (char*) NULL MM_NULLLBL

severity int 0 MM_NULLSEV

class long 0L MM_NULLMC

text char* (char*) NULL MM_NULLTXT

action char* (char*) NULL MM_NULLACT

tag char* (char*) NULL MM_NULLTAG

Another means of systematically omitting a component is by omitting the component
keyword(s) when defining the MSGVERB environment variable (see the Environment
Variables section above).

The fmtmsg() returns the following values:

MM_OK The function succeeded.

MM_NOTOK The function failed completely.

MM_NOMSG The function was unable to generate a message on the standard
error stream, but otherwise succeeded.

MM_NOCON The function was unable to generate a console message, but
otherwise succeeded.

fmtmsg(3C)

Use in
Applications

RETURN VALUES

Basic Library Functions 133

EXAMPLE 1 The following example of fmtmsg():

fmtmsg(MM_PRINT, "UX:cat", MM_ERROR, "invalid syntax",
"refer to manual", "UX:cat:001")

produces a complete message in the standard message format:

UX:cat: ERROR: invalid syntax
TO FIX: refer to manual UX:cat:001

EXAMPLE 2 When the environment variable MSGVERB is set as follows:

MSGVERB=severity:text:action

and the Example 1 is used, fmtmsg() produces:

ERROR: invalid syntax

TO FIX: refer to manual

EXAMPLE 3 When the environment variable SEV_LEVEL is set as follows:

SEV_LEVEL=note,5,NOTE

the following call to fmtmsg()

fmtmsg(MM_UTIL | MM_PRINT, "UX:cat", 5, "invalid syntax",
"refer to manual", "UX:cat:001")

produces

UX:cat: NOTE: invalid syntax
TO FIX: refer to manual UX:cat:001

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

fmtmsg(1), addseverity(3C), gettxt(3C), printf(3C), attributes(5)

fmtmsg(3C)

EXAMPLES

ATTRIBUTES

SEE ALSO

134 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

fnmatch – match filename or path name

#include <fnmatch.h>

int fnmatch(const char *pattern, const char *string, int flags);

The fnmatch() function matches patterns as described on the fnmatch(5) manual
page. It checks the string argument to see if it matches the pattern argument.

The flags argument modifies the interpretation of pattern and string. It is the bitwise
inclusive OR of zero or more of the following flags defined in the header
<fnmatch.h>.

FNM_PATHNAME If set, a slash (/) character in string will be explicitly
matched by a slash in pattern; it will not be matched by
either the asterisk (*) or question-mark (?) special
characters, nor by a bracket ([]) expression.

If not set, the slash character is treated as an ordinary
character.

FNM_NOESCAPE If not set, a backslash character (\) in pattern followed
by any other character will match that second character
in string. In particular, “\\” will match a backslash in
string.

If set, a backslash character will be treated as an
ordinary character.

FNM_PERIOD If set, a leading period in string will match a period in
pattern; where the location of “leading” is indicated by
the value of FNM_PATHNAME:

� If FNM_PATHNAME is set, a period is “leading” if it is
the first character in string or if it immediately
follows a slash.

� If FNM_PATHNAME is not set, a period is “leading”
only if it is the first character of string.

If not set, no special restrictions are placed on matching a period.

If string matches the pattern specified by pattern, then fnmatch() returns 0. If there is
no match, fnmatch() returns FNM_NOMATCH, which is defined in the header
<fnmatch.h>. If an error occurs, fnmatch() returns another non-zero value.

The fnmatch() function has two major uses. It could be used by an application or
utility that needs to read a directory and apply a pattern against each entry. The
find(1) utility is an example of this. It can also be used by the pax(1) utility to process
its pattern operands, or by applications that need to match strings in a similar manner.

fnmatch(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

Basic Library Functions 135

The name fnmatch() is intended to imply filename match, rather than pathname
match. The default action of this function is to match filenames, rather than path
names, since it gives no special significance to the slash character. With the
FNM_PATHNAME flag, fnmatch() does match path names, but without tilde
expansion, parameter expansion, or special treatment for period at the beginning of a
filename.

The fnmatch() function can be used safely in multithreaded applications, as long as
setlocale(3C) is not being called to change the locale.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

CSI Enabled

find(1), pax(1), glob(3C), setlocale(3C), wordexp(3C), attributes(5),
fnmatch(5)

fnmatch(3C)

ATTRIBUTES

SEE ALSO

136 man pages section 3: Basic Library Functions • Last Revised 20 Dec 1996

fopen – open a stream

#include <stdio.h>

FILE *fopen(const char *filename, const char *mode);

The fopen() function opens the file whose pathname is the string pointed to by
filename, and associates a stream with it.

The argument mode points to a string beginning with one of the following sequences:

r or rb Open file for reading.

w or wb Truncate to zero length or create file for writing.

a or ab Append; open or create file for writing at end-of-file.

r+ or rb+ or r+b Open file for update (reading and writing).

w+ or wb+ or w+b Truncate to zero length or create file for update.

a+ or ab+ or a+b Append; open or create file for update, writing at
end-of-file.

The character b has no effect, but is allowed for ISO C standard conformance (see
standards(5)). Opening a file with read mode (r as the first character in the mode
argument) fails if the file does not exist or cannot be read.

Opening a file with append mode (a as the first character in the mode argument)
causes all subsequent writes to the file to be forced to the then current end-of-file,
regardless of intervening calls to fseek(3C). If two separate processes open the same
file for append, each process may write freely to the file without fear of destroying
output being written by the other. The output from the two processes will be
intermixed in the file in the order in which it is written.

When a file is opened with update mode (+ as the second or third character in the
mode argument), both input and output may be performed on the associated stream.
However, output must not be directly followed by input without an intervening call to
fflush(3C) or to a file positioning function (fseek(3C), fsetpos(3C) or
rewind(3C)), and input must not be directly followed by output without an
intervening call to a file positioning function, unless the input operation encounters
end-of-file.

When opened, a stream is fully buffered if and only if it can be determined not to refer
to an interactive device. The error and end-of-file indicators for the stream are cleared.

If mode is w, a, w+ or a+ and the file did not previously exist, upon successful
completion, fopen() function will mark for update the st_atime, st_ctime and
st_mtime fields of the file and the st_ctime and st_mtime fields of the parent
directory.

fopen(3C)

NAME

SYNOPSIS

DESCRIPTION

Basic Library Functions 137

If mode is w or w+ and the file did previously exist, upon successful completion,
fopen() will mark for update the st_ctime and st_mtime fields of the file. The
fopen() function will allocate a file descriptor as open(2) does.

The largest value that can be represented correctly in an object of type off_t will be
established as the offset maximum in the open file description.

Upon successful completion, fopen() returns a pointer to the object controlling the
stream. Otherwise, a null pointer is returned and errno is set to indicate the error.

The fopen() function may fail and not set errno if there are no free stdio streams.

The fopen() function will fail if:

EACCES Search permission is denied on a component of the
path prefix, or the file exists and the permissions
specified by mode are denied, or the file does not exist
and write permission is denied for the parent directory
of the file to be created.

EINTR A signal was caught during the execution of fopen().

EISDIR The named file is a directory and mode requires write
access.

ELOOP Too many symbolic links were encountered in
resolving path.

EMFILE There are OPEN_MAX file descriptors currently open in
the calling process.

ENAMETOOLONG The length of the filename exceeds PATH_MAX or a
pathname component is longer than NAME_MAX.

ENFILE The maximum allowable number of files is currently
open in the system.

ENOENT A component of filename does not name an existing file
or filename is an empty string.

ENOSPC The directory or file system that would contain the new
file cannot be expanded, the file does not exist, and it
was to be created.

ENOTDIR A component of the path prefix is not a directory.

ENXIO The named file is a character special or block special
file, and the device associated with this special file does
not exist.

EOVERFLOW The current value of the file position cannot be
represented correctly in an object of type fpos_t.

fopen(3C)

RETURN VALUES

ERRORS

138 man pages section 3: Basic Library Functions • Last Revised 28 Jan 1998

EROFS The named file resides on a read-only file system and
mode requires write access.

The fopen() function may fail if:

EINVAL The value of the mode argument is not valid.

EMFILE The number of streams currently open in the calling
process is either FOPEN_MAX or STREAM_MAX.

ENAMETOOLONG Pathname resolution of a symbolic link produced an
intermediate result whose length exceeds PATH_MAX.

ENOMEM Insufficient storage space is available.

ETXTBSY The file is a pure procedure (shared text) file that is
being executed and mode requires write access.

The number of streams that a process can have open at one time is STREAM_MAX. If
defined, it has the same value as FOPEN_MAX.

The fopen() function has a transitional interface for 64-bit file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

fclose(3C), fdopen(3C), fflush(3C), freopen(3C), fsetpos(3C), rewind(3C),
attributes(5), lf64(5), standards(5)

fopen(3C)

USAGE

ATTRIBUTES

SEE ALSO

Basic Library Functions 139

fopen, freopen – open a stream

/usr/ucb/cc[flag ...] file ...

#include <stdio.h>

FILE *fopen(file, mode);

const char *file, *mode;

FILE *freopen(file, mode, iop);

const char *file, *mode;
register FILE *iop;

fopen() opens the file named by file and associates a stream with it. If the open
succeeds, fopen() returns a pointer to be used to identify the stream in subsequent
operations.

file points to a character string that contains the name of the file to be opened.

mode is a character string having one of the following values:

r open for reading

w truncate or create for writing

a append: open for writing at end of file, or create for writing

r+ open for update (reading and writing)

w+ truncate or create for update

a+ append; open or create for update at EOF

freopen() opens the file named by file and associates the stream pointed to by iop
with it. The mode argument is used just as in fopen(). The original stream is closed,
regardless of whether the open ultimately succeeds. If the open succeeds, freopen()
returns the original value of iop.

freopen() is typically used to attach the preopened streams associated with stdin,
stdout, and stderr to other files.

When a file is opened for update, both input and output may be done on the resulting
stream. However, output may not be directly followed by input without an
intervening fseek(3C) or rewind(3C), and input may not be directly followed by
output without an intervening fseek(3C) or rewind(3C). An input operation which
encounters EOF will fail.

fopen() and freopen() return a NULL pointer on failure.

open(2), fclose(3C), fopen(3C), freopen(3C), fseek(3C), malloc(3C),
rewind(3C)

fopen(3UCB)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

SEE ALSO

140 man pages section 3: Basic Library Functions • Last Revised 22 Jan 1993

Use of these interfaces should be restricted to only applications written on BSD
platforms. Use of these interfaces with any of the system libraries or in multi-thread
applications is unsupported.

In order to support the same number of open files that the system does, fopen()
must allocate additional memory for data structures using malloc(3C) after 64 files
have been opened. This confuses some programs which use their own memory
allocators.

The interfaces of fopen() and freopen() differ from the Standard I/O Functions
fopen(3C) and freopen(3C). The Standard I/O Functions distinguish binary from
text files with an additional use of ’b’ as part of the mode. This enables portability of
fopen(3C) and freopen(3C) beyond SunOS 4.X systems.

fopen(3UCB)

NOTES

Basic Library Functions 141

fpgetround, fpsetround, fpgetmask, fpsetmask, fpgetsticky, fpsetsticky – IEEE
floating-point environment control

#include <ieeefp.h>

fp_rnd fpgetround(void);

fp_rnd fpsetround(fp_rnd rnd_dir);

fp_except fpgetmask(void);

fp_except fpsetmask(fp_except mask);

fp_except fpgetsticky(void);

fp_except fpsetsticky(fp_except sticky);

There are five floating-point exceptions:

� divide-by-zero,
� overflow,
� underflow,
� imprecise (inexact) result, and
� invalid operation.

When a floating-point exception occurs, the corresponding sticky bit is set (1), and if
the mask bit is enabled (1), the trap takes place. These routines let the user change the
behavior on occurrence of any of these exceptions, as well as change the rounding
mode for floating-point operations.

The mask argument is formed by the logical OR operation of the following
floating-point exception masks:

FP_X_INV /* invalid operation exception */
FP_X_OFL /* overflow exception */
FP_X_UFL /* underflow exception */
FP_X_DZ /* divide-by-zero exception */
FP_X_IMP /* imprecise (loss of precision) */

The following floating-point rounding modes are passed to fpsetround and
returned by fpgetround().

FP_RN /* round to nearest representative number */
FP_RP /* round to plus infinity */
FP_RM /* round to minus infinity */
FP_RZ /* round to zero (truncate) */

The default environment is rounding mode set to nearest (FP_RN) and all traps
disabled.

The fpsetsticky() function modifies all sticky flags. The fpsetmask() function
changes all mask bits. The fpsetmask() function clears the sticky bit corresponding
to any exception being enabled.

The fpgetround() function returns the current rounding mode.

fpgetround(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

142 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

The fpsetround() function sets the rounding mode and returns the previous
rounding mode.

The fpgetmask() function returns the current exception masks.

The fpsetmask() function sets the exception masks and returns the previous setting.

The fpgetsticky() function returns the current exception sticky flags.

The fpsetsticky() function sets (clears) the exception sticky flags and returns the
previous setting.

The C programming language requires truncation (round to zero) for floating point to
integral conversions. The current rounding mode has no effect on these conversions.

The sticky bit must be cleared to recover from the trap and proceed. If the sticky bit is
not cleared before the next trap occurs, a wrong exception type may be signaled.

Individual bits may be examined using the constants defined in <ieeefp.h>.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

isnan(3C), attributes(5)

fpgetround(3C)

USAGE

ATTRIBUTES

SEE ALSO

Basic Library Functions 143

fputc, putc, putc_unlocked, putchar, putchar_unlocked, putw – put a byte on a stream

#include <stdio.h>

int fputc(int c, FILE *stream);

int putc(int c, FILE *stream);

int putc_unlocked(int c, FILE *stream);

int putchar(int c);

int putchar_unlocked(int c);

int putw(int w, FILE *stream);

The fputc() function writes the byte specified by c (converted to an unsigned
char) to the output stream pointed to by stream, at the position indicated by the
associated file-position indicator for the stream (if defined), and advances the indicator
appropriately. If the file cannot support positioning requests, or if the stream was
opened with append mode, the byte is appended to the output stream.

The st_ctime and st_mtime fields of the file will be marked for update between the
successful execution of fputc() and the next successful completion of a call to
fflush(3C) or fclose(3C) on the same stream or a call to exit(3C) or abort(3C).

The putc() routine behaves like fputc(), except that it is implemented as a macro.
It runs faster than fputc(), but it takes up more space per invocation and its name
cannot be passed as an argument to a function call.

The call putchar(c) is equivalent to putc(c, stdout). The putchar() routine is
implemented as a macro.

The putc_unlocked() and putchar_unlocked() routines are variants of putc()
and putchar(), respectively, that do not lock the stream. It is the caller’s
responsibility to acquire the stream lock before calling these routines and releasing the
lock afterwards; see flockfile(3C) and stdio(3C). These routines are implemented
as macros.

The putw() function writes the word (that is, type int) w to the output stream (at the
position at which the file offset, if defined, is pointing). The size of a word is the size of
a type int and varies from machine to machine. The putw() function neither
assumes nor causes special alignment in the file.

The st_ctime and st_mtime fields of the file will be marked for update between the
successful execution of putw() and the next successful completion of a call to
fflush(3C) or fclose(3C) on the same stream or a call to exit(3C) or abort(3C).

Upon successful completion, fputc(), putc(), putc_unlocked(), putchar(),
and putchar_unlocked() return the value that was written. Otherwise, these
functions return EOF, the error indicator for the stream is set, and errno is set to
indicate the error.

fputc(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

144 man pages section 3: Basic Library Functions • Last Revised 23 Jul 2001

Upon successful completion, putw() returns 0. Otherwise, it returns a non-zero
value, sets the error indicator for the associated stream, and sets errno to indicate the
error.

An unsuccessful completion will occur, for example, if the file associated with stream is
not open for writing or if the output file cannot grow.

The fputc(), putc(), putc_unlocked(), putchar(), putchar_unlocked(),
and putw() functions will fail if either the stream is unbuffered or the stream’s buffer
needs to be flushed, and:

EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying
stream and the process would be delayed in the write operation.

EBADF The file descriptor underlying stream is not a valid file descriptor
open for writing.

EFBIG An attempt was made to write to a file that exceeds the maximum
file size or the process’ file size limit.

EFBIG The file is a regular file and an attempt was made to write at or
beyond the offset maximum.

EINTR The write operation was terminated due to the receipt of a signal,
and no data was transferred.

EIO A physical I/O error has occurred, or the process is a member of
a background process group attempting to write to its controlling
terminal, TOSTOP is set, the process is neither ignoring nor
blocking SIGTTOU and the process group of the process is
orphaned. This error may also be returned under
implementation-dependent conditions.

ENOSPC There was no free space remaining on the device containing the
file.

EPIPE An attempt is made to write to a pipe or FIFO that is not open for
reading by any process. A SIGPIPE signal will also be sent to the
process.

The fputc(), putc(), putc_unlocked(), putchar(), putchar_unlocked(),
and putw() functions may fail if:

ENOMEM Insufficient storage space is available.

ENXIO A request was made of a non-existent device, or the request was
outside the capabilities of the device.

Functions exist for the putc(), putc_unlocked(), putchar(), and
putchar_unlocked() macros. To get the function form, the macro name must be
undefined (for example, #undef putc).

fputc(3C)

ERRORS

USAGE

Basic Library Functions 145

When the macro forms are used, putc() and putc_unlocked() evaluate the stream
argument more than once. In particular, putc(c, *f++); does not work sensibly. The
fputc() function should be used instead when evaluating the stream argument has
side effects.

Because of possible differences in word length and byte ordering, files written using
putw() are implementation-dependent, and possibly cannot be read using getw(3C)
by a different application or by the same application running in a different
environment.

The putw() function is inherently byte stream oriented and is not tenable in the
context of either multibyte character streams or wide-character streams. Application
programmers are encouraged to use one of the character-based output functions
instead.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See NOTES below.

getrlimit(2), ulimit(2) write(2), intro(3), abort(3C), exit(3C), fclose(3C),
ferror(3C), fflush(3C), flockfile(3C), fopen(3UCB), printf(3C), putc(3C),
puts(3C), setbuf(3C), stdio(3C), attributes(5)

The fputc(), putc(), putchar(), and putw() routines are MT-Safe in
multithreaded applications. The putc_unlocked() and putchar_unlocked()
routines are unsafe in multithreaded applications.

fputc(3C)

ATTRIBUTES

SEE ALSO

NOTES

146 man pages section 3: Basic Library Functions • Last Revised 23 Jul 2001

fputwc, putwc, putwchar – put wide-character code on a stream

#include <stdio.h>

#include <wchar.h>

wint_t fputwc(wchar_t wc, FILE*stream);

wint_t putwc(wchar_t wc, FILE*stream);

#include <wchar.h>

wint_t putwchar(wchar_t wc);

The fputwc() function writes the character corresponding to the wide-character code
wc to the output stream pointed to by stream, at the position indicated by the
associated file-position indicator for the stream (if defined), and advances the indicator
appropriately. If the file cannot support positioning requests, or if the stream was
opened with append mode, the character is appended to the output stream. If an error
occurs while writing the character, the shift state of the output file is left in an
undefined state.

The st_ctime and st_mtime fields of the file will be marked for update between the
successful execution of fputwc() and the next successful completion of a call to
fflush(3C) or fclose(3C) on the same stream or a call to exit(2) or abort(3C).

The putwc() function is equivalent to fputwc(), except that it is implemented as a
macro.

The call putwchar(wc) is equivalent to putwc(wc, stdout). The putwchar()
routine is implemented as a macro.

Upon successful completion, fputwc(), putwc(), and putwchar() return wc.
Otherwise, they return WEOF, the error indicator for the stream is set, and errno is set
to indicate the error.

The fputwc(), putwc(), and putwchar() functions will fail if either the stream is
unbuffered or data in the stream’s buffer needs to be written, and:

EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying
stream and the process would be delayed in the write operation.

EBADF The file descriptor underlying stream is not a valid file descriptor
open for writing.

EFBIG An attempt was made to write to a file that exceeds the maximum
file size or the process’s file size limit; or the file is a regular file
and an attempt was made to write at or beyond the offset
maximum associated with the corresponding stream.

EINTR The write operation was terminated due to the receipt of a signal,
and no data was transferred.

EIO A physical I/O error has occurred, or the process is a member of a
background process group attempting to write to its controlling

fputwc(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Basic Library Functions 147

terminal, TOSTOP is set, the process is neither ignoring nor
blocking SIGTTOU, and the process group of the process is
orphaned.

ENOSPC There was no free space remaining on the device containing the
file.

EPIPE An attempt is made to write to a pipe or FIFO that is not open for
reading by any process. A SIGPIPE signal will also be sent to the
process.

The fputwc(), putwc(), and putwchar() functions may fail if:

ENOMEM Insufficient storage space is available.

ENXIO A request was made of a non-existent device, or the request was
outside the capabilities of the device.

EILSEQ The wide-character code wc does not correspond to a valid
character.

Functions exist for the putwc() and putwchar() macros. To get the function form,
the macro name must be undefined (for example, #undef putc).

When the macro form is used, putwc() evaluates the stream argument more than
once. In particular, putwc(wc, *f++) does not work sensibly. The fputwc() function
should be used instead when evaluating the stream argument has side effects.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

exit(2), ulimit(2), abort(3C), fclose(3C), ferror(3C), fflush(3C), fopen(3C),
setbuf(3C), attributes(5)

fputwc(3C)

USAGE

ATTRIBUTES

SEE ALSO

148 man pages section 3: Basic Library Functions • Last Revised 3 Feb 1998

fputws – put wide character string on a stream

#include <stdio.h>

#include <wchar.h>

int fputws(const wchar_t *s, FILE *stream);

The fputws() function writes a character string corresponding to the
(null-terminated) wide character string pointed to by ws to the stream pointed to by
stream. No character corresponding to the terminating null wide-character code is
written, nor is a NEWLINE character appended.

The st_ctime and st_mtime fields of the file will be marked for update between the
successful execution of fputws() and the next successful completion of a call to
fflush(3C) or fclose(3C) on the same stream or a call to exit(2) or abort(3C).

Upon successful completion, fputws() returns a non-negative value. Otherwise, it
returns −1, sets an error indicator for the stream, and sets errno to indicate the error.

Refer to fputwc(3C).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

exit(2), abort(3C), fclose(3C), fflush(3C), fopen(3C), fputwc(3C),
attributes(5)

fputws(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Basic Library Functions 149

fread – binary input

#include <stdio.h>

size_t fread(void *ptr, size_t size, size_t nitems, FILE *stream);

The fread() function reads into the array pointed to by ptr up to nitems elements
whose size is specified by size in bytes, from the stream pointed to by stream. For each
object, size calls are made to the fgetc(3C) function and the results stored, in the
order read, in an array of unsigned char exactly overlaying the object. The
file-position indicator for the stream (if defined) is advanced by the number of bytes
successfully read. If an error occurs, the resulting value of the file-position indicator
for the stream is unspecified. If a partial element is read, its value is unspecified.

The fread() function may mark the st_atime field of the file associated with stream
for update. The st_atime field will be marked for update by the first successful
execution of fgetc(3C), fgets(3C), fgetwc(3C), fgetws(3C), fread(),
fscanf(3C), getc(3C), getchar(3C), gets(3C), or scanf(3C) using stream that
returns data not supplied by a prior call to ungetc(3C) or ungetwc(3C).

Upon successful completion, fread() returns the number of elements successfully
read, which is less than nitems only if a read error or end-of-file is encountered. If size
or nitems is 0, fread() returns 0 and the contents of the array and the state of the
stream remain unchanged. Otherwise, if a read error occurs, the error indicator for the
stream is set and errno is set to indicate the error.

Refer to fgetc(3C).

EXAMPLE 1 Reading from a Stream

The following example reads a single element from the fp stream into the array
pointed to by buf.

#include <stdio.h>
...
size_t bytes_read;
char buf[100];
FILE *fp;
...
bytes_read = fread(buf, sizeof(buf), 1, fp);

...

The ferror() or feof() functions must be used to distinguish between an error
condition and end-of-file condition. See ferror(3C).

Because of possible differences in element length and byte ordering, files written using
fwrite(3C) are application-dependent, and possibly cannot be read using fread()
by a different application or by the same application on a different processor.

See attributes(5) for descriptions of the following attributes:

fread(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

EXAMPLES

USAGE

ATTRIBUTES

150 man pages section 3: Basic Library Functions • Last Revised 30 Jul 2001

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

read(2), fclose(3C), ferror(3C), fopen(3C), getc(3C), gets(3C), printf(3C),
putc(3C), puts(3C), attributes(5)

fread(3C)

SEE ALSO

Basic Library Functions 151

freopen – open a stream

#include <stdio.h>

FILE *freopen(const char *filename, const char *mode, FILE *stream);

The freopen() function first attempts to flush the stream and close any file
descriptor associated with stream. Failure to flush or close the file successfully is
ignored. The error and end-of-file indicators for the stream are cleared.

The freopen() function opens the file whose pathname is the string pointed to by
filename and associates the stream pointed to by stream with it. The mode argument is
used just as in fopen(3C).

The original stream is closed regardless of whether the subsequent open succeeds.

After a successful call to the freopen() function, the orientation of the stream is
cleared and the associated mbstate_t object is set to describe an initial conversion
state.

The largest value that can be represented correctly in an object of type off_t will be
established as the offset maximum in the open file description.

Upon successful completion, freopen() returns the value of stream. Otherwise, a null
pointer is returned and errno is set to indicate the error.

The freopen() function will fail if:

EACCES Search permission is denied on a component of the
path prefix, or the file exists and the permissions
specified by mode are denied, or the file does not exist
and write permission is denied for the parent directory
of the file to be created.

EINTR A signal was caught during freopen().

EISDIR The named file is a directory and mode requires write
access.

ELOOP Too many symbolic links were encountered in
resolving path.

EMFILE There are OPEN_MAX file descriptors currently open in
the calling process.

ENAMETOOLONG The length of the filename exceeds PATH_MAX or a
pathname component is longer than NAME_MAX.

ENFILE The maximum allowable number of files is currently
open in the system.

ENOENT A component of filename does not name an existing file
or filename is an empty string.

freopen(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

152 man pages section 3: Basic Library Functions • Last Revised 3 Feb 1998

ENOSPC The directory or file system that would contain the new
file cannot be expanded, the file does not exist, and it
was to be created.

ENOTDIR A component of the path prefix is not a directory.

ENXIO The named file is a character special or block special
file, and the device associated with this special file does
not exist.

EOVERFLOW The current value of the file position cannot be
represented correctly in an object of type off_t.

EROFS The named file resides on a read-only file system and
mode requires write access.

The freopen() function may fail if:

EINVAL The value of the mode argument is not valid.

ENAMETOOLONG Pathname resolution of a symbolic link produced an
intermediate result whose length exceeds PATH_MAX.

ENOMEM Insufficient storage space is available.

ENXIO A request was made of a non-existent device, or the
request was outside the capabilities of the device.

ETXTBSY The file is a pure procedure (shared text) file that is
being executed and mode requires write access.

The freopen() function is typically used to attach the preopened streams associated
with stdin, stdout and stderr to other files. By default stderr is unbuffered, but
the use of freopen() will cause it to become buffered or line-buffered.

The freopen() function has a transitional interface for 64-bit file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

fclose(3C), fdopen(3C), fopen(3C), stdio(3C), attributes(5), lf64(5)

freopen(3C)

USAGE

ATTRIBUTES

SEE ALSO

Basic Library Functions 153

frexp – extract mantissa and exponent from double precision number

#include <math.h>

double frexp(double num, int *exp);

The frexp() function breaks a floating-point number into a normalized fraction and
an integral power of 2. It stores the integer exponent in the int object pointed to by
exp.

The frexp() function returns the value x, such that x is a double with magnitude in
the interval [½, 1) or 0, and num equals x times 2 raised to the power *exp.

If num is 0, both parts of the result are 0.

If num is NaN, NaN is returned and the value of *exp is unspecified.

If num is ±Inf, num is returned and the value of *exp is unspecified.

An application wishing to check for error situations should set errno to 0 before
calling frexp(). If errno is non-zero on return, or the return value is NaN, an error
has occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

isnan(3M), ldexp(3C), modf(3C), attributes(5)

frexp(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

154 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

fseek, fseeko – reposition a file-position indicator in a stream

#include <stdio.h>

int fseek(FILE *stream, long offset, int whence);

int fseeko(FILE *stream, off_t offset, int whence);

The fseek() function sets the file-position indicator for the stream pointed to by
stream. The fseeko() function is identical to fseek() except for the type of offset.

The new position, measured in bytes from the beginning of the file, is obtained by
adding offset to the position specified by whence, whose values are defined in
<stdio.h> as follows:

SEEK_SET Set position equal to offset bytes.

SEEK_CUR Set position to current location plus offset.

SEEK_END Set position to EOF plus offset.

If the stream is to be used with wide character input/output functions, offset must
either be 0 or a value returned by an earlier call to ftell(3C) on the same stream and
whence must be SEEK_SET.

A successful call to fseek() clears the end-of-file indicator for the stream and undoes
any effects of ungetc(3C) and ungetwc(3C) on the same stream. After an fseek()
call, the next operation on an update stream may be either input or output.

If the most recent operation, other than ftell(3C), on a given stream is fflush(3C),
the file offset in the underlying open file description will be adjusted to reflect the
location specified by fseek().

The fseek() function allows the file-position indicator to be set beyond the end of
existing data in the file. If data is later written at this point, subsequent reads of data in
the gap will return bytes with the value 0 until data is actually written into the gap.

The value of the file offset returned by fseek() on devices which are incapable of
seeking is undefined.

If the stream is writable and buffered data had not been written to the underlying file,
fseek() will cause the unwritten data to be written to the file and mark the
st_ctime and st_mtime fields of the file for update.

The fseek() and fseeko() functions return 0 on success; otherwise, they returned
−1 and set errno to indicate the error.

The fseek() and fseeko() functions will fail if, either the stream is unbuffered or
the stream’s buffer needed to be flushed, and the call to fseek() or fseeko() causes
an underlying lseek(2) or write(2) to be invoked:

EAGAIN The O_NONBLOCK flag is set for the file descriptor and the process
would be delayed in the write operation.

fseek(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Basic Library Functions 155

EBADF The file descriptor underlying the stream file is not open for
writing or the stream’s buffer needed to be flushed and the file is
not open.

EFBIG An attempt was made to write a file that exceeds the maximum file
size or the process’s file size limit, or the file is a regular file and an
attempt was made to write at or beyond the offset maximum
associated with the corresponding stream.

EINTR The write operation was terminated due to the receipt of a signal,
and no data was transferred.

EINVAL The whence argument is invalid. The resulting file-position
indicator would be set to a negative value.

EIO A physical I/O error has occurred; or the process is a member of a
background process group attempting to perform a write(2)
operation to its controlling terminal, TOSTOP is set, the process is
neither ignoring nor blocking SIGTTOU, and the process group of
the process is orphaned.

ENOSPC There was no free space remaining on the device containing the
file.

EPIPE The file descriptor underlying stream is associated with a pipe or
FIFO.

EPIPE An attempt was made to write to a pipe or FIFO that is not open
for reading by any process. A SIGPIPE signal will also be sent to
the process.

ENXIO A request was made of a non-existent device, or the request was
outside the capabilities of the device.

The fseek() function will fail if:

EOVERFLOW The resulting file offset would be a value which cannot be
represented correctly in an object of type long.

The fseeko() function will fail if:

EOVERFLOW The resulting file offset would be a value which cannot be
represented correctly in an object of type off_t.

Although on the UNIX system an offset returned by ftell() or ftello() (see
ftell(3C)) is measured in bytes, and it is permissible to seek to positions relative to
that offset, portability to non-UNIX systems requires that an offset be used by
fseek() directly. Arithmetic may not meaningfully be performed on such an offset,
which is not necessarily measured in bytes.

The fseeko() function has a transitional interface for 64-bit file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

fseek(3C)

USAGE

ATTRIBUTES

156 man pages section 3: Basic Library Functions • Last Revised 28 Jan 1998

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

getrlimit(2), ulimit(2), fopen(3UCB), ftell(3C), rewind(3C), ungetc(3C),
ungetwc(3C), attributes(5), lf64(5)

fseek(3C)

SEE ALSO

Basic Library Functions 157

fsetpos – reposition a file pointer in a stream

#include <stdio.h>

int fsetpos(FILE *stream, const fpos_t *pos);

The fsetpos() function sets the file position indicator for the stream pointed to by
stream according to the value of the object pointed to by pos, which must be a value
obtained from an earlier call to fgetpos(3C) on the same stream.

A successful call to fsetpos() function clears the end-of-file indicator for the stream
and undoes any effects of ungetc(3C) on the same stream. After an fsetpos() call,
the next operation on an update stream may be either input or output.

The fsetpos() function returns 0 if it succeeds; otherwise it returns a non-zero value
and sets errno to indicate the error.

The fsetpos() function may fail if:

EBADF The file descriptor underlying stream is not valid.

ESPIPE The file descriptor underlying stream is associated with a pipe, a
FIFO, or a socket.

The fsetpos() function has a transitional interface for 64-bit file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

lseek(2), fgetpos(3C), fopen(3C), fseek(3C), ftell(3C), rewind(3C),
ungetc(3C), attributes(5), lf64(5)

fsetpos(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

158 man pages section 3: Basic Library Functions • Last Revised 28 Jan 1998

fsync – synchronize changes to a file

#include <unistd.h>

int fsync(int fildes);

The fsync() function moves all modified data and attributes of the file descriptor
fildes to a storage device. When fsync() returns, all in-memory modified copies of
buffers associated with fildes have been written to the physical medium. The fsync()
function is different from sync(), which schedules disk I/O for all files but returns
before the I/O completes. The fsync() function forces all outstanding data
operations to synchronized file integrity completion (see fcntl(3HEAD) definition of
O_SYNC.)

The fsync() function forces all currently queued I/O operations associated with the
file indicated by the file descriptor fildes to the synchronized I/O completion state. All
I/O operations are completed as defined for synchronized I/O file integrity
completion.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set
to indicate the error. If the fsync() function fails, outstanding I/O operations are not
guaranteed to have been completed.

The fsync() function will fail if:

EBADF The fildes argument is not a valid file descriptor.

EINTR A signal was caught during execution of the fsync() function.

EIO An I/O error occurred while reading from or writing to the file
system.

ENOSPC There was no free space remaining on the device containing the
file.

ETIMEDOUT Remote connection timed out. This occurs when the file is on an
NFS file system mounted with the soft option. See
mount_nfs(1M).

In the event that any of the queued I/O operations fail, fsync() returns the error
conditions defined for read(2) and write(2).

The fsync() function should be used by applications that require that a file be in a
known state. For example, an application that contains a simple transaction facility
might use fsync() to ensure that all changes to a file or files caused by a given
transaction were recorded on a storage medium.

The manner in which the data reach the physical medium depends on both
implementation and hardware. The fsync() function returns when notified by the
device driver that the write has taken place.

See attributes(5) for descriptions of the following attributes:

fsync(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

Basic Library Functions 159

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

mount_nfs(1M), read(2), sync(2), write(2), fcntl(3HEAD), fdatasync(3RT),
attributes(5)

fsync(3C)

SEE ALSO

160 man pages section 3: Basic Library Functions • Last Revised 22 Mar 2001

ftell, ftello – return a file offset in a stream

#include <stdio.h>

long ftell(FILE *stream);

off_t ftello(FILE *stream);

The ftell() function obtains the current value of the file-position indicator for the
stream pointed to by stream. The ftello() function is identical to ftell() except
for the return type.

Upon successful completion, the ftell() and ftello() functions return the current
value of the file-position indicator for the stream measured in bytes from the
beginning of the file. Otherwise, they return −1 and sets errno to indicate the error.

The ftell() and ftello() functions will fail if:

EBADF The file descriptor underlying stream is not an open file descriptor.

ESPIPE The file descriptor underlying stream is associated with a pipe, a
FIFO, or a socket.

The ftell() function will fail if:

EOVERFLOW The current file offset cannot be represented correctly in an object
of type long.

The ftello() function will fail if:

EOVERFLOW The current file offset cannot be represented correctly in an object
of type off_t.

The ftello() function has a transitional interface for 64-bit file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

lseek(2), fopen(3C), fseek(3C), attributes(5), lf64(5)

ftell(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

Basic Library Functions 161

ftime – get date and time

#include <sys/timeb.h>

int ftime(struct timeb *tp);

The ftime() function sets the time and millitm members of the timeb structure
pointed to by tp. The structure is defined in <sys/timeb.h> and contains the
following members:

time_t time;
unsigned short millitm;
short timezone;
short dstflag;

The time and millitm members contain the seconds and milliseconds portions,
respectively, of the current time in seconds since 00:00:00 UTC (Coordinated Universal
Time), January 1, 1970.

The timezone member contains the local time zone. The dstflag member contains
a flag that, if non-zero, indicates that Daylight Saving time applies locally during the
appropriate part of the year.

The contents of the timezone and dstflag members of tp after a call to ftime()
are unspecified.

Upon successful completion, the ftime() function returns 0. Otherwise −1 is
returned.

No errors are defined.

For portability to implementations conforming to earlier versions of this document,
time(2) is preferred over this function.

The millisecond value usually has a granularity greater than one due to the resolution
of the system clock. Depending on any granularity (particularly a granularity of one)
renders code non-portable.

date(1), time(2), ctime(3C), gettimeofday(3C), timezone(4)

ftime(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

SEE ALSO

162 man pages section 3: Basic Library Functions • Last Revised 4 Mar 1996

ftok – generate an IPC key

#include <sys/ipc.h>

key_t ftok(const char *path, int id);

The ftok() function returns a key based on path and id that is usable in subsequent
calls to msgget(2), semget(2) and shmget(2). The path argument must be the
pathname of an existing file that the process is able to stat(2).

The ftok() function will return the same key value for all paths that name the same
file, when called with the same id value, and will return different key values when
called with different id values.

If the file named by path is removed while still referred to by a key, a call to ftok()
with the same path and id returns an error. If the same file is recreated, then a call to
ftok() with the same path and id is likely to return a different key.

Only the low order 8-bits of id are significant. The behavior of ftok() is unspecified
if these bits are 0.

Upon successful completion, ftok() returns a key. Otherwise, ftok() returns
(key_t)−1 and sets errno to indicate the error.

The ftok() function will fail if:

EACCES Search permission is denied for a component of the
path prefix.

ELOOP Too many symbolic links were encountered in
resolving path.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX}
or a pathname component is longer than {NAME_MAX}.

ENOENT A component of path does not name an existing file or
path is an empty string.

ENOTDIR A component of the path prefix is not a directory.

The ftok() function may fail if:

ENAMETOOLONG Pathname resolution of a symbolic link produced an
intermediate result whose length exceeds {PATH_MAX}
.

For maximum portability, id should be a single-byte character.

Another way to compose keys is to include the project ID in the most significant byte
and to use the remaining portion as a sequence number. There are many other ways to
form keys, but it is necessary for each system to define standards for forming them. If
some standard is not adhered to, it will be possible for unrelated processes to

ftok(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

Basic Library Functions 163

unintentionally interfere with each other’s operation. It is still possible to interfere
intentionally. Therefore, it is strongly suggested that the most significant byte of a key
in some sense refer to a project so that keys do not conflict across a given system.

Since the ftok() function returns a value based on the id given and the file serial
number of the file named by path in a type that is no longer large enough to hold all
file serial numbers, it may return the same key for paths naming different files on large
filesystems.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

msgget(2), semget(2), shmget(2), stat(2), attributes(5)

ftok(3C)

NOTES

ATTRIBUTES

SEE ALSO

164 man pages section 3: Basic Library Functions • Last Revised 7 Oct 1999

ftw, nftw – walk a file tree

#include <ftw.h>

int ftw(const char *path, int (*fn) (const char *, const struct stat
*, int), int depth);

int nftw(const char *path, int (*fn) (const char *, const struct
stat *, int, struct FTW*), int depth, int flags);

The ftw() function recursively descends the directory hierarchy rooted in path. For
each object in the hierarchy, ftw() calls the user-defined function fn, passing it a
pointer to a null-terminated character string containing the name of the object, a
pointer to a stat structure (see stat(2)) containing information about the object, and
an integer. Possible values of the integer, defined in the <ftw.h> header, are:

FTW_F The object is a file.

FTW_D The object is a directory.

FTW_DNR The object is a directory that cannot be read. Descendants of the
directory are not processed.

FTW_NS The stat() function failed on the object because of lack of
appropriate permission or the object is a symbolic link that points
to a non-existent file. The stat buffer passed to fn is undefined.

The ftw() function visits a directory before visiting any of its descendants.

The tree traversal continues until the tree is exhausted, an invocation of fn returns a
non-zero value, or some error is detected within ftw() (such as an I/O error). If the
tree is exhausted, ftw() returns 0. If fn returns a non-zero value, ftw() stops its tree
traversal and returns whatever value was returned by fn.

The nftw() function is similar to ftw() except that it takes the additional argument
flags, whose possible values are:

FTW_PHYS Physical walk, does not follow symbolic links. Otherwise, nftw()
follows links but will not walk down any path that crosses itself.

FTW_MOUNT The walk will not cross a mount point.

FTW_DEPTH All subdirectories are visited before the directory itself.

FTW_CHDIR The walk changes to each directory before reading it.

At each file it encounters, nftw() calls the user-supplied function fn with four
arguments:

� The first argument is the pathname of the object.

� The second argument is a pointer to the stat buffer containing information on the
object.

ftw(3C)

NAME

SYNOPSIS

DESCRIPTION

Basic Library Functions 165

� The third argument is an integer giving additional information. Its value is one of
the following:

FTW_F The object is a file.

FTW_D The object is a directory.

FTW_DP The object is a directory and subdirectories have been visited.

FTW_SL The object is a symbolic link.

FTW_SLN The object is a symbolic link that points to a non-existent file.

FTW_DNR The object is a directory that cannot be read. The user-defined
function fn will not be called for any of its descendants.

FTW_NS The stat() function failed on the object because of lack of
appropriate permission. The stat buffer passed to fn is
undefined. The stat function failed for a reason other than
lack of appropriate permission. EACCES is considered an error
and nftw() returns −1.

� The fourth argument is a pointer to an FTW structure that contains the following
members:

int base;

int level;

The base member is the offset of the object’s filename in the pathname passed as
the first argument to fn(). The value of level indicates the depth relative to the
root of the walk, where the root level is 0.

Both ftw() and nftw() use one file descriptor for each level in the tree. The depth
argument limits the number of file descriptors used. If depth is zero or negative, the
effect is the same as if it were 1. It must not be greater than the number of file
descriptors currently available for use. The ftw() function runs faster if depth is at
least as large as the number of levels in the tree. When ftw() and nftw() return,
they close any file descriptors they have opened; they do not close any file descriptors
that might have been opened by fn.

If the tree is exhausted, ftw() and nftw() return 0. If the function pointed to by fn
returns a non-zero value, ftw() and nftw() stop their tree traversal and return
whatever value was returned by the function pointed to by fn. If ftw() and nftw()
detect an error, they return −1 and set errno to indicate the error.

If ftw() and nftw() encounter an error other than EACCES (see FTW_DNR and
FTW_NS above), they return −1 and set errno to indicate the error. The external
variable errno can contain any error value that is possible when a directory is opened
or when one of the stat functions is executed on a directory or file.

The ftw() and nftw() functions will fail if:

ftw(3C)

RETURN VALUES

ERRORS

166 man pages section 3: Basic Library Functions • Last Revised 29 Jan 2002

ENAMETOOLONG The length of the path exceeds PATH_MAX, or a path
name component is longer than NAME_MAX.

ENOENT A component of path does not name an existing file or
path is an empty string.

ENOTDIR A component of path is not a directory.

The ftw() function will fail if:

EACCES Search permission is denied for any component of path
or read permission is denied for path.

ELOOP Too many symbolic links were encountered.

The nftw() function will fail if:

EACCES Search permission is denied for any component of path
or read permission is denied for path, or fn() returns −1
and does not reset errno.

The ftw() and nftw() functions may fail if:

ENAMETOOLONG Pathname resolution of a symbolic link produced an
intermediate result whose length exceeds PATH_MAX.

The ftw() function may fail if:

EINVAL The value of the ndirs argument is invalid.

The nftw() function may fail if:

ELOOP Too many symbolic links were encountered in
resolving path.

EMFILE There are OPEN_MAX file descriptors currently open in
the calling process.

ENFILE Too many files are currently open in the system.

In addition, if the function pointed to by fn encounters system errors, errno may be
set accordingly.

Because ftw() is recursive, it can terminate with a memory fault when applied to
very deep file structures.

The ftw() function uses malloc(3C) to allocate dynamic storage during its
operation. If ftw() is forcibly terminated, such as by longjmp(3C) being executed by
fn or an interrupt routine, ftw() will not have a chance to free that storage, so it
remains permanently allocated. A safe way to handle interrupts is to store the fact that
an interrupt has occurred and arrange to have fn return a non-zero value at its next
invocation.

ftw(3C)

USAGE

Basic Library Functions 167

The ftw() and nftw() functions have transitional interfaces for 64-bit file offsets. See
lf64(5).

The ftw() function is safe in multithreaded applications. The nftw() function is safe
in multithreaded applications when the FTW_CHDIR flag is not set.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability nftw() is Standard

MT-Level Safe with exceptions

stat(2), longjmp(3C), malloc(3C), attributes(5), lf64(5)

ftw(3C)

ATTRIBUTES

SEE ALSO

168 man pages section 3: Basic Library Functions • Last Revised 29 Jan 2002

fwide – set stream orientation

#include <stdio.h>

#include <wchar.h>

int fwide(FILE *stream, int mode);

The fwide() function determines the orientation of the stream pointed to by stream. If
mode is greater than 0, the function first attempts to make the stream wide-orientated.
If mode is less than 0, the function first attempts to make the stream byte-orientated.
Otherwise, mode is 0 and the function does not alter the orientation of the stream.

If the orientation of the stream has already been determined, fwide() does not
change it.

Because no return value is reserved to indicate an error, an application wishing to
check for error situations should set errno to 0, then call fwide(), then check errno
and if it is non-zero, assume an error has occurred.

The fwide() function returns a value greater than 0 if, after the call, the stream has
wide-orientation, a value less than 0 if the stream has byte-orientation, or 0 if the
stream has no orientation.

The fwide() function may fail if:

EBADF The stream argument is not a valid stream.

A call to fwide() with mode set to 0 can be used to determine the current orientation
of a stream.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

attributes(5)

fwide(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

Basic Library Functions 169

fwprintf, wprintf, swprintf – print formatted wide-character output

#include <stdio.h>

#include <wchar.h>

int fwprintf(FILE *stream, const wchar_t *format, ...);

int wprintf(const wchar_t *format, <...);

int swprintf(wchar_t *s, size_t n, const wchar_t *format, ...);

The fwprintf() function places output on the named output stream. The
wprintf() function places output on the standard output stream stdout. The
swprintf() function places output followed by the null wide-character in
consecutive wide-characters starting at *s; no more than n wide-characters are written,
including a terminating null wide-character, which is always added (unless n is zero).

Each of these functions converts, formats and prints its arguments under control of the
format wide-character string. The format is composed of zero or more directives:
ordinary wide-characters, which are simply copied to the output stream and conversion
specifications, each of which results in the fetching of zero or more arguments. The
results are undefined if there are insufficient arguments for the format. If the format is
exhausted while arguments remain, the excess arguments are evaluated but are
otherwise ignored.

Conversions can be applied to the nth argument after the format in the argument list,
rather than to the next unused argument. In this case, the conversion wide-character %
(see below) is replaced by the sequence %n$, where n is a decimal integer in the range
[1, NL_ARGMAX], giving the position of the argument in the argument list. This feature
provides for the definition of format wide-character strings that select arguments in an
order appropriate to specific languages (see the EXAMPLES section).

In format wide-character strings containing the %n$ form of conversion specifications,
numbered arguments in the argument list can be referenced from the format
wide-character string as many times as required.

In format wide-character strings containing the % form of conversion specifications,
each argument in the argument list is used exactly once.

All forms of the fwprintf() functions allow for the insertion of a
language-dependent radix character in the output string, output as a wide-character
value. The radix character is defined in the program’s locale (category LC_NUMERIC).
In the POSIX locale, or in a locale where the radix character is not defined, the radix
character defaults to a period (.).

Each conversion specification is introduced by the % wide-character or by the
wide-character sequence %n$, after which the following appear in sequence:

� Zero or more flags (in any order), which modify the meaning of the conversion
specification.

fwprintf(3C)

NAME

SYNOPSIS

DESCRIPTION

170 man pages section 3: Basic Library Functions • Last Revised 3 Feb 1998

� An optional minimum field width. If the converted value has fewer wide-characters
than the field width, it will be padded with spaces by default on the left; it will be
padded on the right, if the left-adjustment flag (−), described below, is given to the
field width. The field width takes the form of an asterisk (*), described below, or a
decimal integer.

� An optional precision that gives the minimum number of digits to appear for the d,
i, o, u, x, and X conversions; the number of digits to appear after the radix
character for the e, E, and f conversions; the maximum number of significant
digits for the g and G conversions; or the maximum number of wide-characters to
be printed from a string in s conversions. The precision takes the form of a period
(.) followed by either an asterisk (*), described below, or an optional decimal digit
string, where a null digit string is treated as 0. If a precision appears with any other
conversion wide-character, the behavior is undefined.

� An optional l (ell) specifying that a following c conversion wide-character applies
to a wint_t argument; an optional l specifying that a following s conversion
wide-character applies to a wchar_t argument; an optional h specifying that a
following d, i, o, u, x, and X conversion wide-character applies to a type short
int or type unsigned short int argument (the argument will have been
promoted according to the integral promotions, and its value will be converted to
type short int or unsigned short int before printing); an optional h
specifying that a following n conversion wide-character applies to a pointer to a
type short int argument; an optional l (ell) specifying that a following d, i, o,
u, x, and X conversion wide-character applies to a type long int or unsigned
long int argument; an optional l (ell) specifying that a following n conversion
wide-character applies to a pointer to a type long int argument; or an optional L
specifying that a following e, E, f, g, or G conversion wide-character applies to a
type long double argument. If an h, l, or L appears with any other conversion
wide-character, the behavior is undefined.

� A conversion wide-character that indicates the type of conversion to be applied.

A field width, or precision, or both, may be indicated by an asterisk (*). In this case an
argument of type int supplies the field width or precision. Arguments specifying
field width, or precision, or both must appear in that order before the argument, if any,
to be converted. A negative field width is taken as a − flag followed by a positive field
width. A negative precision is taken as if the precision were omitted. In format
wide-character strings containing the %n$ form of a conversion specification, a field
width or precision may be indicated by the sequence *m$, where m is a decimal
integer in the range [1, NL_ARGMAX] giving the position in the argument list (after the
format argument) of an integer argument containing the field width or precision, for
example:

wprintf(L"%1$d:%2$.*3$d:%4$.*3$d\n", hour, min, precision, sec);

The format can contain either numbered argument specifications (that is, %n$ and
*m$), or unnumbered argument specifications (that is, % and *), but normally not
both. The only exception to this is that %% can be mixed with the %n$ form. The results
of mixing numbered and unnumbered argument specifications in a format

fwprintf(3C)

Basic Library Functions 171

wide-character string are undefined. When numbered argument specifications are
used, specifying the Nth argument requires that all the leading arguments, from the
first to the (N−1)th, are specified in the format wide-character string.

The flag wide-characters and their meanings are:

’ The integer portion of the result of a decimal conversion (%i, %d,
%u, %f, %g, or %G) will be formatted with thousands’ grouping
wide-characters. For other conversions the behavior is undefined.
The non-monetary grouping wide-character is used.

− The result of the conversion will be left-justified within the field.
The conversion will be right-justified if this flag is not specified.

+ The result of a signed conversion will always begin with a sign (+
or −). The conversion will begin with a sign only when a negative
value is converted if this flag is not specified.

space If the first wide-character of a signed conversion is not a sign or if
a signed conversion results in no wide-characters, a space will be
prefixed to the result. This means that if the space and + flags both
appear, the space flag will be ignored.

This flag specifies that the value is to be converted to an
alternative form. For o conversion, it increases the precision (if
necessary) to force the first digit of the result to be 0. For x or X
conversions, a non-zero result will have 0x (or 0X) prefixed to it.
For e, E, f, g, or G conversions, the result will always contain a
radix character, even if no digits follow it. Without this flag, a radix
character appears in the result of these conversions only if a digit
follows it. For g and G conversions, trailing zeros will not be
removed from the result as they normally are. For other
conversions, the behavior is undefined.

0 For d, i, o, u, x, X, e, E, f, g, and G conversions, leading zeros
(following any indication of sign or base) are used to pad to the
field width; no space padding is performed. If the 0 and − flags
both appear, the 0 flag will be ignored. For d, i, o, u, x, and X
conversions, if a precision is specified, the 0 flag will be ignored. If
the 0 and ’ flags both appear, the grouping wide-characters are
inserted before zero padding. For other conversions, the behavior
is undefined.

The conversion wide-characters and their meanings are:

d, i The int argument is converted to a signed decimal in the style [−]dddd.
The precision specifies the minimum number of digits to appear; if the
value being converted can be represented in fewer digits, it will be
expanded with leading zeros. The default precision is 1. The result of
converting 0 with an explicit precision of 0 is no wide-characters.

fwprintf(3C)

172 man pages section 3: Basic Library Functions • Last Revised 3 Feb 1998

o The unsigned int argument is converted to unsigned octal format in the
style dddd. The precision specifies the minimum number of digits to appear;
if the value being converted can be represented in fewer digits, it will be
expanded with leading zeros. The default precision is 1. The result of
converting 0 with an explicit precision of 0 is no wide-characters.

u The unsigned int argument is converted to unsigned decimal format in
the style dddd. The precision specifies the minimum number of digits to
appear; if the value being converted can be represented in fewer digits, it
will be expanded with leading zeros. The default precision is 1. The result
of converting 0 with an explicit precision of 0 is no wide-characters.

x The unsigned int argument is converted to unsigned hexadecimal
format in the style dddd; the letters abcdef are used. The precision specifies
the minimum number of digits to appear; if the value being converted can
be represented in fewer digits, it will be expanded with leading zeros. The
default precision is 1. The result of converting 0 with an explicit precision
of 0 is no wide-characters.

X Behaves the same as the x conversion wide-character except that letters
ABCDEF are used instead of abcdef.

f The double argument is converted to decimal notation in the style
[−]ddd.ddd, where the number of digits after the radix character is equal to
the precision specification. If the precision is missing, it is taken as 6; if the
precision is explicitly 0 and no # flag is present, no radix character appears.
If a radix character appears, at least one digit appears before it. The value is
rounded to the appropriate number of digits.

The fwprintf() family of functions may make available wide-character
string representations for infinity and NaN.

e, E The double argument is converted in the style [−]d.ddde ± dd, where
there is one digit before the radix character (which is non-zero if the
argument is non-zero) and the number of digits after it is equal to the
precision; if the precision is missing, it is taken as 6; if the precision is 0 and
no # flag is present, no radix character appears. The value is rounded to the
appropriate number of digits. The E conversion wide-character will
produce a number with E instead of e introducing the exponent. The
exponent always contains at least two digits. If the value is 0, the exponent
is 0.

The fwprintf() family of functions may make available wide-character
string representations for infinity and NaN.

g, G The double argument is converted in the style f or e (or in the style E in
the case of a G conversion wide-character), with the precision specifying
the number of significant digits. If an explicit precision is 0, it is taken as 1.
The style used depends on the value converted; style e (or E) will be used
only if the exponent resulting from such a conversion is less than −4 or

fwprintf(3C)

Basic Library Functions 173

greater than or equal to the precision. Trailing zeros are removed from the
fractional portion of the result; a radix character appears only if it is
followed by a digit.

The fwprintf() family of functions may make available wide-character
string representations for infinity and NaN.

c If no l (ell) qualifier is present, the int argument is converted to a
wide-character as if by calling the btowc(3C) function and the resulting
wide-character is written. Otherwise the wint_t argument is converted to
wchar_t, and written.

s If no l (ell) qualifier is present, the argument must be a pointer to a
character array containing a character sequence beginning in the initial
shift state. Characters from the array are converted as if by repeated calls to
the mbrtowc(3C) function, with the conversion state described by an
mbstate_t object initialized to zero before the first character is converted,
and written up to (but not including) the terminating null wide-character.
If the precision is specified, no more than that many wide-characters are
written. If the precision is not specified or is greater than the size of the
array, the array must contain a null wide-character.

If an l (ell) qualifier is present, the argument must be a pointer to an array
of type wchar_t. Wide characters from the array are written up to (but not
including) a terminating null wide-character. If no precision is specified or
is greater than the size of the array, the array must contain a null
wide-character. If a precision is specified, no more than that many
wide-characters are written.

p The argument must be a pointer to void. The value of the pointer is
converted to a sequence of printable wide-characters.

n The argument must be a pointer to an integer into which is written the
number of wide-characters written to the output so far by this call to one of
the fwprintf() functions. No argument is converted.

C Same as lc.

S Same as ls.

% Output a % wide-character; no argument is converted. The entire
conversion specification must be %%.

If a conversion specification does not match one of the above forms, the behavior is
undefined.

In no case does a non-existent or small field width cause truncation of a field; if the
result of a conversion is wider than the field width, the field is simply expanded to
contain the conversion result. Characters generated by fwprintf() and wprintf()
are printed as if fputwc(3C) had been called.

fwprintf(3C)

174 man pages section 3: Basic Library Functions • Last Revised 3 Feb 1998

The st_ctime and st_mtime fields of the file will be marked for update between the
call to a successful execution of fwprintf() or wprintf() and the next successful
completion of a call to fflush(3C) or fclose(3C) on the same stream or a call to
exit(3C) or abort(3C).

Upon successful completion, these functions return the number of wide-characters
transmitted excluding the terminating null wide-character in the case of swprintf()
or a negative value if an output error was encountered.

For the conditions under which fwprintf() and wprintf() will fail and may fail,
refer to fputwc(3C).

In addition, all forms of fwprintf() may fail if:

EILSEQ A wide-character code that does not correspond to a valid
character has been detected.

EINVAL There are insufficient arguments.

In addition, wprintf() and fwprintf() may fail if:

ENOMEM Insufficient storage space is available.

EXAMPLE 1 Print language-dependent date and time format.

To print the language-independent date and time format, the following statement
could be used:

wprintf(format, weekday, month, day, hour, min);

For American usage, format could be a pointer to the wide-character string:

L"%s, %s %d, %d:%.2d\n"

producing the message:

Sunday, July 3, 10:02

whereas for German usage, format could be a pointer to the wide-character string:

L"%1$s, %3$d. %2$s, %4$d:%5$.2d\n"

producing the message:

Sonntag, 3. Juli, 10:02

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

btowc(3C), fputwc(3C), fwscanf(3C), mbrtowc(3C), setlocale(3C),
attributes(5)

fwprintf(3C)

RETURN VALUES

ERRORS

EXAMPLES

ATTRIBUTES

SEE ALSO

Basic Library Functions 175

The fwprintf(), wprintf(), and swprintf() functions can be used safely in
multithreaded applications, as long as setlocale(3C) is not being called to change
the locale.

fwprintf(3C)

NOTES

176 man pages section 3: Basic Library Functions • Last Revised 3 Feb 1998

fwrite – binary output

#include <stdio.h>

size_t fwrite(const void *ptr, size_t size, size_t nitems, FILE
*stream);

The fwrite() function writes, from the array pointed to by ptr, up to nitems elements
whose size is specified by size, to the stream pointed to by stream. For each object, size
calls are made to the fputc(3C) function, taking the values (in order) from an array of
unsigned char exactly overlaying the object. The file-position indicator for the
stream (if defined) is advanced by the number of bytes successfully written. If an error
occurs, the resulting value of the file-position indicator for the stream is unspecified.

The st_ctime and st_mtime fields of the file will be marked for update between the
successful execution of fwrite() and the next successful completion of a call to
fflush(3C) or fclose(3C) on the same stream or a call to exit(2) or abort(3C).

The fwrite() function returns the number of elements successfully written, which
might be less than nitems if a write error is encountered. If size or nitems is 0,
fwrite() returns 0 and the state of the stream remains unchanged. Otherwise, if a
write error occurs, the error indicator for the stream is set and errno is set to indicate
the error.

Refer to fputc(3C).

Because of possible differences in element length and byte ordering, files written using
fwrite() are application-dependent, and possibly cannot be read using fread(3C)
by a different application or by the same application on a different processor.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

write(2), fclose(3C), ferror(3C), fopen(3C), fread(3C), getc(3C), gets(3C),
printf(3C), putc(3C), puts(3C), attributes(5)

fwrite(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

Basic Library Functions 177

fwscanf, wscanf, swscanf, vfwscanf, vwscanf, vswscanf – convert formatted
wide-character input

#include <stdio.h>

#include <wchar.h>

int fwscanf(FILE *stream, const wchar_t *format, ...);

int wscanf(const wchar_t *format, ...);

int swscanf(const wchar_t *s, const wchar_t *format, ...);

#include <stdarg.h>
#include <stdio.h>

#include <wchar.h>

int vfwscanf(FILE *stream, const wchar_t *format, va_list arg);

int vswcanf(const wchar_t *ws, const wchar_t *format, va_list arg);

int vswscanf(const wchar_t *format, va_list arg);

The fwscanf() function reads from the named input stream.

The wscanf() function reads from the standard input stream stdin.

The swscanf() function reads from the wide-character string s.

The vfwscanf(), vswcanf(), and vswcanf() functions are equivalent to the
fwscanf(), swscanf(), and wscanf() functions, respectively, except that instead
of being called with a variable number of arguments, they are called with an argument
list as defined by the <stdarg.h> header (see stdarg(3HEAD)). These functions do
not invoke the va_end() macro. Applications using these functions should call
va_end(ap) afterwards to clean up.

Each function reads wide-characters, interprets them according to a format, and stores
the results in its arguments. Each expects, as arguments, a control wide-character
string format described below, and a set of pointer arguments indicating where the
converted input should be stored. The result is undefined if there are insufficient
arguments for the format. If the format is exhausted while arguments remain, the
excess arguments are evaluated but are otherwise ignored.

Conversions can be applied to the nth argument after the format in the argument list,
rather than to the next unused argument. In this case, the conversion wide-character %
(see below) is replaced by the sequence %n$, where n is a decimal integer in the range
[1, NL_ARGMAX]. This feature provides for the definition of format wide-character
strings that select arguments in an order appropriate to specific languages. In format
wide-character strings containing the %n$ form of conversion specifications, it is
unspecified whether numbered arguments in the argument list can be referenced from
the format wide-character string more than once.

fwscanf(3C)

NAME

SYNOPSIS

DESCRIPTION

178 man pages section 3: Basic Library Functions • Last Revised 3 May 2001

The format can contain either form of a conversion specification, that is, % or %n$, but
the two forms cannot normally be mixed within a single format wide-character string.
The only exception to this is that %% or %* can be mixed with the %n$ form.

The fwscanf() function in all its forms allows for detection of a language-dependent
radix character in the input string, encoded as a wide-character value. The radix
character is defined in the program’s locale (category LC_NUMERIC). In the POSIX
locale, or in a locale where the radix character is not defined, the radix character
defaults to a period (.).

The format is a wide-character string composed of zero or more directives. Each
directive is composed of one of the following: one or more white-space
wide-characters (space, tab, newline, vertical-tab or form-feed characters); an ordinary
wide-character (neither % nor a white-space character); or a conversion specification.
Each conversion specification is introduced by a % or the sequence %n$ after which the
following appear in sequence:

� An optional assignment-suppressing character *.

� An optional non-zero decimal integer that specifies the maximum field width.

� An optional size modifier h , l(ell), or L indicating the size of the receiving object.
The conversion wide-characters c, s, and [must be precede by l (ell) if the
corresponding argument is a pointer to wchar_t rather than a pointer to a
character type. The conversion wide-characters d, i, and n must be preceded by h
if the corresponding argument is a pointer to short int rather than a pointer to
int, or by l (ell) if it is a pointer to long int. Similarly, the conversion
wide-characters o, u, and x must be preceded by h if the corresponding argument
is a pointer to unsigned short int rather than a pointer to unsigned int, or
by l (ell) if it is a pointer to unsigned long int. The conversion wide-characters
e, f, and g must be preceded by l (ell) if the corresponding argument is a pointer
to double rather than a pointer to float, or by L if it is a pointer to long
double. If an h, l (ell), or L appears with any other conversion wide-character, the
behavior is undefined.

� A conversion wide-character that specifies the type of conversion to be applied.
The valid conversion wide-characters are described below.

The fwscanf() functions execute each directive of the format in turn. If a directive
fails, as detailed below, the function returns. Failures are described as input failures
(due to the unavailability of input bytes) or matching failures (due to inappropriate
input).

A directive composed of one or more white-space wide-characters is executed by
reading input until no more valid input can be read, or up to the first wide-character
which is not a white-space wide-character, which remains unread.

A directive that is an ordinary wide-character is executed as follows. The next
wide-character is read from the input and compared with the wide-character that
comprises the directive; if the comparison shows that they are not equivalent, the
directive fails, and the differing and subsequent wide-characters remain unread.

fwscanf(3C)

Basic Library Functions 179

A directive that is a conversion specification defines a set of matching input sequences,
as described below for each conversion wide-character. A conversion specification is
executed in the following steps:

Input white-space wide-characters (as specified by iswspace(3C)) are skipped, unless
the conversion specification includes a [, c, or n conversion character.

An item is read from the input, unless the conversion specification includes an n
conversion wide-character. An input item is defined as the longest sequence of input
wide-characters, not exceeding any specified field width, which is an initial
subsequence of a matching sequence. The first wide-character, if any, after the input
item remains unread. If the length of the input item is 0, the execution of the
conversion specification fails; this condition is a matching failure, unless end-of-file, an
encoding error, or a read error prevented input from the stream, in which case it is an
input failure.

Except in the case of a % conversion wide-character, the input item (or, in the case of a
%n conversion specification, the count of input wide-characters) is converted to a type
appropriate to the conversion wide-character. If the input item is not a matching
sequence, the execution of the conversion specification fails; this condition is a
matching failure. Unless assignment suppression was indicated by a *, the result of
the conversion is placed in the object pointed to by the first argument following the
format argument that has not already received a conversion result if the conversion
specification is introduced by %, or in the nth argument if introduced by the
wide-character sequence %n$. If this object does not have an appropriate type, or if the
result of the conversion cannot be represented in the space provided, the behavior is
undefined.

The following conversion wide-characters are valid:

d Matches an optionally signed decimal integer, whose format is the same as
expected for the subject sequence of wcstol(3C) with the value 10 for the
base argument. In the absence of a size modifier, the corresponding
argument must be a pointer to int.

i Matches an optionally signed integer, whose format is the same as expected
for the subject sequence of wcstol(3C) with 0 for the base argument. In the
absence of a size modifier, the corresponding argument must be a pointer
to int.

o Matches an optionally signed octal integer, whose format is the same as
expected for the subject sequence of wcstoul(3C) with the value 8 for the
base argument. In the absence of a size modifier, the corresponding
argument must be a pointer to unsigned int.

u Matches an optionally signed decimal integer, whose format is the same as
expected for the subject sequence of wcstoul(3C) with the value 10 for the
base argument. In the absence of a size modifier, the corresponding
argument must be a pointer to unsigned int.

fwscanf(3C)

180 man pages section 3: Basic Library Functions • Last Revised 3 May 2001

x Matches an optionally signed hexadecimal integer, whose format is the
same as expected for the subject sequence of wcstoul(3C) with the value
16 for the base argument. In the absence of a size modifier, the
corresponding argument must be a pointer to unsigned int.

e,f,g Matches an optionally signed floating-point number, whose format is the
same as expected for the subject sequence of wcstod(3C). In the absence of
a size modifier, the corresponding argument must be a pointer to float.

If the fwprintf() family of functions generates character string
representations for infinity and NaN (a 7858 symbolic entity encoded in
floating-point format) to support the ANSI/IEEE Std 754:1985 standard, the
fwscanf() family of functions will recognize them as input.

s Matches a sequence of non white-space wide-characters. If no l (ell)
qualifier is present, characters from the input field are converted as if by
repeated calls to the wcrtomb(3C) function, with the conversion state
described by an mbstate_t object initialized to zero before the first
wide-character is converted. The corresponding argument must be a
pointer to a character array large enough to accept the sequence and the
terminating null character, which will be added automatically.

Otherwise, the corresponding argument must be a pointer to an array of
wchar_t large enough to accept the sequence and the terminating null
wide-character, which will be added automatically.

[Matches a non-empty sequence of wide-characters from a set of expected
wide-characters (the scanset). If no l (ell) qualifier is present,
wide-characters from the input field are converted as if by repeated calls to
the wcrtomb() function, with the conversion state described by an
mbstate_t object initialized to zero before the first wide-character is
converted. The corresponding argument must be a pointer to a character
array large enough to accept the sequence and the terminating null
character, which will be added automatically.

If an l (ell) qualifier is present, the corresponding argument must be a
pointer to an array of wchar_t large enough to accept the sequence and
the terminating null wide-character, which will be added automatically.

The conversion specification includes all subsequent widw characters in
the format string up to and including the matching right square bracket (]).
The wide-characters between the square brackets (the scanlist) comprise the
scanset, unless the wide-character after the left square bracket is a
circumflex (^), in which case the scanset contains all wide-characters that
do not appear in the scanlist between the circumflex and the right square
bracket. If the conversion specification begins with [] or [^], the right
square bracket is included in the scanlist and the next right square bracket
is the matching right square bracket that ends the conversion specification;
otherwise the first right square bracket is the one that ends the conversion

fwscanf(3C)

Basic Library Functions 181

specification. If a minus-sign (−) is in the scanlist and is not the first
wide-character, nor the second where the first wide-character is a ^, nor the
last wide-character, it indicates a range of characters to be matched.

c Matches a sequence of wide-characters of the number specified by the field
width (1 if no field width is present in the conversion specification). If no l
(ell) qualifier is present, wide-characters from the input field are converted
as if by repeated calls to the wcrtomb() function, with the conversion
state described by an mbstate_t object initialized to zero before the first
wide-character is converted. The corresponding argument must be a
pointer to a character array large enough to accept the sequence. No null
character is added.

Otherwise, the corresponding argument must be a pointer to an array of
wchar_t large enough to accept the sequence. No null wide-character is
added.

p Matches the set of sequences that is the same as the set of sequences that is
produced by the %p conversion of the corresponding fwprintf(3C)
functions. The corresponding argument must be a pointer to a pointer to
void. If the input item is a value converted earlier during the same
program execution, the pointer that results will compare equal to that
value; otherwise the behavior of the %p conversion is undefined.

n No input is consumed. The corresponding argument must be a pointer to
the integer into which is to be written the number of wide-characters read
from the input so far by this call to the fwscanf() functions. Execution of
a %n conversion specification does not increment the assignment count
returned at the completion of execution of the function.

C Same as lc.

S Same as ls.

% Matches a single %; no conversion or assignment occurs. The complete
conversion specification must be %%.

If a conversion specification is invalid, the behavior is undefined.

The conversion characters E, G, and X are also valid and behave the same as,
respectively, e, g, and x.

If end-of-file is encountered during input, conversion is terminated. If end-of-file
occurs before any wide-characters matching the current conversion specification
(except for %n) have been read (other than leading white-space, where permitted),
execution of the current conversion specification terminates with an input failure.
Otherwise, unless execution of the current conversion specification is terminated with
a matching failure, execution of the following conversion specification (if any) is
terminated with an input failure.

fwscanf(3C)

182 man pages section 3: Basic Library Functions • Last Revised 3 May 2001

Reaching the end of the string in swscanf() is equivalent to encountering end-of-file
for fwscanf().

If conversion terminates on a conflicting input, the offending input is left unread in the
input. Any trailing white space (including newline) is left unread unless matched by a
conversion specification. The success of literal matches and suppressed assignments is
only directly determinable via the %n conversion specification.

The fwscanf() and wscanf() functions may mark the st_atime field of the file
associated with stream for update. The st_atime field will be marked for update by
the first successful execution of fgetc(3C), fgetwc(3C), fgets(3C), fgetws(3C),
fread(3C), getc(3C), getwc(3C), getchar(3C), getwchar(3C), gets(3C), fscanf
(3C) or fwscanf() using stream that returns data not supplied by a prior call to
ungetc(3C).

Upon successful completion, these functions return the number of successfully
matched and assigned input items; this number can be 0 in the event of an early
matching failure. If the input ends before the first matching failure or conversion, EOF
is returned. If a read error occurs the error indicator for the stream is set, EOF is
returned, and errno is set to indicate the error.

For the conditions under which the fwscanf() functions will fail and may fail, refer
to fgetwc(3C).

In addition, fwscanf() may fail if:

EILSEQ Input byte sequence does not form a valid character.

EINVAL There are insufficient arguments.

In format strings containing the % form of conversion specifications, each argument in
the argument list is used exactly once.

EXAMPLE 1 wscanf() example

The call:

int i, n; float x; char name[50];
n = wscanf(L"%d%f%s", &i, &x, name);

with the input line:

25 54.32E−1 Hamster

will assign to n the value 3, to i the value 25, to x the value 5.432, and name will
contain the string Hamster.

The call:

int i; float x; char name[50];
(void) wscanf(L"%2d%f%*d %[0123456789], &i, &x, name);

with input:

fwscanf(3C)

RETURN VALUES

ERRORS

USAGE

EXAMPLES

Basic Library Functions 183

EXAMPLE 1 wscanf() example (Continued)

56789 0123 56a72

will assign 56 to i, 789.0 to x, skip 0123, and place the string 56\0 in name. The next call
to getchar(3C) will return the character a.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

fgetc(3C), fgets(3C), fgetwc(3C), fgetws(3C), fread(3C), fscanf(3C),
fwprintf(3C), getc(3C), getchar(3C), gets(3C), getwc(3C), getwchar(3C),
setlocale(3C), wcrtomb(3C), wcstod(3C), wcstol(3C), wcstoul(3C),
attributes(5), standards(5)

fwscanf(3C)

ATTRIBUTES

SEE ALSO

184 man pages section 3: Basic Library Functions • Last Revised 3 May 2001

getcpuid, gethomelgroup – obtain information on scheduling decisions

#include <sys/processor.h>

processorid_t getcpuid(void);

lgrpid_t gethomelgroup(void);

The getcpuid() function returns the processor ID on which the calling thread is
currently executing.

The gethomelgroup() function returns the home latency group ID of the calling
thread.

See DESCRIPTION.

No errors are defined.

Both the current CPU and the home latency group are subject to change at any time, so
the value returned by these functions might already be incorrect upon completion of
the call.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

psradm(1M), psrinfo(1M), psrset(1M), p_online(2), processor_bind(2),
processor_info(2), pset_assign(2), pset_bind(2), pset_info(2), meminfo(2),
sysconf(3C), attributes(5)

getcpuid(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

Basic Library Functions 185

getcwd – get pathname of current working directory

#include <unistd.h>

char *getcwd(char *buf, size_t size);

The getcwd() function places an absolute pathname of the current working directory
in the array pointed to by buf, and returns buf. The size argument is the size in bytes of
the character array pointed to by buf and must be at least one greater than the length
of the pathname to be returned.

If buf is not a null pointer, the pathname is stored in the space pointed to by buf.

If buf is a null pointer, getcwd() obtains size bytes of space using malloc(3C). The
pointer returned by getcwd() can be used as the argument in a subsequent call to
free().

Upon successful completion, getcwd() returns the buf argument. Otherwise, the
function returns a null pointer and sets errno to indicate the error.

The getcwd() function will fail if:

EINVAL The size argument is equal to 0.

ERANGE The size argument is greater than 0 and less than the length of the
pathname plus 1.

The getcwd() function may fail if:

EACCES A parent directory cannot be read to get its name.

ENOMEM Insufficient storage space is available.

Applications should exercise care when using chdir(2) in conjunction with
getcwd(). The current working directory is global to all threads within a process. If
more than one thread calls chdir() to change the working directory, a subsequent
call to getcwd() could produce unexpected results.

EXAMPLE 1 Printing the current working directory

The following example prints the current working directory.

#include <unistd.h>
#include <stdio.h>

main()
{

char *cwd;
if ((cwd = getcwd(NULL, 64)) == NULL) {

perror("pwd");
exit(2);

}
(void)printf("%s\n", cwd);
return(0);

}

getcwd(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

EXAMPLES

186 man pages section 3: Basic Library Functions • Last Revised 16 Aug 2001

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

chdir(2), malloc(3C), attributes(5)

getcwd(3C)

ATTRIBUTES

SEE ALSO

Basic Library Functions 187

getdate – convert user format date and time

#include <time.h>

struct tm *getdate(const char *string);

extern int getdate_err;

The getdate() function converts user-definable date and/or time specifications
pointed to by string to a tm structure. The tm structure is defined in the <time.h>
header.

User-supplied templates are used to parse and interpret the input string. The
templates are text files created by the user and identified via the environment variable
DATEMSK. Each line in the template represents an acceptable date and/or time
specification using conversion specifications similar to those used by strftime(3C)
and strptime(3C). Dates before 1902 and after 2037 are illegal. The first line in the
template that matches the input specification is used for interpretation and conversion
into the internal time format.

The following conversion specifications are supported:

%% Same as %.

%a Locale’s abbreviated weekday name.

%A Locale’s full weekday name.

%b Locale’s abbreviated month name.

%B Locale’s full month name.

%c Locale’s appropriate date and time representation.

%C Century number (the year divided by 100 and truncated to an integer as a
decimal number [1,99]); single digits are preceded by 0; see standards(5).
If used without the %y specifier, this format specifier will assume the
current year offset in whichever century is specified. The only valid years
are between 1902-2037.

%d day of month [01,31]; leading zero is permitted but not required.

%D Date as %m/%d/%y.

%e Same as %d.

%h Locale’s abbreviated month name.

%H Hour (24-hour clock) [0,23]; leading zero is permitted but not required.

%I Hour (12-hour clock) [1,12]; leading zero is permitted but not required.

%j Day number of the year [1,366]; leading zeros are permitted but not
required.

%m Month number [1,12]; leading zero is permitted but not required.

getdate(3C)

NAME

SYNOPSIS

DESCRIPTION

Conversion
Specifications

188 man pages section 3: Basic Library Functions • Last Revised 5 Oct 1999

%M Minute [0,59]; leading zero is permitted but not required.

%n Any white space.

%p Locale’s equivalent of either a.m. or p.m.

%r Appropriate time representation in the 12-hour clock format with %p.

%R Time as %H:%M.

%S Seconds [0,61]; leading zero is permitted but not required. The range of
values is [00,61] rather than [00,59] to allow for the occasional leap second
and even more occasional double leap second.

%t Any white space.

%T Time as %H:%M:%S.

%U Week number of the year as a decimal number [0,53], with Sunday as the
first day of the week; leading zero is permitted but not required.

%w Weekday as a decimal number [0,6], with 0 representing Sunday.

%W Week number of the year as a decimal number [0,53], with Monday as the
first day of the week; leading zero is permitted but not required.

%x Locale’s appropriate date representation.

%X Locale’s appropriate time representation.

%y Year within century. When a century is not otherwise specified, values in
the range 69-99 refer to years in the twentieth century (1969 to 1999
inclusive); values in the range 00-68 refer to years in the twenty-first
century (2000 to 2068 inclusive).

%Y Year, including the century (for example, 1993).

%Z Time zone name or no characters if no time zone exists.

Some conversion specifications can be modified by the E and O modifier characters to
indicate that an alternative format or specification should be used rather than the one
normally used by the unmodified specification. If the alternative format or
specification does not exist in the current locale, the behavior be as if the unmodified
conversion specification were used.

%Ec Locale’s alternative appropriate date and time representation.

%EC Name of the base year (period) in the locale’s alternative representation.

%Ex Locale’s alternative date representation.

%EX Locale’s alternative time representation.

%Ey Offset from %EC (year only) in the locale’s alternative representation.

%EY Full alternative year representation.

getdate(3C)

Modified
Conversion

Specifications

Basic Library Functions 189

%Od Day of the month using the locale’s alternative numeric symbols; leading
zeros are permitted but not required.

%Oe Same as %Od.

%OH Hour (24-hour clock) using the locale’s alternative numeric symbols.

%OI Hour (12-hour clock) using the locale’s alternative numeric symbols.

%Om Month using the locale’s alternative numeric symbols.

%OM Minutes using the locale’s alternative numeric symbols.

%OS Seconds using the locale’s alternative numeric symbols.

%OU Week number of the year (Sunday as the first day of the week) using the
locale’s alternative numeric symbols.

%Ow Number of the weekday (Sunday=0) using the locale’s alternative numeric
symbols.

%OW Week number of the year (Monday as the first day of the week) using the
locale’s alternative numeric symbols.

%Oy Year (offset from %C) in the locale’s alternative representation and using the
locale’s alternative numeric symbols.

The following rules are applied for converting the input specification into the internal
format:

� If only the weekday is given, today is assumed if the given day is equal to the
current day and next week if it is less.

� If only the month is given, the current month is assumed if the given month is
equal to the current month and next year if it is less and no year is given. (The first
day of month is assumed if no day is given.)

� If only the year is given, the values of the tm_mon, tm_mday, tm_yday, tm_wday,
and tm_isdst members of the returned tm structure are not specified.

� If the century is given, but the year within the century is not given, the current year
within the century is assumed.

� If no hour, minute, and second are given, the current hour, minute, and second are
assumed.

� If no date is given, today is assumed if the given hour is greater than the current
hour and tomorrow is assumed if it is less.

A conversion specification that is an ordinary character is executed by scanning the
next character from the buffer. If the character scanned from the buffer differs from the
one comprising the conversion specification, the specification fails, and the differing
and subsequent characters remain unscanned.

getdate(3C)

Internal Format
Conversion

General
Specifications

190 man pages section 3: Basic Library Functions • Last Revised 5 Oct 1999

A series of conversion specifications composed of %n, %t, white space characters, or
any combination is executed by scanning up to the first character that is not white
space (which remains unscanned), or until no more characters can be scanned.

Any other conversion specification is executed by scanning characters until a character
matching the next conversion specification is scanned, or until no more characters can
be scanned. These characters, except the one matching the next conversion
specification, are then compared to the locale values associated with the conversion
specifier. If a match is found, values for the appropriate tm structure members are set
to values corresponding to the locale information. If no match is found, getdate()
fails and no more characters are scanned.

The month names, weekday names, era names, and alternative numeric symbols can
consist of any combination of upper and lower case letters. The user can request that
the input date or time specification be in a specific language by setting the LC_TIME
category using setlocale(3C).

If successful, getdate() returns a pointer to a tm structure; otherwise, it returns
NULL and sets the global variable getdate_err to indicate the error. Subsequent calls
to getdate() alter the contents of getdate_err.

The following is a complete list of the getdate_err settings and their meanings:

1 The DATEMSK environment variable is null or undefined.

2 The template file cannot be opened for reading.

3 Failed to get file status information.

4 The template file is not a regular file.

5 An error is encountered while reading the template file.

6 The malloc() function failed (not enough memory is available).

7 There is no line in the template that matches the input.

8 The input specification is invalid (for example, February 31).

The getdate() function makes explicit use of macros described on the ctype(3C)
manual page.

EXAMPLE 1 Examples of the getdate() function.

The following example shows the possible contents of a template:

%m
%A %B %d %Y, %H:%M:%S
%A
%B
%m/%d/%y %I %p
%d,%m,%Y %H:%M
at %A the %dst of %B in %Y

getdate(3C)

RETURN VALUES

USAGE

EXAMPLES

Basic Library Functions 191

EXAMPLE 1 Examples of the getdate() function. (Continued)

run job at %I %p,%B %dnd
%A den %d. %B %Y %H.%M Uhr

The following are examples of valid input specifications for the above template:

getdate("10/1/87 4 PM")
getdate("Friday")
getdate("Friday September 19 1987, 10:30:30")
getdate("24,9,1986 10:30")
getdate("at monday the 1st of december in 1986")
getdate("run job at 3 PM, december 2nd")

If the LANG environment variable is set to de (German), the following is valid:

getdate("freitag den 10. oktober 1986 10.30 Uhr")

Local time and date specification are also supported. The following examples show
how local date and time specification can be defined in the template.

Invocation Line in Template

getdate("11/27/86") %m/%d/%y

getdate("27.11.86") %d.%m.%y

getdate("86-11-27") %y-%m-%d

getdate("Friday 12:00:00") %A %H:%M:%S

The following examples illustrate the Internal Format Conversion rules. Assume that
the current date is Mon Sep 22 12:19:47 EDT 1986 and the LANG environment variable
is not set.

Input Template Line Date

Mon %a Mon Sep 22 12:19:48 EDT 1986

Sun %a Sun Sep 28 12:19:49 EDT 1986

Fri %a Fri Sep 26 12:19:49 EDT 1986

September %B Mon Sep 1 12:19:49 EDT 1986

January %B Thu Jan 1 12:19:49 EST 1987

December %B Mon Dec 1 12:19:49 EDT 1986

Sep Mon %b %a Mon Sep 1 12:19:50 EDT 1986

Jan Fri %b %a Fri Jan 2 12:19:50 EST 1987

getdate(3C)

192 man pages section 3: Basic Library Functions • Last Revised 5 Oct 1999

Dec Mon %b %a Mon Dec 1 12:19:50 EST 1986

Jan Wed 1989 %b %a %Y Wed Jan 4 12:19:51 EST 1989

Fri 9 %a %H Fri Sep 26 09:00:00 EDT 1986

Feb 10:30 %b %H:%S Sun Feb 1 10:00:30 EST 1987

10:30 %H:%M Tue Sep 23 10:30:00 EDT 1986

13:30 %H:%M Mon Sep 22 13:30:00 EDT 1986

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

CSI Enabled

ctype(3C), mktime(3C), setlocale(3C), strftime(3C), strptime(3C),
attributes(5), environ(5), standards(5)

getdate(3C)

ATTRIBUTES

SEE ALSO

Basic Library Functions 193

getdtablesize – get the file descriptor table size

#include <unistd.h>

int getdtablesize(void);

The getdtablesize() function is equivalent to getrlimit(2) with the
RLIMIT_NOFILE option.

The getdtablesize() function returns the current soft limit as if obtained from a
call to getrlimit() with the RLIMIT_NOFILE option.

No errors are defined.

There is no direct relationship between the value returned by getdtablesize() and
OPEN_MAX defined in <limits.h>.

Each process has a file descriptor table which is guaranteed to have at least 20 slots.
The entries in the descriptor table are numbered with small integers starting at 0. The
getdtablesize() function returns the current maximum size of this table by calling
the getrlimit() function.

close(2), getrlimit(2), open(2), setrlimit(2), select(3C)

getdtablesize(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

SEE ALSO

194 man pages section 3: Basic Library Functions • Last Revised 1 Mar 1996

getenv – return value for environment name

#include <stdlib.h>

char *getenv(const char *name);

The getenv() function searches the environment list (see environ(5)) for a string of
the form name=value and, if the string is present, returns a pointer to the value in the
current environment.

If successful, getenv() returns a pointer to the value in the current environment;
otherwise, it returns a null pointer.

The getenv() function can be safely called from a multithreaded application. Care
must be exercised when using both getenv() and putenv(3C) in a multithreaded
application. These functions examine and modify the environment list, which is
shared by all threads in an application. The system prevents the list from being
accessed simultaneously by two different threads. It does not, however, prevent two
threads from successively accessing the environment list using getenv() or
putenv(3C).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

exec(2), putenv(3C), attributes(5), environ(5)

getenv(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

Basic Library Functions 195

getexecname – return pathname of executable

#include <stdlib.h>

const char *getexecname(void);

The getexecname() function returns the pathname (the first argument of one of the
exec family of functions; see exec(2)) of the executable that started the process.

Normally this is an absolute pathname, as the majority of commands are executed by
the shells that append the command name to the user’s PATH components. If this is
not an absolute path, the output of getcwd(3C) can be prepended to it to create an
absolute path, unless the process or one of its ancestors has changed its root directory
or current working directory since the last successful call to one of the exec family of
functions.

If successful, getexecname() returns a pointer to the executables pathname;
otherwise, it returns 0.

The getexecname() function obtains the executable pathname from the
AT_SUN_EXECNAME aux vector. These vectors are made available to dynamically
linked processes only.

A successful call to one of the exec family of functions will always have
AT_SUN_EXECNAME in the aux vector. The associated pathname is guaranteed to be
less than or equal to PATH_MAX, not counting the trailing null byte that is always
present.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

exec(2), getcwd(3C), attributes(5)

getexecname(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

196 man pages section 3: Basic Library Functions • Last Revised 17 Dec 1997

getgrnam, getgrnam_r, getgrent, getgrent_r, getgrgid, getgrgid_r, setgrent, endgrent,
fgetgrent, fgetgrent_r – group database entry functions

#include <grp.h>

struct group *getgrnam(const char *name);

struct group *getgrnam_r(const char *name, struct group *grp, char
*buffer, int bufsize);

struct group *getgrent(void);

struct group *getgrent_r(struct group *grp, char *buffer, int bufsize);

struct group *getgrgid(gid_t gid);

struct group *getgrgid_r(gid_t gid, struct group *grp, char *buffer,
int bufsize);

void setgrent(void);

void endgrent(void);

struct group *fgetgrent(FILE *f);

struct group *fgetgrent_r(FILE *f, struct group *grp, char *buffer,
int bufsize);

cc [flag...] file... -D_POSIX_PTHREAD_SEMANTICS [library...]

int getgrnam_r(const char *name, struct group *grp, char *buffer,
size_t bufsize, struct group **result);

int getgrgid_r(gid_t gid, struct group *grp, char *buffer, size_t
bufsize, struct group **result);

These functions are used to obtain entries describing user groups. Entries can come
from any of the sources for group specified in the /etc/nsswitch.conf file (see
nsswitch.conf(4)).

The getgrnam() function searches the group database for an entry with the group
name specified by the character string parameter name.

The getgrgid() function searches the group database for an entry with the
(numeric) group id specified by gid.

The setgrent(), getgrent(), and endgrent() functions are used to enumerate
group entries from the database.

The setgrent() function effectively rewinds the group database to allow repeated
searches. It sets (or resets) the enumeration to the beginning of the set of group entries.
This function should be called before the first call to getgrent().

getgrnam(3C)

NAME

SYNOPSIS

POSIX

DESCRIPTION

Basic Library Functions 197

The getgrent() function returns a pointer to a structure containing the broken-out
fields of an entry in the group database. When first called, getgrent() returns a
pointer to a group structure containing the next group structure in the group
database. Successive calls may be used to search the entire database.

The endgrent() function may be called to close the group database and deallocate
resources when processing is complete. It is permissible, though possibly less efficient,
for the process to call more group functions after calling endgrent().

The fgetgrent() function, unlike the other functions above, does not use
nsswitch.conf. It reads and parses the next line from the stream f, which is
assumed to have the format of the group file (see group(4)).

The getgrnam(), getgrgid(), getgrent(), and fgetgrent() functions use
static storage that is reused in each call, making them unsafe for multithreaded
applications.

The parallel functions getgrnam_r(), getgrgid_r(), getgrent_r(), and
fgetgrent_r() provide reentrant interfaces for these operations.

Each reentrant interface performs the same operation as its non-reentrant counterpart,
named by removing the _r suffix. The reentrant interfaces, however, use buffers
supplied by the caller to store returned results, and are safe for use in both
single-threaded and multithreaded applications.

Each reentrant interface takes the same arguments as its non-reentrant counterpart, as
well as the following additional parameters. The grp argument must be a pointer to a
struct group structure allocated by the caller. On successful completion, the
function returns the group entry in this structure. Storage referenced by the group
structure is allocated from the memory provided with the buffer argument, which is
bufsize characters in size. The maximum size needed for this buffer can be determined
with the _SC_GETGR_R_SIZE_MAX sysconf(3C) parameter. The POSIX versions
place a pointer to the modified grp structure in the result parameter, instead of
returning a pointer to this structure.

For enumeration in multithreaded applications, the position within the enumeration is
a process-wide property shared by all threads. setgrent() may be used in a
multithreaded application but resets the enumeration position for all threads. If
multiple threads interleave calls to getgrent_r(), the threads will enumerate
disjoint subsets of the group database. Like their non-reentrant counterparts,
getgrnam_r() and getgrgid_r() leave the enumeration position in an
indeterminate state.

Group entries are represented by the struct group structure defined in <grp.h>:

struct group {
char *gr_name; /* the name of the group */
char *gr_passwd; /* the encrypted group password */
gid_t gr_gid; /* the numerical group ID */
char **gr_mem; /* vector of pointers to member names */

};

getgrnam(3C)

Reentrant
Interfaces

RETURN VALUES

198 man pages section 3: Basic Library Functions • Last Revised 10 Feb 1999

The getgrnam(), getgrnam_r(), getgrgid(), and getgrgid_r() functions each
return a pointer to a struct group if they successfully locate the requested entry;
otherwise they return NULL. The POSIX functions getgrnam_r() and
getgrgid_r() return 0 upon success or the error number in case of failure.

The getgrent(), getgrent_r(), fgetgrent(), and fgetgrent_r() functions
each return a pointer to a struct group if they successfully enumerate an entry;
otherwise they return NULL, indicating the end of the enumeration.

The getgrnam(), getgrgid(), getgrent(), and fgetgrent() functions use
static storage, so returned data must be copied before a subsequent call to any of these
functions if the data is to be saved.

When the pointer returned by the reentrant functions getgrnam_r(),
getgrgid_r(), getgrent_r(), and fgetgrent_r() is non-null, it is always equal
to the grp pointer that was supplied by the caller.

The getgrnam(), getgrgid(), getgrent(), fgetgrent(), and fgetgrent_r()
functions may fail if:

EINTR A signal was caught during the operation.

EIO An I/O error has occurred.

EMFILE There are OPEN_MAX file descriptors currently open in the calling
process.

ENFILE The maximum allowable number of files is currently open in the
system.

ERANGE The group file contains a line that exceeds 512 bytes.

The getgrnam_r(), getgrgid_r(), and getgrent_r() functions may fail if:

ERANGE Insufficient storage was supplied by buffer and bufsize to contain
the data to be referenced by the resulting group structure.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See “Reentrant Interfaces” in DESCRIPTION.

