»
2 Sun

microsystems

man pages section 4: File Formats

Sun Microsystems, Inc.

4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 816-0219-10
May 2002

Copyright 2002 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or service marks
of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software-Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2002 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent 'utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut étre reproduite sous aucune forme, par quelque moyen que ce soit, sans
I'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caracteres, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront étre dérivées du systeme Berkeley BSD licenciés par 1'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, ou
marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des
marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques
SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnait
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d utilisation visuelle ou graphique pour l'industrie
de I'informatique. Sun détient une licence non exclusive de Xerox sur l'interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l'interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N'EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

9] &

Adobe PostScript

©

020313@3332

Contents

Preface 9

Introduction 15
Intro(4) 16

File Formats 17
admin(4) 18
alias(4) 21
aliases(4) 22
a.out(4) 27
archives(4) 29
asetenv(4) 32
asetmasters(4) 34
au(4) 37
audit_class(4) 40
audit_control(4) 42
audit_data(4) 45
audit_event(4) 46
auditlog(4) 47
audit_user(4) 53
auth_attr(4) 54
bootparams(4) 58
cdtoc(4) 61
clustertoc(4) 64
compver(4) 68

copyright(4) 69
core(4) 70
dacf.conf(4) 75
defaultdomain(4) 76
default_fs(4) 77
defaultrouter(4) 78
depend(4) 79
device_allocate(4) 81
device_maps(4) 83
dfstab(4) 85
dhcp_inittab(4) 86
dhcp_network(4) 93
dhcpsve.conf(4) 96
dhcptab(4) 99
dialups(4) 103
dir_ufs(4) 104
d_passwd(4) 105
driver.conf(4) 107
environ(4) 110
ethers(4) 112
exec_attr(4) 113
fd(4) 115
flash_archive(4) 116
format.dat(4) 124
fspec(4) 128
fstypes(4) 130
fs_ufs(4) 131
ftpaccess(4) 134
ftpconversions(4) 150
ftpgroups(4) 152
ftphosts(4) 153
ftpservers(4) 154
ftpusers(4) 156
fx_dptbl(4) 158
geniconvtbl(4) 164
group(4) 182
holidays(4) 184
hosts(4) 185

4 man pages section 4: File Formats « May 2002

hosts.equiv(4) 187
ike.config(4) 190
ike.preshared(4) 199
inetd.conf(4) 201
inet_type(4) 204
init.d(4) 205
inittab(4) 207
ipnodes(4) 210
issue(4) 212
kadmb.acl(4) 213
kdc.conf(4) 216
keytables(4) 220
krb5.conf(4) 227
ldapfilter.conf(4) 236
ldapsearchprefs.conf(4) 238
ldaptemplates.conf(4) 242
limits(4) 246
1lc2(4) 250
logadm.conf(4) 256
logindevperm(4) 257
loginlog(4) 258
lutab(4) 259
magic(4) 260
mddb.cf(4) 262
md.tab(4) 263
mech(4) 268
meddb(4) 269
mipagent.conf(4) 270
mnttab(4) 278
named.conf(4) 281
ncad_addr(4) 308
nca.if(4) 309
ncakmod.conf(4) 311
ncalogd.conf(4) 313
ndpd.conf(4) 315
netconfig(4) 319
netgroup(4) 324
netid(4) 326

Contents

5

6

netmasks(4) 328
netrc(4) 330
networks(4) 332
nfs(4) 333
nfslog.conf(4) 335
nfssec.conf(4) 338
nisfiles(4) 339
NIS+LDAPmapping(4)
nodename(4) 360
nologin(4) 361
note(4) 362
nscd.conf(4) 363
nss(4) 365
nsswitch.conf(4) 366
order(4) 374
ott(4) 375
packagetoc(4) 376
packingrules(4) 380
pam.conf(4) 383
passwd(4) 389
pathalias(4) 391
path_to_inst(4) 392
pci(4) 394
pcmcia(4) 398
phones(4) 399
pkginfo(4) 400
pkgmap(4) 406
platform(4) 409
plot(dB) 413
policy.conf(4) 415
power.conf(4) 416
printers(4) 424
printers.conf(4) 427
proc(4) 433
prof_attr(4) 461
profile(4) 463
project(4) 464
protocols(4) 467

man pages section 4: File Formats « May 2002

342

prototype(4) 469
pseudo(4) 474
publickey(4) 475
queuedefs(4) 476
rcmscript(4) 478
remote(4) 488
resolv.conf(4) 492

rmmount.conf(4) 495

rmtab(4) 499
rpc(4) 500
rpcnisd(4) 501
rpld.conf(4) 514
rt_dptbl(4) 516
sbus(4) 521
sccsfile(4) 524
scsi(4) 527
securenets(4) 529
services(4) 531
shadow(4) 532
sharetab(4) 534
shells(4) 535
slp.conf(4) 536
slpd.reg(4) 544
sock?path(4) 546
space(4) 547
ssh_config(4) 548
sshd_config(4) 553
sulog(4) 557
sysbus(4) 558
sysidcfg(4) 561
syslog.conf(4) 566
system(4) 569
telnetrc(4) 573
term(4) 574
terminfo(4) 577
TIMEZONE@4) 631
timezone(4) 632
tnf_kernel_probes(4)

633

Contents

7

ts_dptbl(4) 640
ttydefs(4) 647
ttysrch(4) 648
ufsdump(4) 650
updaters(4) 656
user_attr(4) 657
utmp(4) 660
utmpx(4) 661
vistab(4) 662
vold.conf(4) 665
warn.conf(4) 669
xferlog(4) 670
ypfiles(4) 672
yppasswdd(4) 674
zoneinfo(4) 675

Index 677

8 man pages section 4: File Formats * May 2002

Preface

Both novice users and those familar with the SunOS operating system can use online
man pages to obtain information about the system and its features. A man page is
intended to answer concisely the question “What does it do?” The man pages in
general comprise a reference manual. They are not intended to be a tutorial.

Overview

The following contains a brief description of each man page section and the
information it references:

m Section 1 describes, in alphabetical order, commands available with the operating
system.

m Section 1M describes, in alphabetical order, commands that are used chiefly for
system maintenance and administration purposes.

m Section 2 describes all of the system calls. Most of these calls have one or more
error returns. An error condition is indicated by an otherwise impossible returned
value.

m Section 3 describes functions found in various libraries, other than those functions
that directly invoke UNIX system primitives, which are described in Section 2.

m Section 4 outlines the formats of various files. The C structure declarations for the
file formats are given where applicable.

m Section 5 contains miscellaneous documentation such as character-set tables.
® Section 6 contains available games and demos.

m Section 7 describes various special files that refer to specific hardware peripherals
and device drivers. STREAMS software drivers, modules and the
STREAMS-generic set of system calls are also described.

m Section 9 provides reference information needed to write device drivers in the
kernel environment. It describes two device driver interface specifications: the
Device Driver Interface (DDI) and the DriverKernel Interface (DKI).

m Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point routines a
developer can include in a device driver.

m Section 9F describes the kernel functions available for use by device drivers.

m Section 9S describes the data structures used by drivers to share information
between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual section
generally follow this order, but include only needed headings. For example, if there
are no bugs to report, there is no BUGS section. See the intro pages for more
information and detail about each section, and man(1) for more information about man
pages in general.

NAME This section gives the names of the commands or
functions documented, followed by a brief
description of what they do.

SYNOPSIS This section shows the syntax of commands or
functions. When a command or file does not exist
in the standard path, its full path name is shown.
Options and arguments are alphabetized, with
single letter arguments first, and options with
arguments next, unless a different argument order
is required.

The following special characters are used in this
section:

[] Brackets. The option or argument
enclosed in these brackets is optional. If
the brackets are omitted, the argument
must be specified.

Ellipses. Several values can be provided
for the previous argument, or the
previous argument can be specified
multiple times, for example, "filename

Separator. Only one of the arguments
separated by this character can be
specified at a time.

{} Braces. The options and/or arguments
enclosed within braces are
interdependent, such that everything
enclosed must be treated as a unit.

10 man pages section 4: File Formats « May 2002

PROTOCOL

DESCRIPTION

IOCTL

OPTIONS

OPERANDS

OUTPUT

RETURN VALUES

ERRORS

This section occurs only in subsection 3R to
indicate the protocol description file.

This section defines the functionality and behavior
of the service. Thus it describes concisely what the
command does. It does not discuss OPTIONS or
cite EXAMPLES. Interactive commands,
subcommands, requests, macros, and functions are
described under USAGE.

This section appears on pages in Section 7 only.
Only the device class that supplies appropriate
parameters to the ioct1(2) system call is called
ioctl and generates its own heading. ioct1 calls
for a specific device are listed alphabetically (on the
man page for that specific device). ioct1 calls are
used for a particular class of devices all of which
have an io ending, such as mtio(7I).

This secton lists the command options with a
concise summary of what each option does. The
options are listed literally and in the order they
appear in the SYNOPSIS section. Possible
arguments to options are discussed under the
option, and where appropriate, default values are
supplied.

This section lists the command operands and
describes how they affect the actions of the
command.

This section describes the output — standard output,
standard error, or output files — generated by the
command.

If the man page documents functions that return
values, this section lists these values and describes
the conditions under which they are returned. If a
function can return only constant values, such as 0
or -1, these values are listed in tagged paragraphs.
Otherwise, a single paragraph describes the return
values of each function. Functions declared void do

not return values, so they are not discussed in
RETURN VALUES.

On failure, most functions place an error code in
the global variable errno indicating why they
failed. This section lists alphabetically all error
codes a function can generate and describes the
conditions that cause each error. When more than

Preface 11

USAGE

EXAMPLES

ENVIRONMENT VARIABLES

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

12 man pages section 4: File Formats « May 2002

one condition can cause the same error, each
condition is described in a separate paragraph
under the error code.

This section lists special rules, features, and
commands that require in-depth explanations. The
subsections listed here are used to explain built-in
functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

This section provides examples of usage or of how
to use a command or function. Wherever possible a
complete example including command-line entry
and machine response is shown. Whenever an
example is given, the prompt is shown as
example$%, or if the user must be superuser,
example#. Examples are followed by explanations,
variable substitution rules, or returned values. Most
examples illustrate concepts from the SYNOPSIS,
DESCRIPTION, OPTIONS, and USAGE sections.

This section lists any environment variables that
the command or function affects, followed by a
brief description of the effect.

This section lists the values the command returns to
the calling program or shell and the conditions that
cause these values to be returned. Usually, zero is
returned for successful completion, and values
other than zero for various error conditions.

This section lists all file names referred to by the
man page, files of interest, and files created or
required by commands. Each is followed by a
descriptive summary or explanation.

This section lists characteristics of commands,
utilities, and device drivers by defining the
attribute type and its corresponding value. See
attributes(5) for more information.

This section lists references to other man pages,
in-house documentation, and outside publications.

DIAGNOSTICS

WARNINGS

NOTES

BUGS

This section lists diagnostic messages with a brief
explanation of the condition causing the error.

This section lists warnings about special conditions
which could seriously affect your working
conditions. This is not a list of diagnostics.

This section lists additional information that does
not belong anywhere else on the page. It takes the
form of an aside to the user, covering points of
special interest. Critical information is never
covered here.

This section describes known bugs and, wherever
possible, suggests workarounds.

Preface 13

14 man pages section 4: File Formats « May 2002

Introduction

15

Intro(4)

NAME | Intro - introduction to file formats

DESCRIPTION | This section outlines the formats of various files. The C structure declarations for the
file formats are given where applicable. Usually, the headers containing these structure
declarations can be found in the directories /usr/include or /usr/include/sys.
For inclusion in C language programs, however, the syntax #include <filename.h> or
#include <sys/filename.h> should be used.

Because the operating system now allows the existence of multiple file system types,
there are several instances of multiple manual pages with the same name. These pages
all display the name of the FSType to which they pertain, in the form name_ fstype at
the top of the page. For example, £s_ufs(4).

16 man pages section 4: File Formats ¢ Last Revised 28 Apr 1999

File Formats

17

admin(4)
NAME | admin - installation defaults file

DESCRIPTION | admin is a generic name for an ASCII file that defines default installation actions by
assigning values to installation parameters. For example, it allows administrators to
define how to proceed when the package being installed already exists on the system.

/var/sadm/install/admin/default is the default admin file delivered with this
release. The default file is not writable, so to assign values different from this file,
create a new admin file. There are no naming restrictions for admin files. Name the
file when installing a package with the -a option of pkgadd(1M). If the -a option is
not used, the default admin file is used.

Each entry in the admin file is a line that establishes the value of a parameter in the
following form:

param=value

Eleven parameters can be defined in an admin file, but it is not required to assign
values to all eleven parameters. If a value is not assigned, pkgadd(1M) asks the
installer how to proceed.

The eleven parameters and their possible values are shown below except as noted.
They may be specified in any order. Any of these parameters (except the mail
parameter) can be assigned the value ask, which means that if the situation occurs the
installer is notified and asked to supply instructions at that time (see NOTES).

basedir Indicates the base directory where relocatable packages are to be
installed. If there is no basedir entry in the file, the installer will
be prompted for a path name, as if the file contained the entry
basedir=ask. This parameter can also be set to default (entry
is basedir=default). In this instance, the package is installed
into the base directory specified by the BASEDIR parameter in the
pkginfo(4) file.

mail Defines a list of users to whom mail should be sent following
installation of a package. If the list is empty, no mail is sent. If the
parameter is not present in the admin file, the default value of
root is used. The ask value cannot be used with this parameter.

runlevel Indicates resolution if the run level is not correct for the
installation or removal of a package. Options are:

nocheck Do not check for run level.
quit Abort installation if run level is not met.
conflict Specifies what to do if an installation expects to overwrite a

previously installed file, thus creating a conflict between packages.
Options are:

18 man pages section 4: File Formats ¢ Last Revised 7 Feb 1997

setuid

action

partial

instance

admin(4)

nocheck Do not check for conflict; files in conflict will
be overwritten.

quit Abort installation if conflict is detected.

nochange Override installation of conflicting files; they
will not be installed.

Checks for executables which will have setuid or setgid bits
enabled after installation. Options are:

nocheck Do not check for setuid executables.

quit Abort installation if setuid processes are
detected.

nochange Override installation of setuid processes;
processes will be installed without setuid bits
enabled.

Determines if action scripts provided by package developers
contain possible security impact. Options are:

nocheck Ignore security impact of action scripts.

quit Abort installation if action scripts may have a
negative security impact.

Checks to see if a version of the package is already partially
installed on the system. Options are:

nocheck Do not check for a partially installed package.

quit Abort installation if a partially installed
package exists.

Determines how to handle installation if a previous version of the
package (including a partially installed instance) already exists.
Options are:

quit Exit without installing if an instance of the
package already exists (does not overwrite
existing packages).

overwrite Overwrite an existing package if only one
instance exists. If there is more than one
instance, but only one has the same
architecture, it overwrites that instance.
Otherwise, the installer is prompted with
existing instances and asked which to
overwrite.

unique Do not overwrite an existing instance of a
package. Instead, a new instance of the
package is created. The new instance will be

File Formats 19

admin(4)

20

EXAMPLES

SEE ALSO

NOTES

idepend

rdepend

space

assigned the next available instance identifier.

Controls resolution if other packages depend on the one to be
installed. Options are:

nocheck Do not check package dependencies.
quit Abort installation if package dependencies are
not met.

Controls resolution if other packages depend on the one to be
removed. Options are:

nocheck Do not check package dependencies.
quit Abort removal if package dependencies are not
met.

Controls resolution if disk space requirements for package are not
met. Options are:

nocheck Do not check space requirements (installation
fails if it runs out of space).

quit Abort installation if space requirements are not
met.

EXAMPLE 1 Sample of admin file.

Below is a sample admin file.

basedir=default
runlevel=quit
conflict=quit
setuid=quit
action=quit
partial=quit
instance=unique
idepend=quit
rdepend=quit
space=quit

pkgadd(1M), pkginfo(4)

The value ask should not be defined in an admin file that will be used for
non-interactive installation (since by definition, there is no installer interaction). Doing
so causes installation to fail when input is needed.

man pages section 4: File Formats * Last Revised 7 Feb 1997

NAME
SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

alias(4)
alias — alias table file of encoding names
/usr/lib/iconv/alias
This file contains the alias table of encoding names for iconv_open(3C).
The format of the alias table is as follows:

"$s %s\n", <variant encoding name>, <canonical encoding name>

The string specified for the variant encoding name is case-insensitive. A line beginning
with "#’ is treated as a comment.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

iconv(3C), iconv_close(3C), iconv_open(3C), attributes (5)

File Formats 21

aliases(4)

22

NAME
SYNOPSIS

DESCRIPTION

Addresses

Local Usernames

aliases, addresses, forward — addresses and aliases for sendmail
/etc/mail/aliases

/etc/mail/aliases.db

/etc/mail/aliases.dir

/etc/mail/aliases.pag

~/ .forward

These files contain mail addresses or aliases, recognized by sendmail(1M) for the
local host:

/etc/passwd Mail addresses (usernames) of local users.

/etc/mail/aliases Aliases for the local host, in ASCII format.
Root can edit this file to add, update, or
delete local mail aliases.

/etc/mail/aliases.{dir, pag) The aliasing information from
/etc/mail/aliases, in binary ndbm(3C)
format for use by sendmail(1M). The
program newaliases(1M) maintains these
files.

/etc/mail/aliases.db The aliasing information from
/etc/mail/aliases, in binary, Berkeley
DataBase format for use by sendmail(1M).
The program maintains these files.

Depending on the configuration of the
AliasFile option in
/etc/mail/sendmail.cf, either the
single file aliases.db or the pair of files
aliases.{dir, pag} is generated by
newaliases(IM). As shipped with Solaris,
sendmail(1M) supports both formats. If
neither is specified, the Berkeley DataBase
format which generates the single . db file
is used.

~/ forward Addresses to which a user’s mail is
forwarded (see Automatic Forwarding).

In addition, the NIS name services aliases map mail.aliases, and the NIS+ mail_aliases
table, both contain addresses and aliases available for use across the network.

As distributed, sendmail(1M) supports the following types of addresses:

username

man pages section 4: File Formats * Last Revised 18 Sept 2001

Local Filenames

Commands

Internet-standard
Addresses

uucp Addresses

Local Aliases

aliases(4)

Each local username is listed in the local host’s /etc/passwd file.

pathname

Messages addressed to the absolute pathname of a file are appended to that file.

| command

If the first character of the address is a vertical bar (|), sendmail(1M) pipes the
message to the standard input of the command the bar precedes.

username@domain

If domain does not contain any “.” (dots), then it is interpreted as the name of a host in
the current domain. Otherwise, the message is passed to a mailhost that determines

how to get to the specified domain. Domains are divided into subdomains separated
by dots, with the top-level domain on the right.

For example, the full address of John Smith could be:

js@jsmachine.Podunk-U.EDU

if he uses the machine named jsmachine at Podunk University.

... [host] host | username

These are sometimes mistakenly referred to as “Usenet”” addresses. uucp(1C) provides
links to numerous sites throughout the world for the remote copying of files.

Other site-specific forms of addressing can be added by customizing the
sendmail.cf configuration file. See sendmail(1M) for details. Standard addresses
are recommended.

/etc/mail/aliases is formatted as a series of lines of the form

aliasname : address|, address]

aliasname is the name of the alias or alias group, and address is the address of a
recipient in the group. Aliases can be nested. That is, an address can be the name of
another alias group. Because of the way sendmail(1M) performs mapping from

upper-case to lower-case, an address that is the name of another alias group must not
contain any upper-case letters.

Lines beginning with white space are treated as continuation lines for the preceding
alias. Lines beginning with # are comments.

File Formats 23

aliases(4)

24

Special Aliases

NIS and NIS+
Domain Aliases

An alias of the form:

owner-aliasname : address

sendmail directs error-messages resulting from mail to aliasname to address, instead of
back to the person who sent the message. sendmail rewrites the SMTP envelope
sender to match this, so owner-aliasname should always point to alias-request,
and alias-request should point to the owner’s actual address:

owner-aliasname: aliasname-request

aliasname-request address

An alias of the form:

aliasname : :include :pathname

with colons as shown, adds the recipients listed in the file pathname to the aliasname

alias. This allows a private list to be maintained separately from the aliases file.

The aliases file on the master NIS server is used for the mail.aliases NIS map, which can
be made available to every NIS client. The mail_aliases table serves the same purpose
on a NIS+ server. Thus, the /etc/mail/aliases* files on the various hosts in a
network will one day be obsolete. Domain-wide aliases should ultimately be resolved
into usernames on specific hosts. For example, if the following were in the
domain-wide alias file:

jsmith:js@jsmachine
then any NIS or NIS+ client could just mail to jsmith and not have to remember the
machine and username for John Smith.

If a NIS or NIS+ alias does not resolve to an address with a specific host, then the
name of the NIS or NIS+ domain is used. There should be an alias of the domain name
for a host in this case.

For example, the alias:
jsmith:root

sends mail on a NIS or NIS+ client to root@podunk -u if the name of the NIS or NIS+
domain is podunk-u.

man pages section 4: File Formats * Last Revised 18 Sept 2001

Automatic
Forwarding

FILES

ATTRIBUTES

SEE ALSO

NOTES

aliases(4)

When an alias (or address) is resolved to the name of a user on the local host,
sendmail(1M) checks for a ~/.forward file, owned by the intended recipient, in that
user’s home directory, and with universal read access. This file can contain one or
more addresses or aliases as described above, each of which is sent a copy of the user’s
mail.

Care must be taken to avoid creating addressing loops in the ~/ . forward file. When
forwarding mail between machines, be sure that the destination machine does not
return the mail to the sender through the operation of any NIS aliases. Otherwise,
copies of the message may "bounce." Usually, the solution is to change the NIS alias to
direct mail to the proper destination.

A backslash before a username inhibits further aliasing. For instance, to invoke the
vacation program, user js creates a ~/ . forward file that contains the line:

\js, "|/usr/ucb/vacation js"

so that one copy of the message is sent to the user, and another is piped into the
vacation program.

/etc/passwd Password file

/etc/nsswitch.conf Name service switch configuration file
/etc/mail/aliases Mail aliases file (ascii)
/etc/mail/aliases.db Database of mail aliases (binary)
/etc/mail/aliases.dir Database of mail aliases (binary)
/etc/mail/aliases.pag Database of mail aliases (binary)
/etc/mail/sendmail.cft sendmail configuration file

~/ .forward Forwarding information file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsndmr

passwd(l), uucp(1C), vacation(l), newaliases(1M), sendmail(1M), ndbm(3C),
getusershell(3C), passwd(4), shells(4), attributes(5)

Because of restrictions in ndbm(3C), a single alias cannot contain more than about
1000 characters (if this format is used). The Berkeley DataBase format does not have
any such restriction. Nested aliases can be used to circumvent this limit.

File Formats 25

aliases(4)

For aliases which result in piping to a program or concatenating a file, the shell of the
controlling user must be allowed. Which shells are and are not allowed are
determined by getusershell(3C).

26 man pages section 4: File Formats * Last Revised 18 Sept 2001

NAME
SYNOPSIS

DESCRIPTION

a.out(4)
a.out — Executable and Linking Format (ELF) files

#include <elf.h>

The file name a . out is the default output file name from the link editor, 1d(1). The
link editor will make an a . out executable if there were no errors in linking. The
output file of the assembler, as(1), also follows the format of the a . out file although
its default file name is different.

Programs that manipulate ELF files may use the library that e1£(3ELF) describes. An
overview of the file format follows. For more complete information, see the references
given below.

Linking View Execution View
ELF header ELF header
Program header table Program header table
optional
Section 1 Segment 1
Section n Segment 2
Section header table Section header table
optional

An ELF header resides at the beginning and holds a “road map”” describing the file’s
organization. Sections hold the bulk of object file information for the linking view:
instructions, data, symbol table, relocation information, and so on. Segments hold the
object file information for the program execution view. As shown, a segment may
contain one or more sections.

A program header table, if present, tells the system how to create a process image.
Files used to build a process image (execute a program) must have a program header
table; relocatable files do not need one. A section header table contains information
describing the file’s sections. Every section has an entry in the table; each entry gives
information such as the section name, the section size, etc. Files used during linking
must have a section header table; other object files may or may not have one.

Although the figure shows the program header table immediately after the ELF
header, and the section header table following the sections, actual files may differ.
Moreover, sections and segments have no specified order. Only the ELF header has a
fixed position in the file.

File Formats 27

a.out(4)

SEE ALSO

When an a . out file is loaded into memory for execution, three logical segments are
set up: the text segment, the data segment (initialized data followed by uninitialized,
the latter actually being initialized to all 0’s), and a stack. The text segment is not
writable by the program; if other processes are executing the same a . out file, the
processes will share a single text segment.

The data segment starts at the next maximal page boundary past the last text address.
If the system supports more than one page size, the “maximal page” is the largest
supported size. When the process image is created, the part of the file holding the end
of text and the beginning of data may appear twice. The duplicated chunk of text that
appears at the beginning of data is never executed; it is duplicated so that the
operating system may bring in pieces of the file in multiples of the actual page size
without having to realign the beginning of the data section to a page boundary.
Therefore, the first data address is the sum of the next maximal page boundary past
the end of text plus the remainder of the last text address divided by the maximal
page size. If the last text address is a multiple of the maximal page size, no duplication
is necessary. The stack is automatically extended as required. The data segment is
extended as requested by the brk(2) system call.

as(1), cc(1B), 14(1), brk(2), el £(3ELF)

ANSI C Programmer’s Guide

28 man pages section 4: File Formats * Last Revised 3 Jul 1990

NAME
DESCRIPTION

archives — device header

/* Magic numbers */

archives(4)

#define CMN_ASC 0x070701 /* Cpio Magic Number for —c header */
#define CMN_BIN 070707 /* Cpio Magic Number for Binary header */
#define CMN_BBS 0143561 /* Cpio Magic Number for Byte-Swap header */
#define CMN_CRC 0x070702 /* Cpio Magic Number for CRC header */
#define CMS_ASC "070701" /* Cpio Magic String for —c header */
#define CMS_CHR "070707" /* Cpio Magic String for odc header */
#define CMS_CRC "070702" /* Cpio Magic String for CRC header */
#define CMS_LEN 6 /* Cpio Magic String length */

/* Various header and field lengths */

#define CHRSZ 76 /* —H odc size minus filename field */
#define ASCSZ 110 /* —c and CRC hdr size minus filename field */
#define TARSZ 512 /* TAR hdr size */

#define HNAMLEN 256 /* maximum filename length for binary and

odc headers */

#define EXPNLEN 1024

CRC headers */

#define HTIMLEN 2
#define HSIZLEN 2

/* cpio binary header definition */

struct hdr cpio {

short h magic,
h_dev;

ushort_t h ino,
h mode,
h uid,
h gid;

short h nlink,
h rdev,

h_mtime [HTIMLEN] ,

h_namesize,
h_filesize[HSIZLEN] ;
char h_name [HNAMLEN] ;
}oi
/* cpio —-H odc header format */
struct c_hdr {
char c_magic[CMS_LEN],
c_devl[e],
c_inol[6],
c_mode [6],
c uidl[e],
c_gidlel,
c_nlink[6],
c_rdev[é6],
c mtime[11],
c_namesz[6],
c filesz[11],
c_name [HNAMLEN] ;
}oi
/* —c and CRC header format */
struct Exp_cpio_hdr {
char E _magic[CMS_LEN],
E_ino[8],
E_mode [8],
E uid[8],
E _gid[8],

/*
/*

/* maximum filename length for —c and

/* length of modification time field */
/* length of file size field */

/* magic number field */
/* file system of file */
/* inode of file */
modes of file */

uid of file */

gid of file */

number of links to file */

/*
/*
/*
/*
/*
/*
/*

size of

maj/min numbers for special files */

modification time of file */
length of filename */
file */

filename */

File Formats

29

archives(4)

30

E nlink([8],

E mtime([8],

E filesize[8],

E maj[8],

E min([8],

E rmaj[8],

E rmin([8],

E namesize[8],

E_chksum[8],

E_name [EXPNLEN] ;
}oi

/* Tar header structure and format */

/* tar header definition */
union tblock {
char dummy [TBLOCK] ;
struct header {

char t_name [TNAMLEN] ;
char t_mode [TMODLEN] ;
char t uid [TUIDLEN] ;
char t gid [TGIDLEN] ;
char t size[TSIZLEN];
char t_mtime [TTIMLEN] ;
char t chksum[TCRCLEN] ;
char t_typeflag;

char t_linkname [TNAMLEN] ;
char t_magic[6];

char t_version[2];

char t_uname [32] ;

char t_gname [32];

char t_devmajor[8];
char t_devminor[8] ;
char t_prefix[155];

} tbuf;
}
/* volcopy tape label format and structure
#define VMAGLEN 8
#define VVOLLEN 6
#define VFILLEN 464
struct volcopy label {
char v_magic [VMAGLEN] ,
v_volume [VVOLLEN] ,
v_reels,
v_reel;
v_time,
v_length,
v_dens,
v_reelblks,
v_blksize,
v_nblocks;
v_fill [VFILLEN] ;

long

char

man pages section 4: File Formats ¢ Last Revised 3 Jul 1990

/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*

*/

/* u370 added field */
/* u370 added field */
/* u370 added field */

/* length of tar header and data blocks */

#define TBLOCK 512

#define TNAMLEN 100 /* maximum length for tar file names */
#define TMODLEN 8 /* length of mode field */

#define TUIDLEN 8 /* length of uid field */

#define TGIDLEN 8 /* length of gid field */

#define TSIZLEN 12 /* length of size field */

#define TTIMLEN 12 /* length of modification time field */
#define TCRCLEN 8 /* length of header checksum field */

name of file */

mode of file */

uid of file */

gid of file */

size of file in bytes */
modification time of file */
checksum of header */

flag to indicate type of file */
file this file is linked with */
magic string always "ustar" */
version strings always "00" */
owner of file in ASCII */

group of file in ASCII */

major number for special files */
minor number for special files */
pathname prefix */

archives(4)

long v_offset; /* used with -e and -reel options */
int v_type; /* does tape have nblocks field? */

b

File Formats 31

asetenv(4)

32

NAME | asetenv — ASET environment file

SYNOPSIS | /usr/aset/asetenv

DESCRIPTION | The asetenv file is located in /usr/aset, the default operating directory of the

variables for ASET.

TASK

CKLISTPATH LOW
CKLISTPATH MED
CKLISTPATH HIGH

YPCHECK

UID ALIASES

Automated Security Enhancement Tool (ASET). An alternative working directory can
be specified by the administrators through the aset -d command or the ASETDIR
environment variable. See aset(1M). asetenv contains definitions of environment

There are 2 sections in this file. The first section is labeled User Configurable Parameters.
It contains, as the label indicates, environment variables that the administrators can
modify to customize ASET behavior to suit their specific needs. The second section is
labeled ASET Internal Environment Variables and should not be changed. The
configurable parameters are explained as follows:

This variable defines the list of tasks that aset will
execute the next time it runs. The available tasks are:

tune Tighten system files.

usrgrp Check user/group.

sysconf Check system configuration file.
env Check environment.

cklist Compare system files checklist.
eeprom Check eeprom(1M) parameters.
firewall Disable forwarding of IP packets.

These variables define the list of directories to be used
by aset to create a checklist file at the low, medium, and
high security levels, respectively. Attributes of all the
files in the directories defined by these variables will be
checked periodically and any changes will be reported
by aset. Checks performed on these directories are not
recursive. aset only checks directories explicitly listed
in these variables and does not check subdirectories of
them.

This variable is a boolean parameter. It specifies
whether aset should extend checking (when
applicable) on system tables to their NIS equivalents or
not. The value true enables it while the value false
disables it.

This variable specifies an alias file for user ID sharing.
Normally, aset warns about multiple user accounts

man pages section 4: File Formats * Last Revised 13 Sep 1991

EXAMPLES

SEE ALSO

asetenv(4)

sharing the same user ID because it is not advisable for
accountability reason. Exceptions can be created using
an alias file. User ID sharing allowed by the alias file
will not be reported by aset. See asetmasters(4) for
the format of the alias file.

PERIODIC_SCHEDULE This variable specifies the schedule for periodic
execution of ASET. It uses the format of crontab(l)
entries. Briefly speaking, the variable is assigned a
string of the following format:

minutes hours day-of-month month day-of-week

Setting this variable does not activate the periodic
schedule of ASET. To execute ASET periodically,
aset(1M) must be run with the -p option. See
aset(1M). For example, if PERIODIC_SCHEDULE is set
to the following, and aset(1M) was started with the
-p option, aset will run at 12:00 midnight every day:

0 0 * *x *

EXAMPLE 1 Sample asetenv file showing the settings of the ASET configurable parameters

The following is a sample asetenv file, showing the settings of the ASET
configurable parameters:

CKLISTPATH_LOW:/etC:/
CKLISTPATHiMED=$CHECKLISTPATHiLOW:/usr/bin:/usr/ucb
CKLISTPATH_HIGH:$CHECKLISTPATH_MED:/usr/lib:/usr/sbin
YPCHECK=false

UID ALIASES=/usr/aset/masters/uid_aliases
PERIODIC_SCHEDULE="0 0 * * *"

TASKS="env sysconf usrgrp"

When aset -p is run with this file, aset is executed at midnight of every day. The /
and /etc directories are checked at the low security level; the /, /etc, /usr/bin,
and /usr/ucb directories are checked at the medium security level; and the /, /etc,
/usr/bin, /usr/lib, and /usr/sbin directories are checked at the high security
level. Checking of NIS system files is disabled. The

/usr/aset/masters/uid aliases file specifies the used IDs available for sharing.
The env, sysconf, and usrgrp tasks will be performed, checking the environment
variables, various system tables, and the local passwd and group files.

crontab(l), aset(1M), asetmasters(4)

ASET Administrator Manual

File Formats 33

asetmasters(4)

NAME | asetmasters, tune.low, tune.med, tune.high, uid_aliases, cklist.low, cklist.med,
cklist.high — ASET master files

SYNOPSIS | /usr/aset/masters/tune.low
/usr/aset/masters/tune.med
/usr/aset/masters/tune.high
/usr/aset/masters/uid_aliases
/usr/aset/masters/cklist.low
/usr/aset/masters/cklist.med

/usr/aset/masters/cklist.high

DESCRIPTION | The /usr/aset/masters directory contains several files used by the Automated
Security Enhancement Tool (ASET). /usr/aset is the default operating directory for
ASET. An alternative working directory can be specified by the administrators through
the aset -d command or the ASETDIR environment variable. See aset(1M).

These files are provided by default to meet the need of most environments. The
administrators, however, can edit these files to meet their specific needs. The format
and usage of these files are described below.

All the master files allow comments and blank lines to improve readability. Comment
lines must start with a leading "#" character.

tune.low

tune.med

tune.high These files are used by the tune task (see aset(1M)) to restrict the
permission settings for system objects. Each file is used by ASET at
the security level indicated by the suffix. Each entry in the files is
of the form:

pathname mode owner group type

where

pathname is the full pathname

mode is the permission setting

owner is the owner of the object

group is the group of the object

type is the type of the object It can be symlink for a

symbolic link, directory for a directory, or
file for everything else.

34 man pages section 4: File Formats ¢ Last Revised 13 Sep 1991

EXAMPLES

uid_alias

cklist.low
cklist.med
cklist.high

asetmasters(4)

Regular shell wildcard ("*", "?", ...) characters can be used in the
pathname for multiple references. See sh(1). The mode is a five-digit
number that represents the permission setting. Note that this
setting represents a least restrictive value. If the current setting is
already more restrictive than the specified value, ASET does not
loosen the permission settings.

For example, if mode is 00777, the permission will not be changed,
since it is always less restrictive than the current setting.

Names must be used for owner and group instead of numeric ID’s.
? can be used as a “don’t care” character in place of owner, group,
and type to prevent ASET from changing the existing values of
these parameters.

This file allows user ID’s to be shared by multiple user accounts.
Normally, ASET discourages such sharing for accountability
reason and reports user ID’s that are shared. The administrators
can, however, define permissible sharing by adding entries to the
file. Each entry is of the form:

uid=alias1=alias2=alias3= ...

where
uid is the shared user id
alias? is the user accounts sharing the user ID

For example, if sync and daemon share the user ID 1, the
corresponding entry is:

l=sync=daemon

These files are used by the cklist task (see aset(1M)), and are
created the first time the task is run at the low, medium, and high
levels. When the cklist task is run, it compares the specified
directory’s contents with the appropriate cklist .level file and
reports any discrepancies.

EXAMPLE 1 Examples of Valid Entries for the tune. low, tune.med, and tune.high Files

The following is an example of valid entries for the tune. low, tune .med, and

tune.high files:

/bin 00777 root staffsymlink
/etc 02755 root staffdirectory

/dev/sd* 00640

rootoperatorfile

File Formats 35

asetmasters(4)

EXAMPLE 1 Examples of Valid Entries for the tune. low, tune.med, and tune.high
Files (Continued)

SEE ALSO | aset(1M), asetenv(4)
ASET Administrator Manual

36 man pages section 4: File Formats ¢ Last Revised 13 Sep 1991

NAME
SYNOPSIS

DESCRIPTION

au(4)
au — AU audio file format

#include <audio/au.h>

An AU audio file is composed of three parts: a header, an optional description field,
and a contiguous segment of audio data. The header is 24 bytes, and the description
field is at least 4 bytes. Therefore, the offset for most AU files is 28 bytes. However,
some people store additional data in the AU header.

The AU audio structure members and audio data are stored big endian. That is, it
starts with the most significant byte, regardless of the native byte order of the machine
architecture on which an application may be running. Therefore, multi-byte audio data
may require byte reversal for proper playback on different processor architectures. See
the macro section for properly reading and writing the AU audio structure members.

The AU header is defined by the following structure:

struct au_filehdr {

uint32_t au_magic; /* magic number (.snd) */

uint32_t au offset; /* byte offset to start of audio data */
uint32_t au_data_size; /* data length in bytes */

uint32 t au_encoding; /* data encoding */

uint32_t au_sample rate; /* samples per second */

uint32_t au_channels; /* number of interleaved channels */

}i

typedef struct au filehdr au filehdr t;

The au_magic field always contains the following constant for an AU audio file:

AUDIO_AU FILE MAGIC (0x2e736e64) /* ".snd" */

The au_offset field contains the length of the audio file header plus the variable
length info field. Consequently, it can be interpreted as the offset from the start of the
file to the start of the audio data.

The au_data_size field contains the length, in bytes, of the audio data segment. If
this length is not known when the header is written, it should be set to
AUDIO AU UNKNOWN_ SIZE, defined as follows:

AUDIO AU UNKNOWN SIZE (~0) /* (unsigned) -1 */

When the au_data_size field contains AUDIO_AU_ UNKNOWN_SIZE, the length of
the audio data can be determined by subtracting au_offset from the total length of
the file.

The encoding field contains one of the following enumerated keys:

AUDIO_AU_ENCODING_ULAW /* 8-bit u-law */

AUDIO_AU_ENCODING_LINEAR 8 /* 8-bit linear PCM */
AUDIO_AU_ENCODING_LINEAR 16 /* 16-bit linear PCM */
AUDIO AU_ENCODING LINEAR 24 /* 24-bit linear PCM */

File Formats 37

au(4)

AUDIO_AU_ENCODING_LINEAR 32 /* 32-bit linear PCM */
AUDIO_AU_ENCODING_FLOAT /* Floating point */
AUDIO_AU_ENCODING_DOUBLE /* Double precision float */
AUDIO_ AU ENCODING FRAGMENTED /* Fragmented sample data */
AUDIO_AU_ENCODING_DSP /* DSP program */
AUDIO_AU_ENCODING_FIXED 8 /* 8-bit fixed point */
AUDIO_AU_ENCODING_FIXED 16 /* 16-bit fixed point */
AUDIO_AU_ENCODING_ FIXED 24 /* 24-bit fixed point */
AUDIO_AU_ENCODING_FIXED 32 /* 32-bit fixed point */
AUDIO_AU_ENCODING EMPHASIS /* 16-bit linear with emphasis */
AUDIO_AU_ENCODING_COMPRESSED /* 16-bit linear compressed */
AUDIO_AU_ENCODING_EMP_COMP /* 16-bit linear with emphasis
and compression */
AUDIO_AU_ENCODING MUSIC_KIT /* Music kit DSP commands */

AUDIO_AU_ENCODING_ADPCM G721 /* CCITT G.721 ADPCM */
AUDIO_AU ENCODING ADPCM_G722 /* CCITT G.722 ADPCM */
AUDIO_AU_ENCODING ADPCM G723 3 /* CCITT G.723.3 ADPCM */
AUDIO_AU ENCODING_ADPCM G723_5 /* CCITT G.723.5 ADPCM */
AUDIO AU _ENCODING_ ALAW /* 8-bit A-law G.711 */

All of the linear encoding formats are signed integers centered at zero.

The au_sample_rate field contains the audio file’s sampling rate in samples per
second. Some common sample rates include 8000, 11025, 22050, 44100, and 48000
samples per second.

The au_channels field contains the number of interleaved data channels. For
monaural data, this value is set to one. For stereo data, this value is set to two. More
than two data channels can be interleaved, but such formats are currently
unsupported by the Solaris audio driver architecture. For a stereo sound file, the first
sample is the left track and the second sample is the right track.

The optional info field is a variable length annotation field that can be either text or
data. If it is a text description of the sound, then it should be NULL terminated.
However, some older files might not be terminated properly. The size of the info field
is set when the structure is created and cannot be enlarged later.

Macros | Accessing all of the AU audio structure members should be done through the supplied
AUDIO AU FILE2HOST and AUDIO AU HOST2FILE macros. By always using these
macros, code will be byte-order independent. See the example below.

EXAMPLES | examPLE 1 Displaying Header Information for a Sound File

The following program reads and displays the header information for an AU sound
file. The AUDIO_AU_FILE2HOST macro ensures that this information will always be in
the proper byte order.

void main (void)

{
au_filehdr t hdr;
au_filehdr_t local;
int fa;

38 man pages section 4: File Formats * Last Revised 15 Jan 2001

ATTRIBUTES

SEE ALSO

NOTES

EXAMPLE 1 Displaying Header Information for a Sound File (Continued)

char *name = "bark.au";

if ((fd = open(name, O RDONLY)) < 0)
printf ("can’t open file %s\n", name) ;
exit (1) ;

1
(void) read(fd, &hdr, sizeof (hdr));

AUDIO AU FILE2HOST (&hdr.au magic, &local.au magic) ;
AUDIO_AU_FILE2HOST (&hdr.au_offset, &local.au offset);

AUDIO AU FILE2HOST (&hdr.au data size, &local.au data_ size);
AUDIO_AU FILE2HOST (&hdr.au encoding, &local.au encoding) ;

au(4)

AUDIO AU FILE2HOST (&hdr.au sample rate, &local.au sample rate);

AUDIO_AU FILE2HOST (&hdr.au channels, &local.au channels) ;

printf ("Magic = %x\n", local.au magic) ;

printf ("Offset = %d\n", local.au offset);

printf ("Number of data bytes = %d\n", local.au_data size);

(
(
(
printf ("Sound format = %d\n", local.au encoding) ;
(
(

printf ("Sample rate = %d\n", local.au_sample_ rate);
printf ("Number of channels = %d\n", local.au channels);

(void) close(£fd);

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE
Availability SUNWaudh
Stability Level Evolving
attributes(5)

Some older AU audio files are incorrectly coded with info strings that are not properly

NULL-terminated. Thus, applications should always use the au_offset value to

find the end of the info data and the beginning of the audio data.