Intro(3), getpwnam(3C), group(4), nsswitch.conf(4), passwd(4),
attributes(5), standards(5)

When compiling multithreaded programs, see Intro(3), Notes On Multithreaded
Applications.

getgrnam(3C)

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

Basic Library Functions 199

Programs that use the interfaces described in this manual page cannot be linked
statically since the implementations of these functions employ dynamic loading and
linking of shared objects at run time.

Use of the enumeration interfaces getgrent() and getgrent_r() is discouraged;
enumeration is supported for the group file, NIS, and NIS+, but in general is not
efficient and may not be supported for all database sources. The semantics of
enumeration are discussed further in nsswitch.conf(4).

Previous releases allowed the use of ‘‘+’’ and ‘‘-’’ entries in /etc/group to selectively
include and exclude entries from NIS. The primary usage of these entries is
superseded by the name service switch, so the ‘‘+/-’’ form may not be supported in
future releases.

If required, the ‘‘+/-’’ functionality can still be obtained for NIS by specifying compat
as the source for group.

If the ‘‘+/-’’ functionality is required in conjunction with NIS+, specify both compat
as the source for group and nisplus as the source for the pseudo-database
group_compat. See group(4), and nsswitch.conf(4) for details.

Solaris 2.4 and earlier releases provided definitions of the getgrnam_r() and
getgrgid_r() functions as specified in POSIX.1c Draft 6. The final POSIX.1c
standard changed the interface for these functions. Support for the Draft 6 interface is
provided for compatibility only and may not be supported in future releases. New
applications and libraries should use the POSIX standard interface.

For POSIX.1c-compliant applications, the _POSIX_PTHREAD_SEMANTICS and
_REENTRANT flags are automatically turned on by defining the _POSIX_C_SOURCE
flag with a value >= 199506L.

getgrnam(3C)

200 man pages section 3: Basic Library Functions • Last Revised 10 Feb 1999

gethostid – get an identifier for the current host

#include <unistd.h>

long gethostid(void);

The gethostid() function returns the 32-bit identifier for the current host. This
identifier is taken from the CPU board’s ID PROM. It is not guaranteed to be unique.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

hostid(1), sysinfo(2), attributes(5)

gethostid(3C)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

Basic Library Functions 201

gethostname, sethostname – get or set name of current host

#include <unistd.h>

int gethostname(char *name, int namelen);

int sethostname(char *name, int namelen);

The gethostname() function returns the standard host name for the current
processor, as previously set by sethostname(). The namelen argument specifies the
size of the array pointed to by name. The returned name is null-terminated unless
insufficient space is provided.

The sethostname() function sets the name of the host machine to be name, which
has length namelen. This call is restricted to the superuser and is normally used only
when the system is bootstrapped.

Host names are limited to MAXHOSTNAMELEN characters, currently 256, defined in the
<netdb.h> header.

Upon successful completion, gethostname() and sethostname() return 0.
Otherwise, they return −1 and set errno to indicate the error.

The gethostname() and sethostname() functions will fail if:

EFAULT The name or namelen argument gave an invalid address.

The sethostname() function will fail if:

EPERM The caller was not the superuser.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

sysinfo(2), uname(2), gethostid(3C), attributes(5)

gethostname(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

202 man pages section 3: Basic Library Functions • Last Revised 27 Jun 2000

gethrtime, gethrvtime – get high resolution time

#include <sys/time.h>

hrtime_t gethrtime(void);

hrtime_t gethrvtime(void);

The gethrtime() function returns the current high-resolution real time. Time is
expressed as nanoseconds since some arbitrary time in the past; it is not correlated in
any way to the time of day, and thus is not subject to resetting or drifting by way of
adjtime(2) or settimeofday(3C). The hi-res timer is ideally suited to performance
measurement tasks, where cheap, accurate interval timing is required.

The gethrvtime() function returns the current high-resolution LWP virtual time,
expressed as total nanoseconds of execution time. This function requires that micro
state accounting be enabled with the ptime utility (see proc(1)).

The gethrtime() and gethrvtime() functions both return an hrtime_t, which
is a 64-bit (long long) signed integer.

The following code fragment measures the average cost of getpid(2):

hrtime_t start, end;
int i, iters = 100;

start = gethrtime();
for (i = 0; i < iters; i++)

getpid();
end = gethrtime();

printf("Avg getpid() time = %lld nsec\n", (end − start) / iters);

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

proc(1), adjtime(2), gettimeofday(3C), settimeofday(3C), attributes(5)

Although the units of hi-res time are always the same (nanoseconds), the actual
resolution is hardware dependent. Hi-res time is guaranteed to be monotonic (it won’t
go backward, it won’t periodically wrap) and linear (it won’t occasionally speed up or
slow down for adjustment, like the time of day can), but not necessarily unique: two
sufficiently proximate calls may return the same value.

gethrtime(3C)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

ATTRIBUTES

SEE ALSO

NOTES

Basic Library Functions 203

getloadavg – get system load averages

#include <sys/loadavg.h>

int getloadavg(double loadavg[], int nelem);

The getloadavg() function returns the number of processes in the system run
queue averaged over various periods of time. Up to nelem samples are retrieved and
assigned to successive elements of loadavg[]. The system imposes a maximum of 3
samples, representing averages over the last 1, 5, and 15 minutes, respectively. The
LOADAVG_1MIN, LOADAVG_5MIN, and LOADAVG_15MIN indices, defined in
<sys/loadavg.h>, can be used to extract the data from the appropriate element of
the loadavg[] array.

Upon successful completion, the number of samples actually retrieved is returned. If
the load average was unobtainable, −1 is returned and errno is set to indicate the
error.

The getloadavg() function will fail if:

EINVAL The number of elements specified is less than 0.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

uptime(1), w(1), kstat(3KSTAT), standards(5)

getloadavg(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

204 man pages section 3: Basic Library Functions • Last Revised 7 Jan 1998

getlogin, getlogin_r – get login name

#include <unistd.h>

char *getlogin(void);

char *getlogin_r(char *name, int namelen);

cc [flag ...] file... -D_POSIX_PTHREAD_SEMANTICS [library ...]

int getlogin_r(char *name, size_t namesize);

The getlogin() function returns a pointer to the login name as found in
/var/adm/utmpx. It may be used in conjunction with getpwnam(3C) to locate the
correct password file entry when the same user ID is shared by several login names.

If getlogin() is called within a process that is not attached to a terminal, it returns a
null pointer. The correct procedure for determining the login name is to call
cuserid(3C), or to call getlogin() and if it fails to call getpwuid(3C).

The getlogin_r() function has the same functionality as getlogin() except that
the caller must supply a buffer name with length namelen to store the result. The name
buffer must be at least _POSIX_LOGIN_NAME_MAX bytes in size (defined in
<limits.h>). The POSIX version (see standards(5)) of getlogin_r() takes a
namesize parameter of type size_t.

Upon successful completion, getlogin() returns a pointer to the login name or a
null pointer if the user’s login name cannot be found. Otherwise it returns a null
pointer and sets errno to indicate the error.

The POSIX getlogin_r() returns 0 if successful, or the error number upon failure.

The getlogin() function may fail if:

EMFILE There are OPEN_MAX file descriptors currently open in the calling
process.

ENFILE The maximum allowable number of files is currently open in the
system.

ENXIO The calling process has no controlling terminal.

The getlogin_r() function will fail if:

ERANGE The size of the buffer is smaller than the result to be returned.

EINVAL And entry for the current user was not found in the
/var/adm/utmpx file.

The return value may point to static data whose content is overwritten by each call.

getlogin(3C)

NAME

SYNOPSIS

POSIX

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

Basic Library Functions 205

Three names associated with the current process can be determined:
getpwuid(geteuid()) returns the name associated with the effective user ID of the
process; getlogin() returns the name associated with the current login activity; and
getpwuid(getuid()) returns the name associated with the real user ID of the
process.

/var/adm/utmpx user access and administration information

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See NOTES below.

geteuid(2), getuid(2), cuserid(3C), getgrnam(3C), getpwnam(3C),
getpwuid(3C), utmpx(4), attributes(5), standards(5)

When compiling multithreaded programs, see Intro(3), Notes On Multithreaded
Applications.

The getlogin() function is unsafe in multithreaded applications. The
getlogin_r() function should be used instead.

Solaris 2.4 and earlier releases provided a getlogin_r() as specified in POSIX.1c
Draft 6. The final POSIX.1c standard changed the interface as described above.
Support for the Draft 6 interface is provided for compatibility only and may not be
supported in future releases. New applications and libraries should use the POSIX
standard interface.

getlogin(3C)

FILES

ATTRIBUTES

SEE ALSO

NOTES

206 man pages section 3: Basic Library Functions • Last Revised 27 Oct 1998

getmntent, getmntany, getextmntent, hasmntopt, putmntent, resetmnttab – get
mounted device information

#include <stdio.h>

#include <sys/mnttab.h>

int getmntent(FILE *fp, struct mnttab *mp);

int getmntany(FILE *fp, struct mnttab *mp, struct mnttab *mpref);

int getextmntent(FILE *fp, struct extmnttab *mp, int len);

char *hasmntopt(struct mnttab *mnt, char *opt);

int putmntent(FILE *iop, struct mnttab *mp);

void resetmnttab(FILE *fp);

The getmntent() and getmntany() functions each fill in the structure pointed to
by mp with the broken-out fields of a line in the mnttab file. Each line read from the
file contains a mnttab structure, which is defined in the <sys/mnttab.h> header.
The structure contains the following members, which correspond to the broken-out
fields from a line in /etc/mnttab (see mnttab(4)).

char *mnt_special; /* name of mounted resource */
char *mnt_mountp; /* mount point */
char *mnt_fstype; /* type of file system mounted */
char *mnt_mntopts; /* options for this mount */
char *mnt_time; /* time file system mounted */

Each getmntent() call causes a new line to be read from the mnttab file. Successive
calls can be used to search the entire list. The getmntany() function searches the file
referenced by fp until a match is found between a line in the file and mpref. A match
occurs if all non-null entries in mpref match the corresponding fields in the file. Note
that these functions do not open, close, or rewind the file.

The getextmntent() function is an extended version of the getmntent() function
that returns, in addition to the information that getmntent() returns, the major and
minor number of the mounted resource to which the line in mnttab corresponds. The
getextmntent() function also fills in the extmntent structure defined in the
<sys/mnttab.h> header. For getextmntent() to function properly, it must be
notified when the mnttab file has been reopened or rewound since a previous
getextmntent() call. This notification is accomplished by calling resetmnttab().
Otherwise, it behaves exactly as getmntent() described above

The data pointed to by the mnttab structure members are stored in a static area and
must be copied to be saved between successive calls.

The hasmntopt() function scans the mnt_mntopts member of the mnttab structure
mnt for a substring that matches opt. It returns the address of the substring if a match
is found; otherwise it returns 0. Substrings are delimited by commas and the end of
the mnt_mntopts string.

getmntent(3C)

NAME

SYNOPSIS

getmntent()
and

getmntany()

getextmntent()

hasmntopt()

Basic Library Functions 207

The putmntent() function is obsolete and no longer has any effect. Entries appear in
mnttab as a side effect of a mount(2) call. The function name is still defined for
transition purposes.

The resetmnttab() function notifies getextmntent() to reload from the kernel
the device information that corresponds to the new snapshot of the mnttab
information (see mnttab(4)). Subsequent getextmntent() calls then return correct
extmnttab information. This function should be called whenever the mnttab file is
either rewound or closed and reopened before any calls are made to
getextmntent().

If the next entry is successfully read by getmntent() or a match is found with
getmntany(), 0 is returned. If an EOF is encountered on reading, these functions
return −1. If an error is encountered, a value greater than 0 is returned. The following
error values are defined in <sys/mnttab.h>:

MNT_TOOLONG A line in the file exceeded the internal buffer size of
MNT_LINE_MAX.

MNT_TOOMANY A line in the file contains too many fields.

MNT_TOOFEW A line in the file contains too few fields.

Upon successful completion, hasmntopt() returns the address of the substring if a
match is found. Otherwise, it returns 0.

The putmntent() is obsolete and always returns −1.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

mount(2), mnttab(4), attributes(5)

getmntent(3C)

putmntent()

resetmnttab()

getmntent()
and

getmntany()

hasmntopt()

putmntent()

ATTRIBUTES

SEE ALSO

208 man pages section 3: Basic Library Functions • Last Revised 10 Aug 1999

getnetgrent, getnetgrent_r, setnetgrent, endnetgrent, innetgr – get network group entry

#include <netdb.h>

int getnetgrent(char **machinep, char **userp, char **domainp);

int getnetgrent_r(char **machinep, char **userp, char **domainp, char
*buffer, intbuflen);

int setnetgrent(const char *netgroup);

int endnetgrent(void);

int innetgr(const char *netgroup, const char *machine, const char
*user, const char *domain);

These functions are used to test membership in and enumerate members of
‘‘netgroup’’ network groups defined in a system database. Netgroups are sets of
(machine,user,domain) triples (see netgroup(4)).

These functions consult the source specified for netgroup in the
/etc/nsswitch.conf file (see nsswitch.conf(4)).

The function innetgr() returns 1 if there is a netgroup netgroup that contains the
specified machine, user, domain triple as a member; otherwise it returns 0. Any of the
supplied pointers machine, user, and domain may be NULL, signifying a "wild card"
that matches all values in that position of the triple.

The innetgr() function is safe for use in single-threaded and multithreaded
applications.

The functions setnetgrent(), getnetgrent(), and endnetgrent() are used to
enumerate the members of a given network group.

The function setnetgrent() establishes the network group specified in the
parameter netgroup as the current group whose members are to be enumerated.

Successive calls to the function getnetgrent() will enumerate the members of the
group established by calling setnetgrent(); each call returns 1 if it succeeds in
obtaining another member of the network group, or 0 if there are no further members
of the group.

When calling either getnetgrent() or getnetgrent_r(), addresses of the three
character pointers are used as arguments, for example:

char *mp, *up, *dp;
getnetgrent(&mp, &up, &dp);

getnetgrent(3C)

NAME

SYNOPSIS

DESCRIPTION

Basic Library Functions 209

Upon successful return from getnetgrent(), the pointer mp points to a string
containing the name of the machine part of the member triple, up points to a string
containing the user name and dp points to a string containing the domain name. If the
pointer returned for mp, up, or dp is NULL, it signifies that the element of the netgroup
contains wild card specifier in that position of the triple.

The pointers returned by getnetgrent() point into a buffer allocated by
setnetgrent() that is reused by each call. This space is released when an
endnetgrent() call is made, and should not be released by the caller. This
implementation is not safe for use in multi-threaded applications.

The function getnetgrent_r() is similar to getnetgrent() function, but it uses a
buffer supplied by the caller for the space needed to store the results. The parameter
buffer should be a pointer to a buffer allocated by the caller and the length of this buffer
should be specified by the parameter buflen. The buffer must be large enough to hold
the data associated with the triple. The getnetgrent_r() function is safe for use
both in single-threaded and multi-threaded applications.

The function endnetgrent() frees the space allocated by the previous
setnetgrent() call. The equivalent of an endnetgrent() implicitly performed
whenever a setnetgrent() call is made to a new network group.

Note that while setnetgrent() and endnetgrent() are safe for use in
multi-threaded applications, the effect of each is process-wide. Calling
setnetgrent() resets the enumeration position for all threads. If multiple threads
interleave calls to getnetgrent_r() each will enumerate a disjoint subset of the
netgroup. Thus the effective use of these functions in multi-threaded applications may
require coordination by the caller.

The function getnetgrent_r() will return 0 and set errno to ERANGE if the length
of the buffer supplied by caller is not large enough to store the result. See Intro(2) for
the proper usage and interpretation of errno in multi-threaded applications.

The functions setnetgrent() and endnetgrent() return 0 upon success.

/etc/nsswitch.conf

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See DESCRIPTION section.

Intro(2), Intro(3), netgroup(4), nsswitch.conf(4), attributes(5)

The function getnetgrent_r() is included in this release on an uncommitted basis
only, and is subject to change or removal in future minor releases.

getnetgrent(3C)

ERRORS

FILES

ATTRIBUTES

SEE ALSO

WARNINGS

210 man pages section 3: Basic Library Functions • Last Revised 9 Apr 1998

Only the Network Information Services, NIS and NIS+, are supported as sources for
the netgroup database.

Programs that use the interfaces described in this manual page cannot be linked
statically since the implementations of these functions employ dynamic loading and
linking of shared objects at run time.

When compiling multi-threaded applications, see Intro(3), Notes On Multithread
Applications, for information about the use of the _REENTRANT flag.

getnetgrent(3C)

NOTES

Basic Library Functions 211

getopt – get option letter from argument vector

#include <stdlib.h>

int getopt(int argc, char * const *argv, const char *optstring);

extern char *optarg;
extern int optind, opterr, optopt;

The getopt() function returns the next option letter in argv that matches a letter in
optstring. It supports all the rules of the command syntax standard (see intro(1)).
Since all new commands are intended to adhere to the command syntax standard,
they should use getopts(1), getopt(3C) or getsubopt(3C) to parse positional
parameters and check for options that are legal for that command.

The optstring argument must contain the option letters the command using getopt()
will recognize; if a letter is followed by a colon, the option is expected to have an
argument, or group of arguments, which may be separated from it by white space. The
optarg argument is set to point to the start of the option argument on return from
getopt().

The getopt() function places in optind the argv index of the next argument to be
processed. optind is external and is initialized to 1 before the first call to getopt().
When all options have been processed (that is, up to the first non-option argument),
getopt() returns EOF. The special option “−−” (two hyphens) may be used to delimit
the end of the options; when it is encountered, EOF is returned and “−−”’ is skipped.
This is useful in delimiting non-option arguments that begin with “−” (hyphen).

The getopt() function prints an error message on the standard error and returns a
“?” (question mark) when it encounters an option letter not included in optstring or no
argument after an option that expects one. This error message may be disabled by
setting opterr to 0. The value of the character that caused the error is in optopt.

If the application is linked with -lintl, then messages printed from this function are
in the native language specified by the LC_MESSAGES locale category; see
setlocale(3C).

The getopt() function does not fully check for mandatory arguments; that is, given
an option string a:b and the input -a -b, getopt() assumes that -b is the
mandatory argument to the -a option and not that -a is missing a mandatory
argument.

It is a violation of the command syntax standard (see intro(1)) for options with
arguments to be grouped with other options, as in cmd -abo filename , where a and b
are options, o is an option that requires an argument, and filename is the argument to
o. Although this syntax is permitted in the current implementation, it should not be
used because it may not be supported in future releases. The correct syntax to use is:

cmd -ab -o filename.

getopt(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

212 man pages section 3: Basic Library Functions • Last Revised 15 May 2001

EXAMPLE 1 Example on how one might process the arguments for a command.

The following code fragment shows how one might process the arguments for a
command that can take the mutually exclusive options a and b, and the option o,
which requires an argument:

#include <stdlib.h>
#include <stdio.h>

main (int argc, char **argv)
{

int c;
extern char *optarg;
extern int optind;
int aflg = 0;
int bflg = 0;
int errflg = 0;
char *ofile = NULL;

while ((c = getopt(argc, argv, "abo:")) != EOF)
switch (c) {
case ’a’:

if (bflg)
errflg++;

else
aflg++;

break;
case ’b’:

if (aflg)
errflg++;

else
bflg++;

break;
case ’o’:

ofile = optarg;
(void)printf("ofile = %s\n", ofile);
break;

case ’?’:
errflg++;

}
if (errflg) {

(void)fprintf(stderr,
"usage: cmd [-a|-b] [-o <filename>] files . . .\n");

exit (2);
}
for (; optind < argc; optind++)
(void)printf("%s\n", argv[optind]);

return 0;
}

See attributes(5) for descriptions of the following attributes:

getopt(3C)

EXAMPLES

ATTRIBUTES

Basic Library Functions 213

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

intro(1), getopt(1), getopts(1), getsubopt(3C), gettext(3C), setlocale(3C),
attributes(5)

getopt(3C)

SEE ALSO

214 man pages section 3: Basic Library Functions • Last Revised 15 May 2001

getpagesize – get system page size

#include <unistd.h>

int getpagesize(void);

The getpagesize() function returns the number of bytes in a page. Page
granularity is the granularity of many of the memory management calls.

The page size is a system page size and need not be the same as the underlying
hardware page size.

The getpagesize() function is equivalent to sysconf(_SC_PAGE_SIZE) and
sysconf(_SC_PAGESIZE). See sysconf(3C).

The getpagesize() function returns the current page size.

No errors are defined.

The value returned by getpagesize() need not be the minimum value that
malloc(3C) can allocate. Moreover, the application cannot assume that an object of
this size can be allocated with malloc().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

pagesize(1), brk(2), getrlimit(2), mmap(2), mprotect(2), munmap(2),
malloc(3C), msync(3C), sysconf(3C), attributes(5)

getpagesize(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

Basic Library Functions 215

getpagesizes – get system supported page sizes

#include <sys/mman.h>

int getpagesizes(size_t pagesize[], int nelem);

The getpagesizes() function returns either the number of different page sizes
supported by the system or the actual sizes themselves. When called with nelem as 0
and pagesize as NULL, getpagesizes() returns the number of supported page sizes.
Otherwise, up to nelem page sizes are retrieved and assigned to successive elements of
pagesize[]. The return value is the number of page sizes retrieved and set in pagesize[].

Upon successful completion, the number of pagesizes supported or actually retrieved
is returned. Otherwise, −1 is returned and errno is set to indicate the error.

The getpagesizes() function will fail if:

EINVAL The nelem argument is less than 0 or pagesize is NULL but nelem is
non-zero.

The getpagesizes() function returns all the page sizes for which the hardware and
system software provide support for the memcntl(2) command MC_HATMAPSIZE.
However, not all processors support all page sizes and/or combinations of page sizes
with equal efficiency. Applications programmers should take this into consideration
when using getpagesizes().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

memcntl(2), mmap(2), getpagesize(3C), attributes(5)

getpagesizes(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

216 man pages section 3: Basic Library Functions • Last Revised 2001

getpass, getpassphrase – read a string of characters without echo

#include <stdlib.h>

char *getpass(const char *prompt);

char *getpassphrase(const char *prompt);

#include <unistd.h>

char *getpass(const char *prompt);

The getpass() function opens the process’s controlling terminal, writes to that
device the null-terminated string prompt, disables echoing, reads a string of characters
up to the next newline character or EOF, restores the terminal state and closes the
terminal.

The getpassphrase() function is identical to getpass(), except that it reads and
returns a string of up to 256 characters in length.

Upon successful completion, getpass() returns a pointer to a null-terminated string
of at most PASS_MAX bytes that were read from the terminal device. If an error is
encountered, the terminal state is restored and a null pointer is returned.

The getpass() and getpassphrase() functions may fail if:

EINTR The function was interrupted by a signal.

EIO The process is a member of a background process attempting to
read from its controlling terminal, the process is ignoring or
blocking the SIGTTIN signal or the process group is orphaned.

EMFILE OPEN_MAX file descriptors are currently open in the calling
process.

ENFILE The maximum allowable number of files is currently open in the
system.

ENXIO The process does not have a controlling terminal.

The return value points to static data whose content may be overwritten by each call.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

attributes(5), standards(5)

getpass(3C)

NAME

Default

XPG4, SUS, SUSv2

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

Basic Library Functions 217

getpriority, setpriority – get or set process scheduling priority

#include <sys/resource.h>

int getpriority(int which, id_t who);

int setpriority(int which, id_t who, int priority);

The getpriority() function obtains the current scheduling priority of a process,
process group, or user. The setpriority() function sets the scheduling priority of a
process, process group, or user.

Target processes are specified by the values of the which and who arguments. The which
argument may be one of the following values: PRIO_PROCESS, PRIO_PGRP,
PRIO_USER, PRIO_GROUP, PRIO_SESSION, PRIO_LWP, PRIO_LWP, or
PRIO_PROJECT, indicating that the who argument is to be interpreted as a process ID,
a process group ID, a user ID, a group ID, a session ID, an lwp ID, a task ID, or a
project ID, respectively. A 0 value for the who argument specifies the current process,
process group, or user. A 0 value for the who argument is treated as valid group ID,
session ID, lwp ID, task ID, or project ID. A P_MYID value for the who argument can be
used to specify the current group, session, lwp, task, or project, respectively.

If more than one process is specified, getpriority() returns the highest priority
(lowest numerical value) pertaining to any of the specified processes, and
setpriority() sets the priorities of all of the specified processes to the specified
value.

The default priority is 0; negative priorities cause more favorable scheduling. While the
range of valid priority values is [−20, 20], implementations may enforce more
restrictive limits. If the value specified to setpriority() is less than the system’s
lowest supported priority value, the system’s lowest supported value is used. If it is
greater than the system’s highest supported value, the system’s highest supported
value is used.

Only a process with appropriate privileges can raise its priority (that is, assign a lower
numerical priority value).

Upon successful completion, getpriority() returns an integer in the range from
−20 to 20. Otherwise, −1 is returned and errno is set to indicate the error.

Upon successful completion, setpriority() returns 0. Otherwise, −1 is returned
and errno is set to indicate the error.

The getpriority() and setpriority() functions will fail if:

ESRCH No process could be located using the which and who argument
values specified.

EINVAL The value of the which argument was not recognized, or the value
of the who argument is not a valid process ID, process group ID,
user ID, group ID, session ID, lwp ID, task ID, or project ID.

getpriority(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

218 man pages section 3: Basic Library Functions • Last Revised 10 Aug 2001

In addition, setpriority() may fail if:

EPERM A process was located, but neither the real nor effective user ID of
the executing process is the privileged user or match the effective
user ID of the process whose priority is being changed.

EACCES A request was made to change the priority to a lower numeric
value (that is, to a higher priority) and the current process does not
have appropriate privileges.

The effect of changing the scheduling priority can vary depending on the
process-scheduling algorithm in effect.

Because getpriority() can return −1 on successful completion, it is necessary to set
errno to 0 prior to a call to getpriority(). If getpriority() returns −1, then
errno can be checked to see if an error occurred or if the value is a legitimate priority.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

nice(1), renice(1), fork(2), attributes(5)

getpriority(3C)

USAGE

ATTRIBUTES

SEE ALSO

Basic Library Functions 219

getpw – get passwd entry from UID

#include <stdlib.h>

int getpw(uid_t uid, char *buf);

The getpw() function searches the user data base for a user id number that equals
uid, copies the line of the password file in which uid was found into the array pointed
to by buf, and returns 0. getpw() returns non-zero if uid cannot be found.

This function is included only for compatibility with prior systems and should not be
used; the functions described on the getpwnam(3C) manual page should be used
instead.

If the /etc/passwd and the /etc/group files have a plus sign (+) for the NIS entry,
then getpwent() and getgrent() will not return NULL when the end of file is
reached. See getpwnam(3C).

The getpw() function returns non-zero on error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

getpwnam(3C), passwd(4), attributes(5)

getpw(3C)

NAME

SYNOPSIS

DESCRIPTION

USAGE

RETURN VALUES

ATTRIBUTES

SEE ALSO

220 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

getpwnam, getpwnam_r, getpwent, getpwent_r, getpwuid, getpwuid_r, setpwent,
endpwent, fgetpwent, fgetpwent_r – get password entry

#include <pwd.h>

struct passwd *getpwnam(const char *name);

struct passwd *getpwnam_r(const char *name, struct passwd *pwd,
char *buffer, int buflen);

struct passwd *getpwent(void);

struct passwd *getpwent_r(struct passwd *pwd, char *buffer, int
buflen);

struct passwd *getpwuid(uid_t uid);

struct passwd *getpwuid_r(uid_t uid, struct passwd *pwd, char
*buffer, int buflen);

void setpwent(void);

void endpwent(void);

struct passwd *fgetpwent(FILE *f);

struct passwd *fgetpwent_r(FILE *f, struct passwd *pwd, char
*buffer, int buflen);

cc [flag...] file... -D_POSIX_PTHREAD_SEMANTICS [library...]

int getpwnam_r(const char *name, struct passwd *pwd, char *buffer,
size_t bufsize, struct passwd **result);

int getpwuid_r(uid_t uid, struct passwd *pwd, char *buffer, size_t
bufsize, struct passwd **result);

These functions are used to obtain password entries. Entries can come from any of the
sources for passwd specified in the /etc/nsswitch.conf file (see
nsswitch.conf(4)).

The getpwnam() function searches for a password entry with the login name
specified by the character string parameter name.

The getpwuid() function searches for a password entry with the (numeric) user ID
specified by the parameter uid.

The setpwent(), getpwent(), and endpwent() functions are used to enumerate
password entries from the database. setpwent() sets (or resets) the enumeration to
the beginning of the set of password entries. This function should be called before the
first call to getpwent(). Calls to getpwnam() and getpwuid() leave the
enumeration position in an indeterminate state. Successive calls to getpwent()
return either successive entries or NULL, indicating the end of the enumeration.

getpwnam(3C)

NAME

SYNOPSIS

POSIX

DESCRIPTION

Basic Library Functions 221

The endpwent() function may be called to indicate that the caller expects to do no
further password retrieval operations; the system may then close the password file,
deallocate resources it was using, and so forth. It is still allowed, but possibly less
efficient, for the process to call more password functions after calling endpwent().

The fgetpwent() function, unlike the other functions above, does not use
nsswitch.conf; it reads and parses the next line from the stream f, which is
assumed to have the format of the passwd file. See passwd(4).

The functions getpwnam(), getpwuid(), getpwent(), and fgetpwent() use
static storage that is reused in each call, making these routines unsafe for use in
multithreaded applications.

The parallel functions getpwnam_r(), getpwuid_r(), getpwent_r(), and
fgetpwent_r() provide reentrant interfaces for these operations.

Each reentrant interface performs the same operation as its non-reentrant counterpart,
named by removing the “ _r ” suffix. The reentrant interfaces, however, use buffers
supplied by the caller to store returned results, and are safe for use in both
single-threaded and multithreaded applications.

Each reentrant interface takes the same parameters as its non-reentrant counterpart, as
well as the following additional parameters. The parameter pwd must be a pointer to a
struct passwd structure allocated by the caller. On successful completion, the
function returns the password entry in this structure. The parameter buffer is a pointer
to a buffer supplied by the caller, used as storage space for the password data. All of
the pointers within the returned struct passwd pwd point to data stored within this
buffer; see RETURN VALUES. The buffer must be large enough to hold all the data
associated with the password entry. The parameter buflen (or bufsize for the POSIX
versions; see standards(5)) should give the size in bytes of buffer. The POSIX
versions place a pointer to the modified pwd structure in the result parameter, instead
of returning a pointer to this structure.

For enumeration in multithreaded applications, the position within the enumeration is
a process-wide property shared by all threads. The setpwent() function may be
used in a multithreaded application but resets the enumeration position for all
threads. If multiple threads interleave calls to getpwent_r(), the threads will
enumerate disjoint subsets of the password database.

Like their non-reentrant counterparts, getpwnam_r() and getpwuid_r() leave the
enumeration position in an indeterminate state.

Password entries are represented by the struct passwd structure defined in
<pwd.h>:

struct passwd {
char *pw_name; /* user’s login name */
char *pw_passwd; /* no longer used */
uid_t pw_uid; /* user’s uid */
gid_t pw_gid; /* user’s gid */
char *pw_age; /* not used */

getpwnam(3C)

Reentrant
Interfaces

RETURN VALUES

222 man pages section 3: Basic Library Functions • Last Revised 18 May 1999

char *pw_comment; /* not used */
char *pw_gecos; /* typically user’s full name */
char *pw_dir; /* user’s home dir */
char *pw_shell; /* user’s login shell */

};

The pw_passwd member should not be used as the encrypted password for the user;
use getspnam() or getspnam_r() instead. See getspnam(3C).

The getpwnam(), getpwnam_r(), getpwuid(), and getpwuid_r() functions each
return a pointer to a struct passwd if they successfully locate the requested entry;
otherwise they return NULL. Upon successful completion (including the case when the
requested entry is not found), the POSIX functions getpwnam_r() and
getpwuid_r() return 0. Otherwise, an error number is returned to indicate the error.

The getpwent(), getpwent_r(), fgetpwent(), and fgetpwent_r() functions
each return a pointer to a struct passwd if they successfully enumerate an entry;
otherwise they return NULL, indicating the end of the enumeration.

The getpwnam(), getpwuid(), getpwent(), and fgetpwent() functions use
static storage, so returned data must be copied before a subsequent call to any of these
functions if the data is to be saved.

When the pointer returned by the reentrant functions getpwnam_r(),
getpwuid_r(), getpwent_r(), and fgetpwent_r() is non-null, it is always equal
to the pwd pointer that was supplied by the caller.

The reentrant functions getpwnam_r(), getpwuid_r(), getpwent_r(), and
fgetpwent_r() will return NULL and set errno to ERANGE (or in the case of POSIX
functions getpwnam_r() and getpwuid_r() return the ERANGE error) if the length
of the buffer supplied by caller is not large enough to store the result. See Intro(2) for
the proper usage and interpretation of errno in multithreaded applications.

Applications that use the interfaces described on this manual page cannot be linked
statically, since the implementations of these functions employ dynamic loading and
linking of shared objects at run time.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See “Reentrant Interfaces” in DESCRIPTION.

nispasswd(1), passwd(1), yppasswd(1), Intro(2), Intro(3), cuserid(3C),
getgrnam(3C), getlogin(3C), getspnam(3C), nsswitch.conf(4), passwd(4),
shadow(4), attributes(5), standards(5)

When compiling multithreaded programs, see Intro(3), Notes On Multithreaded
Applications.

getpwnam(3C)

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

NOTES

Basic Library Functions 223

Use of the enumeration interfaces getpwent() and getpwent_r() is discouraged;
enumeration is supported for the passwd file, NIS, and NIS+, but in general is not
efficient and may not be supported for all database sources. The semantics of
enumeration are discussed further in nsswitch.conf(4).

Previous releases allowed the use of ‘+’ and ‘-’ entries in /etc/passwd to selectively
include and exclude NIS entries. The primary usage of these ‘+/-’ entries is
superseded by the name service switch, so the ‘+/-’ form may not be supported in
future releases.

If required, the ‘+/-’ functionality can still be obtained for NIS by specifying compat
as the source for passwd.

If the ‘+/-’ functionality is required in conjunction with NIS+, specify both compat as
the source for passwd and nisplus as the source for the pseudo-database
passwd_compat. See passwd(4), shadow(4), and nsswitch.conf(4) for details.

If the ‘+/-’ is used, both /etc/shadow and /etc/passwd should have the same ‘+’
and ‘-’ entries to ensure consistency between the password and shadow databases.

If a password entry from any of the sources contains an empty uid or gid field, that
entry will be ignored by the files, NIS , and NIS+ name service switch backends. This
will cause the user to appear unknown to the system.

If a password entry contains an empty gecos, home directory, or shell field, getpwnam()
and getpwnam_r() return a pointer to a null string in the respective field of the
passwd structure.

If the shell field is empty, login(1) automatically assigns the default shell. See
login(1).

Solaris 2.4 and earlier releases provided definitions of the getpwnam_r() and
getpwuid_r() functions as specified in POSIX.1c Draft 6. The final POSIX.1c
standard changed the interface for these functions. Support for the Draft 6 interface is
provided for compatibility only and may not be supported in future releases. New
applications and libraries should use the POSIX standard interface.

For POSIX.1c-compliant applications, the _POSIX_PTHREAD_SEMANTICS and
_REENTRANT flags are automatically turned on by defining the _POSIX_C_SOURCE
flag with a value >= 199506L.

getpwnam(3C)

224 man pages section 3: Basic Library Functions • Last Revised 18 May 1999

getrusage – get information about resource utilization

#include <sys/resource.h>

int getrusage(int who, struct rusage *r_usage);

The getrusage() function provides measures of the resources used by the current
process or its terminated and waited-for child processes. If the value of the who
argument is RUSAGE_SELF, information is returned about resources used by the
current process. If the value of the who argument is RUSAGE_CHILDREN, information
is returned about resources used by the terminated and waited-for children of the
current process. If the child is never waited for (for instance, if the parent has
SA_NOCLDWAIT set or sets SIGCHLD to SIG_IGN), the resource information for the
child process is discarded and not included in the resource information provided by
getrusage().

The r_usage argument is a pointer to an object of type struct rusage in which the
returned information is stored. The members of rusage are as follows:

struct timeval ru_utime; /* user time used */
struct timeval ru_stime; /* system time used */
long ru_maxrss; /* maximum resident set size */
long ru_idrss; /* integral resident set size */
long ru_minflt; /* page faults not requiring physical I/O */
long ru_majflt; /* page faults requiring physical I/O */
long ru_nswap; /* swaps */
long ru_inblock; /* block input operations */
long ru_oublock; /* block output operations */
long ru_msgsnd; /* messages sent */
long ru_msgrcv; /* messages received */
long ru_nsignals; /* signals received */
long ru_nvcsw; /* voluntary context switches */

long ru_nivcsw; /* involuntary context switches */

The structure members are interpreted as follows:

ru_utime The total amount of time spent executing in user mode. Time is
given in seconds and microseconds.

ru_stime The total amount of time spent executing in system mode. Time is
given in seconds and microseconds.

ru_maxrss The maximum resident set size. Size is given in pages (the size of a
page, in bytes, is given by the getpagesize(3C) function). See
the NOTES section of this page.

ru_idrss An “integral” value indicating the amount of memory in use by a
process while the process is running. This value is the sum of the
resident set sizes of the process running when a clock tick occurs.
The value is given in pages times clock ticks. It does not take
sharing into account. See the NOTES section of this page.

ru_minflt The number of page faults serviced which did not require any
physical I/O activity. See the NOTES section of this page.

getrusage(3C)

NAME

SYNOPSIS

DESCRIPTION

Basic Library Functions 225

ru_majflt The number of page faults serviced which required physical I/O
activity. This could include page ahead operations by the kernel.
See the NOTES section of this page.

ru_nswap The number of times a process was swapped out of main memory.

ru_inblock The number of times the file system had to perform input in
servicing a read(2) request.

ru_oublock The number of times the file system had to perform output in
servicing a write(2) request.

ru_msgsnd The number of messages sent over sockets.

ru_msgrcv The number of messages received from sockets.

ru_nsignals The number of signals delivered.

ru_nvcsw The number of times a context switch resulted due to a process
voluntarily giving up the processor before its time slice was
completed (usually to await availability of a resource).

ru_nivcsw The number of times a context switch resulted due to a higher
priority process becoming runnable or because the current process
exceeded its time slice.

Upon successful completion, getrusage() returns 0. Otherwise, −1 is returned and
errno is set to indicate the error.

The getrusage() function will fail if:

EFAULT The address specified by the r_usage argument is not in a valid
portion of the process’ address space.

EINVAL The who parameter is not a valid value.

sar(1M), read(2), times(2), wait(2), write(2), getpagesize(3C),
gettimeofday(3C)

Only the timeval member of struct rusage are supported in this implementation.

The numbers ru_inblock and ru_oublock account only for real I/O, and are
approximate measures at best. Data supplied by the cache mechanism is charged only
to the first process to read and the last process to write the data.

The way resident set size is calculated is an approximation, and could misrepresent
the true resident set size.

getrusage(3C)

RETURN VALUES

ERRORS

SEE ALSO

NOTES

226 man pages section 3: Basic Library Functions • Last Revised 15 Jan 1997

Page faults can be generated from a variety of sources and for a variety of reasons. The
customary cause for a page fault is a direct reference by the program to a page which
is not in memory. Now, however, the kernel can generate page faults on behalf of the
user, for example, servicing read(2) and write(2) functions. Also, a page fault can be
caused by an absent hardware translation to a page, even though the page is in
physical memory.

In addition to hardware detected page faults, the kernel may cause pseudo page faults
in order to perform some housekeeping. For example, the kernel may generate page
faults, even if the pages exist in physical memory, in order to lock down pages
involved in a raw I/O request.

By definition, major page faults require physical I/O, while minor page faults do not
require physical I/O. For example, reclaiming the page from the free list would avoid
I/O and generate a minor page fault. More commonly, minor page faults occur during
process startup as references to pages which are already in memory. For example, if an
address space faults on some “hot” executable or shared library, this results in a minor
page fault for the address space. Also, any one doing a read(2) or write(2) to
something that is in the page cache will get a minor page fault(s) as well.

There is no way to obtain information about a child process which has not yet
terminated.

getrusage(3C)

Basic Library Functions 227

gets, fgets – get a string from a stream

#include <stdio.h>

char *gets(char *s);

char *fgets(char *s, int n, FILE *stream);

The gets() function reads bytes from the standard input stream (see intro(3)),
stdin, into the array pointed to by s, until a newline character is read or an end-of-file
condition is encountered. The newline character is discarded and the string is
terminated with a null byte.

If the length of an input line exceeds the size of s, indeterminate behavior may result.
For this reason, it is strongly recommended that gets() be avoided in favor of
fgets().

The fgets() function reads bytes from the stream into the array pointed to by s, until
n−1 bytes are read, or a newline character is read and transferred to s, or an end-of-file
condition is encountered. The string is then terminated with a null byte.

The fgets() function may mark the st_atime field of the file associated with stream
for update. The st_atime field will be marked for update by the first successful
execution of fgetc(3C), fgets(), fgetwc(3C), fgetws(3C), fread(3C),
fscanf(3C), getc(3C), getchar(3C), gets(), or scanf(3C) using stream that
returns data not supplied by a prior call to ungetc(3C) or ungetwc(3C).

If end-of-file is encountered and no bytes have been read, no bytes are transferred to s
and a null pointer is returned. If a read error occurs, such as trying to use these
functions on a file that has not been opened for reading, a null pointer is returned and
the error indicator for the stream is set. If end-of-file is encountered, the EOF indicator
for the stream is set. Otherwise s is returned.

Refer to fgetc(3C).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

lseek(2), read(2), ferror(3C), fgetc(3C), fgetwc(3C), fopen(3C), fread(3C),
getchar(3C), scanf(3C), stdio(3C), ungetc(3C), ungetwc(3C), attributes(5)

gets(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

228 man pages section 3: Basic Library Functions • Last Revised 27 Jul 2001

getspnam, getspnam_r, getspent, getspent_r, setspent, endspent, fgetspent, fgetspent_r
– get password entry

#include <shadow.h>

struct spwd *getspnam(const char *name);

struct spwd *getspnam_r(const char *name, struct spwd *result, char
*buffer, int buflen);

struct spwd *getspent(void);

struct spwd *getspent_r(struct spwd *result, char *buffer, int buflen);

void setspent(void);

void endspent(void);

struct spwd *fgetspent(FILE *fp);

struct spwd *fgetspent_r(FILE *fp, struct spwd *result, char *buffer,
int buflen);

These functions are used to obtain shadow password entries. An entry may come from
any of the sources for shadow specified in the /etc/nsswitch.conf file (see
nsswitch.conf(4)).

The getspnam() function searches for a shadow password entry with the login name
specified by the character string argument name.

The setspent(), getspent(), and endspent() functions are used to enumerate
shadow password entries from the database.

The setspent() function sets (or resets) the enumeration to the beginning of the set
of shadow password entries. This function should be called before the first call to
getspent(). Calls to getspnam() leave the enumeration position in an
indeterminate state.

Successive calls to getspent() return either successive entries or NULL, indicating
the end of the enumeration.

The endspent() function may be called to indicate that the caller expects to do no
further shadow password retrieval operations; the system may then close the shadow
password file, deallocate resources it was using, and so forth. It is still allowed, but
possibly less efficient, for the process to call more shadow password functions after
calling endspent().

The fgetspent() function, unlike the other functions above, does not use
nsswitch.conf; it reads and parses the next line from the stream fp, which is
assumed to have the format of the shadow file (see shadow(4)).

The getspnam(), getspent(), and fgetspent() functions use static storage that
is re-used in each call, making these routines unsafe for use in multithreaded
applications.

getspnam(3C)

NAME

SYNOPSIS

DESCRIPTION

Reentrant
Interfaces

Basic Library Functions 229

The getspnam_r(), getspent_r(), and fgetspent_r() functions provide
reentrant interfaces for these operations.

Each reentrant interface performs the same operation as its non-reentrant counterpart,
named by removing the _r suffix. The reentrant interfaces, however, use buffers
supplied by the caller to store returned results, and are safe for use in both
single-threaded and multithreaded applications.

Each reentrant interface takes the same argument as its non-reentrant counterpart, as
well as the following additional arguments. The result argument must be a pointer to a
struct spwd structure allocated by the caller. On successful completion, the function
returns the shadow password entry in this structure. The buffer argument must be a
pointer to a buffer supplied by the caller. This buffer is used as storage space for the
shadow password data. All of the pointers within the returned struct spwd result
point to data stored within this buffer (see RETURN VALUES). The buffer must be large
enough to hold all of the data associated with the shadow password entry. The buflen
argument should give the size in bytes of the buffer indicated by buffer.

For enumeration in multithreaded applications, the position within the enumeration is
a process-wide property shared by all threads. The setspent() function may be
used in a multithreaded application but resets the enumeration position for all
threads. If multiple threads interleave calls to getspent_r(), the threads will
enumerate disjoint subsets of the shadow password database.

Like its non-reentrant counterpart, getspnam_r() leaves the enumeration position in
an indeterminate state.

Password entries are represented by the struct spwd structure defined in
<shadow.h>:

struct spwd{
char *sp_namp; /* login name */
char *sp_pwdp; /* encrypted passwd */
long sp_lstchg; /* date of last change */
long sp_min; /* min days to passwd change */
long sp_max; /* max days to passwd change*/
long sp_warn; /* warning period */
long sp_inact; /* max days inactive */
long sp_expire; /* account expiry date */
unsigned long sp_flag; /* not used */

};

See shadow(4) for more information on the interpretation of this data.

The getspnam()and getspnam_r() functions each return a pointer to a struct
spwd if they successfully locate the requested entry; otherwise they return NULL.

The getspent(), getspent_r(), fgetspent(), and fgetspent() functions each
return a pointer to a struct spwd if they successfully enumerate an entry; otherwise
they return NULL, indicating the end of the enumeration.

getspnam(3C)

RETURN VALUES

230 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

The getspnam(), getspent(), and fgetspent() functions use static storage, so
returned data must be copied before a subsequent call to any of these functions if the
data is to be saved.

When the pointer returned by the reentrant functions getspnam_r(),
getspent_r(), and fgetspent_r() is non-null, it is always equal to the result
pointer that was supplied by the caller.

The reentrant functions getspnam_r(), getspent_r(), and fgetspent_r() will
return NULL and set errno to ERANGE if the length of the buffer supplied by caller is
not large enough to store the result. See intro(2) for the proper usage and
interpretation of errno in multithreaded applications.

Applications that use the interfaces described on this manual page cannot be linked
statically, since the implementations of these functions employ dynamic loading and
linking of shared objects at run time.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See “Reentrant Interfaces” in DESCRIPTION.

nispasswd(1), passwd(1), yppasswd(1), intro(3) getlogin(3C), getpwnam(3C),
nsswitch.conf(4), passwd(4), shadow(4), attributes(5)

The reentrant interfaces getspnam_r(), getspent_r(), and fgetspent_r() are
included in this release on an uncommitted basis only, and are subject to change or
removal in future minor releases.

When compiling multithreaded applications, see intro(3), Notes On Multithreaded
Applications, for information about the use of the _REENTRANT flag.

Use of the enumeration interfaces getspent() and getspent_r() is not
recommended; enumeration is supported for the shadow file, NIS, and NIS+, but in
general is not efficient and may not be supported for all database sources. The
semantics of enumeration are discussed further in nsswitch.conf(4).

Access to shadow password information may be restricted in a manner depending on
the database source being used. Access to the /etc/shadow file is generally restricted
to processes running as the super-user (root). Other database sources may impose
stronger or less stringent restrictions.

When NIS is used as the database source, the information for the shadow password
entries is obtained from the ‘‘passwd.byname’’ map. This map stores only the
information for the sp_namp and sp_pwdp fields of the struct spwd structure.
Shadow password entries obtained from NIS will contain the value -1 in the
remainder of the fields.

getspnam(3C)

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

WARNINGS

NOTES

Basic Library Functions 231

When NIS+ is used as the database source, and the caller lacks the permission needed
to retrieve the encrypted password from the NIS+ ‘‘passwd.org_dir’’ table, the NIS+
service returns the string ‘‘*NP*’’ instead of the actual encrypted password string. The
functions described on this page will then return the string ‘‘*NP*’’ to the caller as the
value of the member sp_pwdp in the returned shadow password structure.

getspnam(3C)

232 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

getsubopt – parse suboptions from a string

#include <stdlib.h>

int getsubopt(char **optionp, char * const *tokens, char **valuep);

The getsubopt() function parses suboptions in a flag argument that was initially
parsed by getopt(3C). The suboptions are separated by commas and may consist of
either a single token or a token-value pair separated by an equal sign. Since commas
delimit suboptions in the option string, they are not allowed to be part of the
suboption or the value of a suboption; if present in the option input string, they are
changed to null characters. White spaces within tokens or token-value pairs must be
protected from the shell by quotes.

The syntax described above is used in the following example by the mount(1M),
utility, which allows the user to specify mount parameters with the -o option as
follows:

mount -o rw,hard,bg,wsize=1024 speed:/usr /usr

In this example there are four suboptions: rw, hard, bg, and wsize, the last of which
has an associated value of 1024.

The getsubopt() function takes the address of a pointer to the option string, a
vector of possible tokens, and the address of a value string pointer. It returns the index
of the token that matched the suboption in the input string, or −1 if there was no
match. If the option string pointed to by optionp contains only one subobtion,
getsubopt() updates optionp to point to the null character at the end of the string;
otherwise it isolates the suboption by replacing the comma separator with a null
character, and updates optionp to point to the start of the next suboption. If the
suboption has an associated value, getsubopt() updates valuep to point to the
value’s first character. Otherwise it sets valuep to NULL.

The token vector is organized as a series of pointers to null strings. The end of the
token vector is identified by a null pointer.

When getsubopt() returns, a non-null value for valuep indicates that the suboption
that was processed included a value. The calling program may use this information to
determine if the presence or absence of a value for this subobtion is an error.

When getsubopt() fails to match the suboption with the tokens in the tokens array,
the calling program should decide if this is an error, or if the unrecognized option
should be passed to another program.

The getsubopt() function returns −1 when the token it is scanning is not in the
token vector. The variable addressed by valuep contains a pointer to the first character
of the token that was not recognized, rather than a pointer to a value for that token.

The variable addressed by optionp points to the next option to be parsed, or a null
character if there are no more options.

getsubopt(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

Basic Library Functions 233

EXAMPLE 1 Example of getsubopt() function.

The following example demonstrates the processing of options to the mount(1M)
utility using getsubopt().

#include <stdlib.h>

char *myopts[] = {
#define READONLY 0

"ro",
#define READWRITE 1

"rw",
#define WRITESIZE 2

"wsize",
#define READSIZE 3

"rsize",
NULL};

main(argc, argv)
int argc;
char **argv;

{
int sc, c, errflag;
char *options, *value;
extern char *optarg;
extern int optind;
.
.
.
while((c = getopt(argc, argv, "abf:o:")) != -1) {

switch (c) {
case ’a’: /* process a option */

break;
case ’b’: /* process b option */

break;
case ’f’:

ofile = optarg;
break;

case ’?’:
errflag++;
break;

case ’o’:
options = optarg;
while (*options != ’\0’) {

switch(getsubopt(&options,myopts,&value)){
case READONLY : /* process ro option */

break;
case READWRITE : /* process rw option */

break;

case WRITESIZE : /* process wsize option */
if (value == NULL) {

error_no_arg();
errflag++;

} else
write_size = atoi(value);

break;
case READSIZE : /* process rsize option */

getsubopt(3C)

EXAMPLES

234 man pages section 3: Basic Library Functions • Last Revised 11 Feb 1998

EXAMPLE 1 Example of getsubopt() function. (Continued)

if (value == NULL) {
error_no_arg();
errflag++;

} else
read_size = atoi(value);

break;
default :

/* process unknown token */
error_bad_token(value);
errflag++;
break;

}
}

break;
}

}
if (errflag) {

/* print usage instructions etc. */
}
for (; optind<argc; optind++) {

/* process remaining arguments */
}
.
.
.

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

mount(1M), getopt(3C), attributes(5)

getsubopt(3C)

ATTRIBUTES

SEE ALSO

Basic Library Functions 235

gettext, dgettext, dcgettext, ngettext, dngettext, dcngettext, textdomain,
bindtextdomain, bind_textdomain_codeset – message handling functions

#include <libintl.h>

char *gettext(const char *msgid);

char *dgettext(const char *domainname, const char *msgid);

char *textdomain(const char *domainname);

char *bindtextdomain(const char *domainname, const char *dirname);

#include <libintl.h>

#include <locale.h>

char *dcgettext(const char *domainname, const char *msgid, int
category);

#include <libintl.h>

char *ngettext(const char *msgid1, const char *msgid2, unsigned long
int n);

char *dngettext(const char *domainname, const char *msgid1, const
char *msgid2, unsigned long int n);

char *bind_textdomain_codeset(const char *domainname, const char
*codeset);

#include <libintl.h>

#include <locale.h>

char *dcngettext(const char *domainname, const char *msgid1, const
char *msgid2, unsigned long int n, int category);

The gettext(), dgettext(), and dcgettext() functions attempt to retrieve a
target string based on the specified msgid argument within the context of a specific
domain and the current locale. The length of strings returned by gettext(),
dgettext(), and dcgettext() is undetermined until the function is called. The
msgid argument is a null-terminated string.

The ngettext(), dngettext(), and dcngettext() functions are equivalent to
gettext(), dgettext(), and dcgettext(), respectively, except for the handling
of plural forms. These functions work only with GNU-compatible message catalogues.
The ngettext(), dngettext(), and dcngettext() functions search for the
message string using the msgid1 argument as the key and the n argument to determine
the plural form. If no message catalogues are found, msgid1 is returned if n == 1,
otherwise msgid2 is returned.

The NLSPATH environment variable (see environ(5)) is searched first for the location
of the LC_MESSAGES catalogue. The setting of the LC_MESSAGES category of the
current locale determines the locale used by gettext() and dgettext() for string
retrieval. The category argument determines the locale used by dcgettext(). If
NLSPATH is not defined and the current locale is "C", gettext(), dgettext(), and

gettext(3C)

NAME

Solaris and
GNU-compatible

GNU-compatible

DESCRIPTION

236 man pages section 3: Basic Library Functions • Last Revised 28 Aug 2001

dcgettext() simply return the message string that was passed. In a locale other
than "C", if NLSPATH is not defined or if a message catalogue is not found in any of the
components specified by NLSPATH, the routines search for the message catalogue
using the scheme described in the following paragraph.

The LANGUAGE environment variable is examined to determine the GNU-compatible
message catalogues to be used. The value of LANGUAGE is a list of locale names
separated by a colon (’:’) character. If LANGUAGE is defined, each locale name is tried in
the specified order and if a GNU-compatible message catalogue is found, the message
is returned. If a GNU-compatible message catalogue is found but failed to find a
corresponding msgid, the msgid string is return. If LANGUAGE is not defined or if a
Solaris message catalogue is found or no GNU-compatible message catalogue is found
in processing LANGUAGE, the pathname used to locate the message catalogue is
dirname/locale/category/domainname.mo, where dirname is the directory specified by
bindtextdomain(), locale is a locale name, and category is either LC_MESSAGES if
gettext(), dgettext(), ngettext(), or dngettext() is called, or LC_XXX
where the name is the same as the locale category name specified by the category
argument to dcgettext() or dcngettext().

For gettext() and ngettext(), the domain used is set by the last valid call to
textdomain(). If a valid call to textdomain() has not been made, the default
domain (called messages) is used.

For dgettext(), dcgettext(), dngettext(), and dcngettext(), the domain
used is specified by the domainname argument. The domainname argument is equivalent
in syntax and meaning to the domainname argument to textdomain(), except that
the selection of the domain is valid only for the duration of the dgettext(),
dcgettext(), dngettext(), or dcngettext() function call.

The textdomain() function sets or queries the name of the current domain of the
active LC_MESSAGES locale category. The domainname argument is a null-terminated
string that can contain only the characters allowed in legal filenames.

The domainname argument is the unique name of a domain on the system. If there are
multiple versions of the same domain on one system, namespace collisions can be
avoided by using bindtextdomain(). If textdomain() is not called, a default
domain is selected. The setting of domain made by the last valid call to
textdomain() remains valid across subsequent calls to setlocale(3C), and
gettext().

The domainname argument is applied to the currently active LC_MESSAGES locale.

The current setting of the domain can be queried without affecting the current state of
the domain by calling textdomain() with domainname set to the null pointer. Calling
textdomain() with a domainname argument of a null string sets the domain to the
default domain (messages).

The bindtextdomain() function binds the path predicate for a message domain
domainname to the value contained in dirname. If domainname is a non-empty string and
has not been bound previously, bindtextdomain() binds domainname with dirname.

gettext(3C)

Basic Library Functions 237

If domainname is a non-empty string and has been bound previously,
bindtextdomain() replaces the old binding with dirname. The dirname argument
can be an absolute or relative pathname being resolved when gettext(),
dgettext(), or dcgettext() are called. If domainname is a null pointer or an empty
string, bindtextdomain() returns NULL. User defined domain names cannot begin
with the string SYS_. Domain names beginning with this string are reserved for
system use.

The bind_textdomain_codeset() function can be used to specify the output
codeset for message catalogues for domain domainname. The codeset argument must be
a valid codeset name that can be used for the iconv_open(3C) function, or a null
pointer. If the codeset argument is the null pointer, bind_textdomain_codeset()
returns the currently selected codeset for the domain with the name domainname. It
returns a null pointer if a codeset has not yet been selected. The
bind_textdomain_codeset() function can be used multiple times. If used
multiple times with the same domainname argument, the later call overrides the
settings made by the earlier one. The bind_textdomain_codeset() function
returns a pointer to a string containing the name of the selected codeset. The string is
allocated internally in the function and must not be changed by the user.

The gettext(), dgettext(), and dcgettext() functions return the message
string if the search succeeds. Otherwise they return the msgid string.

The ngettext(), dngettext(), and dcngettext() functions return the message
string if the search succeeds. If the search fails, msgid1 is returned if n == 1. Otherwise
msgid2 is returned.

The individual bytes of the string returned by gettext(), dgettext(),
dcgettext(), ngettext(), dngettext(), or dcngettext() can contain any
value other than NULL. If msgid is a null pointer, the return value is undefined. The
string returned must not be modified by the program, and can be invalidated by a
subsequent call to gettext(), dgettext(), dcgettext(), ngettext(),
dngettext(), dcngettext(), or setlocale(3C). If the domainname argument to
dgettext(),dcgettext(), dngettext(), or dcngettext() is a null pointer, the
the domain currently bound by textdomain() is used.

The normal return value from textdomain() is a pointer to a string containing the
current setting of the domain. If domainname is a null pointer, textdomain() returns
a pointer to the string containing the current domain. If textdomain() was not
previously called and domainname is a null string, the name of the default domain is
returned. The name of the default domain is messages. If textdomain() fails, a null
pointer is returned.

The return value from bindtextdomain() is a null-terminated string containing
dirname or the directory binding associated with domainname if dirname is NULL. If no
binding is found, the default return value is /usr/lib/locale. If domainname is a
null pointer or an empty string, bindtextdomain() takes no action and returns a
null pointer. The string returned must not be modified by the caller. If
bindtextdomain() fails, a null pointer is returned.

gettext(3C)

RETURN VALUES

238 man pages section 3: Basic Library Functions • Last Revised 28 Aug 2001

These functions impose no limit on message length. However, a text domainname is
limited to TEXTDOMAINMAX (256) bytes.

The gettext(), dgettext(), dcgettext(), ngettext(), dngettext(),
dcngettext(), textdomain(), and bindtextdomain() functions can be used
safely in multithreaded applications, as long as setlocale(3C) is not being called to
change the locale.

The gettext(), dgettext(), dcgettext(), textdomain(), and
bindtextdomain() functions work with both Solaris message catalogues and
GNU-compatible message catalogues. The ngettext(), dngettext(),
dcngettext(), and bind_textdomain_codeset() functions work only with
GNU-compatible message catalogues. See msgfmt(1) for information about Solaris
message catalogues and GNU-compatible message catalogues.

/usr/lib/locale
default path predicate for message domain files

/usr/lib/locale/locale/LC_MESSAGES/domainname.mo
system default location for file containing messages for language locale and
domainname

/usr/lib/locale/locale/LC_XXX/domainname.mo
system default location for file containing messages for language locale and
domainname for dcgettext() calls where LC_XXX is LC_CTYPE, LC_NUMERIC,
LC_TIME, LC_COLLATE, LC_MONETARY, or LC_MESSAGES

dirname/locale/LC_MESSAGES/domainname.mo
location for file containing messages for domain domainname and path predicate
dirname after a successful call to bindtextdomain()

dirname/locale/LC_XXX/domainname.mo
location for files containing messages for domain domainname, language locale, and
path predicate dirname after a successful call to bindtextdomain() for
dcgettext() calls where LC_XXX is one of LC_CTYPE, LC_NUMERIC, LC_TIME,
LC_COLLATE, LC_MONETARY, or LC_MESSAGES

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe with exceptions

msgfmt(1), xgettext(1), iconv_open(3C), setlocale(3C), attributes(5),
environ(5)

gettext(3C)

USAGE

FILES

ATTRIBUTES

SEE ALSO

Basic Library Functions 239

gettimeofday, settimeofday – get or set the date and time

#include <sys/time.h>

int gettimeofday(struct timeval *tp, void *);

int settimeofday(struct timeval *tp, void *);

The gettimeofday() function gets and the settimeofday() function sets the
system’s notion of the current time. The current time is expressed in elapsed seconds
and microseconds since 00:00 Universal Coordinated Time, January 1, 1970. The
resolution of the system clock is hardware dependent; the time may be updated
continuously or in clock ticks.

The tp argument points to a timeval structure, which includes the following
members:

long tv_sec; /* seconds since Jan. 1, 1970 */
long tv_usec; /* and microseconds */

If tp is a null pointer, the current time information is not returned or set.

The TZ environment variable holds time zone information. See TIMEZONE(4).

The second argument to gettimeofday() and settimeofday() is ignored.

Only the super-user may set the time of day.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set
to indicate the error.

The gettimeofday() function will fail if:

EINVAL The structure pointed to by tp specifies an invalid time.

EPERM A user other than the privileged user attempted to set the time or
time zone.

Additionally, the gettimeofday() function will fail for 32-bit interfaces if:

EOVERFLOW The system time has progressed beyond 2038, thus the size of the
tv_sec member of the timeval structure pointed to by tp is
insufficient to hold the current time in seconds.

If the tv_usec member of tp is > 500000, settimeofday() rounds the seconds
upward. If the time needs to be set with better than one second accuracy, call
settimeofday() for the seconds and then adjtime(2) for finer accuracy.

See attributes(5) for descriptions of the following attributes:

gettimeofday(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

240 man pages section 3: Basic Library Functions • Last Revised 24 May 2000

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

adjtime(2), ctime(3C), TIMEZONE(4), attributes(5)

gettimeofday(3C)

SEE ALSO

Basic Library Functions 241

gettimeofday, settimeofday – get or set the date and time

/usr/ucb/cc[flag ...] file ...

#include <sys/time.h>

int gettimeofday(tp, tzp);

struct timeval *tzp;
struct timezone *tzp;

int settimeofday(tp, tzp);

struct timeval *tzp;
struct timezone *tzp;

The system’s notion of the current Greenwich time is obtained with the
gettimeofday() call, and set with the settimeofday() call. The current time is
expressed in elapsed seconds and microseconds since 00:00 GMT, January 1, 1970 (zero
hour). The resolution of the system clock is hardware dependent; the time may be
updated continuously, or in clock ticks.

long tv_sec; /* seconds since Jan. 1, 1970 */

long tv_usec; /* and microseconds */

tp points to a timeval structure, which includes the following members:

If tp is a NULL pointer, the current time information is not returned or set.

tzp is an obsolete pointer formerly used to get and set timezone information. tzp is
now ignored. Timezone information is now handled using the TZ environment
variable; see TIMEZONE(4).

Only the privileged user may set the time of day.

A −1 return value indicates an error occurred; in this case an error code is stored in the
global variable errno.

The following error codes may be set in errno:

EINVAL tp specifies an invalid time.

EPERM A user other than the privileged user attempted to set the time.

adjtime(2), ctime(3C), gettimeofday(3C), TIMEZONE(4)

Use of these interfaces should be restricted to only applications written on BSD
platforms. Use of these interfaces with any of the system libraries or in multi-thread
applications is unsupported.

tzp is ignored in SunOS 5.X releases.

tv_usec is always 0.

gettimeofday(3UCB)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

SEE ALSO

NOTES

242 man pages section 3: Basic Library Functions • Last Revised 18 Feb 1993

gettxt – retrieve a text string

#include <nl_types.h>

char *gettxt(const char *msgid, const char *dflt_str);

The gettxt() function retrieves a text string from a message file. The arguments to
the function are a message identification msgid and a default string dflt_str to be used
if the retrieval fails.

The text strings are in files created by the mkmsgs utility (see mkmsgs(1)) and installed
in directories in /usr/lib/locale/locale/LC_MESSAGES.

The directory locale can be viewed as the language in which the text strings are
written. The user can request that messages be displayed in a specific language by
setting the environment variable LC_MESSAGES. If LC_MESSAGES is not set, the
environment variable LANG will be used. If LANG is not set, the files containing the
strings are in /usr/lib/locale/C/LC_MESSAGES/*.

The user can also change the language in which the messages are displayed by
invoking the setlocale(3C) function with the appropriate arguments.

If gettxt() fails to retrieve a message in a specific language it will try to retrieve the
same message in U.S. English. On failure, the processing depends on what the second
argument dflt_str points to. A pointer to the second argument is returned if the second
argument is not the null string. If dflt_str points to the null string, a pointer to the U.S.
English text string "Message not found!!\n" is returned.

The following depicts the acceptable syntax of msgid for a call to gettxt().

<msgid> = <msgfilename>:<msgnumber>

The first field is used to indicate the file that contains the text strings and must be
limited to 14 characters. These characters must be selected from the set of all character
values excluding \0 (null) and the ASCII code for / (slash) and : (colon). The names
of message files must be the same as the names of files created by mkmsgs and
installed in /usr/lib/locale/locale/LC_MESSAGES/*. The numeric field indicates
the sequence number of the string in the file. The strings are numbered from 1 to n
where n is the number of strings in the file.

Upon failure to pass either the correct msgid or a valid message number to gettxt(),
a pointer to the text string "Message not found!!\n" is returned.

It is recommended that gettext(3C) be used in place of this function.

EXAMPLE 1 Example of gettxt() function.

In the following example,

gettxt(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

EXAMPLES

Basic Library Functions 243

EXAMPLE 1 Example of gettxt() function. (Continued)

gettxt("UX:10", "hello world\n")
gettxt("UX:10", "")

UX is the name of the file that contains the messages and 10 is the message number.

/usr/lib/locale/C/LC_MESSAGES/*
contains default message files created by mkmsgs

/usr/lib/locale/locale/LC_MESSAGES/*
contains message files for different languages created by mkmsgs

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe with exceptions

exstr(1), mkmsgs(1), srchtxt(1), gettext(3C), fmtmsg(3C), setlocale(3C),
attributes(5), environ(5)

gettxt(3C)

FILES

ATTRIBUTES

SEE ALSO

244 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

getusershell, setusershell, endusershell – get legal user shells

char *getusershell()

void setusershell()

void endusershell()

The getusershell() function returns a pointer to a legal user shell as defined by
the system manager in the file /etc/shells. If /etc/shells does not exist, the
following locations of the standard system shells are used in its place:

/bin/bash /bin/csh
/bin/jsh /bin/ksh
/bin/pfcsh /bin/pfksh
/bin/pfsh /bin/sh
/bin/tcsh /bin/zsh
/sbin/jsh /sbin/sh
/usr/bin/bash /usr/bin/csh
/usr/bin/jsh /usr/bin/ksh
/usr/bin/pfcsh /usr/bin/pfksh
/usr/bin/pfsh /usr/bin/sh
/usr/bin/tcsh /usr/bin/zsh

/usr/xpg4/bin/sh

The getusershell() function opens the file /etc/shells, if it exists, and returns
the next entry in the list of shells.

The setusershell() function rewinds the file or the list.

The endusershell() function closes the file, frees any memory used by
getusershell() and setusershell(), and rewinds the file /etc/shells.

The getusershell() function returns a null pointer on EOF.

All information is contained in memory that may be freed with a call to
endusershell(), so it must be copied if it is to be saved.

getusershell(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

BUGS

Basic Library Functions 245

getutent, getutid, getutline, pututline, setutent, endutent, utmpname – user accounting
database functions

#include <utmp.h>

struct utmp *getutent(void);

struct utmp *getutid(const struct utmp *id);

struct utmp *getutline(const struct utmp *line);

struct utmp *pututline(const struct utmp *utmp);

void setutent(void);

void endutent(void);

int utmpname(const char *file);

These functions provide access to the user accounting database, utmp. Entries in the
database are described by the definitions and data structures in <utmp.h>.

The utmp structure contains the following members:

char ut_user[8]; /* user login name */
char ut_id[4]; /* /sbin/inittab id (usually line #) */
char ut_line[12]; /* device name (console, lnxx) */
short ut_pid; /* process id */
short ut_type; /* type of entry */
struct exit_status ut_exit; /* exit status of a process */

/* marked as DEAD_PROCESS */

time_t ut_time; /* time entry was made */

The structure exit_status includes the following members:

short e_termination; /* termination status */

short e_exit; /* exit status */

The getutent() function reads in the next entry from a utmp database. If the
database is not already open, it opens it. If it reaches the end of the database, it fails.

The getutid() function searches forward from the current point in the utmp
database until it finds an entry with a ut_type matching id->ut_type if the type
specified is RUN_LVL, BOOT_TIME, OLD_TIME, or NEW_TIME. If the type specified in
id is INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS, or DEAD_PROCESS, then
getutid() will return a pointer to the first entry whose type is one of these four and
whose ut_id member matches id->ut_id. If the end of database is reached without a
match, it fails.

The getutline() function searches forward from the current point in the utmp
database until it finds an entry of the type LOGIN_PROCESS or ut_line string
matching the line->ut_line string. If the end of database is reached without a match,
it fails.

getutent(3C)

NAME

SYNOPSIS

DESCRIPTION

getutent()

getutid()

getutline()

246 man pages section 3: Basic Library Functions • Last Revised 27 Oct 1998

The pututline() function writes the supplied utmp structure into the utmp
database. It uses getutid() to search forward for the proper place if it finds that it is
not already at the proper place. It is expected that normally the user of pututline()
will have searched for the proper entry using one of the these functions. If so,
pututline() will not search. If pututline() does not find a matching slot for the
new entry, it will add a new entry to the end of the database. It returns a pointer to the
utmp structure. When called by a non-root user, pututline() invokes a setuid()
root program to verify and write the entry, since the utmp database is normally
writable only by root. In this event, the ut_name member must correspond to the
actual user name associated with the process; the ut_type member must be either
USER_PROCESS or DEAD_PROCESS; and the ut_line member must be a device
special file and be writable by the user.

The setutent() function resets the input stream to the beginning. This reset should
be done before each search for a new entry if it is desired that the entire database be
examined.

The endutent() function closes the currently open database.

The utmpname() function allows the user to change the name of the database file
examined to another file. If the file does not exist, this will not be apparent until the
first attempt to reference the file is made. The utmpname() function does not open the
file but closes the old file if it is currently open and saves the new file name.

A null pointer is returned upon failure to read, whether for permissions or having
reached the end of file, or upon failure to write. If the file name given is longer than 79
characters, utmpname() returns 0. Otherwise, it returns 1.

These functions use buffered standard I/O for input, but pututline() uses an
unbuffered non-standard write to avoid race conditions between processes trying to
modify the utmp and wtmp databases.

Applications should not access the utmp and wtmp databases directly, but should use
these functions to ensure that these databases are maintained consistently. Using these
functions, however, may cause applications to fail if user accounting data cannot be
represented properly in the utmp structure (for example, on a system where PIDs can
exceed 32767). Use the functions described on the getutxent(3C) manual page
instead.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

getutxent(3C), ttyslot(3C), utmpx(4), attributes(5)

getutent(3C)

pututline()

setutent()

endutent()

utmpname()

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

Basic Library Functions 247

The most current entry is saved in a static structure. Multiple accesses require that it
be copied before further accesses are made. On each call to either getutid() or
getutline(), the function examines the static structure before performing more I/O.
If the contents of the static structure match what it is searching for, it looks no further.
For this reason, to use getutline() to search for multiple occurrences, it would be
necessary to zero out the static area after each success, or getutline() would just
return the same structure over and over again. There is one exception to the rule about
emptying the structure before further reads are done. The implicit read done by
pututline() (if it finds that it is not already at the correct place in the file) will not
hurt the contents of the static structure returned by the getutent(), getutid() or
getutline() functions, if the user has just modified those contents and passed the
pointer back to pututline().

getutent(3C)

NOTES

248 man pages section 3: Basic Library Functions • Last Revised 27 Oct 1998

getutxent, getutxid, getutxline, pututxline, setutxent, endutxent, utmpxname,
getutmp, getutmpx, updwtmp, updwtmpx – user accounting database functions

#include <utmpx.h>

struct utmpx *getutxent(void);

struct utmpx *getutxid(const struct utmpx *id);

struct utmpx *getutxline(const struct utmpx *line);

struct utmpx *pututxline(const struct utmpx *utmpx);

void setutxent(void);

void endutxent(void);

int utmpxname(const char *file);

void getutmp(struct utmpx *utmpx, struct utmp *utmp);

void getutmpx(struct utmp *utmp, struct utmpx *utmpx);

void updwtmp(char *wfile, struct utmp *utmp);

void updwtmpx(char *wfilex, struct utmpx *utmpx);

These functions provide access to the user accounting database, utmpx (see utmpx(4)).
Entries in the database are described by the definitions and data structures in
<utmpx.h>.

The utmpx structure contains the following members:

char ut_user[32]; /* user login name */
char ut_id[4]; /* /etc/inittab id (usually line #) */
char ut_line[32]; /* device name (console, lnxx) */
pid_t ut_pid; /* process id */
short ut_type; /* type of entry */
struct exit_status ut_exit; /* exit status of a process */

/* marked as DEAD_PROCESS */
struct timeval ut_tv; /* time entry was made */
int ut_session; /* session ID, used for windowing */
short ut_syslen; /* significant length of ut_host */

/* including terminating null */
char ut_host[257]; /* host name, if remote */

The exit_status structure includes the following members:

short e_termination; /* termination status */
short e_exit; /* exit status */

The getutxent() function reads in the next entry from a utmpx database. If the
database is not already open, it opens it. If it reaches the end of the database, it fails.

The getutxid() function searches forward from the current point in the utmpx
database until it finds an entry with a ut_type matching id–>ut_type, if the type
specified is RUN_LVL, BOOT_TIME, OLD_TIME, or NEW_TIME. If the type specified in

getutxent(3C)

NAME

SYNOPSIS

DESCRIPTION

getutxent()

getutxid()

Basic Library Functions 249

id is INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS, or DEAD_PROCESS, then
getutxid() will return a pointer to the first entry whose type is one of these four
and whose ut_id member matches id–>ut_id. If the end of database is reached
without a match, it fails.

The getutxline() function searches forward from the current point in the utmpx
database until it finds an entry of the type LOGIN_PROCESS or USER_PROCESS which
also has a ut_line string matching the line->ut_line string. If the end of the database
is reached without a match, it fails.

The pututxline() function writes the supplied utmpx structure into the utmpx
database. It uses getutxid() to search forward for the proper place if it finds that it
is not already at the proper place. It is expected that normally the user of
pututxline() will have searched for the proper entry using one of the getutx()
routines. If so, pututxline() will not search. If pututxline() does not find a
matching slot for the new entry, it will add a new entry to the end of the database. It
returns a pointer to the utmpx structure. When called by a non-root user,
pututxline() invokes a setuid() root program to verify and write the entry, since
the utmpx database is normally writable only by root. In this event, the ut_name
member must correspond to the actual user name associated with the process; the
ut_type member must be either USER_PROCESS or DEAD_PROCESS; and the
ut_line member must be a device special file and be writable by the user.

The setutxent() function resets the input stream to the beginning. This should be
done before each search for a new entry if it is desired that the entire database be
examined.

The endutxent() function closes the currently open database.

The utmpxname() function allows the user to change the name of the database file
examined from /var/adm/utmpx to any other file, most often /var/adm/wtmpx. If
the file does not exist, this will not be apparent until the first attempt to reference the
file is made. The utmpxname() function does not open the file, but closes the old file
if it is currently open and saves the new file name. The new file name must end with
the “x” character to allow the name of the corresponding utmp file to be easily
obtainable.; otherwise, an error value of 0 is returned. The function returns 1 on
success.

The getutmp() function copies the information stored in the members of the utmpx
structure to the corresponding members of the utmp structure. If the information in
any member of utmpx does not fit in the corresponding utmp member, the data is
silently truncated. (See getutent(3C) for utmp structure)

The getutmpx() function copies the information stored in the members of the utmp
structure to the corresponding members of the utmpx structure. (See getutent(3C)
for utmp structure)

The updwtmp() function can be used in two ways.

getutxent(3C)

getutxline()

pututxline()

setutxent()

endutxent()

utmpxname()

getutmp()

getutmpx()

updwtmp()

250 man pages section 3: Basic Library Functions • Last Revised 6 Oct 1999

If wfile is /var/adm/wtmp, the utmp format record supplied by the caller is converted
to a utmpx format record and the /var/adm/wtmpx file is updated (because the
/var/adm/wtmp file no longer exists, operations on wtmp are converted to operations
on wtmpx by the library functions.

If wfile is a file other than /var/adm/wtmp, it is assumed to be an old file in utmp
format and is updated directly with the utmp format record supplied by the caller.

The updwtmpx() function writes the contents of the utmpx structure pointed to by
utmpx to the database.

The values of the e_termination and e_exit members of the ut_exit structure
are valid only for records of type DEAD_PROCESS. For utmpx entries created by
init(1M), these values are set according to the result of the wait() call that init
performs on the process when the process exits. See the wait(2) manual page for the
values init uses. Applications creating utmpx entries can set ut_exit values using
the following code example:

u->ut_exit.e_termination = WTERMSIG(process->p_exit)
u->ut_exit.e_exit = WEXITSTATUS(process->p_exit)

See wstat(3XFN) for descriptions of the WTERMSIG and WEXITSTATUS macros.

The ut_session member is not acted upon by the operating system. It is used by
applications interested in creating utmpx entries.

For records of type USER_PROCESS, the nonuser() and nonuserx() macros use the
value of the ut_exit.e_exit member to mark utmpx entries as real logins (as
opposed to multiple xterms started by the same user on a window system). This
allows the system utilities that display users to obtain an accurate indication of the
number of actual users, while still permitting each pty to have a utmpx record (as
most applications expect.). The NONROOT_USER macro defines the value that login
places in the ut_exit.e_exit member.

Upon successful completion, getutxent(), getutxid(), and getutxline() each
return a pointer to a utmpx structure containing a copy of the requested entry in the
user accounting database. Otherwise a null pointer is returned.

The return value may point to a static area which is overwritten by a subsequent call
to getutxid () or getutxline().

Upon successful completion, pututxline() returns a pointer to a utmpx structure
containing a copy of the entry added to the user accounting database. Otherwise a null
pointer is returned.

The endutxent() and setutxent() functions return no value.

A null pointer is returned upon failure to read, whether for permissions or having
reached the end of file, or upon failure to write.

getutxent(3C)

updwtmpx()

utmpx
structure

RETURN VALUES

Basic Library Functions 251

These functions use buffered standard I/O for input, but pututxline() uses an
unbuffered write to avoid race conditions between processes trying to modify the
utmpx and wtmpx files.

Applications should not access the utmpx and wtmpx databases directly, but should
use these functions to ensure that these databases are maintained consistently.

/var/adm/utmpx user access and accounting information

/var/adm/wtmpx history of user access and accounting information

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wait(2), getutent(3C), ttyslot(3C), utmpx(4), attributes(5), wstat(3XFN)

The most current entry is saved in a static structure. Multiple accesses require that it
be copied before further accesses are made. On each call to either getutxid() or
getutxline(), the routine examines the static structure before performing more
I/O. If the contents of the static structure match what it is searching for, it looks no
further. For this reason, to use getutxline() to search for multiple occurrences it
would be necessary to zero out the static after each success, or getutxline() would
just return the same structure over and over again. There is one exception to the rule
about emptying the structure before further reads are done. The implicit read done by
pututxline() (if it finds that it is not already at the correct place in the file) will not
hurt the contents of the static structure returned by the getutxent(), getutxid(),
or getutxline() routines, if the user has just modified those contents and passed
the pointer back to pututxline().

getutxent(3C)

USAGE

FILES

ATTRIBUTES

SEE ALSO

NOTES

252 man pages section 3: Basic Library Functions • Last Revised 6 Oct 1999

getvfsent, getvfsfile, getvfsspec, getvfsany – get vfstab file entry

#include <stdio.h>

#include <sys/vfstab.h>

int getvfsent(FILE *fp, struct vfstab *vp);

int getvfsfile(FILE *fp, struct vfstab *vp, char *file);

int getvfsspec(FILE *, struct vfstab *vp, char *spec);

int getvfsany(FILE *, struct vfstab *vp, struct vfstab *vref);

The getvfsent(), getvfsfile(), getvfsspec(), and getvfsany() functions
each fill in the structure pointed to by vp with the broken-out fields of a line in the
/etc/vfstab file. Each line in the file contains a vfstab structure, declared in the
<sys/vfstab.h> header, whose following members are described on the vfstab(4)
manual page:

char *vfs_special;
char *vfs_fsckdev;
char *vfs_mountp;
char *vfs_fstype;
char *vfs_fsckpass;
char *vfs_automnt;
char *vfs_mntopts;

The getvfsent() function returns a pointer to the next vfstab structure in the file;
so successive calls can be used to search the entire file.

The getvfsfile() function searches the file referenced by fp until a mount point
matching file is found and fills vp with the fields from the line in the file.

The getvfsspec() function searches the file referenced by fp until a special device
matching spec is found and fills vp with the fields from the line in the file. The spec
argument will try to match on device type (block or character special) and major and
minor device numbers. If it cannot match in this manner, then it compares the strings.

The getvfsany() function searches the file referenced by fp until a match is found
between a line in the file and vref. A match occurrs if all non-null entries in vref match
the corresponding fields in the file.

Note that these functions do not open, close, or rewind the file.

If the next entry is successfully read by getvfsent() or a match is found with
getvfsfile(), getvfsspec(), or getvfsany(), 0 is returned. If an end-of-file is
encountered on reading, these functions return −1. If an error is encountered, a value
greater than 0 is returned. The possible error values are:

VFS_TOOLONG A line in the file exceeded the internal buffer size of
VFS_LINE_MAX.

VFS_TOOMANY A line in the file contains too many fields.

VFS_TOOFEW A line in the file contains too few fields.

getvfsent(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

Basic Library Functions 253

/etc/vfstab

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

vfstab(4), attributes(5)

The members of the vfstab structure point to information contained in a static area,
so it must be copied if it is to be saved.

getvfsent(3C)

FILES

ATTRIBUTES

SEE ALSO

NOTES

254 man pages section 3: Basic Library Functions • Last Revised 12 Mar 1997

getwc – get wide character from a stream

#include <stdio.h>

#include <wchar.h>

wint_t getwc(FILE *stream);

The getwc() function is equivalent to fgetwc(3C), except that if it is implemented as
a macro it may evaluate stream more than once, so the argument should never be an
expression with side effects.

Refer to fgetwc(3C).

Refer to fgetwc(3C).

This interface is provided to align with some current implementations and with
possible future ISO standards.

Because it may be implemented as a macro, getwc() may treat incorrectly a stream
argument with side effects. In particular, getwc(*f ++) may not work as expected.
Therefore, use of this function is not recommended; fgetwc(3C) should be used
instead.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

fgetwc(3C), attributes(5)

getwc(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

Basic Library Functions 255

getwchar – get wide character from stdin stream

#include <wchar.h>

wint_t getwchar(void);

The getwchar() function is equivalent to getwc(stdin).

Refer to fgetwc(3C).

Refer to fgetwc(3C).

If the wint_t value returned by getwchar() is stored into a variable of type
wchar_t and then compared against the wint_t macro WEOF, the comparison may
never succeed because wchar_t is defined as unsigned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

fgetwc(3C), getwc(3C), attributes(5)

getwchar(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

256 man pages section 3: Basic Library Functions • Last Revised 22 Apr 1997

getwd – get current working directory pathname

#include <unistd.h>

char *getwd(char *path_name);

The getwd() function determines an absolute pathname of the current working
directory of the calling process, and copies that pathname into the array pointed to by
the path_name argument.

If the length of the pathname of the current working directory is greater than
(PATH_MAX + 1) including the null byte, getwd() fails and returns a null pointer.

Upon successful completion, a pointer to the string containing the absolute pathname
of the current working directory is returned. Otherwise, getwd() returns a null
pointer and the contents of the array pointed to by path_name are undefined.

No errors are defined.

For portability to implementations conforming to versions of the X/Open Portability
Guide prior to SUS, getcwd(3C) is preferred over this function.

getcwd(3C), standards(5)

getwd(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

SEE ALSO

Basic Library Functions 257

getwidth – get codeset information

#include <euc.h>

#include <getwidth.h>

void getwidth(eucwidth_t *ptr);

The getwidth() function reads the character class table for the current locale to get
information on the supplementary codesets. getwidth() sets this information into
the struct eucwidth_t. This struct is defined in <euc.h> and has the following
members:

short int _eucw1,_eucw2,_eucw3;
short int _scrw1,_scrw2,_scrw3;
short int _pcw;
char _multibyte;

Codeset width values for supplementary codesets 1, 2, and 3 are set in _eucw1,
_eucw2, and _eucw3, respectively. Screen width values for supplementary codesets 1,
2, and 3 are set in _scrw1, _scrw2, and _scrw3, respectively.

The width of Extended Unix Code (EUC) Process Code is set in _pcw. The
_multibyte entry is set to 1 if multibyte characters are used, and set to 0 if only
single-byte characters are used.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

euclen(3C), setlocale(3C), attributes(5)

The getwidth() function can be used safely in a multithreaded application, as long
as setlocale(3C) is not being called to change the locale.

The getwidth() function will only work with EUC locales.

getwidth(3C)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

NOTES

258 man pages section 3: Basic Library Functions • Last Revised 20 Dec 1996

getws, fgetws – get a wide-character string from a stream

#include <stdio.h>

include <widec.h>

wchar_t *getws(wchar_t *ws);

#include <stdio.h>

include <wchar.h>

wchar_t *fgetws(wchar_t *ws, int n, FILE *stream);

The getws() function reads a string of characters from the standard input stream,
stdin, converts these characters to the corresponding wide-character codes, and
writes them to the array pointed to by ws, until a newline character is read, converted
and transferred to ws or an end-of-file condition is encountered. The wide-character
string, ws, is then terminated with a null wide-character code.

The fgetws() function reads characters from the stream, converts them to the
corresponding wide-character codes, and places them in the wchar_t array pointed
to by ws until n−1 characters are read, or until a newline character is read, converted
and transferred to ws, or an end-of-file condition is encountered. The wide-character
string, ws, is then terminated with a null wide-character code.

If an error occurs, the resulting value of the file position indicator for the stream is
indeterminate.

The fgetws() function may mark the st_atime field of the file associated with
stream for update. The st_atime field will be marked for update by the first
successful execution of fgetc(3C), fgets(3C), fgetwc(3C), fgetws(), fread(3C),
fscanf(3C), getc(3C), getchar(3C), gets(3C), or scanf(3C) using stream that
returns data not supplied by a prior call to scanf(3C) or scanf(3C).

Upon successful completion, getws() and fgetws() returns ws. If the stream is at
end-of-file, the end-of-file indicator for the stream is set and fgetws() returns a null
pointer. If a read error occurs, the error indicator for the stream is set, fgetws()
returns a null pointer and sets errno to indicate the error.

See fgetwc(3C) for the conditions that will cause fgetws() to fail.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ferror(3C), fgetwc(3C), fread(3C), getwc(3C), putws(3C), scanf(3C),
attributes(5)

getws(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Basic Library Functions 259

glob, globfree – generate path names matching a pattern

#include <glob.h>

int glob(const char *pattern, int flags, int(*errfunc)(const char *epath
int eerrno), glob_t *pglob);

void globfree(glob_t *pglob);

The glob() function is a path name generator.

The globfree() function frees any memory allocated by glob() associated with
pglob.

The argument pattern is a pointer to a path name pattern to be expanded. The glob()
function matches all accessible path names against this pattern and develops a list of
all path names that match. In order to have access to a path name, glob() requires
search permission on every component of a path except the last, and read permission
on each directory of any filename component of pattern that contains any of the
following special characters:

* ? [

The structure type glob_t is defined in the header <glob.h> and includes at least
the following members:

size_t gl_pathc; /* count of paths matched by pattern */
char **gl_pathv; /* pointer to list of matched path names */

size_t gl_offs; /* slots to reserve at beginning of gl_pathv */

The glob() function stores the number of matched path names into
pglob−>gl_pathc and a pointer to a list of pointers to path names into
pglob−>gl_pathv. The path names are in sort order as defined by the current setting
of the LC_COLLATE category. The first pointer after the last path name is a NULL
pointer. If the pattern does not match any path names, the returned number of
matched paths is set to 0, and the contents of pglob−>gl_pathv are
implementation-dependent.

It is the caller’s responsibility to create the structure pointed to by pglob. The glob()
function allocates other space as needed, including the memory pointed to by
gl_pathv. The globfree() function frees any space associated with pglob from a
previous call to glob().

The flags argument is used to control the behavior of glob(). The value of flags is a
bitwise inclusive OR of zero or more of the following constants, which are defined in
the header <glob.h>:

GLOB_APPEND Append path names generated to the ones from a previous call to
glob().

GLOB_DOOFFS Make use of pglob−>gl_offs. If this flag is set, pglob−>gl_offs is
used to specify how many NULL pointers to add to the beginning
of pglob−>gl_pathv. In other words, pglob−>gl_pathv will point

glob(3C)

NAME

SYNOPSIS

DESCRIPTION

pattern Argument

pglob Argument

flags Argument

260 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

to pglob−>gl_offs NULL pointers, followed by pglob−>gl_pathc
path name pointers, followed by a NULL pointer.

GLOB_ERR Causes glob() to return when it encounters a directory that it
cannot open or read. Ordinarily, glob() continues to find
matches.

GLOB_MARK Each path name that is a directory that matches pattern has a slash
appended.

GLOB_NOCHECK If pattern does not match any path name, then glob() returns a
list consisting of only pattern, and the number of matched path
names is 1.

GLOB_NOESCAPE Disable backslash escaping.

GLOB_NOSORT Ordinarily, glob() sorts the matching path names according to
the current setting of the LC_COLLATE category. When this flag is
used the order of path names returned is unspecified.

The GLOB_APPEND flag can be used to append a new set of path names to those found
in a previous call to glob(). The following rules apply when two or more calls to
glob() are made with the same value of pglob and without intervening calls to
globfree():

1. The first such call must not set GLOB_APPEND. All subsequent calls must set it.

2. All the calls must set GLOB_DOOFFS, or all must not set it.

3. After the second call, pglob−>gl_pathv points to a list containing the following:

a. Zero or more NULL pointers, as specified by GLOB_DOOFFS and
pglob−>gl_offs.

b. Pointers to the path names that were in the pglob−>gl_pathv list before the
call, in the same order as before.

c. Pointers to the new path names generated by the second call, in the specified
order.

4. The count returned in pglob−>gl_pathc will be the total number of path names
from the two calls.

5. The application can change any of the fields after a call to glob(). If it does, it
must reset them to the original value before a subsequent call, using the same pglob
value, to globfree() or glob() with the GLOB_APPEND flag.

If, during the search, a directory is encountered that cannot be opened or read and
errfunc is not a NULL pointer, glob() calls (*errfunc) with two arguments:

1. The epath argument is a pointer to the path that failed.

2. The eerrno argument is the value of errno from the failure, as set by the
opendir(3C), readdir(3C) or stat(2) functions. (Other values may be used to
report other errors not explicitly documented for those functions.)

glob(3C)

errfunc and epath
Arguments

Basic Library Functions 261

The following constants are defined as error return values for glob():

GLOB_ABORTED The scan was stopped because GLOB_ERR was set or
(*errfunc) returned non-zero.

GLOB_NOMATCH The pattern does not match any existing path name,
and GLOB_NOCHECK was not set in flags.

GLOG_NOSPACE An attempt to allocate memory failed.

If (*errfunc) is called and returns non-zero, or if the GLOB_ERR flag is set in flags,
glob() stops the scan and returns GLOB_ABORTED after setting gl_pathc and gl_pathv
in pglob to reflect the paths already scanned. If GLOB_ERR is not set and either errfunc
is a NULL pointer or (*errfunc) returns 0, the error is ignored.

The following values are returned by glob():

0 Successful completion. The argument pglob−>gl_pathc returns
the number of matched path names and the argument
pglob−>gl_pathv contains a pointer to a null-terminated list of
matched and sorted path names. However, if pglob−>gl_pathc is
0, the content of pglob−>gl_pathv is undefined.

non-zero An error has occurred. Non-zero constants are defined in
<glob.h>. The arguments pglob−>gl_pathc and
pglob−>gl_pathv are still set as defined above.

The globfree() function returns no value.

This function is not provided for the purpose of enabling utilities to perform path
name expansion on their arguments, as this operation is performed by the shell, and
utilities are explicitly not expected to redo this. Instead, it is provided for applications
that need to do path name expansion on strings obtained from other sources, such as a
pattern typed by a user or read from a file.

If a utility needs to see if a path name matches a given pattern, it can use
fnmatch(3C).

Note that gl_pathc and gl_pathv have meaning even if glob() fails. This allows
glob() to report partial results in the event of an error. However, if gl_pathc is 0,
gl_pathv is unspecified even if glob() did not return an error.

The GLOB_NOCHECK option could be used when an application wants to expand a
path name if wildcards are specified, but wants to treat the pattern as just a string
otherwise.

The new path names generated by a subsequent call with GLOB_APPEND are not
sorted together with the previous path names. This mirrors the way that the shell
handles path name expansion when multiple expansions are done on a command line.

glob(3C)

RETURN VALUES

USAGE

262 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

Applications that need tilde and parameter expansion should use the wordexp(3C)
function.