File Formats

39

audit_class(4)

40

NAME
SYNOPSIS

DESCRIPTION

EXAMPLES

FILES

SEE ALSO

audit_class — audit class definitions

/etc/security/audit_class

/etc/security/audit_class is an ASCII system file that stores class definitions.
Programs use the getauclassent(3BSM) routines to access this information.

The fields for each class entry are separated by colons. Each class entry is a bitmap and
is separated from each other by a newline.

Each entry in the audit_class file has the form:

mask:name:description

The fields are defined as follows:

mask The class mask.
name The class name.
description The description of the class.

The classes are now user-configurable. Each class is represented as a bit in the class
mask which is an unsigned integer. Thus, there are 32 different classes available, plus
two meta-classes -- all and no.

all represents a conjunction of all allowed classes, and is provided as a shorthand
method of specifying all classes.

no is the "invalid" class, and any event mapped solely to this class will not be audited.
(Turning auditing on to the all meta class will NOT cause events mapped solely to
the no class to be written to the audit trail.)

EXAMPLE 1 Sample of an audit_class file.

Here is a sample of an audit class file:

0x00000000:no:invalid class
0x00000001:fr:file read
0x00000002:fw:file write
0x00000004:fa:file attribute access
0x00000008:fm:file attribute modify
0x00000010:fc:file create
0x00000020:fd:file delete
0x00000040:cl:file close
oxffffffff:all:all classes

/etc/security/audit_class

bsmconv(lM), getauclassent(3BSM), audit event(4)

man pages section 4: File Formats ¢ Last Revised 31 Dec 1996

NOTES

audit_class(4)

It is possible to deliberately turn on the no class in the kernel, in which case the audit
trail will be flooded with records for the audit event AUE_NULL.

The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

File Formats 41

audit_control(4)

42

NAME
SYNOPSIS

DESCRIPTION

audit_control - control information for system audit daemon

/etc/security/audit_control

The audit_control file contains audit control information used by auditd(1M).
Each line consists of a title and a string, separated by a colon. There are no restrictions
on the order of lines in the file, although some lines must appear only once. A line
beginning with ‘#’ is a comment.

Directory definition lines list the directories to be used when creating audit files, in the
order in which they are to be used. The format of a directory line is:

dir :directory-name

directory-name is where the audit files will be created. Any valid writable directory can
be specified.

The following configuration is recommended:

/etc/security/audit/server/files

where server is the name of a central machine, since audit files belonging to different
servers are usually stored in separate subdirectories of a single audit directory. The
naming convention normally has server be a directory on a server machine, and all
clients mount /etc/security/audit/server at the same location in their local file
systems. If the same server exports several different file systems for auditing, their
server names will, of course, be different.

There are several other ways for audit data to be arranged: some sites may have needs
more in line with storing each host’s audit data in separate subdirectories. The audit
structure used will depend on each individual site.

The audit threshold line specifies the percentage of free space that must be present in
the file system containing the current audit file. The format of the threshold line is:

minfree:percentage

where percentage is indicates the amount of free space required. If free space falls
below this threshold, the audit daemon auditd(1M) invokes the shell script
audit warn(IM). If no threshold is specified, the default is 0%.

The audit flags line specifies the default system audit value. This value is combined
with the user audit value read from audit user(4) to form a user’s process
preselection mask.

man pages section 4: File Formats ¢ Last Revised 16 Feb 2001

audit_control(4)

The algorithm for obtaining the process preselection mask is as follows: the audit flags
from the flags: line in the audit_control file are added to the flags from the
always-audit field in the user’s entry in the audit user file. The flags from the
never-audit field from the user’s entry in the audit_user file are then subtracted
from the total:

user’s process preselection mask =
(flags: line + always audit flags) - never audit flags

The format of a flags line is:

flags :audit-flags

where audit-flags specifies which event classes are to be audited. The character string
representation of audit-flags contains a series of flag names, each one identifying a
single audit class, separated by commas. A name preceded by '~ means that the class
should be audited for failure only; successful attempts are not audited. A name
preceded by ‘+” means that the class should be audited for success only; failing
attempts are not audited. Without a prefix, the name indicates that the class is to be
audited for both successes and failures. The special string all indicates that all events
should be audited; —all indicates that all failed attempts are to be audited, and +all
all successful attempts. The prefixes *, “—, and “+ turn off flags specified earlier in the
string (“—and “ + for failing and successful attempts, * for both). They are typically
used to reset flags.

The non-attributable flags line is similar to the flags line, but this one contain the audit
flags that define what classes of events are audited when an action cannot be
attributed to a specific user. The format of a naflags line is:

naflags :audit-flags

The flags are separated by commas, with no spaces.

The following table lists the predefined audit classes:

short name long name short description

no no_class null value for turning off event preselection
fr file read Read of data, open for reading, etc.

fw file write Write of data, open for writing, etc.

fa file attr_acc Access of object attributes: stat, pathconf, etc.
fm file attr_mod Change of object attributes: chown, flock, etc.
fc file creation Creation of object

fd file deletion Deletion of object

cl file close close(2) system call

pc process Process operations: fork, exec, exit, etc.

nt network Network events: bind, connect, accept, etc.

ip ipc System V IPC operations

na non_attrib non-attributable events

ad administrative administrative actions: mount, exportfs, etc.

lo login_logout Login and logout events

ap application Application auditing

File Formats 43

audit_control(4)

44

EXAMPLES

FILES

SEE ALSO

NOTES

io ioctl ioctl(2) system call
ex exec exec (2) system call

ot other Everything else

all all All flags set

Note that the classes are configurable, see audit_class(4).

EXAMPLE 1 Sample /etc/security/audit_control file for the machine eggplant.

Here is a sample /etc/security/audit_control file for the machine eggplant:

dir: /etc/security/jedgar/eggplant

dir: /etc/security/jedgar.aux/eggplant

#

Last-ditch audit file system when jedgar fills up.
#

dir: /etc/security/global/eggplant

minfree: 20

flags: lo,ad,-all,”-fm

naflags: lo,ad

This identifies server jedgar with two file systems normally used for audit data,
another server global used only when jedgar fills up or breaks, and specifies that
the warning script is run when the file systems are 80% filled. It also specifies that all
logins, administrative operations are to be audited (whether or not they succeed), and
that failures of all types except failures to access object attributes are to be audited.

/etc/security/audit_control
/etc/security/audit_warn
/etc/security/audit/*/*/*
/etc/security/audit_user

audit(lM), audit_ warn(1M), auditd(1M), bsmconv(1M), audit(2),
getfauditflags(3BSM), audit.log(4), audit class(4), audit user(4)

The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

man pages section 4: File Formats ¢ Last Revised 16 Feb 2001

NAME
SYNOPSIS

DESCRIPTION

EXAMPLES

FILES

SEE ALSO

NOTES

audit_data(4)
audit_data — current information on audit daemon

/etc/security/audit_data

The audit data file contains information about the audit daemon. The file contains
the process ID of the audit daemon, and the pathname of the current audit log file. The
format of the file is:

pid> : <pathname>

Where pid is the process ID for the audit daemon, and pathname is the full pathname
for the current audit log file.

EXAMPLE 1 A sample audit_data file.
64:/etc/security/audit/serverl/19930506081249.19930506230945.bongos
/etc/security/audit_data

audit(1M), auditd(1M), bsmconv(1M), audit(2), audit.log(4)

The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

File Formats 45

audit_event(4)
NAME
SYNOPSIS

DESCRIPTION

EXAMPLES

FILES
SEE ALSO

NOTES

audit_event — audit event definition and class mapping

/etc/security/audit_event

/etc/security/audit_event is an ASCII system file that stores event definitions
and specifies the event to class mappings. Programs use the getauevent(3BSM)
routines to access this information.

The fields for each event entry are separated by colons. Each event is separated from
the next by a newline.

Each entry in the audit_event file has the form:

number:mame:description: flags

The fields are defined as follows:

number The event number.

name The event name.

description The description of the event.

flags Flags specifying classes to which the event is mapped.

EXAMPLE 1 Sample of the audit_event file entries.

Here is a sample of the audit_event file entries:

7:AUE_EXEC:exec (2) :pc,ex

79:AUE_OPEN_WTC:open(2) - write,creat,trunc:fc,fd, fw
6152:AUE_login:login - success or failure:lo

6153 :AUE_logout:logout:lo

6154 :AUE_telnet:login - through telnet:lo
6155:AUE_rlogin:login - through rlogin:lo

/etc/security/audit_event
bsmconv(lM), getauevent(3BSM), audit control(4)

The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

46 man pages section 4: File Formats * Last Revised 31 Dec 1996

NAME
SYNOPSIS

DESCRIPTION

audit.log(4)
audit.log — audit trail file
#include <bsm/audit.h>

#include <bsm/audit_ record.h>

audit. log files are the depository for audit records stored locally or on an audit
server. These files are kept in directories named in the file audit control(4). They
are named to reflect the time they are created and are, when possible, renamed to
reflect the time they are closed as well. The name takes the form

yyyymmddhhmmss .not _terminated.hostname

when open or if the auditd(1M) terminated ungracefully, and the form

yyyymmddhhmmss . yyyymmddhhmmss . hostname

when properly closed. yyyy is the year, mm the month, dd day in the month, hh hour
in the day, mm minute in the hour, and ss second in the minute. All fields are of fixed
width.

The audit . log file begins with a standalone file token and typically ends with
one also. The beginning file token records the pathname of the previous audit file,
while the ending file token records the pathname of the next audit file. If the file
name is NULL the appropriate path was unavailable.

The audit . log files contains audit records. Each audit record is made up of audit
tokens. Each record contains a header token followed by various data tokens.
Depending on the audit policy in place by auditon(2), optional other tokens such as
trailers or sequences may be included.

The tokens are defined as follows:

The £ile token consists of:

token ID 1 byte
seconds of time 4 bytes
milliseconds of time 4 bytes
file name length 2 bytes
file pathname N bytes + 1 terminating NULL byte

The header token consists of:

token ID 1 byte

record byte count 4 bytes

version # 1 byte [2]

event type 2 bytes

event modifier 2 bytes

seconds of time 4 bytes/8 bytes (32-bit/64-bit value)
milliseconds of time 4 bytes/8 bytes (32-bit/64-bit value)

The expanded header token consists of:

File Formats 47

audit.log(4)

48

toke ID 1
record byte count 4
version # 1
event type 2
event modifier 2
address type/length 4
machine address 4

4

4

token ID 1
internet address 4

token ID 1
IP address type/length 4
IP address 16

The ip token consists of:

token ID
version and ihl
type of service
length

id

offset

ttl

protocol
checksum

source address
destination address

BB N R R NN R R R

token ID
version and ihl
type of service
length

id

offset

ttl

[E O R N QR

byte

bytes

byte [2]
bytes

bytes

bytes/16 bytes
bytes/16 bytes

The in_addr token consists of:

byte
bytes

The expanded in_addr token consists of:

byte
bytes/16 bytes
bytes

byte
byte
byte
bytes
bytes
bytes
byte
byte
bytes
bytes
bytes

The expanded ip token consists of:

byte
byte
byte
bytes
bytes
bytes
byte

man pages section 4: File Formats ¢ Last Revised 26 Oct 2000

(IPv4/IPv6 address)
(IPv4/IPv6 address)

seconds of time bytes/8 bytes (32/64-bits)
milliseconds of time bytes/8 bytes (32/64-bits)
The trailer token consists of:

token ID 1 byte

trailer magic number 2 bytes

record byte count 4 bytes

The arbitrary data token is defined:

token ID 1 byte

how to print 1 byte

basic unit 1 byte

unit count 1 byte

data items (depends on basic unit)

(IPv4/IPv6 address)

audit.log(4)

protocol byte
checksum bytes
address type/type bytes

source address
address type/length
destination address

bytes/16 bytes (IPv4/IPvé address)
bytes/16 bytes (IPv4/IPv6 address)
bytes/16 bytes (IPv4/IPvé address)

[NN N

The iport token consists of:

token ID 1 byte
port IP address 2 bytes

The path token consists of:

token ID 1 byte
path length 2 bytes
path N bytes + 1 terminating NULL byte

The process token consists of:

token ID 1 byte
audit ID 4 bytes
effective user ID 4 bytes
effective group ID 4 bytes
real user ID 4 bytes
real group ID 4 bytes
process ID 4 bytes
session ID 4 bytes

terminal ID
port ID bytes/8 bytes (32-bit/64-bit value)
machine address 4 bytes

'S

The expanded process token consists of:

token ID 1 byte
audit ID 4 bytes
effective user ID 4 bytes
effective group ID 4 bytes
real user ID 4 bytes
real group ID 4 bytes
process ID 4 bytes
session ID 4 bytes
terminal ID
port ID 4 bytes/8 bytes (32-bit/64-bit value)

address type/length 4 bytes/16 bytes (IPv4/IPvé address)
machine address 16 bytes

The return token consists of:

token ID 1 byte
error number 1 byte
return value 4 bytes/8 bytes (32-bit/64-bit value)

The subject token consists of:

token ID 1 byte
audit ID 4 bytes
effective user ID 4 bytes

File Formats

49

audit.log(4)

50

effective group ID
real user ID
real group ID
process ID
session ID
terminal ID

port ID

machine address

token ID
audit ID
effective user ID
effective group ID
real user ID
real group ID
process ID
session ID
terminal ID
port ID
address type/length
machine address

token ID
object ID type
object ID

token ID
text length
text

token ID

file access mode
owner user ID
owner group ID
file system ID
node ID

device

token ID
number groups
group list

token ID

owner user ID
owner group ID
creator user ID

L S

W

L S S e

»

4

16

1
1
4

The text token consists of:

1
2

bytes
bytes
bytes
bytes
bytes

bytes/8 bytes (32-bit/64-bit value)
bytes

The expanded subject token consists of:

byte

bytes
bytes
bytes
bytes
bytes
bytes
bytes

bytes/8 bytes (32-bit/64-bit value)
bytes/16 bytes (IPv4/IPvé address)
bytes

The System V IPC token consists of:

byte
byte
bytes

byte
bytes

N bytes + 1 terminating NULL byte

[T U N N N

1
2

The attribute token consists of:

byte
bytes
bytes
bytes
bytes
bytes
bytes/8 bytes (32-bit/64-bit)

The groups token consists of:

byte
bytes

N * 4 bytes

1
4
4
4

The System V IPC permission token consists of:

byte

bytes
bytes
bytes

man pages section 4: File Formats ¢ Last Revised 26 Oct 2000

audit.log(4)

creator group ID 4 bytes

access mode 4 bytes

slot sequence # 4 bytes

key 4 bytes

The arg token consists of:

token ID 1 byte

argument # 1 byte

argument value 4 bytes/8 bytes (32-bit/64-bit value)
text length 2 bytes

text N bytes + 1 terminating NULL byte

The exec_args token consists of:

token ID 1 byte
count 4 bytes
text count null-terminated string(s)

The exec_env token consists of:

token ID 1 byte
count 4 bytes
text count null-terminated string(s

The exit token consists of:

token ID 1 byte
status 4 bytes
return value 4 bytes

The socket token consists of:

token ID 1 byte
socket type 2 bytes
remote port 2 bytes

remote Internet address 4 bytes

The expanded socket token consists of:

token ID byte

1
socket domain 2 bytes
socket type 2 bytes
local port 2 bytes
address type/length 4 bytes/16 bytes (IPv4/IPv6 address)
local port 2 bytes
local Internet address 4 bytes/16 bytes (IPv4/IPv6 address)
remote port 2 bytes
remote Internet address 4 bytes/16 bytes (IPv4/IPv6 address)

The seq token consists of:

token ID 1 byte
sequence number 4 bytes

SEE ALSO | audit(1M), auditd(1M), bsmconv(1M), audit(2), auditon(2), au_to(3BSM),
audit_control(4)

File Formats 51

audit.log(4)
NOTES | Each token is generally written using the au_to(3BSM) family of function calls.

The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

52 man pages section 4: File Formats ¢ Last Revised 26 Oct 2000

NAME
SYNOPSIS

DESCRIPTION

EXAMPLES

FILES

SEE ALSO

NOTES

audit_user(4)
audit_user — per-user auditing data file

/etc/security/audit_user

audit_user is an access-restricted database that stores per-user auditing preselection
data. The audit_user file can be used with other authorization sources, including
the NIS map audit user.byname and the NIS+ table audit user. Programs use
the getauusernam(3BSM) routines to access this information.

The search order for multiple user audit information sources is specified in the
/etc/nsswitch. conf file, as described in the nsswitch. conf(4) man page. The
lookup follows the search order for passwd(4).

The fields for each user entry are separated by colons (:). Each user is separated from
the next by a newline. audit_user does not have general read permission.

Each entry in the audit user file has the form:

username:always-audit-flags:mever-audit-flags

The fields are defined as follows:

username The user’s login name.
always-audit-flags Flags specifying event classes to always audit.
never-audit-flags Flags specifying event classes to never audit.

For a complete description of the audit flags and how to combine them, see the
audit control(4) man page.

EXAMPLE 1 Sample audit_user file

other:lo,ad:io,cl
fred:lo,ex,+fc,-fr,-fa:io,cl
ethyl:lo,ex,nt:io,cl

/etc/nsswitch.conf
/etc/passwd

/etc/security/audit_user

bsmconv(lM), getauusernam(3BSM), audit control(4), nsswitch.conf(4),
passwd(4)

The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

File Formats 53

auth_attr(4)

54

NAME
SYNOPSIS

DESCRIPTION

auth_attr — authorization description database

/etc/security/auth_attr

/etc/security/auth_attr is a local source for authorization names and
descriptions. The auth_attr file can be used with other authorization sources,
including the auth attr NIS map and NIS+ table. Programs use the
getauthattr(3SECDB) routines to access this information.

The search order for multiple authorization sources is specified in the
/etc/nsswitch. conf file, as described in the nsswitch. conf(4) man page.

An authorization is a right assigned to users that is checked by certain privileged
programs to determine whether users can execute restricted functionality. Each entry
in the auth_attr database consists of one line of text containing six fields separated
by colons (:). Line continuations using the backslash (\) character are permitted. The
format of each entry is:

name : res1 : res2 : short_desc : long_desc : attr

name The name of the authorization. Authorization names are unique
strings. Construct authorization names using the following
convention:

prefix. or prefix.suffix

prefix Everything in the name field up to the final dot (.).
Authorizations from Sun Microsystems, Inc. use
solaris as a prefix. To avoid name conflicts, all other
authorizations should use a prefix that begins with the
reverse—order Internet domain name of the
organization that creates the authorization (for
example, com.xyzcompany). Prefixes can have
additional arbitrary components chosen by the
authorization’s developer, with components separated
by dots.

suffix The final component in the name field. Specifies what is
being authorized.

When there is no suffix, the name is defined as a
heading. Headings are not assigned to users but are
constructed for use by applications in their GUIs.

When a name ends with the word grant, the entry defines a grant
authorization. Grant authorizations are used to support
fine-grained delegation. Users with appropriate grant
authorizations can delegate some of their authorizations to others.
To assign an authorization, the user needs to have both the
authorization itself and the appropriate grant authorization.

man pages section 4: File Formats » Last Revised 9 Jan 2002

EXAMPLES

auth_attr(4)

res]1 Reserved for future use.

res2 Reserved for future use.

short_desc A short description or terse name for the authorization. This name
should be suitable for displaying in user interfaces, such as in a
scrolling list in a GUL

long_desc A long description. This field can explain the precise purpose of

the authorization, the applications in which it is used, and the type
of user that would be interested in using it. The long description
can be displayed in the help text of an application.

attr An optional list of semicolon-separated (;) key-value pairs that
describe the attributes of an authorization. Zero or more keys may
be specified. The keyword help identifies a help file in HTML.

EXAMPLE 1 Constructing a Name

In the following example, the name has a prefix (solaris.admin.usermgr)
followed by a suffix (read):

solaris.admin.usermgr.read

EXAMPLE 2 Defining a Heading
Because the name field ends with a dot, the following entry defines a heading;:

solaris.admin.usermgr. :::User Accounts::help=AuthUsermgrHeader.html

EXAMPLE 3 Assigning Separate Authorizations to Set User Attributes

In this example, a heading entry is followed by other associated authorization entries.
The entries below the heading provide separate authorizations for setting user
attributes. The attr field for each entry, including the heading entry, assigns a help file.
The application that uses the help key requires the value to equal the name of a file
ending in .htmor .html:

solaris.admin.usermgr. :::User Accounts::help=AuthUsermgrHeader.html
solaris.admin.usermgr.pswd: : : Change Password::help=AuthUserMgrPswd.html

solaris.admin.usermgr.write: : :Manage Users::help=AuthUsermgrWrite.html

EXAMPLE 4 Assigning a Grant Authorization

This example assigns to an administrator the following authorizations:

solaris.admin.printer.grant
solaris.admin.printer.delete
solaris.admin.printer.modify
solaris.admin.printer.read
solaris.login.enable

File Formats 55

auth_attr(4)

56

FILES

SEE ALSO

NOTES

EXAMPLE 4 Assigning a Grant Authorization (Continued)

With the above authorizations, the administrator can assign to others the
solaris.admin.printer.delete, solaris.admin.printer.modify, and
solaris.admin.printer.read authorizations, but not the
solaris.login.enable authorization. If the administrator has both the grant
authorization, solaris.admin.printmgr.grant, and the wildcard authorization,
solaris.admin.printmgr. *, the administrator can grant to others any of the
printer authorizations. See user attr(4) for more information about how wildcards
can be used to assign multiple authorizations whose names begin with the same
components.

EXAMPLE 5 Authorizing the Ability to Assign Other Authorizations

The following entry defines an authorization that grants the ability to assign any
authorization created with a solaris prefix, when the administrator also has either
the specific authorization being granted or a matching wildcard entry:

solaris.grant:::Grant All Solaris Authorizations::help=PriAdmin.html

EXAMPLE 6 Consulting the Local Authorization File Ahead of the NIS Table

With the following entry from /etc/nsswitch. conf, the local auth attr fileis
consulted before the NIS table:

auth_attr:files nisplus

/etc/nsswitch.conf
/etc/user attr
/etc/security/auth attr

getauthattr(3SECDB), getexecattr(3SECDB), getprofattr(3SECDB),
getuserattr(3SECDB), exec_attr(4), nsswitch.conf(4), user_attr(4)

When deciding which authorization source to use , keep in mind that NIS+ provides
stronger authentication than NIS.

Because the list of legal keys is likely to expand, any code that parses this database
must be written to ignore unknown key-value pairs without error. When any new
keywords are created, the names should be prefixed with a unique string, such as the
company’s stock symbol, to avoid potential naming conflicts.

Each application has its own requirements for whether the help value must be a
relative pathname ending with a filename or the name of a file. The only known
requirement is for the name of a file.

man pages section 4: File Formats » Last Revised 9 Jan 2002

auth_attr(4)

The following characters are used in describing the database format and must be
escaped with a backslash if used as data: colon (:), semicolon (;), equals (=), and
backslash (\).

File Formats 57

bootparams(4)

58

NAME
SYNOPSIS

DESCRIPTION

bootparams — boot parameter data base

/etc/bootparams

The bootparams file contains a list of client entries that diskless clients use for
booting. Diskless booting clients retrieve this information by issuing requests to a
server running the rpc .bootparamd(1M) program. The bootparams file may be
used in conjunction with or in place of other sources for the bootparams information.
See nsswitch.conf(4).

For each client the file contains an entry with the client’s name and a list of boot
parameter values for that client. Each entry has the form:

clientname keyword=value. . .

The first item of each entry is the host name of the diskless client. You can use the
asterisk ("*’) character as a "wildcard" in place of the client name in a single entry. A
wildcard entry applies to all clients for which there is not an entry that specifically
names them.

In a given entry, the host name or asterisk is followed by one or more whitespace
characters and a series of keyword—value pairs separated by whitespace characters.
There must not be any whitespace within a keyword—value pair.

Each keyword—value pair has the syntax:
keyword=value

The preceding form breaks out further as:

keyword=server : value
Where server can be null and value can be a pathname.

An example that includes a server is:

clientl root=serverl:/export/clientl/root

An example where server is null is:

clientl rootopts=:vers2

A minor variation of the keyword=value syntax is used for the domain keyword. Unlike
the forms shown above, this syntax does not use a colon. For example:

clientl domain=bldgl.workco.com

Entries can span multiple lines. Use the backslash ("\") character as the last character
of a line to continue the entry to the following line. For multiple-line entries, you can
split a line only in places where whitespace is allowed. For example, you can use a
backslash to split the following entry between the end of the path (root) and the
keyword domain:

man pages section 4: File Formats » Last Revised 4 Jan 2002

EXAMPLES

bootparams(4)

clientl root=serverl:/export/clientl/root domain=bldgl.workco.com

In entries that specify a server, server is the name of the server that will provide the file
or filesystem to the diskless client and value is the pathname of the exported file or
filesystem on that server.

In entries that use the domain keyword, the domain name specified must be the
client’s domain name. The algorithm for determining a client’s domain name is to first
check for a domain keyword in the client-specific entry and then in "wildcard" entry.
If none is found, the server’s domain name is used.

For the JumpStart installation of machines that do not have video displays, use the
term keyword to identify the terminal type of the boot server. Terminal types are
listed in /usr/share/lib/terminfo (see terminfo(4)).

An entry with the ns keyword associates a server (a name server) with, instead of a
pathname, a specific name service (NIS+, NIS, or none) and, if that server is not on a
local subnet, the netmask needed to reach it. For example:

ns=hoot :nisplus (255.255.255.0)

An ns entry forces sysidtool(1M) to use the specified name service. By default,
sysidtool uses NIS+ in preference to NIS if it can find an NIS+ server for the
system’s domain on the subnet. An ns entry might be necessary if you are trying to set
up a hands-off installation, or if the name server is on a different subnet, which is
common with NIS+.

If an ns keyword is not used, sysidtool uses broadcast to attempt to bind to either a
NIS+ or NIS server. If a name server is not on the local subnet, which is possible for
NIS+, the bind will fail, automatic configuration of the name service will fail, and an
interactive screen is displayed, prompting the user to specify the name service.

The ns keyword can be set in add_install_client or by Host Manager.

EXAMPLE 1 Sample bootparams Entry

Here is an example of an entry in the bootparams file:

clientl root=serverl:/export/clientl/root rootopts=:vers=2 \
domain=bldgl.workco.com

client2 root=server2:/export/client2/root ns=:nis

client3 root=server2:/export/client3/root ns=watson:

client4 root=server2:/export/client4/root \
ns=mach:nisplus (255.255.255.0)

EXAMPLE 2 Sample Entry for JumpStart

The following is an example of an entry that might be used for the JumpStart
installation of diskless clients that do not have displays.

File Formats 59

bootparams(4)

EXAMPLE 2 Sample Entry for JumpStart (Continued)

mozart root=haydn:/export/install/sparc/os/latest/Solaris_9/boot \
install=haydn:/export/install/sparc/os/8.1/latest boottype=:in \
install_ config=haydn:/usr/local/share/lib/jump-net \
ns=otis:nisplus(255.255.255.0) term=:xterms domain=eu.cte.work.com

FILES | /etc/bootparams

SEE ALSO | rpc.bootparamd(IM), sysidtool(1M), nsswitch.conf(4)

NOTES | Solaris diskless clients use the keywords root and rootopts to look up the
pathname for the root filesystem and the mount options for the root filesystem,
respectively. These are the only keywords meaningful for diskless booting clients. See
mount_ ufs(1M).

60 man pages section 4: File Formats ¢ Last Revised 4 Jan 2002

NAME

DESCRIPTION

cdtoc(4)
cdtoc — CD-ROM table of contents file

The table of contents file, . cdtoc, is an ASCII file that describes the contents of a
CD-ROM or other software distribution media. It resides in the top-level directory of
the file system on a slice of a CD-ROM. It is independent of file system format, that is,
the file system on the slice can be either UFS or HSFS.

Each entry in the . cdtoc file is a line that establishes the value of a parameter in the
following form:

PARAM=value

Blank lines and comments (lines preceded by a pound-sign, “#”) are also allowed in
the file. Parameters are grouped by product, with the beginning of a product defined
by a line of the form:

PRODNAME=value

Each product is expected to consist of one or more software packages that are stored
together in a subdirectory on the distribution media. There can be any number of
products described within the file. There is no required order in which the parameters
must be specified, except that the parameters must be grouped by product and the
PRODNAME parameter must appear first in the list of parameters for each product
specified. Each parameter is described below. All of the parameters are required for
each product.

PRODNAME The full name of the product. This must be unique
within the . cdtoc file and is preferably unique across
all possible products. This value may contain white
space. The length of this value is limited to 256 ASCII
characters; other restrictions may apply (see below).

PRODVERS The version of the product. The value can contain any
combination of letters, numbers, or other characters.
This value may contain white space. The length of this
value is limited to 256 ASCII characters; other
restrictions may apply (see below).

PRODDIR The name of the top-level directory containing the
product. This name should be relative to the top-level
directory of the distribution media, for example,
Solaris_2.6/Product. The number of path
components in the name is limited only by the system’s
maximum path name length, which is 1024 ASCII
characters. Any single component is limited to 256
ASCII characters. This value cannot contain white
space.

File Formats 61

cdtoc(4)

62

EXAMPLES

The lengths of the values of PRODNAME and PRODVERS are further constrained by
the fact that the initial install programs and swmtool(1M) concatenate these values to
produce the full product name. swmtool(1M) concatenates the two values (inserting a
space) to produce the name displayed in its software selection menu, for example,
Solaris 2.6. For unbundled products the combined length of the values of
PRODNAME and PRODVERS must not exceed 256 ASCII characters.

When you install OS services with Solstice Host Manager, directories for diskless
clients and Autoclient systems are created by constructing names derived from a
concatenation of the values of PRODNAME, PRODVERS, and client architecture, for
example, /export/exec/Solaris 2.x sparc.all/usr/platform. The length
of the component containing the product name and version must not exceed 256
ASCII characters. Thus, for products corresponding to bundled OS releases (for
example, Solaris 2.4), the values of PRODNAME and PRODVERS are effectively
restricted to lengths much less than 256.

The initial install programs and swmtool(1M) use the value of the PRODDIR macro in
the . cdtoc file to indicate where packages can be found.

EXAMPLE 1 Sample of . cdtoc file.

Here is a sample . cdtoc file:

#

.cdtoc file -- Online product family CD
#

PRODNAME=Online DiskSuite

PRODVERS=2.0

PRODDIR=Online_ DiskSuite 2.0

#

PRODNAME=Online Backup

PRODVERS=2.0

PRODDIR=Online_Backup_2.0

This example corresponds to the following directory layout on a CD-ROM partition:

/ .cdtoc
/Online DiskSuite_ 2.0
. /SUNWmddr.c
. /SUNWmddr .m
. /SUNWmddu
/Online Backup_ 2.0
. /SUNWhsm

The bundled release of Solaris 2.6 includes the following . cdtoc file:

PRODNAME=Solaris
PRODVERS=2.6
PRODDIR=Solaris_2.6/Product

This file corresponds to the following directory layout on slice 0 of the Solaris 2.6
product CD:

man pages section 4: File Formats * Last Revised 4 Oct 1996

cdtoc(4)

EXAMPLE 1 Sample of . cdtoc file. (Continued)
/ .cdtoc
/Solaris_2.6/Product
. /SUNWaccr

. /SUNWaccu
. /SUNWadmap

. /SUNWutool

SEE ALSO | swmtool(1M), clustertoc(4), packagetoc(4), pkginfo(4)

File Formats 63

clustertoc(4)

64

NAME

DESCRIPTION

clustertoc — cluster table of contents description file

The cluster table of contents file, . clustertoc, is an ASCII file that describes a
hierarchical view of a software product. A . clustertoc file is required for the base
OS product. The file resides in the top-level directory containing the product.

The hierarchy described by . clustertoc can be of arbitrary depth, although the
initial system installation programs assume that it has three levels. The hierarchy is
described bottom-up, with the packages described in . packagetoc at the lowest
layer. The next layer is the cluster layer which collects packages into functional units.
The highest layer is the meta-cluster layer which collects packages and clusters together
into typical configurations.

The hierarchy exists to facilitate the selection or deselection of software for installation
at varying levels of granularity. Interacting at the package level gives the finest level of
control over what software is to be installed.

Each entry in the . clustertoc file is a line that establishes the value of a parameter
in the following form:

PARAM=value

A line starting with a pound-sign, “#”, is considered a comment and is ignored.

Parameters are grouped by cluster or meta-cluster. The start of a cluster description is
defined by a line of the form:

CLUSTER=value

The start of a meta-cluster description is defined by a line of the form:

METACLUSTER=value

There is no order implied or assumed for specifying the parameters for a
(meta-)cluster with the exception of the CLUSTER or METACLUSTER parameter, which
must appear first and the END parameter which must appear last.

The following parameters are mandatory:

CLUSTER
The cluster identifier (for example, SUNWCacc). The identifier specified must be
unique within the package and cluster identifier namespace defined by a product’s
.packagetoc and . clustertoc files. The identifiers used are subject to the same
constraints as those for package identifiers. These constraints are (from
pkginfo(4)):

All characters in the abbreviation must be alphanumeric and the first may not be
numeric. The abbreviation is limited to a maximum length of nine characters.
install, new, and all are reserved abbreviations.

man pages section 4: File Formats ¢ Last Revised 22 Jun 2001

clustertoc(4)
A cluster must be described before another cluster or meta-cluster may refer to it.

DESC
An informative textual description of the (meta-)cluster’s contents. The length of
the description supplied may not exceed 256 characters. The text should contain no
newlines.

METACLUSTER
The metacluster identifier (for example, SUNWCprog). The identifier specified must
be unique within the package and cluster identifier namespace defined by a
product’s . packagetoc and . clustertoc files. The identifiers used are subject
to the same constraints as those for package identifiers. These constraints are (from
pkginfo(4)):

All characters in the abbreviation must be alphanumeric and the first may not be
numeric. The abbreviation is limited to a maximum length of nine characters.
install, new, and all are reserved abbreviations.

Meta-clusters can not contain references to other meta-clusters.

NAME
The full name of the (meta-)cluster. The length of the name string supplied may not
exceed 256 characters.

SUNW_CSRMEMBER
Indicates that the package or cluster is a part of the (meta-) cluster currently being
described. The value specified is the identifier of the package or cluster. There may
be an arbitrary number of SUNW_CSRMEMBER parameters per (meta-)cluster.

VENDOR
The name of the (meta-)cluster’s vendor. The length of the vendor string supplied
may not exceed 256 characters.

VERSION
The version of the (meta-)cluster. The length of the version string supplied may not
exceed 256 characters.

The following parameters are optional:

DEFAULT
Specifies which metacluster within a . clustertoc file should be selected or
installed by default. Only one metacluster can be the default.

HIDDEN
Specifies whether a metacluster should be hidden by applications. A hidden
metacluster cannot be DEFAULT.

REQUIRED
Specifies which metacluster is required. A required metacluster implies that all of
its cluster and package members are not de-selectable (must be installed).

File Formats 65

clustertoc(4)

66

EXAMPLES

SUNW_CSRMBRIFF
Indicates that the package is to be included dynamically in the (meta-)cluster
currently being described. The value of this parameter must follow the following
format:

SUNW_CSRMBRIFF= (test test_arc) package

This line is converted into a SUNW_CSRMEMBER entry at media installation time if
the test provided matches the platform on which the media is being installed. There
may be zero or more SUNW_CSRMBRIFF parameters per (meta-)cluster.

SUNW_CSRMBRIFF=(test value)package
where the the test is either the builtin test of "platform" or a shell script which
returns shell true (0) or shell false (1) depending on the tests being performed in
the script. value is passed to the test as the first argument and can be used to create
a script that tests for multiple hardware objects. Finally package is the package that
is included in the final . clustertoc file as a SUNW_CSRMEMBER. See
parse_dynamic_clustertoc(1M) for more information about the scripts.

EXAMPLE 1 A Cluster Description

The following is an example of a cluster description in a .clustertoc file.

CLUSTER=SUNWCacc

NAME=System Accounting
DESC=System accounting utilities
VENDOR=Sun Microsystems, Inc.
VERSION=7.2
SUNW_CSRMEMBER=SUNWaccr
SUNW_CSRMEMBER=SUNWaccu

END

EXAMPLE 2 A Meta-cluster Description

The following is an example of a meta-cluster description in a . clustertoc file.

METACLUSTER=SUNWCreqg

NAME=Core System Support

DESC=A pre-defined software configuration consisting of the minimum
required software for a standalone, non-networked workstation.
VENDOR=Sun Microsystems, Inc.

VERSION=2.x

SUNW_CSRMEMBER=SUNWadmr

SUNW_CSRMEMBER=SUNWcar

SUNW_CSRMEMBER=SUNWCcs

SUNW_CSRMEMBER=SUNWCcg6

SUNW_CSRMEMBER=SUNWCdfb

SUNW_CSRMEMBER=SUNWkvm

SUNW7CSRMEMBER=SUNWCniS

SUNW_CSRMEMBER=SUNWowdv

SUNW_CSRMEMBER=SUNWter

END

man pages section 4: File Formats ¢ Last Revised 22 Jun 2001

SEE ALSO

NOTES

clustertoc(4)
EXAMPLE 3 A Meta-cluster Description With a Dynamic Cluster Entry

The following is an example of a meta-cluster description with a dynamic cluster entry
as indicated by the use of the SUNW_CSRMBRIFF parameter entries.

METACLUSTER=SUNWCprog

NAME=Developer System Support

DESC=A pre-defined software configuration consisting of the
typical software used by software developers.

VENDOR=Sun Microsystems, Inc.

VERSION=2.5

SUNW_CSRMEMBER=SUNWCadm

SUNW_CSRMBRIFF=(smcc.dctoc tcx)SUNWCtex

SUNW_CSRMBRIFF= (smcc.dctoc leo)SUNWCleo
SUNW_CSRMBRIFF=(smcc.dctoc sx)SUNWCsx

END
parse_dynamic_clustertoc(lM), cdtoc(4), order(4), packagetoc(4),
pkginfo(4)

The current implementation of the initial system installation programs depend on the
.clustertoc describing three required meta-clusters for the base OS product:

SUNWCall Contains all of the software packages in the OS distribution.

SUNWCuser Contains the typical software packages for an end-user of the OS
distribution.

SUNWCreq Contains the bare-minimum packages required to boot and

configure the OS to the point of running a multi-user shell.

File Formats 67

compver(4)
NAME

DESCRIPTION

EXAMPLES

SEE ALSO

NOTES

compver — compatible versions file

compver is an ASCII file used to specify previous versions of the associated package
which are upward compatible. It is created by a package developer.

Each line of the file specifies a previous version of the associated package with which
the current version is backward compatible.

Since some packages may require installation of a specific version of another software
package, compatibility information is extremely crucial. Consider, for example, a
package called "A" which requires version "1.0" of application "B" as a prerequisite for
installation. If the customer installing "A" has a newer version of "B" (version 1.3), the
compver file for "B" must indicate that "1.3" is compatible with version "1.0" in order
for the customer to install package "A".

EXAMPLE 1 Sample compver file.

A sample compver file is shown below:

Version 1.3
Version 1.0

pkginfo(4)
Application Packaging Developer’s Guide

The comparison of the version string disregards white space and tabs. It is performed
on a word-by-word basis. Thus, "Version 1.3" and "Version 1.3" would be considered
the same.

The entries in the compver file must match the values assigned to the VERSION
parameter in the pkginfo(4) files.

68 man pages section 4: File Formats * Last Revised 4 Oct 1996

copyright(4)
NAME | copyright — copyright information file

DESCRIPTION | copyright is an ASCII file used to provide a copyright notice for a package. The text
may be in any format. The full file contents (including comment lines) are displayed
on the terminal at the time of package installation.

SEE ALSO | Application Packaging Developer’s Guide

File Formats 69

core(4)

70

NAME

DESCRIPTION

core — process core file

The operating system writes out a core file for a process when the process is
terminated due to the receipt of certain signals. A core file is a disk copy of the
contents of the process address space at the time the process received the signal, along
with additional information about the state of the process. This information can be
consumed by a debugger. Core files can also be generated by applying the gcore(1)
utility to a running process.

Typically, core files are produced following abnormal termination of a process
resulting from a bug in the corresponding application. Whatever the cause, the core
file itself provides invaluable information to the programmer or support engineer to
aid in diagnosing the problem. The core file can be inspected using a debugger such as
dbx(1) or mdb(1) or by applying one of the proc(1) tools.

The operating system attempts to create up to two core files for each abnormally
terminating process, using a global core file name pattern and a per-process core file
name pattern. These patterns are expanded to determine the pathname of the resulting
core files, and can be configured by coreadm(1M). By default, the global core file
pattern is disabled and not used, and the per-process core file pattern is set to core.
Therefore, by default, the operating system attempts to create a core file named core
in the process’s current working directory.

A process will terminate and produce a core file whenever it receives one of the
signals whose default disposition is to cause a core dump. The list of signals that result
in generating a core file is shown in signal(BHEAD). Therefore, a process might not
produce a core file if it has blocked or modified the behavior of the corresponding
signal. Additionally, no core dump can be created under the following conditions:

® If normal file and directory access permissions prevent the creation or modification
of the per-process core file pathname by the current process user and group ID.
This test does not apply to the global core file pathname because the global core file
is always written as the super-user.

m If the core file pattern expands to a pathname that contains intermediate directory
components that do not exist. For example, if the global pattern is set to
/var/core/%n/core. %p, and no directory /var/core/‘uname -n' has been
created, no global core files will be produced.

m If the destination directory is part of a filesystem that is mounted read-only.

m If the resource limit RLIMIT CORE has been set to 0 for the process. Refer to
setrlimit(2) and ulimit(1) for more information on resource limits.

m If the core file name already exists in the destination directory and is not a regular
file (that is, is a symlink, block or character special-file, and so forth).

m [f the kernel cannot open the destination file O EXCL, which can occur if same file
is being created by another process simultaneously.

man pages section 4: File Formats ¢ Last Revised 2 Jan 2001

core(4)

m If the process’s effective user ID is different from its real user ID or if its effective
group ID is different from its real group ID. Similarly, set-user-ID and set-group-ID
programs do not produce core files as this could potentially compromise system
security. These processes can be explicitly granted permission to produce core files
using coreadm(1M), at the risk of exposing secure information.

The core file contains all the process information pertinent to debugging: contents of
hardware registers, process status, and process data. The format of a core file is object
file specific.