EXAMPLE 1 Example of glob_doofs function.

One use of the GLOB_DOOFFS flag is by applications that build an argument list for
use with the execv(), execve(), or execvp() functions (see exec(2)). Suppose, for
example, that an application wants to do the equivalent of:

ls -l *.c

but for some reason:

system("ls -l *.c")

is not acceptable. The application could obtain approximately the same result using
the sequence:

globbuf.gl_offs = 2;
glob ("*.c", GLOB_DOOFFS, NULL, &globbuf);
globbuf.gl_pathv[0] = "ls";
globbuf.gl_pathv[1] = "-l";
execvp ("ls", &globbuf.gl_pathv[0]);

Using the same example:

ls -l *.c *.h

could be approximately simulated using GLOB_APPEND as follows:

globbuf.gl_offs = 2;
glob ("*.c", GLOB_DOOFFS, NULL, &globbuf);
glob ("*.h", GLOB_DOOFFS|GLOB_APPEND, NULL, &globbuf);
. . .

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

execv(2), stat(2), fnmatch(3C), opendir(3C), readdir(3C), wordexp(3C),
attributes(5)

glob(3C)

EXAMPLES

ATTRIBUTES

SEE ALSO

Basic Library Functions 263

grantpt – grant access to the slave pseudo-terminal device

#include <stdlib.h>

int grantpt(int fildes);

The grantpt() function changes the mode and ownership of the slave
pseudo-terminal device associated with its master pseudo-terminal counter part. fildes
is the file descriptor returned from a successful open of the master pseudo-terminal
device. A setuid root program (see setuid(2)) is invoked to change the permissions.
The user ID of the slave is set to the real UID of the calling process and the group ID is
set to a reserved group. The permission mode of the slave pseudo-terminal is set to
readable and writable by the owner and writable by the group.

Upon successful completion, grantpt() returns 0. Otherwise, it returns −1 and sets
errno to indicate the error.

The grantpt() function may fail if:

EBADF The fildes argument is not a valid open file descriptor.

EINVAL The fildes argument is not associated with a master
pseudo-terminal device.

EACCES The corresponding slave pseudo-terminal device could not be
accessed.

The grantpt() function will fail if it is unable to successfully invoke the setuid root
program. It may also fail if the application has installed a signal handler to catch
SIGCHLD signals.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

open(2), setuid(2), ptsname(3C), unlockpt(3C), attributes(5)

STREAMS Programming Guide

grantpt(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

264 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

hsearch, hcreate, hdestroy – manage hash search tables

#include <search.h>

ENTRY *hsearch(ENTRY item, ACTION action);

int hcreate(size_t mekments);

void hdestroy(void);

The hsearch() function is a hash-table search routine generalized from Knuth (6.4)
Algorithm D. It returns a pointer into a hash table indicating the location at which an
entry can be found. The comparison function used by hsearch() is strcmp() (see
string(3C)). The item argument is a structure of type ENTRY (defined in the
<search.h> header) containing two pointers: item.key points to the comparison
key, and item.data points to any other data to be associated with that key. (Pointers
to types other than void should be cast to pointer-to-void.) The action argument is a
member of an enumeration type ACTION (defined in <search.h>) indicating the
disposition of the entry if it cannot be found in the table. ENTER indicates that the item
should be inserted in the table at an appropriate point. Given a duplicate of an
existing item, the new item is not entered and hsearch() returns a pointer to the
existing item. FIND indicates that no entry should be made. Unsuccessful resolution is
indicated by the return of a null pointer.

The hcreate() function allocates sufficient space for the table, and must be called
before hsearch() is used. The nel argument is an estimate of the maximum number
of entries that the table will contain. This number may be adjusted upward by the
algorithm in order to obtain certain mathematically favorable circumstances.

The hdestroy() function destroys the search table, and may be followed by another
call to hcreate().

The hsearch() function returns a null pointer if either the action is FIND and the
item could not be found or the action is ENTER and the table is full.

The hcreate() function returns 0 if it cannot allocate sufficient space for the table.

The hsearch() and hcreate() functions use malloc(3C) to allocate space.

Only one hash search table may be active at any given time.

EXAMPLE 1 Example to read in strings.

The following example will read in strings followed by two numbers and store them
in a hash table, discarding duplicates. It will then read in strings and find the
matching entry in the hash table and print it.

#include <stdio.h>
#include <search.h>
#include <string.h>
#include <stdlib.h>

struct info { /* this is the info stored in table */

hsearch(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

EXAMPLES

Basic Library Functions 265

EXAMPLE 1 Example to read in strings. (Continued)

int age, room; /* other than the key */
};
#define NUM_EMPL 5000 /* # of elements in search table */
main()
{

/* space to store strings */
char string_space[NUM_EMPL*20];

/* space to store employee info */
struct info info_space[NUM_EMPL];

/* next avail space in string_space */
char *str_ptr = string_space;

/* next avail space in info_space */
struct info *info_ptr = info_space;
ENTRY item, *found_item;

/* name to look for in table */
char name_to_find[30];
int i = 0;

/* create table */
(void) hcreate(NUM_EMPL);
while (scanf("%s%d%d", str_ptr, &info_ptr−>age,

&info_ptr−>room) != EOF && i++ < NUM_EMPL) {
/* put info in structure, and structure in item */

item.key = str_ptr;
item.data = (void *)info_ptr;
str_ptr += strlen(str_ptr) + 1;
info_ptr++;

/* put item into table */
(void) hsearch(item, ENTER);

}

/* access table */
item.key = name_to_find;
while (scanf("%s", item.key) != EOF) {

if ((found_item = hsearch(item, FIND)) != NULL) {
/* if item is in the table */

(void)printf("found %s, age = %d, room = %d\n",
found_item−>key,
((struct info *)found_item−>data)−>age,
((struct info *)found_item−>data)−>room);

} else {
(void)printf("no such employee %s\n",

name_to_find)
}

}
return 0;

}

See attributes(5) for descriptions of the following attributes:

hsearch(3C)

ATTRIBUTES

266 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

bsearch(3C), lsearch(3C), malloc(3C), string(3C), tsearch(3C),
malloc(3MALLOC), attributes(5)

The Art of Computer Programming, Volume 3, Sorting and Searching by Donald E. Knuth,
published by Addison-Wesley Publishing Company, 1973.

hsearch(3C)

SEE ALSO

Basic Library Functions 267

iconv – code conversion function

#include<iconv.h>

size_t iconv(iconv_t cd, const char **inbuf, size_t *inbytesleft, char
**outbuf, size_t *outbytesleft);

The iconv() function converts the sequence of characters from one code set, in the
array specified by inbuf, into a sequence of corresponding characters in another code
set, in the array specified by outbuf. The code sets are those specified in the
iconv_open() call that returned the conversion descriptor, cd. The inbuf argument points
to a variable that points to the first character in the input buffer and inbytesleft
indicates the number of bytes to the end of the buffer to be converted. The outbuf
argument points to a variable that points to the first available byte in the output buffer
and outbytesleft indicates the number of the available bytes to the end of the buffer.

For state-dependent encodings, the conversion descriptor cd is placed into its initial
shift state by a call for which inbuf is a null pointer, or for which inbuf points to a null
pointer. When iconv() is called in this way, and if outbuf is not a null pointer or a
pointer to a null pointer, and outbytesleft points to a positive value, iconv() will
place, into the output buffer, the byte sequence to change the output buffer to its initial
shift state. If the output buffer is not large enough to hold the entire reset sequence,
iconv() will fail and set errno to E2BIG. Subsequent calls with inbuf as other than a
null pointer or a pointer to a null pointer cause the conversion to take place from the
current state of the conversion descriptor.

If a sequence of input bytes does not form a valid character in the specified code set,
conversion stops after the previous successfully converted character. If the input buffer
ends with an incomplete character or shift sequence, conversion stops after the
previous successfully converted bytes. If the output buffer is not large enough to hold
the entire converted input, conversion stops just prior to the input bytes that would
cause the output buffer to overflow. The variable pointed to by inbuf is updated to
point to the byte following the last byte successfully used in the conversion. The value
pointed to by inbytesleft is decremented to reflect the number of bytes still not
converted in the input buffer. The variable pointed to by outbuf is updated to point to
the byte following the last byte of converted output data. The value pointed to by
outbytesleft is decremented to reflect the number of bytes still available in the output
buffer. For state-dependent encodings, the conversion descriptor is updated to reflect
the shift state in effect at the end of the last successfully converted byte sequence.

If iconv() encounters a character in the input buffer that is legal, but for which an
identical character does not exist in the target code set, iconv() performs an
implementation-defined conversion on this character.

The iconv() function updates the variables pointed to by the arguments to reflect the
extent of the conversion and returns the number of non-identical conversions
performed. If the entire string in the input buffer is converted, the value pointed to by

iconv(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

268 man pages section 3: Basic Library Functions • Last Revised 14 Oct 1999

inbytesleft will be 0. If the input conversion is stopped due to any conditions
mentioned above, the value pointed to by inbytesleft will be non-zero and errno is set
to indicate the condition. If an error occurs iconv() returns (size_t) −1 and sets
errno to indicate the error.

The iconv() function will fail if:

EILSEQ Input conversion stopped due to an input byte that does not
belong to the input code set.

E2BIG Input conversion stopped due to lack of space in the output buffer.

EINVAL Input conversion stopped due to an incomplete character or shift
sequence at the end of the input buffer.

The iconv() function may fail if:

EBADF The cd argument is not a valid open conversion descriptor.

EXAMPLE 1 Using the iconv() Functions

The following example uses the iconv() functions:

#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <iconv.h>
#include <stdlib.h>

/*
* For state-dependent encodings, changes the state of the conversion
* descriptor to initial shift state. Also, outputs the byte sequence
* to change the state to initial state.
* This code is assuming the iconv call for initializing the state
* won’t fail due to lack of space in the output buffer.
*/
#define INIT_SHIFT_STATE(cd, fptr, ileft, tptr, oleft) \

{
fptr = NULL; \
ileft = 0; \
tptr = to; \
oleft = BUFSIZ; \
(void) iconv(cd, &fptr, &ileft, &tptr, &oleft); \
(void) fwrite(to, 1, BUFSIZ - oleft, stdout); \

}

int
main(int argc, char **argv)
{

iconv_t cd;
char from[BUFSIZ], to[BUFSIZ];
char *from_code, *to_code;
char *tptr;
const char *fptr;
size_t ileft, oleft, num, ret;

iconv(3C)

ERRORS

EXAMPLES

Basic Library Functions 269

EXAMPLE 1 Using the iconv() Functions (Continued)

if (argc != 3) {
(void) fprintf(stderr,

"Usage: %s from_codeset to_codeset\\n", argv[0]);
return (1);

}

from_code = argv[1];
to_code = argv[2];

cd = iconv_open((const char *)to_code, (const char *)from_code);
if (cd == (iconv_t)-1) {

/*
* iconv_open failed
*/
(void) fprintf(stderr,

"iconv_open(%s, %s) failed\\n", to_code, from_code);
return (1);

}

ileft = 0;
while ((ileft +=

(num = fread(from + ileft, 1, BUFSIZ - ileft, stdin))) > 0) {
if (num == 0) {

/*
* Input buffer still contains incomplete character
* or sequence. However, no more input character.
*/

/*
* Initializes the conversion descriptor and outputs
* the sequence to change the state to initial state.
*/
INIT_SHIFT_STATE(cd, fptr, ileft, tptr, oleft);
(void) iconv_close(cd);

(void) fprintf(stderr, "Conversion error\\n");
return (1);

}

fptr = from;
for (;;) {

tptr = to;
oleft = BUFSIZ;

ret = iconv(cd, &fptr, &ileft, &tptr, &oleft);
if (ret != (size_t)-1) {

/*
* iconv succeeded
*/

/*
* Outputs converted characters
*/

iconv(3C)

270 man pages section 3: Basic Library Functions • Last Revised 14 Oct 1999

EXAMPLE 1 Using the iconv() Functions (Continued)

(void) fwrite(to, 1, BUFSIZ - oleft, stdout);
break;

}

/*
* iconv failed
*/
if (errno == EINVAL) {

/*
* Incomplete character or shift sequence

*/

/*
* Outputs converted characters
*/
(void) fwrite(to, 1, BUFSIZ - oleft, stdout);
/*
* Copies remaining characters in input buffer
* to the top of the input buffer.
*/
(void) memmove(from, fptr, ileft);
/*
* Tries to fill input buffer from stdin
*/
break;

} else if (errno == E2BIG) {
/*
* Lack of space in output buffer
*/

/*
* Outputs converted characters
*/
(void) fwrite(to, 1, BUFSIZ - oleft, stdout);
/*
* Tries to convert remaining characters in
* input buffer with emptied output buffer
*/
continue;

} else if (errno == EILSEQ) {
/*
* Illegal character or shift sequence
*/

/*
* Outputs converted characters
*/
(void) fwrite(to, 1, BUFSIZ - oleft, stdout);
/*
* Initializes the conversion descriptor and
* outputs the sequence to change the state to
* initial state.
*/
INIT_SHIFT_STATE(cd, fptr, ileft, tptr, oleft);

iconv(3C)

Basic Library Functions 271

EXAMPLE 1 Using the iconv() Functions (Continued)

(void) iconv_close(cd);

(void) fprintf(stderr,
"Illegal character or sequence\\n");
return (1);

} else if (errno == EBADF) {
/*
* Invalid conversion descriptor.
* Actually, this shouldn’t happen here.
*/
(void) fprintf(stderr, "Conversion error\\n");
return (1);

} else {
/*
* This errno is not defined
*/
(void) fprintf(stderr, "iconv error\\n");
return (1);

}
}

}

/*
* Initializes the conversion descriptor and outputs
* the sequence to change the state to initial state.
*/
INIT_SHIFT_STATE(cd, fptr, ileft, tptr, oleft);

(void) iconv_close(cd);
return (0);

}

/usr/lib/iconv/*.so conversion modules

/usr/lib/iconv/sparcv9/*.so conversion modules

/usr/lib/iconv/geniconvtbl/binarytables/*.btconversion binary tables

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

geniconvtbl(1), iconv(1), iconv_close(3C), iconv_open(3C), geniconvtbl(4),
attributes(5), iconv(5), iconv_unicode(5)

iconv(3C)

FILES

ATTRIBUTES

SEE ALSO

272 man pages section 3: Basic Library Functions • Last Revised 14 Oct 1999

iconv_close – code conversion deallocation function

#include <iconv.h>

int iconv_close(iconv_t cd);

The iconv_close() function deallocates the conversion descriptor cd and all other
associated resources allocated by the iconv_open(3C) function.

If a file descriptor is used to implement the type iconv_t, that file descriptor will be
closed.

For examples using the iconv_close() function, see iconv(3C).

Upon successful completion, iconv_close() returns 0; otherwise, it returns −1 and
sets errno to indicate the error.

The iconv_close() function may fail if:

EBADF The conversion descriptor is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

iconv(3C), iconv_open(3C), attributes(5)

iconv_close(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Basic Library Functions 273

iconv_open – code conversion allocation function

#include <iconv.h>

iconv_t iconv_open(const char *tocode, const char *fromcode);

The iconv_open() function returns a conversion descriptor that describes a
conversion from the codeset specified by the string pointed to by the fromcode
argument to the codeset specified by the string pointed to by the tocode argument. For
state-dependent encodings, the conversion descriptor will be in a codeset-dependent
initial shift state, ready for immediate use with the iconv(3C) function.

Settings of fromcode and tocode and their permitted combinations are
implementation-dependent.

The iconv_open() function supports the alias of the encoding name specified in
tocode and fromcode. The alias table of the encoding name is described in the file
/usr/lib/iconv/alias. See alias(4).

A conversion descriptor remains valid in a process until that process closes it.

For examples using the iconv_open() function, see iconv(3C).

Upon successful completion iconv_open() returns a conversion descriptor for use
on subsequent calls to iconv(). Otherwise, iconv_open() returns (iconv_t) −1
and sets errno to indicate the error.

The iconv_open function may fail if:

EMFILE {OPEN_MAX} files descriptors are currently open in the calling
process.

ENFILE Too many files are currently open in the system.

ENOMEM Insufficient storage space is available.

EINVAL The conversion specified by fromcode and tocode is not supported
by the implementation.

/usr/lib/iconv/alias alias table file of the encoding name

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

exec(2), iconv(3C), iconv_close(3C), malloc(3C), alias(4), attributes(5)

iconv_open(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

FILES

ATTRIBUTES

SEE ALSO

274 man pages section 3: Basic Library Functions • Last Revised 2 Oct 2001

The iconv_open() function uses malloc(3C) to allocate space for internal buffer
areas. iconv_open() may fail if there is insufficient storage space to accommodate
these buffers.

Portable applications must assume that conversion descriptors are not valid after a call
to one of the exec functions (see exec(2)).

iconv_open(3C)

NOTES

Basic Library Functions 275

index, rindex – string operations

#include <strings.h>

char *index(const char *s, int c);

char *rindex(const char *s, int c);

The index() and rindex() functions operate on null-terminated strings.

The index() function returns a pointer to the first occurrence of character c in string
s.

The rindex() function returns a pointer to the last occurrence of character c in string
s.

Both index() and rindex() return a null pointer if c does not occur in the string.
The null character terminating a string is considered to be part of the string.

On most modern computer systems, you can not use a null pointer to indicate a null
string. A null pointer is an error and results in an abort of the program. If you wish to
indicate a null string, you must use a pointer that points to an explicit null string. On
some machines and with some implementations of the C programming language, a
null pointer, if dereferenced, would yield a null string. Though often used, this
practice is not always portable. Programmers using a null pointer to represent an
empty string should be aware of this portability issue. Even on machines where
dereferencing a null pointer does not cause an abort of the program, it does not
necessarily yield a null string.

bstring(3C), malloc(3C), string(3C)

index(3C)

NAME

SYNOPSIS

DESCRIPTION

USAGE

SEE ALSO

276 man pages section 3: Basic Library Functions • Last Revised 3 Mar 1996

initgroups – initialize the supplementary group access list

#include <grp.h>

#include <sys/types.h>

int initgroups(const char *name, gid_t basegid);

The initgroups() function reads the group database to get the group membership
for the user specified by name, and initializes the supplementary group access list of
the calling process (see getgrnam(3C) and getgroups(2)). The basegid group ID is
also included in the supplementary group access list. This is typically the real group
ID from the user database.

While scanning the group database, if the number of groups, including the basegid
entry, exceeds NGROUPS_MAX, subsequent group entries are ignored.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set
to indicate the error.

The initgroups() function will fail and not change the supplementary group access
list if:

EPERM The effective user ID is not super-user.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

getgroups(2), getgrnam(3C), attributes(5)

initgroups(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Basic Library Functions 277

insque, remque – insert/remove element from a queue

include <search.h>

void insque(struct qelem *elem, struct qelem *pred);

void remque(struct qelem *elem);

The insque() and remque() functions manipulate queues built from doubly linked
lists. Each element in the queue must be in the following form:

struct qelem {
struct qelem *q_forw;
struct qelem *q_back;
char q_data[];

};

The insque() function inserts elem in a queue immediately after pred. The remque()
function removes an entry elem from a queue.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

attributes(5)

insque(3C)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

278 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

isaexec – invoke isa-specific executable

#include <unistd.h>

int isaexec(const char *path, char *const argv[], char *const envp[]);

The isaexec() function takes the path specified as path and breaks it into directory
and file name components. It enquires from the running system the list of supported
instruction set architectures; see isalist(5). The function traverses the list for an
executable file in named subdirectories of the original directory. When such a file is
located, execve() is invoked with argv[] and envp[]. See exec (2).

If no file is located, isaexec() returns ENOENT. Other return values are the same as
for execve().

EXAMPLE 1 Example of isaexec() function.

On a system whose isalist is

sparcv7 sparc

the program

int
main(int argc, char *argv[], char *envp[])
{

return (isaexec("/bin/thing", argv, envp));
}

will look first for an executable file named /bin/sparcv7/thing, then for an
executable file named bin/sparc/thing. It will invoke execve() on the first
executable file it finds named thing.

On that same system, a program called /u/bin/tofu can cause either
/u/bin/sparcv7/tofu or /u/bin/sparc/tofu to be invoked using the following
code:

int
main(int argc, char *argv[], char *envp[])
{

return (isaexec(getexecname(), argv, envp));
}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

Interface Stability Stable

exec(2), getexecname(3C), attributes(5), isalist(5)

isaexec(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

EXAMPLES

ATTRIBUTES

SEE ALSO

Basic Library Functions 279

isastream – test a file descriptor

#include <stropts.h>

int isastream(int fildes);

The isastream() function determines if a file descriptor represents a STREAMS file.
The fildes argument refers to an open file descriptor.

Upon successful completion, isastream() returns 1 if fildes represents a STREAMS
file, and 0 if it does not. Otherwise, −1 is return and errno is set to indicate the error.

The isastream() function will fail if:

EBADF The fildes argument is not a valid file descriptor.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

attributes(5), streamio(7I)

STREAMS Programming Guide

isastream(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

280 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

isatty – test for a terminal device

#include <unistd.h>

int isatty(int fildes);

The isatty() function tests whether fildes, an open file descriptor, is associated with
a terminal device.

The isatty() function returns 1 if fildes is associated with a terminal; otherwise it
returns 0 and may set errno to indicate the error.

The isatty() function may fail if:

EBADF The fildes argument is not a valid open file descriptor.

ENOTTY The fildes argument is not associated with a terminal.

The isatty() function does not necessarily indicate that a human being is available
for interaction via fildes. It is quite possible that non-terminal devices are connected to
the communications line.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ttyname(3C), attributes(5)

isatty(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

Basic Library Functions 281

isnan, isnand, isnanf, finite, fpclass, unordered – determine type of floating-point
number

#include <ieeefp.h>

int isnand(double dsrc);

int isnanf(float fsrc);

int finite(double dsrc);

fpclass_t fpclass(double dsrc);

int unordered(double dsrc1, double dsrc2);

#include <math.h>

int isnan(double dsrc);

The isnan() function is identical to the isnand() function.

The isnanf() function is implemented as a macro included in the <ieeefp.h>
header.

The fpclass() function returns one of the following classes to which dsrc belongs:

FP_SNAN signaling NaN

FP_QNAN quiet NaN

FP_NINF negative infinity

FP_PINF positive infinity

FP_NDENORM negative denormalized non-zero

FP_PDENORM positive denormalized non-zero

FP_NZERO negative zero

FP_PZERO positive zero

FP_NNORM negative normalized non-zero

FP_PNORM positive normalized non-zero

None of these routines generates an exception, even for signaling NaNs.

The isnan(), isnand(), and isnanf() function return TRUE (1) if the argument
dsrc or fsrc is a NaN; otherwise they return FALSE (0).

The finite() function returns TRUE (1) if the argument dsrc is neither infinity nor
NaN; otherwise it returns FALSE (0).

The unordered() function returns TRUE (1) if one of its two arguments is unordered
with respect to the other argument. This is equivalent to reporting whether either
argument is NaN. If neither argument is NaN, FALSE (0) is returned.

isnan(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

282 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

fpgetround(3C), attributes(5)

isnan(3C)

ATTRIBUTES

SEE ALSO

Basic Library Functions 283

iswalpha, iswupper, iswlower, iswdigit, iswxdigit, iswalnum, iswspace, iswpunct,
iswprint, iswcntrl, iswascii, iswgraph, isphonogram, isideogram, isenglish, isnumber,
isspecial – wide-character code classification functions

#include <wchar.h>

int iswalpha(wint_t wc);

These functions test whether wc is a wide-character code representing a character of a
particular class defined in the LC_CTYPE category of the current locale.

In all cases, wc is a wint_t, the value of which must be a wide-character code
corresponding to a valid character in the current locale or must equal the value of the
macro WEOF. If the argument has any other values, the behavior is undefined.

iswalpha(wc) Tests whether wc is a wide-character code representing
a character of class "alpha" in the program’s current
locale.

iswupper(wc) Tests whether wc is a wide-character code representing
a character of class "upper" in the program’s current
locale.

iswlower(wc) Tests whether wc is a wide-character code representing
a character of class "lower" in the program’s current
locale.

iswdigit(wc) Tests whether wc is a wide-character code representing
a character of class "digit" in the program’s current
locale.

iswxdigit(wc) Tests whether wc is a wide-character code representing
a character of class "xdigit" in the program’s current
locale.

iswalnum(wc) Tests whether wc is a wide-character code representing
a character of class "alpha" or "digit" in the program’s
current locale.

iswspace(wc) Tests whether wc is a wide-character code representing
a character of class "space" in the program’s current
locale.

iswpunct(wc) Tests whether wc is a wide-character code representing
a character of class "punct" in the program’s current
locale.

iswprint(wc) Tests whether wc is a wide-character code representing
a character of class "print" in the program’s current
locale.

iswalpha(3C)

NAME

SYNOPSIS

DESCRIPTION

284 man pages section 3: Basic Library Functions • Last Revised 20 Dec 1996

iswgraph(wc) Tests whether wc is a wide-character code representing
a character of class "graph" in the program’s current
locale.

iswcntrl(wc) Tests whether wc is a wide-character code representing
a character of class "cntrl" in the program’s current
locale.

iswascii(wc) Tests whether wc is a wide-character code representing
an ASCII character.

isphonogram(wc) Tests whether wc is a wide-character code representing
a phonetic language character, excluding ASCII
characters.

isideogram(wc) Tests whether wc is a wide-character code representing
an ideographic language character, excluding ASCII
characters.

isenglish(wc) Tests whether wc is a wide-character code representing
an English language character, excluding ASCII
characters.

isnumber(wc) Tests whether wc is a wide-character code representing
digit [0−9], excluding ASCII characters.

isspecial(wc) Tests whether wc is a wide-character code representing
a special language character, excluding ASCII
characters.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

CSI Enabled

localedef(1), setlocale(3C), stdio(3C), ascii(5), attributes(5)

iswalpha(3C)

ATTRIBUTES

SEE ALSO

Basic Library Functions 285

iswctype – test character for specified class

#include <wchar.h>

int iswctype(wint_t wc, wctype_t charclass);

The iswctype() function determines whether the wide-character code wc has the
character class charclass, returning TRUE or FALSE. The iswctype() function is
defined on WEOF and wide-character codes corresponding to the valid character
encodings in the current locale. If the wc argument is not in the domain of the
function, the result is undefined. If the value of charclass is invalid (that is, not
obtained by a call to wctype(3C) or charclass is invalidated by a subsequent call to
setlocale(3C) that has affected category LC_CTYPE), the result is indeterminate.

The iswctype() function returns 0 for FALSE and non-zero for TRUE.

There are twelve strings that are reserved for the standard character classes:

"alnum" "alpha" "blank"

"cntrl" "digit" "graph"

"lower" "print" "punct"

"space" "upper" "xdigit"

In the table below, the functions in the left column are equivalent to the functions in
the right column.

iswalnum(wc) iswctype(wc, wctype("alnum"))

iswalpha(wc) iswctype(wc, wctype("alpha"))

iswcntrl(wc) iswctype(wc, wctype("cntrl"))

iswdigit(wc) iswctype(wc, wctype("digit"))

iswgraph(wc) iswctype(wc, wctype("graph"))

iswlower(wc) iswctype(wc, wctype("lower"))

iswprint(wc) iswctype(wc, wctype("print"))

iswpunct(wc) iswctype(wc, wctype("punct"))

iswspace(wc) iswctype(wc, wctype("space"))

iswupper(wc) iswctype(wc, wctype("upper"))

iswxdigit(wc) iswctype(wc, wctype("xdigit"))

The call

iswctype(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

286 man pages section 3: Basic Library Functions • Last Revised 20 Dec 1996

iswctype(wc, wctype("blank"))

does not have an equivalent isw*() function.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

CSI Enabled

iswalpha(3C), setlocale(3C), wctype(3C), attributes(5), environ(5)

iswctype(3C)

ATTRIBUTES

SEE ALSO

Basic Library Functions 287

killpg – send signal to a process group

#include <signal.h>

int killpg(pid_t pgrp, int sig);

The killpg() function sends the signal sig to the process group pgrp. See
signal(3HEAD) for a list of signals.

The real or effective user ID of the sending process must match the real or saved
set-user ID of the receiving process, unless the effective user ID of the sending process
is the privileged user. A single exception is the signal SIGCONT, which may always be
sent to any descendant of the current process.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set
to indicate the error.

The killpg() function will fail and no signal will be sent if:

EINVAL The sig argument is not a valid signal number.

EPERM The effective user ID of the sending process is not privileged user,
and neither its real nor effective user ID matches the real or saved
set-user ID of one or more of the target processes.

ESRCH No processes were found in the specified process group.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

kill(2), setpgrp(2), sigaction(2), signal(3HEAD), attributes(5)

killpg(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

288 man pages section 3: Basic Library Functions • Last Revised 27 Jun 2000

lckpwdf, ulckpwdf – manipulate shadow password database lock file

#include <shadow.h>

int lckpwdf(void);

int ulckpwdf(void);

The lckpwdf() and ulckpwdf() functions enable modification access to the
password databases through the lock file. A process first uses lckpwdf() to lock the
lock file, thereby gaining exclusive rights to modify the /etc/passwd or
/etc/shadow password database. See passwd(4) and shadow(4). Upon completing
modifications, a process should release the lock on the lock file using ulckpwdf().
This mechanism prevents simultaneous modification of the password databases. The
lock file, /etc/.pwd.lock, is used to coordinate modification access to the password
databases /etc/passwd and /etc/shadow.

If lckpwdf() is successful in locking the file within 15 seconds, it returns 0. If
unsuccessful (for example, /etc/.pwd.lock is already locked), it returns −1.

If ulckpwdf() is successful in unlocking the file /etc/.pwd.lock, it returns 0. If
unsuccessful (for example, /etc/.pwd.lock is already unlocked), it returns −1.

These routines are for internal use only; compatibility is not guaranteed.

/etc/passwd password database

/etc/shadow shadow password database

/etc/.pwd.lock lock file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

getpwnam(3C), getspnam(3C), passwd(4), shadow(4), attributes(5)

lckpwdf(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

FILES

ATTRIBUTES

SEE ALSO

Basic Library Functions 289

ldexp – load exponent of a floating point number

#include <math.h>

double ldexp(double x, int exp);

The ldexp() function computes the quantity x * 2exp.

Upon successful completion, ldexp() returns a double representing the value x
multiplied by 2 raised to the power exp.

If the value of x is NaN, NaN is returned.

If ldexp() would cause overflow, ±HUGE_VAL is returned (according to the sign of x),
and errno is set to ERANGE.

If ldexp() would cause underflow to 0.0, 0 is returned and errno may be set to
ERANGE.

The ldexp() function will fail if:

ERANGE The value to be returned would have caused overflow.

The ldexp() function may fail if:

ERANGE The value to be returned would have caused underflow.

An application wishing to check for error situations should set errno to 0 before
calling ldexp(). If errno is non-zero on return, or the return value is NaN, an error
has occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

frexp(3C), isnan(3M), attributes(5)

ldexp(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

290 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

lfmt – display error message in standard format and pass to logging and monitoring
services

#include <pfmt.h>

int lfmt(FILE *stream, long flags, char *format, ... /* arg*/);

The lfmt() function retrieves a format string from a locale-specific message database
(unless MM_NOGET is specified) and uses it for printf(3C) style formatting of args.
The output is displayed on stream. If stream is NULL no output is displayed.

The lfmt() function encapsulates the output in the standard error message format
(unless MM_NOSTD is specified, in which case the output is like that of printf(). It
forwards its output to the logging and monitoring facility, even if stream is NULL.
Optionally, lfmt() displays the output on the console with a date and time stamp.

If the printf() format string is to be retrieved from a message database, the format
argument must have the following structure:

<catalog>:<msgnum>:<defmsg>.

If MM_NOGET is specified, only the <defmsg> field must be specified.

The <catalog> field indicates the message database that contains the localized version
of the format string. This field is limited to 14 characters selected from a set of all
characters values, excluding the null character (\0) and the ASCII codes for slash (/)
and colon (:).

The <msgnum> field is a positive number that indicates the index of the string into the
message database.

If the catalog does not exist in the locale (specified by the last call to setlocale(3C)
using the LC_ALL or LC_MESSAGES categories), or if the message number is out of
bound, lfmt() will attempt to retrieve the message from the C locale. If this second
retrieval fails, lfmt() uses the <defmsg> field of the format argument.

If <catalog> is omitted, lfmt() will attempt to retrieve the string from the default
catalog specified by the last call to setcat(3C). In this case, the format argument has
the following structure:

:<msgnum>:<defmsg>.

The lfmt() function will output the message

Message not found!!\n

as the format string if <catalog> is not a valid catalog name, if no catalog is specified
(either explicitly or with setcat()), if <msgnum> is not a valid number, or if no
message could be retrieved from the message databases and <defmsg> was omitted.

lfmt(3C)

NAME

SYNOPSIS

DESCRIPTION

Basic Library Functions 291

The flags argument determines the type of output (whether the format should be
interpreted as it is or be encapsulated in the standard message format) and the access
to message catalogs to retrieve a localized version of format.

The flags argument is composed of several groups, and can take the following values
(one from each group):

Output format control

MM_NOSTD Do not use the standard message format but interpret format
as a printf() format. Only catalog access control flags, console
display control and logging information should be specified if
MM_NOSTD is used; all other flags will be ignored.

MM_STD Output using the standard message format (default value is 0).

Catalog access control

MM_NOGET Do not retrieve a localized version of format. In this case, only
the <defmsg> field of format is specified.

MM_GET Retrieve a localized version of format from <catalog>, using
<msgid> as the index and <defmsg> as the default message
(default value is 0).

Severity (standard message format only)

MM_HALT Generate a localized version of HALT, but donot halt the
machine.

MM_ERROR Generate a localized version of ERROR (default value is 0).

MM_WARNING Generate a localized version of WARNING.

MM_INFO Generate a localized version of INFO.

Additional severities can be defined with the addsev(3C) function, using
number-string pairs with numeric values in the range [5-255]. The specified severity is
formed by the bitwise OR operation of the numeric value and other flags arguments.

If the severity is not defined, lfmt() uses the string SEV=N where N is the integer
severity value passed in flags.

Multiple severities passed in flags will not be detected as an error. Any combination of
severities will be summed and the numeric value will cause the display of either a
severity string (if defined) or the string SEV=N (if undefined).

Action

MM_ACTION Specify an action message. Any severity value is superseded
and replaced by a localized version of TO FIX.

lfmt(3C)

292 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

Console display control

MM_CONSOLE Display the message to the console in addition to the specified
stream.

MM_NOCONSOLE Do not display the message to the console in addition to the
specified stream (default value is 0).

Logging information

Major classification
Identify the source of the condition. Identifiers are: MM_HARD (hardware),
MM_SOFT (software), and MM_FIRM (firmware).

Message source subclassification
Identify the type of software in which the problem is spotted. Identifiers are:
MM_APPL (application), MM_UTIL (utility), and MM_OPSYS (operating system).

The lfmt() function displays error messages in the following format:

label: severity: text

If no label was defined by a call to setlabel(3C), the message is displayed in the
format:

severity: text

If lfmt() is called twice to display an error message and a helpful action or recovery
message, the output may appear as follows:

label: severity: text
label: TO FIX: text

Upon successful completion, lfmt() returns the number of bytes transmitted.
Otherwise, it returns a negative value:

−1 Write the error to stream.

−2 Cannot log and/or display at console.

Since lfmt() uses gettxt(3C), it is recommended that lfmt() not be used.

EXAMPLE 1 The following example

setlabel("UX:test");
lfmt(stderr, MM_ERROR|MM_CONSOLE|MM_SOFT|MM_UTIL,

"test:2:Cannot open file: %s\n", strerror(errno));

displays the message to stderr and to the console and makes it available for logging:

UX:test: ERROR: Cannot open file: No such file or directory

EXAMPLE 2 The following example

setlabel("UX:test");
lfmt(stderr, MM_INFO|MM_SOFT|MM_UTIL,

"test:23:test facility is enabled\n");

lfmt(3C)

STANDARD
ERROR

MESSAGE
FORMAT

RETURN VALUES

USAGE

EXAMPLES

Basic Library Functions 293

EXAMPLE 2 The following example (Continued)

displays the message to stderr and makes it available for logging:

UX:test: INFO: test facility enabled

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

addsev(3C), gettxt(3C), pfmt(3C), printf(3C), setcat(3C), setlabel(3C),
setlocale(3C), attributes(5), environ(5)

lfmt(3C)

ATTRIBUTES

SEE ALSO

294 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

localeconv – get numeric formatting information

#include <locale.h>

struct lconv *localeconv(void);

The localeconv() function sets the components of an object with type struct
lconv (defined in <locale.h>) with the values appropriate for the formatting of
numeric quantities (monetary and otherwise) according to the rules of the current
locale (see setlocale(3C)). The definition of struct lconv is given below (the
values for the fields in the “C” locale are given in comments).

char *decimal_point; /* "." */
char *thousands_sep; /* "" (zero length string) */
char *grouping; /* "" */
char *int_curr_symbol; /* "" */
char *currency_symbol; /* "" */
char *mon_decimal_point; /* "" */
char *mon_thousands_sep; /* "" */
char *mon_grouping; /* "" */
char *positive_sign; /* "" */
char *negative_sign; /* "" */
char int_frac_digits; /* CHAR_MAX */
char frac_digits; /* CHAR_MAX */
char p_cs_precedes; /* CHAR_MAX */
char p_sep_by_space; /* CHAR_MAX */
char n_cs_precedes; /* CHAR_MAX */
char n_sep_by_space; /* CHAR_MAX */
char p_sign_posn; /* CHAR_MAX*/
char n_sign_posn; /* CHAR_MAX */

The members of the structure with type char * are strings, any of which (except
decimal_point) can point to a null string (""), to indicate that the value is not
available in the current locale or is of zero length. The members with type char are
non-negative numbers, any of which can be CHAR_MAX (defined in the <limits.h>
header) to indicate that the value is not available in the current locale. The members
are the following:

char *decimal_point
The decimal-point character used to format non-monetary quantities.

char *thousands_sep
The character used to separate groups of digits to the left of the decimal-point
character in formatted non-monetary quantities.

char *grouping
A string in which each element is taken as an integer that indicates the number of
digits that comprise the current group in a formatted non-monetary quantity. The
elements of grouping are interpreted according to the following:

CHAR_MAX No further grouping is to be performed.

0 The previous element is to be repeatedly used for the remainder
of the digits.

localeconv(3C)

NAME

SYNOPSIS

DESCRIPTION

Basic Library Functions 295

other The value is the number of digits that comprise the current
group. The next element is examined to determine the size of
the next group of digits to the left of the current group.

char *int_curr_symbol
The international currency symbol applicable to the current locale, left-justified
within a four-character space-padded field. The character sequences should match
with those specified in ISO 4217 Codes for the Representation of Currency and Funds.

char *currency_symbol
The local currency symbol applicable to the current locale.

char *mon_decimal_point
The decimal point used to format monetary quantities.

char *mon_thousands_sep
The separator for groups of digits to the left of the decimal point in formatted
monetary quantities.

char *mon_grouping
A string in which each element is taken as an integer that indicates the number of
digits that comprise the current group in a formatted monetary quantity. The
elements of mon_grouping are interpreted according to the rules described under
grouping.

char *positive_sign
The string used to indicate a non-negative-valued formatted monetary quantity.

char *negative_sign
The string used to indicate a negative-valued formatted monetary quantity.

char int_frac_digits
The number of fractional digits (those to the right of the decimal point) to be
displayed in an internationally formatted monetary quantity.

char frac_digits
The number of fractional digits (those to the right of the decimal point) to be
displayed in a formatted monetary quantity.

char p_cs_precedes
Set to 1 or 0 if the currency_symbol respectively precedes or succeeds the value
for a non-negative formatted monetary quantity.

char p_sep_by_space
Set to 1 or 0 if the currency_symbol respectively is or is not separated by a space
from the value for a non-negative formatted monetary quantity.

char n_cs_precedes
Set to 1 or 0 if the currency_symbol respectively precedes or succeeds the value
for a negative formatted monetary quantity.

char n_sep_by_space
Set to 1 or 0 if the currency_symbol respectively is or is not separated by a space
from the value for a negative formatted monetary quantity.

localeconv(3C)

296 man pages section 3: Basic Library Functions • Last Revised 20 Dec 1996

char p_sign_posn
Set to a value indicating the positioning of the positive_sign for a non-negative
formatted monetary quantity. The value of p_sign_posn is interpreted according
to the following:

0 Parentheses surround the quantity and currency_symbol.

1 The sign string precedes the quantity and currency_symbol.

2 The sign string succeeds the quantity and currency_symbol.

3 The sign string immediately precedes the currency_symbol.

4 The sign string immediately succeeds the currency_symbol.

char n_sign_posn
Set to a value indicating the positioning of the negative_sign for a negative
formatted monetary quantity. The value of n_sign_posn is interpreted according
to the rules described under p_sign_posn.

The localeconv() function returns a pointer to the filled-in object. The structure
pointed to by the return value may be overwritten by a subsequent call to
localeconv().

The localeconv() function can be used safely in multithreaded applications, as
long as setlocale(3C) is not being called to change the locale.

EXAMPLE 1 Rules used by four countries to format monetary quantities.

The following table illustrates the rules used by four countries to format monetary
quantities.

Country Positive format Negative format International
format

Italy L.1.234 -l.1.234 ITL.1.234

Netherlands F 1.234,56 F −1.234,56 NLG 1.234,56

Norway kr1.234,56 kr1.234,56− NOK 1.234,56

Switzerland SFrs.1,234.56 SFrs.1,234.56C CHF 1,234.56

For these four countries, the respective values for the monetary members of the
structure returned by localeconv() are as follows:

Italy Netherlands Norway Switzerland

int_curr_symbol"ITL." "NLG " "NOK " "CHF "

currency_symbol"L." "F" "kr" "SFrs."

localeconv(3C)

RETURN VALUES

USAGE

EXAMPLES

Basic Library Functions 297

mon_decimal_point"" "," "," "."

mon_thousands_sep"." "." "." ","

mon_grouping "\3" "\3" "\3" "\3"

positive_sign "" "" "" ""

negative_sign "-" "-" "-" "C"

int_frac_digits0 2 2 2

frac_digits 0 2 2 2

p_cs_precedes 1 1 1 1

p_sep_by_space 0 1 0 0

n_cs_precedes 1 1 1 1

n_sep_by_space 0 1 0 0

p_sign_posn 1 1 1 1

n_sign_posn 1 4 2 2

/usr/lib/locale/locale/LC_MONETARY/monetary
LC_MONETARY database for locale

/usr/lib/locale/locale/LC_NUMERIC/numeric
LC_NUMERIC database for locale

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

CSI Enabled

setlocale(3C), attributes(5), environ(5)

localeconv(3C)

FILES

ATTRIBUTES

SEE ALSO

298 man pages section 3: Basic Library Functions • Last Revised 20 Dec 1996

lockf – record locking on files

#include <unistd.h>

int lockf(int fildes, int function, off_t size);

The lockf() function allows sections of a file to be locked; advisory or mandatory
write locks depending on the mode bits of the file (see chmod(2)). Locking calls from
other processes that attempt to lock the locked file section will either return an error
value or be put to sleep until the resource becomes unlocked. All the locks for a
process are removed when the process terminates. See fcntl(2) for more information
about record locking.

The fildes argument is an open file descriptor. The file descriptor must have O_WRONLY
or O_RDWR permission in order to establish locks with this function call.

The function argument is a control value that specifies the action to be taken. The
permissible values for function are defined in <unistd.h> as follows:

#define F_ULOCK 0 /* unlock previously locked section */
#define F_LOCK 1 /* lock section for exclusive use */
#define F_TLOCK 2 /* test & lock section for exclusive use */
#define F_TEST 3 /* test section for other locks */

All other values of function are reserved for future extensions and will result in an
error if not implemented.

F_TEST is used to detect if a lock by another process is present on the specified
section. F_LOCK and F_TLOCK both lock a section of a file if the section is available.
F_ULOCK removes locks from a section of the file.

The size argument is the number of contiguous bytes to be locked or unlocked. The
resource to be locked or unlocked starts at the current offset in the file and extends
forward for a positive size and backward for a negative size (the preceding bytes up to
but not including the current offset). If size is zero, the section from the current offset
through the largest file offset is locked (that is, from the current offset through the
present or any future end-of-file). An area need not be allocated to the file in order to
be locked as such locks may exist past the end-of-file.

The sections locked with F_LOCK or F_TLOCK may, in whole or in part, contain or be
contained by a previously locked section for the same process. Locked sections will be
unlocked starting at the the point of the offset through size bytes or to the end of file
if size is (off_t) 0. When this situation occurs, or if this situation occurs in adjacent
sections, the sections are combined into a single section. If the request requires that a
new element be added to the table of active locks and this table is already full, an error
is returned, and the new section is not locked.

F_LOCK and F_TLOCK requests differ only by the action taken if the resource is not
available. F_LOCK will cause the calling process to sleep until the resource is available.
F_TLOCK will cause the function to return a −1 and set errno to EAGAIN if the section
is already locked by another process.

lockf(3C)

NAME

SYNOPSIS

DESCRIPTION

Basic Library Functions 299

File locks are released on first close by the locking process of any file descriptor for the
file.

F_ULOCK requests may, in whole or in part, release one or more locked sections
controlled by the process. When sections are not fully released, the remaining sections
are still locked by the process. Releasing the center section of a locked section requires
an additional element in the table of active locks. If this table is full, an errno is set to
EDEADLK and the requested section is not released.

An F_ULOCK request in which size is non-zero and the offset of the last byte of the
requested section is the maximum value for an object of type off_t, when the process
has an existing lock in which size is 0 and which includes the last byte of the
requested section, will be treated as a request to unlock from the start of the requested
section with a size equal to 0. Otherwise, an F_ULOCK request will attempt to unlock
only the requested section.

A potential for deadlock occurs if a process controlling a locked resource is put to
sleep by requesting another process’s locked resource. Thus calls to lockf() or
fcntl(2) scan for a deadlock prior to sleeping on a locked resource. An error return is
made if sleeping on the locked resource would cause a deadlock.

Sleeping on a resource is interrupted with any signal. The alarm(2) function may be
used to provide a timeout facility in applications that require this facility.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set
to indicate the error.

The lockf() function will fail if:

EBADF The fildes argument is not a valid open file descriptor;
or function is F_LOCK or F_TLOCK and fildes is not a
valid file descriptor open for writing.

EACCES or EAGAIN The function argument is F_TLOCK or F_TEST and
the section is already locked by another process.

EDEADLK The function argument is F_LOCK and a deadlock is
detected.

EINTR A signal was caught during execution of the function.

ECOMM The fildes argument is on a remote machine and the link
to that machine is no longer active.

EINVAL The function argument is not one of F_LOCK,
F_TLOCK, F_TEST, or F_ULOCK; or size plus the
current file offset is less than 0.

EOVERFLOW The offset of the first, or if size is not 0 then the last,
byte in the requested section cannot be represented
correctly in an object of type off_t.

lockf(3C)

RETURN VALUES

ERRORS

300 man pages section 3: Basic Library Functions • Last Revised 28 Jan 1998

The lockf() function may fail if:

EAGAIN The function argument is F_LOCK or F_TLOCK and
the file is mapped with mmap(2).

EDEADLK or ENOLCK The function argument is F_LOCK, F_TLOCK, or
F_ULOCK, and the request would cause the number of
locks to exceed a system-imposed limit.

EOPNOTSUPP or EINVAL The locking of files of the type indicated by the fildes
argument is not supported.

Record-locking should not be used in combination with the fopen(3C), fread(3C),
fwrite(3C) and other stdio functions. Instead, the more primitive, non-buffered
functions (such as open(2)) should be used. Unexpected results may occur in
processes that do buffering in the user address space. The process may later
read/write data which is/was locked. The stdio functions are the most common
source of unexpected buffering.

The alarm(2) function may be used to provide a timeout facility in applications
requiring it.

The lockf() function has a transitional interface for 64-bit file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

intro(2), alarm(2), chmod(2), close(2), creat(2), fcntl(2), mmap(2), open(2),
read(2), write(2), attributes(5), lf64(5)

lockf(3C)

USAGE

ATTRIBUTES

SEE ALSO

Basic Library Functions 301

_longjmp, _setjmp – non-local goto

#include <setjmp.h>

void _longjmp(jmp_buf env, int val);

int _setjmp(jmp_buf env);

The _longjmp() and _setjmp() functions are identical to longjmp(3C) and
setjmp(3C), respectively, with the additional restriction that _longjmp() and
_setjmp() do not manipulate the signal mask.

If _longjmp() is called even though env was never initialized by a call to
_setjmp(), or when the last such call was in a function that has since returned, the
results are undefined.

Refer to longjmp(3C) and setjmp(3C).

No errors are defined.

If _longjmp() is executed and the environment in which _setjmp() was executed
no longer exists, errors can occur. The conditions under which the environment of the
_setjmp() no longer exists include exiting the function that contains the _setjmp()
call, and exiting an inner block with temporary storage. This condition might not be
detectable, in which case the _longjmp() occurs and, if the environment no longer
exists, the contents of the temporary storage of an inner block are unpredictable. This
condition might also cause unexpected process termination. If the function has
returned, the results are undefined.

Passing longjmp() a pointer to a buffer not created by setjmp(), passing
_longjmp() a pointer to a buffer not created by _setjmp(), passing
siglongjmp(3C) a pointer to a buffer not created by sigsetjmp(3C) or passing any
of these three functions a buffer that has been modified by the user can cause all the
problems listed above, and more.

The _longjmp() and _setjmp() functions are included to support programs
written to historical system interfaces. New applications should use siglongjmp(3C)
and sigsetjmp(3C) respectively.

longjmp(3C), setjmp(3C), siglongjmp(3C), sigsetjmp(3C)

_longjmp(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

SEE ALSO

302 man pages section 3: Basic Library Functions • Last Revised 28 Feb 1996

lsearch, lfind – linear search and update

#include <search.h>

void *lsearch(const void *key, void *base, size_t *nelp, size_t width,
int (*compar) (const void *, const void *));

void *lfind(const void *key, const void *base, size_t *nelp, size_t
width, int (*compar)(const void *, const void *));

The lsearch() function is a linear search routine generalized from Knuth (6.1)
Algorithm S. (See The Art of Computer Programming, Volume 3, Section 6.1, by Donald E.
Knuth.) It returns a pointer into a table indicating where a datum may be found. If the
datum does not occur, it is added at the end of the table. The key argument points to
the datum to be sought in the table. The base argument points to the first element in
the table. The nelp argument points to an integer containing the current number of
elements in the table. The integer is incremented if the datum is added to the table.
The width argument is the size of an element in bytes. The compar argument is a
pointer to the comparison function that the user must supply (strcmp(3C) for
example). It is called with two arguments that point to the elements being compared.
The function must return zero if the elements are equal and non-zero otherwise.

The lfind() function is the same as lsearch() except that if the datum is not
found, it is not added to the table. Instead, a null pointer is returned.

It is important to note the following:

� the pointers to the key and the element at the base of the table may be pointers to
any type.

� The comparison function need not compare every byte, so arbitrary data may be
contained in the elements in addition to the values being compared.

� The value returned should be cast into type pointer-to-element.

If the searched-for datum is found, both lsearch() and lfind() return a pointer to
it. Otherwise, lfind() returns NULL and lsearch() returns a pointer to the newly
added element.

Undefined results can occur if there is not enough room in the table to add a new item.

EXAMPLE 1 A sample code using the lsearch() function.

This program will read in less than TABSIZE strings of length less than ELSIZE and
store them in a table, eliminating duplicates, and then will print each entry.

#include <search.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>

#define TABSIZE 50
#define ELSIZE 120

lsearch(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

EXAMPLES

Basic Library Functions 303

EXAMPLE 1 A sample code using the lsearch() function. (Continued)

main()
{

char line[ELSIZE]; /* buffer to hold input string */
char tab[TABSIZE][ELSIZE]; /* table of strings */
size_t nel = 0; /* number of entries in tab */
int i;

while (fgets(line, ELSIZE, stdin) != NULL &&
nel < TABSIZE)
(void) lsearch(line, tab, &nel, ELSIZE, mycmp);

for(i = 0; i < nel; i++)
(void)fputs(tab[i], stdout);

return 0;
}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

bsearch(3C), hsearch(3C), string(3C), tsearch(3C), attributes(5)

The Art of Computer Programming, Volume 3, Sorting and Searching by Donald E. Knuth,
published by Addison-Wesley Publishing Company, 1973.

lsearch(3C)

ATTRIBUTES

SEE ALSO

304 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

madvise – provide advice to VM system

#include <sys/types.h>

#include <sys/mman.h>

int madvise(caddr_t addr, size_t len, int advice);

The madvise() function advises the kernel that a region of user mapped memory in
the range [addr, addr + len) will be accessed following a type of pattern. The kernel
uses this information to optimize the procedure for manipulating and maintaining the
resources associated with the specified mapping range.

Values for advice are defined in <sys/mman.h> as:

#define MADV_NORMAL 0x0 /* No further special treatment */
#define MADV_RANDOM 0x1 /* Expect random page references */
#define MADV_SEQUENTIAL 0x2 /* Expect sequential page references */
#define MADV_WILLNEED 0x3 /* Will need these pages */
#define MADV_DONTNEED 0x4 /* Don’t need these pages */
#define MADV_FREE 0x5 /* Contents can be freed */

MADV_NORMAL The default system characteristic where accessing
memory within the address range causes the system to
read data from the mapped file. The kernel reads all
data from files into pages which are retained for a
period of time as a “cache.” System pages can be a
scarce resource, so the kernel steals pages from other
mappings when needed. This is a likely occurrence, but
adversely affects system performance only if a large
amount of memory is accessed.

MADV_RANDOM Tells the kernel to read in a minimum amount of data
from a mapped file on any single particular access. If
MADV_NORMAL is in effect when an address of a
mapped file is accessed, the system tries to read in as
much data from the file as reasonable, in anticipation of
other accesses within a certain locality.

MADV_SEQUENTIAL Tells the system that addresses in this range are likely
to be accessed only once, so the system will free the
resources mapping the address range as quickly as
possible. This is used in the cat(1) and cp(1) utilities.

MADV_WILLNEED Tells the system that a certain address range is
definitely needed so the kernel will start reading the
specified range into memory. This can benefit programs
wanting to minimize the time needed to access
memory the first time, as the kernel would need to read
in from the file.

MADV_DONTNEED Tells the kernel that the specified address range is no
longer needed, so the system starts to free the resources
associated with the address range.

madvise(3C)

NAME

SYNOPSIS

DESCRIPTION

Basic Library Functions 305

MADV_FREE Tells the kernel that contents in the specified address
range are no longer important and the range will be
overwritten. When there is demand for memory, the
system will free pages associated with the specified
address range. In this instance, the next time a page in
the address range is referenced, it will contail all
zeroes. Otherwise, it will contain the data that was
there prior to the MADV_FREE call. References made to
the address range will not make the system read from
backing store (swap space) until the page is modified
again.

This value cannot be used on mappings that have
underlying file objects.

The madvise() function should be used by programs with specific knowledge of
their access patterns over a memory object, such as a mapped file, to increase system
performance.

Upon successful completion, madvise() returns 0; otherwise, it returns −1 and sets
errno to indicate the error.

EAGAIN Some or all mappings in the address range [addr, addr + len) are
locked for I/O.

EBUSY Some or all of the addresses in the range [addr, addr + len) are
locked and MS_SYNC with the MS_INVALIDATE option is
specified.

EINVAL The addr argument is not a multiple of the page size as returned by
sysconf(3C); the length of the specified address range is less than
or equal to 0, or the advice was invalid.

EIO An I/O error occurred while reading from or writing to the file
system.

ENOMEM Addresses in the range [addr, addr + len) are outside the valid range
for the address space of a process, or specify one or more pages
that are not mapped.

ESTALE Stale NFS file handle.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

cat(1), cp(1), meminfo(2), mmap(2), sysconf(3C), attributes(5)

madvise(3C)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

306 man pages section 3: Basic Library Functions • Last Revised 17 Jan 2002

makecontext, swapcontext – manipulate user contexts

#include <ucontext.h>

void makecontext(ucontext_t *ucp, void(*func)(), int argc, ...);

int swapcontext(ucontext_t *oucp, const ucontext_t *ucp);

These functions are useful for implementing user-level context switching between
multiple threads of control within a process.

The makecontext() function modifies the context specified by ucp, which has been
initialized using getcontext. When this context is resumed using swapcontext() or
setcontext() (see getcontext(2)), program execution continues by calling the
function func, passing it the arguments that follow argc in the makecontext() call.

Before a call is made to makecontext(), the context being modified should have a
stack allocated for it. The value of argc must match the number of integer arguments
passed to func, otherwise the behavior is undefined.

The uc_link member is used to determine the context that will be resumed when the
context being modified by makecontext() returns. The uc_link member should be
initialized prior to the call to makecontext().

The swapcontext() function saves the current context in the context structure
pointed to by oucp and sets the context to the context structure pointed to by ucp.

On successful completion, swapcontext() returns 0. Otherwise, −1 is returned and
errno is set to indicate the error.

The makecontext() and swapcontext() functions will fail if:

EFAULT The ucp or oucp argument points to an invalid address.

ENOMEM The ucp argument does not have enough stack left to complete the
operation.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

exit(2), getcontext(2), sigaction(2), sigprocmask(2), attributes(5),
ucontext(3HEAD)

The size of the ucontext_t structure may change in future releases. To remain binary
compatible, users of these features must always use makecontext() or
getcontext() to create new instances of them.

makecontext(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

Basic Library Functions 307

makedev, major, minor – manage a device number

#include <sys/types.h>

#include <sys/mkdev.h>

dev_t makedev(major_t maj, minor_t min);

major_t major(dev_t device);

minor_t minor(dev_t device);

The makedev() function returns a formatted device number on success and NODEV
on failure. The maj argument is the major number. The min argument is the minor
number. The makedev() function can be used to create a device number for input to
mknod(2).

The major() function returns the major number component from device.

The minor() function returns the minor number component from device.

Upon successful completion, makedev() returns a formatted device number.
Otherwise, NODEV is returned and errno is set to indicate the error.

The makedev() function will fail if:

EINVAL One or both of the arguments maj and min is too large, or the device
number created from maj and min is NODEV.

The major() function will fail if:

EINVAL The device argument is NODEV, or the major number component of
device is too large.

The minor() function will fail if:

EINVAL The device argument is NODEV.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

mknod(2), stat(2), attributes(5)

makedev(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

308 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

malloc, calloc, free, memalign, realloc, valloc, alloca – memory allocator

#include <stdlib.h>

void *malloc(size_t size);

void *calloc(size_t nelem, size_t elsize);

void free(void *ptr);

void *memalign(size_t alignment, size_t size);

void *realloc(void *ptr, size_t size);

void *valloc(size_t size);

#include <alloca.h>

void *alloca(size_t size);

The malloc() and free() functions provide a simple, general-purpose memory
allocation package. The malloc() function returns a pointer to a block of at least size
bytes suitably aligned for any use. If the space assigned by malloc() is overrun, the
results are undefined.

The argument to free() is a pointer to a block previously allocated by malloc(),
calloc(), or realloc(). After free() is executed, this space is made available for
further allocation by the application, though not returned to the system. Memory is
returned to the system only upon termination of the application. If ptr is a null pointer,
no action occurs. If a random number is passed to free(), the results are undefined.

The calloc() function allocates space for an array of nelem elements of size elsize.
The space is initialized to zeros.

The memalign() function allocates size bytes on a specified alignment boundary and
returns a pointer to the allocated block. The value of the returned address is
guaranteed to be an even multiple of alignment. The value of alignment must be a
power of two and must be greater than or equal to the size of a word.

The realloc() function changes the size of the block pointed to by ptr to size bytes
and returns a pointer to the (possibly moved) block. The contents will be unchanged
up to the lesser of the new and old sizes. If ptr is NULL, realloc() behaves like
malloc() for the specified size. If size is 0 and ptr is not a null pointer, the space
pointed to is made available for further allocation by the application, though not
returned to the system. Memory is returned to the system only upon termination of
the application.

The valloc() function has the same effect as malloc(), except that the allocated
memory will be aligned to a multiple of the value returned by
sysconf(_SC_PAGESIZE).

malloc(3C)

NAME

SYNOPSIS

DESCRIPTION

Basic Library Functions 309

The alloca() function allocates size bytes of space in the stack frame of the caller,
and returns a pointer to the allocated block. This temporary space is automatically
freed when the caller returns. If the allocated block is beyond the current stack limit,
the resulting behavior is undefined.

Upon successful completion, each of the allocation functions returns a pointer to space
suitably aligned (after possible pointer coercion) for storage of any type of object.

If there is no available memory, malloc(), realloc(), memalign(), valloc(),
and calloc() return a null pointer. When realloc() is called with size > 0 and
returns NULL, the block pointed to by ptr is left intact. If size, nelem, or elsize is 0, either
a null pointer or a unique pointer that can be passed to free() is returned.

If malloc(), calloc(), or realloc() returns unsuccessfully, errno will be set to
indicate the error. The free() function does not set errno.

The malloc(), calloc(), and realloc() functions will fail if:

ENOMEM The physical limits of the system are exceeded by size bytes of
memory which cannot be allocated.

EAGAIN There is not enough memory available to allocate size bytes of
memory; but the application could try again later.

Portable applications should avoid using valloc() but should instead use
malloc() or mmap(2). On systems with a large page size, the number of successful
valloc() operations might be 0.

Comparative features of malloc(3C), bsdmalloc(3MALLOC), and
malloc(3MALLOC) are as follows:

� The bsdmalloc(3MALLOC) routines afford better performance, but are
space-inefficient.

� The malloc(3MALLOC) routines are space-efficient, but have slower performance.

� The standard, fully SCD-compliant malloc routines are a trade-off between
performance and space-efficiency.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability malloc(), calloc(), free(), realloc(),
valloc() are Standard; memalign() and
alloca() are Stable.

MT-Level Safe

brk(2), getrlimit(2), bsdmalloc(3MALLOC), malloc(3MALLOC),
mapmalloc(3MALLOC), watchmalloc(3MALLOC), attributes(5)

malloc(3C)

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

310 man pages section 3: Basic Library Functions • Last Revised 8 Jan 2002

Undefined results will occur if the size requested for a block of memory exceeds the
maximum size of a process’s heap, which can be obtained with getrlimit(2)

The alloca() function is machine-, compiler-, and most of all, system-dependent. Its
use is strongly discouraged.

malloc(3C)

WARNINGS

Basic Library Functions 311

malloc, free, realloc, calloc, mallopt, mallinfo – memory allocator

cc [flag ...] file ... -lmalloc [library ...]

#include <stdlib.h>

void *malloc(size_t size);

void free(void *ptr);

void *realloc(void *ptr, size_t size);

void *calloc(size_t nelem, size_t elsize);

#include <malloc.h>

int mallopt(int cmd, int value);

struct mallinfo mallinfo(void);

The malloc() and free() functins provide a simple general-purpose memory
allocation package.

The malloc() function returns a pointer to a block of at least size bytes suitably
aligned for any use.

The argument to free() is a pointer to a block previously allocated by malloc().
After free() is performed, this space is made available for further allocation, and its
contents have been destroyed See mallopt() below for a way to change this
behavior. If ptr is a null pointer, no action occurs.

Undefined results occur if the space assigned by malloc() is overrun or if some
random number is handed to free().

The realloc() function changes the size of the block pointed to by ptr to size bytes
and returns a pointer to the (possibly moved) block. The contents are unchanged up to
the lesser of the new and old sizes. If ptr is a null pointer, realloc() behaves like
malloc() for the specified size. If size is 0 and ptr is not a null pointer, the object it
points to is freed.

The calloc() function allocates space for an array of nelem elements of size elsize.
The space is initialized to zeros.

The mallopt() function provides for control over the allocation algorithm. The
available values for cmd are:

M_MXFAST Set maxfast to value. The algorithm allocates all blocks below the
size of maxfast in large groups and then doles them out very
quickly. The default value for maxfast is 24.

M_NLBLKS Set numlblks to value. The above mentioned ‘‘large groups’’ each
contain numlblks blocks. numlblks must be greater than 0. The
default value for numlblks is 100.

malloc(3MALLOC)

NAME

SYNOPSIS

DESCRIPTION

312 man pages section 3: Basic Library Functions • Last Revised 31 Dec 1996

M_GRAIN Set grain to value. The sizes of all blocks smaller than maxfast are
considered to be rounded up to the nearest multiple of grain. grain
must be greater than 0. The default value of grain is the smallest
number of bytes that will allow alignment of any data type. Value
will be rounded up to a multiple of the default when grain is set.

M_KEEP Preserve data in a freed block until the next malloc(),
realloc(), or calloc(). This option is provided only for
compatibility with the old version of malloc(), and it is not
recommended.

These values are defined in the <malloc.h> header.

The mallopt() function can be called repeatedly, but cannot be called after the first
small block is allocated.

The mallinfo() function provides instrumentation describing space usage. It returns
the mallinfo structure with the following members:

unsigned long arena; /* total space in arena */
unsigned long ordblks; /* number of ordinary blocks */
unsigned long smblks; /* number of small blocks */
unsigned long hblkhd; /* space in holding block headers */
unsigned long hblks; /* number of holding blocks */
unsigned long usmblks; /* space in small blocks in use */
unsigned long fsmblks; /* space in free small blocks */
unsigned long uordblks; /* space in ordinary blocks in use */
unsigned long fordblks; /* space in free ordinary blocks */
unsigned long keepcost; /* space penalty if keep option */

/* is used */

The mallinfo structure is defined in the <malloc.h> header.

Each of the allocation routines returns a pointer to space suitably aligned (after
possible pointer coercion) for storage of any type of object.

The malloc(), realloc(), and calloc() functions return a null pointer if there is
not enough available memory. When realloc() returns NULL, the block pointed to
by ptr is left intact. If mallopt() is called after any allocation or if cmd or value are
invalid, a non-zero value is returned. Otherwise, it returns 0.

If malloc(), calloc(), or realloc() returns unsuccessfully, errno is set to
indicate the error:

ENOMEM size bytes of memory exceeds the physical limits of your system,
and cannot be allocated.

EAGAIN There is not enough memory available at this point in time to
allocate size bytes of memory; but the application could try again
later.

See attributes(5) for descriptions of the following attributes:

malloc(3MALLOC)

RETURN VALUES

ERRORS

ATTRIBUTES

Basic Library Functions 313

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

brk(2), bsdmalloc(3MALLOC), libmtmalloc(3LIB), malloc(3C),
mapmalloc(3MALLOC), mtmalloc(3MALLOC), watchmalloc(3MALLOC),
attributes(5)

Note that unlike malloc(3C), this package does not preserve the contents of a block
when it is freed, unless the M_KEEP option of mallopt() is used.

Undocumented features of malloc(3C) have not been duplicated.

Function prototypes for malloc(), realloc(), calloc(), and free() are also
defined in the <malloc.h> header for compatibility with old applications. New
applications should include <stdlib.h> to access the prototypes for these functions.
Comparative Features of these malloc routines, bsdmalloc(3MALLOC), and
malloc(3C)

� These malloc routines are space-efficient but have slower performance.

� The bsdmalloc(3MALLOC) routines afford better performance but are
space-inefficient.

� The standard, fully SCD-compliant malloc(3C) routines are a trade-off between
performance and space-efficiency.

The free() function does not set errno.

malloc(3MALLOC)

SEE ALSO

NOTES

314 man pages section 3: Basic Library Functions • Last Revised 31 Dec 1996

mapmalloc – memory allocator

cc [flag ...] file ... -lmapmalloc [library ...]

#include <stdlib.h>

void *malloc(size_t size);

void *calloc(size_t nelem, size_t elsize);

void free(void * ptr);

void *realloc(void *ptr, size_t size);

The collection of malloc routines in this library use mmap(2) instead of sbrk(2) for
acquiring new heap space. The routines in this library are intended to be used only if
necessary, when applications must call sbrk(), but need to call other library routines
that might call malloc. The algorithms used by these routines are not sophisticated.
There is no reclaiming of memory.

malloc() and free() provide a simple general-purpose memory allocation
package.

malloc() returns a pointer to a block of at least size bytes suitably aligned for any
use.

The argument to free() is a pointer to a block previously allocated by malloc(),
calloc() or realloc(). If ptr is a NULL pointer, no action occurs.

Undefined results will occur if the space assigned by malloc() is overrun or if some
random number is handed to free().

calloc() allocates space for an array of nelem elements of size elsize. The space is
initialized to zeros.

realloc() changes the size of the block pointed to by ptr to size bytes and returns
a pointer to the (possibly moved) block. The contents will be unchanged up to the
lesser of the new and old sizes. If ptr is NULL, realloc() behaves like malloc() for
the specified size. If size is zero and ptr is not a null pointer, the object pointed to is
freed.

Each of the allocation routines returns a pointer to space suitably aligned (after
possible pointer coercion) for storage of any type of object.

malloc() and realloc() will fail if there is not enough available memory.

Entry points for malloc_debug(), mallocmap(), mallopt(), mallinfo(),
memalign(), and valloc(), are empty routines, and are provided only to protect
the user from mixing malloc() functions from different implementations.

If there is no available memory, malloc(), realloc(), and calloc() return a null
pointer. When realloc() returns NULL, the block pointed to by ptr is left intact. If
size, nelem, or elsize is 0, a unique pointer to the arena is returned.

mapmalloc(3MALLOC)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

Basic Library Functions 315

/usr/lib/libmapmalloc

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

brk(2), getrlimit(2), mmap(2), realloc(3C), malloc(3MALLOC), attributes(5)

mapmalloc(3MALLOC)

FILES

ATTRIBUTES

SEE ALSO

316 man pages section 3: Basic Library Functions • Last Revised 26 Mar 1998

mblen – get number of bytes in a character

#include <stdlib.h>

int mblen(const char *s, size_t n);

If s is not a null pointer, mblen() determines the number of bytes constituting the
character pointed to by s. It is equivalent to:

mbtowc((wchar_t *)0, s, n);

A call with s as a null pointer causes this function to return 0. The behavior of this
function is affected by the LC_CTYPE category of the current locale.

If s is a null pointer, mblen() returns 0. It s is not a null pointer, mblen() returns 0
(if s points to the null byte), the number of bytes that constitute the character (if the
next n or fewer bytes form a valid character), or −1 (if they do not form a valid
character) and may set errno to indicate the error. In no case will the value returned
be greater than n or the value of the MB_CUR_MAX macro.

The mblen() function may fail if:

EILSEQ Invalid character sequence is detected.

The mblen() function can be used safely in multithreaded applications, as long as
setlocale(3C) is not being called to change the locale.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

CSI Enabled

mbstowcs(3C), mbtowc(3C), setlocale(3C), wcstombs(3C), wctomb(3C),
attributes(5)

mblen(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

Basic Library Functions 317

mbrlen – get number of bytes in a character (restartable)

#include <wchar.h>

size_t mbrlen(const char *s, size_t n, mbstate_t *ps);

If s is not a null pointer, mbrlen() determines the number of bytes constituting the
character pointed to by s. It is equivalent to:

mbstate_t internal;
mbrtowc(NULL, s, n, ps != NULL ? ps : &internal);

If ps is a null pointer, the mbrlen() function uses its own internal mbstate_t object,
which is initialized at program startup to the initial conversion state. Otherwise, the
mbstate_t object pointed to by ps is used to completely describe the current
conversion state of the associated character sequence. Solaris will behave as if no
function defined in the Solaris Reference Manual calls mbrlen().

The behavior of this function is affected by the LC_CTYPE category of the current
locale. See environ(5).

The mbrlen() function returns the first of the following that applies:

0 If the next n or fewer bytes complete the character that
corresponds to the null wide-character.

positive If the next n or fewer bytes complete a valid character; the value
returned is the number of bytes that complete the character.

(size_t)−2 If the next n bytes contribute to an incomplete but potentially valid
character, and all n bytes have been processed. When n has at least
the value of the MB_CUR_MAX macro, this case can only occur if s
points at a sequence of redundant shift sequences (for
implementations with state-dependent encodings).

(size_t)−1 If an encoding error occurs, in which case the next n or fewer bytes
do not contribute to a complete and valid character. In this case,
EILSEQ is stored in errno and the conversion state is undefined.

The mbrlen() function may fail if:

EINVAL The ps argument points to an object that contains an invalid
conversion state.

EILSEQ Invalid character sequence is detected.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See NOTES below

mbrlen(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

318 man pages section 3: Basic Library Functions • Last Revised 3 Feb 1998

mbrtowc(3C), mbsinit(3C), setlocale(3C), attributes(5), environ(5)

If ps is not a null pointer, mbrlen() uses the mbstate_t object pointed to by ps and
the function can be used safely in multithreaded applications, as long as
setlocale(3C) is not being called to change the locale. If ps is a null pointer,
mbrlen() uses its internal mbstate_t object and the function is Unsafe in
multithreaded applications.

mbrlen(3C)

SEE ALSO

NOTES

Basic Library Functions 319

mbrtowc – convert a character to a wide-character code (restartable)

#include <wchar.h>

size_t mbrtowc(wchar_t *pwc, const char *s, size_t n, mbstate_t
*ps);

If s is a null pointer, the mbrtowc() function is equivalent to the call:

mbrtowc(NULL, ‘‘’’, 1, ps)

In this case, the values of the arguments pwc and n are ignored.

If s is not a null pointer, the mbrtowc() function inspects at most n bytes beginning at
the byte pointed to by s to determine the number of bytes needed to complete the next
character (including any shift sequences). If the function determines that the next
character is completed, it determines the value of the corresponding wide-character
and then, if pwc is not a null pointer, stores that value in the object pointed to by pwc.
If the corresponding wide-character is the null wide-character, the resulting state
described is the initial conversion state.

If ps is a null pointer, the mbrtowc() function uses its own internal mbstate_t
object, which is initialized at program startup to the initial conversion state.
Otherwise, the mbstate_t object pointed to by ps is used to completely describe the
current conversion state of the associated character sequence. Solaris will behave as if
no function defined in the Solaris Reference Manual calls mbrtowc().

The behavior of this function is affected by the LC_CTYPE category of the current
locale. See environ(5).

The mbrtowc() function returns the first of the following that applies:

0 If the next n or fewer bytes complete the character that
corresponds to the null wide-character (which is the value stored).

positive If the next n or fewer bytes complete a valid character (which is
the value stored); the value returned is the number of bytes that
complete the character.

(size_t)−2 If the next n bytes contribute to an incomplete but potentially valid
character, and all n bytes have been processed (no value is stored).
When n has at least the value of the MB_CUR_MAX macro, this case
can only occur if s points at a sequence of redundant shift
sequences (for implementations with state-dependent encodings).

(size_t)−1 If an encoding error occurs, in which case the next n or fewer bytes
do not contribute to a complete and valid character (no value is
stored). In this case, EILSEQ is stored in errno and the conversion
state is undefined.

The mbrtowc() function may fail if:

mbrtowc(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

320 man pages section 3: Basic Library Functions • Last Revised 3 Feb 1998

EINVAL The ps argument points to an object that contains an invalid
conversion state.

EILSEQ Invalid character sequence is detected.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See NOTES below

mbsinit(3C), setlocale(3C), attributes(5), environ(5)

If ps is not a null pointer, mbrtowc() uses the mbstate_t object pointed to by ps and
the function can be used safely in multithreaded applications, as long as
setlocale(3C) is not being called to change the locale. If ps is a null pointer,
mbrtowc() uses its internal mbstate_t object and the function is Unsafe in
multithreaded applications.

mbrtowc(3C)

ATTRIBUTES

SEE ALSO

NOTES

Basic Library Functions 321

mbsinit – determine conversion object status

#include <wchar.h>

int mbsinit(const mbstate_t *ps);

If ps is not a null pointer, the mbsinit() function determines whether the object
pointed to by ps describes an initial conversion state.

The mbsinit() function returns non-zero if ps is a null pointer, or if the pointed-to
object describes an initial conversion state; otherwise, it returns 0.

If an mbstate_t object is altered by any of the functions described as "restartable",
and is then used with a different character sequence, or in the other conversion
direction, or with a different LC_CTYPE category setting than on earlier function calls,
the behavior is undefined. See environ(5).

No errors are defined.

The mbstate_t object is used to describe the current conversion state from a
particular character sequence to a wide-character sequence (or vice versa) under the
rules of a particular setting of the LC_CTYPE category of the current locale.

The initial conversion state corresponds, for a conversion in either direction, to the
beginning of a new character sequence in the initial shift state. A zero-valued
mbstate_t object is at least one way to describe an initial conversion state. A
zero-valued mbstate_t object can be used to initiate conversion involving any
character sequence, in any LC_CTYPE category setting.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

mbrlen(3C), mbrtowc(3C), mbsrtowcs(3C), setlocale(3C), wcrtomb(3C),
wcsrtombs(3C), attributes(5), environ(5)

The mbsinit() function can be used safely in multithreaded applications, as long as
setlocale(3C) is not being called to change the locale.

mbsinit(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

NOTES

322 man pages section 3: Basic Library Functions • Last Revised 3 Feb 1998

mbsrtowcs – convert a character string to a wide-character string (restartable)

#include <wchar.h>

size_t mbsrtowcs(wchar_t *dst, const char **src, size_t len,
mbstate_t *ps);

The mbsrtowcs() function converts a sequence of characters, beginning in the
conversion state described by the object pointed to by ps, from the array indirectly
pointed to by src into a sequence of corresponding wide-characters. If dst is not a null
pointer, the converted characters are stored into the array pointed to by dst.
Conversion continues up to and including a terminating null character, which is also
stored. Conversion stops early in either of the following cases:

� When a sequence of bytes is encountered that does not form a valid character.

� When len codes have been stored into the array pointed to by dst (and dst is not a
null pointer).

Each conversion takes place as if by a call to the mbrtowc() function.

If dst is not a null pointer, the pointer object pointed to by src is assigned either a null
pointer (if conversion stopped due to reaching a terminating null character) or the
address just past the last character converted (if any). If conversion stopped due to
reaching a terminating null character, and if dst is not a null pointer, the resulting state
described is the initial conversion state.

If ps is a null pointer, the mbsrtowcs() function uses its own internal mbstate_t
object, which is initialized at program startup to the initial conversion state.
Otherwise, the mbstate_t object pointed to by ps is used to completely describe the
current conversion state of the associated character sequence. Solaris will behave as if
no function defined in the Solaris Reference Manual calls mbsrtowcs().

The behavior of this function is affected by the LC_CTYPE category of the current
locale. See environ(5).

If the input conversion encounters a sequence of bytes that do not form a valid
character, an encoding error occurs. In this case, the mbsrtowcs() function stores the
value of the macro EILSEQ in errno and returns (size_t)−1; the conversion state is
undefined. Otherwise, it returns the number of characters successfully converted, not
including the terminating null (if any).

The mbsrtowcs() function may fail if:

EINVAL The ps argument points to an object that contains an invalid
conversion state.

EILSEQ Invalid character sequence is detected.

See attributes(5) for descriptions of the following attributes:

mbsrtowcs(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

Basic Library Functions 323

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See NOTES below

mbrtowc(3C), mbsinit(3C), setlocale(3C), attributes(5), environ(5)

If ps is not a null pointer, mbsrtowcs() uses the mbstate_t object pointed to by ps
and the function can be used safely in multithreaded applications, as long as
setlocale(3C) is not being called to change the locale. If ps is a null pointer,
mbsrtowcs() uses its internal mbstate_t object and the function is Unsafe in
multithreaded applications.

mbsrtowcs(3C)

SEE ALSO

NOTES

324 man pages section 3: Basic Library Functions • Last Revised 3 Feb 1998

mbstowcs – convert a character string to a wide-character string

#include <stdlib.h>

size_t mbstowcs(wchar_t *pwcs, const char *s, size_t n);

The mbstowcs() function converts a sequence of characters from the array pointed to
by s into a sequence of corresponding wide-character codes and stores not more than n
wide-character codes into the array pointed to by pwcs. No characters that follow a
null byte (which is converted into a wide-character code with value 0) will be
examined or converted. Each character is converted as if by a call to mbtowc(3C).

No more than n elements will be modified in the array pointed to by pwcs. If copying
takes place between objects that overlap, the behavior is undefined.

The behavior of this function is affected by the LC_CTYPE category of the current
locale. If pwcs is a null pointer, mbstowcs() returns the length required to convert the
entire array regardless of the value of n, but no values are stored.

If an invalid character is encountered, mbstowcs() returns (size_t)−1 and may set
errno to indicate the error. Otherwise, mbstowcs() returns the number of the array
elements modified (or required if pwcs is NULL), not including a terminating 0 code,
if any. The array will not be zero-terminated if the value returned is n.

The mbstowcs() function may fail if:

EILSEC Invalid byte sequence is detected.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

CSI Enabled

mblen(3C), mbtowc(3C), setlocale(3C), wcstombs(3C), wctomb(3C),
attributes(5)

mbstowcs(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Basic Library Functions 325

mbtowc – convert a character to a wide-character code

#include <stdlib.h>

int mbtowc(wchar_t *pwc, const char *s, size_t n);

If s is not a null pointer, mbtowc() determines the number of the bytes that constitute
the character pointed to by s. It then determines the wide-character code for the value
of type wchar_t that corresponds to that character. (The value of the wide-character
code corresponding to the null byte is 0.) If the character is valid and pwc is not a null
pointer, mbtowc() stores the wide-character code in the object pointed to by pwc.

A call with s as a null pointer causes this function to return 0. The behavior of this
function is affected by the LC_CTYPE category of the current locale. At most n bytes of
the array pointed to by s will be examined.

If s is a null pointer, mbtowc() returns 0. If s is not a null pointer, mbtowc() returns
0 (if s points to the null byte), the number of bytes that constitute the converted
character (if the next n or fewer bytes form a valid character), or −1 and may set
errno to indicate the error (if they do not form a valid character).

In no case will the value returned be greater than n or the value of the MB_CUR_MAX
macro.

The mbtowc() function may fail if:

EILSEQ Invalid character sequence is detected.

The mbtowc() function can be used safely in multithreaded applications, as long as
setlocale(3C) is not being called to change the locale.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

CSI Enabled

mblen(3C), mbstowcs(3C), setlocale(3C), wcstombs(3C), wctomb(3C),
attributes(5)

mbtowc(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

326 man pages section 3: Basic Library Functions • Last Revised 20 Dec 1996

mctl – memory management control

/usr/ucb/cc[flag ...] file ...
#include <sys/types.h>

#include <sys/mman.h>

int mctl(addr, len, function, arg);

caddr_t addr;
size_t len;
int function;
int arg;

mctl() applies a variety of control functions over pages identified by the mappings
established for the address range [addr, addr + len). The function to be performed is
identified by the argument function. Valid functions are defined in mman.h as follows:

MC_LOCK Lock the pages in the range in memory. This function is used to
support mlock(). See mlock(3C) for semantics and usage. arg is
ignored.

MC_LOCKAS Lock the pages in the address space in memory. This function is
used to support mlockall(). See mlockall(3C) for semantics
and usage. addr and len are ignored. arg is an integer built from the
flags:

MCL_CURRENT Lock current mappings

MCL_FUTURE Lock future mappings

MC_SYNC Synchronize the pages in the range with their backing storage.
Optionally invalidate cache copies. This function is used to
support msync(). See msync(3C) for semantics and usage. arg is
used to represent the flags argument to msync(). It is constructed
from an OR of the following values:

MS_SYNC Synchronized write

MS_ASYNC Return immediately

MS_INVALIDATE Invalidate mappings

MS_ASYNC returns after all I/O operations are scheduled.
MS_SYNC does not return until all I/O operations are complete.
Specify exactly one of MS_ASYNC or MS_SYNC. MS_INVALIDATE
invalidates all cached copies of data from memory, requiring them
to be re-obtained from the object’s permanent storage location
upon the next reference.

MC_UNLOCK Unlock the pages in the range. This function is used to support
munlock(). arg is ignored.

MC_UNLOCKAS Remove address space memory lock, and locks on all current
mappings. This function is used to support munlockall(). addr

mctl(3UCB)

NAME

SYNOPSIS

DESCRIPTION

Basic Library Functions 327

and len must have the value 0. arg is ignored.

mctl() returns 0 on success, −1 on failure.

mctl() fails if:

EAGAIN Some or all of the memory identified by the operation could not be
locked due to insufficient system resources.

EBUSY MS_INVALIDATE was specified and one or more of the pages is
locked in memory.

EINVAL addr is not a multiple of the page size as returned by
getpagesize().

EINVAL addr and/or len do not have the value 0 when MC_LOCKAS or
MC_UNLOCKAS are specified.

EINVAL arg is not valid for the function specified.

EIO An I/O error occurred while reading from or writing to the file
system.

ENOMEM Addresses in the range [addr, addr + len) are invalid for the address
space of a process, or specify one or more pages which are not
mapped.

EPERM The process’s effective user ID is not super-user and one of
MC_LOCK MC_LOCKAS, MC_UNLOCK, or MC_UNLOCKAS was
specified.

mmap(2), memcntl(2), getpagesize(3C), mlock(3C), mlockall(3C), msync(3C)

Use of these interfaces should be restricted to only applications written on BSD
platforms. Use of these interfaces with any of the system libraries or in multi-thread
applications is unsupported.

mctl(3UCB)

RETURN VALUES

ERRORS

SEE ALSO

NOTES

328 man pages section 3: Basic Library Functions • Last Revised 18 Feb 1993

memory, memccpy, memchr, memcmp, memcpy, memmove, memset – memory
operations

#include <string.h>

void *memccpy(void *s1, const void *s2, int c, size_t n);

void *memchr(const void *s, int c, size_t n);

int memcmp(const void *s1, const void *s2, size_t n);

void *memcpy(void *s1, const void *s2, size_t n);

void *memmove(void *s1, const void *s2, size_t n);

void *memset(void *s, int c, size_t n);

#include <string.h>

const void *memchr(const void *s, int c, size_t n);

#include <cstring>

void *std::memchr(void *s, int c, size_t n);

These functions operate as efficiently as possible on memory areas (arrays of bytes
bounded by a count, not terminated by a null character). They do not check for the
overflow of any receiving memory area.

The memccpy() function copies bytes from memory area s2 into s1, stopping after the
first occurrence of c (converted to an unsigned char) has been copied, or after n
bytes have been copied, whichever comes first. It returns a pointer to the byte after the
copy of c in s1, or a null pointer if c was not found in the first n bytes of s2.

The memchr() function returns a pointer to the first occurrence of c (converted to an
unsigned char) in the first n bytes (each interpreted as an unsigned char) of
memory area s, or a null pointer if c does not occur.

The memcmp() function compares its arguments, looking at the first n bytes (each
interpreted as an unsigned char), and returns an integer less than, equal to, or
greater than 0, according as s1 is lexicographically less than, equal to, or greater than
s2 when taken to be unsigned characters.

The memcpy() function copies n bytes from memory area s2 to s1. It returns s1.

The memmove() function copies n bytes from memory areas s2 to s1. Copying
between objects that overlap will take place correctly. It returns s1.

The memset() function sets the first n bytes in memory area s to the value of c
(converted to an unsigned char). It returns s.

See attributes(5) for descriptions of the following attributes:

memory(3C)

NAME

SYNOPSIS

ISO C++

DESCRIPTION

ATTRIBUTES

Basic Library Functions 329

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

string(3C), attributes(5)

memory(3C)

SEE ALSO

330 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

mkfifo – make a FIFO special file

#include <sys/types.h>

#include <sys/stat.h>

int mkfifo(const char *path, mode_t mode);

The mkfifo() function creates a new FIFO special file named by the pathname
pointed to by path. The file permission bits of the new FIFO are initialized from mode.
The file permission bits of the mode argument are modified by the process’s file
creation mask (see umask(2)). Bits other than the file permission bits in mode are
ignored.

The FIFO’s user ID is set to the process’s effective user ID. The FIFO’s group ID is set
to the group ID of the parent directory or to the effective group ID of the process.

The mkfifo() function calls mknod(2) to create the file.

Upon successful completion, mkfifo() marks for update the st_atime, st_ctime,
and st_mtime fields of the file. Also, the st_ctime and st_mtime fields of the
directory that contains the new entry are marked for update.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set
to indicate the error.

The mkfifo() function will fail if:

EACCES A component of the path prefix denies search permission, or write
permission is denied on the parent directory of the FIFO to be
created.

EEXIST The named file already exists.

ELOOP A loop exists in symbolic links encountered during resolution of
the path argument.

ENAMETOOLONG The length of the path argument exceeds {PATH_MAX} or a
pathname component is longer than {NAME_MAX}.

ENOENT A component of the path prefix specified by path does not name
an existing directory or path is an empty string.

ENOSPC The directory that would contain the new file cannot be extended
or the file system is out of file-allocation resources.

ENOTDIR A component of the path prefix is not a directory.

EROFS The named file resides on a read-only file system.

The mkfifo() function may fail if:

ELOOP More than {SYMLOOP_MAX} symbolic links were encountered during
resolution of the path argument.

mkfifo(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Basic Library Functions 331

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

mkdir(1), chmod(2), exec(2), mknod(2), umask(2), stat(3HEAD), fs_ufs(4),
attributes(5)

mkfifo(3C)

ATTRIBUTES

SEE ALSO

332 man pages section 3: Basic Library Functions • Last Revised 8 Aug 2001

mkstemp – make a unique file name

#include <stdlib.h>

int mkstemp(char *template);

The mkstemp() function replaces the contents of the string pointed to by template by a
unique file name, and returns a file descriptor for the file open for reading and
writing. The function thus prevents any possible race condition between testing
whether the file exists and opening it for use. The string in template should look like a
file name with six trailing ’X’s; mkstemp() replaces each ’X’ with a character from the
portable file name character set. The characters are chosen such that the resulting
name does not duplicate the name of an existing file.

Upon successful completion, mkstemp() returns an open file descriptor. Otherwise
−1 is returned if no suitable file could be created.

No errors are defined.

It is possible to run out of letters.

The mkstemp() function does not check to determine whether the file name part of
template exceeds the maximum allowable file name length.

The tmpfile(3C) function is preferred over this function.

The mkstemp() function has a transitional interface for 64-bit file offsets. See lf64(5).

getpid(2), open(2), tmpfile(3C), tmpnam(3C), lf64(5), standards(5)

mkstemp(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

SEE ALSO

Basic Library Functions 333

mktemp – make a unique file name

#include <stdlib.h>

char *mktemp(char *template);

The mktemp() function replaces the contents of the string pointed to by template with
a unique file name, and returns template. The string in template should look like a file
name with six trailing ’X’s; mktemp() will replace the ’X’s with a character string that
can be used to create a unique file name. Only 26 unique file names per thread can be
created for each unique template.

The mktemp() function will assign to template the empty string if it cannot create a
unique name.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

mkstemp(3C), tmpfile(3C), tmpnam(3C), attributes(5)

mktemp(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

334 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

mktime – converts a tm structure to a calendar time

#include <time.h>

time_t mktime(struct tm *timeptr);

The mktime() function converts the time represented by the tm structure pointed to
by timeptr into a calendar time (the number of seconds since 00:00:00 UTC, January 1,
1970).

The tm structure contains the following members:

int tm_sec; /* seconds after the minute [0, 61] */
int tm_min; /* minutes after the hour [0, 59] */
int tm_hour; /* hour since midnight [0, 23] */
int tm_mday; /* day of the month [1, 31] */
int tm_mon; /* months since January [0, 11] */
int tm_year; /* years since 1900 */
int tm_wday; /* days since Sunday [0, 6] */
int tm_yday; /* days since January 1 [0, 365] */
int tm_isdst; /* flag for daylight savings time */

In addition to computing the calendar time, mktime() normalizes the supplied tm
structure. The original values of the tm_wday and tm_yday components of the
structure are ignored, and the original values of the other components are not
restricted to the ranges indicated in the definition of the structure. On successful
completion, the values of the tm_wday and tm_yday components are set
appropriately, and the other components are set to represent the specified calendar
time, but with their values forced to be within the appropriate ranges. The final value
of tm_mday is not set until tm_mon and tm_year are determined.

The tm_year member must be for year 1901 or later. Calendar times before 20:45:52
UTC, December 13, 1901 or after 03:14:07 UTC, January 19, 2038 cannot be
represented. Portable applications should not try to create dates before 00:00:00 UTC,
January 1, 1970 or after 00:00:00 UTC, January 1, 2038.

The original values of the components may be either greater than or less than the
specified range. For example, a tm_hour of −1 means 1 hour before midnight,
tm_mday of 0 means the day preceding the current month, and tm_mon of −2 means 2
months before January of tm_year.

If tm_isdst is positive, the original values are assumed to be in the alternate
timezone. If it turns out that the alternate timezone is not valid for the computed
calendar time, then the components are adjusted to the main timezone. Likewise, if
tm_isdst is zero, the original values are assumed to be in the main timezone and are
converted to the alternate timezone if the main timezone is not valid. If tm_isdst is
negative, mktime() attempts to determine whether the alternate timezone is in effect
for the specified time.

Local timezone information is used as if mktime() had called tzset(). See
ctime(3C).

mktime(3C)

NAME

SYNOPSIS

DESCRIPTION

Basic Library Functions 335

If the calendar time can be represented in an object of type time_t, mktime()
returns the specified calendar time without changing errno. If the calendar time
cannot be represented, the function returns the value (time_t)−1 and sets errno to
indicate the error.

The mktime() function will fail if:

EOVERFLOW The date represented by the input tm struct cannot be represented
in a time_t. Note that the errno setting may change if future
revisions to the standards specify a different value.

The mktime() function is MT-Safe in multithreaded applications, as long as no
user-defined function directly modifies one of the following variables: timezone,
altzone, daylight, and tzname. See ctime(3C).

Note that −1 can be a valid return value for the time that is one second before the
Epoch. The user should clear errno before calling mktime(). If mktime() then
returns −1, the user should check errno to determine whether or not an error actually
occurred.

The mktime() function assumes Gregorian dates. Times before the adoption of the
Gregorian calendar will not match historial records.

EXAMPLE 1 Sample code using mktime().

What day of the week is July 4, 2001?