For ELF executable programs (see a . out(4)), the core file generated is also an ELF file,
containing ELF program and file headers. The e_type field in the file header has type
ET_CORE. The program header contains an entry for every segment that was part of
the process address space, including shared library segments. The contents of the
writable segments are also part of the core image.

The program header of an ELF core file also contains entries for two NOTE segments,
each containing several note entries as described below. The note entry header and
core file note type (n_type) definitions are contained in <sys/elf.h>. The first
NOTE segment exists for binary compatibility with old programs that deal with core
files. It contains structures defined in <sys/old_procfs.h>. New programs should
recognize and skip this NOTE segment, advancing instead to the new NOTE segment.
The old NOTE segment will be deleted from core files in a future release.

The old NOTE segment contains the following entries. Each has entry name "CORE"
and presents the contents of a system structure:

prpsinfo t n_type : NT_PRPSINFO. This entry contains
information of interest to the ps(1) command, such as
process status, CPU usage, "nice" value, controlling
terminal, user-ID, process-ID, the name of the
executable, and so forth. The prpsinfo_t structure is
defined in <sys/old procfs.hs.

char array n_type: NT_PLATFORM. This entry contains a string
describing the specific model of the hardware platform
on which this core file was created. This information is
the same as provided by sysinfo(2) when invoked
with the command SI PLATFORM.

auxv_t array n_type: NT_AUXV. This entry contains the array of
auxv_t structures that was passed by the operating
system as startup information to the dynamic linker.
Auxiliary vector information is defined in
<sys/auxv.h>.

Following these entries, for each light-weight process (LWP) in the process, the old NOTE
segment contains an entry with a prstatus_t structure, plus other
optionally-present entries describing the LWP, as follows:

File Formats 71

core(4)

prstatus_t

prfpregset t

gwindows_t

prxregset t

n_type: NT_PRSTATUS. This structure contains things
of interest to a debugger from the operating system,
such as the general registers, signal dispositions, state,
reason for stopping, process-ID, and so forth. The
prstatus_t structure is defined in

<sys/old procfs.h>.

n_type: NT_PRFPREG. This entry is present only if the
LWP used the floating-point hardware. It contains the
floating-point registers. The prfpregset_t structure
is defined in <sys/procfs_isa.hs.

n_type: NT_GWINDOWS. This entry is present only on a
SPARC machine and only if the system was unable to
flush all of the register windows to the stack. It
contains all of the unspilled register windows. The
gwindows_t structure is defined in
<sys/regset.h>.

n_type: NT_PRXREG. This entry is present only if the
machine has extra register state associated with it. It
contains the extra register state. The prxregset t
structure is defined in <sys/procfs_isa.h>.

The new NOTE segment contains the following entries. Each has entry name “CORE”
and presents the contents of a system structure:

psinfo t

pstatus_t

char array

auxv_t array

n_type: NT PSINFO. This structure contains
information of interest to the ps(1) command, such as
process status, CPU usage, "nice" value, controlling
terminal, user-ID, process-ID, the name of the
executable, and so forth. The psinfo_t structure is
defined in <sys/procfs.h>.

n_type: NT_PSTATUS. This structure contains things
of interest to a debugger from the operating system,
such as pending signals, state, process-ID, and so forth.
The pstatus_t structure is defined in
<sys/procfs.h>.

n_type: NT_PLATFORM. This entry contains a string
describing the specific model of the hardware platform
on which this core file was created. This information is
the same as provided by sysinfo(2) when invoked
with the command SI_PLATFORM.

n_type: NT_AUXV. This entry contains the array of
auxv_t structures that was passed by the operating

72 man pages section 4: File Formats ¢ Last Revised 2 Jan 2001

struct utsname

prcred t

core(4)

system as startup information to the dynamic linker.
Auxiliary vector information is defined in
<sys/auxv.hs.

n_type: NT UTSNAME. This structure contains the
system information that would have been returned to
the process if it had performed a uname(2) system call
prior to dumping core. The ut sname structure is
defined in <sys/utsname.h>.

n_type: NT PRCRED. This structure contains the
process credentials, including the real, saved, and
effective user and group IDs. The prcred_t structure
is defined in <sys/procfs.h>. Following the
structure is an optional array of supplementary group
IDs. The total number of supplementary group IDs is
given by the pr _ngroups member of the prcred_t
structure, and the structure includes space for one
supplementary group. If pr_ngroups is greater than
1, there will be pr ngroups - 1 gid_t items
following the structure; otherwise, there will be no
additional data.

Following these entries, for each LWP in the process, the new NOTE segment contains
an entry with an lwpsinfo_t structure plus an entry with an lwpstatus_t
structure, plus other optionally-present entries describing the LWP, as follows:

lwpsinfo_t

lwpstatus_t

gwindows_t

prxregset t

n_type: NT LWPSINFO. This structure contains information of
interest to the ps(1) command, such as LWP status, CPU usage,
"nice" value, LWP-ID, and so forth. The lwpsinfo_t structure is
defined in <sys/procfs.h>.

n_type: NT_LWPSTATUS. This structure contains things of interest
to a debugger from the operating system, such as the general
registers, the floating point registers, state, reason for stopping,
LWP-ID, and so forth. The lwpstatus_t structure is defined in
<sys/procfs.h>.

n_type: NT_GWINDOWS. This entry is present only on a SPARC
machine and only if the system was unable to flush all of the
register windows to the stack. It contains all of the unspilled
register windows. The gwindows_t structure is defined in
<sys/regset.h>.

n_type: NT_PRXREG. This entry is present only if the machine has
extra register state associated with it. It contains the extra register
state. The prxregset_t structure is defined in
<sys/procfs isa.hs>.

File Formats 73

core(4)

asrset_t n_type: NT_ASRS. This entry is present only on a SPARC V9
machine and only if the process is a 64-bit process. It contains the
ancillary state registers for the LWP. The asrset_t structure is
defined in <sys/regset.h>.

The size of the core file created by a process may be controlled by the user (see
getrlimit(2)).

SEE ALSO | gcore(l), mdb(1), proc(l), ps(l), coreadm(1M), getrlimit(2), setrlimit(2),
setuid(2), sysinfo(2), uname(2), el£(3ELF), a.out(4), proc(4), signal(3BHEAD)

ANSI C Programmer’s Guide

74 man pages section 4: File Formats ¢ Last Revised 2 Jan 2001

NAME
SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

NOTES

dacf.conf(4)
dacf.conf — device auto-configuration configuration file

/etc/dacf.conf

The kernel uses the dacf . conf file to automatically configure hot plugged devices.
Because the dacf . conf file contains important kernel state information, it should not
be modified.

The format of the /etc/dacf . conf file is not public and might change in versions of
the Solaris operating environment that are not compatible with Solaris 8.

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWocsr

attributes(b)

This document does not constitute an API. The /etc/dacf . conf file might not exist
or might contain different contents or interpretations in versions of the Solaris
operating environment that are not compatible with Solaris 8. The existence of this
notice does not imply that any other documentation lacking this notice constitutes an
APL

File Formats 75

defaultdomain(4)
NAME
SYNOPSIS

DESCRIPTION

SEE ALSO

NOTES

defaultdomain — specify host’s domain name

/etc/defaultdomain

The file /etc/defaultdomain determines a host’s domain name for direct use by
the NIS and NIS+ name services. The defaultdomain file is read at boot time and its
contents used by the domainname(1M) command. Because of its use by domainname,
defaultdomain is also used by the LDAP service (see 1dap(1l)). Under certain,
narrow circumstances (see resolv.conf(4)), because domainname uses
defaultdomain, a DNS client can use the contents of defaultdomain.

The contents of defaultdomain consists of a single line containing a host’s domain
name.

nis+(1), uname(1), ldapclient(IM), nisclient(1M), ypbind(1M), ypinit(1M),
resolv.conf(4)

The defaultdomain file is created and modified by Solaris installation and
configuration scripts. Only users knowledgeable of name service configuration should
edit the file.

76 man pages section 4: File Formats ¢ Last Revised 22 February 2000

default_fs(4)
NAME | default_fs, fs — specify the default file system type for local or remote file systems

DESCRIPTION | When file system administration commands have both specific and generic
components (for example, £sck(1M)), the file system type must be specified. If it is
not explicitly specified using the -F FSType command line option, the generic
command looks in /etc/vEstab in order to determine the file system type, using the
supplied raw or block device or mount point. If the file system type can not be
determined by searching /etc/vEstab, the command will use the default file system
type specified in either /etc/default/fs or /etc/dfs/dfstypes, depending on
whether the file system is local or remote.

The default local file system type is specified in /etc/default/£fs by a line of the
form LOCAL=fstype (for example, LOCAL=ufs). The default remote file system type is
determined by the first entry in the /etc/dfs/fstypes file.

File system administration commands will determine whether the file system is local
or remote by examining the specified device name. If the device name starts with /"
(slash), it is considered to be local; otherwise it is remote.

The default file system types can be changed by editing the default files with a text

editor.

FILES | /etc/vEstab list of default parameters for each file system
/etc/default/fs the default local file system type
/etc/dfs/fstypes the default remote file system type

SEE ALSO | £sck(1M), fstypes(4), vistab(4)

File Formats 77

defaultrouter(4)

78

NAME
SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

defaultrouter — configuration file for default router(s)

/etc/defaultrouter
The /etc/defaultrouter file specifies a IPv4 host’s default router(s).

The format of the file is as follows:

IP_address

The /etc/defaultrouter file can contain the IP addresses or hostnames of one or
more default routers, with each entry on its own line. If you use hostnames, each
hostname must also be listed in the local /etc/hosts file, because no name services
are running at the time that defaultrouter is read.

Lines beginning with the “#” character are treated as comments.

The default routes listed in this file replace those added by the kernel during diskless
booting. An empty /etc/defaultrouter file will cause the default route added by
the kernel to be deleted.

Use of a default route, whether received from a DHCP server or from
/etc/defaultrouter, prevents a machine from acting as an IPv4 router, even if
that machine does not have an /etc/notrouter file.

/etc/defaultrouter Configuration file containing the hostnames
or IP addresses of one or more default
routers.

in.rdisc(1M), in.routed(1M), hosts(4)

man pages section 4: File Formats * Last Revised 7 Mar 1997

NAME

DESCRIPTION

EXAMPLES

depend(4)

depend — software dependencies file

depend is an ASCII file used to specify information concerning software dependencies
for a particular package. The file is created by a software developer.

Each entry in the depend file describes a single software package. The instance of the
package is described after the entry line by giving the package architecture and/or
version. The format of each entry and subsequent instance definition is:
type pkg name

(arch)version

(arch)version

The fields are:
type Defines the dependency type. Must be one of the following
characters:

P Indicates a prerequisite for installation; for example, the
referenced package or versions must be installed.

I Implies that the existence of the indicated package or
version is incompatible.

R Indicates a reverse dependency. Instead of defining the
package’s own dependencies, this designates that
another package depends on this one. This type should
be used only when an old package does not have a
depend file, but relies on the newer package
nonetheless. Therefore, the present package should not
be removed if the designated old package is still on the
system since, if it is removed, the old package will no
longer work.

pkg Indicates the package abbreviation.
name Specifies the full package name.
(arch)version Specifies a particular instance of the software. A version name

cannot begin with a left parenthesis. The instance specifications,
both (arch) and version, are completely optional, but each
(arch)version pair must begin on a new line that begins with white
space. A null version set equates to any version of the indicated
package.

EXAMPLE 1 Sample of depend file

Here are the contents of a sample depend file, for the SUNWEtpr (FTP Server)
package, stored in /var/sadm/pkg/SUNWftpr/install:

P SUNWcar Core Architecture, (Root)
P SUNWkvm Core Architecture, (Kvm)

File Formats 79

depend(4)

80

SUNWcsr
SUNWcsu
SUNWcsd
SUNWcs1l
SUNWEftpu

oL eIV AR v I v]

SEE ALSO | pkginfo(4)

EXAMPLE 1 Sample of depend file (Continued)

Core Solaris, (Root)
Core Solaris, (Usr)
Core Solaris Devices
Core Solaris Libraries
FTP Server, (Usr)

Application Packaging Developer’s Guide

man pages section 4: File Formats * Last Revised 4 Oct 1996

NAME
SYNOPSIS

DESCRIPTION

device_allocate(4)
device_allocate — device_allocate file

/etc/security/device_allocate

The device_allocate file contains mandatory access control information about
each physical device. Each device is represented by a one line entry of the form:

device-name;device-type;reserved;reserved;auths;device-exec

where

device-name This is an arbitrary ASCII string naming the physical
device. This field contains no embedded white space or
non-printable characters.

device-type This is an arbitrary ASCII string naming the generic
device type. This field identifies and groups together
devices of like type. This field contains no embedded
white space or non-printable characters.

reserved This field is reserved for future use.
reserved This field is reserved for future use.

auths This field contains a comma-separated list of
authorizations required to allocate the device, or
asterisk (*) to indicate that the device is not allocatable,
or an ‘@’ symbol to indicate that no explicit
authorization is needed to allocate the device.

The default authorization is
solaris.device.allocate. See auths(1)

device-exec This is the physical device’s data purge program to be
run any time the device is acted on by allocate(1).
This is to ensure that all usable data is purged from the
physical device before it is reused. This field contains
the filename of a program in /etc/security/lib or
the full pathname of a cleanup script provided by the
system administrator.

The device allocate file is an ASCII file that resides in the /etc/security
directory.

Lines in device allocate can end with a “\” to continue an entry on the next line.

Comments may also be included. A “#” makes a comment of all further text until the
next NEWLINE not immediately preceded by a “\".

White space is allowed in any field.

File Formats 81

device_allocate(4)

82

EXAMPLES

FILES

SEE ALSO

NOTES

The device_allocate file must be created by the system administrator before
device allocation is enabled.

The device_allocate file is owned by root, with a group of sys, and a mode of
0644.

EXAMPLE 1 Declaring an allocatable device

Declare that physical device st0 is a type st. st is allocatable, and the script used to
clean the device after running deallocate(l) is named
/etc/security/lib/st_clean.

scsi tape

st0;\
sti\
reserved; \
reserved; \
solaris.device.allocate;\
/etc/security/lib/st_clean;\

EXAMPLE 2 Declaring an allocatable device with authorizations

Declare that physical device £d0 is of type £d. £d is allocatable by users with the
solaris.device.allocate authorization, and the script used to clean the device
after running deallocate(l) is named /etc/security/lib/fd clean.

floppy drive
£40;\
£d;\
reserved;\
reserved; \
&;\
/etc/security/lib/fd _clean;\

Notice that making a device allocatable means that you need to allocate and deallocate
it to use it (with allocate(1) and deallocate(l)). If a device is not allocatable, there
will be an asterisk (*) in the auths field, and no one can use the device.

/etc/security/device allocate Contains list of allocatable devices

auths(1l), allocate(l), bsmconv(lM), deallocate(l), list devices(l),
auth _attr(4)

The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

man pages section 4: File Formats * Last Revised 16 Jan 2001

NAME
SYNOPSIS

DESCRIPTION

EXAMPLES

FILES

SEE ALSO

device_maps(4)
device_maps — device_maps file

/etc/security/device maps

The device_maps file contains access control information about each physical device.
Each device is represented by a one line entry of the form:

device-name : device-type : device-list :

where

device-name This is an arbitrary ASCII string naming the physical
device. This field contains no embedded white space or
non-printable characters.

device-type This is an arbitrary ASCII string naming the generic
device type. This field identifies and groups together
devices of like type. This field contains no embedded
white space or non-printable characters.

device-list This is a list of the device special files associated with

the physical device. This field contains valid device
special file path names separated by white space.

The device maps file is an ASCII file that resides in the /etc/security directory.
Lines in device_maps can end with a “\” to continue an entry on the next line.

Comments may also be included. A “#” makes a comment of all further text until the
next NEWLINE not immediately preceded by a “\".

Leading and trailing blanks are allowed in any of the fields.

The device_maps file must be created by the system administrator bef\ore device
allocation is enabled.

This file is owned by root, with a group of sys, and a mode of 0644.

EXAMPLE 1 A sample device_maps file

scsi tape

stl:\

rmt:\

/dev/rst2l /dev/nrst2l /dev/rst5 /dev/nrst5 /dev/rstl3 \
/dev/nrstl3 /dev/rst29 /dev/nrst29 /dev/rmt/11 /dev/rmt/lm \
/dev/rmt/1 /dev/rmt/1h /dev/rmt/lu /dev/rmt/1lln /dev/rmt/lmn \
/dev/rmt/1ln /dev/rmt/lhn /dev/rmt/lun /dev/rmt/lb /dev/rmt/lbn:\

/etc/security/device maps

allocate(l), bsmconv(1M), deallocate(l), dninfo(1M), 1ist devices(l)

File Formats 83

device_maps(4)

NOTES | The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

84 man pages section 4: File Formats * Last Revised 16 Jan 2001

dfstab(4)

NAME | dfstab — file containing commands for sharing resources across a network

DESCRIPTION | dfstab resides in directory /etc/dfs and contains commands for sharing resources
across a network. df stab gives a system administrator a uniform method of
controlling the automatic sharing of local resources.

Each line of the df stab file consists of a share(1M) command. The df stab file can
be read by the shell to share all resources. System administrators can also prepare their
own shell scripts to execute particular lines from dfstab.

The contents of df stab are executed automatically when the system enters run-level
3.

SEE ALSO | share(1M), shareall(1M)

File Formats 85

dhcp_inittab(4)

86

NAME

DESCRIPTION

dhcp_inittab — information repository for DHCP options

The /etc/dhep/inittab file contains information about the Dynamic Host
Configuration Protocol (DHCP) options, which are network configuration parameters
passed from DHCP servers to DHCP clients when a client machine uses DHCP. Since
many DHCP-related commands must parse and understand these DHCP options, this
file serves as a central location where information about these options may be
obtained.

The DHCP inittab file provides three general pieces of information:

® A mnemonic alias, or symbol name, for each option number. For instance, option
12 is aliased to the name Hostname. This is useful for DHCP-related programs that
require human interaction, such as dhcpinfo(l).

® Information about the syntax for each option. This includes information such as the
type of the value, for example, whether it is a 16-bit integer or an IP address.

® The policy for what options are visible to which DHCP-related programs.

The dhcp_inittab file can only be changed upon system upgrade. Only additions of
SITE options (or changes to same) will be preserved during upgrade.

The VENDOR options defined here are intended for use by the Solaris DHCP client and
DHCP management tools. The SUNW vendor space is owned by Sun, and changes are
likely during upgrade. If you need to configure the Solaris DHCP server to support
the vendor options of a different client, see dhctab(4) for details.

Each DHCP option belongs to a certain category, which roughly defines the scope of
the option; for instance, an option may only be understood by certain hosts within a
given site, or it may be globally understood by all DHCP clients and servers. The
following categories are defined; the category names are not case-sensitive:

STANDARD All client and server DHCP implementations agree on the
semantics. These are administered by the Internet Assigned
Numbers Authority (IANA). These options are numbered from 1
to127.

SITE Within a specific site, all client and server implementations agree
on the semantics. However, at another site the type and meaning
of the option may be quite different. These options are numbered
from 128 to 254.

VENDOR Each vendor may define 254 options unique to that vendor. The
vendor is identified within a DHCP packet by the "Vendor Class"
option, number 60. An option with a specific numeric identifier
belonging to one vendor will, in general, have a type and
semantics different from that of a different vendor. Vendor options
are "super-encapsulated” into the vendor field number 43, as

man pages section 4: File Formats ¢ Last Revised 7 Jun 2001

DHCP inittab
Format

dhcp_inittab(4)

defined in RFC 2132. The dhcp_inittab file only contains Sun
vendor options. Define non-Sun vendor options in the dhcptab
file.

FIELD This category allows the fixed fields within a DHCP packet to be
aliased to a mnemonic name for use with dhcpinfo(l).

INTERNAL This category is internal to the Solaris DHCP implementation and
will not be further defined.

Data entries are written one per line and have seven fields; each entry provides
information for one option. Each field is separated by a comma, except for the first and
second, which are separated by whitespace (as defined in isspace(3C)). An entry
cannot be continued onto another line. Blank lines and those whose first
non-whitespace character is ‘#’ are ignored.

The fields, in order, are:

® Mnemonic Identifier

The Mnemonic Identifier is a user-friendly alias for the option number; it is not
case sensitive. This field must be per-category unique and should be unique across
all categories. The option names in the STANDARD, SITE, and VENDOR spaces
should not overlap, or the behavior will be undefined. See Mnemonic
Identifiers for Options section of this man page for descriptions of the
option names.

m Category (scope)
The Category field is one of STANDARD, SITE, VENDOR, FIELD, or INTERNAL and
identifies the scope in which the option falls.

m Option Number

The Option Number is the number of this option when it is in a DHCP packet. This
field should be per-category unique and the STANDARD and SITE fields should not
have overlapping code fields or the behavior is undefined.

m Data Type
Data Type is one of the following values, which are not case sensitive:
Ascii A printable character string
Bool Has no value. Scope limited to category limited to INTERNAL.

Presence of an option of this type within a Solaris configuration
file represents TRUE, absence represents FALSE.

Octet An array of bytes
Unumber8 An 8-bit unsigned integer
Snumbers An 8-bit signed integer
Unumberl6 A 16-bit unsigned integer
Snumberlé A 16-bit signed integer

File Formats 87

dhcp_inittab(4)

Unumber32 A 32-bit unsigned integer
Snumber32 A 32-bit signed integer
Unumber64 A 64-bit unsigned integer
Snumber64 A 64-bit signed integer
Ip An IP address

The data type field describes an indivisible unit of the option payload, using one of
the values listed above.

® Granularity

The Granularity field describes how many "indivisible units" in the option payload
make up a whole value or item for this option. The value must be greater than zero
(0) for any data type other than Bool, in which case it must be zero (0).

® Maximum Number Of Items

This value specifies the maximum items of Granularity which are permissible in a
definition using this symbol. For example, there can only be one IP address
specified for a subnet mask, so the Maximum number of items in this case is one
(1). A Maximum value of zero (0) means that a variable number of items is
permitted.

® Visibility
The Visibility field specifies which DHCP-related programs make use of this
information, and should always be defined as "sdmi" for newly added options.

Mnemonic | The following table maps the mnemonic identifiers used in Solaris DHCP to RFC 2132
Identifiers for options:

Options
Symbol Code Description
Subnet 1 Subnet Mask, dotted Internet address (IP).
UTCoffst 2 Coordinated Universal time offset (seconds).
Router 3 List of Routers, IP.
Timeserv 4 List of RFC-868 servers, IP.
IEN11lé6ns 5 List of IEN 116 name servers, IP.
DNSserv 6 List of DNS name servers, IP.
Logserv 7 List of MIT-LCS UDP log servers, IP.
Cookie 8 List of RFC-865 cookie servers, IP.
Lprserv 9 List of RFC-1179 line printer servers, IP.
Impress 10 List of Imagen Impress servers, IP.

88 man pages section 4: File Formats ¢ Last Revised 7 Jun 2001

dhcp_inittab(4)

Symbol Code Description

Resource 11 List of RFC-887 resource location servers, IP.

Hostname 12 Client’s hostname, value from hosts database.

Bootsize 13 Number of 512 octet blocks in boot image,
NUMBER.

Dumpfile 14 Path where core image should be dumped, ASCIL

DNSdmain 15 DNS domain name, ASCII.

Swapserv 16 Client’s swap server, IP.

Rootpath 17 Client’s Root path, ASCII.

ExtendP 18 Extensions path, ASCIL

IpFwdF 19 IP Forwarding Enable/Disable, NUMBER.

NLrouteF 20 Non-local Source Routing, NUMBER.

PFilter 21 Policy Filter, IP.

MaxIpSiz 22 Maximum datagram Reassembly Size, NUMBER.

IpTTL 23 Default IP Time to Live, (1=<x<=255), NUMBER.

PathTO 24 RFC-1191 Path MTU Aging Timeout, NUMBER.

PathTbl 25 RFC-1191 Path MTU Plateau Table, NUMBER.

MTU 26 Interface MTU, x>=68, NUMBER.

SameMtuF 27 All Subnets are Local, NUMBER.

Broadcst 28 Broadcast Address, IP.

MaskDscF 29 Perform Mask Discovery, NUMBER.

MaskSupF 30 Mask Supplier, NUMBER.

RDiscvyF 31 Perform Router Discovery, NUMBER.

RSolicts 32 Router Solicitation Address, IP.

StaticRt 33 Static Route, Double IP (network router).

TrailerF 34 Trailer Encapsulation, NUMBER.

ArpTimeO 35 ARP Cache Time out, NUMBER.

EthEncap 36 Ethernet Encapsulation, NUMBER.

TcpTTL 37 TCP Default Time to Live, NUMBER.

TcpKalnt 38 TCP Keepalive Interval, NUMBER.

File Formats 89

dhcp_inittab(4)

90

Symbol Code Description

TcpKaGbF 39 TCP Keepalive Garbage, NUMBER.

NISdmain 40 NIS Domain name, ASCII.

NISservs 41 List of NIS servers, IP.

NTPservs 42 List of NTP servers, IP.

NetBNms 44 List of NetBIOS Name servers, IP.

NetBDsts 45 List of NetBIOS Distribution servers, IP.

NetBNdT 46 NetBIOS Node type (1=B-node, 2=P, 4=M, 8=H)

NetBScop 47 NetBIOS scope, ASCIL

XFontSrv 48 List of X Window Font servers, IP.

XDispMgr 49 List of X Window Display managers, IP.

LeaseTim 51 Lease Time Policy, (-1 = PERM), NUMBER.

Message 56 Message to be displayed on client, ASCII.

T1Time 58 Renewal (T1) time, NUMBER.

T2Time 59 Rebinding (T2) time, NUMBER.

NW_dmain 62 NetWare/IP Domain Name, ASCII.

NWIPOpts 63 NetWare/IP Options, OCTET (unknown type).

NIS+dom 64 NIS+ Domain name, ASCII.

NIS+serv 65 NIS+ servers, IP.

TFTPsrvN 66 TFTP server hostname, ASCII.

OptBootF 67 Optional Bootfile path, ASCIL

MblIPAgt 68 Mobile IP Home Agent, IP.

SMTPserv 69 Simple Mail Transport Protocol Server, IP.

POP3serv 70 Post Office Protocol (POP3) Server, IP.

NNTPserv 71 Network News Transport Proto. (NNTP) Server,
1P.

WWWservs 72 Default WorldWideWeb Server, IP.

Fingersv 73 Default Finger Server, IP.

IRCservs 74 Internet Relay Chat Server, IP.

STservs 75 StreetTalk Server, IP.

man pages section 4:

File Formats ¢ Last Revised 7 Jun 2001

EXAMPLES

FILES

ATTRIBUTES

dhcp_inittab(4)

Symbol Code Description

STDAservs 76 StreetTalk Directory Assist. Server, IP.

UserClas 77 User class information, ASCII.

SLP_DA 78 Directory agent, OCTET.

SLP_SS 79 Service scope, OCTET.

AgentOpt 82 Agent circuit ID, OCTET.

FQDN 89 Fully Qualified Domain Name, OCTET.

PXEarch 93 Client system architecture, NUMBER.

PXEnii 94 Client Network Device Interface, OCTET.

PXEcid 97 UUID/GUID-based client indentifier, OCTET.

BootFile N/A File to Boot, ASCII.

BootPath N/A Boot path prefix to apply to client’s requested boot
file, ASCII.

BootSrvA N/A Boot Server, IP.

BootSrvN N/A Boot Server Hostname, ASCII.

EchovC N/A Echo Vendor Class Identifier Flag, (Present=TRUE)

LeaseNeg N/A Lease is Negotiable Flag, (Present=TRUE)

Include N/A Include listed macro values in this macro.

EXAMPLE 1 Altering the DHCP inittab File

In general, the DHCP inittab file should only be altered to add SITE options. If
other options are added, they will not be automatically carried forward when the
system is upgraded. For instance:

ipPairs SITE, 132, IP, 2, 0, sdmi

describes an option named ipPairs, that is in the SITE category. That is, it is defined
by each individual site, and is option code 132, which is of type IP Address, consisting
of a potentially infinite number of pairs of IP addresses.

/etc/dhcp/inittab

See attributes(5) for descriptions of the following attributes:

File Formats 91

dhcp_inittab(4)

92

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Availability

SUNWGcsr

Interface Stability

Evolving

SEE ALSO | dhcpinfo(l),dhcpagent(1M), isspace(3C), dhctab(4), attributes(5), dhcp(b),

dhcp modules(5)

March 1997.

man pages section 4: File Formats ¢ Last Revised 7 Jun 2001

System Administration Guide: IP Services

Alexander, S., and R. Droms. RFC 2132, DHCP Options and BOOTP Vendor Extensions.
Network Working Group. March 1997.

Droms, R. RFC 2131, Dynamic Host Configuration Protocol. Network Working Group.

NAME

DESCRIPTION

dhcp_network(4)
dhcp_network — DHCP network tables

The Dynamic Host Configuration Protocol (DHCP) network tables are used to map
the client identifiers of DHCP clients to IP addresses and the associated configuration
parameters of that address. One DHCP network table exists for each network served
by the DHCP server, and each table is named using the network’s IP address. There is
no table or file with the name dhcp network.

The DHCP network tables can exist as ASCII text files, binary text files, or NIS+ tables,
depending on the data store used. Since the format of the file could change, the
preferred method of managing the DHCP network tables is through the use of
dhcpmgr(1M) or the pntadm(1M) command.

The format of the records in a DHCP network table depends on the data store used to
maintain the table. However, an entry in a DHCP network table must contain the
following fields:

Client ID The client identifier field, Client ID, is an ASCII hexadecimal
representation of the unique octet string value of the DHCP Client
Identifier Option (code 61) which identifies a DHCP client. In the
absence of the DHCP Client Identifier Option, the DHCP client is
identified using the form given below for BOOTP clients. The
number of characters in this field must be an even number, with a
maximum length of 64 characters. Valid characters are 0 - 9 and
A-F. Entries with values of 00 are freely available for dynamic
allocation to requesting clients. BOOTP clients are identified by the
concatenation of the network’s hardware type (as defined by RFC
1340, titled "Assigned Numbers") and the client’s hardware
address. For example, the following BOOTP client has a hardware
type of 01" (10mb ethernet) and a hardware address of
8:0:20:11:12:b7, so its client identifier would be:
010800201112B7

Flags The Flags field is a decimal value, the bit fields of which can have
a combination of the following values:

1 (PERMANENT)
Evaluation of the Lease field is turned off (lease is permanent).
If this bit is not set, Evaluation of the Lease field is enabled
and the Lease is DYNAMIC.

2 (MANUAL)
This entry has a manual client ID binding (cannot be reclaimed
by DHCP server). Client will not be allocated another address.

4 (UNUSABLE)
When set, this value means that either through ICMP echo or
client DECLINE, this address has been found to be unusable.
Can also be used by the network administrator to prevent a
certain client from booting, if used in conjunction with the
MANUAL flag.

File Formats 93

dhcp_network(4)

TREATISE ON
LEASES

SEE ALSO

8 (BOOTP)
This entry is reserved for allocation to BOOTP clients only.
Client IP The client IP field holds the IP address for this entry. This
value must be unique in the database.
Server IP This field holds the IP address of the DHCP server which owns this

client IP address, and thus is responsible for initial allocation to a
requesting client.

Lease This numeric field holds the entry’s absolute lease expiration time,
and is in seconds since January 1, 1970. It can be decimal, or
hexadecimal (if 0x prefixes number). The special value -1 is used
to denote a permanent lease.

Macro This ASCII text field contains the dhcptab macro name used to
look up this entry’s configuration parameters in the dhcptab(4)
database.

Comment This ASCII text field contains an optional comment.

This section describes how the DHCP/BOOTP server calculates a client’s
configuration lease using information contained in the dhcptab(4) and DHCP
network tables. The server consults the LeaseTim and LeaseNeg symbols in the
dhcptab, and the Flags and Lease fields of the chosen IP address record in the
DHCP network table.

The server first examines the Flags field for the identified DHCP network table
record. If the PERMANENT flag is on, then the client’s lease is considered permanent.

If the PERMANENT flag is not on, the server checks if the client’s lease as represented by
the Lease field in the network table record has expired. If the lease is not expired, the
server checks if the client has requested a new lease. If the LeaseNeg symbol has not
been included in the client’s dhcptab parameters, then the client’s requested lease
extension is ignored, and the lease is set to be the time remaining as shown by the
Lease field. If the LeaseNeg symbol has been included, then the server will extend
the client’s lease to the value it requested if this requested lease is less than or equal to
the current time plus the value of the client’s LeaseTim dhcptab parameter.

If the client’s requested lease is greater than policy allows (value of LeaseTim), then
the client is given a lease equal to the current time plus the value of LeaseTim. If
LeaseTimis not set, then the default LeaseTim value is one hour.

For more information about the dhcptab symbols, see dhcptab(4).

dhcpconfig(1M), dhepmgr(1M), dhtadm(1M), in.dhcpd(1M), pntadm(1M),
dhcptab(4), dhep(5), dhep _modules(5)

Solaris DHCP Service Developer’s Guide

System Administration Guide: IP Services

94 man pages section 4: File Formats ¢ Last Revised 13 Mar 2001

dhcp_network(4)

Reynolds,]J. and J. Postel, Assigned Numbers, STD 2, RFC 1340, USC/Information
Sciences Institute, July 1992.

File Formats 95

dhcpsve.conf(4)

96

NAME

DESCRIPTION

dhcpsvc.conf - file containing service configuration parameters for the DHCP service

The dhcpsve. conf file resides in directory /etc/inet and contains parameters for
specifying Dynamic Host Configuration Protocol (DHCP) service configuration
settings, including the type and location of DHCP data store used.

The description of the dhcpsve. conf file in this man page is informational only. The
preferred method of setting or modifying values within the dhcpsve. conf file is by
using dhcpconfig(1M) or the dhcpmgr(1M) utility. Do not edit the dhcpsve . conf
file.

The dhcpsve. conf file format is ASCIL; comment lines begin with the crosshatch (#)
character. Parameters consist of a keyword followed by an equals (=) sign followed by
the parameter value, of the form:

Keyword=Value

The following Keyword and Value parameters are supported:

BOOTP_COMPAT
String. automatic or manual. Enables support of BOOTP clients. Default is no
BOOTP. Value selects BOOTP address allocation method. automatic to support all
BOOTP clients, manual to support only registered BOOTP clients. server mode
only parameter.

CACHE_TIMEOUT
Integer. Number of seconds the server will cache data from data store. Used to
improve performance. Default is 10 seconds. server mode only parameter.

CONVER
Integer. Container version. Used by DHCP administrative tools to identify which
version of the public module is being used to administer the data store. CONVER
should not be changed manually.

DAEMON_ENABLED
TRUE/FALSE. If TRUE, the DHCP daemon can be run. If FALSE, DHCP daemon
process will exit immediately if the daemon is started. Default is TRUE. Generic
parameter.

HOSTS_DOMAIN
String. Defines name service domain that DHCP administration tools use when
managing the hosts table. Valid only when HOSTS_RESOURCE is set to nisplus or
dns.

HOSTS_RESOURCE
String. Defines what name service resource should be used by the DHCP
administration tools when managing the hosts table. Current valid values are
files, nisplus, and dns.

ICMP_VERIFY
TRUE/FALSE. Toggles ICMP echo verification of IP addresses. Default is TRUE.
server mode only parameter.

man pages section 4: File Formats ¢ Last Revised 3 Oct 2001

dhcpsve.conf(4)

INTERFACES
String. Comma-separated list of interface names to listen to. Generic parameter.

LOGGING_FACILITY
Integer. Local facility number (0-7 inclusive) to log DHCP events to. Default is not
to log transactions. Generic parameter.

OFFER_CACHE_TIMEOUT
Integer. Number of seconds before OFFER cache timeouts occur. Default is 10
seconds. server mode only parameter.

PATH
Path to DHCP data tables within the data store specified by the RESOURCE
parameter. The value of the PATH keyword is specific to the RESOURCE.

RELAY_DESTINATIONS
String. Comma-separated list of host names and/or IP addresses of relay
destinations. relay mode only parameter.

RELAY_HOPS
Integer. Max number of BOOTP relay hops before packet is dropped. Default is 4.
Generic parameter.

RESCAN_INTERVAL
Integer. Number of minutes between automatic dhcptab rescans. Default is not to
do rescans. server mode only parameter.

RESOURCE
Data store resource used. Use this parameter to name the public module. See the
PATH keyword in dhcp_modules(5).

RESOURCE_CONFIG
String. This might be used for a database account name or other authentication or
authorization parameters required by a particular data store. dhcp_modules(5).

Providers can use the RESOURCE_CONFIG known as configure by specifying an
optional service provider layer API function:

int configure (const char *configp);

If this function is defined by the public module provider, it is called during module
load time by the private layer, with the contents of the RESOURCE_CONFIG string
acquired by the administrative interface (in the case of the dhcpmgr, through the
use of a public module-specific java bean extending the dhcpmgr to provide a
configuration dialog for this information.

RUN_MODE
server or relay. Selects daemon run mode. Default is server.

SECONDARY_SERVER_TIMEOUT
Integer. The number of seconds a secondary server will wait for a primary server to
respond before responding itself. Default is 20 seconds. This is a server mode only
parameter.

File Formats 97

dhcpsve.conf(4)

UPDATE_TIMEOUT
Integer. Number of minutes to wait for a response from the DNS server before
timing out. If this parameter is present, the DHCP daemon will update DNS on
behalf of DHCP clients, and will wait the number of seconds specified for a
response before timing out. You can use UPDATE_TIMEOUT without specifying a
number to enable DNS updates with the default timeout of 15 seconds. If this
parameter is not present, the DHCP daemon will not update DNS for DHCP clients.

VERBOSE
TRUE/FALSE. Toggles verbose mode, determining amount of status and error
messages reported by the daemon. Default is FALSE. Set to TRUE only for
debugging. Generic parameter.

SEE ALSO | dhcpmgr(1M), in.dhepd(1M), dhep(5), dhep_modules(5)

System Administration Guide: IP Services

98 man pages section 4: File Formats ¢ Last Revised 3 Oct 2001

NAME

DESCRIPTION

Syntax of dhcptab
Entries

Symbol
Characteristics

dhcptab(4)
dhcptab — DHCP configuration parameter table

The dhcptab configuration table allows network administrators to organize groups of
configuration parameters as macro definitions, which can then be referenced in the
definition of other useful macros. These macros are then used by the DHCP server to
return their values to DHCP and BOOTP clients.

The preferred method of managing the dhcptab is through the use of the
dhepmgr(1M) or dhtadm(1M) utility. The description of dhcptab entries included in
this manual page is intended for informational purposes only, and should not be used
to manually edit entries.

You can view the contents of the dhcptab using the DHCP manager’s tabs for Macros
and Options, or using the dhtadm -P command.

The format of a dhcptab table depends on the data store used to maintain it.
However, any dhcptab must contain the following fields in each record:

Name This field identifies the macro or symbol record and is used as a
search key into the dhcptab table. The name of a macro or symbol
must consist of ASCII characters, with the length limited to 128
characters. Names can include spaces, except at the end of the
name. The name is not case-sensitive.

Type This field specifies the type of record and is used as a search key
into the dhcptab. Currently, there are only two legal values for

Type:
m This record is a DHCP macro definition.

s This record is a DHCP symbol definition. It is
used to define vendor and site-specific options.

Value This field contains the value for the specified type of record. For
the m type, the value will consist of a series of symbol=value pairs,
separated by the colon (:) character. For the s type, the value will
consist of a series of fields, separated by a comma (,), which
define a symbol’s characteristics. Once defined, a symbol can be
used in macro definitions.

The Value field of a symbols definition contain the following fields describing the

characteristics of a symbol:

Context This field defines the context in which the symbol definition is to
be used. It can have one of the following values:
Site
This symbol defines a site-specific option, codes 128-254.
Vendor=Client Class ...

This symbol defines a vendor-specific option, codes 1-254. The
Vendor context takes ASCII string arguments which identify the

File Formats 99

dhcptab(4)

100

client class that this vendor option is associated with. Multiple
client class names can be specified, separated by white space.
Only those clients whose client class matches one of these
values will see this option. For Sun machines, the Vendor client
class matches the value returned by the command uname -i
on the client, with periods replacing commas.

Code This field specifies the option code number associated with this
symbol. Valid values are 128-254 for site-specific options, and 1-254
for vendor-specific options.

Type This field defines the type of data expected as a value for this
symbol, and is not case-sensitive. Legal values are:

ASCII NVT ASCII text. Value is enclosed in
double-quotes ("). Granularity setting has no
effect on symbols of this type, since ASCII
strings have a natural granularity of one (1).

BOOLEAN No value is associated with this data type.
Presence of symbols of this type denote
boolean TRUE, whereas absence denotes
FALSE. Granularity and Miximum values
have no meaning for symbols of this type.

Ip Dotted decimal form of an Internet address.
Multi-IP address granularity is supported.

NUMBER An unsigned number with a supported
granularity of 1, 2, 4, and 8 octets.

Valid NUMBER types are: UNUMBERS,
SNUMBERS, UNUMBER16, SNUMBER16,
UNUMBER32, SNUMBER32, UNUMBER64, and
SNUMBERG64. See dhcp _inittab(4) for details.

OCTET Uninterpreted ASCII representation of binary
data. The client identifier is one example of an
OCTET string. Valid characters are 0-9, [a-f]
[A-F]. One ASCII character represents one
nibble (4 bits), thus two ASCII characters are
needed to represent an 8 bit quantity. The
granularity setting has no effect on symbols of
this type, since OCTET strings have a natural
granularity of one (1).

Granularity This value specifies how many objects of Type define a single
instance of the symbol value. For example, the static route
option is defined to be a variable list of routes. Each route consists
of two IP addresses, so the Type is defined to be IP, and the data’s

man pages section 4: File Formats ¢ Last Revised 13 Mar 2001

Macro Definitions

dhcptab(4)

granularity is defined to be 2 IP addresses. The granularity field
affects the IP and NUMBER data types.

Maximum This value specifies the maximum items of Granularity which
are permissible in a definition using this symbol. For example,
there can only be one IP address specified for a subnet mask, so
the Maximum number of items in this case is one (1). A Maximum
value of zero (0) means that a variable number of items is
permitted.

The following example defines a site-specific option (symbol) called MystatRt, of
code 130, type IP, and granularity 2, and a Maximum of 0. This definition
corresponds to the internal definition of the static route option (StaticRt).

MystatRt s Site,130,IP,2,0

The following example illustrates a macro defined using the MystatRt site option
symbol just defined:

lonetnis m :MystatRt=3.0.0.0 10.0.0.30:Macros can be specified in the Macro field in
DHCP network tables (see dhcp network(4)), which will bind particular macro
definitions to specific IP addresses.

Up to four macro definitions are consulted by the DHCP server to determine the
options that are returned to the requesting client.

These macros are processed in the following order:

Client Class A macro named using the ASCII representation of the
client class (e.g. SUNW.Ultra-30) is searched for in
the dhcptab. If found, its symbol/value pairs will be
selected for delivery to the client. This mechanism
permits the network administrator to select
configuration parameters to be returned to all clients of
the same class.

Network A macro named by the dotted Internet form of the
network address of the client’s network (for example,
10.0.0.0) is searched for in the dhcptab. If found,
its symbol /value pairs will be combined with those of
the Client Class macro. If a symbol exists in both
macros, then the Network macro value overrides the
value defined in the Client Class macro. This
mechanism permits the network administrator to select
configuration parameters to be returned to all clients
on the same network.

IP Address This macro may be named anything, but must be
specified in the DHCP network table for the IP address

File Formats 101

dhcptab(4)

102

SEE ALSO

record assigned to the requesting client. If this macro is
found in the dhcptab, then its symbol/value pairs will
be combined with those of the Client Class macro
and the Network macro. This mechanism permits the
network administrator to select configuration
parameters to be returned to clients using a particular
IP address. It can also be used to deliver a macro
defined to include "server-specific" information by
including this macro definition in all DHCP network
table entries owned by a specific server.

Client Identifier A macro named by the ASCII representation of the
client’s unique identifier as shown in the DHCP
network table (see dhcp network(4)). If found, its
symbol/value pairs are combined to the sum of the
Client Class, Network, and IP Address macros.
Any symbol collisions are replaced with those specified
in the client identifier macro. The client mechanism
permits the network administrator to select
configuration parameters to be returned to a particular
client, regardless of what network that client is
connected to.

Refer to System Administration Guide: IP Services for more information about macro
processing.

Refer to the dhcp_inittab(4) man page for more information about symbols used in
Solaris DHCP.

dhcpmgr(1M), dhtadm(1M), in.dhcpd(1M), dhcp inittab(4), dhcp network(4),
dhcp(5)

System Administration Guide: IP Services

Alexander, S., and R. Droms, DHCP Options and BOOTP Vendor Extensions, REC 2132,
Silicon Graphics, Inc., Bucknell University, March 1997.

Droms, R., Interoperation Between DHCP and BOOTP, RFC 1534, Bucknell University,
October 1993.

Droms, R., Dynamic Host Configuration Protocol, RFC 2131, Bucknell University, March
1997.

Wimer, W., Clarifications and Extensions for the Bootstrap Protocol, REFC 1542, Carnegie
Mellon University, October 1993.

man pages section 4: File Formats ¢ Last Revised 13 Mar 2001

NAME
SYNOPSIS

DESCRIPTION

EXAMPLES

FILES

SEE ALSO

dialups(4)
dialups - list of terminal devices requiring a dial-up password

/etc/dialups

dialups is an ASCII file which contains a list of terminal devices that require a
dial-up password. A dial-up password is an additional password required of users
who access the computer through a modem or dial-up port. The correct password
must be entered before the user is granted access to the computer. The set of ports that
require a dial-up password are listed in the dialups file.

Each entry in the dialups file is a single line of the form:

terminal-device

where

terminal-device The full path name of the terminal device that will
require a dial-up password for users accessing the
computer through a modem or dial-up port.

The dialups file should be owned by the root user and the root group. The file
should have read and write permissions for the owner (root) only.

EXAMPLE 1 A sample dialups file.

Here is a sample dialups file:

/dev/term/a
/dev/term/b
/dev/term/c

/etc/d_passwd dial-up password file

/etc/dialups list of dial-up ports requiring dial-up passwords

d_passwd(4)

File Formats 103

dir_ufs(4)

104

NAME
SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

dir_ufs, dir — format of ufs directories
#include <sys/param.h>
#include <sys/types.h>

#include <sys/fs/ufs_fsdir.h>

A directory consists of some number of blocks of DIRBLKSIZ bytes, where
DIRBLKSIZ is chosen such that it can be transferred to disk in a single atomic
operation, for example, 512 bytes on most machines.

Each DIRBLKSIZ-byte block contains some number of directory entry structures,
which are of variable length. Each directory entry has a struct direct at the front
of it, containing its inode number, the length of the entry, and the length of the name
contained in the entry. These entries are followed by the name padded to a 4 byte
boundary with null bytes. All names are guaranteed null-terminated. The maximum
length of a name in a directory is MAXNAMLEN.

#define DIRBLKSIZ DEV_BSIZE

#define MAXNAMLEN 256

struct direct
ulong t d_ino; /* inode number of entry */
ushort t d_reclen; /* length of this record */
ushort_t d_namlen; /* length of string in d_name */
char d_name [MAXNAMLEN + 1]; /* maximum name length */

}i

See attributes(d) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Unstable

fs ufs(4), attributes(5)

man pages section 4: File Formats ¢ Last Revised 3 Jul 1990

NAME
SYNOPSIS

DESCRIPTION

EXAMPLES

d_passwd(4)
d_passwd — dial-up password file

/etc/d_passwd

A dial-up password is an additional password required of users who access the
computer through a modem or dial-up port. The correct password must be entered
before the user is granted access to the computer.

d_passwd is an ASCII file which contains a list of executable programs (typically
shells) that require a dial-up password and the associated encrypted passwords. When
a user attempts to log in on any of the ports listed in the dialups file (see
dialups(4)), the login program looks at the user’s login entry stored in the passwd
file (see passwd(4)), and compares the login shell field to the entries in d_passwd.
These entries determine whether the user will be required to supply a dial-up
password.

Each entry in d_passwd is a single line of the form:

login-shell : password :

where

login-shell The name of the login program that will require an additional
dial-up password.

password A 13-character encrypted password. Users accessing the computer

through a dial-up port or modem using login-shell will be required
to enter this password before gaining access to the computer.

d_passwd should be owned by the root user and the root group. The file should
have read and write permissions for the owner (root) only.

If the user’s login program in the passwd file is not found in d_passwd or if the login
shell field in passwd is empty, the user must supply the default password. The default
password is the entry for /usr/bin/sh. If & passwd has no entry for
/usr/bin/sh, then those users whose login shell field in passwd is empty or does
not match any entry in d_passwd will not be prompted for a dial-up password.

Dial-up logins are disabled if d_passwd has only the following entry:

/usr/bin/sh:*:

EXAMPLE 1 Sample d_passwd file.

Here is a sample d_passwd file:

/usr/lib/uucp/uucico:q.mJzTnu8icFO0:
/usr/bin/csh:6k/7KCFRPNVXg:
/usr/bin/ksh:9df/FDf.4jkRt:
/usr/bin/sh:41FuGVzGcDJlw:

File Formats 105

d_passwd(4)

Generating An
Encrypted
Password

FILES

SEE ALSO

WARNINGS

EXAMPLE 1 Sample d_passwd file. (Continued)

The passwd (see passwd(1)) utility can be used to generate the encrypted password
for each login program. passwd generates encrypted passwords for users and places
the password in the shadow (see shadow(4)) file. Passwords for the d_passwd file
will need to be generated by first adding a temporary user id using useradd (see
useradd(1M)), and then using passwd(1) to generate the desired password in the
shadow file. Once the encrypted version of the password has been created, it can be
copied to the d_passwd file.

For example:

1. Type useradd tempuser and press Return. This creates a user named tempuser.

2. Type passwd tempuser and press Return. This creates an encrypted password for
tempuser and places it in the shadow file.

3. Find the entry for tempuser in the shadow file and copy the encrypted password
to the desired entry in the d_passwd file.

4. Type userdel tempuser and press Return to delete tempuser.

These steps must be executed as the root user.

/etc/d_passwd dial-up password file

/etc/dialups list of dial-up ports requiring dial-up passwords
/etc/passwd password file

/etc/shadow shadow password file

passwd(l), useradd(1M), dialups(4), passwd(4), shadow(4)

When creating a new dial-up password, be sure to remain logged in on at least one
terminal while testing the new password. This ensures that there is an available
terminal from which you can correct any mistakes that were made when the new
password was added.

106 man pages section 4: File Formats » Last Revised 4 May 1994

NAME
SYNOPSIS

DESCRIPTION

driver.conf(4)
driver.conf — driver configuration files

driver.conf

Driver configuration files pass information about device drivers and their
configuration to the system. Most device drivers do not have to have configuration
files. Drivers for devices that are self-identifying, such as the SBus devices on many
systems, can usually obtain all the information they need from the FCode PROM on
the SBus card using the DDI property interfaces. See ddi_prop_get_int(9F) and
ddi prop_lookup(9F) for details.

The system associates a driver with its configuration file by name. For example, a
driver in /usr/kernel/drv called wombat has the driver configuration file
wombat . conf, also stored in /usr/kernel/drv, associated with it. On systems
capable of support 64-bit drivers, the driver configuration file should be placed in the
directory in which the 32-bit driver is (or would be) located, even if only a 64-bit
version is provided. For example, a 64-bit driver stored in
/usr/kernel/drv/sparcv9 stores its driver configuration file in
/usr/kernel/drv.

The value of the name property (see the name field, below) needs to match the binding
name of the device. The binding name is the name chosen by the system to bind a
driver to a device and is either an alias associated with the driver or the hardware
node name of the device.

The syntax of a single entry in a driver configuration file takes one of three forms:

name="node name" parents="parent name" [property-name=value ...1;

In this form, the parent name can be either a simple nexus driver name to match all
instances of that parent/node, or the parent name can be a specific full pathname,
beginning with a slash (/) character, identifying a specific instance of a parent bus.

Alternatively, the parent can be specified by the type of interface it presents to its
children.

name="node name" class="class name" [property-name=value ...];

For example, the driver for the SCSI host adapter may have different names on
different platforms, but the target drivers can use class scsi to insulate themselves
from these differences.

Entries of either form above correspond to a device information (devinfo) node in
the kernel device tree. Each node has a name which is usually the name of the driver,
and a parent name which is the name of the parent devinfo node it will be connected
to. Any number of name-value pairs may be specified to create properties on the
prototype devinfo node. These properties can be retrieved using the DDI property
interfaces (for example, ddi_prop get int(9F)and ddi prop lookup(9F)). The
prototype devinfo node specification must be terminated with a semicolon (;).

The third form of an entry is simply a list of properties.

File Formats 107

driver.conf(4)

108

EXAMPLES

[property-name=value ...];

A property created in this way is treated as global to the driver. It can be overridden
by a property with the same name on a particular devinfo node, either by creating
one explicitly on the prototype node in the driver.conf file or by the driver.

Items are separated by any number of newlines, SPACE or TAB characters.

The configuration file may contain several entries to specify different device
configurations and parent nodes. The system may call the driver for each possible
prototype devinfo node, and it is generally the responsibility of the drivers
probe(9E) routine to determine if the hardware described by the prototype devinfo
node is really present.

Property names must not violate the naming conventions for Open Boot PROM
properties or for IEEE 1275 names. In particular, property names should contain only
printable characters, and should not contain at-sign (@), slash (/), backslash (\), colon
(:), or square brackets ([]). Property values can be decimal integers or strings
delimited by double quotes ("). Hexadecimal integers can be constructed by prefixing
the digits with 0x.

A comma separated list of integers can be used to construct properties whose value is
an integer array. The value of such properties can be retrieved inside the driver using
ddi_prop_ lookup int array(9F).

Comments are specified by placing a # character at the beginning of the comment
string, the comment string extends for the rest of the line.

EXAMPLE 1 Configuration File for a PCI Bus Frame Buffer

The following is an example of a configuration file called ACME, simple.conf for a
PCI bus frame buffer called ACME, simple.

#

Copyright (c) 1993, by ACME Fictitious Devices, Inc.
#

#ident "@(#)ACME, simple.conf 1.3 1999/09/09"

name="ACME, simple" class="pci" unit-address="3,1"
debug-mode=12;

This example creates a prototype devinfo node called ACME, simple under all
parent nodes of class pci. The node has device and function numbers of 3 and 1,
respectively; the property debug-mode is provided for all instances of the driver.

EXAMPLE 2 Configuration File for a Pseudo Device Driver

The following is an example of a configuration file called ACME, example. conf for a
pseudo device driver called ACME, example.

man pages section 4: File Formats ¢ Last Revised 12 Dec 2001

SEE ALSO

WARNINGS

NOTES

driver.conf(4)

EXAMPLE 2 Configuration File for a Pseudo Device Driver (Continued)

#

Copyright (c) 1993, ACME Fictitious Devices, Inc.
#

#ident "@ (#) ACME, example.conf 1.2 93/09/09"

name="ACME, example" parent="pseudo" instance=0
debug-level=1;

name="ACME, example" parent="pseudo" instance=1;

whizzy-mode="on";
debug-level=3;

This creates two devinfo nodes called ACME, example which will attach below the
pseudo node in the kernel device tree. The instance property is only interpreted by
the pseudo node, see pseudo(4) for further details. A property called debug-1level
will be created on the first devinfo node which will have the value 1. The example
driver will be able to fetch the value of this property using ddi_prop_get_int(9F).

Two global driver properties are created, whizzy-mode (which will have the string
value "on") and debug-1level (which will have the value 3). If the driver looks up the
property whizzy-mode on either node, it will retrieve the value of the global
whizzy-mode property ("on"). If the driver looks up the debug-level property on
the first node, it will retrieve the value of the debug-1level property on that node (1).
Looking up the same property on the second node will retrieve the value of the global
debug-1level property (3).

pci(4), pseudo(4), sbus(4), scsi(4), pci(4), probe(9E), ddi_getlongprop(9F),
ddi_ getprop(9F), ddi getproplen(9F), ddi_ prop op(9F)

Writing Device Drivers

To avoid namespace collisions between multiple driver vendors, it is strongly
recommended that the name property of the driver should begin with a vendor-unique
string. A reasonably compact and unique choice is the vendor over-the-counter stock
symbol.

The update drv(1M) command should be used to prompt the kernel to reread
driver. conf files. Using modunload(1M) to update driver.conf continues to
work in release 9 of the Solaris operating environment, but the behavior will change in
a future release.

File Formats 109

environ(4)
NAME
SYNOPSIS

DESCRIPTION

.environ Variables

environ, pref, variables — user-preference variables files for AT&T FACE
$HOME /pref/.environ

$HOME /pref/.variables

$HOME/FILECABINET/ .pref

$HOME/WASTEBASKET/ .pref

The .environ, .pref, and .variables files contain variables that indicate user
preferences for a variety of operations. The .environ and .variables files are
located under the user’s SHOME /pref directory. The .pref files are found under
$HOME/FILECABINET, $SHOME/WASTEBASKET, and any directory where preferences
were set via the organize command. Names and descriptions for each variable are
presented below. Variables are listed one per line and are of the form variable=value.

Variables found in . environ include:
LOGINWIN [1-4] Windows that are opened when FACE is initialized.

SORTMODE Sort mode for file folder listings. Values include the following
hexadecimal digits:

1 Sorted alphabetically by name.
2 Files most recently modified first.

800 Sorted alphabetically by object type.

The values above may be listed in reverse order by ORing the
following value:

1000 List objects in reverse order. For example, a value of
1002 will produce a folder listing with files LEAST
recently modified displayed first. A value of 1001
would produce a "reverse" alphabetical by name listing
of the folder.

DISPLAYMODE Display mode for file folders. Values include the following
hexadecimal digits:

0 File names only.
4 File names and brief description.
8 File names, description, plus additional information.

WASTEPROMPT Prompt before emptying wastebasket (yes/no?).
WASTEDAYS Number of days before emptying wastebasket.
PRINCMD[1-3] Print command defined to print files.

UMASK Holds default permissions with which files will be created.

110 man pages section 4: File Formats ¢ Last Revised 3 Jul 1990

environ(4)
.pref Variables | Variables found in . pref are the following:

SORTMODE Contains the same values as the SORTMODE variable described in
.environ above.

DISPMODE Contains the same values as the DISPLAYMODE variable described
in .environ above.

.variable Variables | Variables found in .variables include:
EDITOR Default editor.

PS1 Shell prompt.

File Formats 111

ethers(4)

112

NAME

DESCRIPTION

FILES

SEE ALSO

ethers — Ethernet address to hostname database or domain

The ethers file is a local source of information about the (48 bit) Ethernet addresses
of hosts on the Internet. The ethers file can be used in conjunction with or instead of
other ethers sources, including the NIS maps ethers.byname and ethers.byaddr
and the NIS+ table ethers. Programs use the ethers(3SOCKET) routines to access
this information.

The ethers file has one line for each host on an Ethernet. The line has the following
format:

Ethernet-address official-host-name

Items are separated by any number of SPACE and/or TAB characters. A ‘#” indicates
the beginning of a comment extending to the end of line.

The standard form for Ethernet addresses is “x:x:x:x:x:x” where x is a hexadecimal
number between 0 and ff, representing one byte. The address bytes are always in
network order. Host names may contain any printable character other than SPACE,
TAB, NEWLINE, or comment character.

/etc/ethers

ethers(3SOCKET), hosts(4), nsswitch. conf(4)

man pages section 4: File Formats ¢ Last Revised 10 Dec 1991

NAME
SYNOPSIS

DESCRIPTION

exec_attr(4)
exec_attr — execution profiles database

/etc/security/exec_attr

/etc/security/exec_attr is alocal database that specifies the execution
attributes associated with profiles. The exec_attr file can be used with other sources
for execution profiles, including the exec_attr NIS map and NIS+ table. Programs
use the getexecattr(3SECDB) routines to access this information.

The search order for multiple execution profile sources is specified in the
/etc/nsswitch. conf file, as described in the nsswitch. conf(4) man page. The
search order follows the entry for prof attr(4).

A profile is a logical grouping of authorizations and commands that is interpreted by a
profile shell to form a secure execution environment. The shells that interpret profiles
are pfcsh, pfksh, and pfsh. See the pfsh(1l) man page. Each user’s account is
assigned zero or more profiles in the user_attr(4) database file.

Each entry in the exec_attr database consists of one line of text containing seven
fields separated by colons (:). Line continuations using the backslash (\) character are
permitted. The basic format of each entry is:

name:policy:type:res1:res2:id:attr

name The name of the profile. Profile names are case-sensitive.

policy The policy that is associated with the profile entry. The only valid
policy is suser.

type The type of object defined in the profile. The only valid type is
cmd.

res1 Reserved for future use.

res2 Reserved for future use.

id A string that uniquely identifies the object described by the profile.

For a profile of type cmd, the id is either the full path to the
command or the asterisk (*) symbol, which is used to allow all
commands. An asterisk that replaces the filename component in a
pathname indicates all files in a particular directory. To specify
arguments, the pathname should point to a shell script written to
execute the command with the desired arguments.

attr An optional list of semicolon-separated (;) key-value pairs that
describe the security attributes to apply to the object upon
execution. Zero or more keys may be specified. The list of valid
key words depends on the policy enforced. The following key
words are valid: euid, uid, egid, and gid.

File Formats 113

exec_attr(4)

EXAMPLES

FILES

CAVEATS

SEE ALSO

euid and uid contain a single user name or a numeric user ID.
Commands designated with euid run with the effective UID
indicated, which is similar to setting the setuid bit on an
executable file. Commands designated with uid run with both the
real and effective UIDs. Setting uid may be more appropriate than
setting the euid on privileged shell scripts.

egid and gid contain a single group name or a numeric group ID.
Commands designated with egid run with the effective GID
indicated, which is similar to setting the setgid bit on a file.
Commands designated with gid run with both the real and
effective GIDs. Setting gid may be more appropriate than setting
guid on privileged shell scripts.

EXAMPLE 1 Using effective user and group IDs

The following example shows the audit command specified in the Audit Control
profile to execute with an effective user ID of root (0) and effective group ID of bin (3):

Audit Control:suser:cmd:::/etc/init.d/audit:euid=0;egid=3

/etc/nsswitch.conf
/etc/user attr
/etc/security/exec_attr

When deciding which authorization source to use (see DESCRIPTION), keep in mind
that NIS+ provides stronger authentication than NIS.

Because the list of legal keys is likely to expand, any code that parses this database
must be written to ignore unknown key-value pairs without error. When any new
keywords are created, the names should be prefixed with a unique string, such as the
company’s stock symbol, to avoid potential naming conflicts.

The following characters are used in describing the database format and must be
escaped with a backslash if used as data: colon (:), semicolon (;), equals (=), and
backslash (\).

auths(l), profiles(l), roles(l), makedbm(1M), getauthattr(3SECDB),
getauusernam(3BSM), getexecattr(3SECDB), getprofattr(3SECDB),
getuserattr(3SECDB), kva match(3SECDB), auth _attr(4), prof attr(4),
user_ attr(4)

114 man pages section 4: File Formats ¢ Last Revised 26 Oct 1999

NAME

DESCRIPTION

SEE ALSO

DIAGNOSTICS

fd(4)
fd — file descriptor files
These files, conventionally called /dev/£d/0, /dev/£d/1, /dev/£d/2, and so on,

refer to files accessible through file descriptors. If file descriptor n is open, these two
system calls have the same effect:

fd
fd

open ("/dev/fd/n",mode) ;
dup (1) ;

On these files creat(2) is equivalent to open, and mode is ignored. As with dup,
subsequent reads or writes on f£d fail unless the original file descriptor allows the
operations.

For convenience in referring to standard input, standard output, and standard error,
an additional set of names is provided: /dev/stdin is a synonym for /dev/£d/0,
/dev/stdout for /dev/£d/1, and /dev/stderr for /dev/£d/2.

creat(2), dup(2), open(2)

open(2) returns —1 and EBADF if the associated file descriptor is not open.

File Formats 115

flash_archive(4)

116

NAME
SYNOPSIS

DESCRIPTION

Archive Cookie

flash_archive — format of flash archive

flash_archive

A flash archive is an easily transportable version of a reference configuration of the
Solaris operating environment, plus optional other software. Such an archive is used
for the rapid installation of Solaris on large numbers of machines. The machine that
contains a flash archive is referred to as a master system. A machine that receives a
copy of a flash archive is called a clone system.

You create a flash archive with the £larcreate(1M) command. You view information
about a given flash archive with the f1ar(1M) command. flar also enables you to
perform other tasks on a flash archive, such as splitting, combining, and compressing.

Flash archives are monolithic files containing both archive identification information
and the actual files that have been copied from a master system and that will be
extracted onto a clone system.

The flash archive is laid out in the following sections:

archive cookie

archive identification
user-defined (optional)
archive files

The only assumptions regarding section number and placement that an application
processing the archive can make is that there is an identification section located
immediately after the archive cookie and that the last section in the archive is an
archive files section.

These sections are described in the following subsections.

The very beginning of the archive contains a cookie, which serves to identify the file as
a flash archive. It is also used by the deployment code for identification and validation
purposes.

The case-sensitive, newline-terminated cookie that identifies version 1.n flash archives,
is F1AsH-aRcHiVe-1.#n, where n is an integer in the range 0 through 9.

The archive version is designed to allow for the future evolution of the flash archive
specification while allowing applications that process flash archives to determine
whether specific archives are of a format that can be handled correctly. The archive
version is a number of the form x.y, where x is the major version number, and y is the
minor version number.

When an application encounters a flash archive with an unknown major version
number, it should issue an error message and exit.

man pages section 4: File Formats ¢ Last Revised 16 Jan 2002

Archive
Identification
Section

flash_archive(4)

The archive identification section is plain text, delimited with newline characters. It is
composed of a series of keyword/value pairs, with one pair allowed per line.
Keywords and values are separated by a single equal sign. There are no limits to the
length of individual lines. Binary data to be included as the value to a keyword is
base64 encoded. The keywords themselves are case-insensitive. The case-sensitivity of
the values is determined by the definition of the keyword, though most are
case-insensitive.

The global order of the keywords within the identification section is undefined, save
for the section boundary keywords. The identification section must begin with
section begin=ident and must end with section end=ident.

In addition to the keywords defined for the flash archive and enumerated below, users
can define their own. These user-defined keywords are ignored by the flash
mechanisms, but can be used by user-provided scripts or programs that process the
identification section. User-defined keywords must begin with X, and contain
characters other than linefeeds, equal signs, and null characters. For example,
X-department is a valid user-defined keyword. department, which lacks the X-
prefix, is not. Suggested naming conventions for user-defined keyword include the
underscore-delimited descriptive method used for the pre-defined keywords, or a
federated convention similar to that used to name Java packages.

Applications that process the identification section will process unrecognized
non-user-defined keywords differently, depending on whether the archive version is
known. If the application recognizes the archive specification version, it will reject any
unrecognized non-user-defined keyword. If the application does not recognize the
specification version, that is, if the minor version number is higher than the highest
minor version it knows how to process, unrecognized non-user-defined keywords will
be ignored. These ignored keyword are reported to the user by means of a non-fatal
warning message.

The keywords defined for this version of the Flash archive specification are listed
below.

Keyword Value Required
section_begin text yes
section_end text yes
archive_id text no
files_archived_method text no
files_compressed_method text no
files_archived_size numeric no
files_unarchived_size numeric no

File Formats 117

flash_archive(4)

Keyword Value Required
creation_date text no
creation_master text no
content_name text yes
content_type text no
content_description text no
content_author text no
content_architectures text list no
creation_node text no
creation_hardware_class text no
creation_platform text no
creation_processor text no
creation_release text no
creation_os_name text no
creation_os_version text no

Note that future versions of the identification section might define additional
keywords. The only guarantee regarding the new keywords is that they will not
intrude upon the user-defined keyword namespace as given above.

The following is an example identification section:

section_begin=identification
files_archived method=cpio

files compressed method=compress
files_archived size=259323342
files_unarchived size=591238111
creation date=20000131221409
creation_master=pumbaa
content_name=Finance Print Server
content_type=server
content_description=Solaris 8 Print Server
content author=Mighty Matt
content_architectures=sun4u, sun4m
creation_ node=pumbaa

creation hardware class=sun4u
creation platform=SUNW, Sun-Fire
creation_processor=sparc

creation release=5.9
creation_os_name=SunOS
creation_os_version=s81_49
x-department=Internal Finance

118 man pages section 4: File Formats ¢ Last Revised 16 Jan 2002

flash_archive(4)
The following are descriptions of the identification section keywords:

section begin
section_end

These keywords are used to delimit sections in the archive and are not limited
exclusively to the identification section. For example, the archive files section includes
a section_begin keyword, though with a different value. User-defined archive
sections will be delimited by section_begin and section_end keywords, with
values appropriate to each section. The currently defined section names are given in
the table below. User-defined names should follow the same convention as
user-defined identification sections, with the additional restriction that they not
contain forward slashes (/).

Section Boundary
identification identification
archive files archive

archive cookie cookie

Note that while the archive cookie does not use section boundaries, and thus has no
need for a section name within the archive itself, the £1ar(1M) command uses section
names when splitting the archive, and thus requires a section name for the archive
cookie. The name cookie is reserved for that purpose.

The following keywords, used in the archive identification section, describe the
contents of the archive files section.

archive id
This optional keyword uniguely describes the contents of the archive. It is computed
as a unique hash value of the bytes representing the archive. Currently this value is
represented as an ASCII hexadecimal 128-bit MD5 hash of the archive contents.
This value is used by the installation software only to validate the contents of the
archive during archive installation.

If the keyword is present, the hash value is recomputed during extraction based on
the contents of the archive being extracted. If the recomputed value does not match
the stored value in the identification section, the archive is deemed corrupt, and
appropriate actions can be taken by the application.

If the keyword is not present, no integrity check is performed.

files archived method
This keyword describes the archive method used in the files section. If this keyword
is not present, the files section is assumed to be in CPIO format with ASCII headers
(the -c option to cpio). If the keyword is present, it can have the following value:

cpio The archive format in the files section is CPIO with ASCII headers.

File Formats 119

flash_archive(4)

The compression method indicated by the files compressed method keyword (if
present) is applied to the archive file created by the archive method.

The introduction of additional archive methods will require a change in the major
archive specification version number, as applications aware only of cpio will be
unable to extract archives that use other archive methods.

files_compressed method
This keyword describes the compression algorithm (if any) used on the files section.
If this keyword is not present, the files section is assumed to be uncompressed. If
the keyword is present, it can have one of the following values:

none The files section is not compressed.

compress The files section is compressed using compress(1).

The compression method indicated by this keyword is applied to the archive file
created by the archive method indicated by the value of the
files_archived_method keyword (if any). gzip compression of the flash archive
is not currently supported, as the gzip decompression program is not included in the
standard miniroot.

Introduction of an additional compression algorithm would require a change in the
major archive specification version number, as applications aware only of the above
methods will be unable to extract archives that use other compression algorithms.

files_archived size
The value associated with this keyword is the size of the archived files section, in
bytes. This value is used by the deployment software only to give extraction
progress information to the user. While the deployment software can easily
determine the size of the archived files section prior to extraction, it cannot do so in
the case of archive retrieval via a stream. To determine the compressed size when
extracting from a stream, the extraction software would have to read the stream
twice. This double read would result in an unacceptable performance penalty
compared to the value of the information gathered.

If the keyword is present, the value is used only for the provision of status
information. Because this keyword is only advisory, deployment software must be
able to handle extraction of archives for which the actual file section size does not
match the size given in files_archive_ size.

If files archive size is not present and the archive is being read from a
stream device that does not allow the prior determination of size information, such
as a tape drive, completion status information will not be generated. If the keyword
is not present and the archive is being read from a random-access device such as a
mounted filesystem, or from a stream that provides size information, the
compressed size will be generated dynamically and used for the provision of status
information.

120 man pages section 4: File Formats * Last Revised 16 Jan 2002

flash_archive(4)

files unarchived size
This keyword defines the cumulative size in bytes of the extracted archive. The
value is used for filesystem size verification. The following verification methods are
possible using this approach:

No checking If the files unarchived size keyword is absent, no
spacechecking will be performed.

Aggregate checking If the files_unarchived_size keyword is present and
the associated value is an integer, the integer will be
compared against the aggregate free space created by the
requested filesystem configuration.

The following keywords provide descriptive information about the archive as a whole.
They are generally used to assist the user in archive selection and to aid in archive
management. These keywords are all optional and are used by the deployment
programs only to assist the user in distinguishing between individual archives.

creation_date
The value of the creation_date keyword is a textual timestamp representing the
time of creation for the archive. The value of this keyword can be overridden at
archive creation time through the flarcreate(1M). The timestamp must be in
ISO-8601 complete basic calendar format without the time designator (ISO-8601,
§5.4.1(a)) as follows:

CCYYMMDDhhmms s

For example:

20000131221409
(January 31st, 2000 10:14:09pm)

The date and time included in the value should be in GMT.

creation_master
The value of the creation_master keyword is the name of the master machine
used to create the archive. The value can be overridden at archive creation time.

content_name
The value of the content_name keyword should describe the archive’s function
and purpose. It is similar to the NAME parameter found in Solaris packages.

The value of the content name keyword is used by the deployment utilities to
identify the archive and can be presented to the user during the archive selection
process and/or the extraction process. The value must be no longer than 256
characters.

content_type
The value of this keyword specifies a category for the archive. This category is
defined by the user and is used by deployment software for display purposes. This
keyword is the flash analog of the Solaris packaging CATEGORY keyword.

File Formats 121

flash_archive(4)

content description

The value of this keyword is used to provide the user with a description of what
the archive contains and should build on the description provided in
content_name. In this respect, content_description is analogous to the DESC

keyword used in Solaris packages.

There is no length limit to the value of content_description. To facilitate
display, the value can contain escaped newline characters. As in C, the escaped
newline takes the form of \n. Due to the escaped newline, backlashes must be
included as \\. The description is displayed in a non-proportional font, with at
least 40 characters available per line. Lines too long for display are wrapped.

content_author

The value of this keyword is a user-defined string identifying the creator of the
archive. Suggested values include the full name of the creator, the creator’s email
address, or both.

content architectures

The value of this keyword is a comma-delimited list of the kernel architectures
supported by the given archive. The value of this keyword is generated at archive
creation time, and can be overridden by the user at that time. If this keyword is
present in the archive, the extraction mechanism validates the kernel architecture of
the clone system with the list of architectures supported by the archive. The
extraction fails if the kernel architecture of the clone is not supported by the
archive. If the keyword is not present, no architecture validation is performed.

The keywords listed below, all of the form creation_*, as do the preceding
keywords, describe the archive as a whole. By default, values for these keywords are
filled in by uname(2) at the time the flash archive is created. If you create a flash
archive in which the root directory is not /, the flash archive software inserts the string
UNKNOWN for all of the creation_* keywords except creation_node,

creation release, and creation os name. For creation node, the flash
software uses the contents of the nodename(4) file. For creation release and
creation_os_name, the flash software attempts to use the contents of
<root_directory>/var/sadm/system/admin/INST RELEASE. If it is unsuccessful in
reading this file, it assigns the value UNKNOWN.

Regardless of their sources, you cannot override the values of the creation_*
keywords.

creation node

The return from uname -n.

creation_hardware class

The return from uname -m.

creation_platform

The return from uname -1i.

creat ion_processor

The return from uname -p.

122 man pages section 4: File Formats * Last Revised 16 Jan 2002

User-Defined
Sections

Archive Files
Section

ATTRIBUTES

SEE ALSO

flash_archive(4)

creation release
The return from uname -r.

creation_os_name
The return from uname -s.

creation_os_version
The return from uname -v.

Following the identification section can be zero or more user-defined sections. These
sections are not processed by the archive extraction code and can be used for any
purpose.

User-defined sections must be line-oriented, terminated with newline (ASCII 0x0a)
characters. There is no limit on the length of individual lines. If binary data is to be
included in a user-defined section, it should be encoded using base64 or a similar
algorithm.

The archive files section contains the files gathered from the master system. While the
length of this section should be the same as the value of the files archived size
keyword in the identification section, you should not assume that these two values are
equal. This section begins with section_begin=archive, but it does not have an
ending section boundary.

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWinst

compress(l), cpio(l), flar(1M), flarcreate(1M), md5(3EXT), attributes(b)

File Formats 123

format.dat(4)
NAME

DESCRIPTION

Syntax

Keywords

format.dat — disk drive configuration for the format command

format .dat enables you to use your specific disk drives with format(1M). On
Solaris 2.3 and compatible systems, format will automatically configure and label
SCSI drives, so that they need not be defined in format . dat. Three things can be
defined in the data file:

® search paths
m disk types
® partition tables.

The following syntax rules apply to the data file:

® The pound # sign is the comment character. Any text on a line after a pound sign is
not interpreted by format.

® Each definition in the format . dat file appears on a single logical line. If the
definition is more than one line long, all but the last line of the definition must end
with a backslash (\).

® A definition consists of a series of assignments that have an identifier on the left
side and one or more values on the right side. The assignment operator is the equal
sign (=). Assignments within a definition must be separated by a colon (:).

®m White space is ignored by format(1M). If you want an assigned value to contain
white space, enclose the entire value in double quotes ("). This will cause the white
space within quotes to be preserved as part of the assignment value.

® Some assignments can have multiple values on the right hand side. Separate values
by a comma (,).

The data file contains disk definitions that are read in by format(1M) when it starts
up. Each definition starts with one of the following keywords: search_path,
disk_type, and partition.

search path 4.x: Tells format which disks it should search for when it starts
up. The list in the default data file contains all the disks in the
GENERIC configuration file. If your system has disks that are not
in the GENERIC configuration file, add them to the search_path
definition in your data file. The data file can contain only one
search_path definition. However, this single definition lets you
specify all the disks you have in your system.

5.x: By default, format(1M) understands all the logical devices
that are of the form /dev/rdsk/cntndnsn; hence search_path
is not normally defined on a 5.x system.

disk_ type Defines the controller and disk model. Each disk_type definition
contains information concerning the physical geometry of the disk.
The default data file contains definitions for the controllers and
disks that the Solaris operating environment supports. You need to

124 man pages section 4: File Formats * Last Revised 19 Apr 2001

format.dat(4)

add a new disk_type only if you have an unsupported disk. You
can add as many disk_type definitions to the data file as you
want.

The following controller types are supported by format(1M):

XY450 Xylogics 450 controller (SMD)
XD7053 Xylogics 7053 controller (SMD)
SCsI True SCSI (CCS or SCSI-2)
ISP-80 IPI panther controller

The keyword itself is assigned the name of the disk type. This
name appears in the disk’s label and is used to identify the disk
type whenever format(1M) is run. Enclose the name in double
quotes to preserve any white space in the name.

Below are lists of identifiers for supported controllers. Note that an
asterisk ("*’) indicates the identifier is mandatory for that controller
-- it is not part of the keyword name.

The following identifiers are assigned values in all disk type
definitions:

acyl* alternate cylinders

asect alternate sectors per track

atrks alternate tracks

fmt_time formatting time per cylinder

ncyl* number of logical cylinders

nhead* number of logical heads

nsect* number of logical sectors per track

pcyl* number of physical cylinders

phead number of physical heads

psect number of physical sectors per
track

rpm* drive RPM

These identifiers are for SCSI and MD-21 Controllers
read retries page 1byte 3 (read retries)
write_retries page 1byte 8 (write retries)

cyl skew page 3 bytes 18-19 (cylinder skew)

File Formats 125

format.dat(4)

partition

trk_skew page 3 bytes 16-17 (track skew)
trks zone page 3 bytes 2-3 (tracks per zone)
cache page 38 byte 2 (cache parameter)
prefetch page 38 byte 3 (prefetch parameter)

max_prefetch page 38 byte 4 (minimum prefetch)

min_prefetch page 38 byte 6 (maximum prefetch)

Note: The Page 38 values are device-specific. Refer the user to the
particular disk’s manual for these values.

For SCSI disks, the following geometry specifiers may cause a
mode select on the byte(s) indicated:

asect page 3 bytes 4-5 (alternate sectors per zone)
atrks page 3 bytes 8-9 (alt. tracks per logical unit)
phead page 4 byte 5 (number of heads)

psect page 3 bytes 10-11 (sectors per track)

And these identifiers are for SMD Controllers Only
bps* bytes per sector (SMD)
bpt* bytes per track (SMD)

Note: under SunOS 5.x, bpt is only required for SMD disks. Under
SunOS 4.x, bpt was required for all disk types, even though it was
only used for SMD disks.

And this identifier is for XY450 SMD Controllers Only

drive type* drive type (SMD) (just call this "xy450 drive
type")
Defines a partition table for a specific disk type. The partition table
contains the partitioning information, plus a name that lets you
refer to it in format(1M). The default data file contains default
partition definitions for several kinds of disk drives. Add a
partition definition if you repartitioned any of the disks on your
system. Add as many partition definitions to the data file as you
need.

Partition naming conventions differ in SunOS 4.x and in SunOS
5.x.

4.x: the partitions are named as a, b, ¢, d, e, £, g, h.

5.x: the partitions are referred to by numbers 0, 1, 2, 3, 4, 5, 6, 7.

126 man pages section 4: File Formats * Last Revised 19 Apr 2001

EXAMPLES

FILES

SEE ALSO

format.dat(4)
EXAMPLE 1 A sample disk type and partition.

Following is a sample disk_type and partition definition in format .dat file for
SUNO0535 disk device.

disk_type = "SUNO0535" \
: ctlr = SCSI : fmt_time = 4 \
: ncyl = 1866 : acyl = 2 : pcyl = 2500 : nhead = 7 : nsect = 80 \

: rpm = 5400
partition = "SUNO535" \
: disk = "SUNO0535" : ctlr = SCSI \

: 0 =0, 64400 : 1 = 115, 103600 : 2 = 0, 1044960 : 6 = 300, 876960

/etc/format .dat default data file if format -x is not
specified, nor is there a format . dat file in
the current directory.

format(1M)

System Administration Guide: Basic Administration

File Formats 127

fspec(4)

128

NAME

DESCRIPTION

fspec — format specification in text files

It is sometimes convenient to maintain text files on the system with non-standard tabs,
(tabs that are not set at every eighth column). Such files must generally be converted
to a standard format, frequently by replacing all tabs with the appropriate number of
spaces, before they can be processed by system commands. A format specification
occurring in the first line of a text file specifies how tabs are to be expanded in the
remainder of the file.

A format specification consists of a sequence of parameters separated by blanks and
surrounded by the brackets <: and : >. Each parameter consists of a keyletter, possibly
followed immediately by a value. The following parameters are recognized:

ttabs The t parameter specifies the tab settings for the file. The value of
tabs must be one of the following:

® Alist of column numbers separated by commas, indicating tabs
set at the specified columns.

m A’ followed immediately by an integer #n, indicating tabs at
intervals of n columns.

m A’ followed by the name of a “canned” tab specification.

Standard tabs are specified by t—8, or equivalently, t1,9,17, 25,
etc. The canned tabs that are recognized are defined by the
tabs(1) command.

ssize The s parameter specifies a maximum line size. The value of size
must be an integer. Size checking is performed after tabs have been
expanded, but before the margin is prepended.

mwnargin The m parameter specifies a number of spaces to be prepended to
each line. The value of margin must be an integer.

d The d parameter takes no value. Its presence indicates that the line
containing the format specification is to be deleted from the
converted file.

e The e parameter takes no value. Its presence indicates that the
current format is to prevail only until another format specification
is encountered in the file.

Default values, which are assumed for parameters not supplied, are t—8 and m0. If the
s parameter is not specified, no size checking is performed. If the first line of a file
does not contain a format specification, the above defaults are assumed for the entire
file. The following is an example of a line containing a format specification:

* <:t5,10,15 s72:> *

If a format specification can be disguised as a comment, it is not necessary to code the
d parameter.

man pages section 4: File Formats ¢ Last Revised 3 Jul 1990

fspec(4)
SEE ALSO | ed(1), newform(1l), tabs(1)

File Formats 129

fstypes(4)

130

NAME

DESCRIPTION

SEE ALSO

fstypes — file that registers distributed file system packages

fstypes resides in directory /etc/dfs and lists distributed file system utilities
packages installed on the system. For each installed distributed file system type, there
is a line that begins with the file system type name (for example, “nfs”’), followed by
white space and descriptive text.

The file system indicated in the first line of the file is the default file system; when
Distributed File System (DFS) Administration commands are entered without the
option —F fstypes, the system takes the file system type from the first line of the
fstypes file.

The default file system can be changed by editing the £stypes file with any
supported text editor.

dfmounts(1M), dfshares(1M), share(1M), shareall(1M), unshare(1M)

man pages section 4: File Formats ¢ Last Revised 18 Dec 1991

NAME
SYNOPSIS

DESCRIPTION

fs_clean

fs_ufs(4)
fs_ufs, inode_ufs, inode — format of a ufs file system volume
#include <sys/param.h>
#include <sys/types.h>
#include <sys/fs/ufs_fs.h>

#include <sys/fs/ufs_inode.h>

Standard UFS file system storage volumes have a common format for certain vital
information. Every volume is divided into a certain number of blocks. The block size
is a parameter of the file system. Sectors 0 to 15 contain primary and secondary
bootstrapping programs.

The actual file system begins at sector 16 with the super-block. The layout of the
super-block is defined by the header <sys/fs/ufs fs.h>.

Each disk drive contains some number of file systems. A file system consists of a
number of cylinder groups. Each cylinder group has inodes and data.