#include <stdio.h>
#include <time.h>
static char *const wday[] = {

"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday", "-unknown-"

};
struct tm time_str;
/* . . .*/
time_str.tm_year = 2001 - 1900;
time_str.tm_mon = 7 - 1;
time_str.tm_mday = 4;
time_str.tm_hour = 0;
time_str.tm_min = 0;
time_str.tm_sec = 1;
time_str.tm_isdst = −1;
if (mktime(&time_str)== −1)

time_str.tm_wday=7;

printf("%s\n", wday[time_str.tm_wday]);

The zoneinfo timezone data files do not transition past Tue Jan 19 03:14:07 2038
UTC. Therefore for 64-bit applications using zoneinfo timezones, calculations
beyond this date may not use the correct offset from standard time, and could return
incorrect values. This affects the 64-bit version of mktime().

See attributes(5) for descriptions of the following attributes:

mktime(3C)

RETURN VALUES

ERRORS

USAGE

EXAMPLES

BUGS

ATTRIBUTES

336 man pages section 3: Basic Library Functions • Last Revised 30 Sep 1999

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

ctime(3C), getenv(3C), TIMEZONE(4), attributes(5)

mktime(3C)

SEE ALSO

Basic Library Functions 337

mlock, munlock – lock or unlock pages in memory

#include <sys/mman.h>

int mlock(caddr_t addr, size_t len);

int munlock(caddr_t addr, size_t len);

#include <sys/mman.h>

int mlock(const void * addr, size_t len);

int munlock(const void * addr, size_t len);

The mlock() function uses the mappings established for the address range [addr, addr
+ len) to identify pages to be locked in memory. If the page identified by a mapping
changes, such as occurs when a copy of a writable MAP_PRIVATE page is made upon
the first store, the lock will be transferred to the newly copied private page.

The munlock() function removes locks established with mlock().

A given page may be locked multiple times by executing an mlock() through
different mappings. That is, if two different processes lock the same page, then the
page will remain locked until both processes remove their locks. However, within a
given mapping, page locks do not nest − multiple mlock() operations on the same
address in the same process will all be removed with a single munlock(). Of course,
a page locked in one process and mapped in another (or visible through a different
mapping in the locking process) is still locked in memory. This fact can be used to
create applications that do nothing other than lock important data in memory, thereby
avoiding page I/O faults on references from other processes in the system.

If the mapping through which an mlock() has been performed is removed, an
munlock() is implicitly performed. An munlock() is also performed implicitly
when a page is deleted through file removal or truncation.

Locks established with mlock() are not inherited by a child process after a fork()
and are not nested.

Attempts to mlock() more memory than a system-specific limit will fail.

Upon successful completion, the mlock() and munlock() functions return 0.
Otherwise, no changes are made to any locks in the address space of the process, the
functions return −1 and set errno to indicate the error.

The mlock() and munlock() functions will fail if:

EINVAL The addr argument is not a multiple of the page size as returned by
sysconf(3C).

ENOMEM Addresses in the range [addr, addr + len) are invalid for the address
space of a process, or specify one or more pages which are not
mapped.

ENOSYS The system does not support this memory locking interface.

mlock(3C)

NAME

Default

Standard
conforming

DESCRIPTION

RETURN VALUES

ERRORS

338 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

EPERM The process’s effective user ID is not superuser.

The mlock() function will fail if:

EAGAIN Some or all of the memory identified by the range [addr, addr + len)
could not be locked because of insufficient system resources.

Because of the impact on system resources, the use of mlock() and munlock() is
restricted to the superuser.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

fork(2), memcntl(2), mmap(2), plock(3C), mlockall(3C), sysconf(3C),
attributes(5), standards(5)

mlock(3C)

USAGE

ATTRIBUTES

SEE ALSO

Basic Library Functions 339

mlockall, munlockall – lock or unlock address space

#include <sys/mman.h>

int mlockall(int flags);

int munlockall(void);

The mlockall() function locks in memory all pages mapped by an address space.

The value of flags determines whether the pages to be locked are those currently
mapped by the address space, those that will be mapped in the future, or both:

MCL_CURRENT Lock current mappings
MCL_FUTURE Lock future mappings

If MCL_FUTURE is specified for mlockall(), mappings are locked as they are added
to the address space (or replace existing mappings), provided sufficient memory is
available. Locking in this manner is not persistent across the exec family of functions
(see exec(2)).

Mappings locked using mlockall() with any option may be explicitly unlocked
with a munlock() call (see mlock(3C)).

The munlockall() function removes address space locks and locks on mappings in
the address space.

All conditions and constraints on the use of locked memory that apply to mlock(3C)
also apply to mlockall().

Locks established with mlockall() are not inherited by a child process after a
fork(2) call, and are not nested.

Upon successful completion, the mlockall() and munlockall() functions return
0. Otherwise, they return −1 and set errno to indicate the error.

The mlockall() and munlockall() functions will fail if:

EAGAIN Some or all of the memory in the address space could not be
locked due to sufficient resources. This error condition applies to
mlockall() only.

EINVAL The flags argument contains values other than MCL_CURRENT and
MCL_FUTURE.

EPERM The process’s effective user ID is not super-user.

The mlockall() and munlockall() functions require super-user privileges.

See attributes(5) for descriptions of the following attributes:

mlockall(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

340 man pages section 3: Basic Library Functions • Last Revised 18 Apr 1997

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

exec(2), fork(2), memcntl(2), mmap(2), plock(3C), mlock(3C), sysconf(3C),
attributes(5)

mlockall(3C)

SEE ALSO

Basic Library Functions 341

modf, modff – decompose floating-point number

#include <math.h>

double modf(double x, double *iptr);

float modff(float x, float *iptr);

The modf() and modff() functions break the argument x into integral and fractional
parts, each of which has the same sign as the argument. The modf() function stores
the integral part as a double in the object pointed to by iptr. The modff() function
stores the integral part as a float in the object pointed to by iptr.

Upon successful completion, modf() and modff() return the signed fractional part
of x.

If x is NaN, NaN is returned and *iptr is set to NaN.

If the correct value would cause underflow to 0.0, modf() returns 0 and errno may
be set to ERANGE.

The modf() function may fail if:

ERANGE The result underflows.

An application wishing to check for error situations should set errno to 0 before
calling modf(). If errno is non-zero on return, or the return value is NaN, an error
has occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

frexp(3C), isnan(3M), ldexp(3C), attributes(5)

modf(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

342 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

monitor – prepare process execution profile

#include <mon.h>

void monitor(int (*lowpc(), int (*highpc)(), WORD *buffer, size_t
bufsize, size_t nfunc);

The monitor() function is an interface to the profil(2) function and is called
automatically with default parameters by any program created by the cc(1B) utility
with the -p option specified. Except to establish further control over profiling activity,
it is not necessary to explicitly call monitor().

When used, monitor() is called at least at the beginning and the end of a program.
The first call to monitor() initiates the recording of two different kinds of
execution-profile information: execution-time distribution and function call count.
Execution-time distribution data is generated by profil() and the function call
counts are generated by code supplied to the object file (or files) by cc(1B) -p. Both
types of information are collected as a program executes. The last call to monitor()
writes this collected data to the output file mon.out.

The name of the file written by monitor() is controlled by the environment variable
PROFDIR. If PROFDIR does not exist, the file mon.out is created in the current
directory. If PROFDIR exists but has no value, monitor() does no profiling and
creates no output file. If PROFDIR is dirname, and monitor() is called automatically
by compilation with cc -p, the file created is dirname/pid.progname where progname
is the name of the program.

The lowpc and highpc arguments are the beginning and ending addresses of the region
to be profiled.

The buffer argument is the address of a user-supplied array of WORD (defined in the
header <mon.h>). The buffer argument is used by monitor() to store the histogram
generated by profil() and the call counts.

The bufsize argument identifies the number of array elements in buffer.

The nfunc argument is the number of call count cells that have been reserved in buffer.
Additional call count cells will be allocated automatically as they are needed.

The bufsize argument should be computed using the following formula:

size_of_buffer =
sizeof(struct hdr) +
nfunc * sizeof(struct cnt) +
((highpc-lowpc)/BARSIZE) * sizeof(WORD) +
sizeof(WORD) − 1 ;

bufsize = (size_of_buffer / sizeof(WORD));

where:

� lowpc, highpc, nfunc are the same as the arguments to monitor();

monitor(3C)

NAME

SYNOPSIS

DESCRIPTION

Basic Library Functions 343

� BARSIZE is the number of program bytes that correspond to each histogram bar, or
cell, of the profil() buffer;

� the hdr and cnt structures and the type WORD are defined in the header <mon.h>.

The default call to monitor() is as follows:

monitor (&eprol, &etext, wbuf, wbufsz, 600);

where:

� eprol is the beginning of the user’s program when linked with cc -p (see
end(3C));

� etext is the end of the user’s program (see end(3C));

� wbuf is an array of WORD with wbufsz elements;

� wbufsz is computed using the bufsize formula shown above with BARSIZE of 8;

� 600 is the number of call count cells that have been reserved in buffer.

These parameter settings establish the computation of an execution-time distribution
histogram that uses profil() for the entire program, initially reserves room for 600
call count cells in buffer, and provides for enough histogram cells to generate
significant distribution-measurement results. For more information on the effects of
bufsize on execution-distribution measurements, see profil(2).

EXAMPLE 1 Example to stop execution monitoring and write the results to a file.

To stop execution monitoring and write the results to a file, use the following:

monitor((int (*)())0, (int (*)())0, (WORD *)0, 0, 0);

Use prof to examine the results.

Additional calls to monitor() after main() has been called and before exit() has
been called will add to the function-call count capacity, but such calls will also replace
and restart the profil() histogram computation.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

cc(1B), profil(2), end(3C), attributes(5), prof(5)

monitor(3C)

EXAMPLES

USAGE

ATTRIBUTES

SEE ALSO

344 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

msync – synchronize memory with physical storage

#include <sys/mman.h>

int msync(void *addr, size_t len, int flags);

The msync() function writes all modified copies of pages over the range [addr, addr +
len) to the underlying hardware, or invalidates any copies so that further references to
the pages will be obtained by the system from their permanent storage locations. The
permanent storage for a modified MAP_SHARED mapping is the file the page is
mapped to; the permanent storage for a modified MAP_PRIVATE mapping is its swap
area.

The flags argument is a bit pattern built from the following values:

MS_ASYNC perform asynchronous writes

MS_SYNC perform synchronous writes

MS_INVALIDATE invalidate mappings

If flags is MS_ASYNC or MS_SYNC, the function synchronizes the file contents to match
the current contents of the memory region.

� All write references to the memory region made prior to the call are visible by
subsequent read operations on the file.

� All writes to the same portion of the file prior to the call may or may not be visible
by read references to the memory region.

� Unmodified pages in the specified range are not written to the underlying
hardware.

If flags is MS_ASYNC, the function may return immediately once all write operations
are scheduled; if flags is MS_SYNC, the function does not return until all write
operations are completed.

If flags is MS_INVALIDATE, the function synchronizes the contents of the memory
region to match the current file contents.

� All writes to the mapped portion of the file made prior to the call are visible by
subsequent read references to the mapped memory region.

� All write references prior to the call, by any process, to memory regions mapped to
the same portion of the file using MAP_SHARED, are visible by read references to
the region.

If msync() causes any write to the file, then the file’s st_ctime and st_mtime fields
are marked for update.

Upon successful completion, msync() returns 0; otherwise, it returns −1 and sets
errno to indicate the error.

The msync() function will fail if:

msync(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Basic Library Functions 345

EBUSY Some or all of the addresses in the range [addr, addr + len) are
locked and MS_SYNC with the MS_INVALIDATE option is
specified.

EAGAIN Some or all pages in the range [addr, addr + len) are locked for I/O.

EINVAL The addr argument is not a multiple of the page size as returned by
sysconf(3C).

The flags argument is not some combination of MS_ASYNC and
MS_INVALIDATE.

EIO An I/O error occurred while reading from or writing to the file
system.

ENOMEM Addresses in the range [addr, addr + len) are outside the valid range
for the address space of a process, or specify one or more pages
that are not mapped.

EPERM MS_INVALIDATE was specified and one or more of the pages is
locked in memory.

The msync() function should be used by programs that require a memory object to be
in a known state, for example in building transaction facilities.

Normal system activity can cause pages to be written to disk. Therefore, there are no
guarantees that msync() is the only control over when pages are or are not written to
disk.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

memcntl(2), mmap(2), sysconf(3C), attributes(5)

msync(3C)

USAGE

ATTRIBUTES

SEE ALSO

346 man pages section 3: Basic Library Functions • Last Revised 17 Jan 2002

mtmalloc, mallocctl – MT hot memory allocator

#include <mtmalloc.h>

cc –o a.out –lthread –lmtmalloc

void *malloc(size_t size);

void *calloc(size_t nelem, size_t elsize);

void free(void *ptr);

void *memalign(size_t alignment, size_t size);

void *realloc(void *ptr, size_t size);

void *valloc(size_t size);

void mallocctl(int cmd, long value);

The malloc() and free() functions provide a simple general-purpose memory
allocation package that is suitable for use in high performance multithreaded
applications. The suggested use of this library is in multithreaded applications; it can
be used for single threaded applications, but there is no advantage in doing so. This
library cannot be dynamically loaded via dlopen() during runtime because there
must be only one manager of the process heap.

The malloc() function returns a pointer to a block of at least size bytes suitably
aligned for any use.

The argument to free() is a pointer to a block previously allocated by malloc(),
calloc() or realloc(). After free() is performed this space is available for
further allocation. If ptr is a null pointer, no action occurs.

Undefined results will occur if the space assigned by malloc() is overrun or if a
random number is handed to free(). A freed pointer that is passed to free() will
send a SIGABRT signal to the calling process. This behavior is controlled by
mallocctl().

The calloc() function allocates a zero-initialized space for an array of nelem
elements of size elsize.

The memalign() function allocates size bytes on a specified alignment boundary and
returns a pointer to the allocated block. The value of the returned address is
guaranteed to be an even multiple of alignment. Note that the value of alignment must
be a power of two, and must be greater than or equal to the size of a word.

The realloc() function changes the size of the block pointed to by ptr to size bytes
and returns a pointer to the (possibly moved) block. The contents will be unchanged
up to the lesser of the new and old sizes. If ptr is NULL, realloc() behaves like
malloc() for the specified size. If size is 0 and ptr is not a null pointer, the object
pointed to is freed.

mtmalloc(3MALLOC)

NAME

SYNOPSIS

DESCRIPTION

Basic Library Functions 347

The valloc() function has the same effect as malloc(), except that the allocated
memory will be aligned to a multiple of the value returned by
sysconf(_SC_PAGESIZE).

After possible pointer coercion, each allocation routine returns a pointer to a space
that is suitably aligned for storage of any type of object.

The malloc(), realloc(), calloc(), memalign(), and valloc() functions will
fail if there is not enough available memory.

The mallocctl() function controls the behavior of the malloc library. The options
fall into two general classes, debugging options and performance options.

MTDOUBLEFREE Allows double free of a pointer. Setting value to 1
means yes and 0 means no. The default behavior of
double free results in a core dump.

MTDEBUGPATTERN Writes misaligned data into the buffer after free().
When the buffer is reallocated, the contents are verified
to ensure that there was no access to the buffer after the
free. If the buffer has been dirtied, a SIGABRT signal
is delivered to the process. Setting value to 1 means yes
and 0 means no. The default behavior is to not write
misaligned data. The pattern used is 0xdeadbeef. Use
of this option results in a performance penalty.

MTINITBUFFER Writes misaligned data into the newly allocated buffer.
This option is useful for detecting some accesses before
initialization. Setting value to 1 means yes and 0 means
no. The default behavior is to not write misaligned data
to the newly allocated buffer. The pattern used is
0xbaddcafe. Use of this option results in a
performance penalty.

MTCHUNKSIZE This option changes the size of allocated memory when
a pool has exhausted all available memory in the
buffer. Increasing this value allocates more memory for
the application. A substantial performance gain can
occur because the library makes fewer calls to the OS
for more memory. Acceptable number values are
between 9 and 256; the default value is 9. This value
is multiplied by 8192.

If there is no available memory, malloc(), realloc(), memalign(), valloc(),
and calloc() return a null pointer. When realloc() is called with size > 0 and
returns NULL, the block pointed to by ptr is left intact. If size, nelem, or elsize is 0, either
a null pointer or a unique pointer that can be passed to free() is returned.

If malloc(), calloc(), or realloc() returns unsuccessfully, errno will be set to
indicate the error.

mtmalloc(3MALLOC)

RETURN VALUES

348 man pages section 3: Basic Library Functions • Last Revised 25 Sep 2001

The malloc(), calloc(), and realloc() functions will fail if:

ENOMEM The physical limits of the system are exceeded by size bytes of
memory which cannot be allocated.

EAGAIN There is not enough memory available to allocate size bytes of
memory; but the application could try again later.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

brk(2), getrlimit(2), bsdmalloc(3MALLOC), dlopen(3DL), malloc(3C),
malloc(3MALLOC), mapmalloc(3MALLOC), signal(3HEAD),
watchmalloc(3MALLOC), attributes(5)

Undefined results will occur if the size requested for a block of memory exceeds the
maximum size of a process’s heap. This information may be obtained using
getrlimit().

Comparative Features of malloc(3C), bsdmalloc(3MALLOC), malloc(3MALLOC),
and mtmalloc.

� The bsdmalloc(3MALLOC) routines afford better performance, but are
space-inefficient.

� The malloc(3MALLOC) routines are space-efficient, but have slower performance.

� The standard, fully SCD-compliant malloc routines are a trade-off between
performance and space-efficiency.

� The mtmalloc routines provide fast, concurrent malloc() implementation that is
space-inefficient.

The free() function does not set errno.

mtmalloc(3MALLOC)

ERRORS

ATTRIBUTES

SEE ALSO

WARNINGS

NOTES

Basic Library Functions 349

ndbm, dbm_clearerr, dbm_close, dbm_delete, dbm_error, dbm_fetch, dbm_firstkey,
dbm_nextkey, dbm_open, dbm_store – database functions

#include <ndbm.h>

int dbm_clearerr(DBM *db);

void dbm_close(DBM *db);

int dbm_delete(DBM *db, datum key);

int dbm_error(DBM *db);

datum dbm_fetch(DBM *db, datum key);

datum dbm_firstkey(DBM *db);

datum dbm_nextkey(DBM *db);

DBM *dbm_open(const char *file, int open_flags, mode_t file_mode);

int dbm_store(DBM *db, datum key, datum content, int store_mode);

These functions create, access and modify a database. They maintain key/content pairs
in a database. The functions will handle large databases (up to a billion blocks) and
will access a keyed item in one or two file system accesses. This package replaces the
earlier dbm(3UCB) library, which managed only a single database.

keys and contents are described by the datum typedef. A datum consists of at least two
members, dptr and dsize. The dptr member points to an object that is dsize bytes
in length. Arbitrary binary data, as well as ASCII character strings, may be stored in
the object pointed to by dptr.

The database is stored in two files. One file is a directory containing a bit map of keys
and has .dir as its suffix. The second file contains all data and has .pag as its suffix.

The dbm_open() function opens a database. The file argument to the function is
the pathname of the database. The function opens two files named file.dir and
file.pag. The open_flags argument has the same meaning as the flags argument of
open(2) except that a database opened for write-only access opens the files for read
and write access. The file_mode argument has the same meaning as the third argument
of open(2).

The dbm_close() function closes a database. The argument db must be a pointer to a
dbm structure that has been returned from a call to dbm_open().

The dbm_fetch() function reads a record from a database. The argument db is a
pointer to a database structure that has been returned from a call to dbm_open(). The
argument key is a datum that has been initialized by the application program to the
value of the key that matches the key of the record the program is fetching.

The dbm_store() function writes a record to a database. The argument db is a
pointer to a database structure that has been returned from a call to dbm_open(). The
argument key is a datum that has been initialized by the application program to the

ndbm(3C)

NAME

SYNOPSIS

DESCRIPTION

350 man pages section 3: Basic Library Functions • Last Revised 17 Sep 2001

value of the key that identifies (for subsequent reading, writing or deleting) the record
the program is writing. The argument content is a datum that has been initialized by
the application program to the value of the record the program is writing. The
argument store_mode controls whether dbm_store() replaces any pre-existing record
that has the same key that is specified by the key argument. The application program
must set store_mode to either DBM_INSERT or DBM_REPLACE. If the database contains
a record that matches the key argument and store_mode is DBM_REPLACE, the existing
record is replaced with the new record. If the database contains a record that matches
the key argument and store_mode is DBM_INSERT, the existing record is not replaced
with the new record. If the database does not contain a record that matches the key
argument and store_mode is either DBM_INSERT or DBM_REPLACE, the new record is
inserted in the database.

The dbm_delete() function deletes a record and its key from the database. The
argument db is a pointer to a database structure that has been returned from a call to
dbm_open(). The argument key is a datum that has been initialized by the application
program to the value of the key that identifies the record the program is deleting.

The dbm_firstkey() function returns the first key in the database. The argument db
is a pointer to a database structure that has been returned from a call to dbm_open().

The dbm_nextkey() function returns the next key in the database. The argument db
is a pointer to a database structure that has been returned from a call to dbm_open().
The dbm_firstkey() function must be called before calling dbm_nextkey().
Subsequent calls to dbm_nextkey() return the next key until all of the keys in the
database have been returned.

The dbm_error() function returns the error condition of the database. The argument
db is a pointer to a database structure that has been returned from a call to
dbm_open().

The dbm_clearerr() function clears the error condition of the database. The
argument db is a pointer to a database structure that has been returned from a call to
dbm_open().

These database functions support key/content pairs of at least 1024 bytes.

The dbm_store() and dbm_delete() functions return 0 when they succeed and a
negative value when they fail.

The dbm_store() function returns 1 if it is called with a flags value of DBM_INSERT
and the function finds an existing record with the same key.

The dbm_error() function returns 0 if the error condition is not set and returns a
non-zero value if the error condition is set.

The return value of dbm_clearerr() is unspecified .

ndbm(3C)

RETURN VALUES

Basic Library Functions 351

The dbm_firstkey() and dbm_nextkey() functions return a key datum. When the
end of the database is reached, the dptr member of the key is a null pointer. If an
error is detected, the dptr member of the key is a null pointer and the error condition
of the database is set.

The dbm_fetch() function returns a content datum. If no record in the database
matches the key or if an error condition has been detected in the database, the dptr
member of the content is a null pointer.

The dbm_open() function returns a pointer to a database structure. If an error is
detected during the operation, dbm_open() returns a (DBM *)0.

No errors are defined.

The following code can be used to traverse the database:

for(key = dbm_firstkey(db); key.dptr != NULL; key = dbm_nextkey(db))

The dbm_ functions provided in this library should not be confused in any way with
those of a general-purpose database management system. These functions do not
provide for multiple search keys per entry, they do not protect against multi-user
access (in other words they do not lock records or files), and they do not provide the
many other useful database functions that are found in more robust database
management systems. Creating and updating databases by use of these functions is
relatively slow because of data copies that occur upon hash collisions. These functions
are useful for applications requiring fast lookup of relatively static information that is
to be indexed by a single key.

The dptr pointers returned by these functions may point into static storage that may
be changed by subsequent calls.

The dbm_delete() function does not physically reclaim file space, although it does
make it available for reuse.

After calling dbm_store() or dbm_delete() during a pass through the keys by
dbm_firstkey() and dbm_nextkey(), the application should reset the database by
calling dbm_firstkey() before again calling dbm_nextkey().

EXAMPLE 1 Using the Database Functions

The following example stores and retrieves a phone number, using the name as the
key. Note that this example does not include error checking.

#include <ndbm.h>
#include <stdio.h>
#include <fcntl.h>
#define NAME "Bill"
#define PHONE_NO "123-4567"
#define DB_NAME "phones"
main()
{

DBM *db;
datum name = {NAME, sizeof (NAME)};

ndbm(3C)

ERRORS

USAGE

EXAMPLES

352 man pages section 3: Basic Library Functions • Last Revised 17 Sep 2001

EXAMPLE 1 Using the Database Functions (Continued)

datum put_phone_no = {PHONE_NO, sizeof (PHONE_NO)};
datum get_phone_no;
/* Open the database and store the record */
db = dbm_open(DB_NAME, O_RDWR | O_CREAT, 0660);
(void) dbm_store(db, name, put_phone_no, DBM_INSERT);
/* Retrieve the record */
get_phone_no = dbm_fetch(db, name);
(void) printf("Name: %s, Phone Number: %s\n", name.dptr,
get_phone_no.dptr);
/* Close the database */
dbm_close(db);
return (0);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

ar(1), cat(1), cp(1), tar(1), open(2), dbm(3UCB), netconfig(4), attributes(5)

The .pag file will contain holes so that its apparent size may be larger than its actual
content. Older versions of the UNIX operating system may create real file blocks for
these holes when touched. These files cannot be copied by normal means (cp(1),
cat(1), tar(1), ar(1)) without filling in the holes.

The sum of the sizes of a key/content pair must not exceed the internal block size
(currently 1024 bytes). Moreover all key/content pairs that hash together must fit on a
single block. dbm_store() will return an error in the event that a disk block fills with
inseparable data.

The order of keys presented by dbm_firstkey() and dbm_nextkey() depends on
a hashing function.

There are no interlocks and no reliable cache flushing; thus concurrent updating and
reading is risky.

The database files (file.dir and file.pag) are binary and are architecture-specific
(for example, they depend on the architecture’s byte order.) These files are not
guaranteed to be portable across architectures.

ndbm(3C)

ATTRIBUTES

SEE ALSO

NOTES

Basic Library Functions 353

nice – change priority of a process

/usr/ucb/cc[flag ...] file ...

#include<unistd.h>

int nice(incr);

int incr;

The scheduling priority of the process is augmented by incr. Positive priorities get less
service than normal. Priority 10 is recommended to users who wish to execute
long-running programs without undue impact on system performance.

Negative increments are illegal, except when specified by the privileged user. The
priority is limited to the range −20 (most urgent) to 20 (least). Requests for values
above or below these limits result in the scheduling priority being set to the
corresponding limit.

The priority of a process is passed to a child process by fork(2). For a privileged
process to return to normal priority from an unknown state, nice() should be called
successively with arguments −40 (goes to priority −20 because of truncation), 20 (to get
to 0), then 0 (to maintain compatibility with previous versions of this call).

Upon successful completion, nice() returns 0. Otherwise, a value of −1 is returned
and errno is set to indicate the error.

The priority is not changed if:

EPERM The value of incr specified was negative, and the effective user ID
is not the privileged user.

nice(1), renice(1), fork(2), priocntl(2), getpriority(3C)

Use of these interfaces should be restricted to only applications written on BSD
platforms. Use of these interfaces with any of the system libraries or in multi-threaded
applications is unsupported.

nice(3UCB)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

SEE ALSO

NOTES

354 man pages section 3: Basic Library Functions • Last Revised 12 Feb 1993

nlist – get entries from symbol table

/usr/ucb/cc [flag ...] file ...

#include <nlist.h>

int nlist(filename, nl);

char *filename;
struct nlist *nl;

nlist() examines the symbol table from the executable image whose name is
pointed to by filename, and selectively extracts a list of values and puts them in the
array of nlist structures pointed to by nl. The name list pointed to by nl consists of
an array of structures containing names, types and values. The n_name field of each
such structure is taken to be a pointer to a character string representing a symbol
name. The list is terminated by an entry with a NULL pointer (or a pointer to a NULL
string) in the n_name field. For each entry in nl, if the named symbol is present in the
executable image’s symbol table, its value and type are placed in the n_value and
n_type fields. If a symbol cannot be located, the corresponding n_type field of nl is
set to zero.

Upon normal completion, nlist() returns the number of symbols that were not
located in the symbol table. If an error occurs, nlist() returns −1 and sets all of the
n_type fields in members of the array pointed to by nl to zero.

nlist(3ELF), a.out(4)

Use of these interfaces should be restricted to only applications written on BSD
platforms. Use of these interfaces with any of the system libraries or in multi-thread
applications is unsupported.

Only the n_value field is compatibly set. Other fields in the nlist structure are
filled with the ELF (Executable and Linking Format) values (see nlist(3ELF) and
a.out(4)).

nlist(3UCB)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

SEE ALSO

NOTES

Basic Library Functions 355

nl_langinfo – language information

#include <langinfo.h>

char *nl_langinfo(nl_item item);

The nl_langinfo() function returns a pointer to a null-terminated string containing
information relevant to a particular language or cultural area defined in the programs
locale. The manifest constant names and values of item are defined by
<langinfo.h>. For example:

nl_langinfo (ABDAY_1);

would return a pointer to the string “Dim” if the identified language was French and a
French locale was correctly installed; or “Sun” if the identified language was English.

If setlocale(3C) has not been called successfully, or if data for a supported language
is either not available, or if item is not defined therein, then nl_langinfo() returns a
pointer to the corresponding string in the C locale. In all locales, nl_langinfo()
returns a pointer to an empty string if item contains an invalid setting.

The nl_langinfo() function can be used safely in multithreaded applications, as
long as setlocale(3C) is not being called to change the locale.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

CSI Enabled

setlocale(3C), attributes(5), langinfo(3HEAD), nl_types(3HEAD)

The array pointed to by the return value should not be modified by the program.
Subsequent calls to nl_langinfo() may overwrite the array.

nl_langinfo(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

WARNINGS

356 man pages section 3: Basic Library Functions • Last Revised 20 Dec 1996

offsetof – offset of structure member

#include <stddef.h>

size_t offsetof(type, member-designator);

The offsetof() macro defined in <stddef.h> expands to an integral constant
expression that has type size_t. The value of this expression is the offset in bytes to
the structure member (designated by member-designator) from the beginning of its
structure (designated by type).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

attributes(5)

offsetof(3C)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

Basic Library Functions 357

opendir, fdopendir – open directory

#include <sys/types.h>

#include <dirent.h>

DIR *opendir(const char *dirname);

DIR *fdopendir(int fildes);

The opendir() function opens a directory stream corresponding to the directory
named by the dirname argument.

The fdopendir() function opens a directory stream for the directory file descriptor
fildes. The directory file discriptor should not be used or closed following a successful
function call, as this might cause undefined results from future operations on the
directory stream obtained from the call. Use closedir(3C) to close a directory
stream.

The directory stream is positioned at the first entry. If the type DIR is implemented
using a file descriptor, applications will only be able to open up to a total of
{OPEN_MAX} files and directories. A successful call to any of the exec functions will
close any directory streams that are open in the calling process. See exec(2).

Upon successful completion, opendir() and fdopendir() return a pointer to an
object of type DIR. Otherwise, a null pointer is returned and errno is set to indicate
the error.

The opendir() function will fail if:

EACCES Search permission is denied for the component of the path prefix
of dirname or read permission is denied for dirname.

ELOOP Too many symbolic links were encountered in resolving path.

ENAMETOOLONG The length of the dirname argument exceeds {PATH_MAX}, or a path
name component is longer than {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENOENT A component of dirname does not name an existing directory or
dirname is an empty string.

ENOTDIR A component of dirname is not a directory.

The fdopendir() function will fail if:

ENOTDIR The file descriptor fildes does not reference a directory.

The opendir() function may fail if:

EMFILE There are {OPEN_MAX} file descriptors currently open in the calling
process.

ENAMETOOLONG Pathname resolution of a symbolic link produced an intermediate
result whose length exceeds PATH_MAX.

opendir(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

358 man pages section 3: Basic Library Functions • Last Revised 1 Aug 2001

ENFILE Too many files are currently open on the system.

The opendir() and fdopendir() functions should be used in conjunction with
readdir(3C), closedir(3C) and rewinddir(3C) to examine the contents of the
directory (see the EXAMPLES section in readdir(3C)). This method is recommended
for portability.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability opendir() is Standard; fdopendir() is
Evolving

MT-Level Safe

lstat(2), symlink(2), closedir(3C), readdir(3C), rewinddir(3C),
attributes(5)

opendir(3C)

USAGE

ATTRIBUTES

SEE ALSO

Basic Library Functions 359

perror, errno – print system error messages

#include <stdio.h>

void perror(const char *s);

#include <errno.h>

int errno;

The perror() function produces a message on the standard error output (file
descriptor 2) describing the last error encountered during a call to a system or library
function. The argument string s is printed, followed by a colon and a blank, followed
by the message and a NEWLINE character. If s is a null pointer or points to a null
string, the colon is not printed. The argument string should include the name of the
program that incurred the error. The error number is taken from the external variable
errno, which is set when errors occur but not cleared when non-erroneous calls are
made. See intro(2).

If the application is linked with -lintl, then messages printed from this function are
in the native language specified by the LC_MESSAGES locale category. See
setlocale(3C).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

intro(2), fmtmsg(3C), gettext(3C), setlocale(3C), strerror(3C),
attributes(5)

perror(3C)

NAME

SYNOPSIS

DESCRIPTION

USAGE

ATTRIBUTES

SEE ALSO

360 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

pfmt – display error message in standard format

#include <pfmt.h>

int pfmt(FILE *stream, long flags, char *format, ... /* arg */);

The pfmt() retrieves a format string from a locale-specific message database (unless
MM_NOGET is specified) and uses it for printf(3C) style formatting of args. The
output is displayed on stream.

The pfmt() function encapsulates the output in the standard error message format
(unless MM_NOSTD is specified, in which case the output is similar to printf()).

If the printf() format string is to be retrieved from a message database, the format
argument must have the following structure:

<catalog>:<msgnum>:<defmsg>.

If MM_NOGET is specified, only the defmsg field must be specified.

The catalog field is used to indicate the message database that contains the localized
version of the format string. This field must be limited to 14 characters selected from
the set of all characters values, excluding \0 (null) and the ASCII codes for / (slash)
and : (colon).

The msgnum field is a positive number that indicates the index of the string into the
message database.

If the catalog does not exist in the locale (specified by the last call to setlocale(3C)
using the LC_ALL or LC_MESSAGES categories), or if the message number is out of
bound, pfmt() will attempt to retrieve the message from the C locale. If this second
retrieval fails, pfmt() uses the defmsg field of the format argument.

If catalog is omitted, pfmt() will attempt to retrieve the string from the default catalog
specified by the last call to setcat(3C). In this case, the format argument has the
following structure:

:<msgnum>:<defmsg>.

The pfmt() will output Message not found!!\n as format string if catalog is not a
valid catalog name, if no catalog is specified (either explicitely or with setcat()), if
msgnum is not a valid number, or if no message could be retrieved from the message
databases and defmsg was omitted.

The flags argument determine the type of output (such as whether the format should
be interpreted as is or encapsulated in the standard message format), and the access to
message catalogs to retrieve a localized version of format.

The flags argument is composed of several groups, and can take the following values
(one from each group):

pfmt(3C)

NAME

SYNOPSIS

DESCRIPTION

Basic Library Functions 361

Output format control

MM_NOSTD Do not use the standard message format, interpret format as
printf() format. Only catalog access control flags should be
specified if MM_NOSTD is used; all other flags will be ignored.

MM_STD Output using the standard message format (default value 0).

Catalog access control

MM_NOGET Do not retrieve a localized version of format. In this case, only
the defmsg field of the format is specified.

MM_GET Retrieve a localized version of format from the catalog, using
msgid as the index and defmsg as the default message (default
value 0).

Severity (standard message format only)

MM_HALT Generate a localized version of HALT, but do not halt the machine.

MM_ERROR Generate a localized version of ERROR (default value 0).

MM_WARNING Generate a localized version of WARNING.

MM_INFO Generate a localized version of INFO.

Additional severities can be defined. Add-on severities can be defined with
number-string pairs with numeric values from the range [5-255], using addsev(3C).
The specified severity will be generated from the bitwise OR operation of the numeric
value and other flags If the severity is not defined, pfmt() uses the string SEV=N,
where N is replaced by the integer severity value passed in flags.

Multiple severities passed in flags will not be detected as an error. Any combination of
severities will be summed and the numeric value will cause the display of either a
severity string (if defined) or the string SEV=N (if undefined).

Action

MM_ACTION Specify an action message. Any severity value is superseded and
replaced by a localized version of TO FIX.

The pfmt() function displays error messages in the following format:

label: severity: text

If no label was defined by a call to setlabel(3C), the message is displayed in the
format:

severity: text

If pfmt() is called twice to display an error message and a helpful action or recovery
message, the output can look like:

pfmt(3C)

STANDARD
ERROR

MESSAGE
FORMAT

362 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

label: severity: textlabel: TO FIX: text

Upon success, pfmt() returns the number of bytes transmitted. Upon failure, it
returns a negative value:

−1 Write error to stream.

EXAMPLE 1 Example of pfmt() function.

Example 1:

setlabel("UX:test");
pfmt(stderr, MM_ERROR, "test:2:Cannot open file: %s\n", strerror(errno));

displays the message:

UX:test: ERROR: Cannot open file: No such file or directory

Example 2:

setlabel("UX:test");
setcat("test");
pfmt(stderr, MM_ERROR, ":10:Syntax error\n");
pfmt(stderr, MM_ACTION, "55:Usage ...\n");

displays the message

UX:test: ERROR: Syntax error
UX:test: TO FIX: Usage ...

Since it uses gettxt(3C), pfmt() should not be used.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-safe

addsev(3C), gettxt(3C), lfmt(3C), printf(3C), setcat(3C), setlabel(3C),
setlocale(3C), attributes(5), environ(5)

pfmt(3C)

RETURN VALUES

EXAMPLES

USAGE

ATTRIBUTES

SEE ALSO

Basic Library Functions 363

plock – lock or unlock into memory process, text, or data

#include <sys/lock.h>

int plock(int op);

The plock() function allows the calling process to lock or unlock into memory its
text segment (text lock), its data segment (data lock), or both its text and data
segments (process lock). Locked segments are immune to all routine swapping. The
effective user ID of the calling process must be super-user to use this call.

The plock() function performs the function specified by op:

PROCLOCK Lock text and data segments into memory (process lock).

TXTLOCK Lock text segment into memory (text lock).

DATLOCK Lock data segment into memory (data lock).

UNLOCK Remove locks.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set
to indicate the error.

The plock() function fails and does not perform the requested operation if:

EAGAIN Not enough memory.

EINVAL The op argument is equal to PROCLOCK and a process lock, a text
lock, or a data lock already exists on the calling process; the op
argument is equal to TXTLOCK and a text lock or a process lock
already exists on the calling process; the op argument is equal to
DATLOCK and a data lock or a process lock already exists on the
calling process; or the op argument is equal to UNLOCK and no lock
exists on the calling process.

EPERM The effective user of the calling process is not super-user.

The mlock(3C) and mlockall(3C) functions are the preferred interfaces for process
locking.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

exec(2), exit(2), fork(2), memcntl(2), mlock(3C), mlockall(3C), attributes(5)

plock(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

364 man pages section 3: Basic Library Functions • Last Revised 27 Jun 2000

popen, pclose – initiate a pipe to or from a process

#include <stdio.h>

FILE *popen(const char *command, const char *mode);

int pclose(FILE *stream);

The popen() function creates a pipe between the calling program and the command
to be executed. The arguments to popen() are pointers to null-terminated strings. The
command argument consists of a shell command line. The mode argument is an I/O
mode, either r for reading or w for writing. The value returned is a stream pointer
such that one can write to the standard input of the command, if the I/O mode is w,
by writing to the file stream (see intro(3)); and one can read from the standard output
of the command, if the I/O mode is r, by reading from the file stream. Because open
files are shared, a type r command may be used as an input filter and a type w as an
output filter.

The environment of the executed command will be as if a child process were created
within the popen() call using fork(2). If the application is standard-conforming (see
standards(5)), the child is invoked with the call:

execl("/usr/xpg4/bin/ksh", "sh", "-c", command, (char *)0);
otherwise, the child is invoked with the call:

execl("/usr/bin/sh", "sh", "-c", command, (char *)0);

A stream opened by popen() should be closed by pclose(), which closes the
pipe, and waits for the associated process to terminate and returns the termination
status of the process running the command language interpreter. This is the value
returned by waitpid(2). See wstat(3XFN) for more information on termination
status.

The popen() function returns a null pointer if files or processes cannot be created.

The pclose() function returns the termination status of the command. It returns −1
if stream is not associated with a popen() command and sets errno to indicate the
error.

The popen() function may fail if:

EMFILE There are currently FOPEN_MAX or STREAM_MAX streams open in
the calling process.

EINVAL The mode argument is invalid.

The pclose() function will fail if:

ECHILD The status of the child process could not be obtained, as described
above.

popen(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Basic Library Functions 365

The popen() function may also set errno values as described by fork(2) or pipe(2).

If the original and popen() processes concurrently read or write a common file,
neither should use buffered I/O. Problems with an output filter may be forestalled by
careful buffer flushing, for example, with fflush() (see fclose(3C)). A security hole
exists through the IFS and PATH environment variables. Full pathnames should be
used (or PATH reset) and IFS should be set to space and tab (" \t").

The signal handler for SIGCHLD should be set to default when using popen(). If the
process has established a signal handler for SIGCHLD, it will be called when the
command terminates. If the signal handler or another thread in the same process
issues a wait(2) call, it will interfere with the return value of pclose(). If the
process’s signal handler for SIGCHLD has been set to ignore the signal, pclose() will
fail and errno will be set to ECHILD.

EXAMPLE 1 popen() example

The following program will print on the standard output (see stdio(3C)) the names
of files in the current directory with a .c suffix.

#include <stdio.h>
#include <stdlib.h>
main()
{

char *cmd = "/usr/bin/ls *.c";
char buf[BUFSIZ];
FILE *ptr;

if ((ptr = popen(cmd, "r")) != NULL)
while (fgets(buf, BUFSIZ, ptr) != NULL)

(void) printf("%s", buf);
(void) pclose(ptr);

return 0;
}

EXAMPLE 2 system() replacement

The following code fragment can be used in a multithreaded process in place of the
MT-Unsafe system(3C) function:

pclose(popen(cmd, "w"));

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

ksh(1), pipe(2), wait(2), waitpid(2), fclose(3C), fopen(3C), stdio(3C),
system(3C), attributes(5), wstat(3XFN), standards(5)

popen(3C)

USAGE

EXAMPLES

ATTRIBUTES

SEE ALSO

366 man pages section 3: Basic Library Functions • Last Revised 20 Dec 2001

printf, fprintf, sprintf, snprintf – print formatted output

#include <stdio.h>

int printf(const char *format, /* args*/ ...);

int fprintf(FILE *stream, const char *format, /* args*/ ...);

int sprintf(char *s, const char *format, /* args*/ ...);

int snprintf(char *s, size_t n, const char *format, /* args*/ ...);

The printf() function places output on the standard output stream stdout.

The fprintf() function places output on on the named output stream stream.

The sprintf() function places output, followed by the null byte (\0), in consecutive
bytes starting at s; it is the user’s responsibility to ensure that enough storage is
available.

The snprintf() function is identical to sprintf() with the addition of the
argument n, which specifies the size of the buffer referred to by s. The buffer is always
terminated with the null byte.

Each of these functions converts, formats, and prints its arguments under control of
the format. The format is a character string, beginning and ending in its initial shift
state, if any. The format is composed of zero or more directives: ordinary characters,
which are simply copied to the output stream and conversion specifications, each of
which results in the fetching of zero or more arguments. The results are undefined if
there are insufficient arguments for the format. If the format is exhausted while
arguments remain, the excess arguments are evaluated but are otherwise ignored.

Conversions can be applied to the nth argument after the format in the argument list,
rather than to the next unused argument. In this case, the conversion character % (see
below) is replaced by the sequence %n$, where n is a decimal integer in the range [1,
NL_ARGMAX], giving the position of the argument in the argument list. This feature
provides for the definition of format strings that select arguments in an order
appropriate to specific languages (see the EXAMPLES section).

In format strings containing the %n$ form of conversion specifications, numbered
arguments in the argument list can be referenced from the format string as many times
as required.

In format strings containing the % form of conversion specifications, each argument in
the argument list is used exactly once.

All forms of the printf() functions allow for the insertion of a language-dependent
radix character in the output string. The radix character is defined by the program’s
locale (category LC_NUMERIC). In the POSIX locale, or in a locale where the radix
character is not defined, the radix character defaults to a period (.).

printf(3C)

NAME

SYNOPSIS

DESCRIPTION

Basic Library Functions 367

Each conversion specification is introduced by the % character or by the character
sequence %n$, after which the following appear in sequence:

� An optional field, consisting of a decimal digit string followed by a $, specifying
the next argument to be converted. If this field is not provided, the args following
the last argument converted will be used.

� Zero or more flags (in any order), which modify the meaning of the conversion
specification.

� An optional minimum field width. If the converted value has fewer bytes than the
field width, it will be padded with spaces by default on the left; it will be padded
on the right, if the left-adjustment flag (‐), described below, is given to
the field width. The field width takes the form of an asterisk (*), described below,
or a decimal integer.

If the conversion character is s, a standard-conforming application (see
standards(5)) interprets the field width as the minimum number of bytes to be
printed; an application that is not standard-conforming interprets the field width
as the minimum number of columns of screen display. For an application that is
not standard-conforming, %10s means if the converted value has a screen width of
7 columns, 3 spaces would be padded on the right.

If the format is %ws, then the field width should be interpreted as the minimum
number of columns of screen display.

� An optional precision that gives the minimum number of digits to appear for the d,
i, o, u, x, and X conversions (the field is padded with leading zeros); the number
of digits to appear after the radix character for the e, E, and f conversions, the
maximum number of significant digits for the g and G conversions; or the
maximum number of bytes to be printed from a string in s and S conversions. The
precision takes the form of a period (.) followed either by an asterisk (*), described
below, or an optional decimal digit string, where a null digit string is treated as 0. If
a precision appears with any other conversion character, the behavior is undefined.

If the conversion character is s or S, a standard-conforming application (see
standards(5)) interprets the precision as the maximum number of bytes to be
written; an application that is not standard-conforming interprets the precision as
the maximum number of columns of screen display. For an application that is not
standard-conforming, %.5s would print only the portion of the string that would
display in 5 screen columns. Only complete characters are written.

For %ws, the precision should be interpreted as the maximum number of columns
of screen display. The precision takes the form of a period (.) followed by a
decimal digit string; a null digit string is treated as zero. Padding specified by the
precision overrides the padding specified by the field width.

� An optional h specifies that a following d, i, o, u, x, or X conversion character
applies to a type short int or type unsigned short int argument (the
argument will be promoted according to the integral promotions, and its value
converted to type short int or unsigned short int before printing); an
optional h specifying that a following n conversion character applies to a pointer to
a type short int argument; an optional l (ell) specifying that a following d, i, o,
u, x, or X conversion character applies to a type long int or unsigned long

printf(3C)

Conversion
Specifications

368 man pages section 3: Basic Library Functions • Last Revised 7 Oct 1999

int argument; an optional l (ell) specifying that a following n conversion
character applies to a pointer to a type long int argument; an optional ll (ell ell)
specifying that a following d, i, o, u, x, or X conversion character applies to a type
long long or unsigned long long argument; an optional ll (ell ell) specifying
that a following n conversion character applies to a pointer to a long long
argument; or an optional L specifying that a following e, E, f, g, or G conversion
character applies to a type long double argument. If an h, l, ll, or L appears
with any other conversion character, the behavior is undefined.

� An optional l (ell) specifying that a following c conversion character applies to a
wint_t argument; an optional l (ell) specifying that a following s conversion
character applies to a pointer to a wchar_t argument.

� A conversion character (see below) that indicates the type of conversion to be
applied.

A field width, or precision, or both may be indicated by an asterisk (*) . In this case, an
argument of type int supplies the field width or precision. Arguments specifying
field width, or precision, or both must appear in that order before the argument, if any,
to be converted. A negative field width is taken as a − flag followed by a positive field
width. A negative precision is taken as if the precision were omitted. In format strings
containing the %n$ form of a conversion specification, a field width or precision may
be indicated by the sequence *m$, where m is a decimal integer in the range [1,
NL_ARGMAX] giving the position in the argument list (after the format argument) of an
integer argument containing the field width or precision, for example:

printf("%1$d:%2$.*3$d:%4$.*3$d\n", hour, min, precision, sec);

The format can contain either numbered argument specifications (that is, %n$ and
*m$), or unnumbered argument specifications (that is, % and *), but normally not
both. The only exception to this is that %% can be mixed with the %n$ form. The results
of mixing numbered and unnumbered argument specifications in a format string are
undefined. When numbered argument specifications are used, specifying the Nth
argument requires that all the leading arguments, from the first to the (N–1)th, are
specified in the format string.

The flag characters and their meanings are:

’ The integer portion of the result of a decimal conversion (%i, %d, %u, %f,
%g, or %G) will be formatted with thousands’ grouping characters. For other
conversions the behavior is undefined. The non-monetary grouping
character is used.

− The result of the conversion will be left-justified within the field. The
conversion will be right-justified if this flag is not specified.

+ The result of a signed conversion will always begin with a sign (+ or –).
The conversion will begin with a sign only when a negative value is
converted if this flag is not specified.

printf(3C)

Flag Characters

Basic Library Functions 369

space If the first character of a signed conversion is not a sign or if a signed
conversion results in no characters, a space will be placed before the result.
This means that if the space and + flags both appear, the space flag will be
ignored.

The value is to be converted to an alternate form. For c, d, i, s, and u
conversions, the flag has no effect. For an o conversion, it increases the
precision (if necessary) to force the first digit of the result to be a zero. For x
or X conversion, a non-zero result will have 0x (or 0X) prepended to it. For
e, E, f, g, and G conversions, the result will always contain a radix
character, even if no digits follow the radix character. Without this flag, the
radix character appears in the result of these conversions only if a digit
follows it. For g and G conversions, trailing zeros will not be removed from
the result as they normally are.

0 For d, i, o, u, x, X, e, E, f, g, and G conversions, leading zeros (following
any indication of sign or base) are used to pad to the field width; no space
padding is performed. If the 0 and − flags both appear, the 0 flag will be
ignored. For d, i, o, u, x, and X conversions, if a precision is specified, the 0
flag will be ignored. If the 0 and ’ flags both appear, the grouping
characters are inserted before zero padding. For other conversions, the
behavior is undefined.

Each conversion character results in fetching zero or more arguments. The results are
undefined if there are insufficient arguments for the format. If the format is exhausted
while arguments remain, the excess arguments are ignored.

The conversion characters and their meanings are:

d,i The int argument is converted to a signed decimal in the style [−]dddd.
The precision specifies the minimum number of digits to appear; if the
value being converted can be represented in fewer digits, it will be
expanded with leading zeros. The default precision is 1. The result of
converting 0 with an explicit precision of 0 is no characters.

o The unsigned int argument is converted to unsigned octal format in the
style dddd. The precision specifies the minimum number of digits to appear;
if the value being converted can be represented in fewer digits, it will be
expanded with leading zeros. The default precision is 1. The result of
converting 0 with an explicit precision of 0 is no characters.

u The unsigned int argument is converted to unsigned decimal format in
the style dddd. The precision specifies the minimum number of digits to
appear; if the value being converted can be represented in fewer digits, it
will be expanded with leading zeros. The default precision is 1. The result
of converting 0 with an explicit precision of 0 is no characters.

x The unsigned int argument is converted to unsigned hexadecimal
format in the style dddd; the letters abcdef are used. The precision
specifies the minimum number of digits to appear; if the value being

printf(3C)

Conversion
Characters

370 man pages section 3: Basic Library Functions • Last Revised 7 Oct 1999

converted can be represented in fewer digits, it will be expanded with
leading zeros. The default precision is 1. The result of converting 0 with an
explicit precision of 0 is no characters.

X Behaves the same as the x conversion character except that letters ABCDEF
are used instead of abcdef.

f The double argument is converted to decimal notation in the style
[−]ddd.ddd, where the number of digits after the radix character (see
setlocale(3C)) is equal to the precision specification. If the precision is
missing it is taken as 6; if the precision is explicitly 0 and the # flag is not
specified, no radix character appears. If a radix character appears, at least 1
digit appears before it. The value is rounded to the appropriate number of
digits.

e,E The double argument is converted to the style [−]d.ddde±dd, where there
is one digit before the radix character (which is non-zero if the argument is
non-zero) and the number of digits after it is equal to the precision. When
the precision is missing it is taken as 6; if the precision is 0 and the # flag is
not specified, no radix character appears. The E conversion character will
produce a number with E instead of e introducing the exponent. The
exponent always contains at least two digits. The value is rounded to the
appropriate number of digits.

g,G The double argument is printed in style f or e (or in style E in the case of
a G conversion character), with the precision specifying the number of
significant digits. If an explicit precision is 0, it is taken as 1. The style used
depends on the value converted: style e (or E) will be used only if the
exponent resulting from the conversion is less than –4 or greater than or
equal to the precision. Trailing zeros are removed from the fractional part
of the result. A radix character appears only if it is followed by a digit.

c The int argument is converted to an unsigned char, and the resulting
byte is printed.

If an l (ell) qualifier is present, the wint_t argument is converted as if by
an ls conversion specification with no precision and an argument that
points to a two-element array of type wchar_t, the first element of which
contains the wint_t argument to the ls conversion specification and the
second element contains a null wide-character.

C Same as lc.

wc The int argument is converted to a wide character (wchar_t), and the
resulting wide character is printed.

s The argument must be a pointer to an array of char. Bytes from the array
are written up to (but not including) any terminating null byte. If a
precision is specified, a standard-conforming application (see
standards(5)) will write only the number of bytes specified by precision;
an application that is not standard-conforming will write only the portion

printf(3C)

Basic Library Functions 371

of the string that will display in the number of columns of screen display
specified by precision. If the precision is not specified, it is taken to be
infinite, so all bytes up to the first null byte are printed. An argument with
a null value will yield undefined results.

If an l (ell) qualifier is present, the argument must be a pointer to an array
of type wchar_t. Wide-characters from the array are converted to
characters (each as if by a call to the wcrtomb(3C) function, with the
conversion state described by an mbstate_t object initialized to zero
before the first wide-character is converted) up to and including a
terminating null wide-character. The resulting characters are written up to
(but not including) the terminating null character (byte). If no precision is
specified, the array must contain a null wide-character. If a precision is
specified, no more than that many characters (bytes) are written (including
shift sequences, if any), and the array must contain a null wide-character if,
to equal the character sequence length given by the precision, the function
would need to access a wide-character one past the end of the array. In no
case is a partial character written.

S Same as ls.

ws The argument must be a pointer to an array of wchar_t. Bytes from the
array are written up to (but not including) any terminating null character. If
the precision is specified, only that portion of the wide-character array that
will display in the number of columns of screen display specified by
precision will be written. If the precision is not specified, it is taken to be
infinite, so all wide characters up to the first null character are printed. An
argument with a null value will yield undefined results.

p The argument must be a pointer to void. The value of the pointer is
converted to a set of sequences of printable characters, which should be the
same as the set of sequences that are matched by the %p conversion of the
scanf(3C) function.

n The argument must be a pointer to an integer into which is written the
number of bytes written to the output standard I/O stream so far by this
call to one of the printf() functions. No argument is converted.

% Print a %; no argument is converted. The entire conversion specification
must be %%.

If a conversion specification does not match one of the above forms, the behavior is
undefined.

If a floating-point value is the internal representation for infinity, the output is
[±]Infinity, where Infinity is either Infinity or Inf, depending on the desired output
string length. Printing of the sign follows the rules described above.

If a floating-point value is the internal representation for “not-a-number,” the output is
[±]NaN. Printing of the sign follows the rules described above.

printf(3C)

372 man pages section 3: Basic Library Functions • Last Revised 7 Oct 1999

In no case does a non-existent or small field width cause truncation of a field; if the
result of a conversion is wider than the field width, the field is simply expanded to
contain the conversion result. Characters generated by printf() and fprintf() are
printed as if the putc(3C) function had been called.

The st_ctime and st_mtime fields of the file will be marked for update between the
call to a successful execution of printf() or fprintf() and the next successful
completion of a call to fflush(3C) or fclose(3C) on the same stream or a call to
exit(3C) or abort(3C).

The printf(), fprintf(), and sprintf() functions return the number of bytes
transmitted (excluding the terminating null byte in the case of sprintf()).

The snprintf() function returns the number of characters formatted, that is, the
number of characters that would have been written to the buffer if it were large
enough. If the value of n is 0 on a call to snprintf(), an unspecified value less than
1 is returned.

Each function returns a negative value if an output error was encountered.

For the conditions under which printf() and fprintf() will fail and may fail,
refer to fputc(3C) or fputwc(3C).

In addition, all forms of printf() may fail if:

EILSEQ A wide-character code that does not correspond to a valid
character has been detected.

EINVAL There are insufficient arguments.

In addition, printf() and fprintf() may fail if:

ENOMEM Insufficient storage space is available.

If the application calling the printf() functions has any objects of type wint_t or
wchar_t, it must also include the header <wchar.h> to have these objects defined.

The sprintf() and snprintf() functions are MT-Safe in multithreaded
applications. The printf() and fprintf() functions can be used safely in
multithreaded applications, as long as setlocale(3C) is not being called to change
the locale.

It is common to use the following escape sequences built into the C language when
entering format strings for the printf() functions, but these sequences are processed
by the C compiler, not by the printf() function.

\a Alert. Ring the bell.

\b Backspace. Move the printing position to one character before the current
position, unless the current position is the start of a line.

printf(3C)

RETURN VALUES

ERRORS

USAGE

Escape Character
Sequences

Basic Library Functions 373

\f Form feed. Move the printing position to the initial printing position of the
next logical page.

\n Newline. Move the printing position to the start of the next line.

\r Carriage return. Move the printing position to the start of the current line.

\t Horizontal tab. Move the printing position to the next
implementation-defined horizontal tab position on the current line.

\v Vertical tab. Move the printing position to the start of the next
implementation-defined vertical tab position.

In addition, the C language supports character sequences of the form

\octal-numberand

\hex-numberwhich translates into the character represented by the octal or
hexadecimal number. For example, if ASCII representations are being used, the letter
’a’ may be written as ’\141’ and ’Z’ as ’\132’. This syntax is most frequently used to
represent the null character as ’\0’. This is exactly equivalent to the numeric constant
zero (0). Note that the octal number does not include the zero prefix as it would for a
normal octal constant. To specify a hexadecimal number, omit the zero so that the
prefix is an ’x’ (uppercase ’X’ is not allowed in this context). Support for hexadecimal
sequences is an ANSI extension. See standards(5).

EXAMPLE 1 To print the language-independent date and time format, the following
statement could be used:

printf (format, weekday, month, day, hour, min);

For American usage, format could be a pointer to the string:

"%s, %s %d, %d:%.2d\n"

producing the message:

Sunday, July 3, 10:02

whereas for German usage, format could be a pointer to the string:

"%1$s, %3$d. %2$s, %4$d:%5$.2d\n"

producing the message:

Sonntag, 3. Juli, 10:02

EXAMPLE 2 To print a date and time in the form Sunday, July 3, 10:02, where
weekday and month are pointers to null-terminated strings:

printf("%s, %s %i, %d:%.2d", weekday, month, day, hour, min);

printf(3C)

EXAMPLES

374 man pages section 3: Basic Library Functions • Last Revised 7 Oct 1999

EXAMPLE 2 To print a date and time in the form Sunday, July 3, 10:02, where
weekday and month are pointers to null-terminated strings: (Continued)

EXAMPLE 3 To print pi to 5 decimal places:

printf("pi = %.5f", 4 * atan(1.0));

EXAMPLE 4 The following example applies only to applications which are not
standard-conforming (see standards(5)). To print a list of names in columns which are 20
characters wide:

printf("%20s%20s%20s", lastname, firstname, middlename);

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

CSI Enabled

exit(2), lseek(2), write(2), abort(3C), ecvt(3C), exit(3C), fclose(3C),
fflush(3C), fputwc(3C), putc(3C), scanf(3C), setlocale(3C), stdio(3C),
wcstombs(3C), wctomb(3C), attributes(5), environ(5), standards(5)

printf(3C)

Default

ATTRIBUTES

SEE ALSO

Basic Library Functions 375

printf, fprintf, sprintf, vprintf, vfprintf, vsprintf – formatted output conversion

/usr/ucb/cc [flag ...] file ...

#include <stdio.h>

int printf(format, ...);

const char *format;

int fprintf(stream, format, va_list);

FILE *stream;
char *format;
va_dcl;

char *sprintf(s, format, va_list);

char *s, *format;
va_dcl;

int vprintf(format, ap);

char *format;
va_list ap;

int vfprintf(stream, format, ap);

FILE *stream;
char *format;
va_list ap;

char *vsprintf(s, format, ap);

char *s, *format;
va_list ap;

printf() places output on the standard output stream stdout. fprintf() places
output on the named output stream. sprintf() places “output,” followed by the
NULL character (\0), in consecutive bytes starting at *s; it is the user’s responsibility to
ensure that enough storage is available.

vprintf(), vfprintf(), and vsprintf() are the same as printf(),
fprintf(), and sprintf() respectively, except that instead of being called with a
variable number of arguments, they are called with an argument list as defined by
varargs(3HEAD).

Each of these functions converts, formats, and prints its args under control of the
format. The format is a character string which contains two types of objects: plain
characters, which are simply copied to the output stream, and conversion
specifications, each of which causes conversion and printing of zero or more args. The
results are undefined if there are insufficient args for the format. If the format is
exhausted while args remain, the excess args are simply ignored.

Each conversion specification is introduced by the character %. After the %, the
following appear in sequence:

printf(3UCB)

NAME

SYNOPSIS

DESCRIPTION

376 man pages section 3: Basic Library Functions • Last Revised 18 Feb 1993

� Zero or more flags, which modify the meaning of the conversion specification.
� An optional decimal digit string specifying a minimum field width. If the converted

value has fewer characters than the field width, it will be padded on the left (or
right, if the left-adjustment flag ‘−’, described below, has been given) to the field
width. The padding is with blanks unless the field width digit string starts with a
zero, in which case the padding is with zeros.

� A precision that gives the minimum number of digits to appear for the d, i, o, u, x,
or X conversions, the number of digits to appear after the decimal point for the e,
E, and f conversions, the maximum number of significant digits for the g and G
conversion, or the maximum number of characters to be printed from a string in s
conversion. The precision takes the form of a period (.) followed by a decimal digit
string; a NULL digit string is treated as zero. Padding specified by the precision
overrides the padding specified by the field width.

� An optional l (ell) specifying that a following d, i, o, u, x, or X conversion
character applies to a long integer arg. An l before any other conversion character
is ignored.

� A character that indicates the type of conversion to be applied.

A field width or precision or both may be indicated by an asterisk (*) instead of a digit
string. In this case, an integer arg supplies the field width or precision. The arg that is
actually converted is not fetched until the conversion letter is seen, so the args
specifying field width or precision must appear before the arg (if any) to be converted.
A negative field width argument is taken as a ‘−’ flag followed by a positive field
width. If the precision argument is negative, it will be changed to zero.

The flag characters and their meanings are:

− The result of the conversion will be left-justified within the field.

+ The result of a signed conversion will always begin with a sign (+
or −).

blank If the first character of a signed conversion is not a sign, a blank
will be prefixed to the result. This implies that if the blank and +
flags both appear, the blank flag will be ignored.

This flag specifies that the value is to be converted to an “alternate
form.” For c, d, i, s, and u conversions, the flag has no effect. For
o conversion, it increases the precision to force the first digit of the
result to be a zero. For x or X conversion, a non-zero result will
have 0x or 0X prefixed to it. For e, E, f, g, and G conversions, the
result will always contain a decimal point, even if no digits follow
the point (normally, a decimal point appears in the result of these
conversions only if a digit follows it). For g and G conversions,
trailing zeroes will not be removed from the result (which they
normally are).

The conversion characters and their meanings are:

printf(3UCB)

Basic Library Functions 377

d,i,o,u,x,X The integer arg is converted to signed decimal (d or i), unsigned
octal (o), unsigned decimal (u), or unsigned hexadecimal notation
(x and X), respectively; the letters abcdef are used for x
conversion and the letters ABCDEF for X conversion. The precision
specifies the minimum number of digits to appear; if the value
being converted can be represented in fewer digits, it will be
expanded with leading zeroes. (For compatibility with older
versions, padding with leading zeroes may alternatively be
specified by prepending a zero to the field width. This does not
imply an octal value for the field width.) The default precision is 1.
The result of converting a zero value with a precision of zero is a
NULL string.

f The float or double arg is converted to decimal notation in the style
[−]ddd.ddd where the number of digits after the decimal point is
equal to the precision specification. If the precision is missing, 6
digits are given; if the precision is explicitly 0, no digits and no
decimal point are printed.

e,E The float or double arg is converted in the style [−]d.ddde±ddd,
where there is one digit before the decimal point and the number
of digits after it is equal to the precision; when the precision is
missing, 6 digits are produced; if the precision is zero, no decimal
point appears. The E format code will produce a number with E
instead of e introducing the exponent. The exponent always
contains at least two digits.

g,G The float or double arg is printed in style f or e (or in style E in the
case of a G format code), with the precision specifying the number
of significant digits. The style used depends on the value
converted: style e or E will be used only if the exponent resulting
from the conversion is less than −4 or greater than the precision.
Trailing zeroes are removed from the result; a decimal point
appears only if it is followed by a digit.

The e, E f, g, and G formats print IEEE indeterminate values (infinity or
not-a-number) as “Infinity” or “NaN” respectively.

c The character arg is printed.

s The arg is taken to be a string (character pointer) and characters
from the string are printed until a NULL character (\0) is
encountered or until the number of characters indicated by the
precision specification is reached. If the precision is missing, it is
taken to be infinite, so all characters up to the first NULL character
are printed. A NULL value for arg will yield undefined results.

% Print a %; no argument is converted.

printf(3UCB)

378 man pages section 3: Basic Library Functions • Last Revised 18 Feb 1993

In no case does a non-existent or small field width cause truncation of a field; if the
result of a conversion is wider than the field width, the field is simply expanded to
contain the conversion result. Padding takes place only if the specified field width
exceeds the actual width. Characters generated by printf() and fprintf() are
printed as if putc(3C) had been called.

Upon success, printf() and fprintf() return the number of characters
transmitted, excluding the null character. vprintf() and vfprintf() return the
number of characters transmitted. sprintf() and vsprintf() always return s. If an
output error is encountered, printf(), fprint(), vprintf(), and vfprintf()
return EOF.

EXAMPLE 1 Examples of the printf Command To Print a Date and Time

To print a date and time in the form “Sunday, July 3, 10:02,” where weekday and month
are pointers to NULL-terminated strings:

printf("%s, %s %i, %d:%.2d", weekday, month, day, hour, min);

EXAMPLE 2 Examples of the printf Command To Print to Five Decimal Places

To print to five decimal places:

printf("pi = %.5f", 4 * atan(1. 0));

econvert(3C), putc(3C), scanf(3C), vprintf(3C), varargs(3HEAD)

Use of these interfaces should be restricted to only applications written on BSD
platforms. Use of these interfaces with any of the system libraries or in multi-thread
applications is unsupported.

Very wide fields (>128 characters) fail.

printf(3UCB)

RETURN VALUES

EXAMPLES

SEE ALSO

NOTES

Basic Library Functions 379

pset_getloadavg – get system load averages for a processor set

#include <sys/pset.h>

#include <sys/loadavg.h>

int pset_getloadavg(psetid_t pset, double loadavg[], int nelem);

The pset_getloadavg() function returns the number of processes assigned to the
specified processor set that are in the system run queue, averaged over various
periods of time. Up to nelem samples are retrieved and assigned to successive elements
of loadavg[]. The system imposes a maximum of 3 samples, representing averages over
the last 1, 5, and 15 minutes, respectively.

The LOADAVG_1MIN, LOADAVG_5MIN, and LOADAVG_15MIN indices, defined in
<sys/loadavg.h>, can be used to extract the data from the appropriate element of
the loadavg[] array.

If pset is PS_NONE, the load average for processes not assigned to a processor set is
returned.

If pset is PS_MYID, the load average for the processor set to which the caller is bound
is returned. If the caller is not bound to a processor set, the result is the same as if
PS_NONE was specified.

Upon successful completion, the number of samples actually retrieved is returned. If
the load average was unobtainable or the processor set does not exist, −1 is returned
and errno is set to indicate the error.

The pset_getloadavg() function will fail if:

EINVAL The number of elements specified is less than 0, or an invalid
processor set ID was specified.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level Async-Signal-Safe

uptime(1), w(1), psrset(1M), prstat(1M), pset_bind(2), pset_create(2),
kstat(3KSTAT), attributes(5)

pset_getloadavg(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

380 man pages section 3: Basic Library Functions • Last Revised 20 Aug 2001

psignal, psiginfo – system signal messages

#include <siginfo.h>

void psignal(int sig, const char *s);

void psiginfo(siginfo_t *pinfo, char *s);

The psignal() and psiginfo() functions produce messages on the standard error
output describing a signal. The sig argument is a signal that may have been passed as
the first argument to a signal handler. The pinfo argument is a pointer to a siginfo
structure that may have been passed as the second argument to an enhanced signal
handler. See sigaction(2). The argument string s is printed first, followed by a colon
and a blank, followed by the message and a NEWLINE character.

If the application is linked with -lintl, then messages printed from these functions
are in the native language specified by the LC_MESSAGES locale category. See
setlocale(3C).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

sigaction(2), gettext(3C), perror(3C), setlocale(3C), attributes(5),
siginfo(3HEAD), signal(3HEAD)

psignal(3C)

NAME

SYNOPSIS

DESCRIPTION

USAGE

ATTRIBUTES

SEE ALSO

Basic Library Functions 381

psignal, sys_siglist – system signal messages

/usr/ucb/cc[flag ...] file ...

void psignal(sig, s);

unsigned sig;
char *s;
char *sys_siglist[];

psignal() produces a short message on the standard error file describing the
indicated signal. First the argument string s is printed, then a colon, then the name of
the signal and a NEWLINE. Most usefully, the argument string is the name of the
program which incurred the signal. The signal number should be from among those
found in <signal.h>.

To simplify variant formatting of signal names, the vector of message strings
sys_siglist is provided; the signal number can be used as an index in this table to
get the signal name without the newline. The define NSIG defined in <signal.h> is
the number of messages provided for in the table; it should be checked because new
signals may be added to the system before they are added to the table.

perror(3C), signal(3C)

Use of these interfaces should be restricted to only applications written on BSD
platforms. Use of these interfaces with any of the system libraries or in multi-thread
applications is unsupported.

psignal(3UCB)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

NOTES

382 man pages section 3: Basic Library Functions • Last Revised 12 Feb 1993

ptsname – get name of the slave pseudo-terminal device

#include <stdlib.h>

char *ptsname(int fildes);

The ptsname() function returns the name of the slave pseudo-terminal device
associated with a master pseudo-terminal device. fildes is a file descriptor returned
from a successful open of the master device. ptsname() returns a pointer to a string
containing the null-terminated path name of the slave device of the form
/dev/pts/N, where N is a non-negative integer.

Upon successful completion, the function ptsname() returns a pointer to a string
which is the name of the pseudo-terminal slave device. This value points to a static
data area that is overwritten by each call to ptsname(). Upon failure, ptsname()
returns NULL. This could occur if fildes is an invalid file descriptor or if the slave device
name does not exist in the file system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

open(2), grantpt(3C), ttyname(3C), unlockpt(3C), attributes(5)

STREAMS Programming Guide

ptsname(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Basic Library Functions 383

putenv – change or add value to environment

#include <stdlib.h>

int putenv(char *string);

The putenv() function makes the value of the environment variable name equal to
value by altering an existing variable or creating a new one. In either case, the string
pointed to by string becomes part of the environment, so altering the string will
change the environment.

The string argument points to a string of the form name=value. The space used by string
is no longer used once a new string-defining name is passed to putenv().

The putenv() function uses malloc(3C) to enlarge the environment.

After putenv() is called, environment variables are not in alphabetical order.

The putenv() functions returns a non-zero value if it was unable to obtain enough
space using malloc(3C) for an expanded environment. Otherwise, 0 is returned.

The putenv() function may fail if:

ENOMEM Insufficient memory was available.

The putenv() function can be safely called from multithreaded programs. Caution
must be exercised when using this function and getenv(3C) in multithreaded
programs. These functions examine and modify the environment list, which is shared
by all threads in a program. The system prevents the list from being accessed
simultaneously by two different threads. It does not, however, prevent two threads
from successively accessing the environment list using putenv() or getenv().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

exec(2), getenv(3C), malloc(3C), attributes(5), environ(5)

The string argument should not be an automatic variable. It should be declared static if
it is declared within a function because it cannot be automatically declared. A
potential error is to call putenv() with a pointer to an automatic variable as the
argument and to then exit the calling function while string is still part of the
environment.

putenv(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

WARNINGS

384 man pages section 3: Basic Library Functions • Last Revised 12 Jan 1998

putpwent – write password file entry

#include <pwd.h>

int putpwent(const struct passwd *p, FILE *f);

The putpwent() function is the inverse of getpwent(). See getpwnam(3C). Given a
pointer to a passwd structure created by getpwent(), getpwuid(), or
getpwnam(), putpwent() writes a line on the stream f that matches the format of
/etc/passwd.

The putpwent() function returns a non-zero value if an error was detected during its
operation. Otherwise, it returns 0.

The putpwent() function is of limited utility, since most password files are
maintained as Network Information Service (NIS) files that cannot be updated with
this function. For this reason, the use of this function is discouraged. If used at all, it
should be used with putspent(3C) to update the shadow file.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

getpwnam(3C), putspent(3C), attributes(5)

putpwent(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

Basic Library Functions 385

puts, fputs – put a string on a stream

#include <stdio.h>

int puts(const char *s);

int fputs(const char *s, FILE *stream);

The puts() function writes the string pointed to by s, followed by a NEWLINE
character, to the standard output stream stdout (see intro(3)). The terminating null
byte is not written.

The fputs() function writes the null-terminated string pointed to by s to the named
output stream. The terminating null byte is not written.

The st_ctime and st_mtime fields of the file will be marked for update between the
successful execution of fputs() and the next successful completion of a call to
fflush(3C) or fclose(3C) on the same stream or a call to exit(2) or abort(3C).

On successful completion, both functions return the number of bytes written;
otherwise they return EOF and set errno to indicat the error.

Refer to fputc(3C).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

exit(2), write(2), intro(3), abort(3C), fclose(3C), ferror(3C), fflush(3C),
fopen(3C), fputc(3C), printf(3C), stdio(3C), attributes(5)

puts(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

386 man pages section 3: Basic Library Functions • Last Revised 27 Jul 2001

putspent – write shadow password file entry

#include <shadow.h>

int putspent(const struct spwd *p, FILE *fp);

The putspent() function is the inverse of getspent(). See getspnam(3C). Given a
pointer to a spwd structure created by getspent() or getspnam(), putspent()
writes a line on the stream fp that matches the format of /etc/shadow.

The spwd structure contains the following members:

char *sp_namp;
char *sp_pwdp;
long sp_lstchg;
long sp_min;
long sp_max;
long sp_warn;
long sp_inact;
long sp_expire;
unsigned long sp_flag;

If the sp_min, sp_max, sp_lstchg, sp_warn, sp_inact, or sp_expire member of
the spwd structure is −1, or if sp_flag is 0, the corresponding /etc/shadow field is
cleared.

The putspent() function returns a non-zero value if an error was detected during its
operation. Otherwise, it returns 0.

Since this function is for internal use only, compatibility is not guaranteed. For this
reason, its use is discouraged. If used at all, if should be used with putpwent(3C) to
update the password file.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

getpwnam(3C), getspnam(3C), putpwent(3C), attributes(5)

putspent(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

Basic Library Functions 387

putws – convert a string of Process Code characters to EUC characters

#include <stdio.h>

#include <widec.h>

int putws(wchar_t *s);

The putws() function converts the Process Code string (terminated by a
(wchar_t)NULL) pointed to by s, to an Extended Unix Code (EUC) string followed
by a NEWLINE character, and writes it to the standard output stream stdout. It does
not write the terminal null character.

The putws() function returns the number of Process Code characters transformed
and written. It returns EOF if it attempts to write to a file that has not been opened for
writing.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ferror(3C), fopen(3C), fread(3C), getws(3C), printf(3C), putwc(3C),
attributes(5)

putws(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

388 man pages section 3: Basic Library Functions • Last Revised 22 Apr 1997

qsort – quick sort

#include <stdlib.h>

void qsort(void *base, size_t nel, size_t width, int (*compar)(const
void *, const void *));

The qsort() function is an implementation of the quick-sort algorithm. It sorts a
table of data in place. The contents of the table are sorted in ascending order according
to the user-supplied comparison function.

The base argument points to the element at the base of the table. The nel argument is
the number of elements in the table. The width argument specifies the size of each
element in bytes. The compar argument is the name of the comparison function, which
is called with two arguments that point to the elements being compared.

The function must return an integer less than, equal to, or greater than zero to indicate
if the first argument is to be considered less than, equal to, or greater than the second
argument.

The contents of the table are sorted in ascending order according to the user supplied
comparison function.

EXAMPLE 1 Program sorts.

The following program sorts a simple array:

#include <stdlib.h>
#include <stdio.h>

static int
intcompare(const void *p1, const void *p2)
{

int i = *((int *)p1);
int j = *((int *)p2);

if (i > j)
return (1);

if (i < j)
return (-1);

return (0);
}

int
main()
{

int i;
int a[10] = { 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 };
size_t nelems = sizeof (a) / sizeof (int);

qsort((void *)a, nelems, sizeof (int), intcompare);

for (i = 0; i < nelems; i++) {
(void) printf("%d ", a[i]);

}

qsort(3C)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

Basic Library Functions 389

EXAMPLE 1 Program sorts. (Continued)

(void) printf("\n");
return (0);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

sort(1), bsearch(3C), lsearch(3C), string(3C), attributes(5)

The comparison function need not compare every byte, so arbitrary data may be
contained in the elements in addition to the values being compared.

The relative order in the output of two items that compare as equal is unpredictable.

qsort(3C)

ATTRIBUTES

SEE ALSO

NOTES

390 man pages section 3: Basic Library Functions • Last Revised 19 Mar 1999

raise – send signal to program

#include <signal.h>

int raise(int sig);

The raise() function sends the signal sig to the executing program. It uses the
kill() function to send the signal to the executing program, as follows:

kill(getpid(), sig);

See the kill(2) manual page for a detailed list of failure conditions and the
signal(3C) manual page for a list of signals.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set
to indicate the error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

getpid(2), kill(2), signal(3C), attributes(5)

raise(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Basic Library Functions 391

rand, srand, rand_r – simple random-number generator

#include <stdlib.h>

int rand(void);

void srand(unsigned int seed);

int rand_r(unsigned int *seed);

The rand() function uses a multiplicative congruential random-number generator
with period 232 that returns successive pseudo-random numbers in the range of 0 to
RAND_MAX (defined in <stdlib.h>).

The srand() function uses the argument seed as a seed for a new sequence of
pseudo-random numbers to be returned by subsequent calls to rand(). If srand() is
then called with the same seed value, the sequence of pseudo-random numbers will be
repeated. If rand() is called before any calls to srand() have been made, the same
sequence will be generated as when srand() is first called with a seed value of 1.

The rand_r() function has the same functionality as rand() except that a pointer to
a seed seed must be supplied by the caller. The seed to be supplied is not the same seed
as in srand().

The spectral properties of rand() are limited. The drand48(3C) function provides a
better, more elaborate random-number generator.

The rand() is unsafe in multithreaded applications. The rand_r() function is
MT-Safe, and should be used instead. The srand() function is unsafe in
multithreaded applications.

When compiling multithreaded applications, the _REENTRANT flag must be defined
on the compile line. This flag should only be used in multithreaded applications.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See USAGE above.

drand48(3C), attributes(5)

rand(3C)

NAME

SYNOPSIS

DESCRIPTION

USAGE

ATTRIBUTES

SEE ALSO

392 man pages section 3: Basic Library Functions • Last Revised 25 Jul 2000

rand, srand – simple random number generator

/usr/ucb/cc[flag ...] file ...

int rand()

int srand(seed);

unsigned seed;

rand() uses a multiplicative congruential random number generator with period 232

to return successive pseudo-random numbers in the range from 0 to "231 − 1."

srand() can be called at any time to reset the random-number generator to a random
starting point. The generator is initially seeded with a value of 1.

drand48(3C), rand(3C), random(3C)

Use of these interfaces should be restricted to only applications written on BSD
platforms. Use of these interfaces with any of the system libraries or in multi-thread
applications is unsupported.

The spectral properties of rand() leave a great deal to be desired. drand48(3C) and
random(3C) provide much better, though more elaborate, random-number generators.

The low bits of the numbers generated are not very random; use the middle bits. In
particular the lowest bit alternates between 0 and 1.

rand(3UCB)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

NOTES

Basic Library Functions 393

random, srandom, initstate, setstate – pseudorandom number functions

#include <stdlib.h>

long random(void);

void srandom(unsigned int seed);

char *initstate(unsigned int seed, char *state, size_t size);

char *setstate(const char *state);

The random() function uses a nonlinear additive feedback random-number generator
employing a default state array size of 31 long integers to return successive
pseudo-random numbers in the range from 0 to 231 −1. The period of this
random-number generator is approximately 16 x (231 −1). The size of the state array
determines the period of the random-number generator. Increasing the state array size
increases the period.

The srandom() function initializes the current state array using the value of seed.

The random() and srandom() functions have (almost) the same calling sequence
and initialization properties as rand() and srand() (see rand(3C)). The difference is
that rand(3C) produces a much less random sequence—in fact, the low dozen bits
generated by rand go through a cyclic pattern. All the bits generated by random() are
usable.

The algorithm from rand() is used by srandom() to generate the 31 state integers.
Because of this, different srandom() seeds often produce, within an offset, the same
sequence of low order bits from random(). If low order bits are used directly,
random() should be initialized with setstate() using high quality random values.

Unlike srand(), srandom() does not return the old seed because the amount of
state information used is much more than a single word. Two other routines are
provided to deal with restarting/changing random number generators. With 256 bytes
of state information, the period of the random-number generator is greater than 269,
which should be sufficient for most purposes.

Like rand(3C), random() produces by default a sequence of numbers that can be
duplicated by calling srandom() with 1 as the seed.

The initstate() and setstate() functions handle restarting and changing
random-number generators. The initstate() function allows a state array, pointed
to by the state argument, to be initialized for future use. The size argument, which
specifies the size in bytes of the state array, is used by initstate() to decide what
type of random-number generator to use; the larger the state array, the more random
the numbers. Values for the amount of state information are 8, 32, 64, 128, and 256
bytes. Other values greater than 8 bytes are rounded down to the nearest one of these
values. For values smaller than 8, random() uses a simple linear congruential random
number generator. The seed argument specifies a starting point for the random-number
sequence and provides for restarting at the same point. The initstate() function
returns a pointer to the previous state information array.

random(3C)

NAME

SYNOPSIS

DESCRIPTION

394 man pages section 3: Basic Library Functions • Last Revised 20 Sep 2000

If initstate() has not been called, then random() behaves as though
initstate() had been called with seed = 1 and size = 128.

If initstate() is called with size < 8, then random() uses a simple linear
congruential random number generator.

Once a state has been initialized, setstate() allows switching between state arrays.
The array defined by the state argument is used for further random-number
generation until initstate() is called or setstate() is called again. The
setstate() function returns a pointer to the previous state array.

The random() function returns the generated pseudo-random number.

The srandom() function returns no value.

Upon successful completion, initstate() and setstate() return a pointer to the
previous state array. Otherwise, a null pointer is returned.

No errors are defined.

After initialization, a state array can be restarted at a different point in one of two
ways:

� The initstate() function can be used, with the desired seed, state array, and
size of the array.

� The setstate() function, with the desired state, can be used, followed by
srandom() with the desired seed. The advantage of using both of these functions
is that the size of the state array does not have to be saved once it is initialized.

EXAMPLE 1 Initialize an array.

The following example demonstrates the use of initstate() to intialize an array. It
also demonstrates how to initialize an array and pass it to setstate().

include <stdlib.h>
static unsigned int state0[32];
static unsigned int state1[32] = {

3,
0x9a319039, 0x32d9c024, 0x9b663182, 0x5da1f342,
0x7449e56b, 0xbeb1dbb0, 0xab5c5918, 0x946554fd,
0x8c2e680f, 0xeb3d799f, 0xb11ee0b7, 0x2d436b86,
0xda672e2a, 0x1588ca88, 0xe369735d, 0x904f35f7,
0xd7158fd6, 0x6fa6f051, 0x616e6b96, 0xac94efdc,
0xde3b81e0, 0xdf0a6fb5, 0xf103bc02, 0x48f340fb,
0x36413f93, 0xc622c298, 0xf5a42ab8, 0x8a88d77b,
0xf5ad9d0e, 0x8999220b, 0x27fb47b9
};

main() {
unsigned seed;
int n;
seed = 1;
n = 128;
(void)initstate(seed, (char *)state0, n);
printf("random() = %d0\

random(3C)

RETURN VALUES

ERRORS

USAGE

EXAMPLES

Basic Library Functions 395

EXAMPLE 1 Initialize an array. (Continued)

", random());
(void)setstate((char *)state1);
printf("random() = %d0\

", random());
}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See NOTES below.

drand48(3C), rand(3C), attributes(5)

The random() and srandom() functions are unsafe in multithreaded applications.

Use of these functions in multithreaded applications is unsupported.

For initstate() and setstate(), the state argument must be aligned on an int
boundary.

Newer and better performing random number generators such as addrans() and
lcrans() are available with the SUNWspro package.

random(3C)

ATTRIBUTES

SEE ALSO

NOTES

396 man pages section 3: Basic Library Functions • Last Revised 20 Sep 2000

rctlblk_set_value, rctlblk_get_firing_time, rctlblk_get_global_action,
rctlblk_get_global_flags, rctlblk_get_local_action, rctlblk_get_local_flags,
rctlblk_get_privilege, rctlblk_get_recipient_pid, rctlblk_get_value,
rctlblk_get_enforced_value, rctlblk_set_local_action, rctlblk_set_local_flags,
rctlblk_set_privilege, rctlblk_size – manipulate resource control blocks

#include <rctl.h>

hrtime_t rctlblk_get_firing_time(rctlblk_t *rblk);

int rctlblk_get_global_action(rctlblk_t *rblk);

int rctlblk_get_global_flags(rctlblk_t *rblk);

int rctlblk_get_local_action(rctlblk_t *rblk, int *signalp);

int rctlblk_get_local_flags(rctlblk_t *rblk);

rctl_priv_t rctlblk_get_privilege(rctlblk_t *rblk);

id_t rctlblk_get_recipient_pid(rctlblk_t *rblk);

rctl_qty_t rctlblk_get_value(rctlblk_t *rblk);

rctl_qty_t rctlblk_get_enforced_value(rctlblk_t *rblk);

void rctlblk_set_local_action(rctlblk_t *rblk, rctl_action_t action,
int signal);

void rctlblk_set_local_flags(rctlblk_t *rblk, int flags);

void rctlblk_set_privilege(rctlblk_t *rblk, rctl_priv_t privilege);

void rctlblk_set_value(rctlblk_t *rblk, rctl_qty_t value);

size_t rctlblk_size(void);

The resource control block routines allow the establishment or retrieval of values from
a resource control block used to transfer information using the getrctl(2) and
setrctl(2) functions. Each of the routines accesses or sets the resource control block
member corresponding to its name. Certain of these members are read-only and do
not possess set routines.

The firing time of a resource control block is 0 if the resource control action-value has
not been exceeded for its lifetime on the process. Otherwise the firing time is the value
of gethrtime(3C) at the moment the action on the resource control value was taken.

The global actions and flags are the action and flags set by rctladm(1M). These
values cannot be set with setrctl(). Valid global actions are listed in the table
below. Global flags are generally a published property of the control and are not
modifiable.

RCTL_GLOBAL_DENY_ALWAYSThe action taken when a control value is exceeded on
this control will always include denial of the resource.

rctlblk_set_value(3C)

NAME

SYNOPSIS

DESCRIPTION

Basic Library Functions 397

RCTL_GLOBAL_DENY_NEVER The action taken when a control value is exceeded on
this control will always exclude denial of the resource;
the resource will always be granted, although other
actions can also be taken.

RCTL_GLOBAL_CPU_TIME The valid signals available as local actions include the
SIGXCPU signal.

RCTL_GLOBAL_FILE_SIZE The valid signals available as local actions include the
SIGXFSZ signal.

RCTL_GLOBAL_INFINITE This resource control supports the concept of an
unlimited value; generally true only of
accumulation-oriented resources, such as CPU time.

RCTL_GLOBAL_LOWERABLE Non-privileged callers are able to lower the value of
privileged resource control values on this control.

RCTL_GLOBAL_NOACTION No global action will be taken when a resource control
value is exceeded on this control.

RCTL_GLOBAL_NOBASIC No values with the RCPRIV_BASIC privilege are
permitted on this control.

RCTL_GLOBAL_NOLOCALACTIONNo local actions are permitted on this control.

RCTL_GLOBAL_SYSLOG A standard message will be logged by the syslog()
facility when any resource control value on a sequence
associated with this control is exceeded.

RCTL_GLOBAL_UNOBSERVABLEThe resource control (generally on a task- or
project-related control) does not support observational
control values. AnRCPRIV_BASIC privileged control
value placed by a process on the task or process will
generate an action only if the value is exceeded by that
process.

The local action and flags are those on the current resource control value represented
by this resource control block. Valid actions and flags are listed in the table below. In
the case of RCTL_LOCAL_SIGNAL, the second argument to
rctlblk_set_local_action() contains the signal to be sent. Similarly, the signal
to be sent is copied into the integer location specified by the second argument to
rctlblk_get_local_action(). A restricted set of signals is made available for
normal use by the resource control facility: SIGBART, SIGXRES, SIGHUP, SIGSTOP,
SIGTERM, and SIGKILL. Other signals may be permitted due to global properites of a
specific control. Calls to setrctl() with illegal signals will fail.

RCTL_LOCAL_DENY When this resource control value is encountered, the
request for the resource will be denied. Set on all values
if RCTL_GLOBAL_DENY_ALWAYS is set for this control;
cleared on all values if RCTL_GLOBAL_DENY_NEVER is
set for this control.

rctlblk_set_value(3C)

398 man pages section 3: Basic Library Functions • Last Revised 1 Oct 2001

RCTL_LOCAL_INFINITE This resource control value represents an infinite value
and will never be reached.

RCTL_LOCAL_MAXIMAL This resource control value represents a request for the
maximum amount of resource for this control. If
RCTL_GLOBAL_INFINITE is set for this resource
control, RCTL_LOCAL_MAXIMAL indicates an unlimited
resource control value, one that will never be exceeded.

RCTL_LOCAL_NOACTION No local action will be taken when this resource control
value is exceeded.

RCTL_LOCAL_SIGNAL The specified dignal, sent by
rctlblk_set_local_action(), will be sent to the
process that placed this resource control value in the
value sequence.

The rctlblk_get_recipient_pid() function returns the value of the process ID
that placed the resource control value. This ID is set by the kernel by a caller invoking
setrctl().

The rctlblk_get_privilege() function returns the privilege of the resource
contorl block. Valid privileges are RCPRIV_BASIC, RCPRIV_PRIVILEGED, and
RCPRIV_SYSTEM. System resource controls are read-only. Privileged resource controls
require superuser privilege to write, unless the RCTL_GLOBAL_LOWERABLE global
flag is set, in which case unprivileged applications can lower the value of a privileged
control.

The rctlblk_get_value() and rctlblk_set_value() functions return or
establish the enforced value associated with the resource control. In cases where the
process, task, or project associated with the control possesess fewer capabilities than
allowable by the current value, the value returned by
rctlblk_get_enforced_value() will differ from that returned by
rctlblk_get_value(). This capability difference arises with processes using an
address space model smaller than the maximum address space model supported by
the system.

The rctlblk_size() function returns the size of a resource control block for use in
memory allocation. The rctlblk_t * type is an opaque pointer whose size is not
connected with that of the resource control block itself. Use of rctlblk_size() is
illustrated in the example below.

The various set routines have no return values. Incorrectly composed resource control
blocks will generate errors when used with setrctl(2) or getrctl(2).

No error values are returned. Incorrectly constructed resource control blocks will be
rejected by the system calls.

rctlblk_set_value(3C)

RETURN VALUES

ERRORS

Basic Library Functions 399

EXAMPLE 1 Display the contents of a fetched resource control block.

The following example displays the contents of a fetched resource control block.

#include <rctl.h>
#include <stdio.h>
#include <stdlib.h>

rctlblk_t *rblk;
int rsignal;
int raction;

if ((rblk = malloc(rctlblk_size())) == NULL) {
(void) perror("rblk malloc");
exit(1);

}

if (getrctl("process.max-cpu-time", NULL, rblk, RCTL_FIRST) == -1) {
(void) perror("getrctl");
exit(1);

}
raction = rctlblk_get_local_action(rblk, &rsignal),
(void) printf("Resource control for %s\n",

"process.max-cpu-time");
(void) printf("Process ID: %d\n",

rctlblk_get_recipient_pid(rblk));
(void) printf("Privilege: %x\n"

rctlblk_get_privilege(rblk),
(void) printf("Global flags: %x\n"

rctlblk_get_global_flags(rblk),
(void) printf("Global actions: %x\n"

rctlblk_get_global_action(rblk),
(void) printf("Local flags: %x\n"

rctlblk_get_local_flags(rblk),
(void) printf("Local action: %x (%d)\n"

raction, raction == RCTL_LOCAL_SIGNAL ? rsignal : 0);
(void) printf("Value: %llu\n",

rctlblk_get_value(rblk));
(void) printf("\\tEnforced value: %llu\n",

rctlblk_get_enforced_value(rblk));

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

rctladm(1M), getrctl(2), setrctl(2), gethrtime(3C), attributes(5)

rctlblk_set_value(3C)

EXAMPLES

ATTRIBUTES

SEE ALSO

400 man pages section 3: Basic Library Functions • Last Revised 1 Oct 2001

rctl_walk – visit registered rctls on current system

#include <rctl.h>

int rctl_walk(int (*callback)(const char *rctlname, void *walk_data),
void *init_data);

The rctl_walk() function provides a mechanism for the application author to
examine all active resource controls (rctls) on the current system. The callback function
provided by the application is given the name of an rctl at each invocation and can use
the walk_data to record its own state. The callback function should return non-zero if it
encounters an error condition or attempts to terminate the walk prematurely;
otherwise the callback function should return 0.

Upon successful completion, rctl_walk() returns 0. It returns −1 if the callback
function returned a non-zero value or if the walk encountered an error, in which case
errno is set to indicate the error.