A file system is described by its super-block, and by the information in the cylinder
group blocks. The super-block is critical data and is replicated before each cylinder
group block to protect against catastrophic loss. This is done at file system creation
time and the critical super-block data does not change, so the copies need not be
referenced.

fs_clean indicates the state of the file system. The FSCLEAN state indicates an
undamaged, cleanly unmounted file system. The FSACTIVE state indicates a mounted
file system that has been updated. The FSSTABLE state indicates an idle mounted file
system. The FSFIX state indicates that this fs is mounted, contains inconsistent file
system data and is being repaired by £sck. The FSBAD state indicates that this file
system contains inconsistent file system data. It is not necessary to run £sck on any
unmounted file systems with a state of FSCLEAN or FSSTABLE. mount(2) will return
ENOSPC if a UFS file system with a state of FSACTIVE is being mounted for
read-write.

To provide additional safeguard, £s_clean could be trusted only if fs_state
contains a value equal to FSOKAY - £s_time, where FSOKAY is a constant integer.
Otherwise, fs_clean is treated as though it contains the value of FSACTIVE.

Addresses stored in inodes are capable of addressing fragments of “blocks.” File
system blocks of at most, size MAXBSIZE can be optionally broken into 2, 4, or 8
pieces, each of which is addressable; these pieces may be DEV_BSIZE or some
multiple of a DEV_BSIZE unit.

File Formats 131

fs_ufs(4)

fs_minfree

fs_optim

fs_rotdelay

fs_maxcontig

Large files consist exclusively of large data blocks. To avoid undue wasted disk space,
the last data block of a small file is allocated only as many fragments of a large block
as are necessary. The file system format retains only a single pointer to such a
fragment, which is a piece of a single large block that has been divided. The size of
such a fragment is determinable from information in the inode, using the
blksize(fs, ip, lbn) macro.

The file system records space availability at the fragment level; aligned fragments are
examined to determine block availability.

The root inode is the root of the file system. Inode 0 cannot be used for normal
purposes and historically, bad blocks were linked to inode 1. Thus the root inode is 2
(inode 1 is no longer used for this purpose; however numerous dump tapes make this
assumption, so we are stuck with it). The lost+found directory is given the next
available inode when it is initially created by mkfs(1M).

fs_minfree gives the minimum acceptable percentage of file system blocks which
may be free. If the freelist drops below this level only the super-user may continue to
allocate blocks. £s_minfree may be set to 0 if no reserve of free blocks is deemed
necessary, however severe performance degradations will be observed if the file
system is run at greater than 90% full; thus the default value of £s_minfree is 10%.

Empirically the best trade-off between block fragmentation and overall disk utilization
at a loading of 90% comes with a fragmentation of 8; thus the default fragment size is
an eighth of the block size.

fs_optimspecifies whether the file system should try to minimize the time spent
allocating blocks, or if it should attempt to minimize the space fragmentation on the
disk. If the value of £s_minfree is less than 10%, then the file system defaults to
optimizing for space to avoid running out of full sized blocks. If the value of
fs_minfree is greater than or equal to 10%, fragmentation is unlikely to be
problematical, and the file system defaults to optimizing for time.

Cylinder group related limits: Each cylinder keeps track of the availability of blocks at
different rotational positions, so that sequential blocks can be laid out with minimum
rotational latency. £s_nrpos is the number of rotational positions which are
distinguished. With the default £s_nrpos of 8, the resolution of the summary
information is 2ms for a typical 3600 rpm drive.

fs_rotdelay gives the minimum number of milliseconds to initiate another disk
transfer on the same cylinder. It is used in determining the rotationally optimal layout
for disk blocks within a file; the default value for £s_rotdelay varies from drive to
drive. See tunefs(1M).

fs_maxcontig gives the maximum number of blocks, belonging to one file, that will
be allocated contiguously before inserting a rotational delay.

Each file system has a statically allocated number of inodes. An inode is allocated for
each NBPI bytes of disk space. The inode allocation strategy is extremely conservative.

132 man pages section 4: File Formats « Last Revised 17 Nov 1994

ATTRIBUTES

SEE ALSO

fs_ufs(4)

MINBSIZE is the smallest allowable block size. With a MINBSIZE of 4096 it is possible
to create files of size 232 with only two levels of indirection. MINBSIZE must be large
enough to hold a cylinder group block, thus changes to (struct cg) must keep its
size within MINBSIZE. Note: super-blocks are never more than size SBSIZE.

The path name on which the file system is mounted is maintained in fs_fsmnt.
MAXMNTLEN defines the amount of space allocated in the super-block for this name.

The limit on the amount of summary information per file system is defined by
MAXCSBUFS. It is currently parameterized for a maximum of two million cylinders.

Per cylinder group information is summarized in blocks allocated from the first
cylinder group’s data blocks. These blocks are read in from £s_csaddr (size
fs_cssize) in addition to the super-block.

Note: sizeof (struct csum) must be a power of two in order for the fs_cs
macro to work.

The inode is the focus of all file activity in the file system. There is a unique inode
allocated for each active file, each current directory, each mounted-on file, text file, and
the root. An inode is “named” by its device/i-number pair. For further information,
see the header <sys/fs/ufs_inode.hs.

See attributes(d) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Unstable

fsck_ufs(IM), mkfs ufs(IM), tunefs(IM), mount(2), attributes(b)

File Formats 133

ftpaccess(4)
NAME
SYNOPSIS
DESCRIPTION

Access
Capabilities

ftpaccess — FTP Server configuration file

/etc/ftpd/ftpaccess
The ftpaccess file is used to configure the operation of the FTP Server.

The following access capabilities are supported:

autogroup groupname class [class...]
If an anonymous user is a member of any of class, the FTP Server will perform a
setegid(2) to groupname. This allows access to group and owner read-only files
and directories to a particular class of anonymous users. groupname is a valid group
returned by getgrnam(3C).

class class typelist addrglob [addrglob...]
Define class of users, with source addresses of the form addrglob. Multiple members
of class may be defined. There may be multiple class commands listing additional
members of the class. If multiple class commands can apply to the current
session, the first one listed in the access file is used. If a valid class for a host is not
defined, access will be denied. typelist is a comma-separated list of any of the
keywords anonymous, guest, and real. If the real keyword is included, the
class can match users using FTP to access real accounts. If the anonymous keyword
is included the class can match users using anonymous FTP. The guest keyword
matches guest access accounts.

addrglob may be a globbed domain name or a globbed numeric IPv4 address. It may
also be the name of a file, starting with a slash ("/’), which contains additional
address globs. IPv4 numeric addresses may also be specified in the form
address:netmask or address/CIDR. IPv6 numeric addresses can only be
specified with an optional CIDR, not using globs or netmasks.

Placing an exclamation (!) before an addrglob negates the test. For example,

class rmtuser real !*.example.com

will classify real users from outside the example . com domain as the class
rmtuser. Use care with this option. Remember, the result of each test is OR’ed
with other tests on the line.

deny addrglob [message_file]
Deny access to host(s) that match addrglob and display message_file. If the value of
addrglob is | nameserved access to sites without a working nameservers is denied.
message_file may contain magic cookies. See message for more details.

guestgroup groupname [groupname...]

guestuser username [username...]

realgroup groupname [groupname...]

realuser username [username...]
For guestgroup, if a real user is a member of any groupname, the session is set up
like anonymous FIP. groupname is a valid group returned by getgrnam(3C). The
user’s home directory must be set up exactly as anonymous FTP would be. The
home directory field of the passwd entry is divided into two directories. The first

134 man pages section 4: File Formats ¢ Last Revised 16 Oct 2001

ftpaccess(4)

field is the root directory that will be the argument to the chroot(2) call. The
second field is the user’s home directory, relative to the root directory. Usea “/ . /”
to separate the two fields. For example, the following is the real entry in
/etc/passwd:

guestl:x:100:92:Guest FTP:/export/home/guests/./guestl:/bin/true

When guest1 successfully logs in, the FTP Server will chroot () to

/export /home/guests and then chdir(2) to /guestl. The guest user will only
be able to access the directory structure under /export /home/guests, which will
look and act as / to guest1, just as an anonymous FIP user would. The -d option
to ftpconfig(1M) is useful when creating guest FTP user accounts. The group
name may be specified by either name or numeric ID. To use a numeric group ID,
place a "%’ before the number. You can give ranges. Use an asterisk to indicate all
groups. guestuser works like guestgroup, except that it uses the user name or
numeric ID. realuser and realgroup have the same syntax, but they reverse the
effect of guestuser and guestgroup. They allow real user access when the
remote user would otherwise be determined a guest.

guestuser *
realgroup admin

causes all non-anonymous users to be treated as guest, with the sole exception of
users in the admin group, who are granted real user access.

nice nice-delta [class]
Adjust the process nice value of the FTP server process by the indicated nice-delta
value if the remote user is a member of the named class. If class is not specified, then
use nice-delta as the default adjustment to the FTP server process nice value. This
default nice value adjustment is used to adjust the nice value of the server
process only for those users who do not belong to any class for which a
class-specific nice directive exists in the ftpaccess file.

defumask umask [class]
Set the umask applied to files created by the FTP server if the remote user is a
member of the named class. If class is not specified, then use the umask as the
default for classes that do not have one specified.. The mode of files created may be
specified by using the upload directive.

tcpwindow size [class]
Set the TCP window size (socket buffer size) for the data connection. Use this to
control network traffic. For instance, slow PPP dialin links may need smaller TCP
windows to speed up throughput. If you do not know what this does, do not set it.

keepalive yes|no
Set the TCP SO_KEEPALIVE option for control and data sockets. This can be used
to control network disconnect. If yes, then set it. If no, then use the system default
(usually off). You probably want to set this.

timeout accept seconds
timeout connect seconds
timeout data seconds

File Formats 135

ftpaccess(4)

timeout idle seconds
timeout maxidle seconds
timeout RFC931 seconds

Set various timeout conditions.

accept How long the FTP Server will wait for an incoming (PASV) data
connection. The default is 120 seconds.

connect How long the FTP Server will wait attempting to establish an
outgoing (PORT) data connection. This effects the actual connection
attempt. The daemon makes several attempts, sleeping between each
attempt, before giving up. The default is 120 seconds.

data How long the FTP Server will wait for some activity on the data
connection. You should keep this long because the remote client may
have a slow link, and there can be quite a bit of data queued for the
client. The default is 1200 seconds.

idle How long the FTP Server will wait for the next command. The default
is 900 seconds. The default can also be overridden by using the -t
option at the command-line. This access clause overrides both.

maxidle The SITE IDLE command allows the remote client to establish a
higher value for the idle timeout. The maxidle clause sets the upper
limit that the client may request. The default can also be overridden
by using the -T option at the command-line. This access clause
overrides both. The default is 7200 seconds.

RFC931 The maximum time the FTP server allows for the entire RFC931
(AUTH/ident) conversation. Setting this to zero (0) disables the
server’s use of this protocol. The information obtained by means of
RFC931 is recorded in the system logs and is not actually used in any
authentication. The default is 10 seconds.

file-1limit [raw] in|out | total count [class]
Limit the number of data files a user in the given class may transfer. The limit may
be placed on files in, out, or total. If no class is specified, the limit is the default for
classes which do not have a limit specified. The optional parameter raw applies the
limit to the total traffic rather than just data files.

data-1limit [raw] in |out | total count [class]
Limit the number of data bytes a user in the given class may transfer. The limit may
be placed on bytes in, out, or total. If no class is specified, the limit is the default for
classes which do not have a limit specified. Note that once it has been exceeded,
this limit will prevent transfers, but it will not terminate a transfer in progress. The
optional parameter raw applies the limit to total traffic rather than just data files.

limit-time *lanonymous | guest minutes
Limit the total time a session can take. By default, there is no limit. Real users are
never limited.

136 man pages section 4: File Formats ¢ Last Revised 16 Oct 2001

ftpaccess(4)

guestserver [hostname...]

Control which hosts may be used for anonymous access. If used without hostname,
all anonymous access is denied to this site. More than one hostname may be
specified. Anonymous access will only be allowed on the named machines. If access
is denied, the user will be asked to use the first hostname listed.

limit class n times [message_file]

Limit class to n users at times times, displaying message_file if the user is denied
access. A 1imit check is performed at login time only. If multiple 1imit
commands can apply to the current session, the first applicable one is used. Failing
to define a valid limit, or a limit of -1, is equivalent to no limits. The format of times
is,:

day [day . . .1 [time-range] [|day [day . . .1 [time-rangel] . ..

The value of day can be Su, Mo, Tu, We, Th, Fr, Sa, Wk (for any weekday Monday
through Friday), or Any. time-range is in 24-hour clock notation. If a time range is
not specified, any time of the day is matched. Multiple day and time-range may be
specified by the “|” symbol. For example, Wk1730-0900 | Sa | Su specifies 5:30
p-m. to 9:00 a.m., Monday through Friday, and anytime on weekends. message_file
may contain magic cookies. See message for more details.

noretrieve [absolutelrelative]
[class=classname...][-] filename [filename...]

Always deny retrievability of these files. If filename specifies a pathname that begins
with ’/’ character, then only those files are marked no retrieve. Otherwise all files
that match the filename are refused transfer. For example, noretrieve
/etc/passwd core specifies no one will be able to retrieve the /etc/passwd
file. You will be allowed to transfer any file named passwd that is not in /etc.

On the other hand, no one will be able to get files named core, wherever they are.
Directory specifications mark all files and subdirectories in the named directory
unretrievable. The filename may be specified as a file glob. For example,

noretrieve /etc /home/*/.htaccess

specifies that no files in /etc or any of its subdirectories may be retrieved. Also, no
files named .htaccess anywhere under the /home directory may be retrieved.
The optional first parameter selects whether names are interpreted as absolute or
relative to the current chroot’d environment. The default is to interpret names
beginning with a slash as absolute. The noretrieve restrictions may be placed
upon members of particular classes. If any class= is specified, the named files
cannot be retrieved only if the current user is a member of one of the given classes.

allow-retrieve [absolutelrelative]
[class=classname...][-] filename [filename...]

Allows retrieval of files which would otherwise be denied by noretrieve.

loginfails number

After number login failures, log a "repeated login failures" message and terminate
the FTP connection. The default value for number is 5.

File Formats 137

ftpaccess(4)

138

Informational
Capabilities

private yes | no
Allow or deny use of the SITE GROUP and SITE GPASS commands after the user
logs in. The SITE GROUP and SITE GPASS commands specify an enhanced access
group and associated password. If the group name and password are valid, the
user becomes a member of the group specified in the group access file
/etc/ftpd/ftpgroups by means of setegid(2). See ftpgroups(4) for the
format of the file. For this option to work for anonymous FIP users, the FTP Server
must keep /etc/group permanently open and load the group access file into
memory. This means that the FTP Server now has an additional file descriptor
open, and the necessary passwords and access privileges granted to users by means
of SITE GROUP will be static for the duration of an FTP session. If you have an
urgent need to change the access groups or passwords now, you have to kill all of
the running FTP Servers.

The following informational capabilities are supported:

greeting fulllbrieflterse

greeting text message
The greeting command allows you to control how much information is given out
before the remote user logs in. greeting full, which is the default greeting,
shows the hostname and daemon version. greeting brief shows the hostname.
greeting terse simply says "FIP Server ready." Although full is the default,
brief is suggested.

The text form allows you to specify any greeting message. message can be any
string. Whitespace (spaces and tabs) is converted to a single space.

banner path
The banner command operates similarly to the message command, except that
the banner is displayed before the user enters the username. The path is relative to
the real system root, not to the base of the anonymous FTP directory.

Use of the banner command can completely prevent non-compliant FTP clients
from making use of the FTP Server. Not all clients can handle multi-line responses,
which is how the banner is displayed.

email name
Use this command to define the email address for the FTP Server administrator.
This string will be printed every time the $E magic cookie is used in message files.

hostname some.host.name
Defines the default host name of the FTP Server. This string will be printed on the
greeting message and every time the %L magic cookie is used. The host name for
virtual servers overrides this value. If no host name is specified, the default host
name for the local machine is used.

message path [when [class...]]
Define a file with path such that the FTP Server will display the contents of the file
to the user at login time or upon using the change working directory command.

man pages section 4: File Formats ¢ Last Revised 16 Oct 2001

Logging
Capabilities

ftpaccess(4)

The when parameter may be LOGIN or CWD=dirglob. If when is CWD=dirglob, dirglob
specifies the new default directory that will trigger the notification. A dirglob of “*”
matches all directories.

The optional class specification allows the message to be displayed only to members
of a particular class. More than one class may be specified.

"Magic cookies" can be present in path that cause the FIP Server to replace the
cookie with a specified text string:

o°
=

Local time. For example, Thu Nov 15 17:12:42 1990.

o\°
e |

Free space in partition of CWD, in Kbytes.

o©
(@]

Current working directory.

o\©
=1

The email address for the FTP Server administrator.

Remote host name.

o\
o

Local host name.

o
[

o\°
a

Username given at login time.

oe
c

Username as defined by means of RFC 931 authentication.

oe
=

Maximum allowed number of users in this class.

o\
=

Current number of users in this class.

The message is displayed only once to avoid annoying the user. Remember that when
messages are triggered by an anonymous or guest FTP user, they must be relative to
the base of the anonymous or guest FTP directory tree.

readme pathglob [when [class...]]

Define a file with pathglob such that the FIP Server will notify the user at login time
or upon using the change working directory command that the file exists and the
date that it was modified. The when parameter may be LOGIN or CWD=dirglob. If
when is CWD=dirglob, dirglob specifies the new default directory that will trigger the
notification. A dirglob of “*” matches all directories. The message will only be
displayed once, to avoid bothering users. Remember that when README messages
are triggered by an anonymous or guest FTP user, the pathglob must be relative to
the base of the anonymous or guest FTP directory tree.

The optional class specification allows the message to be displayed only to members
of a particular class. You can specify more than one class.

The following logging capabilities are supported:

log commands typelist

Enables logging of the individual FTP commands sent by users. typelist is a
comma-separated list of any of the keywords anonymous, guest, and real.
Command logging information is written to the system log.

File Formats 139

ftpaccess(4)

140

Miscellaneous
Capabilities

log transfers typelist directions
Log file transfers made by FTP users to the xferlog(4) file. Logging of incoming
transfers to the server can be enabled separately from outbound transfers from the
server. directions is a comma-separated list of any of the two keywords inbound
and outbound, and will respectively cause transfers to be logged for files sent to
and from the server.

log security typelist
Enables logging of violations of security rules to the system log, including for
example, notretrieve and .notar.

log syslog

log syslog+xferlog
Redirect the logging messages for incoming and outgoing transfers to syslog.
Without this option the messages are written to xferlog. When you specify
syslog+xferlog, the transfer log messages are sent to both the system log file
and the xferlog file.

The following miscellaneous capabilities are supported:

alias string dir
Define an alias, string, for a directory. Use this command to add the concept of
logical directories. For example: alias rfc: /pub/doc/rfc would allow the
user to access /pub/doc/rfc from any directory by the command "ed rfc:".
Aliases only apply to the cd command.

cdpath dir
Define an entry in the cdpath. This command defines a search path that is used
when changing directories. For example:

cdpath /pub/packages
cdpath /.aliases

would allow the user to move into any directory directly under either the

/pub/packages or the /.aliases directories. The search path is defined by the
order in which the lines appear in the ftpaccess file. If the user were to give the
command ftp> cd foo the directory will be searched for in the following order:

./foo

an alias called foo
/pub/packages/foo
/.aliases/foo

The cdpath is only available with the cd command. If you have a large number of
aliases, you might want to set up an aliases directory with links to all of the areas
you wish to make available to users.

compress yes | no classglob [classglob...]
tar yes | no classglob [classglob...]
Enable the use of conversions marked with the 0 COMPRESS, O UNCOMPRESS, and
O_TAR options in /etc/ftpd/ftpconversions. See ftpconversions(4).

man pages section 4: File Formats ¢ Last Revised 16 Oct 2001

ftpaccess(4)

shutdown path
If the file pointed to by path exists, the server will check the file regularly to see if
the server is going to be shut down. If a shutdown is planned, the user is notified.
New connections are denied after a specified time before shutdown. Current
connections are dropped at a specified time before shutdown.

The format of the file specified by path is:

year month day hour minute deny_offset disc_offset text

year A value of 1970 or greater.

month A value of 0 to 11.

day Avalue of 1 to 31.

hour A value of 0 to 23.

minute A value of 0 to 59.

deny_offset

disc_offset The offsets in HHMM format that new connections will be denied
and existing connections will be disconnected before the shutdown
time.

text Follows the normal rules for any message. The following additional

magic cookies are available:

o°

s The time at which the system is going to shut down.

o\°

r The time at which new connections will be denied.

$d The time at which current connections will be dropped.

All times are in the form: ddd MMM DD hh:mm:ss YYYY. Only one shutdown
command can be present in the configuration file. You can use the external program
ftpshut(1M) to automate generation of this file.

daemonaddress address
Listen only on the IP address specified. If the value is not set, then the FTP Server
will listen for connections on every IP address. This applies only when the FTP
Server is run in standalone mode.

virtual address root | banner | logfile path
Enable the FTP Server limited virtual hosting capabilities. The address is the IP
address of the virtual server. The second argument specifies that the path is either
the path to the root of the filesystem for this virtual server, the banner presented
to the user when connecting to this virtual server, or the 1ogfile where transfers
are recorded for this virtual server. If the 1ogfile is not specified the default log
file will be used. All other message files and permissions as well as any other
settings in this file apply to all virtual servers. The address may also be specified as a
hostname rather than as an IP number. This is strongly discouraged since, if DNS is
not available at the time the FIP session begins, the hostname will not be matched.

File Formats 141

ftpaccess(4)

root |logfile path
In contrast to limited virtual hosting, complete virtual hosting allows separate
configuration files to be virtual host specific. See ftpservers(4). The only
additions that are necessary in a virtual host’s ftpaccess file is the root directive
that ensures the correct root directory is used for the virtual host. This only works
with complete virtual hosting, which in contrast to limited virtual hosting, allows
separate configuration files to be specified for each virtual host.

path is either the root of the filesystem for this virtual server or the logfile where
transfers for this virtual server are recorded. root and logfile may only be specified
when not preceded by virtual address in a virtual hosts’s ftpaccess file.

virtual address hostname | email string
Set the hostname shown in the greeting message and status command, or the email
address used in message files and on the HELP command, to the given string.

virtual address allow username [username...]

virtual address deny username [username...]
By default, real and guest users are not allowed to log in on the virtual server,
unless they are guests that are chroot’d to the virtual root. The users listed on the
virtual allow line(s) are granted access. You can grant access to all users by
giving "*" as the username. The virtual deny clauses are processed after the
virtual allow clauses. Thus specific users can be denied access although all
users were allowed in an earlier clause.

virtual address private
Deny log in access to anonymous users on the virtual server. Anonymous users are
generally allowed to log in on the virtual server if this option is not specified.

virtual address passwd file
Use a different passwd file for the virtual host.

virtual address shadow file
Use a different shadow file for the virtual host.

defaultserver deny username [username...]

defaultserver allow username [username...]
By default, all users are allowed access to the non-virtual FTP Server. Use
defaultserver deny to revoke access for specific real and guest users. Specify *’
to deny access to all users, except anonymous users. Specific real and guest users
can then be allowed access by using defaultserver allow.

defaultserver private
By default, all users are allowed access to the non-virtual FTP Server. Use
defaultserver private to revoke access for anonymous users.

The virtual and defaultserver allow, deny and private clauses provide a
means to control which users are allowed access to which FTP Servers.

passive address externalip cidr
Allow control of the address reported in response to a passive command. When
any control connection matching cidr requests a passive data connection (PASV),

142 man pages section 4: File Formats ¢ Last Revised 16 Oct 2001

ftpaccess(4)

the externalip address is reported. This does not change the address that the daemon
actually listens on, only the address reported to the client. This feature allows the
daemon to operate correctly behind IP renumbering firewalls. For example:

passive address 10.0.1.15 10.0.0.0/8
passive address 192.168.1.5 0.0.0.0/0

Clients connecting from the class-A network 10 will be told the passive connection
is listening on IP address 10.0.1.15 while all others will be told the connection is
listening on 192.168.1.5 Multiple passive addresses may be specified to handle
complex, or multi-gatewayed, networks.

passive ports cidr min max
Allows control of the TCP port numbers which may be used for a passive data
connection. If the control connection matches the cidr, a port in the range min to max
will be randomly selected for the daemon to listen on. This feature allows firewalls
to limit the ports that remote clients may use to connect into the protected network.

cidr is shorthand for an IP address followed by a slash and the number of left-most
bits that represent the network address, as opposed to the machine address. For
example, if you are using the reserved class-A network 10, instead of a netmask of
255.0.0.0, use a CIDR of /8, as in 10.0.0.0/8, to represent your network.

pasv-allow class [addrglob...]

port-allow class [addrglob...]
Normally, the FTP Server does not allow a PORT command to specify an address
different than that of the control connection. Nor does it allow a PASV connection
from another address.

The port-allow clause provides a list of addresses that the specified class of user
may give on a PORT command. These addresses will be allowed even if they do not
match the IP address of the client-side of the control connection.

The pasv-allow clause provides a list of addresses that the specified class of user
may make data connections from. These addresses will be allowed even if they do
not match the IP address of the client-side of the control connection.

1slong command [options...]

lsshort command [options...]

lsplain command [options...]
Use the 1slong, 1sshort, and 1splain clauses to specify the commands and
options to use to generate directory listings. The options cannot contain spaces, and
the default values for these clauses are generally correct. Use 1slong, 1sshort, or
lsplain only if absolutely necessary.

mailserver hostname
Specify the name of a mail server that will accept upload notifications for the FTP
Server. Multiple mail servers may be listed. The FTP Server will attempt to deliver
the upload notification to each, in order, until one accepts the message. If no mail
servers are specified, localhost is used. This option is only meaningful if anyone
is to be notified of anonymous uploads. See incmail.

File Formats 143

ftpaccess(4)

144

Permission
Capabilities

incmail emailaddress
virtual address incmail emailaddress
defaultserver incmail emailaddress

Specify email addresses to be notified of anonymous uploads. Multiple addresses
can be specified. Each will receive a notification. If no addresses are specified, no
notifications are sent.

If addresses are specified for a virtual host, only those addresses will be sent
notification of anonymous uploads on that host. Otherwise, notifications will be
sent to the global addresses.

defaultserver addresses only apply when the FTP session is not using one of
the virtual hosts. In this way, you can receive notifications for your default
anonymous area, but not see notifications to virtual hosts that do not have their
own notifications.

mailfrom emailaddress
virtual address mailfrom emailaddress
defaultserver mailfrom emailaddress

Specify the sender’s email address for anonymous upload notifications. Only one
address may be specified. If no mailfrom applies, email is sent from the default
mailbox name wu-ftpd. To avoid problems if the recipient attempts to reply to a
notification, or if downstream mail problems generate bounces, you should ensure
the mailfrom address is deliverable.

The following permission capabilities are supported:

chmod yes | no typelist
delete yes Ino typelist
overwrite yes| no typelist
rename yes | no typelist
umask yes | no typelist

Allows or disallows the ability to perform the specified function. By default, all real
and guest users are allowed. Anonymous users are only allowed overwrite and
umask.

typelist is a comma-separated list of any of the keywords anonymous, guest, real
and class=. When class= appears, it must be followed by a classname. If any
class= appears, the typelist restriction applies only to users in that class.

passwd-check noneltrivial lrfc822 [enforce|lwarn]

Define the level and enforcement of password checking done by the FTP Server for
anonymous FTP.

none No password checking is performed.
trivial The password must contain an ‘@’
rfc822 The password must be RFC 822 compliant.
warn Warn, but permit the login.

man pages section 4: File Formats ¢ Last Revised 16 Oct 2001

ftpaccess(4)
enforce Notify and deny the login.

deny-email case-insensitive-emailaddress
Consider the email address given as an argument as invalid. If passwd-check is
set to enforce, anonymous users giving this address as a password cannot log in.
That way, you can stop users from having stupid WWW browsers use fake
addresses like IE?0User@ or mozilla@. (by using this, you are not shutting out users
using a WWW browser for ftp - you just make them configure their browser
correctly.) Only one address is allowed per line, but you can have as many
deny-email addresses as you like.

path-filter typelist message allowed_regexp

[disallowed_regexp...]
For users in typelist, path-filter defines regular expressions that control what
characters can be used in the filename of an uploaded file or created directory.
There may be multiple disallowed regular expressions. If a filename is invalid due
to failure to match the regular expression criteria, message will be displayed to the
user. For example:

path-filter anonymous /etc/pathmsg *[-A-Za-z0-9.]*$ *\. *-

specifies that all upload filenames for anonymous users must be made of only the
characters A-Z, a-z, 0-9, and "._-" and may not begin with a "." or a "-". If the
filename is invalid, /etc/pathmsg will be displayed to the user.

upload [absolutelrelative] [class=classname]... [-]

root-dir dirglob yes | no owner group mode

[dirs|nodirs] [d_mode]
Define a directory with dirglob that permits or denies uploads. If it does permit
uploads, all newly created files will be owned by owner and group and will have
their permissions set according to mode. Existing files that are overwritten will
retain their original ownership and permissions. Directories are matched on a
best-match basis. For example:

upload /var/ftp * no
upload /var/ftp /incoming yes ftp daemon 0666
upload /var/ftp /incoming/gifs yes jlc guest 0600 nodirs

would only allow uploads into /incoming and /incoming/gifs. Files that were
uploaded to /incoming are owned by ftp/daemon and have permissions of 0666.
Files uploaded to /incoming/gifs are owned by jlc/guest and have
permissions of 0600. The optional "dirs" and "nodirs” keywords can be specified
to allow or disallow the creation of new subdirectories using the mkdir command.
If the upload command is used, directory creation is allowed by default. To turn it
off by default, you must specify a user, group and mode followed by the "nodirs"
keyword as the first line where the upload command is used in this file. If
directories are permitted, the optional d_mode determines the permissions for a
newly created directory. If d_mode is omitted, the permissions are inferred from
mode. The permissions are 0777 if mode is also omitted. The upload keyword only
applies to users who have a home directory of root-dir. root-dir may be specified as
"*" to match any home directory. The owner or group may each be specified as "™*", in

File Formats 145

ftpaccess(4)

which case any uploaded files or directories will be created with the ownership of
the directory in which they are created. The optional first parameter selects whether
root-dir names are interpreted as absolute or relative to the current chroot’d
environment. The default is to interpret <root -dir> names as absolute. You can
specify any number of class=classname restrictions. If any are specified, this
upload clause only takes effect if the current user is a member of one of the classes.

In the absence of any matching upload clause, real and guest users can upload
files and make directories, but anonymous users cannot. The mode of uploaded
files is 0666. For created directories, the mode is 0777. Both modes are modified by
the current umask setting.

throughput root-dir subdir-glob file-glob-list
bytes-per-second bytes-per-second-multiply remote-glob-list

Define files by means of a comma-separated file-glob-list in subdir matched by
subdir-glob under root-dir that have restricted transfer throughput of bytes-per-second
on download when the remote hostname or remote IP address matches the
comma-separated remote-glob-list. Entries are matched on a best-match basis. For
example:

throughput /e/ftp * * fele} - *
throughput /e/ftp /sw* * 1024 0.5 *
throughput /e/ftp /sw* README oo - *
throughput /e/ftp /sw* * fele} - *.foo.com

would set maximum throughput per default, but restrict download to 1024 bytes
per second for any files under /e/ftp/sw/ that are not named README. The
only exceptions are remote hosts from within the domain foo . com which always
get maximum throughput. Every time a remote client has retrieved a file under
/e/ftp/sw/ the bytes per seconds of the matched entry line are internally
multiplied by a factor, here 0.5. When the remote client retrieves its second file, it is
served with 512 bytes per second, the third time with only 256 bytes per second, the
fourth time with only 128 bytes per second, and so on. The string "00" for the bytes
per second field means no throughput restriction. A multiply factor of 1.0 or "-"
means no change of the throughput after every successful transfer. The root-dir here
must match the home directory specified in the password database . The
throughput keyword only applies to users who have a home directory of root-dir.

anonymous - root root-dir [class...]

root-dir specifies the chroot () path for anonymous users. If no anonymous-root is
matched, the old method of parsing the home directory for the FTP user is used. If
no class is specified, this is the root directory for anonymous users who do not
match any other anonymous-root specification. Multiple classes may be specified
on this line. If an anonymous-root is chosen for the user, the FTP user’s home
directory in the root-dir /et c/passwd file is used to determine the initial directory
and the FTP user’s home directory in the system-wide /etc/passwd is not used.
For example:

anonymous-root /home/ftp
anonymous-root /home/localftp localnet

146 man pages section 4: File Formats ¢ Last Revised 16 Oct 2001

ftpaccess(4)

causes all anonymous users to be chroot ’ d to the directory /home/£ftp. If the
FTP user exists in /home/ftp/etc/passwd, their initial CWD is that home
directory. Anonymous users in the class localnet, however, are chroot’ d to the
directory /home/localftp and their initial CWD is taken from the FTP user’s
home directory in /home/localftp/etc/passwd.

guest -root root-dir [uid-range...]
root-dir specifies the chroot () path for guest users. If no guest-root is matched, the
old method of parsing the user’s home directory is used. If no uid-range is specified,
this is the root directory for guestusers who do not match any other guest-root
specification. Multiple UID ranges may be given on this line. If a guest-root is
chosen for the user, the user’s home directory in the root-dir /et c/passwd file is
used to determine the initial directory and the home directory in the system-wide
/etc/passwd is not used. uid-range specifies names or numeric UID values. To use
numbers, put a $ symbol before it or before the range. Ranges are specified by
giving the lower and upper bounds (inclusive), separated by a dash. If the lower
bound is omitted, it means "all up to.” If the upper bound is omitted, it means "all
starting from.” For example:

guest-root /home/users
guest-root /home/staff %100-999 sally
guest-root /home/users/owner/ftp frank

causes all guest users to chroot () to /home/users then starts each user in the
user’s home directory, as specified in /home /users/etc/passwd. Users in the
range 100 through 999, inclusive, and user sally, will be chroot’d to
/home/staff and the CWD will be taken from their entries in
/home/staff/etc/passwd. The single user frank will be chroot’d to

/home /users/owner/ftp and the CWD will be from his entry in
/home/users/owner/ftp/etc/passwd.

The order is important for both anonymous-root and guest-root. If a user would
match multiple clauses, only the first applies; with the exception of the clause
which has no class or uid-range, which applies only if no other clause matches.

deny-uid uid-range [uid-range...]

deny-gid gid-range [gid-range...]

allow-uid uid-range [uid-range...]

allow-gid gid-range [gid-range...]
Use these clauses to specify UID and GID values that will be denied access to the
FTP Server. The allow-uid and allow-gid clauses may be used to allow access
for UID and GID values which would otherwise be denied. These checks occur
before all others. deny is checked before allow. The default is to allow access.
These clauses do not apply to anonymous users. Use defaultserver private to
deny access to anonymous users. In most cases, these clauses obviate the need for
an ftpusers(4) file. For example, the following clauses deny FTP Server access to
all privileged or special users and groups, except the guestl user or group.

deny-gid %-99 nobody noaccess nogroup
deny-uid %-99 nobody noaccess nobody4
allow-gid guestl

File Formats 147

ftpaccess(4)

allow-uid guestl

Support for the £tpusers file still exists, so it may be used when changing the
ftpaccess file is not desired. In any place a single UID or GID is allowed
throughout the ftpaccess file, either names or numbers also may be used. To use
a number, put a "%’ symbol before it. In places where a range is allowed, put the "%’
before the range. A “*” matches all UIDs or GIDs.

restricted-uid uid-range [uid-range...]
restricted-gid gid-range [gid-range...]
unrestricted-uid uid-range [uid-range...]
unrestricted-gid gid-range [gid-range...]

These clauses control whether or not real or guest users will be allowed access to
areas on the FTP site outside their home directories. These clauses are not meant to
replace the use of guestgroup and guestuser. Instead, use these clauses to
supplement the operation of guests. The unrestricted-uid and
unrestricted-gid clauses may be used to allow users outside their home
directories who would otherwise be restricted.

The following example shows the intended use for these clauses. Assume user
dick has a home directory /home/dick and jane has a home directory
/home/jane:

guest-root /home dick jane
restricted-uid dick jane

While both dick and jane are chroot’d to /home, they cannot access each
other’s files because they are restricted to their home directories. However, you
should not rely solely upon the FTP restrictions to control access. As with all other
FTP access rules, you should also use directory and file permissions to support the
operation of the ftpaccess configuration.

site-exec-max-1lines number [class...]

The SITE EXEC feature traditionally limits the number of lines of output that may
be sent to the remote client. Use this clause to set this limit. If this clause is omitted,
the limit is 20 lines. A limit of 0 (zero) implies no limit. Be very careful if you choose
to remove the limit. If a clause is found matching the remote user’s class, that limit
is used. Otherwise, the clause with class "*’, or no class given, is used. For example:

site-exec-max-lines 200 remote
site-exec-max-lines 0 local
site-exec-max-lines 25

limits output from SITE EXEC (and therefore SITE INDEX) to 200 lines for remote
users, specifies there is no limit at all for local users, and sets a limit of 25 lines for
all other users.

dns refuse mismatch filename [override]

Refuse FTP sessions when the forward and reverse lookups for the remote site do
not match. Display the named file, like a message file, admonishing the user. If the
optional override is specified, allow the connection after complaining.

148 man pages section 4: File Formats ¢ Last Revised 16 Oct 2001

FILES

ATTRIBUTES

SEE ALSO

ftpaccess(4)

dns refuse no reverse filename [override]
Refuse FTP sessions when there is no reverse DNS entry for the remote site. Display
the named file, like a message file, admonishing the user. If the optional override is
specified, allow the connection after complaining.

dns resolveroptions [options]
The dns resolveroptions option allows you to adjust name server options.
The line takes a series of flags as documented in resolver(3resolv), with the
leading RES removed. Each can be preceded by an optional + or -. For example:

dns resolveroptions +aaonly -dnsrch

turns on the aaonly option (only accept authoritative answers) and turns off the
dnsrch option (search the domain path).

Lines that begin with a # sign are treated as comment lines and are ignored.

/etc/ftpd/ftpaccess

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWftpr

compress(l), 1s(1), tar(l), ftpaddhost(1M), ftpconfig(1M), ftpshut(1M),
in. ftpd(1M), chroot(2), nice(2), umask(2), getgrnam(3C), resolver(3resolv),
ftpconversions(4), ftpgroups(4), ftpservers(4), ftpusers(4), timezone(4),
xferlog(4), attributes(5), fnmatch(5)

Crocker, David H. RFC 822, Standard For The Format Of ARPA Internet Text Messages.
Network Information Center. August 1982.

St. Johns, Michael. RFC 931, Authentication Server. Network Working Group. January
1985.

File Formats 149

ftpconversions(4)

150

NAME
SYNOPSIS

DESCRIPTION

ftpconversions — FTP Server conversions database

/etc/ftpd/ftpconversions

When the FTP Server, in. ftpd(1M), receives the retrieve (RETR) command, if the
specified file does not exist, it looks for a conversion to change an existing file or
directory of the same base name into the format requested, subject to the
ftpaccess(4) compress and tar capabilities.

The conversions and their attributes known by in. £tpd(1M) are stored in an ASCII
file of the following format. Each line in the file provides a description for a single
conversion. The fields in this file are separated by colons (:).

o\©
o\
o\
o
o\
o\
o\
o\

S:
1 2 3 4 5 6 7 8

S:%5:%5:%5:%5:%65:%S

The fields are described as follows:
Strip prefix.
Strip postfix.
Addon prefix.
Addon postfix.
External command.
Types.

Options.

X 3 O O ks W N

Description.
The Strip prefix and Addon prefix fields are not currently supported.

The Strip postfix and addon postfix fields are extensions to be added to or
removed from the requested filename in attempting to produce the name of an
existing file or directory. When the attempt succeeds, the FTP Server runs the external
command associated with the conversion. The magic cookie %s in the argument is
passed to the command, replaced with the name of the existing file or directory.

External command is the absolute pathname of a command to run followed by the
appropriate options to carry out the conversion. The standard output of the command
is sent back in response to the RETR (retrieve) command. For anonymous and guest
users to be able to execute the command, it must be present in their chroot’d
hierarchy along with any necessary dynamic libraries.

Types specifies the conversion type. The following values are recognized:

T ASCII ASCII transfers are allowed of a file produced by the conversion.
T DIR Directories can be converted.
T _REG Regular files can be converted.

man pages section 4: File Formats ¢ Last Revised 16 Oct 2001

EXAMPLES

FILES

ATTRIBUTES

SEE ALSO

ftpconversions(4)

Options are checked against the ftpaccess(4) compress and tar capabilities and
are recorded in the special-action-flag field that is written to the FTP Server
logfile. See xferlog(4). The following options are supported:

O_COMPRESS conversion compresses
O_TAR conversion archives

O_UNCOMPRESS conversion uncompresses

You can specify more than one option by using " |" to separate options. For example,
O_TAR|O_COMPRESS specifies that the conversion archives and compresses.

Description is a one word description of the conversion that is used in error
messages returned to the FTP client.

Lines that begin with a # sign are treated as comment lines and are ignored.

EXAMPLE 1 Compressing a Regular File for Transfer

The following example specifies a conversion which generates £ilename. Z by
compressing an existing file £ilename. The conversion can only be applied to regular
files, not directories, and the absence of T ASCII prevents the resulting file from
being transferred in ASCII mode.

:.Z:/usr/bin/compress -c %s:T_REG:0 COMPRESS:COMPRESS

EXAMPLE 2 Uncompressing and Transferring in ASCII Mode

The following example specifies a conversion that takes £ilename.Z and
uncompresses it to produce filename, which then can be transferred in ASCII mode.

:.Z: : :/usr/bin/compress -cd %$s:T REG|T_ASCII:O_UNCOMPRESS:UNCOMPRESS

/etc/ftpd/ftpconversions

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWftpr

1dd(1), in. ftpd(1M), ftpaccess(4), xferlog(4), attributes(5)

File Formats 151

ftpgroups(4)

152

NAME | ftpgroups — FIP Server enhanced group access file
SYNOPSIS | /etc/ftpd/ftpgroups

DESCRIPTION | The ftpgroups file contains the enhanced group access information.

After login, if the ftpacccess(4) file includes private yes, the user may use the SITE
GROUP and SITE GPASS commands to specify an enhanced access group and a
password for that group. If the access group name and password are valid, the the
FTP Server executes setegid(2) to make the user a member of the real group listed in
the ftpgroups file.

The format for the ftpgroups file is:

accessgroup:encrypted password:real_ group_ name

The fields are defined as follows:

accessgroup An arbitrary string of alphanumeric and punctuation
characters.

encrypted_password ~ The group password encrypted exactly like in /etc/shadow.

real_group_name The name of a valid group returned by getgrnam(3C).

The privatepw utility is an administrative tool to add, delete and list enhanced
access group information in the ftpgroups file. See privatepw(1M). Lines that
begin with a # sign are treated as comment lines and are ignored.