The rctl_walk() function will fail if:

ENOMEM There is insufficient memory available to set up the initial data for
the walk.

Other returned error values are presumably caused by the callback function.

EXAMPLE 1 Count the number of rctls available on the system.

The following example counts the number of resource controls on the system.

#include <sys/types.h>
#include <rctl.h>
#include <stdio.h>

typedef struct wdata {
uint_t count;

} wdata_t;

wdata_t total_count;

int
simple_callback(const char *name, void *pvt)
{

wdata_t *w = (wdata_t *)pvt;
w->count++;
return (0);

}

...

total_count.count = 0;
errno = 0;
if (rctl_walk(simple_callback, &total_count)) == 0)

(void) printf("count = %u\n", total_count.count);

rctl_walk(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

EXAMPLES

Basic Library Functions 401

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

setrctl(2), attributes(5)

rctl_walk(3C)

ATTRIBUTES

SEE ALSO

402 man pages section 3: Basic Library Functions • Last Revised 2001

readdir, readdir_r – read directory

#include <sys/types.h>

#include <dirent.h>

struct dirent *readdir(DIR *dirp);

struct dirent *readdir_r(DIR *dirp, struct dirent *entry);

cc [flag ...] file ... -D_POSIX_PTHREAD_SEMANTICS [library ...]

int readdir_r(DIR *dirp, struct dirent *entry, struct dirent
**result);

The type DIR, which is defined in the header <dirent.h>, represents a directory
stream, which is an ordered sequence of all the directory entries in a particular
directory. Directory entries represent files; files may be removed from a directory or
added to a directory asynchronously to the operation of readdir() and
readdir_r().

The readdir() function returns a pointer to a structure representing the directory
entry at the current position in the directory stream specified by the argument dirp,
and positions the directory stream at the next entry. It returns a null pointer upon
reaching the end of the directory stream. The structure dirent defined by the
<dirent.h> header describes a directory entry.

If entries for . (dot) or .. (dot-dot) exist, one entry will be returned for dot and one
entry will be returned for dot-dot; otherwise they will not be returned.

The pointer returned by readdir() points to data which may be overwritten by
another call to readdir() on the same directory stream. This data is not overwritten
by another call to readdir() on a different directory stream.

If a file is removed from or added to the directory after the most recent call to
opendir(3C) or rewinddir(3C), whether a subsequent call to readdir() returns an
entry for that file is unspecified.

The readdir() function may buffer several directory entries per actual read
operation; readdir() marks for update the st_atime field of the directory each time
the directory is actually read.

After a call to fork(2), either the parent or child (but not both) may continue
processing the directory stream using readdir(), rewinddir() or seekdir(3C). If
both the parent and child processes use these functions, the result is undefined.

If the entry names a symbolic link, the value of the d_ino member is unspecified.

The readdir_r() function initializes the dirent structure referenced by entry to
represent the directory entry at the current position in the directory stream referred to
by dirp, and positions the directory stream at the next entry.

readdir(3C)

NAME

SYNOPSIS

POSIX

DESCRIPTION

readdir()

readdir_r()

Basic Library Functions 403

The caller must allocate storage pointed to by entry to be large enough for a dirent
structure with an array of char d_name member containing at least NAME_MAX (that
is, pathconf(_PC_NAME_MAX)) plus one elements. _PC_NAME_MAX is defined in
<unistd.h>.

The readdir_r() function will not return directory entries containing empty names.
It is unspecified whether entries are returned for . (dot) or .. (dot-dot).

If a file is removed from or added to the directory after the most recent call to
opendir() or rewinddir(), whether a subsequent call to readdir_r() returns an
entry for that file is unspecified.

The readdir_r() function may buffer several directory entries per actual read
operation; the readdir_r() function marks for update the st_atime field of the
directory each time the directory is actually read.

The POSIX version (see standards(5)) of the readdir_r() function initializes the
structure referenced by entry and stores a pointer to this structure in result. On
successful return, the pointer returned at *result will the same value as the argument
entry. Upon reaching the end of the directory stream, this pointer will have the value
NULL.

Upon successful completion, readdir() and readdir_r() return a pointer to an
object of type struct dirent. When an error is encountered, a null pointer is
returned and errno is set to indicate the error. When the end of the directory is
encountered, a null pointer is returned and errno is not changed. The POSIX
readdir_r() returns 0 if successful or an error number to indicate failure.

The readdir() function will fail if:

EOVERFLOW One of the values in the structure to be returned cannot be
represented correctly.

The readdir() and readdir_r() functions will fail if:

EBADF The file descriptor determined by the DIR stream is no longer
valid. This results if the DIR stream has been closed.

ENOENT The current file pointer for the directory is not located at a valid
entry.

The readdir() and readdir_r() functions may fail if:

EBADF The dirp argument does not refer to an open directory stream.

ENOENT The current position of the directory stream is invalid.

The readdir() function should be used in conjunction with opendir(),
closedir(), and rewinddir() to examine the contents of the directory. As
readdir() returns a null pointer both at the end of the directory and on error, an
application wishing to check for error situations should set errno to 0, then call
readdir(), then check errno and if it is non-zero, assume an error has occurred.

readdir(3C)

RETURN VALUES

ERRORS

USAGE

404 man pages section 3: Basic Library Functions • Last Revised 23 Apr 2001

Applications wishing to check for error situations should set errno to 0 before calling
readdir(). If errno is set to non-zero on return, an error occurred.

The readdir() and readdir_r() functions have transitional interfaces for 64-bit
file offsets. See lf64(5).

EXAMPLE 1 Search the current directory for the entry name.

The following sample code will search the current directory for the entry name:

dirp = opendir(".");

while (dirp) {
errno = 0;
if ((dp = readdir(dirp)) != NULL) {

if (strcmp(dp->d_name, name) == 0) {
closedir(dirp);
return FOUND;

}
} else {

if (errno == 0) {
closedir(dirp);
return NOT_FOUND;

}
closedir(dirp);
return READ_ERROR;

}
}

return OPEN_ERROR;

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See NOTES below.

When compiling multithreaded programs, see Intro(3), Notes On Multithreaded
Applications.

The readdir() function is unsafe in multithreaded applications. The readdir_r()
function is safe, and should be used instead.

Solaris 2.4 and earlier releases provided a readdir_r() interface as specified in
POSIX.1c Draft 6. The final POSIX.1c standard changed the interface as described
above. Support for the Draft 6 interface is provided for compatibility only and may
not be supported in future releases. New applications and libraries should use the
POSIX standard interface.

readdir(3C)

EXAMPLES

ATTRIBUTES

NOTES

Basic Library Functions 405

For POSIX.1c-compliant applications, the _POSIX_PTHREAD_SEMANTICS and
_REENTRANT flags are automatically turned on by defining the _POSIX_C_SOURCE
flag with a value >= 199506L.

fork(2), lstat(2), symlink(2), Intro(3), closedir(3C), opendir(3C),
rewinddir(3C), seekdir(3C), attributes(5), lf64(5), standards(5)

readdir(3C)

SEE ALSO

406 man pages section 3: Basic Library Functions • Last Revised 23 Apr 2001

readdir – read a directory entry

/usr/ucb/cc[flag ...] file ...
#include <sys/types.h>

#include <sys/dir.h>

struct direct *readdir(dirp);

DIR *dirp;

The readdir() function returns a pointer to a structure representing the directory
entry at the current position in the directory stream to which dirp refers, and positions
the directory stream at the next entry, except on read-only file systems. It returns a
NULL pointer upon reaching the end of the directory stream, or upon detecting an
invalid location in the directory. The readdir() function shall not return directory
entries containing empty names. It is unspecified whether entries are returned for dot
(.) or dot-dot (. .). The pointer returned by readdir() points to data that may be
overwritten by another call to readdir() on the same directory stream. This data
shall not be overwritten by another call to readdir() on a different directory stream.
The readdir() function may buffer several directory entries per actual read
operation. The readdir() function marks for update the st_atime field of the
directory each time the directory is actually read.

The readdir() function returns NULL on failure and sets errno to indicate the error.

The readdir() function will fail if one or more of the following are true:

EAGAIN Mandatory file/record locking was set, O_NDELAY or
O_NONBLOCK was set, and there was a blocking record lock.

EAGAIN Total amount of system memory available when reading using raw
I/O is temporarily insufficient.

EAGAIN No data is waiting to be read on a file associated with a tty device
and O_NONBLOCK was set.

EAGAIN No message is waiting to be read on a stream and O_NDELAY or
O_NONBLOCK was set.

EBADF The file descriptor determined by the DIR stream is no longer
valid. This results if the DIR stream has been closed.

EBADMSG Message waiting to be read on a stream is not a data message.

EDEADLK The read() was going to go to sleep and cause a deadlock to
occur.

EFAULT buf points to an illegal address.

EINTR A signal was caught during the read() or readv() function.

EINVAL Attempted to read from a stream linked to a multiplexor.

EIO A physical I/O error has occurred, or the process is in a
background process group and is attempting to read from its

readdir(3UCB)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Basic Library Functions 407

controlling terminal, and either the process is ignoring or blocking
the SIGTTIN signal or the process group of the process is
orphaned.

ENOENT The current file pointer for the directory is not located at a valid
entry.

ENOLCK The system record lock table was full, so the read() or readv()
could not go to sleep until the blocking record lock was removed.

ENOLINK fildes is on a remote machine and the link to that machine is no
longer active.

ENXIO The device associated with fildes is a block special or character
special file and the value of the file pointer is out of range.

EOVERFLOW The value of the direct structure member d_ino cannot be
represented in an ino_t.

The readdir() function has a transitional interface for 64-bit file offsets. See lf64(5).

getdents(2), readdir(3C), scandir(3UCB), lf64(5)

Use of these interfaces should be restricted to only applications written on BSD
platforms. Use of these interfaces with any of the system libraries or in multi-thread
applications is unsupported.

readdir(3UCB)

USAGE

SEE ALSO

NOTES

408 man pages section 3: Basic Library Functions • Last Revised 28 Jan 1998

realpath – resolve pathname

#include <stdlib.h>

char *realpath(const char *file_name, char *resolved_name);

The realpath() function derives, from the pathname pointed to by file_name, an
absolute pathname that names the same file, whose resolution does not involve ".",
". .", or symbolic links. The generated pathname, using PATH_MAX bytes, is stored in
the buffer pointed to by resolved_name.

The realpath() function can handle both relative and absolute path names. For
absolute path names and the relative names whose resolved name cannot be expressed
relatively (for example, . . /. . /reldir), it returns the resolved absolute name.
For the other relative path names, it returns the resolved relative name.

On successful completion, realpath() returns a pointer to the resolved name.
Otherwise, realpath() returns a null pointer and sets errno to indicate the error,
and the contents of the buffer pointed to by resolved_name are undefined.

The realpath() function will fail if:

EACCES Read or search permission was denied for a component
of file_name.

EINVAL Either the file_name or resolved_name argument is a null
pointer.

EIO An error occurred while reading from the file system.

ELOOP Too many symbolic links were encountered in
resolving path.

ENAMETOOLONG The file_name argument is longer than PATH_MAX or a
pathname component is longer than NAME_MAX.

ENOENT A component of file_name does not name an existing file
or file_name points to an empty string.

ENOTDIR A component of the path prefix is not a directory.

The realpath() function may fail if:

ENAMETOOLONG Pathname resolution of a symbolic link produced an
intermediate result whose length exceeds PATH_MAX.

ENOMEM Insufficient storage space is available.

The realpath() function operates on null-terminated strings.

One should have execute permission on all the directories in the given and the
resolved path.

realpath(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

Basic Library Functions 409

The realpath() function may fail to return to the current directory if an error
occurs.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

getcwd(3C), sysconf(3C), attributes(5)

realpath(3C)

ATTRIBUTES

SEE ALSO

410 man pages section 3: Basic Library Functions • Last Revised 11 May 2000

reboot – reboot system or halt processor

#include <sys/reboot.h>

int reboot(int howto, char *bootargs);

The reboot() function reboots the system. The howto argument specifies the
behavior of the system while rebooting and is a mask constructed by a
bitwise-inclusive-OR of flags from the following list:

RE_AUTOBOOT The machine is rebooted from the root filesystem on the default
boot device. This is the default behavior. See boot(1M) and
kernel(1M).

RB_HALT The processor is simply halted; no reboot takes place. This option
should be used with caution.

RB_ASKNAME Interpreted by the bootstrap program and kernel, causing the user
to be asked for pathnames during the bootstrap.

RB_DUMP The system is forced to panic immediately without any further
processing and a crash dump is written to the dump device (see
dumpadm(1M)) before rebooting.

Any other howto argument causes the kernel file to boot.

The interpretation of the bootargs argument is platform-dependent.

Upon successful completion, reboot() never returns. Otherwise, −1 is returned and
errno is set to indicate the error.

The reboot() function will fail if:

EPERM The caller is not the super-user.

Only the super-user may reboot() a machine.

intro(1M), boot(1M), dumpadm(1M), halt(1M), init(1M), kernel(1M),
reboot(1M), uadmin(2)

reboot(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

SEE ALSO

Basic Library Functions 411

re_comp, re_exec – compile and execute regular expressions

#include <re_comp.h>

char *re_comp(const char *string);

int re_exec(const char *string);

The re_comp() function converts a regular expression string (RE) into an internal
form suitable for pattern matching. The re_exec() function compares the string
pointed to by the string argument with the last regular expression passed to
re_comp().

If re_comp() is called with a null pointer argument, the current regular expression
remains unchanged.

Strings passed to both re_comp() and re_exec() must be terminated by a null
byte, and may include NEWLINE characters.

The re_comp() and re_exec() functions support simple regular expressions, which
are defined on the regexp(5) manual page. The regular expressions of the form
\{m\}, \{m,\}, or \{m,n\} are not supported.

The re_comp() function returns a null pointer when the string pointed to by the
string argument is successfully converted. Otherwise, a pointer to one of the following
error message strings is returned:

No previous regular expression
Regular expression too long
unmatched \ (
missing]
too many \ (\) pairs
unmatched \)

Upon successful completion, re_exec() returns 1 if string matches the last compiled
regular expression. Otherwise, re_exec() returns 0 if string fails to match the last
compiled regular expression, and −1 if the compiled regular expression is invalid
(indicating an internal error).

No errors are defined.

For portability to implementations conforming to X/Open standards prior to SUS,
regcomp(3C) and regexec(3C) are preferred to these functions. See standards(5).

grep(1), regcmp(1), regcmp(3C), regcomp(3C), regexec(3C), regexpr(3GEN),
regexp(5), standards(5)

re_comp(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

SEE ALSO

412 man pages section 3: Basic Library Functions • Last Revised 26 Feb 1997

regcmp, regex – compile and execute regular expression

#include <libgen.h>

char *regcmp(const char *string1, /* char *string2 */ ..., int
/*(char*)0*/);

char *regex(const char *re, const char *subject, /* char *ret0 */ ...);

extern char *__loc1;

The regcmp() function compiles a regular expression (consisting of the concatenated
arguments) and returns a pointer to the compiled form. The malloc(3C) function is
used to create space for the compiled form. It is the user’s responsibility to free
unneeded space so allocated. A NULL return from regcmp() indicates an incorrect
argument. regcmp(1) has been written to generally preclude the need for this routine
at execution time.

The regex() function executes a compiled pattern against the subject string.
Additional arguments are passed to receive values back. The regex() function
returns NULL on failure or a pointer to the next unmatched character on success. A
global character pointer __loc1 points to where the match began. The regcmp() and
regex() functions were mostly borrowed from the editor ed(1); however, the syntax
and semantics have been changed slightly. The following are the valid symbols and
associated meanings.

[] * .^ This group of symbols retains its meaning as described on the
regexp(5) manual page.

$ Matches the end of the string; \n matches a newline.

− Within brackets the minus means through. For example, [a−z] is
equivalent to [abcd . . .xyz]. The − can appear as itself only
if used as the first or last character. For example, the character class
expression []−] matches the characters] and −.

+ A regular expression followed by + means one or more times. For
example, [0−9]+ is equivalent to [0−9][0−9]*.

{m} {m,} {m,u} Integer values enclosed in { } indicate the number of times the
preceding regular expression is to be applied. The value m is the
minimum number and u is a number, less than 256, which is the
maximum. If only m is present (that is, {m}), it indicates the exact
number of times the regular expression is to be applied. The value
{m,} is analogous to {m,infinity}. The plus (+) and star (*)
operations are equivalent to {1,} and {0,} respectively.

(...)$n The value of the enclosed regular expression is to be returned. The
value will be stored in the (n+1)th argument following the subject
argument. At most, ten enclosed regular expressions are allowed.
The regex() function makes its assignments unconditionally.

regcmp(3C)

NAME

SYNOPSIS

DESCRIPTION

Basic Library Functions 413

(...) Parentheses are used for grouping. An operator, for example, *, +,
{ }, can work on a single character or a regular expression
enclosed in parentheses. For example, (a*(cb+)*)$0. By
necessity, all the above defined symbols are special. They must,
therefore, be escaped with a \ (backslash) to be used as
themselves.

EXAMPLE 1 Example matching a leading newline in the subject string.

The following example matches a leading newline in the subject string pointed at by
cursor.

char *cursor, *newcursor, *ptr;
. . .

newcursor = regex((ptr = regcmp("^\n", (char *)0)), cursor);
free(ptr);

The following example matches through the string Testing3 and returns the address
of the character after the last matched character (the ‘‘4’’). The string Testing3 is
copied to the character array ret0.

char ret0[9];
char *newcursor, *name;

. . .
name = regcmp("([A−Za−z][A−za−z0−9]{0,7})$0", (char *)0);
newcursor = regex(name, "012Testing345", ret0);

The following example applies a precompiled regular expression in file.i (see
regcmp(1)) against string.

#include "file.i"
char *string, *newcursor;

. . .
newcursor = regex(name, string);

/usr/ccs/lib/libgen.a

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ed(1), regcmp(1), malloc(3C), attributes(5), regexp(5)

The user program may run out of memory if regcmp() is called iteratively without
freeing the vectors no longer required.

When compiling multithreaded applications, the _REENTRANT flag must be defined
on the compile line. This flag should only be used in multithreaded applications.

regcmp(3C)

EXAMPLES

FILES

ATTRIBUTES

SEE ALSO

NOTES

414 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

regcomp, regexec, regerror, regfree – regular expression matching

#include <sys/types.h>

#include <regex.h>

int regcomp(regex_t *preg, const char *pattern, int cflags);

int regexec(const regex_t *preg, const char *string, size_t nmatch,
regmatch_t pmatch[], int eflags);

size_t regerror(int errcode, const regex_t *preg, char *errbuf, size_t
errbuf_size);

void regfree(regex_t *preg);

These functions interpret basic and extended regular expressions (described on the
regex(5) manual page).

The structure type regex_t contains at least the following member:

size_t re_nsub Number of parenthesised subexpressions.

The structure type regmatch_t contains at least the following members:

regoff_t rm_so Byte offset from start of string to start of substring.

regoff_t rm_eo Byte offset from start of string of the first character after
the end of substring.

The regcomp() function will compile the regular expression contained in the string
pointed to by the pattern argument and place the results in the structure pointed to by
preg. The cflags argument is the bitwise inclusive OR of zero or more of the following
flags, which are defined in the header <regex.h>:

REG_EXTENDED Use Extended Regular Expressions.

REG_ICASE Ignore case in match.

REG_NOSUB Report only success/fail in regexec().

REG_NEWLINE Change the handling of NEWLINE characters, as described in the
text.

The default regular expression type for pattern is a Basic Regular Expression. The
application can specify Extended Regular Expressions using the REG_EXTENDED cflags
flag.

If the REG_NOSUB flag was not set in cflags, then regcomp() will set re_nsub to the
number of parenthesised subexpressions (delimited by \(\) in basic regular
expressions or () in extended regular expressions) found in pattern.

The regexec() function compares the null-terminated string specified by string with
the compiled regular expression preg initialized by a previous call to regcomp(). The
eflags argument is the bitwise inclusive OR of zero or more of the following flags,
which are defined in the header <regex.h>:

regcomp(3C)

NAME

SYNOPSIS

DESCRIPTION

regcomp()

regexec()

Basic Library Functions 415

REG_NOTBOL The first character of the string pointed to by string is not the
beginning of the line. Therefore, the circumflex character (^), when
taken as a special character, will not match the beginning of string.

REG_NOTEOL The last character of the string pointed to by string is not the end
of the line. Therefore, the dollar sign ($), when taken as a special
character, will not match the end of string.

If nmatch is zero or REG_NOSUB was set in the cflags argument to regcomp(), then
regexec() will ignore the pmatch argument. Otherwise, the pmatch argument must
point to an array with at least nmatch elements, and regexec() will fill in the
elements of that array with offsets of the substrings of string that correspond to the
parenthesised subexpressions of pattern: pmatch[i].rm_so will be the byte offset of the
beginning and pmatch[i].rm_eo will be one greater than the byte offset of the end of
substring i. (Subexpression i begins at the ith matched open parenthesis, counting
from 1.) Offsets in pmatch[0] identify the substring that corresponds to the entire
regular expression. Unused elements of pmatch up to pmatch[nmatch−1] will be filled
with −1. If there are more than nmatch subexpressions in pattern (pattern itself counts as
a subexpression), then regexec() will still do the match, but will record only the first
nmatch substrings.

When matching a basic or extended regular expression, any given parenthesised
subexpression of pattern might participate in the match of several different substrings
of string, or it might not match any substring even though the pattern as a whole did
match. The following rules are used to determine which substrings to report in pmatch
when matching regular expressions:

1. If subexpression i in a regular expression is not contained within another
subexpression, and it participated in the match several times, then the byte
offsets in pmatch[i] will delimit the last such match.

2. If subexpression i is not contained within another subexpression, and it did
not participate in an otherwise successful match, the byte offsets in
pmatch[i] will be −1. A subexpression does not participate in the match
when:

* or \{\} appears immediately after the subexpression in a basic regular
expression, or *, ?, or { } appears immediately after the subexpression in
an extended regular expression, and the subexpression did not match
(matched zero times)

or

| is used in an extended regular expression to select this subexpression or
another, and the other subexpression matched.

3. If subexpression i is contained within another subexpression j, and i is not
contained within any other subexpression that is contained within j, and a
match of subexpression j is reported in pmatch[j], then the match or

regcomp(3C)

416 man pages section 3: Basic Library Functions • Last Revised 20 Dec 1996

non-match of subexpression i reported in pmatch[i] will be as described in
1. and 2. above, but within the substring reported in pmatch[j] rather than
the whole string.

4. If subexpression i is contained in subexpression j, and the byte offsets in
pmatch[j] are −1, then the pointers in pmatch[i] also will be −1.

5. If subexpression i matched a zero-length string, then both byte offsets in
pmatch[i] will be the byte offset of the character or NULL terminator
immediately following the zero-length string.

If, when regexec() is called, the locale is different from when the regular expression
was compiled, the result is undefined.

If REG_NEWLINE is not set in cflags, then a NEWLINE character in pattern or string will
be treated as an ordinary character. If REG_NEWLINE is set, then newline will be
treated as an ordinary character except as follows:

1. A NEWLINE character in string will not be matched by a period outside a
bracket expression or by any form of a non-matching list.

2. A circumflex (^) in pattern, when used to specify expression anchoring will
match the zero-length string immediately after a newline in string,
regardless of the setting of REG_NOTBOL.

3. A dollar-sign ($) in pattern, when used to specify expression anchoring, will
match the zero-length string immediately before a newline in string,
regardless of the setting of REG_NOTEOL.

The regfree() function frees any memory allocated by regcomp() associated with
preg.

The following constants are defined as error return values:

REG_NOMATCH The regexec() function failed to match.

REG_BADPAT Invalid regular expression.

REG_ECOLLATE Invalid collating element referenced.

REG_ECTYPE Invalid character class type referenced.

REG_EESCAPE Trailing \ in pattern.

REG_ESUBREG Number in \digit invalid or in error.

REG_EBRACK [] imbalance.

REG_ENOSYS The function is not supported.

REG_EPAREN \(\) or () imbalance.

REG_EBRACE \{ \} imbalance.

regcomp(3C)

regfree()

Basic Library Functions 417

REG_BADBR Content of \{ \} invalid: not a number, number too large, more
than two numbers, first larger than second.

REG_ERANGE Invalid endpoint in range expression.

REG_ESPACE Out of memory.

REG_BADRPT ?, * or + not preceded by valid regular expression.

The regerror() function provides a mapping from error codes returned by
regcomp() and regexec() to unspecified printable strings. It generates a string
corresponding to the value of the errcode argument, which must be the last non-zero
value returned by regcomp() or regexec() with the given value of preg. If errcode is
not such a value, an error message indicating that the error code is invalid is returned.

If preg is a NULL pointer, but errcode is a value returned by a previous call to
regexec() or regcomp(), the regerror() still generates an error string
corresponding to the value of errcode.

If the errbuf_size argument is not zero, regerror() will place the generated string
into the buffer of size errbuf_size bytes pointed to by errbuf. If the string (including the
terminating NULL) cannot fit in the buffer, regerror() will truncate the string and
null-terminate the result.

If errbuf_size is zero, regerror() ignores the errbuf argument, and returns the size of
the buffer needed to hold the generated string.

If the preg argument to regexec() or regfree() is not a compiled regular
expression returned by regcomp(), the result is undefined. A preg is no longer treated
as a compiled regular expression after it is given to regfree().

See regex(5) for BRE (Basic Regular Expression) Anchoring.

On successful completion, the regcomp() function returns 0. Otherwise, it returns an
integer value indicating an error as described in <regex.h>, and the content of preg is
undefined.

On successful completion, the regexec() function returns 0. Otherwise it returns
REG_NOMATCH to indicate no match, or REG_ENOSYS to indicate that the function is
not supported.

Upon successful completion, the regerror() function returns the number of bytes
needed to hold the entire generated string. Otherwise, it returns 0 to indicate that the
function is not implemented.

The regfree() function returns no value.

No errors are defined.

An application could use:

regcomp(3C)

regerror()

RETURN VALUES

ERRORS

USAGE

418 man pages section 3: Basic Library Functions • Last Revised 20 Dec 1996

regerror(code,preg,(char *)NULL,(size_t)0)

to find out how big a buffer is needed for the generated string, malloc a buffer to
hold the string, and then call regerror() again to get the string (see malloc(3C)).
Alternately, it could allocate a fixed, static buffer that is big enough to hold most
strings, and then use malloc() to allocate a larger buffer if it finds that this is too
small.

EXAMPLE 1 Example to match string against the extended regular expression in pattern.

#include <regex.h>
/*
* Match string against the extended regular expression in
* pattern, treating errors as no match.
*
* return 1 for match, 0 for no match
*/

int
match(const char *string, char *pattern)
{

int status;
regex_t re;
if (regcomp(&re, pattern, REG_EXTENDED | REG_NOSUB) != 0) {

return(0); /* report error */
}
status = regexec(&re, string, (size_t) 0, NULL, 0);
regfree(&re);
if (status != 0) {

return(0); /* report error */
}
return(1);

}

The following demonstrates how the REG_NOTBOL flag could be used with
regexec() to find all substrings in a line that match a pattern supplied by a user.
(For simplicity of the example, very little error checking is done.)

(void) regcomp (&re, pattern, 0);
/* this call to regexec() finds the first match on the line */
error = regexec (&re, &buffer[0], 1, &pm, 0);
while (error == 0) { /* while matches found */

/* substring found between pm.rm_so and pm.rm_eo */
/* This call to regexec() finds the next match */
error = regexec (&re, buffer + pm.rm_eo, 1, &pm, REG_NOTBOL);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

regcomp(3C)

EXAMPLES

ATTRIBUTES

Basic Library Functions 419

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

fnmatch(3C), glob(3C), malloc(3C), setlocale(3C), attributes(5), regex(5)

The regcomp() function can be used safely in a multithreaded application as long as
setlocale(3C) is not being called to change the locale.

regcomp(3C)

SEE ALSO

NOTES

420 man pages section 3: Basic Library Functions • Last Revised 20 Dec 1996

remove – remove file

#include <stdio.h>

int remove(const char *path);

The remove() function causes the file or empty directory whose name is the string
pointed to by path to be no longer accessible by that name. A subsequent attempt to
open that file using that name will fail, unless the file is created anew.

For files, remove() is identical to unlink(). For directories, remove() is identical
to rmdir().

See rmdir(2) and unlink(2) for a detailed list of failure conditions.

Upon successful completion, remove() returns 0. Otherwise, it returns −1 and sets
errno to indicate an error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

rmdir(2), unlink(2), attributes(5)

remove(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Basic Library Functions 421

rewind – reset file position indicator in a stream

#include <stdio.h>

void rewind(FILE *stream);

The call:

rewind(stream)

is equivalent to:

(void) fseek(stream, 0L, SEEK_SET)

except that rewind() also clears the error indicator.

The rewind() function returns no value.

Refer to fseek(3C) with the exception of EINVAL which does not apply.

Because rewind() does not return a value, an application wishing to detect errors
should clear errno, then call rewind(), and if errno is non-zero, assume an error
has occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

fseek(3C), attributes(5)

rewind(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

422 man pages section 3: Basic Library Functions • Last Revised 30 Dec 1996

rewinddir – reset position of directory stream to the beginning of a directory

#include <sys/types.h>

#include <dirent.h>

void rewinddir(DIR *dirp);

The rewinddir() function resets the position of the directory stream to which dirp
refers to the beginning of the directory. It also causes the directory stream to refer to
the current state of the corresponding directory, as a call to opendir(3C) would have
done. If dirp does not refer to a directory stream, the effect is undefined.

After a call to the fork(2) function, either the parent or child (but not both) may
continue processing the directory stream using readdir(3C), rewinddir() or
seekdir(3C). If both the parent and child processes use these functions, the result is
undefined.

The rewinddir() function does not return a value.

No errors are defined.

The rewinddir() function should be used in conjunction with opendir(),
readdir(), and closedir(3C) to examine the contents of the directory. This method
is recommended for portability.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

fork(2), closedir(3C), opendir(3C), readdir(3C), seekdir(3C), attributes(5)

rewinddir(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

Basic Library Functions 423

scandir, alphasort – scan a directory

/usr/ucb/cc [flag...] file...
#include <sys/types.h>

#include <sys/dir.h>

int scandir(dirname, namelist, select, dcomp);

char *dirname;
struct direct *(*namelist[]);
int (*select(.),(*dcomp)();

int alphasort(d1, d2);

struct direct **d1, **d2;

The scandir() function reads the directory dirname and builds an array of pointers
to directory entries using malloc(3C). The second parameter is a pointer to an array
of structure pointers. The third parameter is a pointer to a routine which is called with
a pointer to a directory entry and should return a non zero value if the directory entry
should be included in the array. If this pointer is NULL, then all the directory entries
will be included. The last argument is a pointer to a routine which is passed to
qsort(3C), which sorts the completed array. If this pointer is NULL, the array is not
sorted.

The alphasort() function sorts the array alphabetically.

The scandir() function returns the number of entries in the array and a pointer to
the array through the parameter namelist. The scandir() function returns −1 if the
directory cannot be opened for reading or if malloc(3C) cannot allocate enough
memory to hold all the data structures.

The alphasort() function returns an integer greater than, equal to, or less than 0 if
the directory entry name pointed to by d1 is greater than, equal to, or less than the
directory entry name pointed to by d2.

The scandir() and alphasort() functions have transitional interfaces for 64-bit
file offsets. See lf64(5).

getdents(2), malloc(3C), qsort(3C), readdir(3UCB), readdir(3C), lf64(5)

Use of these functions should be restricted to applications written on BSD platforms.
Use of these functions with any of the system libraries or in multithreaded
applications is unsupported.

scandir(3UCB)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

SEE ALSO

NOTES

424 man pages section 3: Basic Library Functions • Last Revised 3 Jan 2002

scanf, fscanf, sscanf, vscanf, vfscanf, vsscanf – convert formatted input

#include <stdio.h>

int scanf(const char *format, ...);

int fscanf(FILE*stream, const char *format, ...);

int sscanf(const char *s, const char *format, ...);

#include <stdarg.h>

#include <stdio.h>

int vscanf(const char *format, va_list arg);

int vfscanf(FILE *stream, const char *format, va_list arg);

int vsscanf(const char *s, const char *format, va_list arg);

The scanf() function reads from the standard input stream stdin.

The fscanf() function reads from the named input stream.

The sscanf() function reads from the string s.

The vscanf(), vfscanf(), and vsscanf() functions are equivalent to the
scanf(), fscanf(), and sscanf() functions, respectively, except that instead of
being called with a variable number of arguments, they are called with an argument
list as defined by the <stdarg.h> header (see stdarg(3HEAD)). These functions do
not invoke the va_end() macro. Applications using these functions should call
va_end(ap) afterwards to clean up.

Each function reads bytes, interprets them according to a format, and stores the results
in its arguments. Each expects, as arguments, a control string format described below,
and a set of pointer arguments indicating where the converted input should be stored.
The result is undefined if there are insufficient arguments for the format. If the format
is exhausted while arguments remain, the excess arguments are evaluated but are
otherwise ignored.

Conversions can be applied to the nth argument after the format in the argument list,
rather than to the next unused argument. In this case, the conversion character % (see
below) is replaced by the sequence %n$, where n is a decimal integer in the range [1,
NL_ARGMAX]. This feature provides for the definition of format strings that select
arguments in an order appropriate to specific languages. In format strings containing
the %n$ form of conversion specifications, it is unspecified whether numbered
arguments in the argument list can be referenced from the format string more than
once.

The format can contain either form of a conversion specification, that is, % or %n$, but
the two forms cannot normally be mixed within a single format string. The only
exception to this is that %% or %* can be mixed with the %n$ form.

scanf(3C)

NAME

SYNOPSIS

DESCRIPTION

Basic Library Functions 425

The scanf() function in all its forms allows for detection of a language-dependent
radix character in the input string. The radix character is defined in the program’s
locale (category LC_NUMERIC). In the POSIX locale, or in a locale where the radix
character is not defined, the radix character defaults to a period (.).

The format is a character string, beginning and ending in its initial shift state, if any,
composed of zero or more directives. Each directive is composed of one of the
following:

� one or more white-space characters (space, tab, newline, vertical-tab or form-feed
characters);

� an ordinary character (neither % nor a white-space character); or

� a conversion specification.

Each conversion specification is introduced by the character % or the character
sequence %n$, after which the following appear in sequence:

� An optional assignment-suppressing character *.

� An optional non-zero decimal integer that specifies the maximum field width.

� An optional size modifier h, l (ell), ll (ell ell), or L indicating the size of the
receiving object. The conversion characters d, i, and n must be preceded by h if the
corresponding argument is a pointer to short int rather than a pointer to int,
by l (ell) if it is a pointer to long int, or by ll (ell ell) if it is a pointer to long
long int. Similarly, the conversion characters o, u, and x must be preceded by h
if the corresponding argument is a pointer to unsigned short int rather than a
pointer to unsigned int, by l (ell) if it is a pointer to unsigned long int, or
by ll (ell ell) if it is a pointer to unsigned long long int. The conversion
characters e, f, and g must be preceded by l (ell) if the corresponding argument
is a pointer to double rather than a pointer to float, or by L if it is a pointer to
long double. Finally, the conversion characters c, s, and [must be precede by l
(ell) if the corresponding argument is a pointer to wchar_t rather than a pointer to
a character type. If an h, l (ell), ll (ell ell), or L appears with any other conversion
character, the behavior is undefined.

� A conversion character that specifies the type of conversion to be applied. The
valid conversion characters are described below.

The scanf() functions execute each directive of the format in turn. If a directive fails,
as detailed below, the function returns. Failures are described as input failures (due to
the unavailability of input bytes) or matching failures (due to inappropriate input).

A directive composed of one or more white-space characters is executed by reading
input until no more valid input can be read, or up to the first byte which is not a
white-space character which remains unread.

A directive that is an ordinary character is executed as follows. The next byte is read
from the input and compared with the byte that comprises the directive; if the
comparison shows that they are not equivalent, the directive fails, and the differing
and subsequent bytes remain unread.

scanf(3C)

Conversion
Specifications

426 man pages section 3: Basic Library Functions • Last Revised 3 May 2001

A directive that is a conversion specification defines a set of matching input sequences,
as described below for each conversion character. A conversion specification is
executed in the following steps:

Input white-space characters (as specified by isspace(3C)) are skipped, unless the
conversion specification includes a [, c, C, or n conversion character.

An item is read from the input, unless the conversion specification includes an n
conversion character. An input item is defined as the longest sequence of input bytes
(up to any specified maximum field width, which may be measured in characters or
bytes dependent on the conversion character) which is an initial subsequence of a
matching sequence. The first byte, if any, after the input item remains unread. If the
length of the input item is 0, the execution of the conversion specification fails; this
condition is a matching failure, unless end-of-file, an encoding error, or a read error
prevented input from the stream, in which case it is an input failure.

Except in the case of a % conversion character, the input item (or, in the case of a %n
conversion specification, the count of input bytes) is converted to a type appropriate to
the conversion character. If the input item is not a matching sequence, the execution of
the conversion specification fails; this condition is a matching failure. Unless
assignment suppression was indicated by a *, the result of the conversion is placed in
the object pointed to by the first argument following the format argument that has not
already received a conversion result if the conversion specification is introduced by %,
or in the nth argument if introduced by the character sequence %n$. If this object does
not have an appropriate type, or if the result of the conversion cannot be represented
in the space provided, the behavior is undefined.

The following conversion characters are valid:

d Matches an optionally signed decimal integer, whose format is the same as
expected for the subject sequence of strtol(3C) with the value 10 for the
base argument. In the absence of a size modifier, the corresponding
argument must be a pointer to int.

i Matches an optionally signed integer, whose format is the same as expected
for the subject sequence of strtol() with 0 for the base argument. In the
absence of a size modifier, the corresponding argument must be a pointer
to int.

o Matches an optionally signed octal integer, whose format is the same as
expected for the subject sequence of strtoul(3C) with the value 8 for the
base argument. In the absence of a size modifier, the corresponding
argument must be a pointer to unsigned int.

u Matches an optionally signed decimal integer, whose format is the same as
expected for the subject sequence of strtoul() with the value 10 for the
base argument. In the absence of a size modifier, the corresponding
argument must be a pointer to unsigned int.

x Matches an optionally signed hexadecimal integer, whose format is the
same as expected for the subject sequence of strtoul() with the value 16

scanf(3C)

Conversion
Characters

Basic Library Functions 427

for the base argument. In the absence of a size modifier, the corresponding
argument must be a pointer to unsigned int.

e,f,g Matches an optionally signed floating-point number, whose format is the
same as expected for the subject sequence of strtod(3C). In the absence of
a size modifier, the corresponding argument must be a pointer to float.

If the printf(3C) family of functions generates character string
representations for infinity and NaN (a 7858 symbolic entity encoded in
floating-point format) to support the ANSI/IEEE Std 754: 1985 standard,
the scanf() family of functions will recognize them as input.

s Matches a sequence of bytes that are not white-space characters. The
corresponding argument must be a pointer to the initial byte of an array of
char, signed char, or unsigned char large enough to accept the
sequence and a terminating null character code, which will be added
automatically.

If an l (ell) qualifier is present, the input is a sequence of characters that
begins in the initial shift state. Each character is converted to a
wide-character as if by a call to the mbrtowc(3C) function, with the
conversion state described by an mbstate_t object initialized to zero
before the first character is converted. The corresponding argument must
be a pointer to an array of wchar_t large enough to accept the sequence
and the terminating null wide-character, which will be added
automatically.

[Matches a non-empty sequence of characters from a set of expected
characters (the scanset). The normal skip over white-space characters is
suppressed in this case. The corresponding argument must be a pointer to
the initial byte of an array of char, signed char, or unsigned char
large enough to accept the sequence and a terminating null byte, which
will be added automatically.

If an l (ell) qualifier is present, the input is a sequence of characters that
begins in the initial shift state. Each character in the sequence is converted
to a wide-character as if by a call to the mbrtowc() function, with the
conversion state described by an mbstate_t object initialized to zero
before the first character is converted. The corresponding argument must
be a pointer to an array of wchar_t large enough to accept the sequence
and the terminating null wide-character, which will be added
automatically.

The conversion specification includes all subsequent characters in the
format string up to and including the matching right square bracket (]). The
characters between the square brackets (the scanlist) comprise the scanset,
unless the character after the left square bracket is a circumflex (^), in
which case the scanset contains all characters that do not appear in the
scanlist between the circumflex and the right square bracket. If the

scanf(3C)

428 man pages section 3: Basic Library Functions • Last Revised 3 May 2001

conversion specification begins with [] or [^], the right square bracket is
included in the scanlist and the next right square bracket is the matching
right square bracket that ends the conversion specification; otherwise the
first right square bracket is the one that ends the conversion specification. If
a – is in the scanlist and is not the first character, nor the second where the
first character is a ^, nor the last character, it indicates a range of characters
to be matched.

c Matches a sequence of characters of the number specified by the field
width (1 if no field width is present in the conversion specification). The
corresponding argument must be a pointer to the initial byte of an array of
char, signed char, or unsigned char large enough to accept the
sequence. No null byte is added. The normal skip over white-space
characters is suppressed in this case.

If an l (ell) qualifier is present, the input is a sequence of characters that
begins in the initial shift state. Each character in the sequence is converted
to a wide-character as if by a call to the mbrtowc() function, with the
conversion state described by an mbstate_t object initialized to zero
before the first character is converted. The corresponding argument must
be a pointer to an array of wchar_t large enough to accept the resulting
sequence of wide-characters. No null wide-character is added.

p Matches the set of sequences that is the same as the set of sequences that is
produced by the %p conversion of the corresponding printf(3C)
functions. The corresponding argument must be a pointer to a pointer to
void. If the input item is a value converted earlier during the same
program execution, the pointer that results will compare equal to that
value; otherwise the behavior of the %p conversion is undefined.

n No input is consumed. The corresponding argument must be a pointer to
the integer into which is to be written the number of bytes read from the
input so far by this call to the scanf() functions. Execution of a %n
conversion specification does not increment the assignment count returned
at the completion of execution of the function.

C Same as lc.

S Same as ls.

% Matches a single %; no conversion or assignment occurs. The complete
conversion specification must be %%.

If a conversion specification is invalid, the behavior is undefined.

The conversion characters E, G, and X are also valid and behave the same as,
respectively, e, g, and x.

If end-of-file is encountered during input, conversion is terminated. If end-of-file
occurs before any bytes matching the current conversion specification (except for %n)
have been read (other than leading white-space characters, where permitted),

scanf(3C)

Basic Library Functions 429

execution of the current conversion specification terminates with an input failure.
Otherwise, unless execution of the current conversion specification is terminated with
a matching failure, execution of the following conversion specification (if any) is
terminated with an input failure.

Reaching the end of the string in sscanf() is equivalent to encountering end-of-file
for fscanf().

If conversion terminates on a conflicting input, the offending input is left unread in the
input. Any trailing white space (including newline characters) is left unread unless
matched by a conversion specification. The success of literal matches and suppressed
assignments is only directly determinable via the %n conversion specification.

The fscanf() and scanf() functions may mark the st_atime field of the file
associated with stream for update. The st_atime field will be marked for update by
the first successful execution of fgetc(3C), fgets(3C), fread(3C), fscanf(),
getc(3C), getchar(3C), gets(3C), or scanf() using stream that returns data not
supplied by a prior call to ungetc(3C).

Upon successful completion, these functions return the number of successfully
matched and assigned input items; this number can be 0 in the event of an early
matching failure. If the input ends before the first matching failure or conversion, EOF
is returned. If a read error occurs the error indicator for the stream is set, EOF is
returned, and errno is set to indicate the error.

For the conditions under which the scanf() functions will fail and may fail, refer to
fgetc(3C) or fgetwc(3C).

In addition, fscanf() may fail if:

EILSEQ Input byte sequence does not form a valid character.

EINVAL There are insufficient arguments.

If the application calling the scanf() functions has any objects of type wint_t or
wchar_t, it must also include the header <wchar.h> to have these objects defined.

EXAMPLE 1 The call:

int i, n; float x; char name[50];
n = scanf("%d%f%s", &i, &x, name)

with the input line:

25 54.32E–1 Hamster

will assign to n the value 3, to i the value 25, to x the value 5.432, and name will
contain the string Hamster.

scanf(3C)

RETURN VALUES

ERRORS

USAGE

EXAMPLES

430 man pages section 3: Basic Library Functions • Last Revised 3 May 2001

EXAMPLE 2 The call:

int i; float x; char name[50];
(void) scanf("%2d%f%*d %[0123456789]", &i, &x, name);

with input:

56789 0123 56a72

will assign 56 to i, 789.0 to x, skip 0123, and place the string 56\0 in name. The next call
to getchar(3C) will return the character a.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

CSI Enabled

fgetc(3C), fgets(3C), fgetwc(3C), fread(3C), isspace(3C), printf(3C),
setlocale(3C), stdarg(3HEAD), strtod(3C), strtol(3C), strtoul(3C),
wcrtomb(3C), ungetc(3C), attributes(5)

scanf(3C)

ATTRIBUTES

SEE ALSO

Basic Library Functions 431

seekdir – set position of directory stream

#include <sys/types.h>

#include <dirent.h>

void seekdir(DIR *dirp, long int loc);

The seekdir() function sets the position of the next readdir(3C) operation on the
directory stream specified by dirp to the position specified by loc. The value of loc
should have been returned from an earlier call to telldir(3C). The new position
reverts to the one associated with the directory stream when telldir() was
performed.

If the value of loc was not obtained from an earlier call to telldir() or if a call to
rewinddir(3C) occurred between the call to telldir () and the call to seekdir(),
the results of subsequent calls to readdir() are unspecified.

The seekdir() function returns no value.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

opendir(3C), readdir(3C), rewinddir(3C), telldir(3C), attributes(5)

seekdir(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

432 man pages section 3: Basic Library Functions • Last Revised 6 Mar 1997

select, FD_SET, FD_CLR, FD_ISSET, FD_ZERO – synchronous I/O multiplexing

#include <sys/time.h>

int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *errorfds,
struct timeval *timeout);

void FD_SET(int fd, fd_set *fdset);

void FD_CLR(int fd, fd_set *fdset);

int FD_ISSET(int fd, fd_set *fdset);

void FD_ZERO(fd_set *fdset);

The select() function indicates which of the specified file descriptors is ready for
reading, ready for writing, or has an error condition pending. If the specified condition
is false for all of the specified file descriptors, select() blocks, up to the specified
timeout interval, until the specified condition is true for at least one of the specified
file descriptors.

The select() function supports regular files, terminal and pseudo-terminal devices,
STREAMS-based files, FIFOs and pipes. The behavior of select() on file descriptors
that refer to other types of file is unspecified.

The nfds argument specifies the range of file descriptors to be tested. The select()
function tests file descriptors in the range of 0 to nfds−1.

If the readfs argument is not a null pointer, it points to an object of type fd_set that
on input specifies the file descriptors to be checked for being ready to read, and on
output indicates which file descriptors are ready to read.

If the writefs argument is not a null pointer, it points to an object of type fd_set that
on input specifies the file descriptors to be checked for being ready to write, and on
output indicates which file descriptors are ready to write.

If the errorfds argument is not a null pointer, it points to an object of type fd_set that
on input specifies the file descriptors to be checked for error conditions pending, and
on output indicates which file descriptors have error conditions pending.

On successful completion, the objects pointed to by the readfs, writefs, and errorfds
arguments are modified to indicate which file descriptors are ready for reading, ready
for writing, or have an error condition pending, respectively. For each file descriptor
less than nfds, the corresponding bit will be set on successful completion if it was set
on input and the associated condition is true for that file descriptor.

If the timeout argument is not a null pointer, it points to an object of type struct
timeval that specifies a maximum interval to wait for the selection to complete. If the
timeout argument points to an object of type struct timeval whose members are 0,
select() does not block. If the timeout argument is a null pointer, select() blocks

select(3C)

NAME

SYNOPSIS

DESCRIPTION

Basic Library Functions 433

until an event causes one of the masks to be returned with a valid (non-zero) value. If
the time limit expires before any event occurs that would cause one of the masks to be
set to a non-zero value, select() completes successfully and returns 0.

If the readfs, writefs, and errorfds arguments are all null pointers and the timeout
argument is not a null pointer, select() blocks for the time specified, or until
interrupted by a signal. If the readfs, writefs, and errorfds arguments are all null pointers
and the timeout argument is a null pointer, select() blocks until interrupted by a
signal.

File descriptors associated with regular files always select true for ready to read, ready
to write, and error conditions.

On failure, the objects pointed to by the readfs, writefs, and errorfds arguments are not
modified. If the timeout interval expires without the specified condition being true for
any of the specified file descriptors, the objects pointed to by the readfs, writefs, and
errorfds arguments have all bits set to 0.

A file descriptor for a socket that is listening for connections will indicate that it is
ready for reading, when connections are available. A file descriptor for a socket that is
connecting asynchronously will indicate that it is ready for writing, when a connection
has been established.

Selecting true for reading on a socket descriptor upon which a listen(3SOCKET) call
has been performed indicates that a subsequent accept(3SOCKET) call on that
descriptor will not block.

File descriptor masks of type fd_set can be initialized and tested with the macros
FD_CLR(), FD_ISSET(), FD_SET(), and FD_ZERO().

FD_CLR(fd, &fdset) Clears the bit for the file descriptor fd in the file
descriptor set fdset.

FD_ISSET(fd, &fdset) Returns a non-zero value if the bit for the file
descriptor fd is set in the file descriptor set pointed to
by fdset, and 0 otherwise.

FD_SET(fd, &fdset) Sets the bit for the file descriptor fd in the file descriptor
set fdset.

FD_ZERO(&fdset) Initializes the file descriptor set fdset to have zero bits
for all file descriptors.

The behavior of these macros is undefined if the fd argument is less than 0 or greater
than or equal to FD_SETSIZE.

The FD_CLR(), FD_SET(), and FD_ZERO() macros return no value. The
FD_ISSET() macro returns a non-zero value if the bit for the file descriptor fd is set in
the file descriptor set pointed to by fdset, and 0 otherwise.

select(3C)

RETURN VALUES

434 man pages section 3: Basic Library Functions • Last Revised 31 Oct 2000

On successful completion, select() returns the total number of bits set in the bit
masks. Otherwise, −1 is returned, and errno is set to indicate the error.

The select() function will fail if:

EBADF One or more of the file descriptor sets specified a file descriptor
that is not a valid open file descriptor.

EINTR The select() function was interrupted before any of the selected
events occurred and before the timeout interval expired.

If SA_RESTART has been set for the interrupting signal, it is
implementation-dependent whether select() restarts or returns
with EINTR.

EINVAL An invalid timeout interval was specified.

EINVAL The nfds argument is less than 0 or greater than FD_SETSIZE.

EINVAL One of the specified file descriptors refers to a STREAM or
multiplexer that is linked (directly or indirectly) downstream from
a multiplexer.

EINVAL A component of the pointed-to time limit is outside the acceptable
range: t_sec must be between 0 and 108, inclusive. t_usec must
be greater than or equal to 0, and less than 106.

The poll(2) function is preferred over this function. It must be used when the number
of file descriptors exceeds FD_SETSIZE.

The use of a timeout does not affect any pending timers set up by alarm(2),
ualarm(3C) or setitimer(2).

On successful completion, the object pointed to by the timeout argument may be
modified.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

alarm(2), fcntl(2), poll(2), read(2), setitimer(2), write(2), accept(3SOCKET),
listen(3SOCKET), ualarm(3C), attributes(5)

The default value for FD_SETSIZE (currently 1024) is larger than the default limit on
the number of open files. To accommodate 32-bit applications that wish to use a larger
number of open files with select(), it is possible to increase this size at compile time

select(3C)

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

NOTES

Basic Library Functions 435

by providing a larger definition of FD_SETSIZE before the inclusion of any
system-supplied header. The maximum supported size for FD_SETSIZE is 65536. The
default value is already 65536 for 64-bit applications.

select(3C)

436 man pages section 3: Basic Library Functions • Last Revised 31 Oct 2000

setbuf, setvbuf – assign buffering to a stream

#include <stdio.h>

void setbuf(FILE *stream, char *buf);

int setvbuf(FILE *stream, char *buf, int type, size_t size);

The setbuf() function may be used after the stream pointed to by stream (see
intro(3)) is opened but before it is read or written. It causes the array pointed to by
buf to be used instead of an automatically allocated buffer. If buf is the null pointer,
input/output will be completely unbuffered. The constant BUFSIZ, defined in the
<stdio.h> header, indicates the size of the array pointed to by buf.

The setvbuf() function may be used after a stream is opened but before it is read or
written. The type argument determines how stream will be buffered. Legal values for
type (defined in <stdio.h>) are:

_IOFBF Input/output to be fully buffered.

_IOLBF Output to be line buffered; the buffer will be flushed when a
NEWLINE is written, the buffer is full, or input is requested.

_IONBF Input/output to be completely unbuffered.

If buf is not the null pointer, the array it points to will be used for buffering, instead of
an automatically allocated buffer. The size argument specifies the size of the buffer to
be used. If input/output is unbuffered, buf and size are ignored.

For a further discussion of buffering, see stdio(3C).

If an illegal value for type is provided, setvbuf() returns a non-zero value.
Otherwise, it returns 0.

A common source of error is allocating buffer space as an “automatic” variable in a
code block, and then failing to close the stream in the same block.

When using setbuf(), buf should always be sized using BUFSIZ. If the array
pointed to by buf is larger than BUFSIZ, a portion of buf will not be used. If buf is
smaller than BUFSIZ, other memory may be unexpectedly overwritten.

Parts of buf will be used for internal bookkeeping of the stream and, therefore, buf
will contain less than size bytes when full. It is recommended that stdio(3C) be used
to handle buffer allocation when using setvbuf().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

setbuf(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

Basic Library Functions 437

fopen(3C), getc(3C), malloc(3C), putc(3C), stdio(3C), attributes(5)

setbuf(3C)

SEE ALSO

438 man pages section 3: Basic Library Functions • Last Revised 30 Dec 1996

setbuffer, setlinebuf – assign buffering to a stream

#include <stdio.h>

void setbuffer(FILE *iop, char *abuf, size_t asize);

int setlinebuf(FILE *iop);

The setbuffer() and setlinebuf() functions assign buffering to a stream. The
three types of buffering available are unbuffered, block buffered, and line buffered.
When an output stream is unbuffered, information appears on the destination file or
terminal as soon as written; when it is block buffered, many characters are saved and
written as a block; when it is line buffered, characters are saved until either a
NEWLINE is encountered or input is read from stdin. The fflush(3C) function may
be used to force the block out early. Normally all files are block buffered. A buffer is
obtained from malloc(3C) upon the first getc(3C) or putc(3C) performed on the file.
If the standard stream stdout refers to a terminal, it is line buffered. The standard
stream stderr is unbuffered by default.

The setbuffer() function can be used after a stream iop has been opened but before
it is read or written. It uses the character array abuf whose size is determined by the
asize argument instead of an automatically allocated buffer. If abuf is the null pointer,
input/output will be completely unbuffered. A manifest constant BUFSIZ, defined in
the <stdio.h> header, tells how large an array is needed:

char buf[BUFSIZ];

The setlinebuf() function is used to change the buffering on a stream from block
buffered or unbuffered to line buffered. Unlike setbuffer(), it can be used at any
time that the stream iop is active.

A stream can be changed from unbuffered or line buffered to block buffered by using
freopen(3C). A stream can be changed from block buffered or line buffered to
unbuffered by using freopen(3C) followed by setbuf(3C) with a buffer argument of
NULL.

The setlinebuf() function returns no useful value.

malloc(3C), fclose(3C), fopen(3C), fread(3C), getc(3C), printf(3C), putc(3C),
puts(3C), setbuf(3C), setvbuf(3C)

A common source of error is allocating buffer space as an “automatic” variable in a
code block, and then failing to close the stream in the same block.

setbuffer(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

SEE ALSO

NOTES

Basic Library Functions 439

setcat – define default catalog

#include <pfmt.h>

char *setcat(const char *catalog);

The setcat() function defines the default message catalog to be used by subsequent
calls to gettxt(3C), lfmt(3C), or pfmt(3C) that do not explicitly specify a message
catalog.

The catalog argument must be limited to 14 characters. These characters must be
selected from a set of all characters values, excluding \0 (null) and the ASCII codes for
/ (slash) and : (colon).

The setcat() function assumes that the catalog exists. No checking is done on the
argument.

A null pointer passed as an argument will result in the return of a pointer to the
current default message catalog name. A pointer to an empty string passed as an
argument will cancel the default catalog.

If no default catalog is specified, or if catalog is an invalid catalog name, subsequent
calls to gettxt(3C), lfmt(3C), or pfmt(3C) that do not explicitely specify a catalog
name will use Message not found!!\n as default string.

Upon successful completion, setcat() returns a pointer to the catalog name.
Otherwise, it returns a null pointer.

EXAMPLE 1 Example of setcat() function.

setcat("test");
gettxt(":10", "hello world\n")

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

gettxt(3C), lfmt(3C), pfmt(3C), setlocale(3C), attributes(5), environ(5)

setcat(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

EXAMPLES

ATTRIBUTES

SEE ALSO

440 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

setjmp, sigsetjmp, longjmp, siglongjmp – non-local goto

#include <setjmp.h>

int setjmp(jmp_buf env);

int sigsetjmp(sigjmp_buf env, int savemask);

void longjmp(jmp_buf env, int val);

void siglongjmp(sigjmp_buf env, int val);

These functions are useful for dealing with errors and interrupts encountered in a
low-level subroutine of a program.

The setjmp() function saves its stack environment in env for later use by
longjmp().

The sigsetjmp() function saves the calling process’s registers and stack
environment (see sigaltstack(2)) in env for later use by siglongjmp(). If savemask
is non-zero, the calling process’s signal mask (see sigprocmask(2)) and scheduling
parameters (see priocntl(2)) are also saved.

The longjmp() function restores the environment saved by the last call of setjmp()
with the corresponding env argument. After longjmp() completes, program
execution continues as if the corresponding call to setjmp() had just returned the
value val. The caller of setjmp() must not have returned in the interim. The
longjmp() function cannot cause setjmp() to return the value 0. If longjmp() is
invoked with a second argument of 0, setjmp() will return 1. At the time of the
second return from setjmp(), all external and static variables have values as of the
time longjmp() is called (see EXAMPLES).

The siglongjmp() function restores the environment saved by the last call of
sigsetjmp() with the corresponding env argument. After siglongjmp()
completes, program execution continues as if the corresponding call to sigsetjmp()
had just returned the value val. The siglongjmp() function cannot cause
sigsetjmp() to return the value 0. If siglongjmp() is invoked with a second
argument of 0, sigsetjmp() will return 1. At the time of the second return from
sigsetjmp(), all external and static variables have values as of the time
siglongjmp() was called.

If a signal-catching function interrupts sleep(3C) and calls siglongjmp() to restore
an environment saved prior to the sleep() call, the action associated with SIGALRM
and time it is scheduled to be generated are unspecified. It is also unspecified whether
the SIGALRM signal is blocked, unless the process’s signal mask is restored as part of
the environment.

The siglongjmp() function restores the saved signal mask if and only if the env
argument was initialized by a call to the sigsetjmp() function with a non-zero
savemask argument.

setjmp(3C)

NAME

SYNOPSIS

DESCRIPTION

Basic Library Functions 441

The values of register and automatic variables are undefined. Register or automatic
variables whose value must be relied upon must be declared as volatile.

If the return is from a direct invocation, setjmp() and sigsetjmp() return 0. If the
return is from a call to longjmp(), setjmp() returns a non-zero value. If the return
is from a call to siglongjmp(), sigsetjmp() returns a non-zero value.

After longjmp() is completed, program execution continues as if the corresponding
invocation of setjmp() had just returned the value specified by val. The longjmp()
function cannot cause setjmp() to return 0; if val is 0, setjmp() returns 1.

After siglongjmp() is completed, program execution continues as if the
corresponding invocation of sigsetjmp() had just returned the value specified by
val. The siglongjmp() function cannot cause sigsetjmp() to return 0; if val is 0,
sigsetjmp() returns 1.

EXAMPLE 1 Example of setjmp() and longjmp() functions.

The following example uses both setjmp() and longjmp() to return the flow of
control to the appropriate instruction block:

#include <stdio.h>
#include <setjmp.h>
#include <signal.h>
#include <unistd.h>
jmp_buf env; static void signal_handler();

main() {
int returned_from_longjump, processing = 1;
unsigned int time_interval = 4;
if ((returned_from_longjump = setjmp(env)) != 0)

switch (returned_from_longjump) {
case SIGINT:

printf("longjumped from interrupt %d\n",SIGINT);
break;

case SIGALRM:
printf("longjumped from alarm %d\n",SIGALRM);
break;

}
(void) signal(SIGINT, signal_handler);
(void) signal(SIGALRM, signal_handler);
alarm(time_interval);
while (processing) {

printf(" waiting for you to INTERRUPT (cntrl-C) ...\n");
sleep(1);

} /* end while forever loop */
}

static void signal_handler(sig)
int sig; {

switch (sig) {
case SIGINT: ... /* process for interrupt */

longjmp(env,sig);
/* break never reached */

case SIGALRM: ... /* process for alarm */

setjmp(3C)

RETURN VALUES

EXAMPLES

442 man pages section 3: Basic Library Functions • Last Revised 5 Jun 2000

EXAMPLE 1 Example of setjmp() and longjmp() functions. (Continued)

longjmp(env,sig);
/* break never reached */

default: exit(sig);
}

}

When this example is compiled and executed, and the user sends an interrupt signal,
the output will be:

longjumped from interrupt

Additionally, every 4 seconds the alarm will expire, signalling this process, and the
output will be:

longjumped from alarm

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

getcontext(2), priocntl(2), sigaction(2), sigaltstack(2), sigprocmask(2),
signal(3C), attributes(5)

If longjmp() or siglongjmp() are called even though env was never primed by a
call to setjmp() or sigsetjmp(), or when the last such call was in a function that
has since returned, the results are undefined.

setjmp(3C)

ATTRIBUTES

SEE ALSO

WARNINGS

Basic Library Functions 443

setjmp, longjmp, _setjmp, _longjmp – non-local goto

/usr/ucb/cc [flag ...] file ...

#include <setjmp.h>

int setjmp(env);

jmp_buf env;

void longjmp(env, val);

jmp_buf env;
int val;

int _setjmp(env);

jmp_buf env;

void _longjmp(env, val);

jmp_buf env;
int val;

The setjmp() and longjmp() functions are useful for dealing with errors and
interrupts encountered in a low-level subroutine of a program.

The setjmp() function saves its stack environment in env for later use by
longjmp(). A normal call to setjmp() returns zero. setjmp() also saves the
register environment. If a longjmp() call will be made, the routine which called
setjmp() should not return until after the longjmp() has returned control (see
below).

The longjmp() function restores the environment saved by the last call of
setjmp(), and then returns in such a way that execution continues as if the call of
setjmp() had just returned the value val to the function that invoked setjmp();
however, if val were zero, execution would continue as if the call of setjmp() had
returned one. This ensures that a ‘‘return’’ from setjmp() caused by a call to
longjmp() can be distinguished from a regular return from setjmp(). The calling
function must not itself have returned in the interim, otherwise longjmp() will be
returning control to a possibly non-existent environment. All memory-bound data
have values as of the time longjmp() was called. The CPU and floating-point data
registers are restored to the values they had at the time that setjmp() was called.
But, because the register storage class is only a hint to the C compiler, variables
declared as register variables may not necessarily be assigned to machine registers,
so their values are unpredictable after a longjmp(). This is especially a problem for
programmers trying to write machine-independent C routines.

The setjmp() and longjmp() functions save and restore the signal mask while
_setjmp() and _longjmp() manipulate only the C stack and registers.

None of these functions save or restore any floating-point status or control registers.

setjmp(3UCB)

NAME

SYNOPSIS

DESCRIPTION

444 man pages section 3: Basic Library Functions • Last Revised 7 Apr 1993

EXAMPLE 1 Examples of setjmp() and longjmp().

The following example uses both setjmp() and longjmp() to return the flow of
control to the appropriate instruction block:

#include <stdio.h>
#include <setjmp.h>
#include <signal.h>
#include <unistd.h>
jmp_buf env; static void signal_handler();
main() {

int returned_from_longjump, processing = 1;
unsigned int time_interval = 4;
if ((returned_from_longjump = setjmp(env)) != 0)

switch (returned_from_longjump) {
case SIGINT:

printf("longjumped from interrupt %d\n",SIGINT);
break;

case SIGALRM:
printf("longjumped from alarm %d\n",SIGALRM);
break;

}
(void) signal(SIGINT, signal_handler);
(void) signal(SIGALRM, signal_handler);
alarm(time_interval);
while (processing) {

printf(" waiting for you to INTERRUPT (cntrl-C) ...\n");
sleep(1);

} /* end while forever loop */
}

static void signal_handler(sig)
int sig; {

switch (sig) {
case SIGINT: ... /* process for interrupt */

longjmp(env,sig);
/* break never reached */

case SIGALRM: ... /* process for alarm */
longjmp(env,sig);

/* break never reached */
default: exit(sig);

}
}

When this example is compiled and executed, and the user sends an interrupt signal,
the output will be:

longjumped from interrupt

Additionally, every 4 seconds the alarm will expire, signalling this process, and the
output will be:

longjumped from alarm

cc(1B), sigvec(3UCB), setjmp(3C), signal(3C)

setjmp(3UCB)

EXAMPLES

SEE ALSO

Basic Library Functions 445

Use of these interfaces should be restricted to only applications written on BSD
platforms. Use of these interfaces with any of the system libraries or in multi-thread
applications is unsupported.

The setjmp() function does not save the current notion of whether the process is
executing on the signal stack. The result is that a longjmp() to some place on the
signal stack leaves the signal stack state incorrect.

On some systems setjmp() also saves the register environment. Therefore, all data
that are bound to registers are restored to the values they had at the time that
setjmp() was called. All memory-bound data have values as of the time longjmp()
was called. However, because the register storage class is only a hint to the C
compiler, variables declared as register variables may not necessarily be assigned
to machine registers, so their values are unpredictable after a longjmp(). When using
compiler options that specify automatic register allocation (see cc(1B)), the compiler
will not attempt to assign variables to registers in routines that call setjmp().

The longjmp() function never causes setjmp() to return 0, so programmers should
not depend on longjmp() being able to cause setjmp() to return 0.

setjmp(3UCB)

NOTES

BUGS

446 man pages section 3: Basic Library Functions • Last Revised 7 Apr 1993

setkey – set encoding key

#include <stdlib.h>

void setkey(const char *key);

The setkey() function provides (rather primitive) access to the hashing algorithm
employed by the crypt(3C) function. The argument of setkey() is an array of
length 64 bytes containing only the bytes with numerical value of 0 and 1. If this string
is divided into groups of 8, the low-order bit in each group is ignored; this gives a
56-bit key which is used by the algorithm. This is the key that will be used with the
algorithm to encode a string block passed to encrypt(3C).

No values are returned.

The setkey() function will fail if:

ENOSYS The functionality is not supported on this implementation.

In some environments, decoding may not be implemented. This is related to U.S.
Government restrictions on encryption and decryption routines: the DES decryption
algorithm cannot be exported outside the U.S.A. Historical practice has been to ship a
different version of the encryption library without the decryption feature in the
routines supplied. Thus the exported version of encrypt() does encoding but not
decoding.

Because setkey() does not return a value, applications wishing to check for errors
should set errno to 0, call setkey(), then test errno and, if it is non-zero, assume
an error has occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

crypt(3C), encrypt(3C), attributes(5)

setkey(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

Basic Library Functions 447

setlabel – define the label for pfmt() and lfmt()

#include <pfmt..h>

int setlabel(const char *label);

The setlabel() function defines the label for messages produced in standard format
by subsequent calls to lfmt(3C) and pfmt(3C).

The label argument is a character string no more than 25 characters in length.

No label is defined before setlabel() is called. The label should be set once at the
beginning of a utility and remain constant. A null pointer or an empty string passed as
argument will reset the definition of the label.

Upon successful completion, setlabel() returns 0; otherwise, it returns a non-zero
value.

The following code (without previous call to setlabel()):

pfmt(stderr, MM_ERROR, "test:2:Cannot open file\n");
setlabel("UX:test");
pfmt(stderr, MM_ERROR, "test:2:Cannot open file\n");

will produce the following output:

ERROR: Cannot open file
UX:test: ERROR: Cannot open file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

getopt(3C), lfmt(3C), pfmt(3C), attributes(5)

setlabel(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUE

EXAMPLES

ATTRIBUTES

SEE ALSO

448 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

setlocale – modify and query a program’s locale

#include <locale.h>

char *setlocale(int category, const char *locale);

The setlocale() function selects the appropriate piece of the program’s locale as
specified by the category and locale arguments. The category argument may have the
following values: LC_CTYPE, LC_NUMERIC, LC_TIME, LC_COLLATE, LC_MONETARY,
LC_MESSAGES, and LC_ALL. These names are defined in the <locale.h> header.
The LC_ALL variable names all of a program’s locale categories.

The LC_CTYPE variable affects the behavior of character handling functions such as
isdigit(3C) and tolower(3C), and multibyte character functions such as
mbtowc(3C) and wctomb(3C).

The LC_NUMERIC variable affects the decimal point character and thousands separator
character for the formatted input/output functions and string conversion functions.

The LC_TIME variable affects the date and time format as delivered by ascftime(3C)
cftime(3C) getdate(3C) strftime(3C) and strptime(3C)

The LC_COLLATE variable affects the sort order produced by collating functions such
as strcoll (3C) and strxfrm(3C)

The LC_MONETARY variable affects the monetary formatted information returned by
localeconv(3C).

The LC_MESSAGES variable affects the behavior of messaging functions such as
dgettext(3C), gettext(3C), and gettxt(3C).

A value of "C" for locale specifies the traditional UNIX system behavior. At program
startup, the equivalent of

setlocale(LC_ALL, "C")

is executed. This has the effect of initializing each category to the locale described by
the environment "C".

A value of "" for locale specifies that the locale should be taken from environment
variables. The order in which the environment variables are checked for the various
categories is given below:

Category 1st Env Var 2nd Env Var 3rd Env Var

LC_CTYPE: LC_ALL LC_CTYPE LANG

LC_COLLATE: LC_ALL LC_COLLATE LANG

setlocale(3C)

NAME

SYNOPSIS

DESCRIPTION

Basic Library Functions 449

Category 1st Env Var 2nd Env Var 3rd Env Var

LC_CTIME: LC_ALL LC_CTIME LANG

LC_NUMERIC: LC_ALL LC_NUMERIC LANG

LC_MONETARY: LC_ALL LC_MONETARY LANG

LC_MESSAGES: LC_ALL LC_MESSAGES LANG

If a pointer to a string is given for locale, setlocale() attempts to set the locale for
the given category to locale. If setlocale() succeeds, locale is returned. If
setlocale() fails, a null pointer is returned and the program’s locale is not
changed.

For category LC_ALL, the behavior is slightly different. If a pointer to a string is given
for locale and LC_ALL is given for category, setlocale() attempts to set the locale for
all the categories to locale. The locale may be a simple locale, consisting of a single
locale, or a composite locale. If the locales for all the categories are the same after all
the attempted locale changes, setlocale() will return a pointer to the common
simple locale. If there is a mixture of locales among the categories, setlocale() will
return a composite locale.

Upon successful completion, setlocale() returns the string associated with the
specified category for the new locale. Otherwise, setlocale() returns a null pointer
and the program’s locale is not changed.

A null pointer for locale causes setlocale() to return a pointer to the string
associated with the category for the program’s current locale. The program’s locale is
not changed.

The string returned by setlocale() is such that a subsequent call with that string
and its associated category will restore that part of the program’s locale. The string
returned must not be modified by the program, but may be overwritten by a
subsequent call to setlocale().

No errors are defined.

/usr/lib/locale/locale locale database directory for locale

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

CSI Enabled

setlocale(3C)

RETURN VALUES

ERRORS

FILES

ATTRIBUTES

450 man pages section 3: Basic Library Functions • Last Revised 20 Dec 1996

locale(1), ctype(3C), getdate(3C) gettext(3C), gettxt(3C), isdigit(3C),
localeconv(3C), mbtowc(3C), strcoll(3C), strftime(3C), strptime(3C)
strxfrm(3C) tolower(3C), wctomb(3C), libc(3LIB), attributes(5), environ(5),
locale(5)

To change locale in a multithreaded application, setlocale() should be called prior
to using any locale-sensitive routine. Using setlocale() to query the current locale
is safe and can be used anywhere in a multithreaded application.

It is the user’s responsibility to ensure that mixed locale categories are compatible. For
example, setting LC_CTYPE=C and LC_TIME=ja (where ja indicates Japanese) will
not work, because Japanese time cannot be represented in the “C” locale’s ASCII
codeset.

Internationalization functions by setlocale() are supported only when the
dynamic linking version of libc has been linked with the application. If the static
linking version of libc has been linked with the application, setlocale() can
handle only C and POSIX locales.

setlocale(3C)

SEE ALSO

NOTES

Basic Library Functions 451

sigblock, sigmask, sigpause, sigsetmask – block signals

/usr/ucb/cc [flag ...] file ...

#include <signal.h>

int sigblock(mask);

intmask;

int sigmask(signum);

int signum;

int sigpause(int mask);

int mask;

int sigsetmask(mask);

int mask;

sigblock, sigmask, sigpause, sigsetmask − block signals

sigblock() adds the signals specified in mask to the set of signals currently being
blocked from delivery. Signals are blocked if the appropriate bit in mask is a 1; the
macro sigmask is provided to construct the mask for a given signum. sigblock()
returns the previous mask. The previous mask may be restored using sigsetmask().

sigpause() assigns mask to the set of masked signals and then waits for a signal to
arrive; on return the set of masked signals is restored. mask is usually 0 to indicate that
no signals are now to be blocked. sigpause() always terminates by being
interrupted, returning −1 and setting errno to EINTR.

sigsetmask() sets the current signal mask (those signals that are blocked from
delivery). Signals are blocked if the corresponding bit in mask is a 1; the macro
sigmask is provided to construct the mask for a given signum.

In normal usage, a signal is blocked using sigblock(). To begin a critical section,
variables modified on the occurrence of the signal are examined to determine that
there is no work to be done, and the process pauses awaiting work by using
sigpause() with the mask returned by sigblock().

It is not possible to block SIGKILL, SIGSTOP, or SIGCONT, this restriction is silently
imposed by the system.

sigblock() and sigsetmask() return the previous set of masked signals.
sigpause() returns −1 and sets errno to EINTR.

kill(2), sigaction(2), signal(3UCB), sigvec(3UCB)

Use of these interfaces should be restricted to only applications written on BSD
platforms. Use of these interfaces with any of the system libraries or in multi-thread
applications is unsupported.

sigblock(3UCB)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

SEE ALSO

NOTES

452 man pages section 3: Basic Library Functions • Last Revised 19 Feb 1993

sigfpe – signal handling for specific SIGFPE codes

#include <floatingpoint.h>

#include <siginfo.h>

sigfpe_handler_type sigfpe(sigfpe_code_type code,
sigfpe_handler_type hdl);

This function allows signal handling to be specified for particular SIGFPE codes. A
call to sigfpe() defines a new handler hdl for a particular SIGFPE code and returns
the old handler as the value of the function sigfpe(). Normally handlers are
specified as pointers to functions; the special cases SIGFPE_IGNORE, SIGFPE_ABORT,
and SIGFPE_DEFAULT allow ignoring, dumping core using abort(3C), or default
handling respectively. Default handling is to dump core using abort(3C).

code is usually one of the five IEEE 754-related SIGFPE codes:

FPE_FLTRES fp_inexact − floating-point inexact result
FPE_FLTDIV fp_division − floating-point division by zero
FPE_FLTUND fp_underflow − floating-point underflow
FPE_FLTOVF fp_overflow − floating-point overflow

FPE_FLTINV fp_invalid − floating-point invalid operation

Three steps are required to intercept an IEEE 754-related SIGFPE code with
sigfpe():

1. Set up a handler with sigfpe().

2. Enable the relevant IEEE 754 trapping capability in the hardware, perhaps by using
assembly-language instructions.

3. Perform a floating-point operation that generates the intended IEEE 754 exception.

sigfpe() never changes floating-point hardware mode bits affecting IEEE 754
trapping. No IEEE 754-related SIGFPE signals will be generated unless those
hardware mode bits are enabled.

SIGFPE signals can be handled using sigfpe(), sigaction(2) or signal(3C). In a
particular program, to avoid confusion, use only one of these interfaces to handle
SIGFPE signals.

EXAMPLE 1 Example Of A User-Specified Signal Handler

A user-specified signal handler might look like this:

#include <floatingpoint.h>
#include <siginfo.h>
#include <ucontext.h>
/*
* The sample_handler prints out a message then commits suicide.
*/
void
sample_handler(int sig, siginfo_t *sip, ucontext_t *uap) {

char *label;
switch (sip−>si_code) {

sigfpe(3C)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

Basic Library Functions 453

EXAMPLE 1 Example Of A User-Specified Signal Handler (Continued)

case FPE_FLTINV: label = "invalid operand"; break;
case FPE_FLTRES: label = "inexact"; break;
case FPE_FLTDIV: label = "division-by-zero"; break;
case FPE_FLTUND: label = "underflow"; break;
case FPE_FLTOVF: label = "overflow"; break;
default: label = "???"; break;
}
fprintf(stderr, "FP exception %s (0x%x) occurred at address %p.\n",

label, sip−>si_code, (void *) sip−>si_addr);
abort();

}

and it might be set up like this:

#include <floatingpoint.h>
#include <siginfo.h>
#include <ucontext.h>
extern void sample_handler(int, siginfo_t *, ucontext_t *);
main(void) {

sigfpe_handler_type hdl, old_handler1, old_handler2;
/*
* save current fp_overflow and fp_invalid handlers; set the new
* fp_overflow handler to sample_handler() and set the new
* fp_invalid handler to SIGFPE_ABORT (abort on invalid)
*/

hdl = (sigfpe_handler_type) sample_handler;
old_handler1 = sigfpe(FPE_FLTOVF, hdl);
old_handler2 = sigfpe(FPE_FLTINV, SIGFPE_ABORT);
. . .

/*
* restore old fp_overflow and fp_invalid handlers
*/

sigfpe(FPE_FLTOVF, old_handler1);
sigfpe(FPE_FLTINV, old_handler2);

}

/usr/include/floatingpoint.h

/usr/include/siginfo.h

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

sigaction(2), abort(3C), signal(3C), attributes(5), floatingpoint(3HEAD)

sigfpe() returns BADSIG if code is not zero or a defined SIGFPE code.

sigfpe(3C)

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

454 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

siginterrupt – allow signals to interrupt functions

/usr/ucb/cc [flag ...] file ...

int siginterrupt(sig, flag);

int sig, flag;

siginterrupt() is used to change the function restart behavior when a function is
interrupted by the specified signal. If the flag is false (0), then functions will be
restarted if they are interrupted by the specified signal and no data has been
transferred yet. System call restart is the default behavior when the signal(3C)
routine is used.

If the flag is true, (1), then restarting of functions is disabled. If a function is
interrupted by the specified signal and no data has been transferred, the function will
return −1 with errno set to EINTR. Interrupted functions that have started
transferring data will return the amount of data actually transferred.

Issuing a siginterrupt() call during the execution of a signal handler will cause
the new action to take place on the next signal to be caught.

Use of these interfaces should be restricted to only applications written on BSD
platforms. Use of these interfaces with any of the system libraries or in multi-threaded
applications is unsupported.

This library routine uses an extension of the sigvec(3UCB) function that is not
available in 4.2 BSD, hence it should not be used if backward compatibility is needed.

A 0 value indicates that the call succeeded. A −1 value indicates that the call failed and
errno is set to indicate the error.

siginterrupt() may return the following error:

EINVAL sig is not a valid signal.

sigblock(3UCB), sigvec(3UCB), signal(3C)

siginterrupt(3UCB)

NAME

SYNOPSIS

DESCRIPTION

NOTES

RETURN VALUES

ERRORS

SEE ALSO

Basic Library Functions 455

signal, sigset, sighold, sigrelse, sigignore, sigpause – simplified signal management for
application processes

#include <signal.h>

void (*signal (int sig, void (*disp)(int)))(int);

void (*sigset(int sig, void (*disp)(int)))(int);

int sighold(int sig);

int sigrelse(int sig);

int sigignore(int sig);

int sigpause(int sig);

These functions provide simplified signal management for application processes. See
signal(3HEAD) for an explanation of general signal concepts.

The signal() and sigset() functions modify signal dispositions. The sig argument
specifies the signal, which may be any signal except SIGKILL and SIGSTOP. The disp
argument specifies the signal’s disposition, which may be SIG_DFL, SIG_IGN, or the
address of a signal handler. If signal() is used, disp is the address of a signal
handler, and sig is not SIGILL, SIGTRAP, or SIGPWR, the system first sets the signal’s
disposition to SIG_DFL before executing the signal handler. If sigset() is used and
disp is the address of a signal handler, the system adds sig to the calling process’s
signal mask before executing the signal handler; when the signal handler returns, the
system restores the calling process’s signal mask to its state prior to the delivery of the
signal. In addition, if sigset() is used and disp is equal to SIG_HOLD, sig is added to
the calling process’s signal mask and the signal’s disposition remains unchanged.

The sighold() function adds sig to the calling process’s signal mask.

The sigrelse() function removes sig from the calling process’s signal mask.

The sigignore() function sets the disposition of sig to SIG_IGN.

The sigpause() function removes sig from the calling process’s signal mask and
suspends the calling process until a signal is received.

Upon successful completion, signal() returns the signal’s previous disposition.
Otherwise, it returns SIG_ERR and sets errno to indicate the error.

Upon successful completion, sigset() returns SIG_HOLD if the signal had been
blocked or the signal’s previous disposition if it had not been blocked. Otherwise, it
returns SIG_ERR and sets errno to indicate the error.

Upon successful completion, sighold(), sigrelse(), sigignore(), and
sigpause(), return 0. Otherwise, they return −1 and set errno to indicate the error.

These functions fail if:

signal(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

456 man pages section 3: Basic Library Functions • Last Revised 27 Jun 2000

EINTR A signal was caught during the execution sigpause().

EINVAL The value of the sig argument is not a valid signal or is equal to
SIGKILL or SIGSTOP.

The sighold() function used in conjunction with sigrelse() or sigpause() may
be used to establish critical regions of code that require the delivery of a signal to be
temporarily deferred.

If signal() or sigset() is used to set SIGCHLD’s disposition to a signal handler,
SIGCHLD will not be sent when the calling process’s children are stopped or
continued.

If any of the above functions are used to set SIGCHLD’s disposition to SIG_IGN, the
calling process’s child processes will not create zombie processes when they terminate
(see exit(2)). If the calling process subsequently waits for its children, it blocks until
all of its children terminate; it then returns −1 with errno set to ECHILD (see wait(2)
and waitid(2)).

The system guarantees that if more than one instance of the same signal is generated
to a process, at least one signal will be received. It does not guarantee the reception of
every generated signal.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

exit(2), kill(2), pause(2), sigaction(2), sigsend(2), wait(2), waitid(2),
signal(3HEAD), attributes(5)

signal(3C)

USAGE

ATTRIBUTES

SEE ALSO

Basic Library Functions 457

signal – simplified software signal facilities

/usr/ucb/cc [flag ...] file ...

#include <signal.h>

void (*signal(sig, func))();

int sig;

void (*func)();

signal() is a simplified interface to the more general sigvec(3UCB) facility.
Programs that use signal() in preference to sigvec() are more likely to be
portable to all systems.

A signal is generated by some abnormal event, initiated by a user at a terminal (quit,
interrupt, stop), by a program error (bus error, etc.), by request of another program
(kill), or when a process is stopped because it wishes to access its control terminal
while in the background (see termio(7I)). Signals are optionally generated when a
process resumes after being stopped, when the status of child processes changes, or
when input is ready at the control terminal. Most signals cause termination of the
receiving process if no action is taken; some signals instead cause the process receiving
them to be stopped, or are simply discarded if the process has not requested
otherwise. Except for the SIGKILL and SIGSTOP signals, the signal() call allows
signals either to be ignored or to interrupt to a specified location. See sigvec(3UCB)
for a complete list of the signals.

If func is SIG_DFL, the default action for signal sig is reinstated; this default is
termination (with a core image for starred signals) except for signals marked with • or
a dagger.. Signals marked with • are discarded if the action is SIG_DFL; signals
marked with a dagger cause the process to stop. If func is SIG_IGN the signal is
subsequently ignored and pending instances of the signal are discarded. Otherwise,
when the signal occurs further occurrences of the signal are automatically blocked and
func is called.

A return from the function unblocks the handled signal and continues the process at
the point it was interrupted.

If a caught signal occurs during certain functions, terminating the call prematurely, the
call is automatically restarted. In particular this can occur during a read(2) or
write(2) on a slow device (such as a terminal; but not a file) and during a wait(2).

The value of signal() is the previous (or initial) value of func for the particular
signal.

After a fork(2) or vfork(2) the child inherits all signals. An exec(2) resets all caught
signals to the default action; ignored signals remain ignored.

The previous action is returned on a successful call. Otherwise, −1 is returned and
errno is set to indicate the error.

signal() will fail and no action will take place if the following occurs:

signal(3UCB)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

458 man pages section 3: Basic Library Functions • Last Revised 10 Jan 1996

EINVAL sig is not a valid signal number, or is SIGKILL or SIGSTOP.

kill(1), exec(2), fcntl(2), fork(2), getitimer(2), getrlimit(2), kill(2),
ptrace(2), read(2), sigaction(2), wait(2), write(2), abort(3C), setjmp(3UCB),
sigblock(3UCB), sigstack(3UCB), sigvec(3UCB), wait(3UCB), setjmp(3C),
signal(3C), signal(3HEAD), termio(7I)

Use of these interfaces should be restricted to only applications written on BSD
platforms. Use of these interfaces with any of the system libraries or in multi-threaded
applications is unsupported.

The handler routine, func, can be declared:

void handler(signum) int signum;Here signum is the signal number. See
sigvec(3UCB) for more details.

signal(3UCB)

SEE ALSO

NOTES

Basic Library Functions 459

sigsetops, sigemptyset, sigfillset, sigaddset, sigdelset, sigismember – manipulate sets
of signals

#include <signal.h>

int sigemptyset(sigset_t *set);

int sigfillset(sigset_t *set);

int sigaddset(sigset_t *set, int signo);

int sigdelset(sigset_t *set, int signo);

int sigismember(sigset_t *set, int signo);

These functions manipulate sigset_t data types, representing the set of signals
supported by the implementation.

The sigemptyset() function initializes the set pointed to by set to exclude all signals
defined by the system.

The sigfillset() function initializes the set pointed to by set to include all signals
defined by the system.

The sigaddset() function adds the individual signal specified by the value of signo
to the set pointed to by set.

The sigdelset() function deletes the individual signal specified by the value of
signo from the set pointed to by set.

The sigismember() function checks whether the signal specified by the value of
signo is a member of the set pointed to by set.

Any object of type sigset_t must be initialized by applying either sigemptyset() or
sigfillset() before applying any other operation.

Upon successful completion, the sigismember() function returns 1 if the specified
signal is a member of the specified set, or 0 if it is not.

Upon successful completion, the other functions return 0. Otherwise −1 is returned
and errno is set to indicate the error.

The sigaddset(), sigdelset(), and sigismember() functions will fail if:

EINVAL The value of the signo argument is not a valid signal number.

The sigfillset() function will fail if:

EFAULT The set argument specifies an invalid address.

See attributes(5) for descriptions of the following attributes:

sigsetops(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

460 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

sigaction(2), sigpending(2), sigprocmask(2), sigsuspend(2), attributes(5),
signal(3HEAD)

sigsetops(3C)

SEE ALSO

Basic Library Functions 461

sigstack – set and/or get alternate signal stack context

#include <signal.h>

int sigstack(struct sigstack *ss, struct sigstack *oss);

The sigstack() function allows the calling process to indicate to the system an area
of its address space to be used for processing signals received by the process.

If the ss argument is not a null pointer, it must point to a sigstack structure. The
length of the application-supplied stack must be at least SIGSTKSZ bytes. If the
alternate signal stack overflows, the resulting behavior is undefined. (See USAGE
below.)

� The value of the ss_onstack member indicates whether the process wants the
system to use an alternate signal stack when delivering signals.

� The value of the ss_sp member indicates the desired location of the alternate
signal stack area in the process’ address space.

� If the ss argument is a null pointer, the current alternate signal stack context is not
changed.

If the oss argument is not a null pointer, it points to a sigstack structure in which the
current alternate signal stack context is placed. The value stored in the ss_onstack
member of oss will be non-zero if the process is currently executing on the alternate
signal stack. If the oss argument is a null pointer, the current alternate signal stack
context is not returned.

When a signal’s action indicates its handler should execute on the alternate signal
stack (specified by calling sigaction(2)), sigstack() checks to see if the process is
currently executing on that stack. If the process is not currently executing on the
alternate signal stack, the system arranges a switch to the alternate signal stack for the
duration of the signal handler’s execution.

After a successful call to one of the exec functions, there are no alternate signal stacks
in the new process image.

Upon successful completion, sigstack() returns 0. Otherwise, it returns −1 and sets
errno to indicate the error.

The sigstack() function will fail if:

EPERM An attempt was made to modify an active stack.

A portable application, when being written or rewritten, should use sigaltstack(2)
instead of sigstack().

The direction of stack growth is not indicated in the historical definition of struct
sigstack. The only way to portably establish a stack pointer is for the application to
determine stack growth direction, or to allocate a block of storage and set the stack

sigstack(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

462 man pages section 3: Basic Library Functions • Last Revised 28 Feb 1996

pointer to the middle. sigstack() may assume that the size of the signal stack is
SIGSTKSZ as found in <signal.h>. An application that would like to specify a
signal stack size other than SIGSTKSZ should use sigaltstack(2).

Applications should not use longjmp(3C) to leave a signal handler that is running on
a stack established with sigstack(). Doing so may disable future use of the signal
stack. For abnormal exit from a signal handler, siglongjmp(3C), setcontext(2), or
swapcontext(3C) may be used. These functions fully support switching from one
stack to another.

The sigstack() function requires the application to have knowledge of the
underlying system’s stack architecture. For this reason, sigaltstack(2) is
recommended over this function.

fork(2), _longjmp(3C), longjmp(3C), setjmp(3C), sigaltstack(2),
siglongjmp(3C), sigsetjmp(3C)

sigstack(3C)

SEE ALSO

Basic Library Functions 463

sigstack – set and/or get signal stack context

/usr/ucb/cc [flag ...] file ...

#include <signal.h>

int sigstack(nss, oss);

struct sigstack *nss, *oss;

The sigstack() function allows users to define an alternate stack, called the “signal
stack“, on which signals are to be processed. When a signal’s action indicates its
handler should execute on the signal stack (specified with a sigvec(3UCB) call), the
system checks to see if the process is currently executing on that stack. If the process is
not currently executing on the signal stack, the system arranges a switch to the signal
stack for the duration of the signal handler’s execution.

A signal stack is specified by a sigstack() structure, which includes the following
members:

char *ss_sp; /* signal stack pointer */

int ss_onstack; /* current status */

The ss_sp member is the initial value to be assigned to the stack pointer when the
system switches the process to the signal stack. Note that, on machines where the
stack grows downwards in memory, this is not the address of the beginning of the
signal stack area. The ss_onstack member is zero or non-zero depending on
whether the process is currently executing on the signal stack or not.

If nss is not a null pointer, sigstack() sets the signal stack state to the value in the
sigstack() structure pointed to by nss. If nss is a null pointer, the signal stack state
will be unchanged. If oss is not a null pointer, the current signal stack state is stored
in the sigstack() structure pointed to by oss.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set
to indicate the error.

The sigstack() function will fail and the signal stack context will remain
unchanged if one of the following occurs.

EFAULT Either nss or oss points to memory that is not a valid part of the
process address space.

sigaltstack(2), sigvec(3UCB), signal(3C)

Signal stacks are not “grown” automatically, as is done for the normal stack. If the
stack overflows unpredictable results may occur.

Use of these interfaces should be restricted to only applications written on BSD
platforms. Use of these interfaces with any of the system libraries or in multi-threaded
applications is unsupported.

sigstack(3UCB)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

SEE ALSO

WARNINGS

NOTES

464 man pages section 3: Basic Library Functions • Last Revised 22 Jan 1997

sigvec – software signal facilities

/usr/ucb/cc[flag ...] file...
#include <signal.h>

int sigvec(ssig, *nvec, *ovec);

int sig;
struct sigvec *nvec
struct sigvec *ovec

struct sigvec *nvec, *ovec;

The system defines a set of signals that may be delivered to a process. Signal delivery
resembles the occurrence of a hardware interrupt: the signal is blocked from further
occurrence, the current process context is saved, and a new one is built. A process may
specify a handler to which a signal is delivered, or specify that a signal is to be blocked
or ignored. A process may also specify that a default action is to be taken by the system
when a signal occurs. Normally, signal handlers execute on the current stack of the
process. This may be changed, on a per-handler basis, so that signals are taken on a
special signal stack.

All signals have the same priority. Signal routines execute with the signal that caused
their invocation to be blocked, but other signals may yet occur. A global signal mask
defines the set of signals currently blocked from delivery to a process. The signal mask
for a process is initialized from that of its parent (normally 0). It may be changed with
a sigblock() or sigsetmask() call, or when a signal is delivered to the process.

A process may also specify a set of flags for a signal that affect the delivery of that
signal.

When a signal condition arises for a process, the signal is added to a set of signals
pending for the process. If the signal is not currently blocked by the process then it is
delivered to the process. When a signal is delivered, the current state of the process is
saved, a new signal mask is calculated (as described below), and the signal handler is
invoked. The call to the handler is arranged so that if the signal handling routine
returns normally the process will resume execution in the context from before the
signal’s delivery. If the process wishes to resume in a different context, then it must
arrange to restore the previous context itself.

When a signal is delivered to a process a new signal mask is installed for the duration
of the process’ signal handler (or until a sigblock() or sigsetmask() call is
made). This mask is formed by taking the current signal mask, adding the signal to be
delivered, and ORing in the signal mask associated with the handler to be invoked.

The action to be taken when the signal is delivered is specified by a sigvec()
structure, which includes the following members:

void (*sv_handler)(); /* signal handler */
int sv_mask; /* signal mask to apply */
int sv_flags; /* see signal options */

sigvec(3UCB)

NAME

SYNOPSIS

DESCRIPTION

Basic Library Functions 465

#define SV_ONSTACK /* take signal on signal stack */
#define SV_INTERRUPT /* do not restart system on signal return */
#define SV_RESETHAND /* reset handler to SIG_DFL when signal taken*/

If the SV_ONSTACK bit is set in the flags for that signal, the system will deliver the
signal to the process on the signal stack specified with sigstack(3UCB) rather than
delivering the signal on the current stack.

If nvec is not a NULL pointer, sigvec() assigns the handler specified by
sv_handler(), the mask specified by sv_mask(), and the flags specified by
sv_flags() to the specified signal. If nvec is a NULL pointer, sigvec() does not
change the handler, mask, or flags for the specified signal.

The mask specified in nvec is not allowed to block SIGKILL, SIGSTOP, or SIGCONT.
The system enforces this restriction silently.

If ovec is not a NULL pointer, the handler, mask, and flags in effect for the signal before
the call to sigvec() are returned to the user. A call to sigvec() with nvec a NULL
pointer and ovec not a NULL pointer can be used to determine the handling
information currently in effect for a signal without changing that information.

The following is a list of all signals with names as in the include file <signal.h>:

SIGHUP hangup

SIGINT interrupt

SIGQUIT* quit

SIGILL* illegal instruction

SIGTRAP* trace trap

SIGABRT* abort (generated by abort(3C) routine)

SIGEMT* emulator trap

SIGFPE* arithmetic exception

SIGKILL kill (cannot be caught, blocked, or ignored)

SIGBUS* bus error

SIGSEGV* segmentation violation

SIGSYS* bad argument to function

SIGPIPE write on a pipe or other socket with no one to read it

SIGALRM alarm clock

SIGTERM software termination signal

SIGURG* urgent condition present on socket

SIGSTOP** stop (cannot be caught, blocked, or ignored)

sigvec(3UCB)

466 man pages section 3: Basic Library Functions • Last Revised 10 Jan 1996

SIGTSTP** stop signal generated from keyboard

SIGCONT* continue after stop (cannot be blocked)

SIGCHLD* child status has changed

SIGTTIN** background read attempted from control terminal

SIGTTOU** background write attempted to control terminal

SIGIO* I/O is possible on a descriptor (see fcntl(2))

SIGXCPU cpu time limit exceeded (see getrlimit(2))

SIGXFSZ file size limit exceeded (see getrlimit(2))

SIGVTALRM virtual time alarm; see setitimer() on getitimer(2)

SIGPROF profiling timer alarm; see setitimer() on getitimer(2)

SIGWINCH* window changed (see termio(7I))

SIGLOST resource lost (see lockd(1M))

SIGUSR1 user-defined signal 1

SIGUSR2 user-defined signal 2

The starred signals in the list above cause a core image if not caught or ignored.

Once a signal handler is installed, it remains installed until another sigvec() call is
made, or an execve(2) is performed, unless the SV_RESETHAND bit is set in the flags
for that signal. In that case, the value of the handler for the caught signal will be set to
SIG_DFL before entering the signal-catching function, unless the signal is SIGILL,
SIGPWR, or SIGTRAP. Also, if this bit is set, the bit for that signal in the signal mask
will not be set; unless the signal mask associated with that signal blocks that signal,
further occurrences of that signal will not be blocked. The SV_RESETHAND flag is not
available in 4.2BSD, hence it should not be used if backward compatibility is needed.

The default action for a signal may be reinstated by setting the signal’s handler to
SIG_DFL; this default is termination except for signals marked with * or **. Signals
marked with * are discarded if the action is SIG_DFL; signals marked with ** cause
the process to stop. If the process is terminated, a “core image” will be made in the
current working directory of the receiving process if the signal is one for which an
asterisk appears in the above list (see core(4)).

If the handler for that signal is SIG_IGN, the signal is subsequently ignored, and
pending instances of the signal are discarded.

If a caught signal occurs during certain functions, the call is normally restarted. The
call can be forced to terminate prematurely with an EINTR error return by setting the
SV_INTERRUPT bit in the flags for that signal. The SV_INTERRUPT flag is not

sigvec(3UCB)

Basic Library Functions 467

available in 4.2BSD, hence it should not be used if backward compatibility is needed.
The affected functions are read(2) or write(2) on a slow device (such as a terminal or
pipe or other socket, but not a file) and during a wait(2).

After a fork(2) or vfork(2) the child inherits all signals, the signal mask, the signal
stack, and the restart/interrupt and reset-signal-handler flags.

The execve(2) call resets all caught signals to default action and resets all signals to
be caught on the user stack. Ignored signals remain ignored; the signal mask remains
the same; signals that interrupt functions continue to do so.

The accuracy of addr is machine dependent. For example, certain machines may
supply an address that is on the same page as the address that caused the fault. If an
appropriate addr cannot be computed it will be set to SIG_NOADDR.

A 0 value indicates that the call succeeded. A −1 return value indicates that an error
occurred and errno is set to indicate the reason.

sigvec() will fail and no new signal handler will be installed if one of the following
occurs:

EFAULT Either nvec or ovec is not a NULL pointer and points to memory that
is not a valid part of the process address space.

EINVAL sig is not a valid signal number, or, SIGKILL, or SIGSTOP.

intro(2), exec(2), fcntl(2), fork(2), getitimer(2), getrlimit(2), ioctl(2),
kill(2), ptrace(2), read(2), umask(2), vfork(2), wait(2), write(2), setjmp(3C)
sigblock(3UCB), sigstack(3UCB), signal(3UCB), wait(3UCB), signal(3C),
core(4), streamio(7I), termio(7I)

Use of these interfaces should be restricted to only applications written on BSD
platforms. Use of these interfaces with any of the system libraries or in multi-thread
applications is unsupported.

SIGPOLL is a synonym for SIGIO. A SIGIO will be issued when a file descriptor
corresponding to a STREAMS (see intro(2)) file has a “selectable” event pending.
Unless that descriptor has been put into asynchronous mode (see fcntl(2)), a process
may specifically request that this signal be sent using the I_SETSIG ioctl(2) call (see
streamio(7I)). Otherwise, the process will never receive SIGPOLLs0.

The handler routine can be declared:

void handler(int sig, int code, struct sigcontext *scp, char *addr);

Here sig is the signal number; code is a parameter of certain signals that provides
additional detail; scp is a pointer to the sigcontext structure (defined in signal.h),
used to restore the context from before the signal; and addr is additional address
information.

sigvec(3UCB)

RETURN VALUES

ERRORS

SEE ALSO

NOTES

468 man pages section 3: Basic Library Functions • Last Revised 10 Jan 1996

The signals SIGKILL, SIGSTOP, and SIGCONT cannot be ignored.

sigvec(3UCB)

Basic Library Functions 469

sleep – suspend execution for an interval of time

#include <unistd.h>

unsigned int sleep(unsigned int seconds);

The current process is suspended from execution for the number of seconds specified
by the argument. The actual suspension time may be less than that requested because
any caught signal will terminate the sleep() following execution of that signal’s
catching routine. Also, the suspension time may be longer than requested by an
arbitrary amount because of the scheduling of other activity in the system. The value
returned by sleep() will be the ‘‘unslept’’ amount (the requested time minus the
time actually slept) in case the caller had an alarm set to go off earlier than the end of
the requested sleep() time, or premature arousal because of another caught signal.

In a single-threaded program (one not linked with -lthread or -lpthread), the
routine is implemented by setting an alarm signal and pausing until it (or some other
signal) occurs. The previous state of the alarm signal is saved and restored. The calling
program may have set up an alarm signal before calling sleep(). If the sleep()
time exceeds the time until such alarm signal, the process sleeps only until the alarm
signal would have occurred. The caller’s alarm catch routine is executed just before the
sleep() routine returns. But if the sleep() time is less than the time till such alarm,
the prior alarm time is reset to go off at the same time it would have without the
intervening sleep().

In a multithreaded program (one linked with -lthread or -lpthread), the routine
is implemented with a call to the nanosleep(3RT) function and does not modify the
state of the alarm signal.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

alarm(2), pause(2), signal(3C), attributes(5)

In a single-threaded program, the SIGALRM signal should not be blocked or ignored
during a call to sleep(). This restriction does not apply to a multithreaded program.

In a multithreaded program, only the invoking thread is suspended from execution.

sleep(3C)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

NOTES

470 man pages section 3: Basic Library Functions • Last Revised 23 Jul 2001

sleep – suspend execution for interval

/usr/ucb/cc [flag ...] file ...

int sleep(seconds);

unsigned seconds;

sleep() suspends the current process from execution for the number of seconds
specified by the argument. The actual suspension time may be up to 1 second less than
that requested, because scheduled wakeups occur at fixed 1-second intervals, and may
be an arbitrary amount longer because of other activity in the system.

sleep() is implemented by setting an interval timer and pausing until it expires. The
previous state of this timer is saved and restored. If the sleep time exceeds the time to
the expiration of the previous value of the timer, the process sleeps only until the timer
would have expired, and the signal which occurs with the expiration of the timer is
sent one second later.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Async-Signal-Safe

alarm(2), getitimer(2), longjmp(3C), siglongjmp(3C), sleep(3C), usleep(3C),
attributes(5)

Use of these interfaces should be restricted to only applications written on BSD
platforms. Use of these interfaces with any of the system libraries or in multi-thread
applications is unsupported.

SIGALRM should not be blocked or ignored during a call to sleep(). Only a prior
call to alarm(2) should generate SIGALRM for the calling process during a call to
sleep(). A signal-catching function should not interrupt a call to sleep() to call
siglongjmp(3C) or longjmp(3C) to restore an environment saved prior to the
sleep() call.

sleep() is slightly incompatible with alarm(2). Programs that do not execute for at
least one second of clock time between successive calls to sleep() indefinitely delay
the alarm signal. Use sleep(3C). Each sleep(3C) call postpones the alarm signal that
would have been sent during the requested sleep period to occur one second later.

sleep(3UCB)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

NOTES

WARNINGS

Basic Library Functions 471

ssignal, gsignal – software signals

#include <signal.h>

void(*ssignal (int sig, int (*action)(int)))(int);

int gsignal(int sig);

The ssignal() and gsignal() functions implement a software facility similar to
signal(3C). This facility is made available to users for their own purposes.

Software signals made available to users are associated with integers in the inclusive
range 1 through 17. A call to ssignal() associates a procedure, action, with the
software signal sig; the software signal, sig, is raised by a call to gsignal(). Raising a
software signal causes the action established for that signal to be taken.

The first argument to ssignal() is a number identifying the type of signal for which
an action is to be established. The second argument defines the action; it is either the
name of a (user-defined) action function or one of the manifest constants SIG_DFL
(default) or SIG_IGN (ignore). The ssignal() function returns the action previously
established for that signal type; if no action has been established or the signal number
is illegal, ssignal() returns SIG_DFL.

The gsignal() raises the signal identified by its argument, sig.

If an action function has been established for sig, then that action is reset to SIG_DFL
and the action function is entered with argument sig. The gsignal() function returns
the value returned to it by the action function.

If the action for sig is SIG_IGN, gsignal() returns the value 1 and takes no other
action.

If the action for sig is SIG_DFL, gsignal() returns the value 0 and takes no other
action.

If sig has an illegal value or no action was ever specified for sig, gsignal() returns
the value 0 and takes no other action.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

raise(3C), signal(3C), attributes(5)

ssignal(3C)

NAME

SYNOPSIS

DESCRIPTION

ssignal()

gsignal()

ATTRIBUTES

SEE ALSO

472 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

stdio – standard buffered input/output package

#include <stdio.h>

extern FILE *stdin;

extern FILE *stdout;

extern FILE *stderr;

The functions described in the entries of section 3S of this manual constitute an
efficient, user-level I/O buffering scheme. The in-line macros getc() and putc()
handle characters quickly. The macros getchar(3C) and putchar(3C), and the
higher-level routines fgetc(3C), fgets(3C), fprintf(3C), fputc(3C), fputs(3C),
fread(3C), fscanf(3C), fwrite(3C), gets (3C), getw(3C), printf(3C), puts(3C),
putw(3C), and scanf(3C) all use or act as if they use getc() and putc(); they can
be freely intermixed.

A file with associated buffering is called a stream (see intro(3)) and is declared to be a
pointer to a defined type FILE. The fopen(3C) function creates certain descriptive
data for a stream and returns a pointer to designate the stream in all further
transactions. Normally, there are three open streams with constant pointers declared in
the <stdio.h> header and associated with the standard open files:

stdin standard input file

stdout standard output file

stderr standard error file

The following symbolic values in <unistd.h> define the file descriptors that will be
associated with the C-language stdin, stdout and stderr when the application is
started:

STDIN_FILENO Standard input value 0 stdin

STDOUT_FILENO Standard output value 1 stdout

STDERR_FILENO Standard error value 2 stderr

The constant NULL designates a null pointer.

The integer-constant EOF is returned upon end-of-file or error by most integer
functions that deal with streams (see the individual descriptions for details).

The integer constant BUFSIZ specifies the size of the buffers used by the particular
implementation.

The integer constant FILENAME_MAX specifies the number of bytes needed to hold the
longest pathname of a file allowed by the implementation. If the system does not
impose a maximum limit, this value is the recommended size for a buffer intended to
hold a file’s pathname.

stdio(3C)

NAME

SYNOPSIS

DESCRIPTION

Basic Library Functions 473

The integer constant FOPEN_MAX specifies the minimum number of files that the
implementation guarantees can be open simultaneously. Note that no more than 255
files may be opened using fopen(), and only file descriptors 0 through 255 can be
used in a stream.

The functions and constants mentioned in the entries of section 3S of this manual are
declared in that header and need no further declaration. The constants and the
following “functions” are implemented as macros (redeclaration of these names is
perilous): getc(), getchar(), putc(), putchar(), ferror(3C), feof(3C),
clearerr(3C), and fileno(3C). There are also function versions of getc(),
getchar(), putc(), putchar(), ferror(), feof(), clearerr(), and
fileno().

Output streams, with the exception of the standard error stream stderr, are by
default buffered if the output refers to a file and line-buffered if the output refers to a
terminal. The standard error output stream stderr is by default unbuffered, but use
of freopen() (see fopen(3C)) will cause it to become buffered or line-buffered.
When an output stream is unbuffered, information is queued for writing on the
destination file or terminal as soon as written; when it is buffered, many characters are
saved up and written as a block. When it is line-buffered, each line of output is queued
for writing on the destination terminal as soon as the line is completed (that is, as soon
as a new-line character is written or terminal input is requested). The setbuf() or
setvbuf() functions (both described on the setbuf(3C) manual page) may be used
to change the stream’s buffering strategy.

A single open file description can be accessed both through streams and through file
descriptors. Either a file descriptor or a stream will be called a handle on the open file
description to which it refers; an open file description may have several handles.

Handles can be created or destroyed by user action without affecting the underlying
open file description. Some of the ways to create them include fcntl(2), dup(2),
fdopen(3C), fileno(3C) and fork(2) (which duplicates existing ones into new
processes). They can be destroyed by at least fclose(3C) and close(2), and by the
exec functions (see exec(2)), which close some file descriptors and destroy streams.

A file descriptor that is never used in an operation and could affect the file offset (for
example read(2), write(2), or lseek(2)) is not considered a handle in this
discussion, but could give rise to one (as a consequence of fdopen(), dup(), or
fork(), for example). This exception does include the file descriptor underlying a
stream, whether created with fopen() or fdopen(), as long as it is not used directly
by the application to affect the file offset. (The read() and write() functions
implicitly affect the file offset; lseek() explicitly affects it.)

If two or more handles are used, and any one of them is a stream, their actions shall be
coordinated as described below. If this is not done, the result is undefined.

A handle that is a stream is considered to be closed when either an fclose() or
freopen(3C) is executed on it (the result of freopen() is a new stream for this
discussion, which cannot be a handle on the same open file description as its previous

stdio(3C)

Interactions of
Other FILE-Type C

Functions

474 man pages section 3: Basic Library Functions • Last Revised 22 Jan 1993

value) or when the process owning that stream terminates the exit(2) or abort(3C).
A file descriptor is closed by close(), _exit() (see exit(2)), or by one of the exec
functions when FD_CLOEXEC is set on that file descriptor.

For a handle to become the active handle, the actions below must be performed
between the last other user of the first handle (the current active handle) and the first
other user of the second handle (the future active handle). The second handle then
becomes the active handle. All activity by the application affecting the file offset on the
first handle shall be suspended until it again becomes the active handle. (If a stream
function has as an underlying function that affects the file offset, the stream function
will be considered to affect the file offset. The underlying functions are described
below.)

The handles need not be in the same process for these rules to apply. Note that after a
fork(), two handles exist where one existed before. The application shall assure that,
if both handles will ever be accessed, that they will both be in a state where the other
could become the active handle first. The application shall prepare for a fork()
exactly as if it were a change of active handle. (If the only action performed by one of
the processes is one of the exec functions or _exit(), the handle is never accessed in
that process.)

1. For the first handle, the first applicable condition below shall apply. After the
actions required below are taken, the handle may be closed if it is still open.

a. If it is a file descriptor, no action is required.

b. If the only further action to be performed on any handle to this open file
description is to close it, no action need be taken.

c. If it is a stream that is unbuffered, no action need be taken.

d. If it is a stream that is line-buffered and the last character written to the stream
was a newline (that is, as if a putc(’\n’) was the most recent operation on
that stream), no action need be taken.

e. If it is a stream that is open for writing or append (but not also open for
reading), either an fflush(3C) shall occur or the stream shall be closed.

f. If the stream is open for reading and it is at the end of the file (feof(3C) is
true), no action need be taken.

g. If the stream is open with a mode that allows reading and the underlying open
file description refers to a device that is capable of seeking, either an fflush()
shall occur or the stream shall be closed.

h. Otherwise, the result is undefined.

2. For the second handle: if any previous active handle has called a function that
explicitly changed the file offset, except as required above for the first handle, the
application shall perform an lseek() or an fseek(3C) (as appropriate to the type
of the handle) to an appropriate location.

3. If the active handle ceases to be accessible before the requirements on the first
handle above have been met, the state of the open file description becomes
undefined. This might occur, for example, during a fork() or an _exit().

stdio(3C)

Basic Library Functions 475

4. The exec functions shall be considered to make inaccessible all streams that are
open at the time they are called, independent of what streams or file descriptors
may be available to the new process image.

5. Implementation shall assure that an application, even one consisting of several
processes, shall yield correct results (no data is lost or duplicated when writing, all
data is written in order, except as requested by seeks) when the rules above are
followed, regardless of the sequence of handles used. If the rules above are not
followed, the result is unspecified. When these rules are followed, it is
implementation defined whether, and under what conditions, all input is seen
exactly once.

All the stdio functions are safe unless they have the _unlocked suffix. Each FILE
pointer has its own lock to guarantee that only one thread can access it. In the case
that output needs to be synchronized, the lock for the FILE pointer can be acquired
before performing a series of stdio operations. For example:

FILE iop;
flockfile(iop);
fprintf(iop, "hello ");
fprintf(iop, "world);
fputc(iop, ’a’);
funlockfile(iop);

will print everything out together, blocking other threads that might want to write to
the same file between calls to fprintf().

An unlocked interface is available in case performace is an issue. For example:

flockfile(iop);
while (!feof(iop)) {

*c++ = getc_unlocked(iop);
}

funlockfile(iop);

Invalid stream pointers usually cause grave disorder, possibly including program
termination. Individual function descriptions describe the possible error conditions.

close(2), lseek(2), open(2), pipe(2), read(2), write(2), ctermid(3C),
cuserid(3C), fclose(3C), ferror(3C), fopen(3C), fread(3C), fseek(3C),
flockfile(3C), getc(3C), gets(3C), popen(3C), printf(3C), putc(3C), puts(3C),
scanf(3C), setbuf(3C), system(3C), tmpfile(3C), tmpnam(3C), ungetc(3C)

stdio(3C)

Use of stdio in
Multithreaded

Applications

RETURN VALUES

SEE ALSO

476 man pages section 3: Basic Library Functions • Last Revised 22 Jan 1993

str2sig, sig2str – translation between signal name and signal number

#include <signal.h>

int str2sig(const char *str, int *signum);

int sig2str(int signum, char *str);

The str2sig() function translates the signal name str to a signal number, and stores
that result in the location referenced by signum. The name in str can be either the
symbol for that signal, without the "SIG" prefix, or a decimal number. All the signal
symbols defined in <sys/signal.h> are recognized. This means that both "CLD"
and "CHLD" are recognized and return the same signal number, as do both "POLL"
and "IO". For access to the signals in the range SIGRTMIN to SIGRTMAX, the first four
signals match the strings "RTMIN", "RTMIN+1", "RTMIN+2", and "RTMIN+3" and the
last four match the strings "RTMAX-3", "RTMAX-2", "RTMAX-1", and "RTMAX".

The sig2str() function translates the signal number signum to the symbol for that
signal, without the "SIG" prefix, and stores that symbol at the location specified by str.
The storage referenced by str should be large enough to hold the symbol and a
terminating null byte. The symbol SIG2STR_MAX defined by <signal.h> gives the
maximum size in bytes required.

The str2sig() function returns 0 if it recognizes the signal name specified in str;
otherwise, it returns −1.

The sig2str() function returns 0 if the value signum corresponds to a valid signal
number; otherwise, it returns −1.

EXAMPLE 1 A sample program using the str2sig() function.

int i;
char buf[SIG2STR_MAX]; /*storage for symbol */

str2sig("KILL",&i); /*stores 9 in i */
str2sig("9", &i); /* stores 9 in i */
sig2str(SIGKILL,buf); /* stores "KILL" in buf */
sig2str(9,buf); /* stores "KILL" in buf */

kill(1), strsignal(3C)

str2sig(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

EXAMPLES

SEE ALSO

Basic Library Functions 477

strcoll – string collation

#include <string.h>

int strcoll(const char *s1, const char *s2);

Both strcoll() and strxfrm(3C) provide for locale-specific string sorting.
strcoll() is intended for applications in which the number of comparisons per
string is small. When strings are to be compared a number of times, strxfrm(3C) is a
more appropriate function because the transformation process occurs only once.

Upon successful completion, strcoll() returns an integer greater than, equal to, or
less than zero in direct correlation to whether string s1 is greater than, equal to, or less
than the string s2. The comparison is based on strings interpreted as appropriate to the
program’s locale for category LC_COLLATE (see setlocale(3C)).

On error, strcoll() may set errno, but no return value is reserved to indicate an
error.

The strcoll() function may fail if:

EINVAL The s1 or s2 arguments contain characters outside the domain of
the collating sequence.

/usr/lib/locale/locale/locale.so.*
LC_COLLATE database for locale

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

CSI Enabled

localedef(1), setlocale(3C), string(3C), strxfrm(3C), wsxfrm(3C),
attributes(5), environ(5)

The strcoll() function can be used safely in multithreaded applications, as long as
setlocale(3C) is not being called to change the locale.

strcoll(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

FILES

ATTRIBUTES

SEE ALSO

NOTES

478 man pages section 3: Basic Library Functions • Last Revised 20 Dec 1996

strerror – get error message string

#include <string.h>

char *strerror(int errnum);

The strerror() function maps the error number in errnum to an error message
string, and returns a pointer to that string. It uses the same set of error messages as
perror(3C). The returned string should not be overwritten.

The strerror() function returns the string “Unknown error” if errnum is out of
range.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Safe

gettext(3C), perror(3C), setlocale(3C), attributes(5)

If the application is linked with -lintl, then messages returned from this function
are in the native language specified by the LC_MESSAGES locale category; see
setlocale(3C).

strerror(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Basic Library Functions 479

strfmon – convert monetary value to string

#include <monetary.h>

ssize_t strfmon(char *s, size_t maxsize, const char *format, ...);

The strfmon() function places characters into the array pointed to by s as controlled
by the string pointed to by format. No more than maxsize bytes are placed into the
array.

The format is a character string that contains two types of objects: plain characters,
which are simply copied to the output stream, and conversion specifications, each of
which results in the fetching of zero or more arguments which are converted and
formatted. The results are undefined if there are insufficient arguments for the format.
If the format is exhausted while arguments remain, the excess arguments are simply
ignored.

A conversion specification consists of the following sequence:

� a % character

� optional flags

� optional field width

� optional left precision

� optional right precision

� a required conversion character that determines the conversion to be performed.

One or more of the following optional flags can be specified to control the conversion:

=f An = followed by a single character f which is used as the numeric fill
character. The fill character must be representable in a single byte in order
to work with precision and width counts. The default numeric fill character
is the space character. This flag does not affect field width filling which
always uses the space character. This flag is ignored unless a left precision
(see below) is specified.

^ Do not format the currency amount with grouping characters. The default
is to insert the grouping characters if defined for the current locale.

+ or (Specify the style of representing positive and negative currency amounts.
Only one of ‘+’ or ‘(’ may be specified. If ‘+’ is specified, the locale’s
equivalent of + and ‘−’ are used (for example, in the U.S.A.: the empty
string if positive and ‘−’ if negative). If ‘(’ is specified, negative amounts are
enclosed within parentheses. If neither flag is specified, the ‘+’ style is used.

! Suppress the currency symbol from the output conversion.

− Specify the alignment. If this flag is present all fields are left-justified
(padded to the right) rather than right-justified.

w A decimal digit string w specifying a minimum field width in bytes in
which the result of the conversion is right-justified (or left-justified if the

strfmon(3C)

NAME

SYNOPSIS

DESCRIPTION

Flags

Field Width

480 man pages section 3: Basic Library Functions • Last Revised 20 Dec 1996

flag ‘−’ is specified). The default is zero.

#n A ‘#’ followed by a decimal digit string n specifying a maximum number of
digits expected to be formatted to the left of the radix character. This option
can be used to keep the formatted output from multiple calls to the
strfmon() aligned in the same columns. It can also be used to fill unused
positions with a special character as in $***123.45. This option causes an
amount to be formatted as if it has the number of digits specified by n. If
more than n digit positions are required, this conversion specification is
ignored. Digit positions in excess of those actually required are filled with
the numeric fill character (see the =f flag above).

If grouping has not been suppressed with the ‘^’ flag, and it is defined for
the current locale, grouping separators are inserted before the fill characters
(if any) are added. Grouping separators are not applied to fill characters
even if the fill character is a digit.

To ensure alignment, any characters appearing before or after the number
in the formatted output such as currency or sign symbols are padded as
necessary with space characters to make their positive and negative
formats an equal length.

.p A period followed by a decimal digit string p specifying the number of
digits after the radix character. If the value of the right precision p is zero,
no radix character appears. If a right precision is not included, a default
specified by the current locale is used. The amount being formatted is
rounded to the specified number of digits prior to formatting.

The conversion characters and their meanings are:

i The double argument is formatted according to the locale’s international
currency format (for example, in the U.S.A.: USD 1,234.56).

n The double argument is formatted according to the locale’s national
currency format (for example, in the U.S.A.: $1,234.56).

% Convert to a %; no argument is converted. The entire conversion
specification must be %%.

The LC_MONETARY category of the program’s locale affects the behavior of this
function including the monetary radix character (which may be different from the
numeric radix character affected by the LC_NUMERIC category), the grouping
separator, the currency symbols and formats. The international currency symbol
should be in conformance with the ISO 4217: 1987 standard.

If the total number of resulting bytes (including the terminating null byte) is not more
than maxsize, strfmon() returns the number of bytes placed into the array pointed to
by s, not including the terminating null byte. Otherwise, −1 is returned, the contents of
the array are indeterminate, and errno is set to indicate the error.

The strfmon() function will fail if:

strfmon(3C)

Left Precision

Right Precision

Conversion
Characters

Locale Information

RETURN VALUES

ERRORS

Basic Library Functions 481

ENOSYS The function is not supported.

E2BIG Conversion stopped due to lack of space in the buffer.

EXAMPLE 1 A sample output of strfmon().

Given a locale for the U.S.A. and the values 123.45, −123.45, and 3456.781:

Conversion Output Comments

Specification

%n $123.45 default formatting

-$123.45

$3,456.78

%11n $123.45 right align within an 11

-$123.45 character field

$3,456.78

%#5n $123.45 aligned columns for values

-$123.45 up to 99,999

$3,456.78

%=*#5n $***123.45 specify a fill character

-$***123.45

$*3,456.78

%=0#5n $000123.45 fill characters do not use

-$000123.45 grouping even if the fill

$03,456.78 character is a digit

%^#5n $123.45 disable the grouping

-$123.45 separator

$3456.78

%^#5.0n $123 round off to whole units

-$123

$3457

%^#5.4n $123.4500 increase the precision

-$123.4500

strfmon(3C)

EXAMPLES

482 man pages section 3: Basic Library Functions • Last Revised 20 Dec 1996

EXAMPLE 1 A sample output of strfmon(). (Continued)

Conversion Output Comments

Specification

$3456.7810

%(#5n 123.45 use an alternative

($123.45) pos/neg style

$3,456.78

%!(#5n 123.45 disable the currency

(123.45) symbol

3,456.78

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

CSI Enabled

localeconv(3C), setlocale(3C), attributes(5)

This function can be used safely in multithreaded applications, as long as
setlocale(3C) is not called to change the locale.

strfmon(3C)

ATTRIBUTES

SEE ALSO

NOTES

Basic Library Functions 483

strftime, cftime, ascftime – convert date and time to string

#include <time.h>

size_t strftime(char *s, size_t maxsize, const char *format, const
struct tm *timeptr);

int cftime(char *s, char *format, const time_t *clock);

int ascftime(char *s, const char *format, const struct tm *timeptr);

The strftime(), ascftime(), and cftime() functions place bytes into the array
pointed to by s as controlled by the string pointed to by format. The format string
consists of zero or more conversion specifications and ordinary characters. A
conversion specification consists of a ’%’ (percent) character and one or two
terminating conversion characters that determine the conversion specification’s
behavior. All ordinary characters (including the terminating null byte) are copied
unchanged into the array pointed to by s. If copying takes place between objects that
overlap, the behavior is undefined. For strftime (), no more than maxsize bytes are
placed into the array.

If format is (char *)0, then the locale’s default format is used. For strftime() the
default format is the same as %c; for cftime() and ascftime() the default format
is the same as %C. cftime() and ascftime() first try to use the value of the
environment variable CFTIME, and if that is undefined or empty, the default format is
used.

Each conversion specification is replaced by appropriate characters as described in the
following list. The appropriate characters are determined by the LC_TIME category of
the program’s locale and by the values contained in the structure pointed to by timeptr
for strftime() and ascftime(), and by the time represented by clock for
cftime().

%% Same as %.

%a Locale’s abbreviated weekday name.

%A Locale’s full weekday name.

%b Locale’s abbreviated month name.

%B Locale’s full month name.

%c Locale’s appropriate date and time representation.

%C Locale’s date and time representation as produced by date(1).

%C Century number (the year divided by 100 and truncated to an integer as a
decimal number [1,99]); single digits are preceded by 0; see standards(5).

%d Day of month [1,31]; single digits are preceded by 0.

%D Date as %m/%d/%y.

%e Day of month [1,31]; single digits are preceded by a space.

strftime(3C)

NAME

SYNOPSIS

DESCRIPTION

Default

Standard
conforming

484 man pages section 3: Basic Library Functions • Last Revised 5 Feb 2001

%g Week-based year within century [00,99].

%G Week-based year, including the century [0000,9999].

%h Locale’s abbreviated month name.

%H Hour (24-hour clock) [0,23]; single digits are preceded by 0.

%I Hour (12-hour clock) [1,12]; single digits are preceded by 0.

%j Day number of year [1,366]; single digits are preceded by 0.

%k Hour (24-hour clock) [0,23]; single digits are preceded by a blank.

%l Hour (12-hour clock) [1,12]; single digits are preceded by a blank.

%m Month number [1,12]; single digits are preceded by 0.

%M Minute [00,59]; leading 0 is permitted but not required.

%n Insert a NEWLINE.

%p Locale’s equivalent of either a.m. or p.m.

%r Appropriate time representation in 12-hour clock format with %p.

%R Time as %H:%M.

%S Seconds [00,61]; the range of values is [00,61] rather than [00,59] to allow
for the occasional leap second and even more occasional double leap
second.

%t Insert a TAB.

%T Time as %H:%M:%S.

%u Weekday as a decimal number [1,7], with 1 representing Monday. See
NOTES below.

%U Week number of year as a decimal number [00,53], with Sunday as the first
day of week 1.

%V The ISO 8601 week number as a decimal number [01,53]. In the ISO 8601
week-based system, weeks begin on a Monday and week 1 of the year is
the week that includes both January 4th and the first Thursday of the year.
If the first Monday of January is the 2nd, 3rd, or 4th, the preceding days are
part of the last week of the preceding year. See NOTES below.

%w Weekday as a decimal number [0,6], with 0 representing Sunday.

%W Week number of year as a decimal number [00,53], with Monday as the
first day of week 1.

%x Locale’s appropriate date representation.

%X Locale’s appropriate time representation.

%y Year within century [00,99].

strftime(3C)

Basic Library Functions 485

%Y Year, including the century (for example 1993).

%Z Time zone name or abbreviation, or no bytes if no time zone information
exists.

If a conversion specification does not correspond to any of the above or to any of the
modified conversion specifications listed below, the behavior is undefined and 0 is
returned.

The difference between %U and %W (and also between modified conversion
specifications %OU and %OW) lies in which day is counted as the first of the week. Week
number 1 is the first week in January starting with a Sunday for %U or a Monday for
%W. Week number 0 contains those days before the first Sunday or Monday in January
for %U and %W, respectively.

Some conversion specifications can be modified by the E and O modifiers to indicate
that an alternate format or specification should be used rather than the one normally
used by the unmodified conversion specification. If the alternate format or
specification does not exist in the current locale, the behavior will be as if the
unmodified specification were used.

%Ec Locale’s alternate appropriate date and time representation.

%EC Name of the base year (period) in the locale’s alternate representation.

%Eg Offset from %EC of the week-based year in the locale’s alternative
representation.

%EG Full alternative representation of the week-based year.

%Ex Locale’s alternate date representation.

%EX Locale’s alternate time representation.

%Ey Offset from %EC (year only) in the locale’s alternate representation.

%EY Full alternate year representation.

%Od Day of the month using the locale’s alternate numeric symbols.

%Oe Same as %Od.

%Og Week-based year (offset from %C) in the locale’s alternate representation
and using the locale’s alternate numeric symbols.

%OH Hour (24-hour clock) using the locale’s alternate numeric symbols.

%OI Hour (12-hour clock) using the locale’s alternate numeric symbols.

%Om Month using the locale’s alternate numeric symbols.

%OM Minutes using the locale’s alternate numeric symbols.

%OS Seconds using the locale’s alternate numeric symbols.

%Ou Weekday as a number in the locale’s alternate numeric symbols.

strftime(3C)

Modified
Conversion

Specifications

486 man pages section 3: Basic Library Functions • Last Revised 5 Feb 2001

%OU Week number of the year (Sunday as the first day of the week) using the
locale’s alternate numeric symbols.

%Ow Number of the weekday (Sunday=0) using the locale’s alternate numeric
symbols.

%OW Week number of the year (Monday as the first day of the week) using the
locale’s alternate numeric symbols.

%Oy Year (offset from %C) in the locale’s alternate representation and using the
locale’s alternate numeric symbols.

By default, the output of strftime(), cftime(), and ascftime() appear in U.S.
English. The user can request that the output of strftime(), cftime(), or
ascftime() be in a specific language by setting the LC_TIME category using
setlocale().

Local time zone information is used as though tzset(3C) were called.

The strftime(), cftime(), and ascftime() functions return the number of
characters placed into the array pointed to by s, not including the terminating null
character. If the total number of resulting characters including the terminating null
character is more than maxsize, strftime() returns 0 and the contents of the array
are indeterminate.

EXAMPLE 1 An example of the strftime() function.

The following example illustrates the use of strftime() for the POSIX locale. It
shows what the string in str would look like if the structure pointed to by tmptr
contains the values corresponding to Thursday, August 28, 1986 at 12:44:36.

strftime (str, strsize, "%A %b %d %j", tmptr)

This results in str containing "Thursday Aug 28 240".

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

CSI Enabled

date(1), ctime(3C), mktime(3C), setlocale(3C), strptime(3C), tzset(3C),
TIMEZONE(4), zoneinfo(4), attributes(5), environ(5), standards(5)

strftime(3C)

Selecting the
Output Language

Time Zone

RETURN VALUES

EXAMPLES

ATTRIBUTES

SEE ALSO

Basic Library Functions 487

The conversion specification for %V was changed in the Solaris 7 release. This change
was based on the public review draft of the ISO C9x standard at that time. Previously,
the specification stated that if the week containing 1 January had fewer than four days
in the new year, it became week 53 of the previous year. The ISO C9x standard
committee subsequently recognized that that specification had been incorrect.

The conversion specifications for %g, %G, %Eg, %EG, and %Og were added in the Solaris
7 release. This change was based on the public review draft of the ISO C9x standard at
that time. These specifications are evolving. If the ISO C9x standard is finalized with a
different conclusion, these specifications will change to conform to the ISO C9x
standard decision.

The conversion specification for %u was changed in the Solaris 8 release. This change
was based on the XPG4 specification.

If using the %Z specifier and zoneinfo timezones and if the input date is outside the
range 20:45:52 UTC, December 13, 1901 to 03:14:07 UTC, January 19, 2038, the
timezone name may not be correct.

strftime(3C)

NOTES

488 man pages section 3: Basic Library Functions • Last Revised 5 Feb 2001

string, strcasecmp, strncasecmp, strcat, strncat, strlcat, strchr, strrchr, strcmp, strncmp,
strcpy, strncpy, strlcpy, strcspn, strspn, strdup, strlen, strpbrk, strstr, strtok, strtok_r –
string operations

#include <strings.h>

int strcasecmp(const char *s1, const char *s2);

int strncasecmp(const char *s1, const char *s2, size_t n);

#include <string.h>

char *strcat(char *s1, const char *s2);

char *strncat(char *s1, const char *s2, size_t n);

size_t strlcat(char *dst, const char *src, size_t dstsize);

char *strchr(const char *s, int c);

char *strrchr(const char *s, int c);

int strcmp(const char *s1, const char *s2);

int strncmp(const char *s1, const char *s2, size_t n);

char *strcpy(char *s1, const char *s2);

char *strncpy(char *s1, const char *s2, size_t n);

size_t strlcpy(char *dst, const char *src, size_t dstsize);

size_t strcspn(const char *s1, const char *s2);

size_t strspn(const char *s1, const char *s2);

char *strdup(const char *s1);

size_t strlen(const char *s);

char *strpbrk(const char *s1, const char *s2);

char *strstr(const char *s1, const char *s2);

char *strtok(char *s1, const char *s2);

char *strtok_r(char *s1, const char *s2, char **lasts);

#include <string.h>

const char *strchr(const char *s, int c);

const char *strpbrk(const char *s1, const char *s2);

const char *strrchr(const char *s, int c);

const char *strstr(const char *s1, const char *s2);

#include <cstring>

char *std::strchr(char *s, int c);

string(3C)

NAME

SYNOPSIS

ISO C++

Basic Library Functions 489

char *std::strpbrk(char *s1, const char *s2);

char *std::strrchr(char *s, int c);

char *std::strstr(char *s1, const char *s2);

The arguments s, s1, and s2 point to strings (arrays of characters terminated by a null
character). The strcat(), strncat(), strlcat(), strcpy(), strncpy(),
strlcpy(), strtok(), and strtok_r() functions all alter their first argument.
These functions do not check for overflow of the array pointed to by the first
argument.

The strcasecmp() and strncasecmp() functions are case-insensitive versions of
strcmp() and strncmp() respectively, described below. They assume the ASCII
character set and ignore differences in case when comparing lower and upper case
characters.

The strcat() function appends a copy of string s2, including the terminating null
character, to the end of string s1. The strncat() function appends at most n
characters. Each returns a pointer to the null-terminated result. The initial character of
s2 overrides the null character at the end of s1.

The strlcat() function appends at most (dstsize-strlen(dst)-1) characters of src to
dst (dstsize being the size of the string buffer dst). If the string pointed to by dst
contains a null-terminated string that fits into dstsize bytes when strlcat() is called,
the string pointed to by dst will be a null-terminated string that fits in dstsize bytes
(including the terminating null character) when it completes, and the initial character
of src will override the null character at the end of dst. If the string pointed to by dst is
longer than dstsize bytes when strlcat() is called, the string pointed to by dst will
not be changed. The function returns the sum the of lengths of the two strings
strlen(dst)+strlen(src). Buffer overflow can be checked as follows:

if (strlcat(dst, src, dstsize) >= dstsize)
return −1;

The strchr() function returns a pointer to the first occurrence of c (converted to a
char) in string s, or a null pointer if c does not occur in the string. The strrchr()
function returns a pointer to the last occurrence of c. The null character terminating a
string is considered to be part of the string.

The strcmp() function compares two strings byte-by-byte, according to the ordering
of your machine’s character set. The function returns an integer greater than, equal to,
or less than 0, if the string pointed to by s1 is greater than, equal to, or less than the
string pointed to by s2 respectively. The sign of a non-zero return value is determined
by the sign of the difference between the values of the first pair of bytes that differ in
the strings being compared. The strncmp() function makes the same comparison but
looks at a maximum of n bytes. Bytes following a null byte are not compared.

string(3C)

DESCRIPTION

strcasecmp(),
strncasecmp()

strcat(),
strncat(),
strlcat()

strchr(),
strrchr()

strcmp(),
strncmp()

490 man pages section 3: Basic Library Functions • Last Revised 11 Jan 2002

The strcpy() function copies string s2 to s1, including the terminating null character,
stopping after the null character has been copied. The strncpy() function copies
exactly n bytes, truncating s2 or adding null characters to s1 if necessary. The result
will not be null-terminated if the length of s2 is n or more. Each function returns s1.

The strlcpy() function copies at most dstsize−1 characters (dstsize being the size of
the string buffer dst) from src to dst, truncating src if necessary. The result is always
null-terminated. The function returns strlen(src). Buffer overflow can be checked as
follows:

if (strlcpy(dst, src, dstsize) >= dstsize)
return −1;

The strcspn() function returns the length of the initial segment of string s1 that
consists entirely of characters not from string s2. The strspn() function returns the
length of the initial segment of string s1 that consists entirely of characters from string
s2.

The strdup() function returns a pointer to a new string that is a duplicate of the
string pointed to by s1. The returned pointer can be passed to free(). The space for
the new string is obtained using malloc(3C). If the new string cannot be created, a
null pointer is returned and errno may be set to ENOMEM to indicate that the storage
space available is insufficient.

The strlen() function returns the number of bytes in s, not including the
terminating null character.

The strpbrk() function returns a pointer to the first occurrence in string s1 of any
character from string s2, or a null pointer if no character from s2 exists in s1.

The strstr() function locates the first occurrence of the string s2 (excluding the
terminating null character) in string s1 and returns a pointer to the located string, or a
null pointer if the string is not found. If s2 points to a string with zero length (that is,
the string ""), the function returns s1.

The strtok() function can be used to break the string pointed to by s1 into a
sequence of tokens, each of which is delimited by one or more characters from the
string pointed to by s2. The strtok() function considers the string s1 to consist of a
sequence of zero or more text tokens separated by spans of one or more characters
from the separator string s2. The first call (with pointer s1 specified) returns a pointer
to the first character of the first token, and will have written a null character into s1
immediately following the returned token. The function keeps track of its position in
the string between separate calls, so that subsequent calls (which must be made with
the first argument being a null pointer) will work through the string s1 immediately
following that token. In this way subsequent calls will work through the string s1 until
no tokens remain. The separator string s2 may be different from call to call. When no
token remains in s1, a null pointer is returned.

string(3C)

strcpy(),
strncpy(),
strlcpy()

strcspn(),
strspn()

strdup()

strlen()

strpbrk()

strstr()

strtok()

Basic Library Functions 491

The strtok_r() function has the same functionality as strtok() except that a
pointer to a string placeholder lasts must be supplied by the caller. The lasts pointer is
to keep track of the next substring in which to search for the next token.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See NOTES below.

malloc(3C), setlocale(3C), strxfrm(3C), attributes(5)

When compiling multithreaded applications, the _REENTRANT flag must be defined
on the compile line. This flag should only be used in multithreaded applications.

All of these functions assume the default locale ‘‘C.’’ For some locales, strxfrm()
should be applied to the strings before they are passed to the functions.

The strcasecmp(), strcat(), strchr(), strcmp(), strcpy(), strcspn(),
strdup(), strlen(), strncasecmp(), strncat(), strncmp(),
strncpy(), strpbrk(), strrchr(), strspn(), and strstr() functions are
MT-Safe in multithreaded applications.

The strtok() function is Unsafe in multithreaded applications. The strtok_r()
function should be used instead.

string(3C)

strtok_r()

ATTRIBUTES

SEE ALSO

NOTES

492 man pages section 3: Basic Library Functions • Last Revised 11 Jan 2002

string_to_decimal, file_to_decimal, func_to_decimal – parse characters into decimal
record

#include <floatingpoint.h>

void string_to_decimal(char **pc, int nmax, int fortran_conventions,
decimal_record *pd, enum decimal_string_form *pform, char
**pechar);

void func_to_decimal(char **pc, int nmax, int fortran_conventions,
decimal_record *pd, enum decimal_string_form *pform, char
**pechar, int (*pget)(void), int *pnread, int (*punget)(int c));

#include <stdio.h>

void file_to_decimal(char **pc, int nmax, int fortran_conventions,
decimal_record *pd, enum decimal_string_form *pform, char
**pechar, FILE *pf, int *pnread);

The char_to_decimal functions parse a numeric token from at most nmax
characters in a string **pc or file *pf or function (*pget)() into a decimal record *pd,
classifying the form of the string in *pform and *pechar. The accepted syntax is
intended to be sufficiently flexible to accommodate many languages: whitespace value
or whitespace sign value,where whitespace is any number of characters defined by isspace
in <ctype.h>, sign is either of [+−], and value can be number, nan, or inf. inf can be
INF (inf_form) or INFINITY (infinity_form) without regard to case. nan can be NAN
(nan_form) or NAN(nstring) (nanstring_form) without regard to case; nstring is any
string of characters not containing ’)’ or NULL; nstring is copied to pd−>ds and,
currently, not used subsequently. number consists of significand or significand efield
where significand must contain one or more digits and may contain one point; possible
forms are

digits (int_form)
digits. (intdot_form)
.digits (dotfrac_form)

digits.digits (intdotfrac_form)

efield consists of echar digits or echar sign digits,.where echar is one of [Ee], and digits
contains one or more digits.

When fortran_conventions is nonzero, additional input forms are accepted according to
various Fortran conventions:

0 no Fortran conventions

1 Fortran list-directed input conventions

2 Fortran formatted input conventions, ignore blanks (BN)

3 Fortran formatted input conventions, blanks are zeros (BZ)

When fortran_conventions is nonzero, echar may also be one of [DdQq], and efield may
also have the form

string_to_decimal(3C)

NAME

SYNOPSIS

DESCRIPTION

Basic Library Functions 493

sign digits.

When fortran_conventions>= 2, blanks may appear in the digits strings for the integer,
fraction, and exponent fields and may appear between echar and the exponent sign
and after the infinity and NaN forms. If fortran_conventions== 2, the blanks are
ignored. When fortran_conventions== 3, the blanks that appear in digits strings are
interpreted as zeros, and other blanks are ignored.

When fortran_conventions is zero, the current locale’s decimal point character is used as
the decimal point; when fortran_conventions is nonzero, the period is used as the
decimal point.

The form of the accepted decimal string is placed in *pform. If an efield is recognized,
*pechar is set to point to the echar.

On input, *pc points to the beginning of a character string buffer of length >= nmax. On
output, *pc points to a character in that buffer, one past the last accepted character.
string_to_decimal() gets its characters from the buffer; file_to_decimal()
gets its characters from *pf and records them in the buffer, and places a null after the
last character read. func_to_decimal() gets its characters from an int function
(*pget)().

The scan continues until no more characters could possibly fit the acceptable syntax or
until nmax characters have been scanned. If the nmax limit is not reached then at least
one extra character will usually be scanned that is not part of the accepted syntax.
file_to_decimal() and func_to_decimal() set *pnread to the number of
characters read from the file; if greater than nmax, some characters were lost. If no
characters were lost, file_to_decimal() and func_to_decimal() attempt to
push back, with ungetc(3C) or (*punget)(), as many as possible of the excess
characters read, adjusting *pnread accordingly. If all unget calls are successful, then **pc
will be NULL. No push back will be attempted if (*punget)() is NULL.

Typical declarations for *pget() and *punget() are:

int xget(void)
{ . . . }
int (*pget)(void) = xget;
int xunget(int c)
{ . . . }

int (*punget)(int) = xunget;

If no valid number was detected, pd−>fpclass is set to fp_signaling, *pc is
unchanged, and *pform is set to invalid_form.

atof(3C) and strtod(3C) use string_to_decimal(). scanf(3C) uses
file_to_decimal().

See attributes(5) for descriptions of the following attributes:

string_to_decimal(3C)

ATTRIBUTES

494 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ctype(3C), localeconv(3C), scanf(3C), setlocale(3C), strtod(3C),
ungetc(3C), attributes(5)

string_to_decimal(3C)

SEE ALSO

Basic Library Functions 495

strptime – date and time conversion

#include <time.h>

char *strptime(const char *buf, const char *format, struct tm *tm);

cc [flag ...] file ... -D_STRPTIME_DONTZERO [library ...]

char *strptime(const char *buf, const char *format, struct tm *tm);

The strptime() function converts the character string pointed to by buf to values
which are stored in the tm structure pointed to by tm, using the format specified by
format.

The format argument is composed of zero or more conversion specifications. Each
conversion specification is composed of a “%” (percent) character followed by one or
two conversion characters which specify the replacement required. One or more white
space characters (as specified by isspace(3C)) may precede or follow a conversion
specification. There must be white-space or other non-alphanumeric characters
between any two conversion specifications.

A non-zeroing version of strptime(), described below under Non-zeroing
Behavior, is provided if _STRPTIME_DONTZERO is defined.

The following conversion specifications are supported:

%% Same as %.

%a Day of week, using the locale’s weekday names; either the abbreviated or
full name may be specified.

%A Same as %a.

%b Month, using the locale’s month names; either the abbreviated or full name
may be specified.

%B Same as %b.

%c Locale’s appropriate date and time representation.

%C Century number (the year divided by 100 and truncated to an integer as a
decimal number [1,99]); single digits are preceded by 0. If %C is used
without the %y specifier, strptime() assumes the year offset is zero in
whichever century is specified. Note the behavior of %C in the absence of
%y is not specified by any of the standards or specifications described on
the standards(5) manual page, so portable applications should not
depend on it. This behavior may change in a future release.

%d Day of month [1,31]; leading zero is permitted but not required.

%D Date as %m/%d/%y.

%e Same as %d.

%h Same as %b.

strptime(3C)

NAME

SYNOPSIS

Non-zeroing
Behavior

DESCRIPTION

Conversion
Specifications

496 man pages section 3: Basic Library Functions • Last Revised 5 Oct 1999

%H Hour (24-hour clock) [0,23]; leading zero is permitted but not required.

%I Hour (12-hour clock) [1,12]; leading zero is permitted but not required.

%j Day number of the year [1,366]; leading zeros are permitted but not
required.

%m Month number [1,12]; leading zero is permitted but not required.

%M Minute [0-59]; leading zero is permitted but not required.

%n Any white space.

%p Locale’s equivalent of either a.m. or p.m.

%r Appropriate time representation in the 12-hour clock format with %p.

%R Time as %H:%M.

%S Seconds [0,61]; leading zero is permitted but not required. The range of
values is [00,61] rather than [00,59] to allow for the occasional leap second
and even more occasional double leap second.

%t Any white space.

%T Time as %H:%M:%S.

%U Week number of the year as a decimal number [0,53], with Sunday as the
first day of the week; leading zeros are permitted but not required.

%w Weekday as a decimal number [0,6], with 0 representing Sunday.

%W Week number of the year as a decimal number [0,53], with Monday as the
first day of the week; leading zero is permitted but not required.

%x Locale’s appropriate date representation.

%X Locale’s appropriate time representation.

%y The year within century. When a century is not otherwise specified, values
in the range 69-99 refer to years in the twentieth century (1969 to 1999
inclusive); values in the range 00-68 refer to years in the twenty-first
century (2000 to 2068 inclusive). Leading zeros are permitted but not
required.

%Y Year, including the century (for example, 1993) [1–9999].

%Z Timezone name or no characters if no time zone information exists. Local
timezone information is used as though strptime() called tzset() (see
ctime(3C)). Errors may not be detected. This behavior is subject to change
in a future release.

strptime(3C)

Basic Library Functions 497

Some conversion specifications can be modified by the E and O modifier characters to
indicate that an alternate format or specification should be used rather than the one
normally used by the unmodified specification. If the alternate format or specification
does not exist in the current locale, the behavior will be as if the unmodified
conversion specification were used.

%Ec Locale’s alternate appropriate date and time representation.

%EC Name of the base year (era) in the locale’s alternate representation.

%Ex Locale’s alternate date representation.

%EX Locale’s alternate time representation.

%Ey Offset from %EC (year only) in the locale’s alternate representation.

%EY Full alternate year representation.

%Od Day of the month using the locale’s alternate numeric symbols.

%Oe Same as %Od.

%OH Hour (24-hour clock) using the locale’s alternate numeric symbols.

%OI Hour (12-hour clock) using the locale’s alternate numeric symbols.

%Om Month using the locale’s alternate numeric symbols.

%OM Minutes using the locale’s alternate numeric symbols.

%OS Seconds using the locale’s alternate numeric symbols.

%OU Week number of the year (Sunday as the first day of the week) using the
locale’s alternate numeric symbols.

%Ow Number of the weekday (Sunday=0) using the locale’s alternate numeric
symbols.

%OW Week number of the year (Monday as the first day of the week) using the
locale’s alternate numeric symbols.

%Oy Year (offset from %C) in the locale’s alternate representation and using the
locale’s alternate numeric symbols.

A conversion specification that is an ordinary character is executed by scanning the
next character from the buffer. If the character scanned from the buffer differs from the
one comprising the specification, the specification fails, and the differing and
subsequent characters remain unscanned.

A series of specifications composed of %n, %t, white-space characters or any
combination is executed by scanning up to the first character that is not white space
(which remains unscanned), or until no more characters can be scanned. White space
is defined by isspace(3C).

strptime(3C)

Modified
Conversion

Specifications

General
Specifications

498 man pages section 3: Basic Library Functions • Last Revised 5 Oct 1999

Any other conversion specification is executed by scanning characters until a character
matching the next specification is scanned, or until no more characters can be scanned.
These characters, except the one matching the next specification, are then compared to
the locale values associated with the conversion specifier. If a match is found, values
for the appropriate tm structure members are set to values corresponding to the locale
information. If no match is found, strptime() fails and no more characters are
scanned.

The month names, weekday names, era names, and alternate numeric symbols can
consist of any combination of upper and lower case letters. The user can request that
the input date or time specification be in a specific language by setting the LC_TIME
category using setlocale(3C).

In addition to the behavior described above by various standards, the Solaris
implementation of strptime() provides the following extensions. These may change
at any time in the future. Portable applications should not depend on these extended
features:

� If _STRPTIME_DONTZERO is not defined, the tm struct is zeroed on entry and
strptime() updates the fields of the tm struct associated with the specifiers in
the format string.

� If _STRPTIME_DONTZERO is defined, strptime() does not zero the tm struct
on entry. Additionally, for some specifiers, strptime() will use some values in
the input tm struct to recalculate the date and re-assign the appropriate
members of the tm struct.

The following describes extended features regardless of whether
_STRPTIME_DONTZERO is defined or not defined:

� If %j is specified, tm_yday is set; if year is given, and if month and day are not
given, strptime() calculates and sets tm_mon, tm_mday, and tm_year.

� If %U or %W is specified and if weekday and year are given and month and day of
month are not given, strptime() calculates and sets tm_mon, tm_mday,
tm_wday, and tm_year.

The following describes extended features when _STRPTIME_DONTZERO is not
defined:

� If %C is specified and %y is not specified, strptime()assumes 0 as the year offset,
then calculates the year, and assigns tm_year.

The following describes extended features when _STRPTIME_DONTZERO is defined:

� If %C is specified and %y is not specified, strptime() assumes the year offset of
the year value of the tm_year member of the input tm struct, then calculates
the year and assigns tm_year.

� If %j is specified and neither %y, %Y, nor %C are specified, and neither month nor
day of month are specified, strptime() assumes the year value given by the
value of the tm_year field of the input tm struct. Then, in addition to setting

strptime(3C)

Non-zeroing
Behavior

Basic Library Functions 499

tm_yday, strptime() uses day-of-year and year values to calculate the month
and day-of-month, and assigns tm_month and tm_mday.

� If %U or %W is specified, and if weekday and/or year are not given, and month and
day of month are not given, strptime() will assume the weekday value and/or
the year value as the value of the tm_wday field and/or tm_year field of the input
tm struct. Then, strptime() will calculate the month and day-of-month and
assign tm_month, tm_mday, and/or tm_year.

� If %p is specified and if hour is not specified, strptime() will reference, and if
needed, update the tm_hour member. If the am_pm input is p.m. and the input
tm_hour value is between 0 - 11, strptime() will add 12 hours and update
tm_hour. If the am_pm input is a.m. and input tm_hour value is between 12 - 23,
strptime() will subtract 12 hours and update tm_hour.

Upon successful completion, strptime() returns a pointer to the character following
the last character parsed. Otherwise, a null pointer is returned.

Several “same as” formats, and the special processing of white-space characters are
provided in order to ease the use of identical format strings for strftime(3C) and
strptime().

The strptime() function tries to calculate tm_year, tm_mon, and tm_mday when
given incomplete input. This allows the struct tm created by strptime() to be
passed to mktime(3C) to produce a time_t value for dates and times that are
representable by a time_t. As an example, since mktime() ignores tm_yday,
strptime() calculates tm_mon and tm_mday as well as filling in tm_yday when %j
is specified without otherwise specifying a month and day within month.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

CSI Enabled

ctime(3C), getdate(3C), isspace(3C), mktime(3C), setlocale(3C),
strftime(3C), attributes(5), environ(5), standards(5)

strptime(3C)

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

500 man pages section 3: Basic Library Functions • Last Revised 5 Oct 1999

strsignal – get name of signal

#include <string.h>

char *strsignal(int sig);

The strsignal() function maps the signal number in sig to a string describing the
signal and returns a pointer to that string. It uses the same set of the messages as
psignal(3C). The returned string should not be overwritten.

The strsignal() function returns NULL if sig is not a valid signal number.

If the application is linked with -lintl, messages returned from this function are in
the native language specified by the LC_MESSAGES locale category; see
setlocale(3C).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

gettext(3C), psignal(3C), setlocale(3C), str2sig(3C), attributes(5)

strsignal(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

Basic Library Functions 501

strtod, atof – convert string to double-precision number

#include <stdlib.h>

double strtod(const char *str, char **endptr);

double atof(const char *str);

The strtod() function converts the initial portion of the string pointed to by str to
type double representation. First it decomposes the input string into three parts: an
initial, possibly empty, sequence of white-space characters (as specified by
isspace(3C)); a subject sequence interpreted as a floating-point constant; and a final
string of one or more unrecognized characters, including the terminating null byte of
the input string. Then it attempts to convert the subject sequence to a floating-point
number, and returns the result.

The expected form of the subject sequence is an optional + or − sign, then a non-empty
sequence of digits optionally containing a radix character, then an optional exponent
part. An exponent part consists of e or E, followed by an optional sign, followed by
one or more decimal digits. The subject sequence is defined as the longest initial
subsequence of the input string, starting with the first non-white-space character, that
is of the expected form. The subject sequence is empty if the input string is empty or
consists entirely of white-space characters, or if the first character that is not white
space is other than a sign, a digit or a radix character.

If the subject sequence has the expected form, the sequence starting with the first digit
or the radix character (whichever occurs first) is interpreted as a floating constant of
the C language, except that the radix character is used in place of a period, and that if
neither an exponent part nor a radix character appears, a radix character is assumed to
follow the last digit in the string. If the subject sequence begins with a minus sign, the
value resulting from the conversion is negated. A pointer to the final string is stored in
the object pointed to by endptr, provided that endptr is not a null pointer.

The radix character is defined in the program’s locale (category LC_NUMERIC). In the
POSIX locale, or in a locale where the radix character is not defined, the radix
character defaults to a period (.).

In other than the POSIX locale, other implementation-dependent subject sequence
forms may be accepted.

If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value of str is stored in the object pointed to by endptr, provided that
endptr is not a null pointer.

The atof(str) function call is equivalent to strtod(str, (char **)NULL).

Upon successful completion, strtod() returns the converted value. If no conversion
could be performed, 0 is returned and errno may be set to EINVAL.

strtod(3C)

NAME

SYNOPSIS

DESCRIPTION

atof()

RETURN VALUES

502 man pages section 3: Basic Library Functions • Last Revised 13 Jul 2000

If the correct value is outside the range of representable values, ±HUGE is returned
(according to the sign of the value), and errno is set to ERANGE. When the -Xc or
-Xa compilation options are used, HUGE_VAL is returned instead of HUGE.

If the correct value would cause an underflow, 0 is returned and errno is set to
ERANGE.

If str is NaN, then atof() returns NaN.

The strtod() function will fail if:

ERANGE The value to be returned would cause overflow or underflow. The
strtod() function may fail if:

EINVAL No conversion could be performed.

Because 0 is returned on error and is also a valid return on success, an application
wishing to check for error situations should set errno to 0, then call strtod(), then
check errno and if it is non-zero, assume an error has occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

CSI Enabled

isspace(3C), localeconv(3C), scanf(3C), setlocale(3C), strtol(3C),
attributes(5), standards(5)

The strtod() and atof() functions can be used safely in multithreaded
applications, as long as setlocale(3C) is not called to change the locale.

The DESCRIPTION and RETURN VALUES sections above are very similar to the
wording used by the Single UNIX Specification version 2 and the 1989 C Standard to
describe the behavior of the strtod() function. Since some users have reported that
they find the description confusing, the following notes may be helpful.

1. The strtod() function does not modify the string pointed to by str and does not
malloc() space to hold the decomposed portions of the input string.

2. If endptr is not (char **)NULL, strtod() will set the pointer pointed to by
endptr to the first byte of the "final string of unrecognized characters". (If all input
characters were processed, the pointer pointed to by endptr will be set to point to
the null character at the end of the input string.)

3. If strtod() returns 0.0, one of the following occurred:

a. The "subject sequence" was not an empty string, but evaluated to 0.0. (In this
case, errno will be left unchanged.)

strtod(3C)

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

NOTES

Basic Library Functions 503

b. The "subject sequence" was an empty string. (In this case, the Single UNIX
Specification version 2 allows errno to be set to EINVAL or to be left
unchanged. The C Standard does not specify any specific behavior in this case.)

c. The "subject sequence" specified a numeric value that would cause a floating
point underflow. (In this case, errno may be set to ERANGE or may be left
unchanged.) Note that the standards do not require that implementations

distinguish between these three cases. An application can determine case (b) by
making sure that there are no leading white-space characters in the string pointed to
by str and giving strtod() an endptr that is not (char **)NULL. If endptr points
to the first chartacter of str when strtod() returns, you have detected case
(b). Case (c) can be detected by looking for a non-zero digit
before the exponent part of the "subject sequence". Note, however,
that the decimal-point character is locale-dependent.

4. If strtod() returns +HUGE_VAL or −HUGE_VAL, one of the following occurred:

a. If +HUGE_VAL is returned and errno is set to ERANGE, a floating point
overflow occurred while processing a positive value.

b. If −HUGE_VAL is returned and errno is set to ERANGE, a floating point
overflow occurred while processing a negative value.

c. If strtod() does not set errno to ERANGE, the value specified by the "subject
string" converted to +HUGE_VAL or −HUGE_VAL, respectively. Note that if

errno is set to ERANGE when strtod() is called, case (c) is
indistinguishable from cases (a) and (b).

strtod(3C)

504 man pages section 3: Basic Library Functions • Last Revised 13 Jul 2000

strtol, strtoll, atol, atoll, atoi, lltostr, ulltostr – string conversion routines

#include <stdlib.h>

long strtol(const char *str, char **endptr, int base);

long long strtoll(const char *str, char **endptr, int base);

long atol(const char *str);

long long atoll(const char *str);

int atoi(const char *str);

char *lltostr(long long value, char *endptr);

char *ulltostr(unsigned long long value, char *endptr);

The strtol() function converts the initial portion of the string pointed to by str to a
type long int representation.

The strtoll() function converts the initial portion of the string pointed to by str to a
type long long representation.

Both functions first decompose the input string into three parts: an initial, possibly
empty, sequence of white-space characters (as specified by isspace(3C)); a subject
sequence interpreted as an integer represented in some radix determined by the value
of base; and a final string of one or more unrecognized characters, including the
terminating null byte of the input string. They then attempt to convert the subject
sequence to an integer and return the result.

If the value of base is 0, the expected form of the subject sequence is that of a decimal
constant, octal constant or hexadecimal constant, any of which may be preceded by a
+ or − sign. A decimal constant begins with a non-zero digit, and consists of a
sequence of decimal digits. An octal constant consists of the prefix 0 optionally
followed by a sequence of the digits 0 to 7 only. A hexadecimal constant consists of the
prefix 0x or 0X followed by a sequence of the decimal digits and letters a (or A) to f (or
F) with values 10 to 15 respectively.

If the value of base is between 2 and 36, the expected form of the subject sequence is a
sequence of letters and digits representing an integer with the radix specified by base,
optionally preceded by a + or − sign. The letters from a (or A) to z (or Z) inclusive are
ascribed the values 10 to 35; only letters whose ascribed values are less than that of
base are permitted. If the value of base is 16, the characters 0x or 0X may optionally
precede the sequence of letters and digits, following the sign if present.

The subject sequence is defined as the longest initial subsequence of the input string,
starting with the first non-white-space character, that is of the expected form. The
subject sequence contains no characters if the input string is empty or consists entirely
of white-space characters, or if the first non-white-space character is other than a sign
or a permissible letter or digit.

strtol(3C)

NAME

SYNOPSIS

strtol() and
strtoll()

Basic Library Functions 505

If the subject sequence has the expected form and the value of base is 0, the sequence
of characters starting with the first digit is interpreted as an integer constant. If the
subject sequence has the expected form and the value of base is between 2 and 36, it is
used as the base for conversion, ascribing to each letter its value as given above. If the
subject sequence begins with a minus sign, the value resulting from the conversion is
negated. A pointer to the final string is stored in the object pointed to by endptr,
provided that endptr is not a null pointer.

In other than the POSIX locale, additional implementation-dependent subject
sequence forms may be accepted.

If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value of str is stored in the object pointed to by endptr, provided that
endptr is not a null pointer.

Except for behavior on error, atol() is equivalent to: strtol(str, (char
**)NULL, 10).

Except for behavior on error, atoll() is equivalent to: strtoll(str, (char
**)NULL, 10).

Except for behavior on error, atoi() is equivalent to: (int) strtol(str, (char
**)NULL, 10).

The lltostr() function returns a pointer to the string represented by the long long
value. The endptr argument is assumed to point to the byte following a storage area
into which the decimal representation of value is to be placed as a string. The
lltostr() function converts value to decimal and produces the string, and returns a
pointer to the beginning of the string. No leading zeros are produced, and no
terminating null is produced. The low-order digit of the result always occupies
memory position endptr−1. The behavior of lltostr() is undefined if value is
negative. A single zero digit is produced if value is 0.

The ulltostr() function is similar to lltostr() except that value is an unsigned
long long.

Upon successful completion, strtol(), strtoll(), atol(), atoll(), and
atoi() return the converted value, if any. If no conversion could be performed,
strtol() and strtoll() return 0 and errno may be set to EINVAL.

If the correct value is outside the range of representable values, strtol() returns
LONG_MAX or LONG_MIN and strtoll() returns LLONG_MAX or LLONG_MIN
(according to the sign of the value), and errno is set to ERANGE.

Upon successful completion, lltostr() and ulltostr() return a pointer to the
converted string.

The strtol() and strtoll() functions will fail if:

ERANGE The value to be returned is not representable. The strtol() and
strtoll() functions may fail if:

strtol(3C)

atol(),
atoll() and

atoi()

lltostr() and
ulltostr()

RETURN VALUES

ERRORS

506 man pages section 3: Basic Library Functions • Last Revised 17 Dec 1997

EINVAL The value of base is not supported.

Because 0, LONG_MIN, LONG_MAX, LLONG_MIN, and LLONG_MAX are returned on error
and are also valid returns on success, an application wishing to check for error
situations should set errno to 0, call the function, then check errno and if it is
non-zero, assume an error has occurred.

The strtol() function no longer accepts values greater than LONG_MAX or
LLONG_MAX as valid input. Use strtoul(3C) instead.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

isalpha(3C), isspace(3C), scanf(3C), strtod(3C), strtoul(3C), attributes(5)

strtol(3C)

USAGE

ATTRIBUTES

SEE ALSO

Basic Library Functions 507

strtoul, strtoull – convert string to unsigned long

#include <stdlib.h>

unsigned long strtoul(const char *str, char **endptr, int base);

unsigned long long strtoull(const char *str, char **endptr, int
base);

The strtoul() function converts the initial portion of the string pointed to by str to a
type unsigned long int representation. First it decomposes the input string into
three parts: an initial, possibly empty, sequence of white-space characters (as specified
by isspace(3C)); a subject sequence interpreted as an integer represented in some
radix determined by the value of base; and a final string of one or more unrecognised
characters, including the terminating null byte of the input string. Then it attempts to
convert the subject sequence to an unsigned integer, and returns the result.

If the value of base is 0, the expected form of the subject sequence is that of a decimal
constant, octal constant or hexadecimal constant, any of which may be preceded by a
+ or − sign. A decimal constant begins with a non-zero digit, and consists of a
sequence of decimal digits. An octal constant consists of the prefix 0 optionally
followed by a sequence of the digits 0 to 7 only. A hexadecimal constant consists of the
prefix 0x or 0X followed by a sequence of the decimal digits and letters a (or A) to f (or
F) with values 10 to 15 respectively.

If the value of base is between 2 and 36, the expected form of the subject sequence is a
sequence of letters and digits representing an integer with the radix specified by base,
optionally preceded by a + or − sign. The letters from a (or A) to z (or Z) inclusive are
ascribed the values 10 to 35; only letters whose ascribed values are less than that of
base are permitted. If the value of base is 16, the characters 0x or 0X may optionally
precede the sequence of letters and digits, following the sign if present.

The subject sequence is defined as the longest initial subsequence of the input string,
starting with the first non-white-space character, that is of the expected form. The
subject sequence contains no characters if the input string is empty or consists entirely
of white-space characters, or if the first non-white-space character is other than a sign
or a permissible letter or digit.

If the subject sequence has the expected form and the value of base is 0, the sequence
of characters starting with the first digit is interpreted as an integer constant. If the
subject sequence has the expected form and the value of base is between 2 and 36, it is
used as the base for conversion, ascribing to each letter its value as given above. If the
subject sequence begins with a minus sign, the value resulting from the conversion is
negated. A pointer to the final string is stored in the object pointed to by endptr,
provided that endptr is not a null pointer.

In other than the POSIX locale, additional implementation-dependent subject
sequence forms may be accepted.

strtoul(3C)

NAME

SYNOPSIS

DESCRIPTION

508 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value of str is stored in the object pointed to by endptr, provided that
endptr is not a null pointer.

The strtoull() function is identical to strtoul() except that it returns the value
represented by str as an unsigned long long.

Upon successful completion strtoul() returns the converted value, if any. If no
conversion could be performed, 0 is returned and errno may be set to EINVAL. If the
correct value is outside the range of representable values, ULONG_MAX is returned and
errno is set to ERANGE.

The strtoul() function will fail if:

EINVAL The value of base is not supported.

ERANGE The value to be returned is not representable.

The strtoul() function may fail if:

EINVAL No conversion could be performed.

Because 0 and ULONG_MAX are returned on error and are also valid returns on success,
an application wishing to check for error situations should set errno to 0, then call
strtoul(), then check errno and if it is non-zero, assume an error has occurred.

Unlike strtod(3C) and strtol(3C), strtoul() must always return a non-negative
number; so, using the return value of strtoul() for out-of-range numbers with
strtoul() could cause more severe problems than just loss of precision if those
numbers can ever be negative.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

isalpha(3C), isspace(3C), scanf(3C), strtod(3C), strtol(3C), attributes(5)

strtoul(3C)

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

Basic Library Functions 509

strtows, wstostr – code conversion for Process Code and File Code

#include <widec.h>

wchar_t *strtows(wchar_t *dst, const char *src);

char *wstostr(char *dst, const wchar_t *src);

The strtows() and wstostr() functions convert strings back and forth between
File Code representation and Process Code.

The strtows() function takes a character string src, converts it to a Process Code
string, terminated by a Process Code null, and places the result into dst.

The wstostr() function takes the Process Code string pointed to by src, converts it to
a character string, and places the result into dst.

The strtows() function returns the Process Code string if it completes successfully.
Otherwise, a null pointer will be returned and errno will be set to EILSEQ.

The wstostr() function returns the File Code string if it completes successfully.
Otherwise, a null pointer will be returned and errno will be set to EILSEQ.

wstring(3C)

strtows(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

SEE ALSO

510 man pages section 3: Basic Library Functions • Last Revised 20 Dec 1996

strxfrm – string transformation

#include <string.h>

size_t strxfrm(char *s1, const char *s2, size_t n);

The strxfrm() function transforms the string pointed to by s2 and places the
resulting string into the array pointed to by s1. The transformation is such that if
strcmp(3C) is applied to two transformed strings, it returns a value greater than,
equal to or less than 0, corresponding to the result of strcoll(3C) applied to the
same two original strings. No more than n bytes are placed into the resulting array
pointed to by s1, including the terminating null byte. If n is 0, s1 is permitted to be a
null pointer. If copying takes place between objects that overlap, the behavior is
undefined.

Upon successful completion, strxfrm() returns the length of the transformed string
(not including the terminating null byte). If the value returned is n or more, the
contents of the array pointed to by s1 are indeterminate.

On failure, strxfrm() returns (size_t) −1.

The transformation function is such that two transformed strings can be ordered by
strcmp(3C) as appropriate to collating sequence information in the program’s locale
(category LC_COLLATE).

The fact that when n is 0, s1 is permitted to be a null pointer, is useful to determine the
size of the s1 array prior to making the transformation.

Because no return value is reserved to indicate an error, an application wishing to
check for error situations should set errno to 0, then call strcoll(3C), then check
errno and if it is non-zero, assume an error has occurred.

This issue is aligned with the ANSI C standard; this does not affect compatibility with
XPG3 applications. Reliable error detection by this function was never guaranteed.

EXAMPLE 1 A sample of using the strxfm() function.

The value of the following expression is the size of the array needed to hold the
transformation of the string pointed to by s.

1 + strxfrm(NULL, s, 0);

/usr/lib/locale/locale/locale.so.*
LC_COLLATE database for locale

See attributes(5) for descriptions of the following attributes:

strxfrm(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

EXAMPLES

FILES

ATTRIBUTES

Basic Library Functions 511

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

CSI Enabled

localedef(1), setlocale(3C), strcmp(3C), strcoll(3C), wscoll(3C),
attributes(5), environ(5), standards(5)

The strxfrm() function can be used safely in a multithreaded application, as long as
setlocale(3C) is not being called to change the locale.

strxfrm(3C)

SEE ALSO

NOTES

512 man pages section 3: Basic Library Functions • Last Revised 20 Dec 1996

swab – swap bytes

#include <stdlib.h>

void swab(const void *src, char *dest, ssize_t nbytes);

#include <unistd.h>

void swab(const void *src, void *dest, ssize_t nbytes);

The swab() function copies nbytes bytes, which are pointed to by src, to the object
pointed to by dest, exchanging adjacent bytes. The nbytes argument should be even. If
nbytes is odd swab() copies and exchanges nbytes−1 bytes and the disposition of the
last byte is unspecified. If copying takes place between objects that overlap, the
behavior is undefined. If nbytes is negative, swab() does nothing.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

attributes(5), standards(5)

swab(3C)

NAME

Default

XPG4, SUS, SUSv2

DESCRIPTION

ERRORS

ATTRIBUTES

SEE ALSO

Basic Library Functions 513

sync_instruction_memory – make modified instructions executable

void sync_instruction_memory(caddr_t addr, int len);

The sync_instruction_memory() function performs whatever steps are required
to make instructions modified by a program executable.

Some processor architectures, including some SPARC processors, have separate and
independent instruction and data caches which are not kept consistent by hardware.
For example, if the instruction cache contains an instruction from some address and
the program then stores a new instruction at that address, the new instruction may not
be immediately visible to the instruction fetch mechanism. Software must explicitly
invalidate the instruction cache entries for new or changed mappings of pages that
might contain executable instructions. The sync_instruction_memory() function
performs this function, and/or any other functions needed to make modified
instructions between addr and addr+len visible. A program should call
sync_instruction_memory() after modifying instructions and before executing
them.

On processors with unified caches (one cache for both instructions and data) and
pipelines which are flushed by a branch instruction, such as the Intel IA architecture,
the function may do nothing and just return.

The changes are immediately visible to the thread calling
sync_instruction_memory() when the call returns, even if the thread should
migrate to another processor during or after the call. The changes become visible to
other threads in the same manner that stores do; that is, they eventually become
visible, but the latency is implementation-dependent.

The result of executing sync_instruction_memory() are unpredictable if addr
through addr+len-1 are not valid for the address space of the program making the call.

No values are returned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

attributes(5)

sync_instruction_memory(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

514 man pages section 3: Basic Library Functions • Last Revised 12 Feb 1997

syscall – indirect system call

/usr/ucb/cc [flag ...] file ...

#include <sys/syscall.h>

int syscall(number, arg, ...);

syscall() performs the function whose assembly language interface has the
specified number, and arguments arg Symbolic constants for functions can be
found in the header <sys/syscall.h>.

On error syscall() returns −1 and sets the external variable errno (see intro(2)).

<sys/syscall.h>

intro(2), pipe(2)

Use of these interfaces should be restricted to only applications written on BSD
platforms. Use of these interfaces with any of the system libraries or in multi-thread
applications is unsupported.

There is no way to use syscall() to call functions such as pipe(2) which return
values that do not fit into one hardware register.

Since many system calls are implemented as library wrappers around traps to the
kernel, these calls may not behave as documented when called from syscall(),
which bypasses these wrappers. For these reasons, using syscall() is not
recommended.

syscall(3UCB)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

FILES

SEE ALSO

NOTES

WARNINGS

Basic Library Functions 515

sysconf – get configurable system variables

#include <unistd.h>

long sysconf(int name);

The sysconf() function provides a method for an application to determine the
current value of a configurable system limit or option (variable).

The name argument represents the system variable to be queried. The following table
lists the minimal set of system variables from <limits.h> and <unistd.h> that can
be returned by sysconf() and the symbolic constants defined in <unistd.h> that
are the corresponding values used for name on the SPARC and IA platforms.

Name Return Value Meaning

_SC_2_C_BIND _POSIX2_C_BIND Supports the C lang-

uage binding option
_SC_2_C_DEV _POSIX2_C_DEV Supports the C lang-

uage development
utilities option

_SC_2_C_VERSION _POSIX2_C_VERSION Integer value
indicates version
of ISO POSIX-2
standard (Commands)

_SC_2_CHAR_TERM _POSIX2_CHAR_TERM Supports at least
one terminal

_SC_2_FORT_DEV _POSIX2_FORT_DEV Supports FORTRAN
Development
Utilities Option

_SC_2_FORT_RUN _POSIX2_FORT_RUN Supports FORTRAN
Run-time Utilities
Option

_SC_2_LOCALEDEF _POSIX2_LOCALEDEF Supports creation
of locales by the
localedef utility

_SC_2_SW_DEV _POSIX2_SW_DEV Supports Software
Development Utility
Option

_SC_2_UPE _POSIX2_UPE Supports User
Portability
Utilities Option

_SC_2_VERSION _POSIX2_VERSION Integer value
indicates version
of ISO POSIX-2
standard (C language
binding)

_SC_AIO_LISTIO_MAX AIO_LISTIO_MAX Max number of I/O
operations in a
single list I/O call
supported

_SC_AIO_MAX AIO_MAX Max number of
outstanding
asynchronous I/O
operations supported

_SC_AIO_PRIO_DELTA_MAX AIO_PRIO_DELTA_MAX Max amount by which
process can decrease

sysconf(3C)

NAME

SYNOPSIS

DESCRIPTION

516 man pages section 3: Basic Library Functions • Last Revised 15 Jan 2002

its asynchronous
I/O priority level
from its own
scheduling priority

_SC_ARG_MAX ARG_MAX Max size of argv[]
plus envp[]

_SC_ASYNCHRONOUS_IO _POSIX_ASYNCHRONOUS_IO Supports
Asynchronous I/O

_SC_ATEXIT_MAX ATEXIT_MAX Max number of
functions that can
be registered with
atexit()

_SC_AVPHYS_PAGES Number of physical
memory pages not
currently in use by
system

_SC_BC_BASE_MAX BC_BASE_MAX Maximum obase values
allowed by bc

_SC_BC_DIM_MAX BC_DIM_MAX Max number of
elements permitted
in array by bc

_SC_BC_SCALE_MAX BC_SCALE_MAX Max scale value
allowed by bc

_SC_BC_STRING_MAX BC_STRING_MAX Max length of string
constant allowed by
bc

_SC_CHILD_MAX CHILD_MAX Max processes
allowed to a UID

_SC_CLK_TCK CLK_TCK Ticks per second
(clock_t)

_SC_COLL_WEIGHTS_MAX COLL_WEIGHTS_MAX Max number of
weights that can be
assigned to entry of
the LC_COLLATE order
keyword in locale
definition file

_SC_CPUID_MAX Max possible
processor ID

_SC_DELAYTIMER_MAX DELAYTIMER_MAX Max number of timer
expiration overruns

_SC_EXPR_NEST_MAX EXPR_NEST_MAX Max number of
parentheses by expr

_SC_FSYNC _POSIX_FSYNC Supports File
Synchronization

_SC_GETGR_R_SIZE_MAX NSS_BUFLEN_GROUP Max size of group
entry buffer

_SC_GETPW_R_SIZE_MAX NSS_BUFLEN_PASSWD Max size of password
entry buffer

_SC_IOV_MAX IOV_MAX Max number of iovec
structures available
to one process for
use with readv()
and writev()

_SC_JOB_CONTROL _POSIX_JOB_CONTROL Job control
supported?

_SC_LINE_MAX LINE_MAX Max length of input
line

_SC_LOGIN_NAME_MAX LOGNAME_MAX + 1 Max length of login

sysconf(3C)

Basic Library Functions 517

name
_SC_LOGNAME_MAX LOGNAME_MAX
_SC_MAPPED_FILES _POSIX_MAPPED_FILES Supports Memory

Mapped Files
_SC_MAXPID Max pid value
_SC_MEMLOCK _POSIX_MEMLOCK Supports Process

Memory Locking
_SC_MEMLOCK_RANGE _POSIX_MEMLOCK_RANGE Supports Range

Memory Locking
_SC_MEMORY_PROTECTION _POSIX_MEMORY_PROTECTION Supports Memory

Protection
_SC_MESSAGE_PASSING _POSIX_MESSAGE_PASSING Supports Message

Passing
_SC_MQ_OPEN_MAX MQ_OPEN_MAX Max number of open

message queues a
process can hold

_SC_MQ_PRIO_MAX MQ_PRIO_MAX Max number of
message priorities
supported

_SC_NGROUPS_MAX NGROUPS_MAX Max simultaneous
groups to which
one can belong

_SC_NPROCESSORS_CONF Number of processors
configured

_SC_NPROCESSORS_MAX Max number of
processors supported
by platform

_SC_NPROCESSORS_ONLN Number of processors
online

_SC_OPEN_MAX OPEN_MAX Max open files per
process

_SC_PAGESIZE PAGESIZE System memory page
size

_SC_PAGE_SIZE PAGESIZE Same as _SC_PAGESIZE
_SC_PASS_MAX PASS_MAX Max number of

significant bytes
in a password

_SC_PHYS_PAGES Total number of
pages of physical
memory in system

_SC_PRIORITIZED_IO _POSIX_PRIORITIZED_IO Supports Prioritized
I/O

_SC_PRIORITY_SCHEDULING _POSIX_PRIORITY_SCHEDULING Supports Process
Scheduling

_SC_RE_DUP_MAX RE_DUP_MAX Max number of
repeated occurrences
of a regular
expression permitted
when using interval
notation \{m,n\}

_SC_REALTIME_SIGNALS _POSIX_REALTIME_SIGNALS Supports Realtime
Signals

_SC_RTSIG_MAX RTSIG_MAX Max number of
realtime signals
reserved for
application use

_SC_SAVED_IDS _POSIX_SAVED_IDS Saved IDs
(seteuid())

sysconf(3C)

518 man pages section 3: Basic Library Functions • Last Revised 15 Jan 2002

supported?
_SC_SEM_NSEMS_MAX SEM_NSEMS_MAX Max number of POSIX

semaphores a process
can have

_SC_SEM_VALUE_MAX SEM_VALUE_MAX Max value a POSIX
semaphore can have

_SC_SEMAPHORES _POSIX_SEMAPHORES Supports Semaphores
_SC_SHARED_MEMORY_ _POSIX_SHARED_MEMORY_ Supports Shared

OBJECTS OBJECTS Memory Objects
_SC_SIGQUEUE_MAX SIGQUEUE_MAX Max number of queued

signals that a
process can send and
have pending at
receiver(s) at a
time

_SC_STACK_PROT Default stack
protection

_SC_STREAM_MAX STREAM_MAX Number of streams
one process can
have open at a time

_SC_SYNCHRONIZED_IO _POSIX_SYNCHRONIZED_IO Supports
Synchronized I/O

_SC_THREAD_ATTR_ _POSIX_THREAD_ATTR_ Supports Thread
STACKADDR STACKADDR Stack Address

Attribute option
_SC_THREAD_ATTR_ _POSIX_THREAD_ATTR_ Supports Thread

STACKSIZE STACKSIZE Stack Size
Attribute option

_SC_THREAD_DESTRUCTOR_ PTHREAD_DESTRUCTOR_ Number attempts made
ITERATIONS ITERATIONS to destroy thread-

specific data on
thread exit

_SC_THREAD_KEYS_MAX PTHREAD_KEYS_MAX Max number of data
keys per process

_SC_THREAD_PRIO_ _POSIX_THREAD_PRIO_ Supports Priority
INHERIT INHERIT Inheritance option

_SC_THREAD_PRIO_ _POSIX_THREAD_PRIO_ Supports Priority
PROTECT PROTECT Protection option

_SC_THREAD_PRIORITY_ _POSIX_THREAD_PRIORITY_ Supports Thread
SCHEDULING SCHEDULING Execution

Scheduling option
_SC_THREAD_PROCESS_ _POSIX_THREAD_PROCESS_ Supports

SHARED SHARED Process-Shared
Synchronization
option

_SC_THREAD_SAFE_ _POSIX_THREAD_SAFE_ Supports Thread-Safe
FUNCTIONS FUNCTIONS Functions option

_SC_THREAD_STACK_MIN PTHREAD_STACK_MIN Min byte size of
thread stack storage

_SC_THREAD_THREADS_MAX PTHREAD_THREADS_MAX Max number of
threads per process

_SC_THREADS _POSIX_THREADS Supports Threads
option

_SC_TIMER_MAX TIMER_MAX Max number of timer
per process
supported

_SC_TIMERS _POSIX_TIMERS Supports Timers
_SC_TTY_NAME_MAX TTYNAME_MAX Max length of tty

sysconf(3C)

Basic Library Functions 519

device name
_SC_TZNAME_MAX TZNAME_MAX Max number of bytes

supported for name
of a time zone

_SC_VERSION _POSIX_VERSION POSIX.1 version
supported

_SC_XBS5_ILP32_OFF32 _XBS_ILP32_OFF32 Indicates support
for X/Open ILP32
w/32-bit offset
build environment

_SC_XBS5_ILP32_OFFBIG _XBS5_ILP32_OFFBIG Indicates support
for X/Open ILP32
w/64-bit offset
build environment

_SC_XBS5_LP64_OFF64 _XBS5_LP64_OFF64 Indicates support of
X/Open LP64,
64-bit offset
build environment

_SC_XBS5_LPBIG_OFFBIG _XBS5_LP64_OFF64 Same as
_SC_XBS5_LP64_OFF64

_SC_XOPEN_CRYPT _XOPEN_CRYPT Supports X/Open
Encryption Feature
Group

_SC_XOPEN_ENH_I18N _XOPEN_ENH_I18N Supports X/Open
Enhanced
Internationalization
Feature Group

_SC_XOPEN_LEGACY _XOPEN_LEGACY Supports X/Open
Legacy Feature Group

_SC_XOPEN_REALTIME _XOPEN_REALTIME Supports X/Open
POSIX Realtime
Feature Group

_SC_XOPEN_REALTIME_ _XOPEN_REALTIME_THREADS Supports X/Open
THREADS POSIX Reatime

Threads Feature
Group

_SC_XOPEN_SHM _XOPEN_SHM Supports X/Open
Shared Memory
Feature Group

_SC_XOPEN_UNIX _XOPEN_UNIX Supports X/Open CAE
Specification,
August 1994, System
Interfaces and
Headers, Issue 4,
Version 2

_SC_XOPEN_VERSION _XOPEN_VERSION Integer value
indicates version of
X/Open Portability
Guide to which
implementation
conforms

_SC_XOPEN_XCU_VERSION _XOPEN_XCU_VERSION Integer value
indicates version of
XCU specification to
which implementation

conforms

sysconf(3C)

520 man pages section 3: Basic Library Functions • Last Revised 15 Jan 2002

Upon successful completion, sysconf() returns the current variable value on the
system. The value returned will not be more restrictive than the corresponding value
described to the application when it was compiled with the implementation’s
<limits.h>, <unistd.h> or <time.h>. The value will not change during the
lifetime of the calling process.

If name is an invalid value, sysconf() returns −1 and sets errno to indicate the
error. If the variable corresponding to name is associated with functionality that is not
supported by the system, sysconf() returns −1 without changing the value of errno.

Calling sysconf() with the following returns −1 without setting errno, because no
maximum limit can be determined. The system supports at least the minimum values
and can support higher values depending upon system resources.

Variable Minimum supported value
_SC_AIO_MAX _POSIX_AIO_MAX
_SC_ATEXIT_MAX 32
_SC_THREAD_THREADS_MAX _POSIX_THREAD_THREADS_MAX
_SC_THREAD_KEYS_MAX _POSIX_THREAD_KEYS_MAX

_SC_THREAD_DESTRUCTOR_ITERATIONS _POSIX_THREAD_DESTRUCTOR_ITERATIONS

The following SPARC and IA platform variables return EINVAL:

_SC_COHER_BLKSZ _SC_DCACHE_ASSOC
_SC_DCACHE_BLKSZ _SC_DCACHE_LINESZ
_SC_DCACHE_SZ _SC_DCACHE_TBLKSZ
_SC_ICACHE_ASSOC _SC_ICACHE_BLKSZ
_SC_ICACHE_LINESZ _SC_ICACHE_SZ

_SC_SPLIT_CACHE

The sysconf() function will fail if:

EINVAL The value of the name argument is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC and IA

MT-Level MT-Safe, Async-Signal-Safe

fpathconf(2), seteuid(2), setrlimit(2), attributes(5), standards(5)

A call to setrlimit() can cause the value of OPEN_MAX to change.

Multiplying sysconf(_SC_PHYS_PAGES) or sysconf(_SC_AVPHYS_PAGES) by
sysconf(_SC_PAGESIZE) to determine memory amount in bytes can exceed the
maximum values representable in a long or unsigned long.

The value of CLK_TCK can be variable and it should not be assumed that CLK_TCK is a
compile-time constant.

sysconf(3C)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

Basic Library Functions 521

The _SC_PHYS_PAGES and _SC_AVPHYS_PAGES variables are specific to Solaris 2.3
or compatible releases.

sysconf(3C)

522 man pages section 3: Basic Library Functions • Last Revised 15 Jan 2002

syslog, openlog, closelog, setlogmask – control system log

#include <syslog.h>

void openlog(const char *ident, int logopt, int facility);

void syslog(int priority, const char *message, .../* arguments */);

void closelog(void);

int setlogmask(int maskpri);

The syslog() function sends a message to syslogd(1M), which, depending on the
configuration of /etc/syslog.conf, logs it in an appropriate system log, writes it to
the system console, forwards it to a list of users, or forwards it to syslogd on another
host over the network. The logged message includes a message header and a message
body. The message header consists of a facility indicator, a severity level indicator, a
timestamp, a tag string, and optionally the process ID.

The message body is generated from the message and following arguments in the same
manner as if these were arguments to printf(3UCB), except that occurrences of %m in
the format string pointed to by the message argument are replaced by the error
message string associated with the current value of errno. A trailing NEWLINE
character is added if needed.

Values of the priority argument are formed by ORing together a severity level value and
an optional facility value. If no facility value is specified, the current default facility
value is used.

Possible values of severity level include:

LOG_EMERG A panic condition. This is normally broadcast to all
users.

LOG_ALERT A condition that should be corrected immediately, such
as a corrupted system database.

LOG_CRIT Critical conditions, such as hard device errors.

LOG_ERR Errors.

LOG_WARNING Warning messages.

LOG_NOTICE Conditions that are not error conditions, but that may
require special handling.

LOG_INFO Informational messages.

LOG_DEBUG Messages that contain information normally of use
only when debugging a program.

The facility indicates the application or system component generating the message.
Possible facility values include:

syslog(3C)

NAME

SYNOPSIS

DESCRIPTION

Basic Library Functions 523

LOG_KERN Messages generated by the kernel. These cannot be
generated by any user processes.

LOG_USER Messages generated by random user processes. This is
the default facility identifier if none is specified.

LOG_MAIL The mail system.

LOG_DAEMON System daemons, such as in.ftpd(1M).

LOG_AUTH The authorization system: login(1), su(1M),
getty(1M).

LOG_LPR The line printer spooling system: lpr(1B), lpc(1B).