FILES | /etc/ftpd/ftpgroups
/etc/ftpd/ftpaccess

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWftpr

SEE ALSO | in.ftpd(1M), privatepw(lM), setegid(2), getgrnam(3C), ftpaccess(4),
group(4), shadow(4), attributes(5)

man pages section 4: File Formats ¢ Last Revised 16 Oct 2001

NAME
SYNOPSIS

DESCRIPTION

EXAMPLES

FILES

ATTRIBUTES

SEE ALSO

ftphosts(4)
ftphosts — FTP Server individual user host access file
/etc/ftpd/ftphosts
The ftphosts file is used to allow or deny access to accounts from specified hosts.
The following access capabilities are supported:

allow username addrglob [addrglob. . .]
Only allow users to login as username from host(s) that match addrglob.

deny username addrglob [addrglob. . .]
Do not allow users to login as username from host(s) that match addrglob.

A username of * matches all users. A username of anonymous or f£tp specifies the
anonymous user.

addrglob is a regular expression that is matched against hostnames or IP addresses.
addrglob may also be in the form address :netmask or address/CIDR, or be the
name of a file that starts with a slash ("/’) and contains additional address globs. An
exclamation mark (“!") placed before the addrglob negates the test.

The first allow or deny entry in the ftphosts file that matches a username and host
is used. If no entry exists for a username, then access is allowed. Otherwise, a matching
allow entry is required to permit access.

You can use the following ftphosts file to allow anonymous access from any host
except those on the class A network 10, with the exception of 10.0. 0. * IP addresses,
which are allowed access:

allow ftp 10.0.0.*
deny ftp 10.% . % *
allow ftp *

10.0.0.* can be written as 10.0.0.0:255.255.255.00r 10.0.0.0/24.

/etc/ftpd/ftphosts

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWftpr

in. ftpd(1M), ftpaccess(4), attributes(b)

File Formats 153

ftpservers(4)

154

NAME
SYNOPSIS

DESCRIPTION

File Format

ftpservers — FTP Server virtual hosting configuration file

/etc/ftpd/ftpservers

The ftpservers file is used to configure complete virtual hosting. In contrast to
limited virtual hosting, complete virtual hosting allows separate configuration files to
be specified for each virtual host.

The set of configuration files for each virtual host are placed in their own directory.
The ftpservers file associates the address of each virtual host with the directory its
configuration files are stored in. The virtual host configuration files must be named:

ftpaccess Virtual host’s access file

ftpusers Restricts the accounts that can use the virtual host
ftpgroups Virtual hosts enhanced group access file
ftphosts Allow or deny usernames access to the virtual host

ftpconversions Customize conversions available from the virtual host

You do not need to put every file in each virtual host directory. If you want a virtual
host to use the master copy of a file, then do not include it in the virtual host directory.
If the file is not included, the master copy from the /etc/ftpd directory will be used.

The file names must match exactly. If you misspell any of them or name them
differently, the server will not find them, and the server will use the master copy
instead.

The ftpaddhost utility is an administrative tool to configure virtual hosts. See
ftpaddhost(1M).

There are two fields to each entry in the ftpservers file:

address directory-containing-configuration-files

For example:

10.196.145.10 /etc/ftpd/virtual-ftpd/10.196.145.10
10.196.145.200 /etc/ftpd//virtual-£ftpd/10.196.145.200
some .domain INTERNAL

When an FTP client connects to the FTP Server, in. £tpd(1M) tries to match the IP
address to which the FTP client connected with one found in the ftpservers file.

The address can be an IPv4 or IPv6 address, or a hostname.

If a match is found, The FTP server uses any configuration files found in the associated
directory.

If a match is not found, or an invalid directory path is encountered, the default paths
to the configuration files are used. The use of INTERNAL in the example above fails the
check for a specific directory, and the master configuration files will be used.

man pages section 4: File Formats ¢ Last Revised 16 Oct 2001

FILES

ATTRIBUTES

SEE ALSO

ftpservers(4)

Either the actual IP address or a specific hostname can be used to specify the virtual
host. It is better to specify the actual IP of the virtual host, as it reduces the need for a
domain lookup and eliminates DNS security related naming issues, for example:

10.196.145.20 /etc/ftpd/config/fags.org/
ftp.some.domain /etc/ftpd/config/fags.org/

Lines that begin with a # sign are treated as comment lines and are ignored.

/etc/ftpd/ftpservers

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWftpr

ftpaddhost(1IM), in. ftpd(1M), ftpaccess(4), ftpconversions(4),
ftpgroups(4), ftphosts(4), ftpusers(4), attributes(5)

File Formats 155

ftpusers(4)

156

NAME
SYNOPSIS

DESCRIPTION

FILES

ftpusers — file listing users to be disallowed ftp login privileges

/etc/ftpd/ftpusers

The ftpusers file lists users for whom ftp login privileges are disallowed. Each
ftpuser entry is a single line of the form:

name
where name is the user’s login name.

The FTP Server, in. ftpd(1M), reads the ftpusers file. If the login name of the user
matches one of the entries listed, it rejects the login attempt.

The ftpusers file has the following default configuration entries:

root
daemon
bin
sys
adm

1p
uccp
nuucp
smmsp
listen
nobody
noaccess

nobody4

These entries match the default instantiated entries from passwd(4). The list of default
entries typically contains the superuser root and other administrative and system
application identities.

The root entry is included in the ftpusers file as a security measure since the default
policy is to disallow remote logins for this identity. This policy is also set in the the
default value of the CONSOLE entry in the /etc/default/login file. See login(1).
If you allow root login privileges by deleting the root entry in ftpusers, you should
also modify the security policy in /etc/default/login to reflect the site security
policy for remote login access by root.

Other default entries are administrative identities that are typically assumed by
system applications but never used for local or remote login, for example sys and
nobody. Since these entries do not have a valid password field instantiated in
shadow(4), no login can be performed.

If a site adds similar administrative or system application identities in passwd(4) and
shadow(4), for example, majordomo, the site should consider including them in the
ftpusers file for a consistent security policy.

Lines that begin with # are treated as comment lines and are ignored.

/etc/ftpd/ftpusers A file that lists users for whom ftp login privileges are
disallowed.

man pages section 4: File Formats ¢ Last Revised 16 Oct 2001

ftpusers(4)

/etc/ftpusers See /etc/ftpd/ftpusers. This file is deprecated,
although its use is still supported.

/etc/default/login

/etc/passwd

/etc/shadow

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWftpr

SEE ALSO | login(l), in. ftpd(1M), ftpaccess(4), ftphosts(4), passwd(4), shadow(4),
attributes(5), environ(5)

File Formats 157

fx_dptbl(4)

NAME
SYNOPSIS

DESCRIPTION

fx_dptbl Loadable

158

Module

fx_dptbl - fixed priority dispatcher parameter table

fx_dptbl

The process scheduler or dispatcher is the portion of the kernel that controls allocation
of the CPU to processes. The scheduler supports the notion of scheduling classes,
where each class defines a scheduling policy used to schedule processes within that
class. Associated with each scheduling class is a set of priority queues on which
ready-to-run processes are linked. These priority queues are mapped by the system
configuration into a set of global scheduling priorities, which are available to
processes within the class. The dispatcher always selects for execution the process
with the highest global scheduling priority in the system. The priority queues
associated with a given class are viewed by that class as a contiguous set of priority
levels numbered from 0 (lowest priority) to n (highest priority—a
configuration-dependent value). The set of global scheduling priorities that the queues
for a given class are mapped into might not start at zero and might not be contiguous,
depending on the configuration.

Processes in the fixed priority class are scheduled according to the parameters in a
fixed—priority dispatcher parameter table (£x_dptbl). The £x_dptbl table consists
of an array (config_fx dptbl []) of parameter structures (struct fxdpent_t),
one for each of the n priority levels used by fixed priority processes in user mode. The
structures are accessed via a pointer, (fx_dptbl), to the array. The properties of a
given priority level 7 are specified by the ith parameter structure in this array
(fx_dptbl [i]).

A parameter structure consists of the following members. These are also described in
the /usr/include/sys/fx.h header.

fx_globpri The global scheduling priority associated with this priority level.
The mapping between fixed—priority priority levels and global
scheduling priorities is determined at boot time by the system
configuration. £x_globpri can not be changed with
dispadmin(1M).

fx_quantum The length of the time quantum allocated to processes at this level
in ticks (Hz). The time quantum value is only a default or starting
value for processes at a particular level, as the time quantum of a
fixed priority process can be changed by the user with the
priocntl(l) command or the priocnt1(2) system call.

An administrator can affect the behavior of the fixed priority
portion of the scheduler by reconfiguring the £x_dptbl. There are
two methods available for doing this: reconfigure with a loadable
module at boot-time or by using dispadmin(1M) at run-time.

The £x_dptbl can be reconfigured with a loadable module that contains a new fixed
priority dispatch table. The module containing the dispatch table is separate from the
FX loadable module, which contains the rest of the fixed priority software. This is the

man pages section 4: File Formats ¢ Last Revised 8 Feb 2002

dispadmin
Configuration File

Replacing the
fx_dptbl Loadable
Module

fx_dptbl(4)

only method that can be used to change the number of fixed priority priority levels or
the set of global scheduling priorities used by the fixed priority class. The relevant
procedure and source code is described in Replacing the fx_dptbl Loadable Module
below.

The £x_guantum values in the £x dptbl can be examined and modified on a
running system using the dispadmin(1M) command. Invoking dispadmin for the
fixed-priority class allows the administrator to retrieve the current £x_dptbl
configuration from the kernel’s in-core table or overwrite the in-core table with values
from a configuration file. The configuration file used for input to dispadmin must
conform to the specific format described as follows:

m Blank lines are ignored and any part of a line to the right of a # symbol is treated as
a comment.

m The first non-blank, non-comment line must indicate the resolution to be used for
interpreting the time quantum values. The resolution is specified as:

RES=res

where res is a positive integer between 1 and 1,000,000,000 inclusive and the
resolution used is the reciprocal of res in seconds (for example, RES=1000 specifies
millisecond resolution). Although you can specify very fine (nanosecond)
resolution, the time quantum lengths are rounded up to the next integral multiple
of the system clock’s resolution.

® The remaining lines in the file are used to specify the £x_quantum values for each
of the fixed-priority priority levels. The first line specifies the quantum for
fixed-priority level 0, the second line specifies the quantum for fixed-priority level
1, and so forth. There must be exactly one line for each configured fixed priority
priority level. Each £x quantum entry must be a positive integer specifying the
desired time quantum in the resolution given by res.

See EXAMPLES for an example of an excerpt of a dispadmin configuration file.

To change the size of the fixed priority dispatch table, you must build the loadable
module that contains the dispatch table information. Save the existing module before
using the following procedure.

1. Place the dispatch table code shown below in a file called £x_dptbl.c. See
EXAMPLES, below, for an example of this file.

2. Compile the code using the given compilation and link lines supplied:

cc -c -0 -D_KERNEL fx dptbl.c
1d -r -o FX_DPTBL fx_dptbl.o

3. Copy the current dispatch table in /usr/kernel/sched to FX_DPTBL.bak.
4. Replace the current FX_DPTBL in /usr/kernel/sched.

5. Make changes in the /etc/system file to reflect the changes to the sizes of the
tables. See system(4). The variables affected is £x_maxupri. The syntax for
setting this is as follows:

File Formats 159

fx_dptbl(4)

EXAMPLES

set FX:fx_maxupri= (value for max fixed-priority user priority)

6. Reboot the system to use the new dispatch table.

Exercise great care in using the preceding method to replace the dispatch table. A
mistake can result in panics, thus making the system unusable.

EXAMPLE 1 Configuration File Excerpt

The following excerpt from a dispadmin configuration file illustrates the correct
format. Note that, for each line specifying a set of parameters, there is a comment
indicating the corresponding priority level. These level numbers indicate priority
within the fixed priority class; the mapping between these fixed-priority priorities and
the corresponding global scheduling priorities is determined by the configuration
specified in the FX_DPTBL loadable module. The level numbers are strictly for the
convenience of the administrator reading the file and, as with any comment, they are
ignored by dispadmin. The dispadmin command assumes that the lines in the file
are ordered by consecutive, increasing priority level (from 0 to the maximum
configured fixed—priority priority). For the sake of someone reading the file, the level
numbers in the comments should agree with this ordering. If for some reason they do
not, dispadmin is unaffected.

Fixed Priority Dispatcher Configuration File RES=1000

RES=1000

TIME QUANTUM PRIORITY
(fx_quantum) LEVEL
200 #

200 # 1
200 # 2
200 # 3
200 # 4
200 # 5
200 # 6
200 # 7
20 # 58
20 # 59
20 # 60

EXAMPLE 2 £x_dptbl. c File Used for Building the New £x dptbl

The following is an example of a £x_dptbl . c file used for building the new
fx dptbl.

/* BEGIN fx dptbl.c */

#include <sys/proc.h>
#include <sys/priocntl.h>
#include <sys/class.h>
#include <sys/disp.h>

160 man pages section 4: File Formats ¢ Last Revised 8 Feb 2002

fx_dptbl(4)

EXAMPLE 2 £x_dptbl. c File Used for Building the New £x dptbl (Continued)

#include <sys/fx.h>
#include <sys/fxpriocntl.h>

/*

* This is the loadable module wrapper.
*/

#include <sys/modctl.h>

extern struct mod_ops mod miscops;

/*

* Module linkage information for the kernel.
*/

static struct modlmisc modlmisc = {

&mod miscops, "Fixed priority dispatch table"

}i

static struct modlinkage modlinkage = {
MODREV_1, &modlmisc, 0

}i

_init ()

{
}

return (mod_install (&modlinkage)) ;

_info (modinfop)
struct modinfo *modinfop;

return (mod_info (&modlinkage, modinfop)) ;

#define FXGPUPO 0O

/* Global priority for FX user priority 0 */

fxdpent t config fx dptbl[] = {

/* glbpri gntm */
FXGPUPO0+0, 20,
FXGPUPO+1, 20,
FXGPUPO+2, 20,
FXGPUPO0+3, 20,
FXGPUPO+4, 20,
FXGPUPO+5, 20,
FXGPUPO+6, 20,
FXGPUPO+7, 20,
FXGPUPO0+8, 20,
FXGPUP0+9, 20,
FXGPUPO+10, 16,
FXGPUPO+11, 16,
FXGPUPO+12, 16,
FXGPUP0+13, 16,

File Formats 161

fx_dptbl(4)

EXAMPLE 2 £x_dptbl. c File Used for Building the New £x_dptbl (Continued)

FXGPUPO+14, 16,
FXGPUP0+15, 16,
FXGPUPO+16, 16,
FXGPUP0+17, 16,
FXGPUPO+18, 16,
FXGPUP0+19, 16,
FXGPUPO+20, 12,
FXGPUP0+21, 12,
FXGPUPO+22, 12,
FXGPUP0+23, 12,
FXGPUPO+24, 12,
FXGPUP0+25, 12,
FXGPUPO+26, 12,
FXGPUP0+27, 12,
FXGPUPO+28, 12,
FXGPUP0+29,
FXGPUPO+30,
FXGPUP0+31,
FXGPUPO+32,
FXGPUP0+33,
FXGPUPO+34,
FXGPUP0+35,
FXGPUPO+36,
FXGPUP0+37,
FXGPUPO+38,
FXGPUP0+39,
FXGPUPO0+40,
FXGPUP0+41,
FXGPUPO+42,
FXGPUP0+43,
FXGPUPO+44,
FXGPUP0+45,
FXGPUPO+46,
FXGPUP0+47,
FXGPUPO0+438,
FXGPUP0+49,
FXGPUPO+50,
FXGPUPO0+51,
FXGPUPO+52,
FXGPUP0+53,
FXGPUPO+54,
FXGPUP0+55,
FXGPUPO+56,
FXGPUP0+57,
FXGPUPO+58,
FXGPUP0+59,
FXGPUPO+60

fuy
[\

[S e e T T ST S " S S~ S S S S S S o e e B e « B @ o Je e Je e B e « B I (o)

pri_t config fx maxumdpri =
sizeof (config fx_dptbl) / sizeof (fxdpent t) - 1;

162 man pages section 4: File Formats ¢ Last Revised 8 Feb 2002

SEE ALSO

NOTES

EXAMPLE 2 £x_dptbl. c File Used for Building the New £x dptbl

/*

* Return the address of config fx dptbl
*/

fxdpent t *

fx_getdptbl ()

{
}
/*

* Return the address of fx_maxumdpri
*/
pri_t
fx getmaxumdpri ()
{
/*
* the config fx dptbl table.
*/

return (config fx maxumdpri) ;

return (config fx dptbl);

priocntl(1l), dispadmin(IM), priocntl(2), system(4)

System Administration Guide, Volume 1, System Interface Guide

In order to improve performance under heavy system load, both the nfsd daemon

fx_dptbl(4)

(Continued)

and the 1ockd daemon utilize the maximum priority in the FX class. Unusual
fx_dptbl configurations may have significant negative impact on the performance of

the nfsd and 1lockd daemons.

File Formats

163

geniconvtbl(4)
NAME | geniconvtbl — geniconvtbl input file format

DESCRIPTION | An input file to geniconvtbl is an ASCII text file that contains an iconv code
conversion definition from one codeset to another codeset.

The geniconvtbl utility accepts the code conversion definition file(s) and writes
code conversion binary table file(s) that can be used in iconv(1l) and iconv(3C) to
support user-defined code conversions. See iconv(1l) and iconv(3C)for more detail
on the iconv code conversion and geniconvtbl(1l) for more detail on the utility.

The Lexical | The following lexical conventions are used in the iconv code conversion definition:
Conventions .))
CONVERSION_NAME A string of characters representing the name of the iconv

code conversion. The iconv code conversion name should
start with one or more printable ASCII characters followed
by a percentage character '$’ followed by another one or
more of printable ASCII characters. Examples:
IS08859-1%ASCIT, 646%eucdP, CP_939%ASCII.

NAME A string of characters starts with any one of the ASCII
alphabet characters or the underscore character, ’_’,
followed by one or more ASCII alphanumeric characters
and underscore character, ”_’. Examples: _a1l,

ABC_codeset, K1.

HEXADECIMAL A hexadecimal number. The hexadecimal representation
consists of an escape character, 0" followed by the
constant 'x” or ‘X" and one or more hexadecimal digits.
Examples: 0x0, 0x1, 0x1a, 0X1A, 0x1B3.

DECIMAL A decimal number, represented by one or more decimal
digits. Examples: 0, 123, 2165.

Each comment starts with '/ /’ ends at the end of the line.

The following keywords are reserved:

automatic between binary

break condition default

dense direction discard

else error escapeseq

false if index

init input inputsize

map maptype no_change_copy
operation output output_byte_length

164 man pages section 4: File Formats ¢ Last Revised 29 Oct 1999

The precedence
and associativity

geniconvtbl(4)

outputsize printchr printhd
printint reset return
true

Additionally, the following symbols are also reserved as tokens:

U0, .-

The following table shows the precedence and associativity of the operators from
lower precedence at the top to higher precedence at the bottom of the table allowed in
the iconv code conversion definition:

Operator (Symbol) Associlativity
Assigmment (=) Right
Logical oR (|[) Left
Logical awD (s&) Left
Bitwise oR () Left
Bxclusive oR () Left
Bitwise aND (&) Left
Bqual-to (= =), Left

Inequality (!=)

Less-than (<), Left
Less-than-or-equal-to (<=),
Greater-than (>),
Greater-than-or-equal-to (>=)

Left-shift (<<), Left
Right-shift (>>)

Addition (+), Left
Subtraction (-)

Multiplication (*), Left
Division (/),
Remainder (%)

File Formats 165

geniconvtbl(4)

166

The Syntax

Bitwise complement (~),
Unary minus (-)

Each iconv code conversion definition starts with CONVERSION NAME followed by
one or more semi-colon separated code conversion definition elements:

// a US-ASCII to IS08859-1 iconv code conversion example:
US-ASCII%$IS08859-1 {

// one or more code conversion definition elements here.

Each code conversion definition element can be any one of the following elements:

direction
condition
operation
map

To have a meaningful code conversion, there should be at least one direction,
operation, or map element in the iconv code conversion definition.

The direction element contains one or more semi-colon separated condition-action
pairs that direct the code conversion:

direction For US-ASCII_2 IS08859-1 {

// one or more condition-action pairs here.

Each condition-action pair contains a conditional code conversion that consists of a
condition element and an action element.

condition action

If the pre-defined condition is met, the corresponding action is executed. If there is no
pre-defined condition met, iconv(3C) will return -1 with errno set to EILSEQ. The
condition can be a condition element, a name to a pre-defined condition element, or a
condition literal value, true. The "true’ condition literal value always yields success
and thus the corresponding action is always executed. The action also can be an action
element or a name to a pre-defined action element.

man pages section 4: File Formats ¢ Last Revised 29 Oct 1999

geniconvtbl(4)

The condition element specifies one or more condition expression elements. Since each
condition element can have a name and also can exist stand-alone, a pre-defined
condition element can be referenced by the name at any action pairs later. To be used
in that way, the corresponding condition element should be defined beforehand:

condition For US-ASCII_2_ IS08859-1 {

// one or more condition expression elements here.

The name of the condition element in the above example is

For US-ASCII 2 1S08859-1.Each condition element can have one or more
condition expression elements. If there are more than one condition expression
elements, the condition expression elements are checked from top to bottom to see if
any one of the condition expression elements will yield a true. Any one of the
following can be a condition expression element:

between
escapeseq
expression

The between condition expression element defines one or more comma-separated
ranges:

between 0x0...0x1f, 0x7f...0x9f ;
between Oxalal...Oxfefe ;

In the first expression in the example above, the covered ranges are 0x0 to 0x1f and
0x7f to 0x9f inclusively. In the second expression, the covered range is the range
whose first byte is 0xal to 0xfe and whose second byte is between 0xal to 0xfe.
This means that the range is defined by each byte. In this case, the sequence 0xa280
does not meet the range.

The escapeseq condition expression element defines an equal-to condition for one or
more comma-separated escape sequence designators:

// ESC $) C sequence:
escapeseq 0x1b242943;

// ESC $) C sequence or ShiftOut (SO) control character code, 0xOe:
escapeseq 0x1b242943, 0x0e;

The expression can be any one of the following and can be surrounded by a pair of
parentheses, ‘(" and ’)":

// HEXADECIMAL:
Oxalal

// DECIMAL

File Formats 167

geniconvtbl(4)

12

// A boolean value, true:
true

// A boolean value, false:
false

// Addition expression:
1+ 2

// Subtraction expression:
10 - 3

// Multiplication expression:
0x20 * 10

// Division expression:
20 / 10

// Remainder expression:
17 % 3

// Left-shift expression:
1l << 4

// Right-shift expression:
0xal >> 2

// Bitwise OR expression:
0x2121 | 0x8080

// Exclusive OR expression:
O0xalal * 0x8080

// Bitwise AND expression:
Oxal & 0x80

// Equal-to expression:
0x10 == 16

// Inequality expression:
0x10 != 10

// Less-than expression:
0x20 < 25

// Less-than-or-equal-to expression:
10 <= 0x10

// Bigger-than expression:
0x10 > 12

// Bigger-than-or-equal-to expression:
0x10 >= Oxa

// Logical OR expression:
0x10 || false

168 man pages section 4: File Formats ¢ Last Revised 29 Oct 1999

geniconvtbl(4)

// Logical AND expression:
0x10 && false

// Logical negation expression:
! false

// Bitwise complement expression:
~0

// Unary minus expression:
-123

There is a single type available in this expression: integer. The boolean values are two
special cases of integer values. The "true’ boolean value’s integer value is 1 and the
"false’ boolean value’s integer value is 0. Also, any integer value other than 0 is a true
boolean value. Consequently, the integer value 0 is the false boolean value. Any
boolean expression yields integer value 1 for true and integer value 0 for false as the
result.

Any literal value shown at the above expression examples as operands, that is,
DECIMAL, HEXADECIMAL, and boolean values, can be replaced with another
expression. There are a few other special operands that you can use as well in the
expressions: ‘input’, "inputsize’, ‘outputsize’, and variables. input is a
keyword pointing to the current input buffer. inputsize is a keyword pointing to the
current input buffer size in bytes. outputsize is a keyword pointing to the current
output buffer size in bytes. The NAME lexical convention is used to name a variable.
The initial value of a variable is 0. The following expressions are allowed with the
special operands:

// Pointer to the third byte value of the current input buffer:
input [2]

// Equal-to expression with the ’input’:
input == 0x8020

// Alternative way to write the above expression:
0x8020 == input

// The size of the current input buffer size:
inputsize

// The size of the current output buffer size:
outputsize

// A variable:
saved_second byte

// Assignment expression with the variable:
saved_second_byte = input[1]

File Formats 169

geniconvtbl(4)

The input keyword without index value can be used only with the equal-to operator,
'==". When used in that way, the current input buffer is consecutively compared with
another operand byte by byte. An expression can be another operand. If the input
keyword is used with an index value #, it is a pointer to the (1n+1)th byte from the
beginning of the current input buffer. An expression can be the index. Only a variable
can be placed on the left hand side of an assignment expression.

The action element specifies an action for a condition and can be any one of the
following elements:

direction
operation
map

The operation element specifies one or more operation expression elements:

operation For US-ASCII 2 IS08859-1 ({

// one or more operation expression element definitions here.

If the name of the operation element, in the case of the above example, For US
-ASCII 2 IS08859-1,iseither init or reset, it defines the initial operation and
the reset operation of the iconv code conversion:

// The initial operation element:
operation init {

// one or more operation expression element definitions here.

}

// The reset operation element:
operation reset {

// one or more operation expression element definitions here.

The initial operation element defines the operations that need to be performed in the
beginning of the iconv code conversion. The reset operation element defines the
operations that need to be performed when a user of the iconv(3) function requests a
state reset of the iconv code conversion. For more detail on the state reset, refer to
iconv(3Q0).

170 man pages section 4: File Formats ¢ Last Revised 29 Oct 1999

geniconvtbl(4)

The operation expression can be any one of the following three different expressions

and each operation expression should be separated by an ending semicolon:

if-else operation expression
output operation expression
control operation expression

The if-else operation expression makes a selection depend on the boolean expression

result. If the boolean expression result is true, the true task that follows the "if is

executed. If the boolean expression yields false and if a false task is supplied, the false

task that follows the “else’ is executed. There are three different kinds of if-else
operation expressions:

// The if-else operation expression with only true task:
if (expression) {

// one or more operation expression element definitions here.

}

// The if-else operation expression with both true and false
// tasks:
if (expression) {

// one or more operation expression element definitions here.

} else {

// one or more operation expression element definitions here.

}

// The if-else operation expression with true task and
// another if-else operation expression as the false task:
if (expression) {

// one or more operation expression element definitions here.

} else if (expression) {

// one or more operation expression element definitions here.

} else {

// one or more operation expression element definitions here.

File Formats

171

geniconvtbl(4)

The last if-else operation expression can have another if-else operation expression as
the false task. The other if-else operation expression can be any one of above three
if-else operation expressions.

The output operation expression saves the right hand side expression result to the
output buffer:

// Save 0x8080 at the output buffer:
output = 0x8080;

If the size of the output buffer left is smaller than the necessary output buffer size
resulting from the right hand side expression, the iconv code conversion will stop with
E2BIGerrno and (size t) -1 return value to indicate that the code conversion needs
more output buffer to complete. Any expression can be used for the right hand side
expression. The output buffer pointer will automatically move forward appropriately
once the operation is executed.

The control operation expression can be any one of the following expressions:

// Return (size t)-1 as the return value with an EINVAL errno:
error;

// Return (size t)-1 as the return value with an EBADF errno:
error 9;

// Discard input buffer byte operation. This discards a byte from
// the current input buffer and move the input buffer pointer to
// the 2'nd byte of the input buffer:

discard;

// Discard input buffer byte operation. This discards

// 10 bytes from the current input buffer and move the input
// buffer pointer to the 11’th byte of the input buffer:
discard 10;

// Return operation. This stops the execution of the current
// operation:
return;

// Operation execution operation. This executes the init
// operation defined and sets all variables to zero:
operation init;

// Operation execution operation. This executes the reset
// operation defined and sets all variables to zero:
operation reset;

// Operation execution operation. This executes an operation
// defined and named ’'IS08859 1 to IS08859 2':

172 man pages section 4: File Formats ¢ Last Revised 29 Oct 1999

geniconvtbl(4)

operation IS08859 1 to IS08859 2;

// Direction operation. This executes a direction defined and
// named ’'IS08859 1 to KOI8 R:
direction IS08859_ 1 to_KOI8_R;

// Map execution operation. This executes a mapping defined
// and named ’‘Map ISO8859 1 to US ASCII':
map Map IS08859 1 to US_ASCII;

// Map execution operation. This executes a mapping defined
// and named ’‘Map_IS08859_ 1 to US_ASCII’ after discarding
// 10 input buffer bytes:

map Map IS08859 1 to US ASCII 10;

In case of init and reset operations, if there is no pre-defined init and/or reset
operations in the iconv code conversions, only system-defined internal init and reset
operations will be executed. The execution of the system-defined internal init and reset
operations will clear the system-maintained internal state.

There are three special operators that can be used in the operation:

printchr expression;
printhd expression;
printint expression;

The above three operators will print out the given expression as a character, a
hexadecimal number, and a decimal number, respectively, at the standard error
stream. These three operators are for debugging purposes only and should be
removed from the final version of the iconv code conversion definition file.

In addition to the above operations, any valid expression separated by a semi-colon
can be an operation, including an empty operation, denoted by a semi-colon alone as
an operation.

The map element specifies a direct code conversion mapping by using one or more
map pairs. When used, usually many map pairs are used to represent an iconv code
conversion definition:

map For US-ASCII_2 IS08859-1

// one or more map pairs here

Each map element also can have one or two comma-separated map attribute elements
like the following examples:

// Map with densely encoded mapping table map type:
map maptype = dense {

File Formats 173

geniconvtbl(4)

// one or more map pairs here

}

// Map with hash mapping table map type with hash factor 10.

// Only hash mapping table map type can have hash factor. If

// the hash factor is specified with other map types, it will be
// ignored.

map maptype = hash : 10 {

// one or more map pairs here.

}

// Map with binary search tree based mapping table map type:
map maptype = binary

// one more more map pairs here.

}

// Map with index table based mapping table map type:
map maptype = index {

// one or more map pairs here.

}

// Map with automatic mapping table map type. If defined,
// system will assign the best possible map type.
map maptype = automatic {

// one or more map pairs here.

}

// Map with output_byte length limit set to 2.
map output_byte length = 2 {

// one or more map pairs here.

}

// Map with densely encoded mapping table map type and
// output bute length limit set to 2:
map maptype = dense, output byte length = 2 {

174 man pages section 4: File Formats ¢ Last Revised 29 Oct 1999

geniconvtbl(4)

// one or more map pairs here.

If no maptype is defined, automatic is assumed. If no output_byte_length is defined,
the system figures out the maximum possible output byte length for the mapping by
scanning all the possible output values in the mappings. If the actual output byte
length scanned is bigger than the defined output_byte_length, the geniconvtbl
utility issues an error and stops generating the code conversion binary table(s).

The following are allowed map pairs:

// Single mapping. This maps an input character denoted by
// the code value 0x20 to an output character value 0x21:
0x20 0x21

// Multiple mapping. This maps 128 input characters to 128

// output characters. In this mapping, 0x0 maps to 0x10, 0x1l maps
// to 0x11, 0x2 maps to 0x12, ..., and, 0x7f maps to 0x8f:
0x0...0x7f 0x10

// Default mapping. If specified, every undefined input character
// in this mapping will be converted to a specified character

// (in the following case, a character with code value of 0x3f):
default 0x3f;

// Default mapping. If specified, every undefined input character
// in this mapping will not be converted but directly copied to
// the output buffer:

default no_change_copy;

// Error mapping. If specified, during the code conversion,

// if input buffer contains the byte value, in this case, 0x80,
// the iconv(3) will stop and return (size t)-1 as the return
// value with EILSEQ set to the errno:

0x80 error;

If no default mapping is specified, every undefined input character in the mapping
will be treated as an error mapping. and thus the iconv(3C) will stop the code
conversion and return (size_t) -1 as the return value with EILSEQ set to the errno.

The syntax of the iconv code conversion definition in extended BNF is illustrated
below:

iconv_conversion definition
CONVERSION_NAME ’{’ definition_element_list ’}’

definition element list
definition_element ’;’
| definition_element list definition element ;'

7

File Formats 175

geniconvtbl(4)

definition element
direction
| condition
| operation
| map

direction
"direction’ NAME ’{’ direction unit list '}’
| rdirection’ ’{’ direction unit list ’}’
direction unit list
direction unit
| direction unit list direction unit

direction_unit
condition action ;'
| condition NAME ;'
| NAME action ' ;’
| NAME NAME ’ ;'
| “true’ action ’;’
| "true’ NAME ;'

action
direction
| map
| operation
i
condition

‘condition’ NAME ’{’ condition list '}’
| "condition’ ’{’ condition list '}’

condition list
: condition expr ;'
| condition list condition expr ’;’

i

condition expr
'between’ range list
| expr
| 'escapeseq’ escseq_ list ’;’

7

range_list
range_pair
| range list ’,’ range pair

i

range pair
HEXADECIMAL ' ...’ HEXADECIMAL

escseqg_list

176 man pages section 4: File Formats ¢ Last Revised 29 Oct 1999

geniconvtbl(4)

: escseq

| escseqg list ’,’ escseqg
escseq : HEXADECIMAL
map : ‘map’ NAME ’{’ map_list '}’

| ‘map’ ' {’ map_list '}’
| 'map’ NAME map attribute ’{’ map list '}’
| 'map’ map_attribute ’{’ map list '}’

map_attribute

: map_type ’,’ ‘output _byte length’ ’'=’ DECIMAL
| map_type
| ’"output_byte length’ ‘=’ DECIMAL ’,’ map_type
| ’"output_byte length’ ’=’ DECIMAL

map_type: 'maptype’ ‘=’ map_ type name : DECIMAL
| 'maptype’ ‘=’ map_type name

map_type name

"automatic’
| index’
| “hash’
| 'binary’
| "dense’
map_list
: map_pair
| map list map pair
map_pair
: HEXADECIMAL HEXADECIMAL
| HEXADECIMAL ' ...’ HEXADECIMAL HEXADECIMAL
| "default’ HEXADECIMAL
| "default’ ‘mno_change copy’
| HEXADECIMAL ’'error’
operation
‘operation’ NAME ’{’ op list '}’
| roperation’ ’{’ op_list '}’
| "operation’ ’init’ ’{’ op_list '}’
| "operation’ ‘reset’ '{’ op_list '}’

op_list : op_unit
| op_list op unit

op_unit : ’;’
| expr ;'
| "error’ ;'

File Formats 177

geniconvtbl(4)

'error’ expr ’;’

‘discard’ ;"'
‘discard’ expr ’;’
‘output’ =’ expr ’;’

|

|

|

|

| "direction’ NAME ' ;'

| "operation’ NAME ' ;'

| ‘operation’ ‘init’ ‘;’
| ‘operation’ ‘reset’ ’;’
| ‘map’ NAME ’;’

| ‘map’ NAME expr ;'
| op_if else

| 'return’ ’;’

| ‘printchr’ expr ’;’
| "printhd’ expr ’;
| 'printint’ expr ’;’

op if else
"if’ ' (’ expr ')’ '{’ op_list '}’
| "if" (" expr ')’ '{’ op_list '}’ ’else’ op if else
| 7if7 (" expr ')’ '{’ op_list '}’ ’‘else’ '{’ op list '}’

expr : (" expr ')’
| NAME
| HEXADECIMAL
| DECIMAL
| "input’ ' [’ expr ‘1’
| "outputsize’
| “inputsize’
| "true’
| "false’
| “input’ ‘==’ expr
| expr ==’ ’input’
| "1 expr
| "~ expr
| -7 expr
| expr '+’ expr
| expr ’-' expr
| expr ’'*' expr
| expr '/’ expr
| expr ’'%$’ expr
| expr ’'<<’ expr
| expr ’'>>’ expr
| expr ' |’ expr
| expr '*' expr
| expr '&' expr
| expr ==’ expr
| expr ’!=' expr
| expr '>' expr
| expr ’'>=' expr
| expr "<’ expr
| expr '<=’ expr
| NAME ’=' expr
| expr ' ||’ expr
| expr ’&&’ expr

178 man pages section 4: File Formats * Last Revised 29 Oct 1999

EXAMPLES

geniconvtbl(4)

EXAMPLE 1 Code conversion from ISO8859-1 to ISO646

I1S08859-1%1S0646 {
// Use dense-encoded internal data structure.
map maptype = dense {
default 0x3f
0x0...0x7f 0x0

}i

EXAMPLE 2 Code conversion from euc]P to ISO-2022-]P

// Iconv code conversion from eucdP to ISO-2022-JP
#include <sys/errno.h>

eucJP%IS0-2022-JP {
operation init {
codesetnum = 0;

}i

operation reset
if (codesetnum != 0) {
// Emit state reset sequence, ESC (J, for
// 1S0-2022-JP.
output = 0x1b284a;
}
operation init;

}i

direction ({
condition ({ // JIS X 0201 Latin (ASCII)

between 0x00...0x7f;
} operation {
if (codesetnum != 0) {
// We will emit four bytes.
if (outputsize <= 3) {
error E2BIG;
}
// Emit state reset sequence, ESC (J.
output = 0x1b284a;
codesetnum = 0;
} else {
if (outputsize <= 0)
error E2BIG;
}
}

output = input [0];

// Move input buffer pointer one byte.

discard;

}i

condition { // JIS X 0208
between 0Oxalal...Oxfefe;

} operation {
if (codesetnum != 1) {

if (outputsize <= 4)

File Formats

179

geniconvtbl(4)
EXAMPLE 2 Code conversion from euc]P to ISO-2022-]JP (Continued)

error E2BIG;
}
// Emit JIS X 0208 sequence, ESC $ B.
output = 0x1b2442;
codesetnum = 1;
} else {
if (outputsize <= 1) {
error E2BIG;

}
}
output = (input[0] & 0x7f);
output = (input[l] & 0x7f);

// Move input buffer pointer two bytes.
discard 2;

}i

condition ({ // JIS X 0201 Kana
between 0x8eal...0x8edf;
} operation {
if (codesetnum != 2) {
if (outputsize <= 3)
error E2BIG;

}
// Emit JIS X 0201 Kana sequence,
// ESC (I.

output = 0x1b2849;
codesetnum = 2;
} else {
if (outputsize <= 0) {
error E2BIG;

}

output = (input[1l] & 127);

// Move input buffer pointer two bytes.
discard 2;

}i

condition ({ // JIS X 0212
between 0x8falal...0x8ffefe;
} operation {
if (codesetnum != 3) {
if (outputsize <= 5)
error E2BIG;
}
// Emit JIS X 0212 sequence, ESC $ (D.
output = 0x1b242844;
codesetnum = 3;
} else {
if (outputsize <= 1) {
error E2BIG;

}

output = (input[1l] & 127);

180 man pages section 4: File Formats ¢ Last Revised 29 Oct 1999

geniconvtbl(4)
EXAMPLE 2 Code conversion from euc]P to ISO-2022-]JP (Continued)
output = (input[2] & 127);

discard 3;

}i

true operation { // error
error EILSEQ;

}i

FILES | /usr/bin/geniconvtbl
the utility geniconvtbl

/usr/lib/iconv/geniconvtbl /binarytables/*.bt
conversion binary tables

/usr/lib/iconv/geniconvtbl/srcs/*
conversion source files for user reference

SEE ALSO | cpp(1), geniconvtbl(l), iconv(l), iconv(3C), iconv-close(3C),
iconv-open(3C), attributes(5), environ(5)

International Language Environments Guide

NOTES | The maximum length of HEXADECIMAL and DECIMAL digit length is 128. The
maximum length of a variable is 255. The maximum nest level is 16.

File Formats 181

group(4)
NAME | group - group file
DESCRIPTION | The group file is a local source of group information. The group file can be used in
conjunction with other group sources, including the NIS maps group . byname and

group.bygid and the NIS+ table group. Programs use the getgrnam(3C) routines
to access this information.

The group file contains a one-line entry for each group recognized by the system, of
the form:

groupname:password: gid:user-list

where

groupname The name of the group.

gid The group’s unique numerical ID (GID) within the system.
user-list A comma-separated list of users allowed in the group.

The maximum value of the gid field is 2147483647. To maximize interoperability and
compatibility, administrators are recommended to assign groups using the range of
GIDs below 60000 where possible.

If the password field is empty, no password is demanded. During user identification
and authentication, the supplementary group access list is initialized sequentially from
information in this file. If a user is in more groups than the system is configured for,
{NGROUPS_MAX]}, a warning will be given and subsequent group specifications will
be ignored.

Malformed entries cause routines that read this file to halt, in which case group
assignments specified further along are never made. To prevent this from happening,
use grpck(1B) to check the /etc/group database from time to time.

Previous releases used a group entry beginning with a “+’ (plus sign) or ‘=’ (minus
sign) to selectively incorporate entries from NIS maps for group. If still required, this
is supported by specifying group : compat in nsswitch.conf(4). The “compat”
source may not be supported in future releases. The preferred sources are, “files”
followed by “nisplus”. This has the effect of incorporating the entire contents of the
NIS+ group table after the group file.

EXAMPLES | EXAMPLE 1 Sample of a group file.

Here is a sample group file:

root::0:root
stooges:qg.mJzTnu8icF.:10:larry, moe, curly

and the sample group entry from nsswitch.conf:

group: files nisplus

182 man pages section 4: File Formats * Last Revised 14 May 1998

SEE ALSO

group(4)
EXAMPLE 1 Sample of a group file. (Continued)
With these entries, the group stooges will have members larry, moe, and curly,

and all groups listed in the NIS+ group table are effectively incorporated after the
entry for stooges.

If the group file was:

root::0:root

stooges:q.mJzTnu8icF. :10:larry,moe, curly
+:

and the group entry from nsswitch.conf:

group: compat

all the groups listed in the NIS group . bygid and group . byname maps would be
effectively incorporated after the entry for stooges.

groups(1), grpck(1B), newgrp(1), getgrnam(3C), initgroups(3C),
nsswitch.conf(4), unistd(3HEAD)

System Administration Guide: Basic Administration

File Formats 183

holidays(4)

184

NAME
SYNOPSIS

DESCRIPTION

EXAMPLES

SEE ALSO

holidays — prime/nonprime table for the accounting system

/etc/acct/holidays

The /etc/acct /holidays file describes which hours are considered prime time and
which days are holidays. Holidays and weekends are considered non-prime time
hours. /etc/acct/holidays is used by the accounting system.

All lines beginning with an "*" are comments.