LOG_NEWS Reserved for the USENET network news system.

LOG_UUCP Reserved for the UUCP system; it does not currently
use syslog.

LOG_CRON The cron/at facility; crontab(1), at(1), cron(1M).

LOG_LOCAL0 Reserved for local use.

LOG_LOCAL1 Reserved for local use.

LOG_LOCAL2 Reserved for local use.

LOG_LOCAL3 Reserved for local use.

LOG_LOCAL4 Reserved for local use.

LOG_LOCAL5 Reserved for local use.

LOG_LOCAL6 Reserved for local use.

LOG_LOCAL7 Reserved for local use.

The openlog() function sets process attributes that affect subsequent calls to
syslog(). The ident argument is a string that is prepended to every message. The
logopt argument indicates logging options. Values for logopt are constructed by a
bitwise-inclusive OR of zero or more of the following:

LOG_PID Log the process ID with each message. This is useful
for identifying specific daemon processes (for daemons
that fork).

LOG_CONS Write messages to the system console if they cannot be
sent to syslogd(1M). This option is safe to use in
daemon processes that have no controlling terminal,
since syslog() forks before opening the console.

LOG_NDELAY Open the connection to syslogd(1M) immediately.
Normally the open is delayed until the first message is

syslog(3C)

524 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

logged. This is useful for programs that need to
manage the order in which file descriptors are
allocated.

LOG_ODELAY Delay open until syslog() is called.

LOG_NOWAIT Do not wait for child processes that have been forked
to log messages onto the console. This option should be
used by processes that enable notification of child
termination using SIGCHLD, since syslog() may
otherwise block waiting for a child whose exit status
has already been collected.

The facility argument encodes a default facility to be assigned to all messages that do
not have an explicit facility already encoded. The initial default facility is LOG_USER.

The openlog() and syslog() functions may allocate a file descriptor. It is not
necessary to call openlog() prior to calling syslog().

The closelog() function closes any open file descriptors allocated by previous calls
to openlog() or syslog().

The setlogmask() function sets the log priority mask for the current process to
maskpri and returns the previous mask. If the maskpri argument is 0, the current log
mask is not modified. Calls by the current process to syslog() with a priority not set
in maskpri are rejected. The mask for an individual priority pri is calculated by the
macro LOG_MASK(pri); the mask for all priorities up to and including toppri is given
by the macro LOG_UPT(toppri). The default log mask allows all priorities to be
logged.

Symbolic constants for use as values of the logopt, facility, priority, and maskpri
arguments are defined in the <syslog.h> header.

The setlogmask() function returns the previous log priority mask. The
closelog(), openlog() and syslog() functions return no value.

No errors are defined.

EXAMPLE 1 Example of LOG_ALERT message.

This call logs a message at priority LOG_ALERT:

syslog(LOG_ALERT, "who: internal error 23");

The FTP daemon ftpd would make this call to openlog() to indicate that all
messages it logs should have an identifying string of ftpd, should be treated by
syslogd(1M) as other messages from system daemons are, should include the
process ID of the process logging the message:

openlog("ftpd", LOG_PID, LOG_DAEMON);

syslog(3C)

RETURN VALUES

ERRORS

EXAMPLES

Basic Library Functions 525

EXAMPLE 1 Example of LOG_ALERT message. (Continued)

Then it would make the following call to setlogmask() to indicate that messages at
priorities from LOG_EMERG through LOG_ERR should be logged, but that no messages
at any other priority should be logged:

setlogmask(LOG_UPTO(LOG_ERR));

Then, to log a message at priority LOG_INFO, it would make the following call to
syslog:

syslog(LOG_INFO, "Connection from host %d", CallingHost);

A locally-written utility could use the following call to syslog() to log a message at
priority LOG_INFO to be treated by syslogd(1M) as other messages to the facility
LOG_LOCAL2 are:

syslog(LOG_INFO|LOG_LOCAL2, "error: %m");

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

at(1), crontab(1), logger(1), login(1), lpc(1B), lpr(1B), cron(1M), getty(1M),
in.ftpd(1M), su(1M), syslogd(1M), printf(3UCB), syslog.conf(4),
attributes(5)

syslog(3C)

ATTRIBUTES

SEE ALSO

526 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

system – issue a shell command

#include <stdlib.h>

int system(const char *string);

The system() function causes string to be given to the shell as input, as if string had
been typed as a command at a terminal. The invoker waits until the shell has
completed, then returns the exit status of the shell in the format specified by
waitpid(2).

If string is a null pointer, system() checks if the shell exists and is executable. If the
shell is available, system() returns a non-zero value; otherwise, it returns 0. If the
application is standard-conforming (see standards(5)), system() uses
/usr/xpg4/bin/sh (see ksh(1)); otherwise system() uses /usr/bin/sh (see
sh(1)).

The system() function executes vfork(2) to create a child process that in turn
invokes one of the exec family of functions (see exec(2)) on the shell to execute
string. If vfork() or the exec function fails, system() returns −1 and sets errno to
indicate the error.

The system() function fails if:

EAGAIN The system-imposed limit on the total number of processes under
execution by a single user would be exceeded.

EINTR The system() function was interrupted by a signal.

ENOMEM The new process requires more memory than is available.

The system() function manipulates the signal handlers for SIGINT, SIGQUIT, and
SIGCHLD. For this reason it is not safe to call system() in a multithreaded process.
Concurrent calls to system() will interfere destructively with the disposition of these
signals, even if they are not manipulated by other threads in the application. See
popen(3C) for a replacement for system() that is thread-safe.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

ksh(1), sh(1), exec(2), vfork(2), waitpid(2), popen(3C), attributes(5),
standards(5)

system(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

Basic Library Functions 527

tcdrain – wait for transmission of output

#include <termios.h>

int tcdrain(int fildes);

The tcdrain() function waits until all output written to the object referred to by
fildes is transmitted. The fildes argument is an open file descriptor associated with a
terminal.

Any attempts to use tcdrain() from a process which is a member of a background
process group on a fildes associated with its controlling terminal, will cause the process
group to be sent a SIGTTOU signal. If the calling process is blocking or ignoring
SIGTTOU signals, the process is allowed to perform the operation, and no signal is
sent.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set
to indicate the error.

The tcdrain() function will fail if:

EBADF The fildes argument is not a valid file descriptor.

EINTR A signal interrupted tcdrain().

ENOTTY The file associated with fildes is not a terminal.

The tcdrain() function may fail if:

EIO The process group of the writing process is orphaned, and the
writing process is not ignoring or blocking SIGTTOU.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe, and Async-Signal-Safe

tcflush(3C), attributes(5), termio(7I)

tcdrain(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

528 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

tcflow – suspend or restart the transmission or reception of data

#include <termios.h>

int tcflow(int fildes, int action);

The tcflow() function suspends transmission or reception of data on the object
referred to by fildes, depending on the value of action. The fildes argument is an open
file descriptor associated with a terminal.

� If action is TCOOFF, output is suspended.

� If action is TCOON, suspended output is restarted.

� If action is TCIOFF, the system transmits a STOP character, which is intended to
cause the terminal device to stop transmitting data to the system.

� If action is TCION, the system transmits a START character, which is intended to
cause the terminal device to start transmitting data to the system.

The default on the opening of a terminal file is that neither its input nor its output are
suspended.

Attempts to use tcflow() from a process which is a member of a background
process group on a fildes associated with its controlling terminal, will cause the process
group to be sent a SIGTTOU signal. If the calling process is blocking or ignoring
SIGTTOU signals, the process is allowed to perform the operation, and no signal is
sent.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set
to indicate the error.

The tcflow() function will fail if:

EBADF The fildes argument is not a valid file descriptor.

EINVAL The action argument is not a supported value.

ENOTTY The file associated with fildes is not a terminal.

The tcflow() function may fail if:

EIO The process group of the writing process is orphaned, and the
writing process is not ignoring or blocking SIGTTOU.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe, and Async-Signal-Safe

tcsendbreak(3C), attributes(5), termio(7I)

tcflow(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Basic Library Functions 529

tcflush – flush non-transmitted output data, non-read input data or both

#include <termios.h>

int tcflush(int fildes, int queue_selector);

Upon successful completion, tcflush() discards data written to the object referred
to by fildes (an open file descriptor associated with a terminal) but not transmitted, or
data received but not read, depending on the value of queue_selector:

� If queue_selector is TCIFLUSH it flushes data received but not read.

� If queue_selector is TCOFLUSH it flushes data written but not transmitted.

� If queue_selector is TCIOFLUSH it flushes both data received but not read and data
written but not transmitted.

Attempts to use tcflush() from a process which is a member of a background
process group on a fildes associated with its controlling terminal, will cause the process
group to be sent a SIGTTOU signal. If the calling process is blocking or ignoring
SIGTTOU signals, the process is allowed to perform the operation, and no signal is
sent.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set
to indicate the error.

The tcflush() function will fail if:

EBADF The fildes argument is not a valid file descriptor.

EINVAL The queue_selector argument is not a supported value.

ENOTTY The file associated with fildes is not a terminal.

The tcflush() function may fail if:

EIO The process group of the writing process is orphaned, and the
writing process is not ignoring or blocking SIGTTOU.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe, and Async-Signal-Safe

tcdrain(3C), attributes(5), termio(7I)

tcflush(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

530 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

tcgetattr – get the parameters associated with the terminal

#include <termios.h>

int tcgetattr(int fildes, struct termios *termios_p);

The tcgetattr() function gets the parameters associated with the terminal referred
to by fildes and stores them in the termios structure (see termio(7I)) referenced by
termios_p. The fildes argument is an open file descriptor associated with a terminal.

The termios_p argument is a pointer to a termios structure.

The tcgetattr() operation is allowed from any process.

If the terminal device supports different input and output baud rates, the baud rates
stored in the termios structure returned by tcgetattr() reflect the actual baud
rates, even if they are equal. If differing baud rates are not supported, the rate returned
as the output baud rate is the actual baud rate. If the terminal device does not support
split baud rates, the input baud rate stored in the termios structure will be 0.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set
to indicate the error.

The tcgetattr() function will fail if:

EBADF The fildes argument is not a valid file descriptor.

ENOTTY The file associated with fildes is not a terminal.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe, and Async-Signal-Safe

tcsetattr(3C), attributes(5), termio(7I)

tcgetattr(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Basic Library Functions 531

tcgetpgrp – get foreground process group ID

#include <sys/types.h>

#include <unistd.h>

pid_t tcgetpgrp(int fildes);

The tcgetpgrp() function will return the value of the process group ID of the
foreground process group associated with the terminal.

If there is no foreground process group, tcgetpgrp() returns a value greater than 1
that does not match the process group ID of any existing process group.

The tcgetpgrp() function is allowed from a process that is a member of a
background process group; however, the information may be subsequently changed
by a process that is a member of a foreground process group.

Upon successful completion, tcgetpgrp() returns the value of the process group ID
of the foreground process associated with the terminal. Otherwise, −1 is returned and
errno is set to indicate the error.

The tcgetpgrp() function will fail if:

EBADF The fildes argument is not a valid file descriptor.

ENOTTY The calling process does not have a controlling terminal, or the file
is not the controlling terminal.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe, and Async-Signal-Safe

setpgid(2), setsid(2), tcsetpgrp(3C), attributes(5), termio(7I)

tcgetpgrp(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

532 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

tcgetsid – get process group ID for session leader for controlling terminal

#include <termios.h>

pid_t tcgetsid(int fildes);

The tcgetsid() function obtains the process group ID of the session for which the
terminal specified by fildes is the controlling terminal.

Upon successful completion, tcgetsid() returns the process group ID associated
with the terminal. Otherwise, a value of (pid_t)−1 is returned and errno is set to
indicate the error.

The tcgetsid() function will fail if:

EACCES The fildes argument is not associated with a controlling terminal.

EBADF The fildes argument is not a valid file descriptor.

ENOTTY The file associated with fildes is not a terminal.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

attributes(5), termio(7I)

tcgetsid(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Basic Library Functions 533

tcsendbreak – send a ‘‘break’’ for a specific duration

#include <termios.h>

int tcsendbreak(int fildes, int duration);

The fildes argument is an open file descriptor associated with a terminal.

If the terminal is using asynchronous serial data transmission, tcsendbreak() will
cause transmission of a continuous stream of zero-valued bits for a specific duration. If
duration is 0, it will cause transmission of zero-valued bits for at least 0.25 seconds, and
not more than 0.5 seconds. If duration is not 0, it behaves in a way similar to
tcdrain(3C).

If the terminal is not using asynchronous serial data transmission, it sends data to
generate a break condition or returns without taking any action.

Attempts to use tcsendbreak() from a process which is a member of a background
process group on a fildes associated with its controlling terminal will cause the process
group to be sent a SIGTTOU signal. If the calling process is blocking or ignoring
SIGTTOU signals, the process is allowed to perform the operation, and no signal is
sent.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set
to indicate the error.

The tcsendbreak() function will fail if:

EBADF The fildes argument is not a valid file descriptor.

ENOTTY The file associated with fildes is not a terminal.

The tcsendbreak() function may fail if:

EIO The process group of the writing process is orphaned, and the
writing process is not ignoring or blocking SIGTTOU.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe, and Async-Signal-Safe

tcdrain(3C), attributes(5), termio(7I)

tcsendbreak(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

534 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

tcsetattr – set the parameters associated with the terminal

#include <termios.h>

int tcsetattr(int fildes, int optional_actions, const struct termios
*termios_p);

The tcsetattr() function sets the parameters associated with the terminal referred
to by the open file descriptor fildes (an open file descriptor associated with a terminal)
from the termios structure (see termio(7I)) referenced by termios_p as follows:

� If optional_actions is TCSANOW, the change will occur immediately.
� If optional_actions is TCSADRAIN, the change will occur after all output written to

fildes is transmitted. This function should be used when changing parameters that
affect output.

� If optional_actions is TCSAFLUSH, the change will occur after all output written to
fildes is transmitted, and all input so far received but not read will be discarded
before the change is made.

If the output baud rate stored in the termios structure pointed to by termios_p is the
zero baud rate, B0, the modem control lines will no longer be asserted. Normally, this
will disconnect the line.

If the input baud rate stored in the termios structure pointed to by termios_p is 0, the
input baud rate given to the hardware will be the same as the output baud rate stored
in the termios structure.

The tcsetattr() function will return successfully if it was able to perform any of
the requested actions, even if some of the requested actions could not be performed. It
will set all the attributes that implementation supports as requested and leave all the
attributes not supported by the implementation unchanged. If no part of the request
can be honoured, it will return −1 and set errno to EINVAL. If the input and output
baud rates differ and are a combination that is not supported, neither baud rate is
changed. A subsequent call to tcgetattr(3C) will return the actual state of the
terminal device (reflecting both the changes made and not made in the previous
tcsetattr() call). The tcsetattr() function will not change the values in the
termios structure whether or not it actually accepts them.

The effect of tcsetattr() is undefined if the value of the termios structure pointed
to by termios_p was not derived from the result of a call to tcgetattr(3C) on fildes; an
application should modify only fields and flags defined by this document between the
call to tcgetattr(3C) and tcsetattr(), leaving all other fields and flags
unmodified.

No actions defined by this document, other than a call to tcsetattr() or a close of
the last file descriptor in the system associated with this terminal device, will cause
any of the terminal attributes defined by this document to change.

tcsetattr(3C)

NAME

SYNOPSIS

DESCRIPTION

Basic Library Functions 535

Attempts to use tcsetattr() from a process which is a member of a background
process group on a fildes associated with its controlling terminal, will cause the process
group to be sent a SIGTTOU signal. If the calling process is blocking or ignoring
SIGTTOU signals, the process is allowed to perform the operation, and no signal is
sent.

If trying to change baud rates, applications should call tcsetattr() then call
tcgetattr(3C) in order to determine what baud rates were actually selected.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set
to indicate the error.

The tcsetattr() function will fail if:

EBADF The fildes argument is not a valid file descriptor.

EINTR A signal interrupted tcsettattr().

EINVAL The optional_actions argument is not a supported value, or an
attempt was made to change an attribute represented in the
termios structure to an unsupported value.

ENOTTY The file associated with fildes is not a terminal.

The tcsetattr() function may fail if:

EIO The process group of the writing process is orphaned, and the
writing process is not ignoring or blocking SIGTTOU.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe, and Async-Signal-Safe

cfgetispeed(3C), tcgetattr(3C), attributes(5), termio(7I)

tcsetattr(3C)

USAGE

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

536 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

tcsetpgrp – set foreground process group ID

#include <sys/types.h>

#include <unistd.h>

int tcsetpgrp(int fildes, pid_t pgid_id);

If the process has a controlling terminal, tcsetpgrp() will set the foreground
process group ID associated with the terminal to pgid_id. The file associated with fildes
must be the controlling terminal of the calling process and the controlling terminal
must be currently associated with the session of the calling process. The value of
pgid_id must match a process group ID of a process in the same session as the calling
process.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set
to indicate the error.

The tcsetpgrp() function will fail if:

EBADF The fildes argument is not a valid file descriptor.

EINVAL This implementation does not support the value in the pgid_id
argument.

ENOTTY The calling process does not have a controlling terminal, or the file
is not the controlling terminal, or the controlling terminal is no
longer associated with the session of the calling process.

EIO The process is not ignoring or holding SIGTTOU and is a member
of an orphaned process group.

EPERM The value of pgid_id does not match the process group ID of a
process in the same session as the calling process.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe, and Async-Signal-Safe

tcgetpgrp(3C), attributes(5), termio(7I)

tcsetpgrp(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Basic Library Functions 537

tell – return a file offset for a file descriptor

#include <unistd.h>

off_t tell(int fd);

The tell() function obtains the current value of the file-position indicator for the file
descriptor fd.

Upon successful completion, tell() returns the current value of the file-position
indicator for fd measured in bytes from the beginning of the file.

Otherwise, it returns −1 and sets errno to indicate the error.

The tell() function will fail if:

EBADF The file descriptor fd is not an open file descriptor.

EOVERFLOW The current file offset cannot be represented correctly in an object
of type off_t.

ESPIPE The file descriptor fd is associated with a pipe or FIFO.

The tell() function is equivalent to lseek(fd, 0, SEEK_CUR).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

lseek(2), attributes(5)

tell(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

538 man pages section 3: Basic Library Functions • Last Revised 28 Jan 1998

telldir – current location of a named directory stream

#include <dirent.h>

long int telldir(DIR *dirp);

The telldir() function obtains the current location associated with the directory
stream specified by dirp.

If the most recent operation on the directory stream was a seekdir(3C), the directory
position returned from the telldir() is the same as that supplied as a loc argument
for seekdir().

Upon successful completion, telldir() returns the current location of the specified
directory stream.

The telldir() function will fail if:

EOVERFLOW The current location of the directory cannot be stored in an object
of type long.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

opendir(3C), readdir(3C), seekdir(3C), attributes(5)

telldir(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Basic Library Functions 539

termios – general terminal interface

#include <termios.h>

int tcgetattr(int fildes, struct termios *termios_p);

int tcsetattr(int fildes, int optional_actions, const struct termios
*termios_p);

int tcsendbreak(int fildes, int duration);

int tcdrain(int fildes);

int tcflush(int fildes, int queue_selector);

int tcflow(int fildes, int action);

speed_t cfgetospeed(const struct termios *termios_p);

int cfsetospeed(struct termios *termios_p, speed_t speed);

speed_t cfgetispeed(const struct termios *termios_p);

int cfsetispeed(struct termios *termios_p, speed_t speed);

#include <sys/types.h>

#include <termios.h>

pid_t tcgetpgrp(int fildes);

int tcsetpgrp(int fildes, pid_t pgid);

pid_t tcgetsid(int fildes);

These functions describe a general terminal interface for controlling asynchronous
communications ports. A more detailed overview of the terminal interface can be
found in termio(7I), which also describes an ioctl(2) interface that provides the
same functionality. However, the function interface described by these functions is the
preferred user interface.

Each of these functions is now described on a separate manual page.

ioctl(2), cfgetispeed(3C), cfgetospeed(3C), cfsetispeed(3C),
cfsetospeed(3C), tcdrain(3C), tcflow(3C), tcflush(3C), tcgetattr(3C),
tcgetpgrp(3C), tcgetsid(3C), tcsendbreak(3C), tcsetattr(3C),
tcgetpgrp(3C), tcsendbreak(3C), termio(7I)

termios(3C)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

540 man pages section 3: Basic Library Functions • Last Revised 5 Apr 1996

times – get process times

/usr/ucb/cc [flag ...] file ...
#include <sys/param.h>
#include <sys/types.h>

#include <sys/times.h>

int times(tmsp);

register struct tms *tmsp;

The times() function returns time-accounting information for the current process
and for the terminated child processes of the current process. All times are reported in
clock ticks. The number of clock ticks per second is defined by the variable CLK_TCK,
found in the header <limits.h>.

A structure with the following members is returned by times():

time_t tms_utime; /* user time */
time_t tms_stime; /* system time */
time_t tms_cutime; /* user time, children */
time_t tms_cstime; /* system time, children */

The children’s times are the sum of the children’s process times and their children’s
times.

Upon successful completion, times() returns 0. Otherwise, it returns −1.

time(1), time(2), wait(2), getrusage(3C)

Use of these interfaces should be restricted to only applications written on BSD
platforms. Use of these interfaces with any of the system libraries or in multi-threaded
applications is unsupported.

The times() function has been superseded by getrusage(3C).

times(3UCB)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

SEE ALSO

NOTES

Basic Library Functions 541

tmpfile – create a temporary file

#include <stdio.h>

FILE *tmpfile(void);

The tmpfile() function creates a temporary file and opens a corresponding stream.
The file will automatically be deleted when all references to the file are closed. The file
is opened as in fopen(3C) for update (w+).

The largest value that can be represented correctly in an object of type off_t will be
established as the offset maximum in the open file description.

Upon successful completion, tmpfile() returns a pointer to the stream of the file
that is created. Otherwise, it returns a null pointer and sets errno to indicate the
error.

The tmpfile() function will fail if:

EINTR A signal was caught during the execution of tmpfile().

EMFILE There are OPEN_MAX file descriptors currently open in the calling
process.

ENFILE The maximum allowable number of files is currently open in the
system.

ENOSPC The directory or file system which would contain the new file
cannot be expanded.

The tmpfile() function may fail if:

EMFILE There are FOPEN_MAX streams currently open in the calling
process.

ENOMEM Insufficient storage space is available.

The stream refers to a file which is unlinked. If the process is killed in the period
between file creation and unlinking, a permanent file may be left behind.

The tmpfile() function has a transitional interface for 64-bit file offsets. See lf64(5).

unlink(2), fopen(3C), tmpnam(3C), lf64(5)

tmpfile(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

SEE ALSO

542 man pages section 3: Basic Library Functions • Last Revised 28 Jan 1998

tmpnam, tmpnam_r, tempnam – create a name for a temporary file

#include <stdio.h>

char *tmpnam(char *s);

char *tmpnam_r(char *s);

char *tempnam(const char *dir, const char *pfx);

These functions generate file names that can be used safely for a temporary file.

The tmpnam() function always generates a file name using the path prefix defined as
P_tmpdir in the <stdio.h> header. On Solaris systems, the default value for
P_tmpdir is /var/tmp. If s is NULL, tmpnam() leaves its result in an internal static
area and returns a pointer to that area. The next call to tmpnam() will destroy the
contents of the area. If s is not NULL, it is assumed to be the address of an array of at
least L_tmpnam bytes, where L_tmpnam is a constant defined in <stdio.h>;
tmpnam() places its result in that array and returns s.

The tmpnam_r() function has the same functionality as tmpnam() except that if s is a
null pointer, the function returns NULL.

The tempnam() function allows the user to control the choice of a directory. The
argument dir points to the name of the directory in which the file is to be created. If dir
is NULL or points to a string that is not a name for an appropriate directory, the path
prefix defined as P_tmpdir in the <stdio.h> header is used. If that directory is not
accessible, /tmp is used. If, however, the TMPDIR environment variable is set in the
user’s environment, its value is used as the temporary-file directory.

Many applications prefer that temporary files have certain initial character sequences
in their names. The pfx argument may be NULL or point to a string of up to five
characters to be used as the initial characters of the temporary-file name.

Upon successful completion, tempnam() uses malloc(3C) to allocate space for a
string, puts the generated pathname in that space, and returns a pointer to it. The
pointer is suitable for use in a subsequent call to free(). If tempnam() cannot return
the expected result for any reason (for example, malloc() failed), or if none of the
above-mentioned attempts to find an appropriate directory was successful, a null
pointer is returned and errno is set to indicate the error.

The tempnam() function will fail if:

ENOMEM Insufficient storage space is available.

These functions generate a different file name each time they are called.

Files created using these functions and either fopen(3C) or creat(2) are temporary
only in the sense that they reside in a directory intended for temporary use, and their
names are unique. It is the user’s responsibility to remove the file when its use is
ended.

tmpnam(3C)

NAME

SYNOPSIS

DESCRIPTION

tmpnam()

tmpnam_r()

tempnam()

ERRORS

USAGE

Basic Library Functions 543

If called more than TMP_MAX (defined in <stdio.h>) times in a single process, these
functions start recycling previously used names.

Between the time a file name is created and the file is opened, it is possible for some
other process to create a file with the same name. This can never happen if that other
process is using these functions or mktemp(3C) and the file names are chosen to
render duplication by other means unlikely.

The tmpnam() function is unsafe in multithreaded applications. The tempnam()
function is safe in multithreaded applications and should be used instead.

When compiling multithreaded applications, the _REENTRANT flag must be defined
on the compile line. This flag should be used only with multithreaded applications.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See USAGE above.

creat(2), unlink(2), fopen(3C), free(3C), malloc(3C), mktemp(3C), tmpfile(3C),
attributes(5)

tmpnam(3C)

ATTRIBUTES

SEE ALSO

544 man pages section 3: Basic Library Functions • Last Revised 23 Aug 2001

toascii – translate integer to a 7-bit ASCII character

#include <ctype.h>

int toascii(int c);

The toascii() function converts its argument into a 7-bit ASCII character.

The toascii() function returns the value (c & 0x7f).

No errors are returned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

CSI Enabled

isascii(3C), attributes(5)

toascii(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Basic Library Functions 545

_tolower – transliterate upper-case characters to lower-case

#include <ctype.h>

int _tolower(int c);

The _tolower() macro is equivalent to tolower(3C) except that the argument c
must be an upper-case letter.

On successful completion, _tolower() returns the lower-case letter corresponding to
the argument passed.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

CSI Enabled

isupper(3C), tolower(3C), attributes(5)

_tolower(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

546 man pages section 3: Basic Library Functions • Last Revised 20 Dec 1996

tolower – transliterate upper-case characters to lower-case

#include <ctype.h>

int tolower(int c);

The tolower() function has as a domain a type int, the value of which is
representable as an unsigned char or the value of EOF. If the argument has any
other value, the argument is returned unchanged. If the argument of tolower()
represents an upper-case letter, and there exists a corresponding lower-case letter (as
defined by character type information in the program locale category LC_CTYPE),
the result is the corresponding lower-case letter. All other arguments in the domain are
returned unchanged.

On successful completion, tolower() returns the lower-case letter corresponding to
the argument passed. Otherwise, it returns the argument unchanged.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

CSI Enabled

_tolower(3C), setlocale(3C), attributes(5)

tolower(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Basic Library Functions 547

_toupper – transliterate lower-case characters to upper-case

#include <ctype.h>

int _toupper(int c);

The _toupper() macro is equivalent to toupper(3C) except that the argument c
must be a lower-case letter.

On successful completion, _toupper() returns the upper-case letter corresponding to
the argument passed.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

CSI Enabled

islower(3C), toupper(3C), attributes(5)

_toupper(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

548 man pages section 3: Basic Library Functions • Last Revised 20 Dec 1996

toupper – transliterate lower-case characters to upper-case

#include <ctype.h>

int toupper(int c);

The toupper() function has as a domain a type int, the value of which is
representable as an unsigned char or the value of EOF. If the argument has any
other value, the argument is returned unchanged. If the argument of toupper()
represents a lower-case letter, and there exists a corresponding upper-case letter (as
defined by character type information in the program locale category LC_CTYPE), the
result is the corresponding upper-case letter. All other arguments in the domain are
returned unchanged.

On successful completion, toupper() returns the upper-case letter corresponding to
the argument passed.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

CSI Enabled

_toupper(3C), setlocale(3C), attributes(5)

toupper(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Basic Library Functions 549

towctrans – wide-character mapping

#include <wctype.h>

wint_t towctrans(wint_t wc, wctrans_t desc);

The towctrans() function maps the wide character wc using the mapping described
by desc. The current setting of the LC_CTYPE category shall be the same as during the
call to wctrans() that returned the value desc.

The function call towctrans(wc, wctrans("tolower")) behaves the same as
towlower(wc).

The function call towctrans(wc, wctrans("toupper")) behaves the same as
towupper(wc).

The towctrans() function returns the mapped value of wc, using the mapping
described by desc; otherwise, it returns wc unchanged.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

CSI Enabled

setlocale(3C), wctrans(3C), attributes(5)

towctrans(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

550 man pages section 3: Basic Library Functions • Last Revised 20 Dec 1996

towlower – transliterate upper-case wide-character code to lower-case

#include <wchar.h>

wint_t towlower(wint_t wc);

The towlower() function has as a domain a type wint_t, the value of which must
be a character representable as a wchar_t, and must be a wide-character code
corresponding to a valid character in the current locale or the value of WEOF. If the
argument has any other value, the argument is returned unchanged. If the argument
of towlower() represents an upper-case wide-character code, and there exists a
corresponding lower-case wide-character code (as defined by character type
information in the program locale category LC_CTYPE), the result is the
corresponding lower-case wide-character code. All other arguments in the domain are
returned unchanged.

On successful completion, towlower() returns the lower-case letter corresponding to
the argument passed. Otherwise, it returns the argument unchanged.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

CSI Enabled

iswalpha(3C), setlocale(3C), towupper(3C), attributes(5)

towlower(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Basic Library Functions 551

towupper – transliterate lower-case wide-character code to upper-case

#include <wchar.h>

wint_t towupper(wint_t wc);

The towupper() function has as a domain a type wint_t, the value of which must
be a character representable as a wchar_t, and must be a wide-character code
corresponding to a valid character in the current locale or the value of WEOF. If the
argument has any other value, the argument is returned unchanged. If the argument
of towupper() represents a lower-case wide-character code (as defined by character
type information in the program locale category LC_CTYPE), the result is the
corresponding upper-case wide-character code. All other arguments in the domain are
returned unchanged.

Upon successful completion, towupper() returns the upper-case letter corresponding
to the argument passed. Otherwise, it returns the argument unchanged.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

CSI Enabled

iswalpha(3C), setlocale(3C), towlower(3C), attributes(5)

towupper(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

552 man pages section 3: Basic Library Functions • Last Revised 20 Dec 1996

truncate, ftruncate – set a file to a specified length

#include <unistd.h>

int truncate(const char *path, off_t length);

int ftruncate(int fildes, off_t length);

The truncate() function causes the regular file named by path to have a size of
length bytes.

The ftruncate() function causes the regular file referenced by fildes to have a size of
length bytes.

The effect of ftruncate() and truncate() on other types of files is unspecified. If
the file previously was larger than length, the extra data is lost. If it was previously
shorter than length, bytes between the old and new lengths are read as zeroes. With
ftruncate(), the file must be open for writing; for truncate(), the process must
have write permission for the file.

If the request would cause the file size to exceed the soft file size limit for the process,
the request will fail and the implementation will generate the SIGXFSZ signal for the
process.

These functions do not modify the file offset for any open file descriptions associated
with the file. On successful completion, if the file size is changed, these functions will
mark for update the st_ctime and st_mtime fields of the file, and if the file is a
regular file, the S_ISUID and S_ISGID bits of the file mode may be cleared.

Upon successful completion, ftruncate() and truncate() return 0. Otherwise, −1
is returned and errno is set to indicate the error.

The ftruncate() and truncate() functions will fail if:

EINTR A signal was caught during execution.

EINVAL The length argument was less than 0.

EFBIG or EINVAL The length argument was greater than the maximum
file size.

EIO An I/O error occurred while reading from or writing to
a file system.

The truncate() function will fail if:

EACCES A component of the path prefix denies search
permission, or write permission is denied on the file.

EFAULT The path argument points outside the process’ allocated
address space.

EINVAL The path argument is not an ordinary file.

truncate(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Basic Library Functions 553

EISDIR The named file is a directory.

ELOOP Too many symbolic links were encountered in
resolving path.

EMFILE The maximum number of file descriptors available to
the process has been reached.

ENAMETOOLONG The length of the specified pathname exceeds
PATH_MAX bytes, or the length of a component of the
pathname exceeds NAME_MAX bytes.

ENOENT A component of path does not name an existing file or
path is an empty string.

ENFILE Additional space could not be allocated for the system
file table.

ENOTDIR A component of the path prefix of path is not a
directory.

ENOLINK The path argument points to a remote machine and the
link to that machine is no longer active.

EROFS The named file resides on a read-only file system.

The ftruncate() function will fail if:

EAGAIN The file exists, mandatory file/record locking is set,
and there are outstanding record locks on the file (see
chmod(2)).

EBADF or EINVAL The fildes argument is not a file descriptor open for
writing.

EFBIG The file is a regular file and length is greater than the
offset maximum established in the open file description
associated with fildes.

EINVAL The fildes argument references a file that was opened
without write permission.

EINVAL The fildes argument does not correspond to an ordinary
file.

ENOLINK The fildes argument points to a remote machine and the
link to that machine is no longer active.

The truncate() function may fail if:

ENAMETOOLONG Pathname resolution of a symbolic link produced an
intermediate result whose

The truncate() and ftruncate() functions have transitional interfaces for 64-bit
file offsets. See lf64(5).

truncate(3C)

USAGE

554 man pages section 3: Basic Library Functions • Last Revised 28 Jan 1998

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

chmod(2), fcntl(2), open(2), attributes(5), lf64(5)

truncate(3C)

ATTRIBUTES

SEE ALSO

Basic Library Functions 555

tsearch, tfind, tdelete, twalk – manage binary search trees

#include <search.h>

void *tsearch(const void *key, void **rootp, int (*compar)(const void
*, const void *));

void *tfind(const void *key, void * const *rootp, int (*compar)(const
void *, const void *));

void *tdelete(const void *key, void **rootp, int (*compar)(const void
*, const void *));

void twalk(const void *root, void(*action) (void *, VISIT, int));

The tsearch(), tfind(), tdelete(), and twalk() functions are routines for
manipulating binary search trees. They are generalized from Knuth (6.2.2) Algorithms T
and D. All comparisons are done with a user-supplied routine. This routine is called
with two arguments, the pointers to the elements being compared. It returns an
integer less than, equal to, or greater than 0, according to whether the first argument is
to be considered less than, equal to or greater than the second argument. The
comparison function need not compare every byte, so arbitrary data may be contained
in the elements in addition to the values being compared.

The tsearch() function is used to build and access the tree. The key argument is a
pointer to a datum to be accessed or stored. If there is a datum in the tree equal to *key
(the value pointed to by key), a pointer to this found datum is returned. Otherwise,
*key is inserted, and a pointer to it returned. Only pointers are copied, so the calling
routine must store the data. The rootp argument points to a variable that points to the
root of the tree. A null value for the variable pointed to by rootp denotes an empty tree;
in this case, the variable will be set to point to the datum which will be at the root of
the new tree.

Like tsearch(), tfind() will search for a datum in the tree, returning a pointer to
it if found. However, if it is not found, tfind() will return a null pointer. The
arguments for tfind() are the same as for tsearch().

The tdelete() function deletes a node from a binary search tree. The arguments are
the same as for tsearch(). The variable pointed to by rootp will be changed if the
deleted node was the root of the tree. tdelete() returns a pointer to the parent of
the deleted node, or a null pointer if the node is not found.

The twalk() function traverses a binary search tree. The root argument is the root of
the tree to be traversed. (Any node in a tree may be used as the root for a walk below
that node.) action is the name of a routine to be invoked at each node. This routine is,
in turn, called with three arguments. The first argument is the address of the node
being visited. The second argument is a value from an enumeration data type

typedef enum { preorder, postorder, endorder, leaf } VISIT;(defined in <search.h>),
depending on whether this is the first, second or third time that the node has been
visited (during a depth-first, left-to-right traversal of the tree), or whether the node is a

tsearch(3C)

NAME

SYNOPSIS

DESCRIPTION

556 man pages section 3: Basic Library Functions • Last Revised 5 Sep 2000

leaf. The third argument is the level of the node in the tree, with the root being level
zero.

The pointers to the key and the root of the tree should be of type pointer-to-element,
and cast to type pointer-to-character. Similarly, although declared as type
pointer-to-character, the value returned should be cast into type pointer-to-element.

If the node is found, both tsearch() and tfind() return a pointer to it. If not,
tfind() returns a null pointer, and tsearch() returns a pointer to the inserted
item.

A null pointer is returned by tsearch() if there is not enough space available to
create a new node.

A null pointer is returned by tsearch(), tfind() and tdelete() if rootp is a null
pointer on entry.

The tdelete() function returns a pointer to the parent of the deleted node, or a null
pointer if the node is not found.

The twalk() function returns no value.

No errors are defined.

The root argument to twalk() is one level of indirection less than the rootp arguments
to tsearch() and tdelete().

There are two nomenclatures used to refer to the order in which tree nodes are visited.
tsearch() uses preorder, postorder and endorder to refer respectively to visiting a
node before any of its children, after its left child and before its right, and after both its
children. The alternate nomenclature uses preorder, inorder and postorder to refer to
the same visits, which could result in some confusion over the meaning of postorder.

If the calling function alters the pointer to the root, results are unpredictable.

EXAMPLE 1 A sample program of using tsearch function.

The following code reads in strings and stores structures containing a pointer to each
string and a count of its length. It then walks the tree, printing out the stored strings
and their lengths in alphabetical order.

#include <string.h>
#include <stdio.h>
#include <search.h>
struct node {

char *string;
int length;

};
char string_space[10000];
struct node nodes[500];
void *root = NULL;

tsearch(3C)

RETURN VALUES

ERRORS

USAGE

EXAMPLES

Basic Library Functions 557

EXAMPLE 1 A sample program of using tsearch function. (Continued)

int node_compare(const void *node1, const void *node2) {
return strcmp(((const struct node *) node1)->string,

((const struct node *) node2)->string);
}

void print_node(const void *node, VISIT order, int level) {
if (order == preorder || order == leaf) {

printf("length=%d, string=%20s\n",
(*(struct node **)node)->length,
(*(struct node **)node)->string);

}
}

main()
{

char *strptr = string_space;
struct node *nodeptr = nodes;
int i = 0;

while (gets(strptr) != NULL && i++ < 500) {
nodeptr->string = strptr;
nodeptr->length = strlen(strptr);
(void) tsearch((void *)nodeptr,

&root, node_compare);
strptr += nodeptr->length + 1;
nodeptr++;

}
twalk(root, print_node);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

bsearch(3C), hsearch(3C), lsearch(3C), attributes(5)

tsearch(3C)

ATTRIBUTES

SEE ALSO

558 man pages section 3: Basic Library Functions • Last Revised 5 Sep 2000

ttyname, ttyname_r – find pathname of a terminal

#include <unistd.h>

char *ttyname(int fildes);

char *ttyname_r(int fildes, char *name, int namelen);

cc [flag ...] file ... -D_POSIX_PTHREAD_SEMANTICS [library ...]

int ttyname_r(int fildes, char *name, size_t namesize);

The ttyname() function returns a pointer to a string containing the null-terminated
path name of the terminal device associated with file descriptor fildes. The return value
may point to static data whose content is overwritten by each call.

The ttyname_r() function has the same functionality as ttyname() except that the
caller must supply a buffer name with length namelen to store the result; this buffer
must be at least _POSIX_PATH_MAX in size (defined in <limits.h>). The POSIX
version (see standards(5)) of ttyname_r() takes a namesize parameter of type
size_t.

Upon successful completion, ttyname() and ttyname_r() return a pointer to a
string. Otherwise, a null pointer is returned and errno is set to indicate the error.

The POSIX ttyname_r() returns zero if successful, or the error number upon failure.

The ttyname_r() function will fail if:

ERANGE The size of the buffer is smaller than the result to be returned.

The ttyname() function may fail if:

EBADF The fildes argument is not a valid file descriptor.

ENOTTY The fildes argument does not refer to a terminal device.

/dev/* device file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See NOTES below.

Intro(3), gettext(3C), setlocale(3C), attributes(5), standards(5)

When compiling multithreaded programs, see Intro(3), Notes On Multithreaded
Applications.

If the application is linked with -lintl, then messages printed from this function are
in the native language specified by the LC_MESSAGES locale category; see
setlocale(3C).

ttyname(3C)

NAME

SYNOPSIS

POSIX

DESCRIPTION

RETURN VALUES

ERRORS

FILES

ATTRIBUTES

SEE ALSO

NOTES

Basic Library Functions 559

The return value points to static data whose content is overwritten by each call.

The ttyname() is Unsafe in multithreaded applications. The ttyname_r() function
is MT-Safe, and should be used instead.

Solaris 2.4 and earlier releases provided definitions of the ttyname_r() interface as
specified in POSIX.1c Draft 6. The final POSIX.1c standard changed the interface as
described above. Support for the Draft 6 interface is provided for compatibility only
and may not be supported in future releases. New applications and libraries should
use the POSIX standard interface.

ttyname(3C)

560 man pages section 3: Basic Library Functions • Last Revised 20 Mar 1997

ttyslot – find the slot of the current user in the user accounting database

#include <stdlib.h>

int ttyslot(void);

The ttyslot() function returns the index of the current user’s entry in the user
accounting database, /var/adm/utmpx. The current user’s entry is an entry for
which the utline member matches the name of a terminal device associated with any
of the process’s file descriptors 0, 1 or 2. The index is an ordinal number representing
the record number in the database of the current user’s entry. The first entry in the
database is represented by the return value 0.

Upon successful completion, ttyslot() returns the index of the current user’s entry
in the user accounting database. If an error was encountered while searching for the
terminal name or if none of the above file descriptors are associated with a terminal
device, −1 is returned.

/var/adm/utmpx user access and accounting information

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

getutent(3C), ttyname(3C), utmpx(4), attributes(5)

ttyslot(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

FILES

ATTRIBUTES

SEE ALSO

Basic Library Functions 561

ualarm – schedule signal after interval in microseconds

#include <unistd.h>

useconds_t ualarm(useconds_t useconds, useconds_t interval);

The ualarm() function causes the SIGALRM signal to be generated for the calling
process after the number of real-time microseconds specified by the useconds argument
has elapsed. When the interval argument is non-zero, repeated timeout notification
occurs with a period in microseconds specified by the interval argument. If the
notification signal, SIGALRM, is not caught or ignored, the calling process is
terminated.

Because of scheduling delays, resumption of execution when the signal is caught may
be delayed an arbitrary amount of time.

Interactions between ualarm() and either alarm(2) or sleep(3C) are unspecified.

The ualarm() function returns the number of microseconds remaining from the
previous ualarm() call. If no timeouts are pending or if ualarm() has not
previously been called, ualarm() returns 0.

No errors are defined.

The ualarm() function is a simplified interface to setitimer(2), and uses the
ITIMER_REAL interval timer.

alarm(2), setitimer(2), sighold(3C), signal(3C), sleep(3C), usleep(3C)

ualarm(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

SEE ALSO

562 man pages section 3: Basic Library Functions • Last Revised 20 Mar 1996

ungetc – push byte back into input stream

#include <stdio.h>

int ungetc(int c, FILE *stream);

The ungetc() function pushes the byte specified by c (converted to an unsigned
char) back onto the input stream pointed to by stream. The pushed-back bytes will be
returned by subsequent reads on that stream in the reverse order of their pushing. A
successful intervening call (with the stream pointed to by stream) to a file-positioning
function (fseek(3C), fsetpos(3C) or rewind(3C)) discards any pushed-back bytes
for the stream. The external storage corresponding to the stream is unchanged.

Four bytes of push-back are guaranteed. If ungetc() is called too many times on the
same stream without an intervening read or file-positioning operation on that stream,
the operation may fail.

If the value of c equals that of the macro EOF, the operation fails and the input stream
is unchanged.

A successful call to ungetc() clears the end-of-file indicator for the stream. The value
of the file-position indicator for the stream after reading or discarding all pushed-back
bytes will be the same as it was before the bytes were pushed back. The file-position
indicator is decremented by each successful call to ungetc(); if its value was 0 before
a call, its value is indeterminate after the call.

Upon successful completion, ungetc() returns the byte pushed back after
conversion. Otherwise it returns EOF.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

read(2), intro(3), fseek(3C), fsetpos(3C), getc(3C), setbuf(3C), stdio(3C),
attributes(5)

ungetc(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Basic Library Functions 563

ungetwc – push wide-character code back into input stream

#include <stdio.h>

#include <wchar.h>

wint_t ungetwc(wint_t wc, FILE *stream);

The ungetwc() function pushes the character corresponding to the wide character
code specified by wc back onto the input stream pointed to by stream. The
pushed-back characters will be returned by subsequent reads on that stream in the
reverse order of their pushing. A successful intervening call (with the stream pointed
to by stream) to a file-positioning function (fseek(3C), fsetpos(3C) or rewind(3C))
discards any pushed-back characters for the stream. The external storage
corresponding to the stream is unchanged.

One character of push-back is guaranteed. If ungetwc() is called too many times on
the same stream without an intervening read or file-positioning operation on that
stream, the operation may fail.

If the value of wc equals that of the macro WEOF, the operation fails and the input
stream is unchanged.

A successful call to ungetwc() clears the end-of-file indicator for the stream. The
value of the file-position indicator for the stream after reading or discarding all
pushed-back characters will be the same as it was before the characters were pushed
back. The file-position indicator is decremented (by one or more) by each successful
call to ungetwc(); if its value was 0 before a call, its value is indeterminate after the
call.

Upon successful completion, ungetwc() returns the wide-character code
corresponding to the pushed-back character. Otherwise it returns WEOF.

The ungetwc() function may fail if:

EILSEQ An invalid character sequence is detected, or a wide-character
code does not correspond to a valid character.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

read(2), fseek(3C), fsetpos(3C), rewind(3C), setbuf(3C), attributes(5)

ungetwc(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

564 man pages section 3: Basic Library Functions • Last Revised 22 Apr 1997

unlockpt – unlock a pseudo-terminal master/slave pair

#include <stdlib.h>

int unlockpt(int fildes);

The unlockpt() function unlocks the slave pseudo-terminal device associated with
the master to which fildes refers.

Portable applications must call unlockpt() before opening the slave side of a
pseudo-terminal device.

Upon successful completion, unlockpt() returns 0. Otherwise, it returns −1 and sets
errno to indicate the error.

The unlockpt() function may fail if:

EBADF The fildes argument is not a file descriptor open for writing.

EINVAL The fildes argument is not associated with a master
pseudo-terminal device.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

open(2), grantpt(3C), ptsname(3C), attributes(5)

STREAMS Programming Guide

unlockpt(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Basic Library Functions 565

usleep – suspend execution for interval in microseconds

#include <unistd.h>

int usleep(useconds_t useconds);

The usleep() function suspends the caller from execution for the number of
microseconds specified by the useconds argument. (A microsecond is .000001 seconds.)
Because of other activity, or because of the time spent in processing the call, the actual
suspension time may be longer than the amount of time specified.

If the value of useconds is 0, then the call has no effect.

In a single-threaded program (one not linked with -lthread or -lpthread), the
usleep() function uses the process’s realtime interval timer to indicate to the system
when the process should be woken up.

There is one real-time interval timer for each process. The usleep() function will not
interfere with a previous setting of this timer. If the process has set this timer prior to
calling usleep(), and if the time specified by useconds equals or exceeds the interval
timer’s prior setting, the caller will be woken up shortly before the timer was set to
expire.

Interactions between usleep() and either alarm(2) or sleep(3C) are unspecified.

In a multithreaded program (one linked with -lthread or -lpthread), usleep()
is implemented by a call to nanosleep(3RT) and does not modify the state of the
alarm signal or the realtime interval timer. There is no interaction between this version
of usleep() and either alarm(2) or sleep(3C).

On completion, usleep() returns 0. There are no error retruns.

No errors are returned.

The usleep() function is included for its historical usage. The nanosleep(3RT)
function is preferred over this function.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

alarm(2), setitimer(2), sigaction(2), sigprocmask(2), nanosleep(3RT),
sleep(3C), ualarm(3C), attributes(5)

In a multithreaded program, only the invoking thread is suspended from execution.

usleep(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

NOTES

566 man pages section 3: Basic Library Functions • Last Revised 23 Jul 2001

vfwprintf, vwprintf, vswprintf – wide-character formatted output of a stdarg
argument list

#include <stdarg.h>
#include <stdio.h>

#include <wchar.h>

int vwprintf(const wchar_t *format, va_list arg);

int vfwprintf(FILE *stream, const wchar_t *format, va_list arg);

int vswprintf(wchar_t *s, size_t n, const wchar_t *format, va_list
arg);

The vwprintf(), vfwprintf(), and vswprintf() functions are the same as
wprintf(), fwprintf(), and swprintf() respectively, except that instead of
being called with a variable number of arguments, they are called with an argument
list as defined by <stdarg.h>. See stdarg(3HEAD).

These functions do not invoke the va_end() macro. However, as these functions do
invoke the va_arg() macro, the value of ap after the return is indeterminate.

Refer to fwprintf(3C).

Refer to fwprintf(3C).

Applications using these functions should call va_end(ap) afterwards to clean up.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

fwprintf(3C), setlocale(3C), attributes(5), stdarg(3HEAD)

The vwprintf(), vfwprintf(), and vswprintf() functions can be used safely in
multithreaded applications, as long as setlocale(3C) is not being called to change
the locale.

vfwprintf(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

NOTES

Basic Library Functions 567

vlfmt – display error message in standard format and pass to logging and monitoring
services

#include <pfmt.h>

#include <stdarg.h>

int vlfmt(FILE *stream, long flag, const char *format, va_list ap);

The vlfmt() function is identical to lfmt(3C), except that it is called with an
argument list as defined by <stdarg.h>.

The <stdarg.h> header defines the type va_list and a set of macros for advancing
through a list of arguments whose number and types may vary. The ap argument is of
type va_list. This argument is used with the <stdarg.h> macros va_start(),
va_arg(), and va_end(). See stdarg(3HEAD). The example in the EXAMPLES
section below demonstrates their use with vlfmt().

Upon successful completion, vlfmt() returns the number of bytes transmitted.
Otherwise, −1 is returned if there was a write error to stream, or −2 is returned if
unable to log and/or display at console.

EXAMPLE 1 Use of vlfmt() to write an errlog()routine.

The following example demonstrates how vlfmt() could be used to write an
errlog() routine. The va_alist() macro is used as the parameter list in a function
definition. The va_start(ap, . . .) call, where ap is of type va_list, must be invoked
before any attempt to traverse and access unnamed arguments. Calls to va_arg(ap,
atype) traverse the argument list. Each execution of va_arg() expands to an
expression with the value and type of the next argument in the list ap, which is the
same object initialized by va_start(). The atype argument is the type that the
returned argument is expected to be. The va_end(ap) macro must be invoked when
all desired arguments have been accessed. The argument list in ap can be traversed
again if va_start() is called again after va_end().) In the example below,
va_arg() is executed first to retrieve the format string passed to errlog(). The
remaining errlog() arguments (arg1, arg2, ...) are passed to vlfmt() in the
argument ap.

#include <pfmt.h>
#include <stdarg.h>
/*
* errlog should be called like
* errlog(log_info, format, arg1, ...);
*/
void errlog(long log_info, ...)
{

va_list ap;
char *format;
va_start(ap,);
format = va_arg(ap, char *);
(void) vlfmt(stderr, log_info|MM_ERROR, format, ap);
va_end(ap);
(void) abort();

}

vlfmt(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

EXAMPLES

568 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

EXAMPLE 1 Use of vlfmt() to write an errlog()routine. (Continued)

Since vlfmt() uses gettxt(3C), it is recommended that vlfmt() not be used.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

gettxt(3C), lfmt(3C), attributes(5), stdarg(3HEAD)

vlfmt(3C)

USAGE

ATTRIBUTES

SEE ALSO

Basic Library Functions 569

vpfmt – display error message in standard format and pass to logging and monitoring
services

#include <pfmt.h>

#include <stdarg.h>

int vpfmt(FILE *stream, long flag, const char *format, va_list ap);

The vpfmt() function is identical to pfmt(3C), except that it is called with an
argument list as defined by <stdarg.h>.

The <stdarg.h> header defines the type va_list and a set of macros for advancing
through a list of arguments whose number and types may vary. The ap argument is of
type va_list. This argument is used with the <stdarg.h> macros va_start(),
va_arg(), and va_end(). See stdarg(3HEAD). The example in the EXAMPLES
section below demonstrates their use with vpfmt().

Upon successful completion, vpfmt() returns the number of bytes transmitted.
Otherwise, −1 is returned if there was a write error to stream.

EXAMPLE 1 Use of vpfmt() to write an error routine.

The following example demonstrates how vpfmt() could be used to write an
error() routine. The va_alist() macro is used as the parameter list in a function
definition. The va_start(ap, . . .) call, where ap is of type va_list, must be invoked
before any attempt to traverse and access unnamed arguments. Calls to va_arg(ap,
atype) traverse the argument list. Each execution of va_arg() expands to an
expression with the value and type of the next argument in the list ap, which is the
same object initialized by va_start(). The atype argument is the type that the
returned argument is expected to be. The va_end(ap) macro must be invoked when
all desired arguments have been accessed. The argument list in ap can be traversed
again if va_start() is called again after va_end(). In the example below,
va_arg() is executed first to retrieve the format string passed to error(). The
remaining error() arguments (arg1, arg2, ...) are passed to vpfmt() in the argument
ap.

#include <pfmt.h>
#include <stdarg.h>
/*
* error should be called like
* error(format, arg1, ...);
*/
void error(...)
{

va_list ap;
char *format;
va_start(ap,);
format = va_arg(ap, char *);
(void) vpfmt(stderr, MM_ERROR, format, ap);
va_end(ap);
(void) abort();

}

vpfmt(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

EXAMPLES

570 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

EXAMPLE 1 Use of vpfmt() to write an error routine. (Continued)

Since vpfmt() uses gettxt(3C), it is recommended that vpfmt() not be used.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

gettxt(3C), pfmt(3C), attributes(5), stdarg(3HEAD)

vpfmt(3C)

USAGE

ATTRIBUTES

SEE ALSO

Basic Library Functions 571

vprintf, vfprintf, vsprintf, vsnprintf – print formatted output of a variable argument
list

#include <stdio.h>

#include <stdarg.h>

int vprintf(const char *format, va_list ap);

int vfprintf(FILE *stream, const char *format, va_list ap);

int vsprintf(char *s, const char *format, va_list ap);

int vsnprintf(char *s, size_t n, const char *format, va_list ap);

The vprintf(), vfprintf(), vsprintf() and vsnprintf() functions are the
same as printf(), fprintf(), sprintf(), and snprintf(), respectively, except
that instead of being called with a variable number of arguments, they are called with
an argument list as defined in the <stdarg.h> header. See printf(3C) and
stdarg(3HEAD).

The <stdarg.h> header defines the type va_list and a set of macros for advancing
through a list of arguments whose number and types may vary. The argument ap to
the vprint family of functions is of type va_list. This argument is used with the
<stdarg.h> header file macros va_start(), va_arg(), and va_end() (see
stdarg(3HEAD)). The EXAMPLES section below demonstrates the use of
va_start() and va_end() with vprintf().

The macro va_alist() is used as the parameter list in a function definition, as in the
function called error() in the example below. The macro va_start(ap, parmN),
where ap is of type va_list and parmN is the rightmost parameter (just before . . .),
must be called before any attempt to traverse and access unnamed arguments is made.
The va_end(ap) macro must be invoked when all desired arguments have been
accessed. The argument list in ap can be traversed again if va_start() is called again
after va_end(). In the example below, the error() arguments (arg1, arg2, …) are
passed to vfprintf() in the argument ap.

The vprintf(), vfprintf(), and vsprintf() functions return the number of
characters transmitted (not including \0 in the case of vsprintf()). The
vsnprintf() function returns the number of characters formatted, that is, the
number of characters that would have been written to the buffer if it were large
enough. Each function returns a negative value if an output error was encountered.

The vprintf() and vfprintf() functions will fail if either the stream is unbuffered
or the stream’s buffer needed to be flushed and:

EFBIG The file is a regular file and an attempt was made to write at or
beyond the offset maximum.

EXAMPLE 1 Using vprintf() to write an error routine.

The following demonstrates how vfprintf() could be used to write an error
routine:

vprintf(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

EXAMPLES

572 man pages section 3: Basic Library Functions • Last Revised 1 Feb 2001

EXAMPLE 1 Using vprintf() to write an error routine. (Continued)

#include <stdio.h>
#include <stdarg.h>
. . .
/*
* error should be called like
* error(function_name, format, arg1, ...);
*/
void error(char *function_name, char *format, ...)
{

va_list ap;
va_start(ap, format);
/* print out name of function causing error */
(void) fprintf(stderr, "ERR in %s: ", function_name);
/* print out remainder of message */
(void) vfprintf(stderr, format, ap);
va_end(ap);
(void) abort;

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

printf(3C), attributes(5), stdarg(3HEAD)

vprintf(3C)

ATTRIBUTES

SEE ALSO

Basic Library Functions 573

vsyslog – log message with a stdarg argument list

#include <syslog.h>

#include <stdarg.h>

int vsyslog(int priority, const char *message, va_list ap);

The vsyslog() function is identical to syslog(3C), except that it is called with an
argument list as defined by stdarg(3HEAD) rather than with a variable number of
arguments.

EXAMPLE 1 Use vsyslog() to write an error routine.

The following demonstrates how vsyslog() can be used to write an error routine.

#include <syslog.h>
#include <stdarg.h>

/*
* error should be called like:
* error(pri, function_name, format, arg1, arg2...);
*/

void
error(int pri, char *function_name, char *format, ...)
{

va_list args;

va_start(args, format);
/* log name of function causing error */
(void) syslog(pri, "ERROR in %s.", function_name);
/* log remainder of message */
(void) vsyslog(pri, format, args);
va_end(args);
(void) abort();

}

main()
{

error(LOG_ERR, "main", "process %d is dying", getpid());
}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

stdarg(3HEAD), syslog(3C), attributes(5)

vsyslog(3C)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

ATTRIBUTES

SEE ALSO

574 man pages section 3: Basic Library Functions • Last Revised 15 Nov 1999

wait3, wait4 – wait for process to terminate or stop

#include <sys/wait.h>
#include <sys/time.h>

#include <sys/resource.h>

pid_t wait3(int *statusp, int options, struct rusage *rusage);

pid_t wait4(pid_t pid, int *statusp, int options, struct rusage
*rusage);

The wait3() function delays its caller until a signal is received or one of its child
processes terminates or stops due to tracing. If any child process has died or stopped
due to tracing and this has not already been reported, return is immediate, returning
the process ID and status of one of those children. If that child process has died, it is
discarded. If there are no children, −1 is returned immediately. If there are only
running or stopped but reported children, the calling process is blocked.

If statusp is not a null pointer, then on return from a successful wait3() call, the
status of the child process is stored in the integer pointed to by statusp. *statusp
indicates the cause of termination and other information about the terminated process
in the following manner:

� If the low-order 8 bits of *statusp are equal to 0177, the child process has stopped;
the 8 bits higher up from the low-order 8 bits of *statusp contain the number of the
signal that caused the process to stop. See signal(3HEAD).

� If the low-order 8 bits of *statusp are non-zero and are not equal to 0177, the child
process terminated due to a signal; the low-order 7 bits of *statusp contain the
number of the signal that terminated the process. In addition, if the low-order
seventh bit of *statusp (that is, bit 0200) is set, a ‘‘core image’’ of the process was
produced; see signal(3HEAD).

� Otherwise, the child process terminated due to an exit() call; the 8 bits higher up
from the low-order 8 bits of *statusp contain the low-order 8 bits of the argument
that the child process passed to exit(); see exit(2).

The options argument is constructed from the bitwise inclusive OR of zero or more of
the following flags, defined in <sys/wait.h>:

WNOHANG Execution of the calling process is not suspended if status is not
immediately available for any child process.

WUNTRACED The status of any child processes that are stopped, and whose
status has not yet been reported since they stopped, are also
reported to the requesting process.

If rusage is not a null pointer, a summary of the resources used by the terminated
process and all its children is returned. Only the user time used and the system time
used are currently available. They are returned in the ru_utime and ru_stime,
members of the rusage structure, respectively.

wait3(3C)

NAME

SYNOPSIS

DESCRIPTION

Basic Library Functions 575

When the WNOHANG option is specified and no processes have status to report,
wait3() returns 0. The WNOHANG and WUNTRACED options may be combined by the
bitwise OR operation of the two values.

The wait4() function is an extended interface. With a pid argument of 0, it is
equivalent to wait3(). If pid has a nonzero value, then wait4() returns status only
for the indicated process ID, but not for any other child processes. The status can be
evaluated using the macros defined by wstat(3XFN).

If wait3() or wait4() returns due to a stopped or terminated child process, the
process ID of the child is returned to the calling process. Otherwise, −1 is returned and
errno is set to indicate the error.

If wait3() or wait4() return due to the delivery of a signal to the calling process,
−1 is returned and errno is set to EINTR. If WNOHANG was set in options, it has at least
one child process specified by pid for which status is not available, and status is not
available for any process specified by pid, 0 is returned. Otherwise, −1 is returned and
errno is set to indicate the error.

The wait3() and wait4() functions return 0 if WNOHANG is specified and there are
no stopped or exited children, and return the process ID of the child process if they
return due to a stopped or terminated child process. Otherwise, they return −1 and set
errno to indicate the error.

The wait3() and wait4() functions will fail and return immediately if:

ECHILD The calling process has no existing unwaited-for child processes.

EFAULT The statusp or rusage arguments point to an illegal address.

EINTR The function was interrupted by a signal. The value of the location
pointed to by statusp is undefined.

EINVAL The value of options is not valid.

The wait4() function may fail if:

ECHILD The process specified by pid does not exist or is not a child of the
calling process.

The wait3()and wait4() functions will terminate prematurely, return −1, and set
errno to EINTR upon the arrival of a signal whose SA_RESTART bit in its flags field
is not set (see sigaction(2)).

kill(1), exit(2), wait(2), waitid(2), waitpid(2), getrusage(3C), signal(3C),
proc(4), signal(3HEAD), wstat(3XFN)

If a parent process terminates without waiting on its children, the initialization process
(process ID = 1) inherits the children.

wait3(3C)

RETURN VALUES

ERRORS

SEE ALSO

NOTES

576 man pages section 3: Basic Library Functions • Last Revised 3 Mar 1995

The wait3() and wait4() functions are automatically restarted when a process
receives a signal while awaiting termination of a child process, unless the
SA_RESTART bit is not set in the flags for that signal.

wait3(3C)

Basic Library Functions 577

wait, wait3, wait4, waitpid, WIFSTOPPED, WIFSIGNALED, WIFEXITED – wait for
process to terminate or stop

/usr/ucb/cc [flag ...] file ...

#include <sys/wait.h>

int wait(statusp);

int *statusp;

int waitpid(pid, statusp, options);

int pid;
int *statusp;
int options;

#include <sys/time.h>

#include <sys/resource.h>

int wait3(statusp, options, rusage);

int *statusp;
int options;
struct rusage *rusage;

int wait4(pid, statusp, options, rusage);

int pid;
int *statusp;
int options;
struct rusage *rusage;

WIFSTOPPED(status);

int status;

WIFSIGNALED(status);

int status;

WIFEXITED(status);

int status;

wait() delays its caller until a signal is received or one of its child processes
terminates or stops due to tracing. If any child process has died or stopped due to
tracing and this has not been reported using wait(), return is immediate, returning
the process ID and exit status of one of those children. If that child process has died, it
is discarded. If there are no children, return is immediate with the value −1 returned. If
there are only running or stopped but reported children, the calling process is blocked.

If status is not a NULL pointer, then on return from a successful wait() call the status
of the child process whose process ID is the return value of wait() is stored in the
wait() union pointed to by status. The w_status member of that union is an int; it
indicates the cause of termination and other information about the terminated process
in the following manner:

wait(3UCB)

NAME

SYNOPSIS

DESCRIPTION

578 man pages section 3: Basic Library Functions • Last Revised 5 Mar 1993

� If the low-order 8 bits of w_status are equal to 0177, the child process has
stopped; the 8 bits higher up from the low-order 8 bits of w_status contain the
number of the signal that caused the process to stop. See ptrace(2) and
sigvec(3UCB).

� If the low-order 8 bits of w_status are non-zero and are not equal to 0177, the
child process terminated due to a signal; the low-order 7 bits of w_status contain
the number of the signal that terminated the process. In addition, if the low-order
seventh bit of w_status (that is, bit 0200) is set, a ‘‘core image’’ of the process was
produced; see sigvec(3UCB).

� Otherwise, the child process terminated due to an exit() call; the 8 bits higher up
from the low-order 8 bits of w_status contain the low-order 8 bits of the
argument that the child process passed to exit(); see exit(2).

waitpid() behaves identically to wait() if pid has a value of −1 and options has a
value of zero. Otherwise, the behavior of waitpid() is modified by the values of pid
and options as follows:

pid specifies a set of child processes for which status is requested. waitpid() only
returns the status of a child process from this set.

� If pid is equal to −1, status is requested for any child process. In this respect,
waitpid() is then equivalent to wait().

� If pid is greater than zero, it specifies the process ID of a single child process for
which status is requested.

� If pid is equal to zero, status is requested for any child process whose process group
ID is equal to that of the calling process.

� If pid is less than −1, status is requested for any child process whose process group
ID is equal to the absolute value of pid.

options is constructed from the bitwise inclusive OR of zero or more of the following
flags, defined in the header <sys/wait.h>:

WNOHANG waitpid() does not suspend execution of the calling process if
status is not immediately available for one of the child processes
specified by pid.

WUNTRACED The status of any child processes specified by pid that are stopped,
and whose status has not yet been reported since they stopped, are
also reported to the requesting process.

wait3() is an alternate interface that allows both non-blocking status collection and
the collection of the status of children stopped by any means. The status parameter is
defined as above. The options parameter is used to indicate the call should not block if
there are no processes that have status to report (WNOHANG), and/or that children of
the current process that are stopped due to a SIGTTIN, SIGTTOU, SIGTSTP, or
SIGSTOP signal are eligible to have their status reported as well (WUNTRACED). A
terminated child is discarded after it reports status, and a stopped process will not

wait(3UCB)

Basic Library Functions 579

report its status more than once. If rusage is not a NULL pointer, a summary of the
resources used by the terminated process and all its children is returned. Only the user
time used and the system time used are currently available. They are returned in
rusage.ru_utime and rusage.ru_stime, respectively.

When the WNOHANG option is specified and no processes have status to report,
wait3() returns 0. The WNOHANG and WUNTRACED options may be combined by
ORing the two values.

wait4() is another alternate interface. With a pid argument of 0, it is equivalent to
wait3(). If pid has a nonzero value, then wait4() returns status only for the
indicated process ID, but not for any other child processes.

WIFSTOPPED, WIFSIGNALED, WIFEXITED, are macros that take an argument status, of
type int, as returned by wait(), or wait3(), or wait4(). WIFSTOPPED evaluates
to true (1) when the process for which the wait() call was made is stopped, or to
false (0) otherwise. WIFSIGNALED evaluates to true when the process was terminated
with a signal. WIFEXITED evaluates to true when the process exited by using an
exit(2) call.

If wait()or waitpid() returns due to a stopped or terminated child process, the
process ID of the child is returned to the calling process. Otherwise, a value of −1 is
returned and errno is set to indicate the error.

If wait() or waitpid() return due to the delivery of a signal to the calling process, a
value of −1 is returned and errno is set to EINTR. If waitpid() function was
invoked with WNOHANG set in options, it has at least one child process specified by pid
for which status is not available, and status is not available for any process specified
by pid, a value of zero is returned. Otherwise, a value of −1 is returned, and errno is
set to indicate the error.

wait3() and wait4() returns 0 if WNOHANG is specified and there are no stopped
or exited children, and returns the process ID of the child process if it returns due to a
stopped or terminated child process. Otherwise, they returns a value of −1 and sets
errno to indicate the error.

wait(), wait3()or wait4() will fail and return immediately if one or more of the
following are true:

ECHILD The calling process has no existing unwaited-for child processes.

EFAULT The status or rusage arguments point to an illegal address.

waitpid() may set errno to:

ECHILD The process or process group specified by pid does not exist or is
not a child of the calling process.

EINTR The function was interrupted by a signal. The value of the location
pointed to by statusp is undefined.

wait(3UCB)

RETURN VALUES

ERRORS

580 man pages section 3: Basic Library Functions • Last Revised 5 Mar 1993

EINVAL The value of options is not valid.

wait(), and wait3(), and wait4() will terminate prematurely, return −1, and set
errno to EINTR upon the arrival of a signal whose SV_INTERRUPT bit in its flags
field is set (see sigvec(3UCB) and siginterrupt(3UCB)). signal(3UCB), sets this
bit for any signal it catches.

exit(2), ptrace(2), wait(2), waitpid(2), getrusage(3C), siginterrupt(3UCB),
signal(3UCB), sigvec(3UCB), signal(3C)

Use of these interfaces should be restricted to only applications written on BSD
platforms. Use of these interfaces with any of the system libraries or in multi-thread
applications is unsupported.

If a parent process terminates without waiting on its children, the initialization process
(process ID = 1) inherits the children.

wait(), and wait3(), and wait4() are automatically restarted when a process
receives a signal while awaiting termination of a child process, unless the
SV_INTERRUPT bit is set in the flags for that signal.

Calls to wait() with an argument of 0 should be cast to type ‘int *’, as in:

wait((int *)0)

Previous SunOS releases used union wait*statusp and union wait status in
place of int *statusp and int status. The union contained a member w_status
that could be treated in the same way as status.

Other members of the wait union could be used to extract this information more
conveniently:

� If the w_stopval member had the value WSTOPPED, the child process had
stopped; the value of the w_stopsig member was the signal that stopped the
process.

� If the w_termsig member was non-zero, the child process terminated due to a
signal; the value of the w_termsig member was the number of the signal that
terminated the process. If the w_coredump member was non-zero, a core dump
was produced.

� Otherwise, the child process terminated due to a call to exit(). The value of the
w_retcode member was the low-order 8 bits of the argument that the child
process passed to exit().

union wait is obsolete in light of the new specifications provided by IEEE Std
1003.1-1988 and endorsed by SVID89 and XPG3. SunOS Release 4.1 supports
unionwait for backward compatibility, but it will disappear in a future release.

wait(3UCB)

SEE ALSO

NOTES

Basic Library Functions 581

walkcontext, printstack – walk stack pointed to by ucontext

#include <ucontext.h>

int walkcontext(const ucontext_t *uptr, int
(*operate_func)(uintptr_t, int, void *), void *usrarg);

int printstack(int fd);

The walkcontext() function walks the call stack pointed to by uptr, which can be
obtained by a call to getcontext(2) or from a signal handler installed with the
SA_SIGINFO flag. The walkcontext() function calls the user-supplied function
operate_func for each routine found on the call stack and each signal handler invoked.
The user function is passed three arguments: the PC at which the call or signal
occured, the signal number that occured at this PC (0 if no signal occured), and the
third argument passed to walkcontext(). If the user function returns a non-zero
value, walkcontext() returns without completing the callstack walk.

The printstack() function uses walkcontext() to print a symbolic stack trace to
the specified file descriptor. This is useful for reporting errors from signal handlers.
The printstack() function uses dladdr1() (see dladdr(3DL)) to obtain symbolic
symbol names. As a result, only global symbols are reported as symbol names by
printstack().

Upon successful completion, walkstack() and printstack() return 0. If
walkstack() cannot read the stack or the stack trace appears corrupted, both
functions return -1.

No error values are defined.

The walkcontext() function is typically used to obtain information about the call
stack for error reporting, performance analysis, or diagnostic purposes. Many library
functions are not Async-Signal-Safe and should not be used from a signal handler. If
walkcontext() is to be called from a signal handler, careful programming is
required. In particular, stdio(3C) and malloc(3C) cannot be used.

The printstack() function is Async-Signal-Safe and can be called from a signal
handler. The output format from printstack() is unstable, as it varies with the
scope of the routines.

Tail-call optimizations on SPARC eliminate stack frames that would otherwise be
present. For example, if the code is of the form

#include <stdio.h>

main()
{

bar();
exit(0);

}

bar()

walkcontext(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

582 man pages section 3: Basic Library Functions • Last Revised 18 Sep 2001

{
int a;
a = foo(fileno(stdout));
return (a);

}

foo(int file)
{

printstack(file);

}

compiling without optimization will yield a stack trace of the form

/tmp/q:foo+0x8
/tmp/q:bar+0x14
/tmp/q:main+0x4

/tmp/q:_start+0xb8

whereas with higher levels of optimization the output is

/tmp/q:main+0x10

/tmp/q:_start+0xb8

since both the call to foo() in main and the call to bar() in foo() are handled as
tail calls that perform a return or restore in the delay slot. For further information, see
The SPARC Architecture Manual.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level Async-Signal-Safe

intro(2), getcontext(2), sigaction(2), dladdr(3DL), siginfo(3HEAD),
attributes(5)

Weaver, David L. and Tom Germond, eds. The SPARC Architecture Manual, Version 9.
Santa Clara: Prentice Hall, 2000.

walkcontext(3C)

ATTRIBUTES

SEE ALSO

Basic Library Functions 583

watchmalloc, cfree, memalign, valloc – debugging memory allocator

#include <stdlib.h>

void *malloc(size_t size);

void free(void *ptr);

void *realloc(void *ptr, size_t size);

void *memalign(size_t alignment, size_t size);

void *valloc(size_t size);

void *calloc(size_t nelem, size_t elsize);

void cfree(void *ptr, size_t nelem, size_t elsize);

#include <malloc.h>

int mallopt(int cmd, int value);

struct mallinfo mallinfo(void);

The collection of malloc() functions in this shared object are an optional replacement
for the standard versions of the same functions in the system C library. See
malloc(3C). They provide a more strict interface than the standard versions and
enable enforcement of the interface through the watchpoint facility of /proc. See
proc(4).

Any dynamically linked application can be run with these functions in place of the
standard functions if the following string is present in the environment (see
ld.so.1(1)):

LD_PRELOAD=watchmalloc.so.1

The individual function interfaces are identical to the standard ones as described in
malloc(3C). However, laxities provided in the standard versions are not permitted
when the watchpoint facility is enabled (see WATCHPOINTS below):

� Memory may not be freed more than once.
� A pointer to freed memory may not be used in a call to realloc().
� A call to malloc() immediately following a call to free() will not return the

same space.
� Any reference to memory that has been freed yields undefined results.

To enforce these restrictions partially, without great loss in speed as compared to the
watchpoint facility described below, a freed block of memory is overwritten with the
pattern 0xdeadbeef before returning from free(). The malloc() function returns
with the allocated memory filled with the pattern 0xbaddcafe as a precaution
against applications incorrectly expecting to receive back unmodified memory from
the last free(). The calloc() function always returns with the memory zero-filled.

watchmalloc(3MALLOC)

NAME

SYNOPSIS

DESCRIPTION

584 man pages section 3: Basic Library Functions • Last Revised 25 Apr 2001

Entry points for mallopt() and mallinfo() are provided as empty routines, and
are present only because some malloc() implementations provide them.

The watchpoint facility of /proc can be applied by a process to itself. The functions in
watchmalloc.so.1 use this feature if the following string is present in the
environment:

MALLOC_DEBUG=WATCH

This causes every block of freed memory to be covered with WA_WRITE watched
areas. If the application attempts to write any part of freed memory, it will trigger a
watchpoint trap, resulting in a SIGTRAP signal, which normally produces an
application core dump.

A header is maintained before each block of allocated memory. Each header is covered
with a watched area, thereby providing a red zone before and after each block of
allocated memory (the header for the subsequent memory block serves as the trailing
red zone for its preceding memory block). Writing just before or just after a memory
block returned by malloc() will trigger a watchpoint trap.

Watchpoints incur a large performance penalty. Requesting MALLOC_DEBUG=WATCH
can cause the application to run 10 to 100 times slower, depending on the use made of
allocated memory.

Further options are enabled by specifying a comma-separated string of options:

MALLOC_DEBUG=WATCH,RW,STOP

WATCH Enables WA_WRITE watched areas as described above.

RW Enables both WA_READ and WA_WRITE watched areas. An attempt
either to read or write freed memory or the red zones will trigger a
watchpoint trap. This incurs even more overhead and can cause
the application to run up to 1000 times slower.

STOP The process will stop showing a FLTWATCH machine fault if it
triggers a watchpoint trap, rather than dumping core with a
SIGTRAP signal. This allows a debugger to be attached to the live
process at the point where it underwent the watchpoint trap. Also,
the various /proc tools described in proc(1) can be used to
examine the stopped process.

One of WATCH or RW must be specified, else the watchpoint facility is not engaged. RW
overrides WATCH. Unrecognized options are silently ignored.

watchmalloc(3MALLOC)

WATCHPOINTS

Basic Library Functions 585

Sizes of memory blocks allocated by malloc() are rounded up to the the worst-case
alignment size, 8 bytes for 32-bit processes and 16 bytes for 64-bit processes. Accessing
the extra space allocated for a memory block is technically a memory violation but is
in fact innocuous. Such accesses are not detected by the watchpoint facility of
watchmalloc.

Interposition of watchmalloc.so.1 fails innocuously if the target application is
statically linked with respect to its malloc() functions.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

proc(1), bsdmalloc(3MALLOC), calloc(3C), free(3C), malloc(3C), malloc
(3MALLOC), mapmalloc(3MALLOC), memalign(3C), realloc(3C), valloc(3C),
libmapmalloc(3LIB), proc(4), attributes(5)

watchmalloc(3MALLOC)

LIMITATIONS

ATTRIBUTES

SEE ALSO

586 man pages section 3: Basic Library Functions • Last Revised 25 Apr 2001

wcrtomb – convert a wide-character code to a character (restartable)

#include <stdio.h>

size_t wcrtomb(char *s, wchar_t wc, mbstate_t *ps);

If s is a null pointer, the wcrtomb() function is equivalent to the call:

wcrtomb(buf, L’\0’, ps)where buf is an internal buffer.

If s is not a null pointer, the wcrtomb() function determines the number of bytes
needed to represent the character that corresponds to the wide-character given by wc
(including any shift sequences), and stores the resulting bytes in the array whose first
element is pointed to by s. At most MB_CUR_MAX bytes are stored. If wc is a null
wide-character, a null byte is stored, preceded by any shift sequence needed to restore
the initial shift state. The resulting state described is the initial conversion state.

If ps is a null pointer, the wcrtomb() function uses its own internal mbstate_t
object, which is initialized at program startup to the initial conversion state.
Otherwise, the mbstate_t object pointed to by ps is used to completely describe the
current conversion state of the associated character sequence. Solaris will behave as if
no function defined in the Solaris Reference Manual calls wcrtomb().

The behavior of this function is affected by the LC_CTYPE category of the current
locale. See environ(5).

The wcrtomb() function returns the number of bytes stored in the array object
(including any shift sequences). When wc is not a valid wide-character, an encoding
error occurs. In this case, the function stores the value of the macros EILSEQ in errno
and returns (size_t)−1; the conversion state is undefined.

The wcrtomb() function may fail if:

EINVAL The ps argument points to an object that contains an invalid
conversion state.

EILSEQ Invalid wide-character code is detected.

If ps is not a null pointer, wcrtomb() uses the mbstate_t object pointed to by ps and
the function can be used safely in multithreaded applications, as long as
setlocale(3C) is not being called to change the locale. If ps is a null pointer,
wcrtomb() uses its internal mbstate_t object and the function is Unsafe in
multithreaded applications.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See NOTES below

wcrtomb(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

Basic Library Functions 587

mbsinit(3C), setlocale(3C), attributes(5), environ(5)

wcrtomb(3C)

SEE ALSO

588 man pages section 3: Basic Library Functions • Last Revised 3 Feb 1998

wcscoll, wscoll – wide character string comparison using collating information

#include <wchar.h>

int wcscoll(const wchar_t *ws1, const wchar_t *ws2);

int wscoll(const wchar_t *ws1, const wchar_t *ws2);

The wcscoll() and wscoll() functions compare the wide character string pointed
to by ws1 to the wide character string pointed to by ws2, both interpreted as
appropriate to the LC_COLLATE category of the current locale.

Upon successful completion, wcscoll() and wscoll() return an integer greater
than, equal to, or less than 0, depending upon whether the wide character string
pointed to by ws1 is greater than, equal to, or less than the wide character string
pointed to by ws2, when both are interpreted as appropriate to the current locale. On
error, wcscoll() and wscoll() may set errno, but no return value is reserved to
indicate an error.

The wcscoll() and wscoll() functions may fail if:

EINVAL The ws1 or ws2 arguments contain wide character codes outside
the domain of the collating sequence.

ENOSYS The function is not supported.

Because no return value is reserved to indicate an error, an application wishing to
check for error situations should set errno to 0, call either wcscoll() or wscoll(),
then check errno and if it is non-zero, assume an error has occurred.

The wcsxfrm(3C) and wcscmp(3C) functions should be used for sorting large lists.

The wcscoll() and wscoll() functions can be used safely in multithreaded
applications as long as setlocale(3C) is not being called to change the locale.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

CSI Enabled

setlocale(3C), wcscmp(3C), wcsxfrm(3C), attributes(5)

wcscoll(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

Basic Library Functions 589

wcsftime – convert date and time to wide character string

#include <wchar.h>

size_t wcsftime(wchar_t *wcs, size_t maxsize, const char *format,
const struct tm *timptr);

size_t wcsftime(wchar_t *wcs, size_t maxsize, const wchar_t *format,
const struct tm *timptr);

The wcsftime() function is equivalent to the strftime(3C) function, except that:

� The argument wcs points to the initial element of an array of wide-characters into
which the generated output is to be placed.

� The argument maxsize indicates the maximum number of wide-characters to be
placed in the output array.

� The argument format is a wide-character string and the conversion specifications
are replaced by corresponding sequences of wide-characters.

� The return value indicates the number of wide-characters placed in the output
array.

If copying takes place between objects that overlap, the behavior is undefined.

If the total number of resulting wide character codes (including the terminating null
wide-character code) is no more than maxsize, wcsftime() returns the number of
wide-character codes placed into the array pointed to by wcs, not including the
terminating null wide-character code. Otherwise, 0 is returned and the contents of the
array are indeterminate.

The wcfstime() function uses malloc(3C) and should malloc() fail, errno will
be set by malloc().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

CSI Enabled

malloc(3C), setlocale(3C), strftime(3C), attributes(5), standards(5)

The wcsftime() function can be used safely in multithreaded applications, as long
as setlocale(3C) is not being called to change the locale.

wcsftime(3C)

NAME

SYNOPSIS

XPG4 and SUS

Default and other
standards

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

590 man pages section 3: Basic Library Functions • Last Revised 3 Feb 1998

wcsrtombs – convert a wide-character string to a character string (restartable)

#include <wchar.h>

size_t wcsrtombs(char *dst, const wchar_t **src, size_t len,
mbstate_t *ps);

The wcsrtombs() function converts a sequence of wide-characters from the array
indirectly pointed to by src into a sequence of corresponding characters, beginning in
the conversion state described by the object pointed to by ps. If dst is not a null pointer,
the converted characters are then stored into the array pointed to by dst. Conversion
continues up to and including a terminating null wide-character, which is also stored.
Conversion stops earlier in the following cases:

� When a code is reached that does not correspond to a valid character.
� When the next character would exceed the limit of len total bytes to be stored in the

array pointed to by dst (and dst is not a null pointer).

Each conversion takes place as if by a call to the wcrtomb() function.

If dst is not a null pointer, the pointer object pointed to by src is assigned either a null
pointer (if conversion stopped due to reaching a terminating null wide-character) or
the address just past the last wide-character converted (if any). If conversion stopped
due to reaching a terminating null wide-character, the resulting state described is the
initial conversion state.

If ps is a null pointer, the wcsrtombs() function uses its own internal mbstate_t
object, which is initialized at program startup to the initial conversion state.
Otherwise, the mbstate_t object pointed to by ps is used to completely describe the
current conversion state of the associated character sequence. Solaris will behave as if
no function defined in the Solaris Reference Manual calls wcsrtombs().

The behavior of this function is affected by the LC_CTYPE category of the current
locale. See environ(5).

If conversion stops because a code is reached that does not correspond to a valid
character, an encoding error occurs. In this case, the wcsrtombs() function stores the
value of the macro EILSEQ in errno and returns (size_t)−1; the conversion state is
undefined. Otherwise, it returns the number of bytes in the resulting character
sequence, not including the terminating null (if any).

The wcsrtombs() function may fail if:

EINVAL The ps argument points to an object that contains an invalid
conversion state.

EILSEQ A wide-character code does not correspond to a valid character.

wcsrtombs(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Basic Library Functions 591

If ps is not a null pointer, wcsrtombs() uses the mbstate_t object pointed to by ps
and the function can be used safely in multithreaded applications, as long as
setlocale(3C) is not being called to change the locale. If ps is a null pointer,
wcsrtombs() uses its internal mbstate_t object and the function is Unsafe in
multithreaded applications.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See NOTES below

mbsinit(3C), setlocale(3C), wcrtomb(3C), attributes(5), environ(5)

wcsrtombs(3C)

USAGE

ATTRIBUTES

SEE ALSO

592 man pages section 3: Basic Library Functions • Last Revised 3 Feb 1998

wcsstr – find a wide-character substring

#include <wchar.h>

wchar_t *wcsstr(const wchar_t *ws1, const wchar_t *ws2);

#include <wchar.h>

const wchar_t *wcsstr(const wchar_t *ws1, const wchar_t *ws2);

#include <cwchar>

wchar_t *std::wcsstr(wchar_t *ws1, const wchar_t *ws2);

The wcsstr() function locates the first occurrence in the wide-character string
pointed to by ws1 of the sequence of wide-characters (excluding the terminating null
wide-character) in the wide-character string pointed to by ws2.

On successful completion, wcsstr() returns a pointer to the located wide-character
string, or a null pointer if the wide-character string is not found.

If ws2 points to a wide-character string with zero length, the function returns ws1.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

wschr(3C), attributes(5)

wcsstr(3C)

NAME

SYNOPSIS

ISO C++

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Basic Library Functions 593

wcstod, wstod, watof – convert wide character string to double-precision number

#include <wchar.h>

double wcstod(const wchar_t *nptr, wchar_t **endptr);

double wstod(const wchar_t *nptr, wchar_t **endptr);

double watof(wchar_t *nptr);

The wcstod() and wstod() functions convert the initial portion of the wide
character string pointed to by nptr to double representation. They first decompose the
input wide character string into three parts: an initial, possibly empty, sequence of
white-space wide character codes (as specified by iswspace(3C)); a subject sequence
interpreted as a floating-point constant; and a final wide-character string of one or
more unrecognised wide-character codes, including the terminating null wide
character code of the input wide character string. They then attempt to convert the
subject sequence to a floating-point number, and return the result.

The expected form of the subject sequence is an optional ‘+’ or ‘−’ sign, then a
non-empty sequence of digits optionally containing a radix, then an optional exponent
part. An exponent part consists of ‘e’ or ‘E’, followed by an optional sign, followed by
one or more decimal digits. The subject sequence is defined as the longest initial
subsequence of the input wide character string, starting with the first non-white-space
wide-character code, that is of the expected form. The subject sequence contains no
wide-character codes if the input wide character string is empty or consists entirely of
white-space wide-character codes, or if the first wide-character code that is not white
space other than a sign, a digit or a radix.

If the subject sequence has the expected form, the sequence of wide-character codes
starting with the first digit or the radix (whichever occurs first) is interpreted as a
floating constant as defined in the C language, except that the radix is used in place of
a period, and that if neither an exponent part nor a radix appears, a radix is assumed
to follow the last digit in the wide character string. If the subject sequence begins with
a minus sign (-), the value resulting from the conversion is negated. A pointer to the
final wide character string is stored in the object pointed to by endptr, provided that
endptr is not a null pointer.

The radix is defined in the program’s locale (category LC_NUMERIC). In the POSIX
locale, or in a locale where the radix is not defined, the radix defaults to a period (.).

In other than the POSIX locale, other implementation-dependent subject sequence
forms may be accepted.

If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value of nptr is stored in the object pointed to by endptr, provided that
endptr is not a null pointer.

The watof(str) function is equivalent to wstod(str, (wchar_t **)NULL).

wcstod(3C)

NAME

SYNOPSIS

DESCRIPTION

594 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

The wcstod() and wstod() functions return the converted value, if any. If no
conversion could be performed, 0 is returned and errno may be set to EINVAL.

If the correct value is outside the range of representable values, ±HUGE_VAL is
returned (according to the sign of the value), and errno is set to ERANGE.

If the correct value would cause underflow, 0 is returned, and errno is set to ERANGE.

The wcstod() and wstod() functions will fail if:

ERANGE The value to be returned would cause overflow or underflow.

The wcstod() and wcstod() functions may fail if:

EINVAL No conversion could be performed.

Because 0 is returned on error and is also a valid return on success, an application
wishing to check for error situations should set errno to 0 call wcstod() or
wstod(), then check errno and if it is non-zero, assume an error has occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

iswspace(3C), localeconv(3C), scanf(3C), setlocale(3C), wcstol(3C),
attributes(5)

wcstod(3C)

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

Basic Library Functions 595

wcstol, wstol, watol, watoll, watoi – convert wide character string to long integer

#include <wchar.h>

long int wcstol(const wchar_t *nptr, wchar_t **endptr, int base);

#include <widec.h>

long int wstol(const wchar_t *nptr, wchar_t **endptr, int base);

long watol(wchar_t *nptr);

long long watoll(wchar_t *nptr);

int watoi(wchar_t *nptr);

The wcstol() and wstol() functions convert the initial portion of the wide
character string pointed to by nptr to long int representation. They first decompose
the input wide character string into three parts: an initial, possibly empty, sequence of
white-space wide-character codes (as specified by iswspace(3C)), a subject sequence
interpreted as an integer represented in some radix determined by the value of base;
and a final wide character string of one or more unrecognised wide character codes,
including the terminating null wide-character code of the input wide character string.
They then attempt to convert the subject sequence to an integer, and return the result.

If the value of base is 0, the expected form of the subject sequence is that of a decimal
constant, octal constant or hexadecimal constant, any of which may be preceded by a
‘+’ or ‘−’ sign. A decimal constant begins with a non-zero digit, and consists of a
sequence of decimal digits. An octal constant consists of the prefix ‘0’ optionally
followed by a sequence of the digits ‘0’ to ‘7’ only. A hexadecimal constant consists of
the prefix ‘0x’ or ‘0X’ followed by a sequence of the decimal digits and letters ‘a’ (or
‘A’) to ‘f’ (or ‘F’) with values 10 to 15 respectively.

If the value of base is between 2 and 36, the expected form of the subject sequence is a
sequence of letters and digits representing an integer with the radix specified by base,
optionally preceded by a ‘+’ or ‘−’ sign, but not including an integer suffix. The letters
from ‘a’ (or ‘A’) to ‘z’ (or ‘Z’) inclusive are ascribed the values 10 to 35; only letters
whose ascribed values are less than that of base are permitted. If the value of base is 16,
the wide-character code representations of ‘0x’ or ‘0X’ may optionally precede the
sequence of letters and digits, following the sign if present.

The subject sequence is defined as the longest initial subsequence of the input wide
character string, starting with the first non-white-space wide-character code, that is of
the expected form. The subject sequence contains no wide-character codes if the input
wide character string is empty or consists entirely of white-space wide-character code,
or if the first non-white-space wide-character code is other than a sign or a permissible
letter or digit.

If the subject sequence has the expected form and the value of base is 0, the sequence
of wide-character codes starting with the first digit is interpreted as an integer
constant. If the subject sequence has the expected form and the value of base is
between 2 and 36, it is used as the base for conversion, ascribing to each letter its

wcstol(3C)

NAME

SYNOPSIS

DESCRIPTION

596 man pages section 3: Basic Library Functions • Last Revised 14 Jan 1996

value as given above. If the subject sequence begins with a minus sign (-), the value
resulting from the conversion is negated. A pointer to the final wide character string is
stored in the object pointed to by endptr, provided that endptr is not a null pointer.

In other than the POSIX locale, additional implementation-dependent subject
sequence forms may be accepted.

If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value of nptr is stored in the object pointed to by endptr, provided that
endptr is not a null pointer.

The watol() function is equivalent to wstol(str, (wchar_t **)NULL, 10).

The watoll() function is the long-long (double long) version of watol().

The watoi() function is equivalent to (int)watol().

Upon successful completion, wcstol() and wstol() return the converted value, if
any. If no conversion could be performed, 0 is returned, and errno may be set to
indicate the error. If the correct value is outside the range of representable values,
{LONG_MAX} or {LONG_MIN} is returned (according to the sign of the value), and
errno is set to ERANGE.

The wcstol() and wstol() functions will fail if:

EINVAL The value of base is not supported.

ERANGE The value to be returned is not representable.

The wcstol() and wstol() functions may fail if:

EINVAL No conversion could be performed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

iswalpha(3C), iswspace(3C), scanf(3C), wcstod(3C), attributes(5)

Because 0, {LONG_MIN}, and {LONG_MAX} are returned on error and are also valid
returns on success, an application wishing to check for error situations should set
errno to 0, call wcstol() or wstol(), then check errno and if it is non-zero
assume an error has occurred.

Truncation from long long to long can take place upon assignment or by an explicit
cast.

wcstol(3C)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

Basic Library Functions 597

wcstombs – convert a wide-character string to a character string

#include <stdlib.h>

size_t wcstombs(char *s, const wchar_t *pwcs, size_t n);

The wcstombs() function converts the sequence of wide-character codes from the
array pointed to by pwcs into a sequence of characters and stores these characters into
the array pointed to by s, stopping if a character would exceed the limit of n total
bytes or if a null byte is stored. Each wide-character code is converted as if by a call to
wctomb(3C).

The behavior of this function is affected by the LC_CTYPE category of the current
locale.