The /etc/acct/holidays file consists of two sections. The first non-comment line
defines the current year and the start time of prime and non-prime time hours, in the
form:

current_year prime_start non_prime_start

The remaining non-comment lines define the holidays in the form:

month/day company_holiday

Of these two fields, only the month/day is actually used by the accounting system
programs.

The /etc/acct/holidays file must be updated each year.

EXAMPLE 1 Example of the /etc/acct /holidays file.

The following is an example of the /etc/acct/holidays file:

* Prime/Nonprime Table for the accounting system
*
* Curr Prime Non-Prime
* Year Start Start
*
1991 0830 1800
*
* only the first column (month/day) is significant.
*
* month/day Company Holiday
*
1/1 New Years Day
5/30 Memorial Day
7/4 Indep. Day
9/5 Labor Day
11/24 Thanksgiving Day
11/25 day after Thanksgiving
12/25 Christmas
12/26 day after Christmas
acct(1M)

man pages section 4: File Formats ¢ Last Revised 28 Mar 1991

NAME
SYNOPSIS

DESCRIPTION

hosts(4)
hosts — host name database
/etc/inet/hosts

/etc/hosts

The hosts file is a local database that associates the names of hosts with their Internet
Protocol (IP) addresses. The hosts file can be used in conjunction with, or instead of,
other hosts databases, including the Domain Name System (DNS), the NIS hosts
map and the NIS+ hosts table. Programs use library interfaces to access information
in the hosts file.

The hosts file has one entry for each IP address of each host. If a host has more than
one IP address, it will have one entry for each, on consecutive lines. The format of
each line is:

IP-address official-host-name nicknames . . .

Items are separated by any number of SPACE and/or TAB characters. The first item
on a line is the host’s IP address. The second entry is the host’s official name.
Subsequent entries on the same line are alternative names for the same machine, or
“nicknames.” Nicknames are optional.

For a host with more than one IP address, consecutive entries for these addresses may
contain the same or differing nicknames. Different nicknames are useful for assigning
distinct names to different addresses.

A call to gethostbyname(3NSL) returns a hostent structure containing the union of
all addresses and nicknames from each line containing a matching official name or
nickname.

A’# indicates the beginning of a comment; characters up to the end of the line are not
interpreted by routines that search the file.

Network addresses are written in the conventional “decimal dot” notation and

interpreted using the inet_addr routine from the Internet address manipulation
library, inet(3SOCKET).

This interface supports host names as defined in Internet RFC 952 which states:

A “name” (Net, Host, Gateway, or Domain name) is a text string up to 24 characters
drawn from the alphabet (A-Z), digits (0-9), minus sign (-), and period (.). Note that
periods are only allowed when they serve to delimit components of “domain style
names”. (See RFC 921, “Domain Name System Implementation Schedule,” for
background). No blank or space characters are permitted as part of a name. No
distinction is made between upper and lower case. The first character must be an
alpha character. The last character must not be a minus sign or period.

File Formats 185

hosts(4)

Although the interface accepts host names longer than 24 characters for the host
portion (exclusive of the domain component), choosing names for hosts that adhere to
the 24 character restriction will insure maximum interoperability on the Internet.

A host which serves as a GATEWAY should have “-GATEWAY” or “~GW” as part of
its name. Hosts which do not serve as Internet gateways should not use
“—~GATEWAY” and “~GW” as part of their names. A host which is a TAC should have
“—TAC” as the last part of its host name, if it is a DoD host. Single character names or
nicknames are not allowed.

RFC 952 has been modified by RFC 1123 to relax the restriction on the first character
being a digit.
EXAMPLES | EXAMPLE 1 Example of a typical line from the hosts file.

Here is a typical line from the hosts file:

192.9.1.20 gaia # John Smith
SEE ALSO | in.named(1M), gethostbyname(3NSL), inet(3SOCKET), nsswitch.conf(4),
resolv.conf(4)

NOTES | /etc/inet/hosts is the official SVR4 name of the hosts file. The symbolic link
/etc/hosts exists for BSD compatibility.

186 man pages section 4: File Formats ¢ Last Revised 21 Mar 1995

NAME

DESCRIPTION

Positive Entries

hosts.equiv(4)

hosts.equiv, rhosts — trusted remote hosts and users

The /etc/hosts.equivand . rhosts files provide the “remote authentication”
database for rlogin(l), rsh(l), recp(1), and remd(3SOCKET). The files specify remote
hosts and users that are considered “trusted”. Trusted users are allowed to access the
local system without supplying a password. The library routine ruserok () (see
remd(3SOCKET)) performs the authentication procedure for programs by using the
/etc/hosts.equivand .rhosts files. The /etc/hosts. equiv file applies to the
entire system, while individual users can maintain their own . rhosts files in their
home directories.

These files bypass the standard password-based user authentication mechanism. To
maintain system security, care must be taken in creating and maintaining these files.

The remote authentication procedure determines whether a user from a remote host
should be allowed to access the local system with the identity of a local user. This
procedure first checks the /etc/hosts.equiv file and then checks the . rhosts file
in the home directory of the local user who is requesting access. Entries in these files
can be of two forms. Positive entries allow access, while negative entries deny access.
The authentication succeeds when a matching positive entry is found. The procedure
fails when the first matching negative entry is found, or if no matching entries are
found in either file. The order of entries is important. If the files contain both positive
and negative entries, the entry that appears first will prevail. The rsh(1) and rcp(1)
programs fail if the remote authentication procedure fails. The rlogin program falls
back to the standard password-based login procedure if the remote authentication
fails.

Both files are formatted as a list of one-line entries. Each entry has the form:
hostname [username]

Hostnames must be the official name of the host, not one of its nicknames.

Negative entries are differentiated from positive entries by a ‘-’ character preceding
either the hostname or username field.

If the form:

hostname

is used, then users from the named host are trusted. That is, they may access the
system with the same user name as they have on the remote system. This form may be
used in both the /etc/hosts.equiv and .rhosts files.

If the line is in the form:

hostname username

File Formats 187

hosts.equiv(4)

Negative Entries

then the named user from the named host can access the system. This form may be
used in individual . rhosts files to allow remote users to access the system as a
different local user. If this form is used in the /etc/hosts.equiv file, the named
remote user will be allowed to access the system as any local user.

netgroup(4) can be used in either the hostname or username fields to match a number
of hosts or users in one entry. The form:

+@netgroup

allows access from all hosts in the named netgroup. When used in the username field,
netgroups allow a group of remote users to access the system as a particular local user.
The form:

hostname +@netgroup

allows all of the users in the named netgroup from the named host to access the
system as the local user. The form:

+@netgroupl +@netgroup?

allows the users in netgroup2 from the hosts in netgroupl to access the system as the
local user.

The special character ‘+” can be used in place of either hostname or username to match
any host or user. For example, the entry

+

will allow a user from any remote host to access the system with the same username.
The entry

+ username

will allow the named user from any remote host to access the system. The entry

hostname +
will allow any user from the named host to access the system as the local user.

Negative entries are preceded by a ‘-’ sign. The form:

—hostname

will disallow all access from the named host. The form:

—@netgroup

means that access is explicitly disallowed from all hosts in the named netgroup. The
form:

hostname —usernarme

disallows access by the named user only from the named host, while the form:

188 man pages section 4: File Formats * Last Revised 23 Jun 1997

Search Sequence

FILES

SEE ALSO

WARNINGS

hosts.equiv(4)
+ —@netgroup
will disallow access by all of the users in the named netgroup from all hosts.

To help maintain system security, the /etc/hosts . equiv file is not checked when
access is being attempted for super-user. If the user attempting access is not the
super-user, /etc/hosts.equiv is searched for lines of the form described above.
Checks are made for lines in this file in the following order:

1. +

2. +@netgroup
3. —@netgroup
4. —hostname
5. hostname

The user is granted access if a positive match occurrs. Negative entries apply only to
/etc/hosts.equiv and may be overridden by subsequent . rhosts entries.

If no positive match occurred, the . rhosts file is then searched if the user attempting
access maintains such a file. This file is searched whether or not the user attempting
access is the super-user. As a security feature, the . rhosts file must be owned by the
user who is attempting access. Checks are made for lines in . rhosts in the following
order:

¥
+@netgroup
—@netgroup
—hostname
hostname

AN

/etc/hosts.equiv system trusted hosts and users

~/.rhosts user’s trusted hosts and users
rcp(l), rlogin(l), rsh(l), remd(3SOCKET), hosts(4), netgroup(4), passwd(4)

Positive entries in /etc/hosts.equiv that include a username field (either an
individual named user, a netgroup, or ‘+” sign) should be used with extreme caution.
Because /etc/hosts.equiv applies system-wide, these entries allow one, or a
group of, remote users to access the system as any local user. This can be a security
hole. For example, because of the search sequence, an /etc/hosts.equiv file
consisting of the entries

+
—hostxxx

will not deny access to “hostxxx”.

File Formats 189

ike.config(4)
NAME
SYNOPSIS

DESCRIPTION

Lexical
Components

ike.config — configuration file for IKE policy

/etc/inet/ike/config

The /etc/inet/ike/config file contains rules for matching inbound IKE requests.
It also contains rules for preparing outbound IKE requests.

You can test the syntactic correctness of an /etc/inet/ike/config file by using the
-c or -f options of in. iked(1M). You must use the -c option to test a config file.
You may need to use the -f option if it isnotin /etc/inet/ike/config.

On any line, an unquoted # character introduces a comment. The remainder of that
line is ignored. Additionally, on any line, an unquoted // sequence introduces a
comment. The remainder of that line is ignored.

There are several types of lexical tokens in the ike.config file:

num
A decimal, hex, or octal number representation is as in 'C".

IPaddy / prefix / range
An IPv4 or IPv6 address with an optional /NNN suffix, (where NNN is a num) and
indicates an address (CIDR) prefix (for example, 10.1.2.0/24). An optional
/ADDR suffix (where ADDR is a second IP address) indicates an address / mask
pair (for example, 10.1.2.0/255.255.255.0). An optional -ADDR suffix (where
ADDR is a second IP address) indicates an inclusive range of addresses (for
example, 10.1.2.0-10.1.2.255). The / or - can be surrounded by an arbitrary
amount of white space.

in.iked(1M) does not support IPv6.

XXX | YYY | 222
Either the words XXX, YYY, or 222, for example, {yes,no}.

pl-id-type
An IKE phase 1 identity type. IKE phase 1 identity types include:

dn, DN

dns, DNS
fgdn, FQDN
gn, GN

ip, IP

ipv4

ipv4 prefix
ipv4 range
ipvé

ipv6 prefix
ipv6_range
mbox, MBOX
user_fgdn

190 man pages section 4: File Formats ¢ Last Revised 18 Dec 2001

File Body Entries

ike.config(4)

"string"

A quoted string.

Examples include:"Label foo", or "C=US, OU=Sun Microsystems\\, Inc.,
N=danmcd@eng.sun.com"

Abackslash (\) is an escape character. If the string needs an actual backslash, two
must be specified.

cert-sel

A certificate selector, a string which specifies the identities of zero or more
certificates. The specifiers can conform to X. 509 naming conventions.

A cert-sel can also use various shortcuts to match either subject alternative names,
the filename or slot of a certificate in /etc/inet/ike/publickeys, or even the
ISSUER. For example:

"SLOT=0"

"EMAIL=postmaster@domain.org"

"webmaster@domain.org" # Some just work w/o TYPE=
"IP=10.0.0.1"

"]10.21.11.11" # Some just work w/o TYPE=
"DNS=www.domain.org"

"mailhost.domain.org" # Some just work w/o TYPE=
"ISSUER=C=US, O=Sun Microsystems\\, Inc., CN=Sun CA"

Any cert-sel preceded by the character ! indicates a negative match, that is, not
matching this specifier. These are the same kind of strings used in ikecert(1M).

Idap-list

A quoted, comma-separated list of LDAP servers and ports.

For example, "ldapl.sun.com", "ldapl.sun.com:389",
"ldapl.sun.com:389,1ldap2.sun.com".

The default port for LDAP is 389.

parameter-list

Alist of parameters.

There are four main types of entries:

global parameters

IKE phase 1 transform defaults
IKE rule defaults

IKE rules

The global parameter entries are as follows:

cert_root cert-sel The X.509 distinguished name of a certificate that is a trusted

root CA certificate.It must be encoded in a file in the

File Formats 191

ike.config(4)

cert_trust cert-sel

ignore_crls

ldap_server Idap-list
proxy string
socks string

use_http

pl_lifetime_secs num

pl_nonce_len num

p2_nonce_len num

local_id_type p1-id-type

/etc/inet/ike/publickeys directory. It must have a CRL
in /etc/inet/ike/crls. Multiple cert root parameters
aggregate.

Specifies an X.509 distinguished name of a certificate that is
self-signed, or has otherwise been verified as trustworthy for
signing IKE exchanges. It must be encoded in a file in
/etc/inet/ike/publickeys. Multiple cert trust
parameters aggregate.

If this keyword is present in the file, in. iked(1M) ignores
Certificate Revocation Lists (CRLs) for root CAs (as given in
cert root)

Alist of LDAP servers to query for certificates. The list can be
additive.

The string following this keyword must be a URL for an
HTTP proxy, for example, http://proxy:8080.

The string following this keyword must be a URL for a
SOCKS proxy, for example, socks: //socks-proxy.

If this keyword is present in the file, in. iked(1M) uses HTTP
to retrieve Certificate Revocation Lists (CRLs).

The following IKE phase 1 transform parameters can be prefigured using file-level
defaults. Values specified within any given transform override these defaults.

The IKE phase 1 transform defaults are as follows:

The proposed default lifetime, in seconds, of an IKE phase 1
security association (SA).

The length in bytes of the phase 2 (quick mode) nonce data.
This cannot be specified on a per-rule basis.

The following IKE rule parameters can be prefigured using file-level defaults. Values
specified within any given rule override these defaults, unless a rule cannot.

The length in bytes of the phase 2 (quick mode)
nonce data. This cannot be specified on a per-rule
basis.

The local identity for IKE requires a type. This
identity type is reflected in the IKE exchange. The
type can be one of the following;:

m an [P address (for example, 10.1.1.2)

® DNS name (for example, test . domain. com)

m MBOX RFC 822 name (for example,
root@domain.com)

192 man pages section 4: File Formats * Last Revised 18 Dec 2001

pl_xform ’{’ parameter-list '}

p2_lifetime_secs num

p2_pfs num

ike.config(4)

® DNX.509 distinguished name (for example,
C=US, O=Sun Microsystems\, Inc.,
CN=Sun Test cert)

A phase 1 transform specifies a method for protecting
an IKE phase 1 exchange. An initiator offers up lists
of phase 1 transforms, and a receiver is expected to
only accept such an entry if it matches one in a phase
1 rule. There can be several of these, and they are
additive. There must be either at least one phase 1
transform in a rule or a global default phase 1
transform list. In a configuration file without a global
default phase 1 transform list and a rule without a
phase, transform list is an invalid file. Unless
specified as optional, elements in the parameter-list
must occur exactly once within a given transform’s
parameter-list:

oakley_group number
The Oakley Diffie-Hellman group used for IKE SA
key derivation. Acceptable values are currently 1
(768-bit), 2 (1024-bit), or 5 (1536-bit).

encr_alg {3des, 3des-cbc, blowfish, des, des-cbc}
An encryption algorithm, as in ipsecconf(1M).

auth_alg {md5, sha, shal}
An authentication algorithm, as in
ipsecconf(1M).

auth_method {preshared, rsa_sig, rsa_encrypt,
dss_sig}
The authentication method used for IKE phase 1.

pl_lifetime_secs num
Optional. The lifetime for a phase 1 SA.

If configuring the kernel defaults is not sufficient for
different tasks, this parameter can be used on a
per-rule basis to set the IPsec SA lifetimes in seconds.

The Oakley Diffie-Hellman group used for IPsec SA
key derivation. Acceptable values are 0 (do not use
Perfect Forward Secrecy for IPsec SAs), 1 (768-bit), 2
(1024-bit), and 5 (1536-bit).

An IKE rule starts with a right-curly-brace ({), ends with a left-curly-brace (}), and
has the following parameters in between:

label string

Required parameter. The administrative
interface to in. iked looks up phase 1 policy
rules with the label as the search string. The

File Formats 193

ike.config(4)

194

local_addr <IPaddr /prefix/range>

remote_addr <IPaddr /prefix/range>

local_id_type p1-id-type

local_id cert-sel

remote_id cert-sel

man pages section 4: File Formats ¢ Last Revised 18 Dec 2001

administrative interface also converts the label
into an index, suitable for an extended
ACQUIRE message from PF_KEY - effectively
tying IPsec policy to IKE policy in the case of a
node initiating traffic. Only one label
parameter is allowed per rule.

Required parameter. The local address,
address prefix, or address range for this phase
1 rule. Multiple local_addr parameters
accumulate within a given rule.

Required parameter. The remote address,
address prefix, or address range for this phase
1 rule. Multiple remote_addr parameters
accumulate within a given rule.

Which phase 1 identity type I uses. This is
needed because a single certificate can contain
multiple values for use in IKE phase 1. Within
a given rule, all phase 1 transforms must
either use preshared or non-preshared
authentication (they cannot be mixed). For
rules with preshared authentication, the
local_id_type parameter is optional, and
defaults to IP. For rules which use
non-preshared authentication, the
"local_id_type’ parameter is required. Multiple
"local_id_type’ parameters within a rule are
not allowed.

Disallowed for preshared authentication
method; required parameter for
non-preshared authentication method. The
local identity string or certificate selector.
Multiple local_id parameters accumulate
within a given rule.

Disallowed for preshared authentication
method; required parameter for
non-preshared authentication method. Selector
for which remote phase 1 identities are
allowed by this rule. Multiple remote_id
parameters accumulate within a given rule. If
a single empty string (" ") is given, then this
accepts any remote ID for phase 1. It is
recommended that certificate trust chains or
address enforcement be configured strictly to

p2_lifetime_secs num

p2_pfs num

pl_xform { parameter-list }

ike.config(4)

prevent a breakdown in security if this value
for remote id is used.

If configuring the kernel defaults is not
sufficient for different tasks, this parameter can
be used on a per-rule basis to set the IPsec SA
lifetimes in seconds.

Use perfect forward secrecy for phase 2 (quick
mode). If selected, the oakley group specified
is used for phase 2 PFS. Acceptable values are
0 (do not use Perfect Forward Secrecy for
IPsec SAs), 1 (768-bit), 2 (1024-bit), and 5
(1536-bit).

A phase 1 transform specifies a method for
protecting an IKE phase 1 exchange. An
initiator offers up lists of phase 1 transforms,
and a receiver is expected to only accept such
an entry if it matches one in a phase 1 rule.
There can be several of these, and they are
additive. There must be either at least one
phase 1 transform in a rule or a global default
phase 1 transform list. A ike.config file
without a global default phase 1transform list
and a rule without a phase 1 transform list is
an invalid file. Elements within the
parameter-list; unless specified as optional,
must occur exactly once within a given
transform’s parameter-list:

oakley_group number
The Oakley Diffie-Hellman group used for
IKE SA key derivation. Acceptable values
are currently 1 (768-bit), 2 (1024-bit), or 5
(1536-bit).

encr_alg {3des, 3des-cbc, blowfish, des,
des-cbc}
An encryption algorithm, as in
ipsecconf(1M).

auth_alg {md5, sha, shal}
An authentication algorithm, as specified in
ipseckey(1M).

auth_method {preshared, rsa_sig, rsa_encrypt,
dss_sig}
The authentication method used for IKE
phase 1.

File Formats 195

ike.config(4)

196

EXAMPLES | EXAMPLE 1 A Sample ike.config File

The following is an example of an ike.config file:

BEGINNING OF FILE

First some global parameters...

certificate parameters...

Root certificates. I SHOULD use a full Distinguished
I must have this certificate in my local filesystem,
cert_root "C=US, O=Sun Microsystems\\, Inc., CN=Sun
Explicitly trusted certs that need no signatures, or
ones. Like root certificates, use full DNs for them

cert_trust "EMAIL=root@domain.org"

Where do I send LDAP requests?

phase 1 transform defaults...

pl_lifetime_secs 14400
pl_nonce_len 20

Parameters that may also show up in rules.
encr_alg 3des }
p2_pfs 2
Now some rules...
label "simple inheritor"
local_id_type ip

local_addr 10.1.1.1
remote_addr 10.1.1.2

an index-only rule. If I'm a receiver, and all I
Answer: Take them all!

label "default rule"

Use whatever "host" (e.g. IP address) identity is

local_id_type ipv4

local_addr 0.0.0.0/0
remote_addr 0.0.0.0/0

man pages section 4: File Formats ¢ Last Revised 18 Dec 2001

pl_lifetime_secs num
Optional. The lifetime for a phase 1 SA.

Name .
see ikecert (1m) .
CA"

perhaps self-signed
for now.

ldap_server "ldapl.domain.org, ldap2.domain.org:389"

pl xform { auth method preshared oakley group 5 auth alg sha

have are index-only rules, what do I do about inbound IKE requests?

appropriate

ike.config(4)

EXAMPLE 1 A Sample ike.config File (Continued)

p2_pfs 5

Now I'm going to have the pl xforms

pl_xform

{auth_method preshared oakley group 5 auth alg md5 encr_alg blowfish }
pl_xform

{auth method preshared oakley group 5 auth alg md5 encr_alg 3des }

After said list, another keyword (or a ’}’) will stop xform parsing.

Let’s try something a little more conventional.

label "host to .80 subnet"
local id type ip
local id "10.1.86.51"

remote_id "" # Take any, use remote_addr for access control.

local addr 10.1.86.51
remote_addr 10.1.80.0/24

pl_xform

{ auth_method rsa_sig oakley group 5 auth alg md5 encr alg 3des }
pl_xform

{ auth method rsa sig oakley group 5 auth alg md5 encr alg blowfish }
pl_xform

{ auth_method rsa_sig oakley group 5 auth alg shal encr_alg 3des }
pl_xform

{ auth method rsa sig oakley group 5 auth alg shal encr alg blowfish }

How ’'bout something with a different cert type and name?
label "punchin-point"

local_ id type mbox

local id "ipsec-wizardedomain.org"

remote_id "10.5.5.128"

local_addr 0.0.0.0/0
remote _addr 10.5.5.128

pl_xform
{ auth_method rsa_sig oakley group 5 auth alg md5 encr alg blowfish }

label "receiver side"
remote_id "ipsec-wizard@domain.org"

local_id type ip
local id "10.5.5.128"

File Formats

197

ike.config(4)

198

EXAMPLE 1 A Sample ike.config File (Continued)

local addr 10.5.5.128
remote_addr 0.0.0.0/0

pl_xform

{ auth method rsa sig oakley group 5 auth alg md5 encr alg blowfish }
NOTE: Specifying preshared null-and-voids the remote id/local_id

fields.

pl_xform

{ auth method preshared oakley group 5 auth alg md5 encr_alg blowfish}

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWecsr

SEE ALSO | ikeadm(1M), in.iked(1M), ikecert(1IM), ipseckey(1M), ipsecconf(1M),
attributes(5), random(7D)

Harkins, Dan and Carrel, Dave, Internet Key Exchange (IKE), RFC 2409, Cisco Systems.,
November 1998.

Maughan, Douglas et. al, Internet Security Association and Key Management Protocol
(ISAKMP), REC 2408, National Security Agency, Ft. Meade, MD, November 1998.

Piper, Derrell, The Internet IP Security Domain of Interpretation for ISAKMP, REC 2407,
Network Alchemy, Santa Cruz, California, November 1998.

man pages section 4: File Formats ¢ Last Revised 18 Dec 2001

NAME
SYNOPSIS

DESCRIPTION

EXAMPLES

ike.preshared(4)
ike.preshared — pre-shared keys file for IKE

/etc/inet/secret/ike.preshared

The /etc/inet/secret/ike.preshared file contains secret keying material that
two IKE instances can use to authenticate each other. Because of the sensitive nature of
this data, it is kept in the /etc/inet/secret directory, which is only accessible by
root.

Pre-shared keys are delimited by open-curly-brace ({) and close-curly-brace (})
characters. There are five name-value pairs required inside a pre-shared key:

Name Value Example
localidtype P localidtype IP
remoteidtype i remoteidtype IP
localid IP-address localid 10.1.1.2
remoteid IP-address remoteid 10.1.1.3
key hex-string 1234567890abcdef

Comment lines with # appearing in the first column are also legal.

Files in this format can also be used by the ikeadm(1M) command to load additional
pre-shared keys into a running an in. iked(1M) process.

EXAMPLE 1 A Sample ike.preshared File
The following is an example of an ike.preshared file:
#

Two pre-shared keys between myself, 10.1.1.2, and two remote
hosts. Note that names are not allowed for IP addresses.

#

A decent hex string can be obtained by performing:
od -x </dev/random | head

#

{

localidtype IP

localid 10.1.1.2

remoteidtype IP

remoteid 10.21.12.4

key 4b656265207761732068657265210c0a

localidtype IP
localid 10.1.1.2
remoteidtype IP

File Formats 199

ike.preshared(4)

200

remoteid 10.9.1.25

EXAMPLE 1 A Sample ike.preshared File

(Continued)

key 536£20776572652042696c6c2c2052656€65652c20616€642043687269732e0a

SECURITY | If this file is compromised, all IPsec security associations derived from secrets in this

0600. They should stay this way.

file will be compromised as well. The default permissions on ike.preshared are

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Availability

SUNWGcsr

SEE ALSO | od(1), ikeadm(1M), in.iked(1M), ipseckey(1M), attributes(5), random(7D)

man pages section 4: File Formats ¢ Last Revised 15 Oct 2001

NAME
SYNOPSIS

DESCRIPTION

inetd.conf(4)
inetd.conf — Internet servers database
/etc/inet/inetd.conf

/etc/inetd.conf

The inetd. conf file contains the list of servers that inetd(1M) invokes when it
receives an Internet request over a socket. Each server entry is composed of a single
line of the form:

service-name endpoint-type protocol wait-status uid server-program \
server-arguments

Fields are separated by either SPACE or TAB characters. A “#” (number sign) indicates
the beginning of a comment; characters up to the end of the line are not interpreted by
routines that search this file.

service-name The name of a valid service listed in the services file.
For RPC services, the value of the service-name field
consists of the RPC service name or program number,
followed by a '/’ (slash) and either a version number or
a range of version numbers, for example, rstatd/2-4.

endpoint-type Can be one of:
stream for a stream socket
dgram for a datagram socket
raw for a raw socket
segpacket for a sequenced packet socket
tli for all TLI endpoints
protocol A recognized protocol listed in the file

/etc/inet/protocols. For servers capable of
supporting TCP and UDP over IPv6, the following
protocol types are also recognized:

tcpé6
udp6

tcp6 and udpé are not official protocols; accordingly,
they are not listed in the /etc/inet/protocols file.

Here the inetd program uses an AF_INET6 type
socket endpoint. These servers can also handle
incoming IPv4 client requests in addition to IPv6 client
requests.

For RPC services, the field consists of the string rpc
followed by a '/’ (slash) and either a "*’ (asterisk), one
or more nettypes, one or more netids, or a combination

File Formats 201

inetd.conf(4)

FILES

wait-status

uid

server-program

server—arguments

/etc/netconfig

/etc/inet/protocols

of nettypes and netids. Whatever the value, it is first
treated as a nettype. If it is not a valid nettype, then it is
treated as a netid. For example, rpc/* for an RPC
service using all the transports supported by the
system (the list can be found in the /etc/netconfig
file), equivalent to saying rpc/visible rpc/ticots
for an RPC service using the Connection-Oriented
Transport Service.

This field has values wait or nowait. This entry
specifies whether the server that is invoked by inetd
will take over the listening socket associated with the
service, and whether once launched, inetd will wait
for that server to exit, if ever, before it resumes listening
for new service requests. The wait-status for datagram
servers must be set to wait, as they are always
invoked with the orginal datagram socket that will
participate in delivering the service bound to the
specified service. They do not have separate "listening"
and "accepting" sockets. Accordingly, do not configure
UDP services as nowait. This causes a race condition by
which the inetd program selects on the socket and the
server program reads from the socket. Many server
programs will be forked, and performance will be
severely compromised. Connection-oriented services
such as TCP stream services can be designed to be
either wait or nowait status.

The user ID under which the server should run. This
allows servers to run with access privileges other than
those for root.

Either the pathname of a server program to be invoked
by inetd to perform the requested service, or the
value internal if inetd itself provides the service.

If a server must be invoked with command line
arguments, the entire command line (including
argument 0) must appear in this field (which consists of
all remaining words in the entry). If the server expects
inetd to pass it the address of its peer, for
compatibility with 4.2BSD executable daemons, then
the first argument to the command should be specified
as $A. No more than 20 arguments are allowed in this
field. The %A argument is implemented only for
services whose wait-status value is wait.

network configuration file

Internet protocols

202 man pages section 4: File Formats ¢ Last Revised 13 Sep 2000

inetd.conf(4)
/etc/inet/services Internet network services
SEE ALSO | rlogin(l), rsh(l), in.tftpd(1M), inetd(1M), services(4)

NOTES | /etc/inet/inetd. conf is the official SVR4 name of the inetd. conf file. The
symbolic link /etc/inetd. conf exists for BSD compatibility.

File Formats 203

inet_type(4)
NAME | inet_type — default Internet protocol type
SYNOPSIS | /etc/default/inet type

DESCRIPTION | The inet_type file defines the default IP protocol to use. Currently this file is only
used by the ifconfig(1M) and netstat(1M) commands.

The inet_type file can contain a number of <variable>=<value> lines. Currently,
the only variable defined is DEFAULT _IP, which can be assigned a value of
IP_VERS TON4, IP_VERS IONG6, or BOTH.

The output displayed by the ifconfig and netstat commands can be controlled by
the value of DEFAULT IP setin inet_type file. By default, both commands display
the IPv4 and IPv6 information available on the system. The user can choose to
suppress display of IPv6 information by setting the value of DEFAULT _IP. The
following shows the possible values for DEFAULT_IP and the resulting ifconfig
and netstat output that will be displayed:

IP VERSION4 Displays only IPv4 related information. The output displayed is
backward compatible with older versions of the ifconfig(1M)
and netstat(1M) commands.

IP_VERSIONG6 Displays both IPv4 and IPv6 related information for ifconfig
and netstat.

BOTH Displays both IPv4 and IPv6 related information for ifconfig
and netstat.

The command-line options to the ifconfig and netstat commands override the
effect of DEFAULT IP as setin the inet type file. For example, even if the value of
DEFAULT IPis IP_VERSION4, the command

example% ifconfig -aéwill display all IPv6 interfaces.

EXAMPLES | EXAMPLE 1 Suppressing IPv6 Related Output

This is what the inet type file must contain if you want to suppress IPv6 related
output:

DEFAULT IP=IP_VERSION4

SEE ALSO | ifconfig(1M), netstat(1M)

204 man pages section 4: File Formats ¢ Last Revised 16 Jun 1999

NAME
SYNOPSIS

DESCRIPTION

EXAMPLES

SEE ALSO

init.d(4)
init.d — initialization and termination scripts for changing init states

/etc/init.d

/etc/init.dis a directory containing initialization and termination scripts for
changing init states. These scripts are linked when appropriate to files in the rc?.d
directories, where “?’ is a single character corresponding to the init state. See
init(1M) for definitions of the states.

File names in rc? . d directories are of the form [SK]nn<init.d filename>, where S
means start this job, K means kill this job, and nn is the relative sequence number for
killing or starting the job.

When entering a state (init S,0,2,3,etc.) the rc [S0-6] script executes those scripts in
/etc/rc[S0-6] .d that are prefixed with K followed by those scripts prefixed with s.
When executing each script in one of the /etc/rc[S0-6] directories, the
/sbin/rc[S0-6] script passes a single argument. It passes the argument "stop” for
scripts prefixed with K and the argument “start” for scripts prefixed with S. There is no
harm in applying the same sequence number to multiple scripts. In this case the order
of execution is deterministic but unspecified.

Guidelines for selecting sequence numbers are provided in README files located in the
directory associated with that target state. For example, /etc/rc[S0-6] .d/README.
Absence of a README file indicates that there are currently no established guidelines.

EXAMPLE 1 Example of /sbin/rc2.

When changing to init state 2 (multi-user mode, network resources not exported),
/sbin/rc2 is initiated by the init process. The following steps are performed by
/sbin/rc2.

1. In the directory /etc/rc2.d are files used to stop processes that should not be
running in state 2. The filenames are prefixed with K. Each K file in the directory is
executed (by /sbin/rc2) in alphanumeric order when the system enters init state
2. See example below.

2. Also in the rc2.d directory are files used to start processes that should be running
in state 2. As in Step 1, each S file is executed.

Assume the file /etc/init.d/netdaemon is a script that will initiate networking
daemons when given the argument ’start’, and will terminate the daemons if given the
argument ‘stop’. It is linked to /etc/rc2.d/S68netdaemon, and to
/etc/rc0.d/Ké7netdaemon. The file is executed by /etc/rc2.d/S68netdaemon
start when init state 2 is entered and by /etc/rc0.d/Ké7netdaemon stop when
shutting the system down.

init(1IM)

File Formats 205

init.d(4)

NOTES | /sbin/rc2 has references to the obsolescent rc . d directory. These references are for
compatibility with old INSTALL scripts. New INSTALL scripts should use the init.d
directory for related executables. The same is true for the shutdown. d directory.

206 man pages section 4: File Formats ¢ Last Revised 07 July 2000

NAME

DESCRIPTION

inittab(4)

inittab — script for init

The file /etc/inittab controls process dispatching by init. The processes most
typically dispatched by init are daemons.

The inittab file is composed of entries that are position dependent and have the
following format:

id : rstate : action : process

Each entry is delimited by a newline; however, a backslash (\) preceding a newline
indicates a continuation of the entry. Up to 512 characters for each entry are permitted.
Comments may be inserted in the process field using the convention for comments
described in sh(1). There are no limits (other than maximum entry size) imposed on
the number of entries in the inittab file. The entry fields are:
id
One to four characters used to uniquely identify an entry. Do not use the characters
"r" or "t" as the first or only character in this field. These characters are reserved for
the use of rlogin(1l) and telnet(1).

rstate
Define the run level in which this entry is to be processed. Run-levels effectively
correspond to a configuration of processes in the system. That is, each process
spawned by init is assigned a run level(s) in which it is allowed to exist. The run
levels are represented by a number ranging from 0 through 6. For example, if the
system is in run level 1, only those entries having a 1 in the rstate field are
processed.

When init is requested to change run levels, all processes that do not have an
entry in the rstate field for the target run level are sent the warning signal SIGTERM
and allowed a 5-second grace period before being forcibly terminated by the kill
signal SIGKILL. The rstate field can define multiple run levels for a process by
selecting more than one run level in any combination from 0 through 6. If no run
level is specified, then the process is assumed to be valid at all run levels 0 through
6.

There are three other values, a, b and ¢, which can appear in the rstate field, even
though they are not true run levels. Entries which have these characters in the rstate
field are processed only when an init or telinit process requests them to be run
(regardless of the current run level of the system). See init(1M). These differ from
run levels in that init can never enter run level a, b or c. Also, a request for the
execution of any of these processes does not change the current run level.
Furthermore, a process started by an a, b or ¢ command is not killed when init
changes levels. They are killed only if their line in inittab is marked off in the
action field, their line is deleted entirely from inittab, or init goes into
single-user state.

File Formats 207

inittab(4)

action
Key words in this field tell init how to treat the process specified in the process
field. The actions recognized by init are as follows:

respawn
If the process does not exist, then start the process; do not wait for its
termination (continue scanning the inittab file), and when the process dies,
restart the process. If the process currently exists, do nothing and continue
scanning the inittab file.

wait
When init enters the run level that matches the entry’s rstate, start the process
and wait for its termination. All subsequent reads of the inittab file while
init is in the same run level cause init to ignore this entry.

once
When init enters a run level that matches the entry’s rstate, start the process,
do not wait for its termination. When it dies, do not restart the process. If init
enters a new run level and the process is still running from a previous run level
change, the program is not restarted.

boot
The entry is to be processed only at init’s boot-time read of the inittab file.
init is to start the process and not wait for its termination; when it dies, it does
not restart the process. In order for this instruction to be meaningful, the rstate
should be the default or it must match init’s run level at boot time. This action
is useful for an initialization function following a hardware reboot of the system.

bootwait
The entry is to be processed the first time init goes from single-user to
multi-user state after the system is booted. (If initdefault is set to 2, the
process runs right after the boot.) init starts the process, waits for its
termination and, when it dies, does not restart the process.

powerfail
Execute the process associated with this entry only when init receives a power
fail signal, SIGPWR (see signal(3C)).

powerwait
Execute the process associated with this entry only when init receives a power
fail signal, SIGPWR, and wait until it terminates before continuing any
processing of inittab.

off
If the process associated with this entry is currently running, send the warning
signal SIGTERM and wait 5 seconds before forcibly terminating the process with
the kill signal SIGKILL. If the process is nonexistent, ignore the entry.

208 man pages section 4: File Formats ¢ Last Revised 9 Mar 2001

SEE ALSO

inittab(4)

ondemand
This instruction is really a synonym for the respawn action. It is functionally
identical to respawn but is given a different keyword in order to divorce its
association with run levels. This instruction is used only with the a, b or ¢
values described in the rstate field.

initdefault
An entry with this action is scanned only when init is initially invoked. init
uses this entry to determine which run level to enter initially. It does this by
taking the highest run level specified in the rstate field and using that as its initial
state. If the rstate field is empty, this is interpreted as 0123456 and init will
enter run level 6. This will cause the system to loop (it will go to firmware and
reboot continuously). Additionally, if init does not find an initdefault entry
in inittab, it requests an initial run level from the user at reboot time.

sysinit
Entries of this type are executed before init tries to access the console (that is,
before the Console Login: prompt). It is expected that this entry will be used
only to initialize devices that init might try to ask the run level question. These
entries are executed and init waits for their completion before continuing.

process
Specify a command to be executed. The entire process field is prefixed with exec
and passed to a forked sh as sh —c * exec command’. For this reason, any legal sh
syntax can appear in the process field.

sh(1), who(1), init(1M), ttymon(1M), exec(2), open(2), signal(3C)

File Formats 209

ipnodes(4)

210

NAME
SYNOPSIS

DESCRIPTION

ipnodes — local database associating names of nodes with IP addresses

/etc/inet/ipnodes

The ipnodes file is a local database that associates the names of nodes with their
Internet Protocol (IP) addresses. IP addresses can be either an IPv4 or an IPv6 address.
The ipnodes file can be used in conjunction with, or instead of, other ipnodes
databases, including the Domain Name System (DNS), the NIS ipnodes map, and the
NIS+ ipnodes table. Programs use library interfaces to access information in the
ipnodes file.

The ipnodes file has one entry for each IP address of each node. If a node has more
than one IP address, it will have one entry for each, on consecutive lines. The format
of each line is:

IP-address official-node-name nicknames...ltems are separated by any number of
SPACE and/or TAB characters. The first item on a line is the node’s IP address. The
second entry is the node’s official name. Subsequent entries on the same line are
alternative names for the same machine, or "nicknames." Nicknames are optional.

For a node with more than one IP address, consecutive entries for these addresses may
contain the same or differing nicknames. Different nicknames are useful for assigning
distinct names to different addresses.

A call to get ipnodebyname(3SOCKET) returns a hostent structure containing the
union of all addresses and nicknames from each line containing a matching official
name or nickname.

A ‘#’ indicates the beginning of a comment; characters up to the end of the line are not
interpreted by routines that search the file.

Network addresses are written in one of two ways:

®m The conventional "decimal dot" notation and interpreted using the inet_addr
routine from the Internet address manipulation library, inet(3SOCKET).

m The IP Version 6 protocol [IPV6], defined in RFC 1884 and interpreted using the
inet pton() routine from the Internet address manipulation library. See
inet(3SOCKET).

These interfaces supports node names as defined in Internet RFC 952 which states:

A "name" (Net, Host, Gateway, or Domain name) is a text string up to 24 characters
drawn from the alphabet (A-Z), digits (0-9), minus sign (-), and period (.). Note that
periods are only allowed when they serve to delimit components of "domain style
names". (See RFC 921, "Domain Name System Implementation Schedule,” for
background). No blank or space characters are permitted as part of a name. No
distinction is made between upper and lower case. The first character must be an
alpha character. The last character must not be a minus sign or period.

man pages section 4: File Formats ¢ Last Revised 25 Oct 1999

EXAMPLES

SEE ALSO

NOTES

ipnodes(4)

Although the interface accepts node names longer than 24 characters for the node
portion (exclusive of the domain component), choosing names for nodes that adhere
to the 24 character restriction will insure maximum interoperability on the Internet.

A node which serves as a GATEWAY should have "-GATEWAY" or "-GW" as part of its
name. Nodes which do not serve as Internet gateways should not use "-GATEWAY"
and "-GW" as part of their names. A node that is a TAC should have "-TAC" as the last
part of its node name, if it is a DoD node. Single character names or nicknames are not
allowed.

RFC 952 has been modified by RFC 1123 to relax the restriction on the first character
being a digit.

EXAMPLE 1 A Typical Line from the ipnodes File

The following is a typical line from the ipnodes file:

2::56:a00:20ff:fe7b:b667 foo # John Smith

in.named(1M), getipnodebyname(3SOCKET), inet(3SOCKET),
nsswitch.conf(4), resolv.conf(4), hosts(4)

Braden, B., editor, RFC 1123, Requirements for Internet Hosts — Application and Support,
Network Working Group, October, 1989.

Harrenstien, K., Stahl, M., and Feinler, E., RFC 952, DOD INTERNET HOST TABLE
SPECIFICATION, Network Working Group, October 1985.

Hinden, R., and Deering, S., editors, RFC 1884, IP Version 6 Addressing Architecture,
Network Working Group, December, 1995.

Postel, Jon, RFC 921, Domain Name System Implementation Schedule — Revised, Network
Working Group, October 1984.

IPv4 addresses can be defined in the ipnodes file or in the hosts file. See hosts(4).
The ipnodes file will be searched for IPv4 addresses when using the
getipnodebyname(3SOCKET) API If no matching IPv4 addresses are found in the
ipnodes file, then the hosts file will be searched. To prevent delays in name
resolution and to keep /etc/inet/ipnodes and /etc/inet/hosts synchronized,
IPv4 addresses defined in the hosts file should be copied to the ipnodes file.

File Formats 211

issue(4)

NAME | issue — issue identification file

DESCRIPTION | The file /etc/issue contains the issue or project identification to be printed as a
login prompt. issue is an ASCII file that is read by program ttymon and then
written to any terminal spawned or respawned, prior to the normal prompt.

FILES | /etc/issue

SEE ALSO | login(1), ttymon(1M)

212 man pages section 4: File Formats * Last Revised 2 Jan 2002

NAME
SYNOPSIS

DESCRIPTION

kadmb5.acl(4)
kadmb.acl — Kerberos access control list (ACL) file

/etc/krb5/kadms5.acl

The ACL file is used by the kadmind(1M) command to determine which principals are
allowed to perform Kerberos administration actions. For operations that affect
principals, the ACL file also controls which principals can operate on which other
principals. The location of the ACL file is determined by the acl file configuration
variable in the kdc . conf(4) file. The default location is /etc/krb5/kadm5 . acl.