No more than n bytes will be modified in the array pointed to by s. If copying takes
place between objects that overlap, the behavior is undefined. If s is a null pointer,
wcstombs() returns the length required to convert the entire array regardless of the
value of n, but no values are stored.

If a wide-character code is encountered that does not correspond to a valid character
(of one or more bytes each), wcstombs() returns (size_t)-1. Otherwise,
wcstombs() returns the number of bytes stored in the character array, not including
any terminating null byte. The array will not be null-terminated if the value returned
is n.

The wcstombs() function may fail if:

EILSEQ A wide-character code does not correspond to a valid character.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

CSI Enabled

mblen(3C), mbstowcs(3C), mbtowc(3C), setlocale(3C), wctomb(3C),
attributes(5)

wcstombs(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

598 man pages section 3: Basic Library Functions • Last Revised 20 Dec 1996

wcstoul – convert wide character string to unsigned long

#include <wchar.h>

unsigned long int wcstoul(const wchar_t *nptr, wchar_t **endptr, int
base);

The wcstoul() function converts the initial portion of the wide character string
pointed to by nptr to unsigned long int representation. It first decomposes the
input wide-character string into three parts: an initial, possibly empty, sequence of
white-space wide-character codes (as specified by the function iswspace(3C)); a
subject sequence interpreted as an integer represented in some radix determined by
the value of base; and a final wide-character string of one or more unrecognized wide
character codes, including the terminating null wide-character code of the input wide
character string. It then attempts to convert the subject sequence to an unsigned
integer, and returns the result.

If the value of base is 0, the expected form of the subject sequence is that of a decimal
constant, an octal constant, or a hexadecimal constant, any of which may be preceded
by a ‘+’ or a ‘−’ sign. A decimal constant begins with a non-zero digit, and consists of a
sequence of decimal digits. An octal constant consists of the prefix ‘0’, optionally
followed by a sequence of the digits ‘0’ to ‘7’ only. A hexadecimal constant consists of
the prefix ‘0x’ or ‘0X’, followed by a sequence of the decimal digits and letters ‘a’ (or
‘A’) to ‘f’ (or ‘F’), with values 10 to 15, respectively.

If the value of base is between 2 and 36, the expected form of the subject sequence is a
sequence of letters and digits representing an integer with the radix specified by base,
optionally preceded by a ‘+’ or a ‘−’ sign, but not including an integer suffix. The
letters from ‘a’ (or ‘A’) to ‘z’ (or ‘Z’) inclusive are ascribed the values 10 to 35; only
letters whose ascribed values are less than that of base are permitted. If the value of
base is 16, the wide-character codes ‘0x’ or ‘0X’ may optionally precede the sequence of
letters and digits, following the sign, if present.

The subject sequence is defined as the longest initial subsequence of the input
wide-character string, starting with the first wide-character code that is not a white
space and is of the expected form. The subject sequence contains no wide-character
codes if the input wide-character string is empty or consists entirely of white-space
wide-character codes, or if the first wide-character code that is not a white space is
other than a sign or a permissible letter or digit.

If the subject sequence has the expected form and the value of base is 0, the sequence
of wide-character codes starting with the first digit is interpreted as an integer
constant. If the subject sequence has the expected form and the value of base is
between 2 and 36, it is used as the base for conversion, ascribing to each letter its value
as given above. If the subject sequence begins with a minus sign, the value resulting
from the conversion is negated. A pointer to the final wide character string is stored in
the object pointed to by endptr, provided that endptr is not a null pointer.

In other than the POSIX locale, additional subject sequence forms may be accepted.

wcstoul(3C)

NAME

SYNOPSIS

DESCRIPTION

Basic Library Functions 599

If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value of nptr is stored in the object pointed to by endptr, provided that
endptr is not a null pointer.

Because 0 and ULONG_MAX are returned on error and 0 is also a valid return on
success, an application wishing to check for error situations should set errno to 0, call
wcstoul(), then check errno and if it is non-zero, assume an error has occurred.

Upon successful completion, wcstoul() returns the converted value, if any, and does
not change the setting of errno. If no conversion could be performed, 0 is returned
and errno may be set to indicate the error. If the correct value is outside the range of
representable values, ULONG_MAX is returned and errno is set to ERANGE.

The wcstoul() function will fail if:

EINVAL The value of base is not supported.

ERANGE The value to be returned is not representable.

The wcstoul() function may fail if:

EINVAL No conversion could be performed.

Unlike wcstod(3C) and wcstol(3C), wcstoul() must always return a non-negative
number; using the return value of wcstoul() for out-of-range numbers with
wcstoul() could cause more severe problems than just loss of precision if those
numbers can ever be negative.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

isspace(3C), iswalpha(3C), scanf(3C), wcstod(3C), wcstol(3C), attributes(5)

wcstoul(3C)

RETURN VALUE

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

600 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

wcstring, wcscat, wscat, wcsncat, wsncat, wcscmp, wscmp, wcsncmp, wsncmp,
wcscpy, wscpy, wcsncpy, wsncpy, wcslen, wslen, wcschr, wschr, wcsrchr, wsrchr,
windex, wrindex, wcspbrk, wspbrk, wcswcs, wcsspn, wsspn, wcscspn, wscspn,
wcstok, wstok – wide-character string operations

#include <wchar.h>

wchar_t *wcscat(wchar_t *ws1, const wchar_t *ws2);

wchar_t *wcsncat(wchar_t *ws1, const wchar_t *ws2, size_t n);

int wcscmp(const wchar_t *ws1, const wchar_t *ws2);

int wcsncmp(const wchar_t *ws1, const wchar_t *ws2, size_t n);

wchar_t *wcscpy(wchar_t *ws1, const wchar_t *ws2);

wchar_t *wcsncpy(wchar_t *ws1, const wchar_t *ws2, size_t n);

size_t wcslen(const wchar_t *ws);

wchar_t *wcschr(const wchar_t *ws, wchar_t wc);

wchar_t *wcsrchr(const wchar_t *ws, wchar_t wc);

wchar_t *wcspbrk(const wchar_t *ws1, const wchar_t *ws2);

wchar_t *wcswcs(const wchar_t *ws1, const wchar_t *ws2);

size_t wcsspn(const wchar_t *ws1, const wchar_t *ws2);

size_t wcscspn(const wchar_t *ws1, const wchar_t *ws2);

wchar_t *wcstok(wchar_t *ws1, const wchar_t *ws2);

wchar_t *wcstok(wchar_t *ws1, const wchar_t *ws2, wchar_t **ptr);

#include <widec.h>

wchar_t *wscat(wchar_t *ws1, const wchar_t *ws2);

wchar_t *wsncat(wchar_t *ws1, const wchar_t *ws2, size_t n);

int wscmp(const wchar_t *ws1, const wchar_t *ws2);

int wsncmp(const wchar_t *ws1, const wchar_t *ws2, size_t n);

wchar_t *wscpy(wchar_t *ws1, const wchar_t *ws2);

wchar_t *wsncpy(wchar_t *ws1, const wchar_t *ws2, size_t n);

size_t wslen(const wchar_t *ws);

wchar_t *wschr(const wchar_t *ws, wchat_t wc);

wchar_t *wsrchr(const wchar_t *ws, wchat_t wc);

wchar_t *wspbrk(const wchar_t *ws1, const wchar_t *ws2);

size_t wsspn(const wchar_t *ws1, const wchar_t *ws2);

wcstring(3C)

NAME

SYNOPSIS

XPG4 and SUS

Default and other
standards

Basic Library Functions 601

size_t wscspn(const wchar_t *ws1, const wchar_t *ws2);

wchar_t *wstok(wchar_t *ws1, const wchar_t *ws2);

wchar_t *windex(const wchar_t *ws, wchar_t wc);

wchar_t *wrindex(const wchar_t *ws, wchar_t wc);

#include <wchar.h>

const wchar_t *wcschr(const wchar_t *ws, wchar_t wc);

const wchar_t *wcspbrk(const wchar_t *ws1, const wchar_t *ws2);

const wchar_t *wcsrchr(const wchar_t *ws, wchar_t wc);

#include <cwchar>

wchar_t *std::wcschr(wchar_t *ws, wchar_t wc);

wchar_t *std::wcspbrk(wchar_t *ws1, const wchar_t *ws2);

wchar_t *std::wcsrchr(wchar_t *ws, wchar_t wc);

These functions operate on wide-character strings terminated by wchar_t NULL
characters. During appending or copying, these routines do not check for an overflow
condition of the receiving string. In the following, ws, ws1, and ws2 point to
wide-character strings terminated by a wchar_t NULL.

The wcscat() and wscat() functions append a copy of the wide-character string
pointed to by ws2 (including the terminating null wide-character code) to the end of
the wide-character string pointed to by ws1. The initial wide-character code of ws2
overwrites the null wide-character code at the end of ws1. If copying takes place
between objects that overlap, the behavior is undefined. Both functions return s1; no
return value is reserved to indicate an error.

The wcsncat() and wsncat() functions append not more than n wide-character
codes (a null wide-character code and wide-character codes that follow it are not
appended) from the array pointed to by ws2 to the end of the wide-character string
pointed to by ws1. The initial wide-character code of ws2 overwrites the null
wide-character code at the end of ws1. A terminating null wide-character code is
always appended to the result. Both functions return ws1; no return value is reserved
to indicate an error.

The wcscmp() and wscmp() functions compare the wide-character string pointed to
by ws1 to the wide-character string pointed to by ws2. The sign of a non-zero return
value is determined by the sign of the difference between the values of the first pair of
wide-character codes that differ in the objects being compared. Upon completion, both
functions return an integer greater than, equal to, or less than zero, if the
wide-character string pointed to by ws1 is greater than, equal to, or less than the
wide-character string pointed to by ws2.

wcstring(3C)

ISO C++

DESCRIPTION

wcscat(), wscat()

wcsncat(),
wsncat()

wcscmp(),
wscmp()

602 man pages section 3: Basic Library Functions • Last Revised 28 Jan 1998

The wcsncmp() and wsncmp() functions compare not more than n wide-character
codes (wide-character codes that follow a null wide character code are not compared)
from the array pointed to by ws1 to the array pointed to by ws2. The sign of a non-zero
return value is determined by the sign of the difference between the values of the first
pair of wide-character codes that differ in the objects being compared. Upon successful
completion, both functions return an integer greater than, equal to, or less than zero, if
the possibly null-terminated array pointed to by ws1 is greater than, equal to, or less
than the possibly null-terminated array pointed to by ws2.

The wcscpy() and wscpy() functions copy the wide-character string pointed to by
ws2 (including the terminating null wide-character code) into the array pointed to by
ws1. If copying takes place between objects that overlap, the behavior is undefined.
Both functions return ws1; no return value is reserved to indicate an error.

The wcsncpy() and wsncpy() functions copy not more than n wide-character codes
(wide-character codes that follow a null wide character code are not copied) from the
array pointed to by ws2 to the array pointed to by ws1. If copying takes place between
objects that overlap, the behavior is undefined. If the array pointed to by ws2 is a
wide-character string that is shorter than n wide-character codes, null wide-character
codes are appended to the copy in the array pointed to by ws1, until a total n
wide-character codes are written. Both functions return ws1; no return value is
reserved to indicate an error.

The wcslen() and wslen() functions compute the number of wide-character codes
in the wide-character string to which ws points, not including the terminating null
wide-character code. Both functions return ws; no return value is reserved to indicate
an error.

The wcschr() and wschr() functions locate the first occurrence of wc in the
wide-character string pointed to by ws. The value of wc must be a character
representable as a type wchar_t and must be a wide-character code corresponding to
a valid character in the current locale. The terminating null wide-character code is
considered to be part of the wide-character string. Upon completion, both functions
return a pointer to the wide-character code, or a null pointer if the wide-character
code is not found.

The wcsrchr() and wsrchr() functions locate the last occurrence of wc in the
wide-character string pointed to by ws. The value of wc must be a character
representable as a type wchar_t and must be a wide-character code corresponding to
a valid character in the current locale. The terminating null wide-character code is
considered to be part of the wide-character string. Upon successful completion, both
functions return a pointer to the wide-character code, or a null pointer if wc does not
occur in the wide-character string.

The windex() and wrindex() functions behave the same as wschr() and
wsrchr(), respectively.

wcstring(3C)

wcsncmp(),
wsncmp()

wcscpy(), wscpy()

wcsncpy(),
wsncpy()

wcslen(), wslen()

wcschr(), wschr()

wcsrchr(),
wsrchr()

windex(),
wrindex()

Basic Library Functions 603

The wcspbrk() and wspbrk() functions locate the first occurrence in the wide
character string pointed to by ws1 of any wide-character code from the wide-character
string pointed to by ws2. Upon successful completion, the function returns a pointer to
the wide-character code, or a null pointer if no wide-character code from ws2 occurs in
ws1.

The wcswcs() function locates the first occurrence in the wide-character string
pointed to by ws1 of the sequence of wide-character codes (excluding the terminating
null wide-character code) in the wide-character string pointed to by ws2. Upon
successful completion, the function returns a pointer to the located wide-character
string, or a null pointer if the wide-character string is not found. If ws2 points to a
wide-character string with zero length, the function returns ws1.

The wcsspn() and wsspn() functions compute the length of the maximum initial
segment of the wide-character string pointed to by ws1 which consists entirely of
wide-character codes from the wide-character string pointed to by ws2. Both functions
return the length ws1; no return value is reserved to indicate an error.

The wcscspn() and wscspn() functions compute the length of the maximum initial
segment of the wide-character string pointed to by ws1 which consists entirely of
wide-character codes not from the wide-character string pointed to by ws2. Both
functions return the length of the initial substring of ws1; no return value is reserved
to indicate an error.

A sequence of calls to the wcstok() and wstok() functions break the wide-character
string pointed to by ws1 into a sequence of tokens, each of which is delimited by a
wide-character code from the wide-character string pointed to by ws2.

The third argument points to a caller-provided wchar_t pointer into which the
wcstok() function stores information necessary for it to continue scanning the same
wide-character string. This argument is not available with the XPG4 and SUS versions
of wcstok(), nor is it available with the wstok() function. See standards(5).

The first call in the sequence has ws1 as its first argument, and is followed by calls
with a null pointer as their first argument. The separator string pointed to by ws2 may
be different from call to call.

The first call in the sequence searches the wide-character string pointed to by ws1 for
the first wide-character code that is not contained in the current separator string
pointed to by ws2. If no such wide-character code is found, then there are no tokens in
the wide-character string pointed to by ws1, and wcstok() and wstok() return a
null pointer. If such a wide-character code is found, it is the start of the first token.

The wcstok() and wstok() functions then search from that point for a
wide-character code that is contained in the current separator string. If no such
wide-character code is found, the current token extends to the end of the
wide-character string pointed to by ws1, and subsequent searches for a token will

wcstring(3C)

wcspbrk(),
wspbrk()

wcswcs()

wcsspn(), wsspn()

wcscspn(),
wscspn()

wcstok(), wstok()

Default and other
standards

604 man pages section 3: Basic Library Functions • Last Revised 28 Jan 1998

return a null pointer. If such a wide-character code is found, it is overwritten by a null
wide character, which terminates the current token. The wcstok() and wstok()
functions save a pointer to the following wide-character code, from which the next
search for a token will start.

Each subsequent call, with a null pointer as the value of the first argument, starts
searching from the saved pointer and behaves as described above.

Upon successful completion, both functions return a pointer to the first wide-character
code of a token. Otherwise, if there is no token, a null pointer is returned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

CSI Enabled

malloc(3C), string(3C), wcswidth(3C), wcwidth(3C), attributes(5),
standards(5)

wcstring(3C)

ATTRIBUTES

SEE ALSO

Basic Library Functions 605

wcswidth – number of column positions of a wide-character string

#include <wchar.h>

int wcswidth(const wchar_t *pwcs, size_t n);

The wcswidth() function determines the number of column positions required for n
wide-character codes (or fewer than n wide-character codes if a null wide-character
code is encountered before n wide-character codes are exhausted) in the string pointed
to by pwcs.

The wcswidth() function either returns 0 (if pwcs points to a null wide-character
code), or returns the number of column positions to be occupied by the wide-character
string pointed to by pwcs, or returns −1 (if any of the first n wide-character codes in
the wide-character string pointed to by pwcs is not a printing wide-character code).

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

CSI Enabled

setlocale(3C), wcwidth(3C), attributes(5)

wcswidth(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

606 man pages section 3: Basic Library Functions • Last Revised 20 Dec 1996

wcsxfrm, wsxfrm – wide character string transformation

#include <wchar.h>

size_t wcsxfrm(wchar_t *ws1, const wchar_t *ws2, size_t n);

size_t wsxfrm(wchar_t *ws1, const wchar_t *ws2, size_t n);

The wcsxfrm() and wcsxfrm() functions transform the wide character string
pointed to by ws2 and place the resulting wide character string into the array pointed
to by ws1. The transformation is such that if either the wcscmp(3C) or wscmp(3C)
functions are applied to two transformed wide strings, they return a value greater
than, equal to, or less than 0, corresponding to the result of the wcscoll(3C) or
wscoll(3C) function applied to the same two original wide character strings. No
more than n wide-character codes are placed into the resulting array pointed to by
ws1, including the terminating null wide-character code. If n is 0, ws1 is permitted to
be a null pointer. If copying takes place between objects that overlap, the behavior is
undefined.

The wcsxfrm() and wsxfrm() functions return the length of the transformed wide
character string (not including the terminating null wide-character code). If the value
returned is n or more, the contents of the array pointed to by ws1 are indeterminate.

On error, wcsxfrm() and wsxfrm() return (size_t)−1 and set errno to indicate
the error.

The wcsxfrm() and wsxfrm() functions may fail if:

EINVAL The wide character string pointed to by ws2 contains
wide-character codes outside the domain of the collating sequence.

ENOSYS The function is not supported.

The transformation function is such that two transformed wide character strings can
be ordered by the wcscmp() or wscmp() functions as appropriate to collating
sequence information in the program’s locale (category LC_COLLATE).

The fact that when n is 0, ws1 is permitted to be a null pointer, is useful to determine
the size of the ws1 array prior to making the transformation.

Because no return value is reserved to indicate an error, an application wishing to
check for error situations should set errno to 0, call wcsxfrm() or wsxfrm(), then
check errno and if it is non-zero, assume an error has occurred.

The wcsxfrm() and wsxfrm() functions can be used safely in multithreaded
applications as long as setlocale(3C) is not being called to change the locale.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

wcsxfrm(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

Basic Library Functions 607

MT-Level MT-Safe with exceptions

CSI Enabled

setlocale(3C), wcscmp(3C), wcscoll(3C), wscmp(3C), wscoll(3C),
attributes(5)

wcsxfrm(3C)

SEE ALSO

608 man pages section 3: Basic Library Functions • Last Revised 20 Dec 1996

wctob – wide-character to single-byte conversion

#include <stdio.h>

#include <wchar.h>

int wctob(wint_t c);

The wctob() function determines whether c corresponds to a member of the
extended character set whose character representation is a single byte when in the
initial shift state.

The behavior of this function is affected by the LC_CTYPE category of the current
locale. See environ(5)

The wctob() function returns EOF if c does not correspond to a character with length
one in the initial shift state. Otherwise, it returns the single-byte representation of that
character.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

btowc(3C), setlocale(3C), attributes(5), environ(5)

The wctob() function can be used safely in multithreaded applications, as long as
setlocale(3C) is not being called to change the locale.

wctob(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

Basic Library Functions 609

wctomb – convert a wide-character code to a character

#include <stdlib.h>

int wctomb(char *s, wchar_t wchar);

The wctomb() function determines the number of bytes needed to represent the
character corresponding to the wide-character code whose value is wchar. It stores the
character representation (possibly multiple bytes) in the array object pointed to by s (if
s is not a null pointer). At most MB_CUR_MAX bytes are stored.

A call with s as a null pointer causes this function to return 0. The behavior of this
function is affected by the LC_CTYPE category of the current locale.

If s is a null pointer, wctomb() returns 0 value. If s is not a null pointer, wctomb()
returns −1 if the value of wchar does not correspond to a valid character, or returns the
number of bytes that constitute the character corresponding to the value of wchar.

In no case will the value returned be greater than the value of the MB_CUR_MAX macro.

No errors are defined.

The wctomb() function can be used safely in a multithreaded application, as long as
setlocale(3C) is not being called to change the locale.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

CSI Enabled

mblen(3C), mbstowcs(3C), mbtowc(3C), setlocale(3C), wcstombs(3C),
attributes(5)

wctomb(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

610 man pages section 3: Basic Library Functions • Last Revised 20 Dec 1996

wctrans – define character mapping

#include <wctype.h>

wctrans_t wctrans(const char *charclass);

The wctrans() function is defined for valid character mapping names identified in
the current locale. The charclass is a string identifying a generic character mapping
name for which codeset-specific information is required. The following character
mapping names are defined in all locales − "tolower" and "toupper".

The function returns a value of type wctrans_t, which can be used as the second
argument to subsequent calls of towctrans(3C). The wctrans() function
determines values of wctrans_t according to the rules of the coded character set
defined by character mapping information in the program’s locale (category
LC_CTYPE). The values returned by wctrans() are valid until a call to
setlocale(3C) that modifies the category LC_CTYPE.

The wctrans() function returns 0 if the given character mapping name is not valid
for the current locale (category LC_CTYPE), otherwise it returns a non-zero object of
type wctrans_t that can be used in calls to towctrans(3C).

The wctrans() function may fail if:

EINVAL The character mapping name pointed to by charclass is not valid in
the current locale.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

CSI Enabled

setlocale(3C), towctrans(3C), attributes(5)

wctrans(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Basic Library Functions 611

wctype – define character class

#include <wchar.h>

wctype_t wctype(const char *charclass);

The wctype() function is defined for valid character class names as defined in the
current locale. The charclass is a string identifying a generic character class for which
codeset-specific type information is required. The following character class names are
defined in all locales:

alnum alpha blank

cntrl digit graph

lower print punct

space upper xdigit

Additional character class names defined in the locale definition file (category
LC_CTYPE) can also be specified.

The function returns a value of type wctype_t, which can be used as the second
argument to subsequent calls of iswctype(3C). wctype() determines values of
wctype_t according to the rules of the coded character set defined by character type
information in the program’s locale (category LC_CTYPE). The values returned by
wctype() are valid until a call to setlocale(3C) that modifies the category
LC_CTYPE.

The wctype() function returns 0 if the given character class name is not valid for the
current locale (category LC_CTYPE); otherwise it returns an object of type wctype_t
that can be used in calls to iswctype().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

CSI Enabled

iswctype(3C), setlocale(3C), attributes(5)

wctype(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

612 man pages section 3: Basic Library Functions • Last Revised 20 Dec 1996

wcwidth – number of column positions of a wide-character code

#include <wchar.h>

int wcwidth(wchar_t wc);

The wcwidth() function determines the number of column positions required for the
wide character wc. The value of wc must be a character representable as a wchar_t,
and must be a wide-character code corresponding to a valid character in the current
locale.

The wcwidth() function either returns 0 (if wc is a null wide-character code), or
returns the number of column positions to be occupied by the wide-character code wc,
or returns −1 (if wc does not correspond to a printing wide-character code).

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

CSI Enabled

setlocale(3C), wcswidth(3C), attributes(5)

wcwidth(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Basic Library Functions 613

wmemchr – find a wide-character in memory

#include <wchar.h>

wchar_t *wmemchr(const wchar_t *ws, wchar_t wc, size_t n);

#include <wchar.h>

const wchar_t *wmemchr(const wchar_t *ws, wchar_t wc, size_t n);

#include <cwchar>

wchar_t *std::wmemchr(wchar_t *ws, wchar_t wc, size_t n);

The wmemchr() function locates the first occurrence of wc in the initial n
wide-characters of the object pointed to be ws. This function is not affected by locale
and all wchar_t values are treated identically. The null wide-character and wchar_t
values not corresponding to valid characters are not treated specially.

If n is 0, ws must be a valid pointer and the function behaves as if no valid occurrence
of wc is found.

The wmemchr() function returns a pointer to the located wide-character, or a null
pointer if the wide-character does not occur in the object.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

wmemcmp(3C), wmemcpy(3C), wmemmove(3C), wmemset(3C), attributes(5)

wmemchr(3C)

NAME

SYNOPSIS

ISO C++

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

614 man pages section 3: Basic Library Functions • Last Revised 11 Nov 1999

wmemcmp – compare wide-characters in memory

#include <wchar.h>

int wmemcmp(const wchar_t *ws1, const wchar_t *ws2, size_t n);

The wmemcmp() function compares the first n wide-characters of the object pointed to
by ws1 to the first n wide-characters of the object pointed to by ws2. This function is
not affected by locale and all wchar_t values are treated identically. The null
wide-character and wchar_t values not corresponding to valid characters are not
treated specially.

If n is zero, ws1 and ws2 must be a valid pointers and the function behaves as if the
two objects compare equal.

The wmemcmp() function returns an integer greater than, equal to, or less than 0,
accordingly as the object pointed to by ws1 is greater than, equal to, or less than the
object pointed to by ws2.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

wmemchr(3C), wmemcpy(3C), wmemmove(3C), wmemset(3C), attributes(5)

wmemcmp(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Basic Library Functions 615

wmemcpy – copy wide-characters in memory

#include <wchar.h>

wchar_t *wmemcpy(wchar_t *ws1, const wchar_t *ws2, size_t n);

The wmemcpy() function copies n wide-characters from the object pointed to by ws2
to the object pointed to be ws1. This function is not affected by locale and all wchar_t
values are treated identically. The null wide-character and wchar_t values not
corresponding to valid characters are not treated specially.

If n is zero, ws1 and ws2 must be a valid pointers, and the function copies zero
wide-characters.

The wmemcpy() function returns the value of ws1.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

wmemchr(3C), wmemcmp(3C), wmemmove(3C), wmemset(3C), attributes(5)

wmemcpy(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

616 man pages section 3: Basic Library Functions • Last Revised 3 Feb 1998

wmemmove – copy wide-characters in memory with overlapping areas

#include <wchar.h>

wchar_t *wmemmove(wchar_t *ws1, const wchar_t *ws2, size_t n);

The wmemmove() function copies n wide-characters from the object pointed to by ws2
to the object pointed to by ws1. Copying takes place as if the n wide-characters from
the object pointed to by ws2 are first copied into a temporary array of n
wide-characters that does not overlap the objects pointed to by ws1 or ws2, and then
the n wide-characters from the temporary array are copied into the object pointed to
by ws1.

This function is not affected by locale and all wchar_t values are treated identically.
The null wide-character and wchar_t values not corresponding to valid characters
are not treated specially.

If n is 0, ws1 and ws2 must be a valid pointers, and the function copies zero
wide-characters.

The wmemmove() function returns the value of ws1.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

wmemchr(3C), wmemcmp(3C), wmemcpy(3C), wmemset(3C), attributes(5)

wmemmove(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Basic Library Functions 617

wmemset – set wide-characters in memory

#include <wchar.h>

wchar_t *wmemset(wchar_t *ws, wchar_t wc, size_t n);

The wmemset() function copies the value of wc into each of the first n wide-characters
of the object pointed to by ws. This function is not affected by locale and all wchar_t
values are treated identically. The null wide-character and wchar_t values not
corresponding to valid characters are not treated specially.

If n is 0, ws must be a valid pointer and the function copies zero wide-characters.

The wmemset() functions returns the value of ws.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

wmemchr(3C), wmemcmp(3C), wmemcpy(3C), wmemmove(3C), attributes(5)

wmemset(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

618 man pages section 3: Basic Library Functions • Last Revised 3 Feb 1998

wordexp, wordfree – perform word expansions

#include <wordexp.h>

int wordexp(const char *words, wordexp_t *pwordexp, int flags);

void wordfree(wordexp_t *pwordexp);

The wordexp() function performs word expansions, subject to quoting, and places
the list of expanded words into the structure pointed to by pwordexp.

The wordfree() function frees any memory allocated by wordexp() associated
with pwordexp.

The words argument is a pointer to a string containing one or more words to be
expanded. The expansions will be the same as would be performed by the shell if
words were the part of a command line representing the arguments to a utility.
Therefore, words must not contain an unquoted NEWLINE or any of the unquoted
shell special characters:

| & ; < >

except in the context of command substitution. It also must not contain unquoted
parentheses or braces, except in the context of command or variable substitution. If the
argument words contains an unquoted comment character (number sign) that is the
beginning of a token, wordexp() may treat the comment character as a regular
character, or may interpret it as a comment indicator and ignore the remainder of
words.

The structure type wordexp_t is defined in the header <wordexp.h> and includes at
least the following members:

size_t we_wordc Count of words matched by words.

char **we_wordv Pointer to list of expanded words.

size_t we_offs Slots to reserve at the beginning of
pwordexp−>we_wordv.

The wordexp() function stores the number of generated words into
pwordexp−>we_wordc and a pointer to a list of pointers to words in
pwordexp−>we_wordv. Each individual field created during field splitting is a
separate word in the pwordexp−>we_wordv list. The words are in order. The first
pointer after the last word pointer will be a null pointer.

It is the caller’s responsibility to allocate the storage pointed to by pwordexp. The
wordexp() function allocates other space as needed, including memory pointed to by
pwordexp−>we_wordv. The wordfree() function frees any memory associated with
pwordexp from a previous call to wordexp().

wordexp(3C)

NAME

SYNOPSIS

DESCRIPTION

words Argument

pwordexp Argument

Basic Library Functions 619

The flags argument is used to control the behavior of wordexp(). The value of flags is
the bitwise inclusive OR of zero or more of the following constants, which are defined
in <wordexp.h>:

WRDE_APPEND Append words generated to the ones from a previous call to
wordexp().

WRDE_DOOFFS Make use of pwordexp−>we_offs. If this flag is set,
pwordexp−>we_offs is used to specify how many NULL pointers
to add to the beginning of pwordexp−>we_wordv. In other words,
pwordexp−>we_wordv will point to pwordexp−>we_offs NULL
pointers, followed by pwordexp−>we_wordc word pointers,
followed by a NULL pointer.

WRDE_NOCMD Fail if command substitution is requested.

WRDE_REUSE The pwordexp argument was passed to a previous successful call to
wordexp(), and has not been passed to wordfree(). The result
will be the same as if the application had called wordfree() and
then called wordexp() without WRDE_REUSE.

WRDE_SHOWERR Do not redirect stderr to /dev/null.

WRDE_UNDEF Report error on an attempt to expand an undefined shell variable.

The WRDE_APPEND flag can be used to append a new set of words to those generated
by a previous call to wordexp(). The following rules apply when two or more calls to
wordexp() are made with the same value of pwordexp and without intervening calls
to wordfree():

1. The first such call must not set WRDE_APPEND. All subsequent calls must set it.

2. All of the calls must set WRDE_DOOFFS, or all must not set it.

3. After the second and each subsequent call, pwordexp−>we_wordv will point to a
list containing the following:

a. zero or more NULL pointers, as specified by WRDE_DOOFFS and
pwordexp−>we_offs.

b. pointers to the words that were in the pwordexp−>we_wordv list before the call,
in the same order as before.

c. pointers to the new words generated by the latest call, in the specified order.

4. The count returned in pwordexp−>we_wordc will be the total number of words
from all of the calls.

5. The application can change any of the fields after a call to wordexp(), but if it
does it must reset them to the original value before a subsequent call, using the
same pwordexp value, to wordfree() or wordexp() with the WRDE_APPEND or
WRDE_REUSE flag.

If words contains an unquoted:

wordexp(3C)

flags Argument

620 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

NEWLINE | & ; < > () { }in an inappropriate context, wordexp() will fail, and
the number of expanded words will be zero.

Unless WRDE_SHOWERR is set in flags, wordexp() will redirect stderr to /dev/null
for any utilities executed as a result of command substitution while expanding words.

If WRDE_SHOWERR is set, wordexp() may write messages to stderr if syntax errors are
detected while expanding words. If WRDE_DOOFFS is set, then pwordexp−> we_offs
must have the same value for each wordexp() call and wordfree() call using a
given pwordexp.

The following constants are defined as error return values:

WRDE_BADCHAR One of the unquoted characters:

NEWLINE | & ; < > () { } appears in words in an
inappropriate context.

WRDE_BADVAL Reference to undefined shell variable when WRDE_UNDEF is set in
flags.

WRDE_CMDSUB Command substitution requested when WRDE_NOCMD was set in
flags.

WRDE_NOSPACE Attempt to allocate memory failed.

WRDE_SYNTAX Shell syntax error, such as unbalanced parentheses or
unterminated string.

On successful completion, wordexp() returns 0.

Otherwise, a non-zero value as described in <wordexp.h> is returned to indicate an
error. If wordexp() returns the value WRDE_NOSPACE, then pwordexp−>we_wordc
and pwordexp−>we_wordv will be updated to reflect any words that were successfully
expanded. In other cases, they will not be modified.

The wordfree() function returns no value.

No errors are defined.

This function is intended to be used by an application that wants to do all of the
shell’s expansions on a word or words obtained from a user. For example, if the
application prompts for a filename (or list of filenames) and then uses wordexp() to
process the input, the user could respond with anything that would be valid as input
to the shell.

The WRDE_NOCMD flag is provided for applications that, for security or other reasons,
want to prevent a user from executing shell command. Disallowing unquoted shell
special characters also prevents unwanted side effects such as executing a command or
writing a file.

wordexp(3C)

RETURN VALUES

ERRORS

USAGE

Basic Library Functions 621

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

fnmatch(3C), glob(3C), attributes(5)

wordexp(3C)

ATTRIBUTES

SEE ALSO

622 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

wsprintf – formatted output conversion

#include <stdio.h>

#include <widec.h>

int wsprintf(wchar_t *s, const char *format, /* arg */ ...););

The wsprintf() function outputs a Process Code string ending with a Process Code
(wchar_t) null character. It is the user’s responsibility to allocate enough space for
this wchar_t string.

This returns the number of Process Code characters (excluding the null terminator)
that have been written. The conversion specifications and behavior of wsprintf()
are the same as the regular sprintf(3C) function except that the result is a Process
Code string for wsprintf(), and on Extended Unix Code (EUC) character string
for sprintf().

Upon successful completion, wsprintf() returns the number of characters printed.
Otherwise, a negative value is returned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

wsscanf(3C), printf(3C), scanf(3C), sprintf(3C), attributes(5)

wsprintf(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Basic Library Functions 623

wsscanf – formatted input conversion

#include<stdio.h>

#include <widec.h>

int wsscanf(wchar_t *s, const char *format, /* pointer */ ...);

The wsscanf() function reads Process Code characters from the Process Code string
s, interprets them according to the format, and stores the results in its arguments. It
expects, as arguments, a control string format, and a set of pointer arguments indicating
where the converted input should be stored. The results are undefined if there are
insufficient args for the format. If the format is exhausted while args remain, the excess
args are simply ignored.

The conversion specifications and behavior of wsscanf() are the same as the regular
sscanf(3C) function except that the source is a Process Code string for wsscanf()
and on Extended Unix Code (EUC) character string for sscanf(3C).

Upon successful completion, wsscanf() returns the number of characters matched.
Otherwise, it returns a negative value.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

wsprintf(3C), printf(3C), scanf(3C), attributes(5)

wsscanf(3C)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

624 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

wstring, wscasecmp, wsncasecmp, wsdup, wscol – Process Code string operations

#include <widec.h>

int wscasecmp(const wchar_t *s1, const wchar_t *s2);

int wsncasecmp(const wchar_t *s1, const wchar_t *s2, int n);

wchar_t *wsdup(const wchar_t *s);

int wscol(const wchar_t *s);

These functions operate on Process Code strings terminated by wchar_t null
characters. During appending or copying, these routines do not check for an overflow
condition of the receiving string. In the following, s, s1, and s2 point to Process Code
strings terminated by a wchar_t null.

The wscasecmp() function compares its arguments, ignoring case, and returns an
integer greater than, equal to, or less than 0, depending upon whether s1 is
lexicographically greater than, equal to, or less than s2. It makes the same comparison
but compares at most n Process Code characters. The four Extended Unix Code (EUC)
codesets are ordered from lowest to highest as 0, 2, 3, 1 when characters from different
codesets are compared.

The wsdup() function returns a pointer to a new Process Code string, which is a
duplicate of the string pointed to by s. The space for the new string is obtained using
malloc(3C). If the new string cannot be created, a null pointer is returned.

The wscol() function returns the screen display width (in columns) of the Process
Code string s.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

malloc(3C), string(3C), wcstring(3C), attributes(5)

wstring(3C)

NAME

SYNOPSIS

DESCRIPTION

wscasecmp(),
wsncasecmp()

wsdup()

wscol()

ATTRIBUTES

SEE ALSO

Basic Library Functions 625

wstring(3C)

626 man pages section 3: Basic Library Functions • Last Revised 29 Dec 1996

Index

Numbers and Symbols
binary output — fwrite, 177

A
abort — terminate the process abnormally, 21
abs — return absolute value of integer, 22
accounting

time accounting for current process —
times, 541

acquire and release stream lock —
flockfile, 128
funlockfile, 128

additional severities
define — addsev, 23

address of symbol
get address in shared object or executable —

dlsym, 91
addsev — define additional severities, 23
addseverity — build a list of severity levels for

an application for use with fmtmsg, 24
alarm

schedule signal after interval in
microseconds — ualarm, 562

alphasort — scan a directory, 424
applications

build a list of severity levels for use with
fmtmsg — addseverity, 24

display a message on stderr or system
console — fmtmsg, 130

get entries from symbol table — nlist, 355

arithmetic
compute the quotient and remainder —

div, 72
arithmetic, 48-bit integer

generate uniformly distributed
pseudo-random numbers — drand48, 93

ascftime — convert date and time to
string, 484

assert — verify program assertion, 26
associate a stream with a file descriptor —

fdopen, 112
atexit — register a function to run at process

termination or object unloading, 27
atof — convert string to double-precision

number, 502
atoi — string conversion routines, 505
atol — string conversion routines, 505
atoll — string conversion routines, 505
attropen — open a file, 28

B
base-64 ASCII characters

convert from long integer — l64a, 20
convert to long integer — a64l, 20

basename — return the last element of path
name, 29

bcmp — operates on variable length strings of
bytes, 35

bcopy — operates on variable length strings of
bytes, 35

binary input — fread, 150

627

binary search of sorted table
— bsearch, 33

binary search trees, manage
— tdelete, 556
— tfind, 556
— tsearch, 556
— twalk, 556

bind_textdomain_codeset — message handling
functions, 236

bindtextdomain — message handling
functions, 236

bit and byte operations
find first set bit — ffs, 117

bsd_signal — simplified signal facilities, 32
bsdmalloc — memory allocator, 30
bsearch — binary search a sorted table, 33
bstring — bit and byte string operations, 35
btowc — single-byte to wide-character

conversion, 36
buffering, assign to stream

— setbuffer, 439
— setlinebuf, 439

byte swap — swab, 513
bzero — operates on variable length strings of

bytes, 35

C
C Compilation

close a shared object — dlclose, 75
create new file from dynamic object

component — dldump, 76
get address of symbol in shared object or

executable — dlsym, 91
get diagnostic information — dlerror, 82
open a shared object — dlopen, 87

catclose — close a message catalog, 38
catgets — read a program message, 37
catopen — open a message catalog, 38
cfgetispeed — get input baud rate, 41
cfgetospeed — get output baud rate, 41
cfsetispeed — set input baud rate, 42
cfsetospeed — set output baud rate, 42
cftime — convert date and time to string, 484
character handling

— ctype, 59
— isalnum, 59

character handling (continued)
— isalpha, 59
— isascii, 59
— iscntrl, 59
— isdigit, 59
— isgraph, 59
— islower, 59
— isprint, 59
— ispunct, 59
— isspace, 59
— isupper, 59
— isxdigit, 59

clock — report CPU time used, 43
close or iterate over open file descriptors —

closefrom, 45
close or iterate over open file descriptors —

fdwalk, 45
close a directory stream — closedir, 44
close a shared object — dlclose, 75
close a stream — fclose, 108
closedir — close a directory stream, 44
closefrom — close or iterate over open file

descriptors, 45
closelog — control system log, 523
code conversion allocation function —

iconv_open, 274
code conversion deallocation function —

iconv_close, 273
code conversion for Process Code and File Code

— strtows, 510
— wstostr, 510

code conversion function — iconv, 268
column positions of a wide-character code —

wcwidth, 613
column positions of a wide-character string —

wcswidth, 606
command options

get option letter from argument vector —
getopt, 212

command suboptions
parse suboptions from a string —

getsubopt, 233
compare wide-characters in memory —

wmemcmp, 615
compile and execute regular expressions

— re_comp, 412
— re_exec, 412

confstr — get configurable variables, 47

628 man pages section 3: Basic Library Functions • May 2002

control system log
— closelog, 523
— openlog, 523
— setlogmask, 523
— syslog, 523

convert date and time to string — strftime, 484
convert formatted input — fscanf, 425
convert formatted input — scanf, 425
convert formatted input — sscanf, 425
convert formatted input — vfscanf, 425
convert formatted input — vscanf, 425
convert formatted input — vsscanf, 425
convert formatted wide-character input —

fwscanf, 178
convert formatted wide-character input —

swscanf, 178
convert formatted wide-character input —

vfwscanf, 178
convert formatted wide-character input —

vswscanf, 178
convert formatted wide-character input —

vwscanf, 178
convert formatted wide-character input —

wscanf, 178
convert string to unsigned long — strtoul, 508
convert wide character string to

double-precision number — wcstod, 594
convert date and time to string — strftime

ascftime, 484
cftime, 484

convert wide character string to
double-precision number — watof
watof, 594

convert wide character string to
double-precision number — wstod
wstod, 594

convert a character string to a wide-character
string — mbstowcs, 325

convert a character string to a wide-character
string (restartable) — mbsrtowcs, 323

convert a character to a wide-character code —
mbtowc, 326

convert a character to a wide-character code
(restartable) — mbrtowc, 320

convert a wide-character code to a character —
wctomb, 610

convert a wide-character code to a character
(restartable) — wcrtomb, 587

convert a wide-character string to a character
string — wcstombs, 598

convert a wide-character string to a character
string (restartable) — wcsrtombs, 591

convert date and time to wide character string
— wcsftime, 590

convert floating-point number to string
— ecvt, 98
— fcvt, 98
— gcvt, 98

convert monetary value to string
—strfmon, 480

convert numbers to strings
— econvert, 96
— fconvert, 96
— fprintf, 376
— gconvert, 96
— printf, 376
— qeconvert, 96
— qfconvert, 96
— qgconvert, 96
— seconvert, 96
— sfconvert, 96
— sgconvert, 96
— sprintf, 376
— vfprintf, 376
— vprintf, 376

convert string to double-precision number
— atof, 502
— strtod, 502

convert to wchar_t strings
wsprintf, 623

convert wide character string to unsigned long
— wcstoul, 599

copy wide-characters in memory —
wmemcpy, 616

copy wide-characters in memory with
overlapping areas — wmemmove, 617

CPU time
report for calling process — clock, 43

CPU-use
prepare execution profile — monitor, 343

create a temporary file — tmpfile, 542
create new file from dynamic object component

— dldump, 76
crypt — string encoding function, 51
cset — get information on EUC codesets, 52
csetcol — get information on EUC codesets, 52

Index 629

csetlen — get information on EUC codesets, 52
csetno — get information on EUC codesets, 52
ctermid — generate path name for controlling

terminal, 53
ctermid_r — generate path name for controlling

terminal, 53
ctype — character handling, 59
current location of a named directory stream —

telldir, 539
current working directory

get pathname — getcwd, 186
cuserid — get character-string representation of

login name of user, 62

D
data base subroutines — dbm, 63

dbmclose, 63
dbminit, 63
delete, 63
fetch, 63
firstkey, 63
nextkey, 63
store, 63

database functions — dbm_clearerr, 350
database functions — dbm_close, 350
database functions — dbm_delete, 350
database functions — dbm_error, 350
database functions — dbm_fetch, 350
database functions — dbm_firstkey, 350
database functions — dbm_nextkey, 350
database functions — dbm_open, 350
database functions — dbm_store, 350
database functions — ndbm, 350
date and time

convert to string — asctime, 54
convert to string — asctime_r, 54
convert to string — ctime, 54
convert to string — ctime_r, 54
convert to string — gmtime, 54
convert to string — gmtime_r, 54
convert to string — localtime, 54
convert to string — localtime_r, 54
convert to string — tzset, 54
convert user format date and time —

getdate, 188
— gettimeofday, 240

date and time conversion — strptime, 496
dbm — data base subroutines, 63
dbm_clearerr — database functions, 350
dbm_close — database functions, 350
dbm_delete — database functions, 350
dbm_error — database functions, 350
dbm_fetch — database functions, 350
dbm_firstkey — database functions, 350
dbm_nextkey — database functions, 350
dbm_open — database functions, 350
dbm_store — database functions, 350
dbmclose — data base subroutines, 63
dbminit — data base subroutines, 63
dcgettext — message handling functions, 236
dcngettext — message handling functions, 236
debugging memory allocator

— calloc, 584
— cfree, 584
— free, 584
— mallinfo, 584
— malloc, 584
— mallopt, 584
— memalign, 584
— realloc, 584
— valloc, 584

decimal record from double-precision floating
— double_to_decimal, 124

decimal record from extended-precision floating
— extended_to_decimal, 124

decimal record from quadruple-precision
floating — quadruple_to_decimal, 124

decimal record from single-precision floating —
single_to_decimal, 124

decimal record to double-precision floating —
decimal_to_double, 65

decimal record to extended-precision floating —
decimal_to_extended, 65

decimal record to quadruple-precision floating
— decimal_to_quadruple, 65

decimal record to single-precision floating —
decimal_to_single, 65

decimal_to_double — decimal record to
double-precision floating, 65

decimal_to_extended — decimal record to
extended-precision floating, 65

decimal_to_quadruple — decimal record to
quadruple-precision floating, 65

630 man pages section 3: Basic Library Functions • May 2002

decimal_to_single — decimal record to
single-precision floating, 65

decompose floating-point number
— modf, 342
— modff, 342

define character class — wctype, 612
define character mapping — wctrans, 611
define default catalog — setcat, 440
define the label for pfmt() and lfmt(). —

setlabel, 448
delete — data base subroutines, 63
detach a name from a STREAMS-based file

descriptor — fdetach, 110
determine conversion object status —

mbsinit, 322
device number

manage — makedev, major, minor, 308
dgettext — message handling functions, 236
difftime — computes the difference between

two calendar times, 67
directio — provide advice to file system, 68
directories

get current working directory pathname —
getwd, 257

get pathname of current working directory
— getcwd, 186

directory operations
— alphasort, 424
— scandir, 424

dirname — report parent directory name of file
path name, 70

display error message in standard format —
pfmt, 361

display error message in standard format and
pass to logging and monitoring services —
lfmt, 291

display error message in standard format and
pass to logging and monitoring services —
vlfmt, 568

display error message in standard format and
pass to logging and monitoring services —
vpfmt, 570

div — compute quotient and remainder, 72
division and remainder operations

— div, 72
— ldiv, 72

dladdr — translate address to symbolic
information, 73

dladdr1 — translate address to symbolic
information, 73

dlclose — close a shared object, 75
dldump — create new file from dynamic object

component of calling process, 76
dlerror — get diagnostic information, 82
dlinfo — dynamic load information, 83
dlopen — open a shared object, 87
dlsym — get address of symbol in shared object

or executable, 91
dngettext — message handling functions, 236
double_to_decimal — decimal record from

double-precision floating, 124
dup2 — duplicate an open file descriptor, 95
duplicate an open file descriptor — dup2, 95
dynamic linking

close a shared object — dlclose, 75
create new file from dynamic object

component — dldump, 76
get address of symbol in shared object or

executable — dlsym, 91
get diagnostic information — dlerror, 82
open a shared object — dlopen, 87

dynamic load information — dlinfo, 83

E
econvert — convert number to ASCII, 96
edata — last location in program, 101
end — last location in program, 101
endgrent — group database entry

functions, 197
endpwent — get password entry from user

database, 221
endspent — get shadow password database

entry, 229
endusershell() — function, 245
endutent — user accounting database

functions, 246
endutxent — user accounting database

functions, 249
environment name

return value — getenv, 195
environment variables

change or add value — putenv, 384
error messages

get string — strerror, 479

Index 631

error messages, system
print — perror, 360

etext — last location in program, 101
EUC character bytes

— euclen, 102
EUC characters

convert a string of Process Code characters to
EUC characters and put it on a stream —
putws, 388

EUC codeset, get information
— getwidth, 258

EUC codesets, get information
— cset, 52
— csetcol, 52
— csetlen, 52
— csetno, 52
— wcsetno, 52

EUC display width
— euccol, 102
— eucscol, 102

euccol — get EUC character display
width, 102

euclen — get EUC byte length, 102
eucscol — get EUC string display width, 102
exit — terminate process, 103
extended_to_decimal — decimal record from

extended-precision floating, 124
Extended Unix Code, See EUC
extract mantissa and exponent from double

precision number — frexp, 154

F
fattach — attach a STREAMS-based file

descriptor to an object in the file system
name space, 104

__fbufsize — interfaces to stdio FILE
structure, 106

fclose — close a stream, 108
fconvert — convert number to ASCII, 96
FD_CLR — synchronous I/O

multiplexing, 433
FD_ISSET — synchronous I/O

multiplexing, 433
FD_SET — synchronous I/O multiplexing, 433
FD_ZERO — synchronous I/O

multiplexing, 433

fdetach — detach a name from a
STREAMS-based file descriptor, 110

fdopen — associate a stream with a file
descriptor, 112

fdopendir — open directory, 358
fdwalk — close or iterate over open file

descriptors, 45
fetch — data base subroutines, 63
fflush — flush a stream, 115
ffs — find first set bit, 117
fgetc — get a byte from a stream, 118
fgetgrent — group database entry

functions, 197
fgetgrent_r — group database entry

functions, 197
fgetpos — get current file position

information, 121
fgetpwent — get password entry from a

file, 221
fgetpwent_r — get password entry from a

file, 221
fgetspent — get shadow password database

entry, 229
fgetspent_r — get shadow password database

entry(reentrant), 229
fgetwc — get a wide-character code from a

stream, 122
fgetws — get a wide-character string from a

stream, 259
file descriptor

duplicate an open one — dup2, 95
STREAMS-based, attach to an object in file

system name space — fattach, 104
test for a STREAMS file — isastream, 280

file descriptors
apply or remove advisory lock on open file

— flock, 126
file name

make a unique one — mktemp, 334
make a unique file name — mkstemp, 333
file pointer in a stream

reposition — fsetpos, fgetpos, 158
file_to_decimal — decimal record from

character stream, 493
file tree

recursively descend — ftw, 165
recursively descend — nftw, 165

632 man pages section 3: Basic Library Functions • May 2002

files
allows sections of file to be locked —

lockf, 299
optimizing usage of files — directio, 68
— remove, 421
report parent directory of file path name —

dirname, 70
set a file to a specified length —

truncate, 553
find a wide-character in memory —

wmemchr, 614
find a wide-character substring — wcsstr, 593
find pathname of a terminal

— ttyname, 559
— ttyname_r, 559

firstkey — data base subroutines, 63
__flbf — interfaces to stdio FILE structure, 106
floating-point number

convert to string — ecvt, 98
floating-point number, determine type

— finite, 282
— fpclass, 282
— isnan, 282
— isnand, 282
— isnanf, 282
— unordered, 282

flock — apply or remove an advisory lock on an
open file, 126

flockfile — acquire and release stream
lock, 128

flush a stream — fflush, 115
flush non-transmitted output data, non-read

input data or both — tcflush, 530
_flushlbf — interfaces to stdio FILE

structure, 106
fmtmsg — display a message on stderr or

system console, 130
fnmatch — match filename or path name, 135
fopen — open a stream, 137
fopen — open stream, 140
formatted input conversion — wsscanf, 624
formatted output conversion

— fprintf, 376
— printf, 376
— sprintf, 376
— vfprintf, 376
— vprintf, 376
— vsprintf, 376

__fpending — interfaces to stdio FILE
structure, 106

fpgetmask — IEEE floating-point environment
control, 142

fpgetround — IEEE floating-point environment
control, 142

fpgetsticky — IEEE floating-point environment
control, 142

fprintf — formatted output conversion, 376
fprintf — print formatted output, 367
fpsetmask — IEEE floating-point environment

control, 142
fpsetround — IEEE floating-point environment

control, 142
fpsetsticky —IEEE floating-point environment

control, 142
__fpurge — interfaces to stdio FILE

structure, 106
fputc — put a byte on a stream, 144
fputwc — put wide-character code on a

stream, 147
fputws — put wide character string on a

stream, 149
fread — binary input, 150
__freadable — interfaces to stdio FILE

structure, 106
__freading — interfaces to stdio FILE

structure, 106
free — memory allocator, 30
freopen — open a stream, 152
freopen — open stream, 140
frexp — extract mantissa and exponent from

double precision number, 154
fscanf — convert formatted input, 425
fseek — reposition a file-position indicator in a

stream, 155
fseeko — reposition a file-position indicator in a

stream, 155
__fsetlocking — interfaces to stdio FILE

structure, 106
fsetpos — reposition a file pointer in a

stream, 158
fsync — synchronize changes to a file, 159
ftell — return a file offset in a stream, 161
ftello — return a file offset in a stream, 161
ftime — get date and time, 162
ftruncate — set a file to a specified length, 553
ftw — walk a file tree, 165

Index 633

func_to_decimal — decimal record from
character function, 493

funlockfile — acquire and release stream
lock, 128

fwide — set stream orientation, 169
fwprintf — print formatted wide-character

output, 170
__fwritable — interfaces to stdio FILE

structure, 106
fwrite — binary output, 177
__fwriting — interfaces to stdio FILE

structure, 106
fwscanf — convert formatted wide-character

input, 178

G
gconvert — convert number to ASCII, 96
general terminal interface

— termios, 540
generate path name for controlling terminal

— ctermid, 53
— ctermid_r, 53

generate path names matching a pattern
— glob, 260
— globfree, 260

get a wide-character string from a stream —
fgetws, 259

get a wide-character string from a stream —
getws, 259

get mnttab file information —
getextmntent, 207

get mnttab file information — getmntany, 207
get mnttab file information — getmntent, 207
get mnttab file information — hasmntopt, 207
get mnttab file information — putmntent, 207
get mnttab file information — resetmnttab, 207
get a byte from a stream

— fgetc, 118
— getc, 118
— getc_unlocked, 118
— getchar, 118
— getchar_unlocked, 118
— getw, 118

get a wide-character code from a stream —
fgetwc, 122

get address of symbol in shared object or
executable — dlsym, 91

get an identifier for the current host —
gethostid, 201

get configurable variables — confstr, 47
get current file position information —

fgetpos, 121
get diagnostic information — dlerror, 82
get foreground process group ID —

tcgetpgrp, 532
get input baud rate

— cfgetispeed, 41
get name of signal — strsignal, 501
get number of bytes in a character —

mblen, 317
get number of bytes in a character (restartable)

— mbrlen, 318
get or set process scheduling priority

— getpriority, 218
— setpriority, 218

get output baud rate
— cfgetospeed, 41

get process group ID for session leader for
controlling terminal — tcgetsid, 533

get system load averages — getloadavg, 204
get system load averages for a processor set —

pset_getloadavg, 380
get the parameters associated with the terminal

— tcgetattr, 531
get wide character from a stream — getwc, 255
get wide character from stdin stream —

getwchar, 256
getc — get a byte from a stream, 118
getc_unlocked — get a byte from a stream, 118
getchar — get a byte from a stream, 118
getchar_unlocked — get a byte from a

stream, 118
getcpuid — obtain information on scheduling

decisions, 185
getcwd — get pathname of current working

directory, 186
getdate — convert user format date and

time, 188
General Specifications, 190
Internal Format Conversion, 190
Modified Conversion Specifications, 189

getenv — return value for environment
name, 195

634 man pages section 3: Basic Library Functions • May 2002

getexecname — return pathname of
executable, 196

getextmntent — get mnttab file
information, 207

getgrent — group database entry
functions, 197

getgrent_r — group database entry
functions, 197

getgrgid — group database entry
functions, 197

getgrgid_r — group database entry
functions, 197

getgrnam — group database entry
functions, 197

getgrnam_r — group database entry
functions, 197

gethomelgroup — obtain information on
scheduling decisions, 185

gethostid — get an identifier for the current
host, 201

gethostname — get name of current host, 202
gethrtime — get high resolution real time, 203
gethrvtime — get high resolution virtual

time, 203
getloadavg — get system load averages, 204
getlogin — get login name, 205
getlogin_r — get login name, 205
getmntany — get mnttab file information, 207
getmntent — get mnttab file information, 207
getopt — get option letter from argument

vector, 212
getpagesize — get system page size, 215
getpass — read a string of characters without

echo, 217
getpassphrase — read a string of characters

without echo, 217
getpriority — get or set process scheduling

priority, 218
getpw — get passwd entry from UID, 220
getpwent — get password entry from user

database, 221
getpwent_r — get password entry from user

database, 221
getpwnam — get password entry from user

database, 221
getpwnam_r — get password entry from user

database, 221

getpwuid — get password entry from user
database, 221

getpwuid_r — get password entry from user
database, 221

getrusage — get information about resource
utilization, 225

getspent — get shadow password database
entry, 229

getspent_r — get shadow password database
entry (reentrant), 229

getspnam — get shadow password database
entry, 229

getspnam_r — get shadow password database
entry (reentrant), 229

getsubopt — parse suboptions from a
string, 233

gettext — message handling functions, 236
gettimeofday — get date and time, 240
gettimeofday — get system’s notion of current

Greenwich time, 242
gettxt — retrieve a text string, 243
getusershell() — get legal user shells, 245
getutent — user accounting database

functions, 246
getutid — user accounting database

functions, 246
getutline — user accounting database

functions, 246
getutmp — user accounting database

functions, 249
getutmpx — user accounting database

functions, 249
getutxent — user accounting database

functions, 249
getutxid — user accounting database

functions, 249
getutxline — user accounting database

functions, 249
getvfsany — get vfstab file entry, 253
getvfsent — get vfstab file entry, 253
getvfsfile — get vfstab file entry, 253
getvfsspec — get vfstab file entry, 253
getw — get a byte from a stream, 118
getwc — get wide character from a stream, 255
getwchar — get wide character from stdin

stream, 256
getwd — get current working directory

pathname, 257

Index 635

getwidth — get codeset information, 258
getws — get a wide-character string from a

stream, 259
glob — generate path names matching a

pattern, 260
globfree — generate path names matching a

pattern, 260
grantpt — grant access to the slave

pseudo-terminal device, 264
group database entry functions —

endgrent, 197
group database entry functions —

fgetgrent, 197
group database entry functions —

fgetgrent_r, 197
group database entry functions —

getgrent, 197
group database entry functions —

getgrent_r, 197
group database entry functions —

getgrgid, 197
group database entry functions —

getgrgid_r, 197
group database entry functions —

getgrnam, 197
group database entry functions —

getgrnam_r, 197
group database entry functions —

setgrent, 197
group IDs, supplementary

initialize — initgroups, 277

H
halt system processor

— reboot, 411
hash-table search routine

— hsearch, 265
hasmntopt — get mnttab file information, 207
hcreate — create hash table, 265
hdestroy — destroy hash table, 265
host name

get name of current host —
gethostname, 202

set name of current host —
sethostname, 202

hsearch — hash-table search routine, 265

I
I/O multiplexing, synchronous

— select, 433
I/O package

standard buffered I/O — stdio, 473
iconv — code conversion function, 268
iconv_close — code conversion deallocation

function, 273
iconv_open — code conversion allocation

function, 274
IEEE arithmetic

convert floating-point number to string —
ecvt, 98

IEEE floating-point environment control
— fpgetmaks, 142
— fpgetround, 142
— fpgetsticky, 142
— fpsetmask, 142
— fpsetround, 142
— fpsetsticky, 142

index — string operations, 276
initgroups — initialize the supplementary

group access list, 277
initstate — pseudorandom number

functions, 394
input conversion

convert from wchar_t string — wsscanf, 624
input/output package

standard buffered I/O — stdio, 473
insque — insert element to a queue, 278
interfaces to stdio FILE structure —

__fbufsize, 106
interfaces to stdio FILE structure — __flbf, 106
interfaces to stdio FILE structure —

_flushlbf, 106
interfaces to stdio FILE structure —

__fpending, 106
interfaces to stdio FILE structure —

__fpurge, 106
interfaces to stdio FILE structure —

__freadable, 106
interfaces to stdio FILE structure —

__freading, 106
interfaces to stdio FILE structure —

__fsetlocking, 106
interfaces to stdio FILE structure —

__fwritable, 106

636 man pages section 3: Basic Library Functions • May 2002

interfaces to stdio FILE structure —
__fwriting, 106

invoke isa-specific executable — isaexec, 279
isaexec — invoke isa-specific executable, 279
isalnum — character handling, 59
isalpha — character handling, 59
isascii — character handling, 59
isatty — test for a terminal device, 281
isdigit — character handling, 59
isenglish — wide-character code classification

functions, 284
isgraph — character handling, 59
isideogram — wide-character code classification

functions, 284
islower — character handling, 59
isnumber — wide-character code classification

functions, 284
isphonogram — wide-character code

classification functions, 284
isprint — character handling, 59
ispunct — character handling, 59
isspace — character handling, 59
isspecial — wide-character code classification

functions, 284
isupper — character handling, 59
iswalnum — wide-character code classification

functions, 284
iswalpha — wide-character code classification

functions, 284
iswascii — wide-character code classification

functions, 284
iswcntrl — wide-character code classification

functions, 284
iswctype — test character for specified

class, 286
iswdigit — wide-character code classification

functions, 284
iswgraph — wide-character code classification

functions, 284
iswlower — wide-character code classification

functions, 284
iswprint — wide-character code classification

functions, 284
iswpunct — wide-character code classification

functions, 284
iswspace — wide-character code classification

functions, 284

iswupper — wide-character code classification
functions, 284

iswxdigit — wide-character code classification
functions, 284

isxdigit — character handling, 59

K
killpg — send signal to a process group, 288

L
labs — return absolute value of long

integer, 22
language information — nl_langinfo, 356
ldexp — load exponent of a floating point

number, 290
ldiv — compute quotient and remainder, 72
lfmt — display error message in standard

format and pass to logging and monitoring
services, 291

linear search and update routine
— lfind, 303
— lsearch, 303

llabs — return absolute value of long long
integer, 22

lldiv — compute quotient and remainder, 72
lltostr — string conversion routines, 505
load exponent of a floating point number —

ldexp, 290
locale

modify and query a program’s locale —
setlocale, 449

localeconv — get numeric formatting
information, 295

lock
apply or remove advisory lock on open file

— flock, 126
lock address space

— mlockall, 340
lock memory pages

— mlock, 338
lockf — allows sections of file to be

locked, 299
log message with a stdarg argument list —

vsyslog, 574

Index 637

login name
— getlogin, 205
— getlogin_r, 205

longjmp — non-local goto, 441, 444
_longjmp — non-local goto, 302, 444

M
madvise — provide advice to VM system, 305
make a FIFO special file — mkfifo, 331
make modified instructions executable —

sync_instruction_memory, 514
makecontext — manipulate user contexts, 307
malloc — memory allocator, 30
mallocctl — MT hot memory allocator, 347
manipulate resource control blocks —

rctlblk_get_enforced_value, 397
manipulate resource control blocks —

rctlblk_get_firing_time, 397
manipulate resource control blocks —

rctlblk_get_global_action, 397
manipulate resource control blocks —

rctlblk_get_global_flags, 397
manipulate resource control blocks —

rctlblk_get_local_action, 397
manipulate resource control blocks —

rctlblk_get_local_flags, 397
manipulate resource control blocks —

rctlblk_get_privilege, 397
manipulate resource control blocks —

rctlblk_get_recipient_pid, 397
manipulate resource control blocks —

rctlblk_get_value, 397
manipulate resource control blocks —

rctlblk_set_local_action, 397
manipulate resource control blocks —

rctlblk_set_local_flags, 397
manipulate resource control blocks —

rctlblk_set_privilege, 397
manipulate resource control blocks —

rctlblk_set_value, 397
manipulate resource control blocks —

rctlblk_size, 397
manipulate sets of signals — sigsetops, 460

sigaddset, 460
sigdelset, 460
sigemptyset, 460

manipulate sets of signals — sigsetops
(continued)

sigfillset, 460
sigismember, 460

match filename or path name — fnmatch, 135
mblen — get number of bytes in a

character, 317
mbrlen — get number of bytes in a character

(restartable), 318
mbrtowc — convert a character to a

wide-character code (restartable), 320
mbsinit — determine conversion object

status, 322
mbsrtowcs — convert a character string to a

wide-character string (restartable), 323
mbstowcs — convert a character string to a

wide-character string, 325
mbtowc — convert a character to a

wide-character code, 326
mctl — memory management control, 327
memory — memory operations, 329
memory

optimizing usage of user mapped memory
— madvise, 305

memory allocator — bsdmalloc, 30
memory allocator

— alloca, 309
— calloc, 309, 312, 315

memory allocator — bsdmalloc
free, 30

memory allocator
— free, 309, 312, 315
— mallinfo, 312

memory allocator — bsdmalloc
malloc, 30

memory allocator
— malloc, 309, 312, 315
— mallopt, 312
— memalign, 309

memory allocator — bsdmalloc
realloc, 30

memory allocator
— realloc, 309, 312, 315
— valloc, 309

memory lock or unlock
calling process — plock, 364

memory management — mctl, 327

638 man pages section 3: Basic Library Functions • May 2002

memory management
get system page size — getpagesize, 215
lock address space — mlockall, 340
lock pages in memory — mlock, 338
synchronize memory with physical storage

— msync, 345
unlock address space — munlockall, 340
unlock pages in memory — munlock, 338

memory operations
— memccpy, 329
— memchr, 329
— memcmp, 329
— memcpy, 329
— memmove, 329
— memory, 329
— memset, 329

message handling functions —
bind_textdomain_codeset, 236

message handling functions —
bindtextdomain, 236

message handling functions — dcgettext, 236
message handling functions — dcngettext, 236
message handling functions — dgettext, 236
message handling functions — dngettext, 236
message handling functions — gettext, 236
message handling functions — ngettext, 236
message handling functions —

textdomain, 236
message catalog

open/catalog — catopen, catclose, 38
read a program message — catgets, 37

messages
display a message on stderr or system

console — fmtmsg, 130
print system error messages — perror, 360
system signal messages — psignal, 381

mkfifo — make a FIFO special file, 331
mkstemp — make a unique file name, 333
mktemp — make a unique file name, 334
mktime — converts a tm structure to a calendar

time, 335
modf — decompose floating-point

number, 342
modff — decompose floating-point

number, 342
monitor — prepare process execution

profile, 343

msync — synchronize memory with physical
storage, 345

MT hot memory allocator — mallocctl, 347
MT hot memory allocator — mtmalloc, 347
mtmalloc — MT hot memory allocator, 347

N
ndbm — database functions, 350
network group entry

— endnetgrent, 209
— getnetgrent, 209
— getnetgrent_r, 209
— innetgr, 209
— setnetgrent, 209

nextkey — data base subroutines, 63
nftw — walk a file tree, 165
ngettext — message handling functions, 236
nice — change priority of a process, 354
nl_langinfo — language information, 356
nlist — get entries from symbol table, 355
non-local goto — setjmp, 441, 444

_longjmp, 444
longjmp, 441, 444
_setjmp, 444
siglongjmp, 441
sigsetjmp, 441

non-local goto
— _longjmp, 302
— _setjmp, 302

numbers, convert to strings — econvert, 96

O
obtain information on scheduling decisions —

getcpuid, 185
obtain information on scheduling decisions —

gethomelgroup, 185
offsetof — offset of structure member, 357
open a shared object — dlopen, 87
open directory — fdopendir, 358
open directory — opendir, 358
open a file — attropen, 28
open a stream — fopen, 137
open a stream — freopen, 152
opendir — open directory, 358

Index 639

openlog — control system log, 523
output conversion

wsprintf — convert to wchar_t string, 623
output conversion, formatted

— fprintf, 376
— printf, 376
— sprintf, 376
— vfprintf, 376
— vprintf, 376
— vsprintf, 376

P
page size, system

get — getpagesize, 215
password databases

lock the lock file — lckpwdf, 289
unlock the lock file — ulckpwdf, 289

passwords
get password entry from a file —

fgetpwent, 221
get password entry from a file —

fgetpwent_r, 221
get password entry in user database —

endpwent, 221
get password entry in user database —

getpwent, 221
get password entry in user database —

getpwent_r, 221
get password entry in user database —

getpwnam, 221
get password entry in user database —

getpwnam_r, 221
get password entry in user database —

getpwuid, 221
get password entry in user database —

getpwuid_r, 221
get password entry in user database —

setpwent, 221
get passwd entry from UID — getpw, 220
write password file entry — putpwent, 385

passwords, shadow
get shadow password database entry —

endspent, 229
get shadow password database entry —

fgetspent, 229

passwords, shadow (continued)
get shadow password database entry —
getspent, 229
get shadow password database entry —

getspnam, 229
get shadow password database entry —

setspent, 229
get shadow password database entry

(reentrant) — fgetspent_r, 229
get shadow password database entry

(reentrant) — getspent_r, 229
get shadow password database entry

(reentrant) — getspnam_r, 229
write shadow password file entry —

putspent, 387
path name

return last element — path name, 29
pclose — initiate pipe to/from a process, 365
perform word expansions

— wordexp, 619
— wordfree, 619

perror — print system error messages, 360
pfmt — display error message in standard

format, 361
pipes

initiate to/from a process — pclose, 365
initiate to/from a process — popen, 365

plock — lock or unlock into memory process,
text, or data, 364

popen — initiate pipe to/from a process, 365
print formatted output

— fprintf, 367
— printf, 367
— snprintf, 367
— sprintf, 367

print formatted output of a variable argument
list
— vfprintf, 572
— vprintf, 572
— vsnprintf, 572
— vsprintf, 572

print formatted wide-character output
— fwprintf, 170
— swprintf, 170
— wprintf, 170

printf — formatted output conversion, 376
printf — print formatted output, 367

640 man pages section 3: Basic Library Functions • May 2002

printstack — walk stack pointed to by
ucontext, 582

Process Code string operations — wstring, 625
Process Code string operations — wscasecmp

wscasecmp, 625
Process Code string operations — wscol

wscol, 625
Process Code string operations — wsdup

wsdup, 625
Process Code string operations — wsncasecmp

wsncasecmp, 625
process statistics

prepare execution profile — monitor, 343
processes

change priority — nice, 354
duplicate an open file descriptor —

dup2, 95
generate path name for controlling terminal

— ctermid, ctermid_r, 53
get character-string representation —

cuserid, 62
initiate pipe to/from a process — popen,

pclose, 365
manipulate user contexts — makecontext,

swapcontext, 307
memory lock or unlock — plock, 364
prepare execution profile — monitor, 343
report CPU time used — clock, 43
send signal to a process group —

killpg, 288
send signal to program — raise, 391
suspend execution for interval — sleep, 471
terminate process — exit, 103
terminate the process abnormally —

abort, 21
wait for process to terminate or stop —

WIFEXITED, 578
wait for process to terminate or stop —

WIFSIGNALED, 578
wait for process to terminate or stop —

WIFSTOPPED, 578
wait for process to terminate or stop —

wait, 578
profiling utilities

prepare process execution profile —
monitor, 343

program assertion
verify — assert, 26

program messages
open/close a message catalog — catopen,

catclose, 38
read — catgets, 37

programs
last locations — end, etext, edata, 101

pset_getloadavg — get system load averages for
a processor set, 380

pseudo-terminal device
get name of the slave pseudo-terminal device

— ptsname, 383
grant access to the slave pseudo-terminal

device — grantpt, 264
pseudorandom number functions

— initstate, 394
— random, 394
— setstate, 394
— srandom, 394

psiginfo — system signal messages, 381
psignal — system signal messages, 381
ptsname — get name of the slave

pseudo-terminal device, 383
push byte back into input stream —

ungetc, 563
push wide-character code back into input

stream — ungetwc, 564
put wide-character code on a stream —

fputwc, 147
put wide-character code on a stream —

putwchar, 147
put wide-character code on a stream —

putwc, 147
put a byte on a stream

— fputc, 144
— putc, 144
— putc_unlocked, 144
— putchar, 144
— putchar_unlocked, 144
— putw, 144

put wide character string on a stream —
fputws, 149

putc — put a byte on a stream, 144
putc_unlocked — put a byte on a stream, 144
putchar — put a byte on a stream, 144
putchar_unlocked — put a byte on a

stream, 144
putenv — change or add value to

environment, 384

Index 641

putmntent — get mnttab file information, 207
putpwent — write password file entry, 385
putspent — write shadow password file

entry, 387
pututline — user accounting database

functions, 246
pututxline — user accounting database

functions, 249
putw — put a byte on a stream, 144
putwc — put wide-character code on a

stream, 147
putwchar — put wide-character code on a

stream, 147
putws — convert a string of Process Code

characters to EUC characters and put it on a
stream, 388

Q
qeconvert — convert number to ASCII, 96
qfconvert — convert number to ASCII, 96
qgconvert — convert number to ASCII, 96
qsort — quick sort, 389
quadruple_to_decimal — decimal record from

quadruple-precision floating, 124
queues

insert/remove element from a queue —
insque, remque, 278

R
raise — send signal to program, 391
rand — simple random number generator, 393
rand — simple random-number generator, 392
random — pseudorandom number

functions, 394
random number generator

— drand48, 93
— erand48, 93
— jrand48, 93
— lcong48, 93
— lrand48, 93
— mrand48, 93
— nrand48, 93
— rand, 393
— seed48, 93

random number generator (continued)
— srand48, 93

random number generator, simple
— rand, 392
— srand, 392

rctl_walk — visit registered rctls on current
system, 401

rctlblk_get_enforced_value — manipulate
resource control blocks, 397

rctlblk_get_firing_time — manipulate resource
control blocks, 397

rctlblk_get_global_action — manipulate
resource control blocks, 397

rctlblk_get_global_flags — manipulate resource
control blocks, 397

rctlblk_get_local_action — manipulate resource
control blocks, 397

rctlblk_get_local_flags — manipulate resource
control blocks, 397

rctlblk_get_privilege — manipulate resource
control blocks, 397

rctlblk_get_recipient_pid — manipulate
resource control blocks, 397

rctlblk_get_value — manipulate resource
control blocks, 397

rctlblk_set_local_action — manipulate resource
control blocks, 397

rctlblk_set_local_flags — manipulate resource
control blocks, 397

rctlblk_set_privilege — manipulate resource
control blocks, 397

rctlblk_set_value — manipulate resource control
blocks, 397

rctlblk_size — manipulate resource control
blocks, 397

re_comp — compile and execute regular
expressions, 412

re_exec — compile and execute regular
expressions, 412

read a string of characters without echo —
getpass, 217

read a directory entry — readdir, 407
read a string of characters without echo

— getpassphrase, 217
read directory

— readdir, 403
— readdir_r, 403

readdir — read a directory entry, 407

642 man pages section 3: Basic Library Functions • May 2002

readdir — read directory, 403
POSIX, 403

readdir_r — read directory, 403
realloc — memory allocator, 30
realpath — resolve pathname, 409
reboot — reboot system or halt processor, 411
regcmp — compile regular expression, 413
regcomp — regular expression matching, 415
regerror — regular expression matching, 415
regex — execute regular expression, 413
regexec — regular expression matching, 415
regfree — regular expression matching, 415
register a function to run at process termination

or object unloading— atexit, 27
regular expression matching

— regcomp, 415
— regerror, 415
— regexec, 415
— regfree, 415

regular expressions
compile and execute — regcmp, regex, 413

remove — remove file, 421
remque — remove elment from a queue, 278
reposition a file-position indicator in a stream

— fseek, 155
— fseeko, 155

reset file position indicator in a stream —
rewind, 422

reset position of directory stream to the
beginning of a directory — rewinddir, 423

resetmnttab — get mnttab file information, 207
resolve pathname — realpath, 409
resource utilization

get information — getrusage, 225
return a file offset for a file descriptor —

tell, 538
return a file offset in a stream

— ftell, 161
— ftello, 161

return pathname of executable —
getexecname, 196

rewind — reset file position indicator in a
stream, 422

rewinddir — reset position of directory stream
to the beginning of a directory, 423

rindex — string operations, 276

S
scan a directory

— alphasort, 424
— scandir, 424

scandir — scan a directory, 424
scanf — convert formatted input, 425

Conversion Characters, 427
Conversion Specifications, 426

scheduling priority
change priority of a process — nice, 354

search functions
binary search a sorted table — bsearch, 33
linear search and update routine — lsearch,

lfind, 303
manage hash search tables — hsearch, 265

seconvert — convert number to ASCII, 96
seekdir — set position of directory stream, 432
select — synchronous I/O multiplexing, 433
send a ‘‘break’’ for a specific duration —

tcsendbreak, 534
set and/or get alternate signal stack context —

sigstack, 462
set and/or get signal stack context —

sigstack, 464
set encoding key — setkey, 447
set foreground process group ID —

tcsetpgrp, 537
set input baud rate

— cfsetispeed, 42
set output baud rate

— cfsetospeed, 42
set position of directory stream — seekdir, 432
set stream orientation — fwide, 169
set the parameters associated with the terminal

— tcsetattr, 535
set wide-characters in memory —

wmemset, 618
setcat — define default catalog, 440
setgrent — group database entry

functions, 197
sethostname — set name of current host, 202
setjmp — non-local goto, 441, 444
_setjmp — non-local goto, 302, 444
setkey — set encoding key, 447
setlabel — define the label for pfmt() and

lfmt()., 448
setlocale — modify and query a program’s

locale, 449

Index 643

setlogmask — control system log, 523
setpriority — get or set process scheduling

priority, 218
setpwnam — get password entry from user

database, 221
setspent — get shadow password database

entry, 229
setstate — pseudorandom number

functions, 394
settimeofday — set date and time, 240
settimeofday — set system’s notion of current

Greenwich time, 242
setusershell() — function, 245
setutent — user accounting database

functions, 246
setutxent — user accounting database

functions, 249
severity levels, applications

build a list for use with fmtmsg —
addseverity, 24

sfconvert — convert number to ASCII, 96
sgconvert — convert number to ASCII, 96
shared object

close — dlclose, 75
get address of symbol — dlsym, 91
get diagnostic information — dlerror, 82
open — dlopen, 87

shell command
issue one — system, 527

sig2str — translation between signal name and
signal number, 477

sigaddset — manipulate sets of signals, 460
sigdelset — manipulate sets of signals, 460
sigemptyset — manipulate sets of signals, 460
sigfillset — manipulate sets of signals, 460
sigfpe() function, 453
sighold — adds sig to the calling process’s

signal mask, 456
sigignore — sets the disposition of sig to

SIG_IGN, 456
siginterrupt — allow signals to interrupt

functions, 455
sigismember —manipulate sets of signals, 460
siglongjmp — non-local goto, 441
signal — modify signal disposition, 456
signal — simplified software signal

facilities, 458

signal
schedule after interval in microseconds —

ualarm, 562
suspend execution for interval in

microseconds — usleep, 566
simplified signal facilities — bsd_signal, 32
signal management

simplified, for application processes —
signal, 456

signal messages, system
— psignal, 381

signals, block
— sigblock, 452
— sigmask, 452
— sigpause, 452
— sigsetmask, 452

signals, software
— gsignal, 472
— ssignal, 472

sigpause — removes sig from the calling
process’s signal mask and suspends the
calling process until a signal is
received, 456

sigrelse — removes sig from the calling
process’s signal mask, 456

sigset — modify signal disposition, 456
sigsetjmp — non-local goto, 441
sigsetops — manipulate sets of signals, 460
sigstack — set and/or get alternate signal stack

context, 462
sigstack — set and/or get signal stack

context, 464
sigvec — software signal facilities, 465
single-byte to wide-character conversion —

btowc, 36
single_to_decimal — decimal record from

single-precision floating, 124
sleep — suspend execution for interval, 471
sleep

suspend execution for interval in
microseconds — usleep, 566

snprintf — print formatted output, 367
software signals

— gsignal, 472
— ssignal, 472

sort
quick — qsort, 389

sprintf — formatted output conversion, 376

644 man pages section 3: Basic Library Functions • May 2002

sprintf — print formatted output, 367
srand — reset simple random number

generator, 393
srandom — pseudorandom number

functions, 394
sscanf — convert formatted input, 425
stdio — standard buffered input/output

package, 473
sting collation

— strcoll, 478
store — data base subroutines, 63
str2sig — translation between signal name and

signal number, 477
strcasecmp — string operations, 490
strcat — string operations, 490
strchr — string operations, 490
strcmp — string operations, 490
strcpy — string operations, 490
strcspn — string operations, 490
strdup — string operations, 490
stream

convert a string of Process Code characters to
EUC characters and put it on a stream —
putws, 388

open — fopen, 140
stream, assign buffering

— setbuf, 437
— setvbuf, 437

stream, get string
— fgets, 228
— gets, 228

stream, put a string
— fputs, 386
— puts, 386

stream status inquiries
— clearerr, 114
— feof, 114
— ferror, 114
— fileno, 114

STREAMS
attach a STREAMS-based file descriptor to an

object in the file system name space —
fattach, 104

test file descriptor for a STREAMS file —
isastream, 280

strfmon — convert monetary value to
string, 480

strftime — convert date and time to string, 484

string — string operations, 490
string operations — strcasecmp, 490
string operations — strcat, 490
string operations — strchr, 490
string operations — strcmp, 490
string operations — strcpy, 490
string operations — strcspn, 490
string operations — strdup, 490
string operations — string, 490
string operations — strlcat, 490
string operations — strlcpy, 490
string operations — strlen, 490
string operations — strncasecmp, 490
string operations — strncat, 490
string operations — strncmp, 490
string operations — strncpy, 490
string operations — strpbrk, 490
string operations — strrchr, 490
string operations — strspn, 490
string operations — strstr, 490
string operations — strtok, 490
string operations — strtok_r, 490
string conversion routines

— atoi, 505
— atol, 505
— atoll, 505
— lltostr, 505
— strtol, 505
— strtoll, 505
— ulltostr, 505

string encoding function — crypt, 51
string operation

get error message string — strerror, 479
string operations

bit and byte — bstring, 35
— index, 276
— rindex, 276

string_to_decimal — decimal record from
character string, 493

string transformation — strxfrm, 511
strings, convert from numbers — econvert, 96
strlcat — string operations, 490
strlcpy — string operations, 490
strlen — string operations, 490
strncasecmp — string operations, 490
strncat — string operations, 490
strncmp — string operations, 490
strncpy — string operations, 490

Index 645

strpbrk — string operations, 490
strptime — date and time conversion, 496
strrchr — string operations, 490
strsignal — get name of signal, 501
strspn — string operations, 490
strstr — string operations, 490
strtod — convert string to double-precision

number, 502
strtok — string operations, 490
strtok_r — string operations, 490
strtol — string conversion routines, 505
strtoll — string conversion routines, 505
strtoul — convert string to unsigned long, 508
strtows — code conversion for Process Code

and File Code, 510
strxfrm — string transformation, 511
suspend or restart the transmission or reception

of data — tcflow, 529
swab — swap bytes, 513
swap bytes — swab, 513
swapcontext — manipulate user contexts, 307
swprintf — print formatted wide-character

output, 170
swscanf — convert formatted wide-character

input, 178
symbol address

get address in shared object or executable —
dlsym, 91

symbol table
get entries — nlist, 355

sync_instruction_memory — make modified
instructions executable, 514

synchronize changes to a file — fsync, 159
synchronous I/O multiplexing

— FD_CLR, 433
— FD_ISSET, 433
— FD_SET, 433
— select, 433

sys_siglist — system signal messages list, 382
syscall — indirect system call, 515
sysconf — get configurable system

variables, 516
syslog — control system log, 523
system — issue shell command, 527
system error messages

print — perror, 360
system signal messages

— psignal, 381

system variables
get configurable ones — sysconf, 516

T
tcdrain — wait for transmission of output, 528
tcflow — suspend or restart the transmission or

reception of data, 529
tcflush — flush non-transmitted output data,

non-read input data or both, 530
tcgetattr — get the parameters associated with

the terminal, 531
tcgetpgrp — get foreground process group

ID, 532
tcgetsid — get process group ID for session

leader for controlling terminal, 533
tcsendbreak — send a ‘‘break’’ for a specific

duration, 534
tcsetattr — set the parameters associated with

the terminal, 535
tcsetpgrp — set foreground process group

ID, 537
tdelete — manage binary search trees, 556
tell — return a file offset for a file

descriptor, 538
telldir — current location of a named directory

stream, 539
tempnam — create a name for a temporary

file, 543
terminal

find the slot of the current user in the user
accounting database — ttyslot, 561

terminal device, slave pseudo
get name — ptsname, 383
grant access — grantpt, 264

terminal ID
generate path name for controlling terminal

— ctermid, ctermid_r, 53
termios — general terminal interface, 540
test character for specified class —

iswctype, 286
test for a terminal device — isatty, 281
text processing utilities

compile and execute regular expressions —
regcmp, regex, 413

quick sort — qsort, 389

646 man pages section 3: Basic Library Functions • May 2002

text string
— gettxt, 243

textdomain — message handling
functions, 236

tfind — manage binary search trees, 556
time

computes the difference between two
calendar times — difftime, 67

time, calendar
convert from a tm structure — mktime, 335

time accounting
for current process — times, 541

time and date
convert to string — asctime, 54
convert to string — ctime, 54
convert to string — gmtime, 54
convert to string — localtime, 54
convert to string — tzset, 54
convert user format date and time —

getdate, 188
get — ftime, 162
— settimeofday, 240

time of day
get and set — gettimeofday,

settimeofday, 242
times — get process times, 541
tmpfile — create a temporary file, 542
tmpnam — create a name for a temporary

file, 543
toascii — translate integer to a 7-bit ASCII

character, 545
_tolower — transliterate upper-case characters

to lower-case, 546
tolower — transliterate upper-case characters to

lower-case, 547
_toupper — transliterate lower-case characters

to upper-case, 548
toupper — transliterate lower-case characters to

upper-case, 549
towctrans — wide-character mapping, 550
towlower — transliterate upper-case

wide-character code to lower-case, 551
towupper — transliterate lower-case

wide-character code to upper-case, 552
translate address to symbolic information —

dladdr1, 73
translate address to symbolic information —

dladdr, 73

translate integer to a 7-bit ASCII character —
toascii, 545

translation between signal name and signal
number — str2sig, 477
sig2str, 477

transliterate lower-case characters to upper-case
— _toupper, 548

transliterate lower-case characters to upper-case
— toupper, 549

transliterate lower-case wide-character code to
upper-case — towupper, 552

transliterate upper-case characters to lower-case
— _tolower, 546

transliterate upper-case characters to lower-case
— tolower, 547

transliterate upper-case wide-character code to
lower-case — towlower, 551

truncate — set a file to a specified length, 553
tsearch — manage binary search trees, 556
ttyname — find pathname of a terminal, 559

POSIX, 559
ttyname_r — find pathname of a terminal, 559
ttyslot — find the slot of the current user in the

user accounting database, 561
twalk — manage binary search trees, 556

U
ualarm — schedule signal after interval in

microseconds, 562
ulltostr — string conversion routines, 505
ungetc — push byte back into input

stream, 563
ungetwc — push wide-character code back into

input stream, 564
unlock a pseudo-terminal master/slave pair —

unlockpt, 565
unlock address space

— munlockall, 340
unlock memory pages

— munlock, 338
unlockpt — unlock a pseudo-terminal

master/slave pair, 565
updwtmp — user accounting database

functions, 249
updwtmpx — user accounting database

functions, 249

Index 647

user accounting database functions —
endutent, 246

user accounting database functions —
endutxent, 249

user accounting database functions —
getutent, 246

user accounting database functions —
getutid, 246

user accounting database functions —
getutline, 246

user accounting database functions —
getutmp, 249

user accounting database functions —
getutmpx, 249

user accounting database functions —
getutxent, 249

user accounting database functions —
getutxid, 249

user accounting database functions —
getutxline, 249

user accounting database functions —
pututline, 246

user accounting database functions —
pututxline, 249

user accounting database functions —
setutent, 246

user accounting database functions —
setutxent, 249

user accounting database functions —
updwtmp, 249

user accounting database functions —
updwtmpx, 249

user accounting database functions —
utmpname, 246

user accounting database functions —
utmpxname, 249

user context
— makecontext, 307
— swapcontext, 307

user IDs
get character-string representation —

cuserid, 62
usleep — suspend execution for interval in

microseconds, 566
utmpname — user accounting database

functions, 246
utmpx file

find the slot of current user — ttyslot, 561

utmpxname — user accounting database
functions, 249

V
vfprintf — formatted output conversion, 376
vfscanf — convert formatted input, 425
vfstab file

— getvfsent, 253
vfwprintf — wide-character formatted output

of a stdarg argument list, 567
vfwscanf — convert formatted wide-character

input, 178
virtual memory

optimizing usage of user mapped memory
— madvise, 305

visit registered rctls on current system —
rctl_walk, 401

vlfmt — display error message in standard
format and pass to logging and monitoring
services, 568

vpfmt — display error message in standard
format and pass to logging and monitoring
services, 570

vprintf — formatted output conversion, 376
vscanf — convert formatted input, 425
vsprintf — formatted output conversion, 376
vsscanf — convert formatted input, 425
vswprintf — wide-character formatted output

of a stdarg argument list, 567
vswscanf — convert formatted wide-character

input, 178
vsyslog — log message with a stdarg argument

list, 574
vwprintf — wide-character formatted output of

a stdarg argument list, 567
vwscanf — convert formatted wide-character

input, 178

W
wait — wait for process to terminate or

stop, 578
waitpid — wait for process to terminate or

stop, 578

648 man pages section 3: Basic Library Functions • May 2002

wait for process to terminate or stop
— wait3, 575
— wait4, 575

wait for transmission of output — tcdrain, 528
wait3 — wait for process to terminate or

stop, 575, 578
wait4 — wait for process to terminate or

stop, 575, 578
walk stack pointed to by ucontext —

printstack, 582
walk stack pointed to by ucontext —

walkcontext, 582
walkcontext — walk stack pointed to by

ucontext, 582
watof — convert wide character string to

double-precision number, 594
watoi — convert wide character string to long

integer, 596
watol — convert wide character string to long

integer, 596
watoll — convert wide character string to long

integer, 596
wchar_t string

number conversion — wscanf, 624
wcrtomb — convert a wide-character code to a

character (restartable), 587
wcscat — wide-character string

operations, 602
wcschr — wide-character string

operations, 603
wcscmp — wide-character string

operations, 602
wcscoll — wide character string comparison

using collating information, 589
wcscpy — wide-character string

operations, 603
wcscspn — wide-character string

operations, 604
wcsetno — get information on EUC

codesets, 52
wcsftime — convert date and time to wide

character string, 590
wcslen — wide-character string

operations, 603
wcsncat — wide-character string

operations, 602
wcsncmp — wide-character string

operations, 603

wcsncpy — wide-character string
operations, 603

wcspbrk — wide-character string
operations, 604

wcsrchr — wide-character string
operations, 603

wcsrtombs — convert a wide-character string to
a character string (restartable), 591

wcsspn — wide-character string
operations, 604

wcsstr — find a wide-character substring, 593
wcstod — convert wide character string to

double-precision number, 594
wcstok — wide-character string

operations, 604
wcstol — convert wide character string to long

integer, 596
wcstombs — convert a wide-character string to

a character string, 598
wcstoul — convert wide character string to

unsigned long, 599
wcstring — wide-character string

operations, 602
wcswcs — wide-character string

operations, 604
wcswidth — number of column positions of a

wide-character string, 606
wcsxfrm — wide character string

transformation, 607
wctob — wide-character to single-byte

conversion, 609
wctomb — convert a wide-character code to a

character, 610
wctrans — define character mapping, 611
wctype — define character class, 612
wcwidth — number of column positions of a

wide-character code, 613
wide character string to long integer, convert

— watoi, 596
— watol, 596
— watoll, 596
— wcstol, 596
— wstol, 596

wide-character code classification functions
— isenglish, 284
— isideogram, 284
— isnumber, 284
— isphonogram, 284

Index 649

wide-character code classification functions
(continued)

— isspecial, 284
— iswalnum, 284
— iswalpha, 284
— iswascii, 284
— iswcntrl, 284
— iswdigit, 284
— iswgraph, 284
— iswlower, 284
— iswprint, 284
— iswpunct, 284
— iswspace, 284
— iswupper, 284
— iswxdigit, 284

wide-character formatted output of a stdarg
argument list
— vfwprintf, 567
— vswprintf, 567
— vwprintf, 567

wide-character mapping — towctrans, 550
wide character string comparison using

collating information
— wcscoll, 589
— wscoll, 589

wide-character string operations
— wcscat, 602
— wcschr, 603
— wcscmp, 602
— wcscpy, 603
— wcscspn, 604
— wcslen, 603
— wcsncat, 602
— wcsncmp, 603
— wcsncpy, 603
— wcspbrk, 604
— wcsrchr, 603
— wcsspn, 604
— wcstok, 604
— wcstring, 602
— wcswcs, 604
— windex, 603
— wrindex, 603

wide character string transformation
— wcsxfrm, 607
— wsxfrm, 607

wide-character to single-byte conversion —
wctob, 609

windex — wide-character string
operations, 603

wmemchr — find a wide-character in
memory, 614

wmemcmp — compare wide-characters in
memory, 615

wmemcpy — copy wide-characters in
memory, 616

wmemmove — copy wide-characters in
memory with overlapping areas, 617

wmemset — set wide-characters in
memory, 618

wordexp — perform word expansions, 619
wordfree — perform word expansions, 619
working directory

get pathname — getwd, 257
wprintf — print formatted wide-character

output, 170
wrindex — wide-character string

operations, 603
wscanf — convert formatted wide-character

input, 178
wscasecmp — Process Code string

operations, 625
wscol — Process Code string operations, 625
wscoll — wide character string comparison

using collating information, 589
wsdup — Process Code string operations, 625
wsncasecmp — Process Code string

operations, 625
wsprintf — formatted output conversion, 623
wsscanf — formatted input conversion, 624
wstod — convert wide character string to

double-precision number, 594
wstol — convert wide character string to long

integer, 596
wstostr — code conversion for Process Code

and File Code, 510
wsxfrm — wide character string

transformation, 607

650 man pages section 3: Basic Library Functions • May 2002