The ACL file can contain comment lines, null lines, or lines that contain ACL entries.
Comment lines start with the pound sign (#) and continue until the end of the line.

The order of entries is significant. The first matching entry specifies the principal on
which the control access applies, whether it is on just the principal or on the principal
when it operates on a target principal.

Lines containing ACL entries must have the following format:
principal operation-mask [operation-target]

principal
Specifies the principal on which the operation-mask applies. Can specify either a
partially or fully qualified Kerberos principal name. Each component of the name
can be substituted with a wildcard, using the asterisk (*) character.

operation-mask
Specifies what operations can or cannot be performed by a principal matching a
particular entry. Specify operation-mask as one or more privileges.

A privilege is a string of one or more of the following characters: a, 2, ¢, C,d,D, 1, I,
1, L, m M, x, or *. Generally, if the character is lowercase, the privilege is allowed
and if the character is uppercase, the operation is disallowed. The x and *
characters are exceptions to the uppercase convention.

The following privileges are supported:

a Allows the addition of principals or policies in the database.

A Disallows the addition of principals or policies in the database.

c Allows the changing of passwords for principals in the database.

C Disallows the changing of passwords for principals in the database.
d Allows the deletion of principals or policies in the database.

D Disallows the deletion of principals or policies in the database.

i Allows inquiries to the database.

I Disallows inquiries to the database.

1 Allows the listing of principals or policies in the database.

File Formats 213

kadmb.acl(4)

214

EXAMPLES

L Disallows the listing of principals or policies in the database.

m Allows the modification of principals or policies in the database.

M Disallows the modification of principals or policies in the database.
X Short for specifying privileges a, d,m,c,i, and 1. The same as *.

* Short for specifying privileges a, d,m,c,i, and 1. The same as x.

operation-target
Optional. When specified, the privileges apply to the principal when it operates on
the operation-target. For the operation-target, you can specify a partially or fully
qualified Kerberos principal name. Each component of the name can be substituted
by a wildcard, using the asterisk (*) character.

EXAMPLE 1 Specifying a Standard, Fully Qualified Name

The following ACL entry specifies a standard, fully qualified name:

user/instance@realm adm

The operation-mask applies only to the user/instance@realm principal and specifies
that the principal can add, delete, or modify principals and policies, but it cannot
change passwords.

EXAMPLE 2 Specifying a Standard Fully Qualified Name and Target
The following ACL entry specifies a standard, fully qualified name:

user/instance@realm cim service/instance@realm

The operation-mask applies only to the user/instance@realm principal operating on
the service/instanceerealm target, and specifies that the principal can change
the target’s password, request information about the target, and modify it.

EXAMPLE 3 Specifying a Name Using a Wildcard
The following ACL entry specifies a name using a wildcard:

user/*@realm ac

The operation-mask applies to all principals in realm realm whose first component is
user and specifies that the principals can add principals and change passwords.

EXAMPLE 4 Specifying a Name Using a Wildcard and a Target
The following ACL entry specifies a name using a wildcard and a target:

user/*@realm i */instancee@erealm

The operation-mask applies to all principals in realm realm whose first component is
user and specifies that the principals can perform inquiries on principals whose
second component is instance and realm is realm.

man pages section 4: File Formats * Last Revised 17 Aug 2001

kadmb5.acl(4)

FILES | /etc/krb5/kdc.conf
KDC configuration information.

SEE ALSO | kpasswd(1l), gkadmin(1M), kadmind(1M), kadmin.local(1M), kdb5 util(1M),
kdc.conf(4), SEAM(D)

File Formats 215

kdc.conf(4)
NAME
SYNOPSIS

DESCRIPTION

The kdcdefaults
Section

The realms
Section

kdc.conf — Key Distribution Center (KDC) configuration file

/etc/krb5/kdc.conf

The kdc . conf file contains KDC configuration information, including defaults used
when issuing Kerberos tickets. This file must reside on all KDC servers. After you
make any changes to the kdc . conf file, stop and restart the krb5kdc daemon on the
KDC for the changes to take effect.

The format of the kdc . conf consists of section headings in square brackets ([1). Each
section contains zero or more configuration variables (called relations), of the form of:

relation = relation-value
or

relation-subsection = {
relation relation-value
relation = relation-value

}

The kdc . conf file contains one of more of the following three sections:

kdcdefaults
Contains default values for overall behavior of the KDC.

realms
Contains subsections for Kerberos realms, where relation-subsection is the name of a
realm. Each subsection contains relations that define KDC properties for that
particular realm, including where to find the Kerberos servers for that realm.

logging
Contains relations that determine how Kerberos programs perform logging.

The following relation can be defined in the [kdcdefaults] section:

kdc ports
This relation lists the ports on which the Kerberos server should listen by default.
This list is a comma-separated list of integers. If this relation is not specified, the
Kerberos server listens on port 750 and port 88.

This section contains subsections for Kerberos realms, where relation-subsection is the
name of a realm. Each subsection contains relations that define KDC properties for
that particular realm.

The following relations can be specified in each subsection:

acl file
(string) Location of the Kerberos V5 access control list (ACL) file that kadmin uses
to determine the privileges allowed to each principal on the database. The default
location is /etc/krb5/kadm5. acl.

admin keytab
(string) Location of the keytab file that kadmin uses to authenticate to the
database. The default location is /etc/krb5/kadms . keytab.

216 man pages section 4: File Formats ¢ Last Revised 17 Aug 2001

kdc.conf(4)

database name
(string) Location of the Kerberos database for this realm. The default location is
/var/krb5/principal.db.

default principal expiration
(absolute time string) The default expiration date of principals created in this realm.
See the Time Format section in kinit(1) for the valid absolute time formats you
can use for default principal expiration.

default principal flags
(flag string) The default attributes of principals created in this realm.

dict_file
(string) Location of the dictionary file containing strings that are not allowed as
passwords. A principal with any password policy is not allowed to select a
password in the dictionary. The default location is /var/krb5/kadm5 .dict.

encryption type
(encryption type string) The encryption type used for this realm. The
des-cbc-crc and des-cbc-md5 encryption types are supported at this time.

kadmind_port
(port number) The port that the kadmind daemon is to listen on for this realm. The
assigned port for kadmind is 749.

key stash file
(string) Location where the master key has been stored (by kdb5 util stash).
The default location is /var/krb5/ .k5 . realm, where realm is the Kerberos realm.

kdc ports
(string) The list of ports that the KDC listens on for this realm. By default, the value
of kdc_ports as specified in the [kdcdefaults] section is used.

master key name
(string) The name of the master key.

master key type
(key type string) The master key’s key type. Only des-cbc-crc is supported at
this time.

max life
(delta time string) The maximum time period for which a ticket is valid in this
realm. See the Time Format section in kinit(1) for the valid time duration
formats you can use for max life.

max_renewable life
(delta time string) The maximum time period during which a valid ticket can be
renewed in this realm. See the Time Format section in kinit(1) for the valid time
duration formats you can use for max renewable life.

supported_ enctypes
List of key/salt strings. The default key/salt combinations of principals for
this realm. The key is separated from the salt by a period (.). Multiple key/salt
strings can be used by separating each string with a space. The salt is additional

File Formats 217

kdc.conf(4)

218

The logging
Section

information encoded within the key that tells what kind of key it is. Only the normal

salt is supported at this time, for example, des-cbc-crc:normal.

This section indicates how Kerberos programs perform logging. The same relation can
be repeated if you want to assign it multiple logging methods. The following relations

can be defined in the [1logging] section:

kdc
Specifies how the KDC is to perform its logging. The default is
FILE:/var/krb5/kdc.log.

admin server
Specifies how the administration server is to perform its logging. The default is
FILE:/var/krb5/kadmin. log.

default
Specifies how to perform logging in the absence of explicit specifications.
The [logging] relations can have the following values:

FILE:filename

or

FILE=filename
This value causes the entity’s logging messages to go to the specified file. If the ‘=’
form is used, the file is overwritten. If the " form is used, the file is appended to.

STDERR
This value sends the entity’s logging messages to its standard error stream.

CONSOLE
This value sends the entity’s logging messages to the console, if the system
supports it.

DEVICE=devicename
This sends the entity’s logging messages to the specified device.

SYSLOG [:severity [: facility]]
This sends the entity’s logging messages to the system log.

The severity argument specifies the default severity of system log messages. This
default can be any of the following severities supported by the sys1og(3C) call,
minus the LOG_ prefix: LOG_EMERG, LOG_ALERT, LOG_CRIT, LOG_ERR,

LOG_WARNING, LOG NOTICE, LOG_INFO, and LOG DEBUG. For example, a value of

CRIT would specify LOG_CRIT severity.

The facility argument specifies the facility under which the messages are logged.
This can be any of the following facilities supported by the sys1og(3C) call minus
the LOG_ prefix: LOG_KERN, LOG_USER, LOG_MAIL, LOG_DAEMON, LOG_AUTH,
LOG LPR, LOG_NEWS, LOG UUCP, LOG CRON, and LLOG LOCALOQ through

LOG LOCAL7.

man pages section 4: File Formats * Last Revised 17 Aug 2001

EXAMPLES

FILES

SEE ALSO

kdc.conf(4)

If no severity is specified, the default is ERR. If no facility is specified, the default is
AUTH.

In the following example, the logging messages from the KDC go to the console
and to the system log under the facility LOG_DAEMON with default severity of
LOG_INFO; the logging messages from the administration server are appended to
the /var/krb5/kadmin.log file and sent to the /dev/tty04 device.

[logging]

kdc = CONSOLE

kdc = SYSLOG: INFO:DAEMON

admin_server FILE:/export/logging/kadmin. log
DEVICE=/dev/tty04

admin_server

EXAMPLE 1 Sample kdc . conf File

The following is an example of a kdc . conf file:

[kdcdefaults]
kdc_ports = 88

[realms]
ATHENA.MIT.EDU = {
kadmind port = 749
max_life = 10h Om Os
max_renewable life = 7d Oh Om Os
master key type = des-cbc-crc
supported_enctypes = des-cbc-crc:normal

}

[logging]
kdc = FILE:/export/logging/kdc.log
admin_server = FILE:/export/logging/kadmin.log

/etc/krb5/kadm5.acl
List of principals and their kadmin administrative privileges.

/etc/krb5/kadms . keytab
Keytab for kadmin/admin Principal.

/var/krb5/principal.db
Kerberos principal database.

/var/krb5/kadm5.dict
Dictionary of strings explicitly disallowed as passwords.

/var/krb5/kdc.log
KDC logging file.

/var/krb5/kadmin.log
Kerberos administration server logging file.

kpasswd(l), gkadmin(IM), kadmind(1M), kadmin. local(lM), kdb5 util(1M),
syslog(3C), kadms . acl(4), SEAM(5)

File Formats 219

keytables(4)

220

NAME

DESCRIPTION

keytables — keyboard table descriptions for loadkeys and dumpkeys

These files are used by loadkeys(1) to modify the translation tables used by the
keyboard streams module and generated by (see 1oadkeys(1)) from those translation
tables.

Any line in the file beginning with # is a comment, and is ignored. # is treated
specially only at the beginning of a line.

Other lines specify the values to load into the tables for a particular keystation. The
format is either:

key number list_of_entries

or

swap numberl with number2

or

key numberl same as number2

or a blank line, which is ignored.

key number list_of_entries

sets the entries for keystation number from the list given. An entry in that list is of the
form

tablename code

where tablename is the name of a particular translation table, or all. The translation
tables are:

base entry when no shifts are active
shift entry when "Shift" key is down
caps entry when "Caps Lock" is in effect
ctrl entry when "Control" is down
altg entry when "Alt Graph" is down
numl entry when "Num Lock" is in effect

up entry when a key goes up

All tables other than up refer to the action generated when a key goes down. Entries in
the up table are used only for shift keys, since the shift in question goes away when
the key goes up, except for keys such as "Caps Lock" or "Num Lock"; the keyboard
streams module makes the key look as if it were a latching key.

man pages section 4: File Formats ¢ Last Revised 22 Apr 1999

keytables(4)

A table name of all indicates that the entry for all tables should be set to the specified
value, with the following exception: for entries with a value other than hole, the entry
for the numl table should be set to nonl, and the entry for the up table should be set
to nop.

The code specifies the effect of the key in question when the specified shift key is
down. A code consists of either:

® A character, which indicates that the key should generate the given character. The

character can either be a single character, a single character preceded by * which
refers to a "control character" (for instance, “c is control-C), or a C-style character
constant enclosed in single quote characters (’), which can be expressed with
C-style escape sequences such as \r for RETURN or \000 for the null character.
Note that the single character may be any character in an 8-bit character set, such

as ISO 8859 /1.

A string, consisting of a list of characters enclosed in double quote characters (").
Note that the use of the double quote character means that a code of double quote
must be enclosed in single quotes.

One of the following expressions:

shiftkeys+leftshift the key is to be the left-hand "Shift" key
shiftkeys+rightshift the key is to be the right-hand "Shift" key
shiftkeys+leftctrl the key is to be the left-hand "Control" key
shiftkeys+rightctrl the key is to be the right-hand "Control" key
shiftkeys+alt the key is to be the "Alt" shift key
shiftkeys+altgraph the key is to be the "Alt Graph" shift key
shiftkeys+capslock the key is to be the "Caps Lock" key
shiftkeys+shiftlock the key is to be the "Shift Lock" key
shiftkeys+numlock the key is to be the "Num Lock" key
buckybits+systembit the key is to be the "Stop" key in SunView; this is
normally the L1 key, or the SETUP key on the
VT100 keyboard
buckybits+metabit the key is to be the "meta" key. That is, the "Left" or
"Right" key on a Sun-2 or Sun-3 keyboard or the
"diamond" key on a Sun-4 keyboard
compose the key is to be the "Compose" key
ctrlg on the "VT100" keyboard, the key is to transmit the

control-Q character (this would be the entry for the
"Q" key in the ctrl table)

File Formats 221

keytables(4)

222

ctrls

noscroll

string+uparrow
string+downarrow
string+leftarrow
string+rightarrow
string+homearrow

fa acute

fa cedilla
fa cflex

fa_ grave

fa_tilde
fa umlaut

nonl

pado
padl
pad2
pad3
pad4
pad5
padé
pad?
pads
pad9
paddot

padenter

on the "VT100" keyboard, the key is to transmit the
control-S character (this would be the entry for the
"S" key in the ctrl table)

on the "VT100" keyboard, the key is to be the "No
Scroll" key

the key is to be the "up arrow" key
the key is to be the "down arrow" key
the key is to be the "left arrow" key
the key is to be the "right arrow" key
the key is to be the "home" key

the key is to be the acute accent "floating accent"
key

the key is to be the cedilla "floating accent” key
the key is to be the circumflex "floating accent" key

the key is to be the grave accent "floating accent"
key

the key is to be the tilde "floating accent” key
the key is to be the umlaut "floating accent” key

this is used only in the Num Lock table; the key is
not to be affected by the state of Num Lock

the key is to be the "0" key on the numeric keypad
the key is to be the "1" key on the numeric keypad
the key is to be the "2" key on the numeric keypad
the key is to be the "3" key on the numeric keypad
the key is to be the "4" key on the numeric keypad
the key is to be the "5" key on the numeric keypad
the key is to be the "6" key on the numeric keypad
the key is to be the "7" key on the numeric keypad
the key is to be the "8" key on the numeric keypad
the key is to be the "9" key on the numeric keypad
the key is to be the "." key on the numeric keypad

the key is to be the "Enter" key on the numeric
keypad

man pages section 4: File Formats ¢ Last Revised 22 Apr 1999

EXAMPLES

padplus
padminus
padstar
padslash
padequal
padsep

1f (n)
rf (n)
tf (n)
bf (n)
nop

error

idle

oops

reset

swap number] with number2

key number] same as
number2

keytables(4)
the key is to be the "+" key on the numeric keypad
the key is to be the "-" key on the numeric keypad
the key is to be the "*" key on the numeric keypad
the key is to be the "/" key on the numeric keypad
the key is to be the "=" key on the numeric keypad

the key is to be the "," (separator) key on the
numeric keypad

the key is to be the left-hand function key n
the key is to be the right-hand function key n
the key is to be the top function key n

the key is to be the "bottom" function key n
the key is to do nothing

this code indicates an internal error; to be used only
for keystation 126, and must be used there

this code indicates that the keyboard is idle (that is,
has no keys down); to be used only for all entries
other than the numl and up table entries for
keystation 127, and must be used there

this key exists, but its action is not defined; it has
the same effect as nop

this code indicates that the keyboard has just been
reset; to be used only for the up table entry for
keystation 127, and must be used there.

exchanges the entries for keystations numberl and
number2.

sets the entries for keystation number1 to be the
same as those for keystation number2. If the file does
not specify entries for keystation number2, the
entries currently in the translation table are used; if
the file does specify entries for keystation number2,
those entries are used.

EXAMPLE 1 Example of setting multiple keystations.

The following entry sets keystation 15 to be a “hole” (that is, an entry indicating that
there is no keystation 15); sets keystation 30 to do nothing when Alt Graph is down,

myn

generate

when Shift is down, and generate "1" under all other circumstances; and

sets keystation 76 to be the left-hand Control key.

File Formats 223

keytables(4)

EXAMPLE 1 Example of setting multiple keystations. (Continued)

key 15 all hole
key 30 base 1 shift ! caps 1 ctrl 1 altg nop
key 76 all shiftkeys+leftctrl up shiftkeys+leftctrl

EXAMPLE 2 Exchange DELETE and BACKSPACE keys

The following entry exchanges the Delete and Back Space keys on the Type 4
keyboard:

swap 43 with 66

Keystation 43 is normally the Back Space key, and keystation 66 is normally the Delete
key.

EXAMPLE 3 Disable CAPS LOCK key

The following entry disables the Caps Lock key on the Type 3 and U.S. Type 4
keyboards:

key 119 all nop

EXAMPLE 4 Standard translation tables for the U.S. Type 4 keyboard

The following specifies the standard translation tables for the U.S. Type 4 keyboard:

key 0 all hole

key 1 all buckybits+systembit up buckybits+systembit
key 2 all hole

key 3 all 1£(2)

key 4 all hole

key 5 all tf(1)

key 6 all tf(2)

key 7 all tf(10)

key 8 all tf(3)

key 9 all tf(11)

key 10 all tf(4)

key 11 all tf(12)

key 12 all tf(5)

key 13 all shiftkeys+altgraph up shiftkeys+altgraph
key 14 all tf(e6)

key 15 all hole

key 16 all tf(7)

key 17 all tf(8)

key 18 all tf(9)

key 19 all shiftkeys+alt up shiftkeys+alt
key 20 all hole

key 21 all rf(1)

key 22 all rf(2)

key 23 all rf(3)

key 24 all hole
key 25 all 1£(3)
key 26 all 1f(4)

224 man pages section 4: File Formats ¢ Last Revised 22 Apr 1999

EXAMPLE 4 Standard translation tables for the U.S. Type 4 keyboard

key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

shiftkeys+leftctrl up shiftkeys+leftctrl

caps 1 ctrl
caps 2 ctrl
caps 3 ctrl
caps 4 ctrl
caps 5 ctrl
caps 6 ctrl
caps 7 ctrl
caps 8 ctrl
caps 9 ctrl
caps 0 ctrl
caps - ctrl
caps = ctrl
caps ctrl
padequal

padslash

padstar

caps
caps
caps
caps
caps
caps
caps
caps
caps
caps
caps
caps

pad7
pads

) numl pad9

—“ — "W OHOKHA®HE =IO

) numl padequal

ctrl
ctrl
ctrl
ctrl
ctrl
ctrl
ctrl
ctrl
ctrl
ctrl
ctrl
ctrl

rf (8
rf (9
bf (15) numl padminus
1£(7

1 altg nop
“@ altg nop
3 altg nop
4 altg nop
5 altg nop
“* altg nop
7 altg nop
8 altg nop
9 altg nop
0 altg nop
* altg nop
= altg nop
altg nop

“Q altg nop
“W altg nop
“E altg nop
“R altg nop
T altg nop
*Y altg nop
“U altg nop
'\t’ altg nop
0 altg nop
“P altg nop
*[altg nop
*] altg nop

shift A caps A ctrl “A altg nop
shift S caps S ctrl “S altg nop
d shift D caps D ctrl "D altg nop

all hole

all hole

all *[

base 1 shift !
base 2 shift @
base 3 shift #
base 4 shift $
base 5 shift %
base 6 shift *
base 7 shift &
base 8 shift *
base 9 shift (
base 0 shift)
base - shift _
base = shift +
base shift ~
all '\b’

all hole

all rf(4) numl
all rf(5) numl
all rf(6) numl
all bf (13)

all 1£(5)

all bf (10

all 1f(6)

all hole

all "\t’

base g shift Q
base w shift W
base e shift E
base r shift R
base t shift T
base y shift Y
base u shift U
base 1 shift I
base o shift O
base p shift P
base [shift {
base] shift }
all "\177'

all compose
all rf(7) numl
all) numl
all

all

all)

all 1£(8)

all hole

all hole

all

base a

base s

base

base £

shift F caps F ctrl “F altg nop

keytables(4)

(Continued)

File Formats

225

keytables(4)

SEE ALSO

EXAMPLE 4 Standard translation tables for the U.S. Type 4 keyboard

key 81 base g shift G caps G ctrl *“G altg nop

key 82 base h shift H caps H ctrl ’'\b’ altg nop

key 83 base j shift J caps J ctrl ’‘\n’ altg nop

key 84 base k shift K caps K ctrl ’\v’ altg nop

key 85 base 1 shift L caps L ctrl "L altg nop

key 86 base shift : caps ; ctrl ; altg nop

key 87 base ’\" shift "’ caps ’'\’’ ctrl "\’’ altg nop
key 88 base ’'\\’ shift | caps '\\’ ctrl *\ altg nop

key 89 all ’\r’

key 90 all bf (1 numl padenter

1)
key 91 all rf(10) numl pad4
key 92 all rf(11) numl pads
key 93 all rf(12) numl padé
key 94 all bf (8) numl padO
key 95 all 1£(9)

key 96 all h le

key 97 all 1f(10)

key 98 all shiftkeys+numlock

key 99 all shiftkeys+leftshift up shiftkeys+leftshift

A

key 100 Dbase z shift Z caps Z ctrl “Z altg nop
key 101 base x shift X caps X ctrl *X altg nop
key 102 base c shift C caps C ctrl “C altg nop
key 103 base v shift V caps V ctrl *V altg nop
key 104 base b shift B caps B ctrl "B altg nop
key 105 base n shift N caps N ctrl "N altg nop
key 106 base m shift M caps M ctrl ‘\r’ altg nop
key 107 Dbase , shift < caps , ctrl , altg nop
key 108 Dbase . shift > caps . ctrl altg nop
key 109 Dbase / shift ? caps / ctrl *_ altg nop

key 110 all shiftkeys+rightshift up shiftkeys+rightshift
key 111 all '\n’

key 112 all rf(13) numl padl

key 113 all rf(14) numl pad2

key 114 all rf(15) numl pad3

key 115 all hole

key 116 all hole

key 117 all hole

key 118 all 1f(16)

key 119 all shiftkeys+capslock

key 120 all buckybits+metabit up buckybits+metabit
key 121 base ’ ' shift ’ ' caps ' ' ctrl "“e altg ' '
key 122 all buckybits+metabit up buckybits+metabit
key 123 all hole

key 124 all hole

key 125 all bf(14) numl padplus

key 126 all error numl error up hole

key 127 all idle numl idle up reset

loadkeys(1)

226 man pages section 4: File Formats ¢ Last Revised 22 Apr 1999

(Continued)

NAME
SYNOPSIS

DESCRIPTION

krb5.conf(4)

krb5.conf — Kerberos configuration file

/etc/krb5/krb5.conf

The krb5 . conf file contains Kerberos configuration information, including the
locations of KDCs and administration daemons for the Kerberos realms of interest,
defaults for the current realm and for Kerberos applications, and mappings of host
names onto Kerberos realms. This file must reside on all Kerberos clients.

The format of the krb5 . conf consists of sections headings in square brackets. Each
section may contain zero or more configuration variables (called relations), of the form:

relation= relation-value

or
relation-subsection = {

relation= relation-value
relation= relation-value

}

The krb5 . conf file may contain any or all of the following seven sections:

libdefaults

appdefaults

realms

domain realm

logging

capaths

Contains default values used by the Kerberos V5
library.

Contains subsections for Kerberos V5 applications,
where relation-subsection is the name of an application.
Each subsection describes application-specific defaults.

Contains subsections for Kerberos realms, where
relation-subsection is the name of a realm. Each
subsection contains relations that define the properties
for that particular realm.

Contains relations which map domain names and
subdomains onto Kerberos realm names. This is used
by programs to determine what realm a host should be
in, given its fully qualified domain name.

Contains relations which determine how Kerberos
programs are to perform logging.

Contains the authentication paths used with direct
(nonhierarchical) cross-realm authentication. Entries in
this section are used by the client to determine the
intermediate realms which may be used in cross-realm

File Formats 227

krb5.conf(4)

228

[libdefaults]

[appdefaults]

authentication. It is also used by the end-service when
checking the transited field for trusted intermediate
realms.

kdc For a KDC, may contain the location of the kdc . conf
file.

The [libdefaults] section may contain any of the following relations:

default_realm Identifies the default Kerberos realm for the client. Set
its value to your Kerberos realm.

default tgs_enctypes Identifies the supported list of session key encryption
types that should be returned by the KDC. The list may
be delimited with commas or whitespace. The
supported encryption types are des-cbc-crc and
des-cbc-md5.

default_tkt_enctypes Identifies the supported list of session key encryption
types that should be requested by the client. The
format is the same as for default tkt enctypes.
The supported encryption types are des-cbc-crc and
des-cbc-md5.

clockskew Sets the maximum allowable amount of clock skew in
seconds that the library will tolerate before assuming
that a Kerberos message is invalid. The default value is
300 seconds, or five minutes.

This section contains subsections for Kerberos V5 applications, where
relation-subsection is the name of an application. Each subsection contains relations that
define the default behaviors for that application.

gkadmin = {
help url = http://localhost:8888/ab2/coll.384.1/SEAM

}

The following application defaults can be set to true or false:

kinit
forwardable
proxiable
renewable
no_addresses
max life = delta_time
max_renewable life = delta_time

(See kinit (1) for the valid time duration formats
you can specify for delta_time.)

man pages section 4: File Formats ¢ Last Revised 15 Nov 2001

[realms]

krb5.conf(4)

In the following example, kinit will get forwardable tickets by default, and telnet
has three default behaviors specified:

[appdefaults]
kinit = {
forwardable = true
}
telnet = {
forward = true
encrypt = true

autologin = true

The application defaults specified here are overridden by those specified in the
[realms] section.

This section contains subsections for Kerberos realms, where relation-subsection is the
name of a realm. Each subsection contains relations that define the properties for that
particular realm. The following relations may be specified in each [realms]
subsection:

kdc The name of a host running a KDC for that realm. An
optional port number (separated from the hostname by
a colon) may be included.

admin_server Identifies the host where the Kerberos administration
daemon (kadmind) is running. Typically, this is the
master KDC.

application defaults Application defaults that are specific to a particular

realm can be specified within a [realms] subsection.
Realm-specific application defaults override the global
defaults specified in the [appdefaults] section.

kpasswd_server Identifies the host where the Kerberos
password-changing server is running. Typically, this is
the same as host indicated in the admin_server. If
this parameter is omitted, the host in admin_server
is used. You can also specify a port number if the server
indicated by kpasswd_server runs on a port other
than 464 (the default). The format of this parameter is:
hostnamel:port].

kpasswd_protocol Identifies the protocol to be used when communicating
with the server indicated by kpasswd_server. By
default, this parameter is defined to be RPCSEC_GSS,
which is the protocol used by SEAM-based
administration servers. To be able to change a
principal’s password stored on non-SEAM-based
Kerberos server, such as Microsoft Active Directory or

File Formats 229

krb5.conf(4)

230

[domain_realm]

[logging]

MIT Kerberos, this value should be SET CHANGE. This
indicates that a non-RPC- based protocol will be used
to communicate the password change request to the
server in the kpasswd_server entry.

Note that kpasswd server and kpasswd protocol are realm-specific parameters.
Most often, you need to specify them only when using a non-SEAM-based Kerberos
server. Otherwise, the change request is sent over RPCSEC_GSS to the SEAM
administration server.

This section provides a translation from a domain name or hostname to a Kerberos
realm name. The relation can be a host name, or a domain name, where domain names
are indicated by a period (*.") prefix. relation-value is the Kerberos realm name for that
particular host or domain. Host names and domain names should be in lower case.

If no translation entry applies, the host’s realm is considered to be the hostname’s
domain portion converted to upper case. For example, the following

[domain realm] section maps crash.mit.edu into the TEST.ATHENA.MIT.EDU
realm:

[domain realm]
.mit.edu = ATHENA.MIT.EDU
mit.edu = ATHENA.MIT.EDU
crash.mit.edu = TEST.ATHENA.MIT.EDU
.fubar.org = FUBAR.ORG
fubar.org = FUBAR.ORG

All other hosts in the mit . edu domain will map by default to the ATHENA .MIT . EDU
realm, and all hosts in the fubar . org domain will map by default into the

FUBAR . ORG realm. Note the entries for the hosts mit .edu and fubar.org. Without
these entries, these hosts would be mapped into the Kerberos realms EDU and ORG,
respectively.

This section indicates how Kerberos programs are to perform logging. There are two
types of relations for this section: relations to specify how to log and a relation to
specify how to rotate kdc log files.

The following relations may be defined to specify how to log. The same relation can be
repeated if you want to assign it multiple logging methods.

admin_server Specifies how to log the Kerberos administration
daemon (kadmind). The default is
FILE:/var/krb5/kadmin.log.

default Specifies how to perform logging in the absence of
explicit specifications otherwise.

kdc Specifies how the KDC is to perform its logging. The
defaultis FILE: /var/krb5/kdc.log.

man pages section 4: File Formats ¢ Last Revised 15 Nov 2001

krb5.conf(4)

The admin_server, default, and kdc relations may have the following values:

FILE:filename

or

FILE=filename This value causes the entity’s logging
messages to go to the specified file. If the =’
form is used, the file is overwritten. If the *.’
form is used, the file is appended to.

STDERR This value causes the entity’s logging
messages to go to its standard error stream.

CONSOLE This value causes the entity’s logging
messages to go to the console, if the system
supports it.

DEVICE=devicename This causes the entity’s logging messages to
go to the specified device.

SYSLOG [: severity [: facility]] This causes the entity’s logging messages to

go to the system log.

The severity argument specifies the default severity of system log messages. This may
be any of the following severities supported by the sys1og(3C) call, minus the LOG_
prefix: LOG_EMERG, LOG_ALERT, LOG CRIT, LOG_ERR, LOG WARNING, LOG NOTICE,
LOG_INFO, and LOG_DEBUG. For example, a value of CRIT would specify LOG_CRIT
severity.

The facility argument specifies the facility under which the messages are logged. This
may be any of the following facilities supported by the sys1og(3C) call minus the
LOG_ prefix: LOG_KERN, LOG_USER, LOG_MAIL, LOG DAEMON, LOG_AUTH, LOG_ LPR,
LOG_NEWS, LOG_UUCP, LOG_CRON, and LOG_LOCALO through LOG_LOCAL7.

If no severity is specified, the default is ERR. If no facility is specified, the default is
AUTH.

The following relation may be defined to specify how to rotate kdc log files if the
FILE: value is being used to log:

kdc rotate A relation subsection that enables kdc logging to be rotated to
multiple files based on a time interval. This can be used to avoid
logging to one file, which may grow too large and bring the KDC
to a halt.

The time interval for the rotation is specified by the period relation. The number of
log files to be rotated is specified by the versions relation. Both the period and
versions (described below) should be included in this subsection. And, this
subsection applies only if the kdc relation has a FILE: value.

The following relations may be specified for the kdc_rotate relation subsection:

File Formats 231

krb5.conf(4)

period=delta_time Specifies the time interval before a new log file is
created. See the Time Formats section in kinit(1) for
the valid time duration formats you can specify for
delta_time. If period is not specified or set to "never",
no rotation will occur.

Specifying a time interval does not mean that the log files will be rotated at the time
interval based on real time. This is because the time interval is checked at each attempt
to write a record to the log, or when logging is actually occurring. Therefore, rotation
occurs only when logging has actually occurred for the specified time interval.

versions=number Specifies how many previous versions will be saved
before the rotation begins. A number will be appended
to the log file, starting with 0 and ending with (number
- 1). For example, if versions is set to 2, up to three
logging files will be created (filename, filename.0, and
filename.1) before the first one is overwritten to begin
the rotation.

Notice that if versions is not specified or set to 0, only one log file will be created,
but it will be overwritten whenever the time interval is met.

In the following example, the logging messages from the Kerberos administration
daemon will go to the console. The logging messages from the KDC will be appended
to the /var/krb5/kdc. log, which will be rotated between twenty-one log files with
a specified time interval of a day.
[logging]
admin_server = CONSOLE
kdc = FILE:/export/logging/kadmin.log
kdc_rotate = {
period = 1d
versions = 20

[capaths] | In order to perform direct (non-hierarchical) cross-realm authentication, a database is
needed to construct the authentication paths between the realms. This section defines
that database.

A client will use this section to find the authentication path between its realm and the
realm of the server. The server will use this section to verify the authentication path
used by the client, by checking the transited field of the received ticket.

There is a subsection for each participating realm, and each subsection has relations
named for each of the realms. The relation-value is an intermediate realm which may
participate in the cross-realm authentication. The relations may be repeated if there is
more than one intermediate realm. A value of ".” means that the two realms share keys
directly, and no intermediate realms should be allowed to participate.

232 man pages section 4: File Formats ¢ Last Revised 15 Nov 2001

krb5.conf(4)

There are n**2 possible entries in this table, but only those entries which will be
needed on the client or the server need to be present. The client needs a subsection
named for its local realm, with relations named for all the realms of servers it will
need to authenticate with. A server needs a subsection named for each realm of the
clients it will serve.

For example, ANL . GOV, PNL.GOV, and NERSC . GOV all wish to use the ES . NET realm
as an intermediate realm. ANL has a sub realm of TEST . ANL . GOV, which will
authenticate with NERSC . GOV but not PNL.GOV. The [capath] section for ANL.GOV
systems would look like this:

[capaths]

ANL.GOV = {
TEST.ANL.GOV = .
PNL.GOV = ES.NET
NERSC.GOV = ES.NET
ES.NET = .

}

TEST.ANL.GOV = {
ANL.GOV = .
}

PNL.GOV = {
ANL.GOV = ES.NET
}

NERSC.GOV = {
ANL.GOV = ES.NET

}

ES.NET = {
ANL.GOV

The [capath] section of the configuration file used on NERSC . GOV systems would
look like this:

[capaths]
NERSC.GOV = {
ANL.GOV = ES.NET
TEST.ANL.GOV = ES.NET
TEST.ANL.GOV = ANL.GOV
PNL.GOV = ES.NET
ES.NET = .

}

ANL.GOV = {
NERSC.GOV = ES.NET

}

PNL.GOV = {
NERSC.GOV = ES.NET

}

File Formats 233

krb5.conf(4)

ES.NET = {
NERSC.GOV =

TEST.ANL.GOV = {
NERSC.GOV = ANL.GOV
NERSC.GOV = ES.NET

In the above examples, the ordering is not important, except when the same relation is
used more than once. The client will use this to determine the path. (It is not important
to the server, since the transited field is not sorted.)

EXAMPLES | EXAMPLE 1 Sample file

Here is an example of a generic krb5 . conf file:

[libdefaults]
ticket_lifetime = 600
default_realm = ATHENA.MIT.EDU
default_tkt_enctypes = des-cbc-crc
default_tgs_enctypes = des-cbc-crc

[realms]
ATHENA.MIT.EDU = {
kdc = kerberos.mit.edu
kdc = kerberos-1.mit.edu
kdc
admin_server = kerberos.mit.edu
default_domain = mit.edu

kerberos-2.mit.edu

FUBAR.ORG = {
kdc = kerberos.fubar.org
kdc = kerberos-1.fubar.org
admin_server = kerberos.fubar.org

}

[domain_ realm]
.mit.edu = ATHENA.MIT.EDU
mit.edu = ATHENA.MIT.EDU

FILES | /var/krb5/kdc.log KDC logging file

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

234 man pages section 4: File Formats ¢ Last Revised 15 Nov 2001

krb5.conf(4)
SEE ALSO | kinit(1), syslog(3C), SEAM(5), attributes(b)

NOTES | If the krb5 . conf file is not formatted properly, the telnet command will fail.
However, the dt1login and login commands will still succeed, even if the

krbs . conf file is specified as required for the commands. If this occurs, the following
error message will be displayed:

Error initializing krb5: Improper format of

To bypass any other problems that may occur, you should fix the file as soon as
possible.

File Formats 235

ldapfilter.conf(4)

236

NAME
SYNOPSIS

DESCRIPTION

ldapfilter.conf — configuration file for LDAP filtering routines

/etc/opt/SUNWconn/ldap/current/ldapfilter.conf
The 1dapfilter.conf file contains information used by the LDAP filtering routines.

Blank lines and lines that begin with a hash character ("#’) are treated as comments
and ignored. The configuration information consists of lines that contain one to five
tokens. Tokens are separated by white space, and double quotes can be used to
include white space inside a token.

The file consists of a sequence of one or more filter sets. A filter set begins with a line
containing a single token called a tag.

The filter set consists of a sequence of one or more filter lists. The first line in a filter
list must contain four or five tokens: the value pattern, the delimiter list, a filter template,
a match description, and an optional search scope. The value pattern is a regular
expression that is matched against the value passed to the LDAP library call to select
the filter list.

The delimiter list is a list of the characters (in the form of a single string) that can be
used to break the value into distinct words.

The filter template is used to construct an LDAP filter (see description below)

The match description is returned to the caller along with a filter as a piece of text that
can be used to describe the sort of LDAP search that took place. It should correctly
compete both of the following phrases: "One match description match was found for..."
and "Three match description matches were found for...."

"non

The search scope is optional, and should be one of "base", "onelevel", or "subtree". If
search scope is not provided, the default is "subtree".

The remaining lines of the filter list should contain two or three tokens, a filter template,
a match description and an optional search scope .

The filter template is similar in concept to a print £(3C) style format string. Everything
is taken literally except for the character sequences:

SV Substitute the entire value string in place of the $v.

$vs Substitute the last word in this field.

$vN Substitute word N in this field (where N is a single digit 1-9).
Words are numbered from left to right within the value starting at
1.

$vM-N Substitute the indicated sequence of words where M and N are

both single digits 1-9.

$vN- Substitute word N through the last word in value where N is
again a single digit 1-9.

man pages section 4: File Formats ¢ Last Revised 25 May 1998

EXAMPLES

ATTRIBUTES

SEE ALSO

ldapfilter.conf(4)

EXAMPLE 1 The following ldap filter confiﬁuration file contains two filter sets, examplel

and example2 onelevel, each of which contains four filter lists.

ldap filter file

#
examplel
=" "o gV "arbitrary filter"
"[0-9] [0-9-]%*" "on " (telephoneNumber=*%v) " "phone number"
"e@" "o "(mail=%v)" "email address"
LU P e "o " (cn=%v1l* %v2-)" "first initial"
|l.*[_ _] .$Il l|_ _l| "(Cn:%Vl—*)" l|last initial"
LN} _] n n _n " | (sn=%vl-) (cn=%vl-))" "exact"
" (] (sn~=%v1l-) (cn~=%vl-))" "approximate"
nokn oo " (] (cn=%v1l) (sn=%v1l) (uid=%vl))" "exact"
"(] (cn~=%vl) (sn~=%vl))" "approximate"

"example2 onelevel"
el -1 I " (| (0=%v) (c=%V) (1=%v) (co=%v))" "exact" "onelevel"

" (| (o~=%V) (c~=%V) (1~=%V) (co~=5%V))" "approximate"
"onelevel"
mon "eon " (| (0=%v) (1=%V) (co=%v) " "exact" "onelevel"

" (| (o~=%V) (1~=%V) (co~=%V)" "approximate" '"onelevel"
"on "on " (associatedDomain=%v)" "exact" "onelevel"
"ok " " (| (o=%v) (1=%V) (co=%v)" "exact" "onelevel™"

" (] (o~=%Vv) (1~=%Vv) (co~=%v)" "approximate" "onelevel"

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE
Availability SUNWIldap (32-bit)
SUNWIdapx (64-bit)
Stability Level Evolving

ldap getfilter(3LDAP), 1dap ufn(3LDAP), attributes(5)

File Formats

237

ldapsearchprefs.conf(4)

238

NAME
SYNOPSIS

DESCRIPTION

ldapsearchprefs.conf — configuration file for LDAP search preference routines

/etc/opt/SUNWconn/ldap/current/ldapsearchprefs.conf

The 1dapsearchprefs. conf file contains information used by LDAP when
searching the directory. Blank lines and lines that start with a hash (‘#’) character are
treated as comments and ignored. Non-comment lines contain one or more tokens.
Tokens are separated by white space, and double quotes can be used to include white
space inside a token.

Search preferences are typically used by LDAP-based client programs to specify what
a user may search for, which attributes are searched, and which options are available
to the user.

The first non-commment line specifies the version of the template information and
must contain the token Version followed by an integer version number. For example:

Version 1
The current version is 1, so the above example is always the correct opening line.

The remainder of the file consists of one or more search preference configurations. The
first line of a search preference is a human-readable name for the type of object being
searched for, for example People or Organizations. This name is stored in the
so_objtypeprompt member of the 1dap searchobj structure (see
ldap_searchprefs(3LDAP)). For example:

People
specifies a label for a search preference designed to find X.500 entries for people.

The next line specifies a list of options for this search object. The only option currently
allowed is "internal” which means that this search object should not be presented
directly to a user. Options are placed in the so_options member of the Idap_searchobj
structure and can be tested using the LDAP_IS_SEARCHOBJ_OPTION_SET () macro.
Use " if no special options are required.

The next line specifes a label to use for "Fewer Choices" searches. "Fewer Choices"
searches are those where the user’s input is fed to the Idap_filter routines to determine
an appropriate filter to use. This contrasts with explicitly-constructed LDAP filters, or
"More Choices" searches, where the user can explicitly construct an LDAP filter.

For example:

"Search For:"

can be used by LDAP client programs to label the field into which the user can type a
"Fewer Choices" search.

The next line specifies an LDAP filter prefix to append to all "More Choices" searched.
This is typically used to limit the types of entries returned to those containing a
specific object class. For example:

man pages section 4: File Formats ¢ Last Revised 25 May 1998

ldapsearchprefs.conf(4)

" (& (objectClass=person) "

would cause only entries containing the object class person to be returned by a search.
Note that parentheses may be unbalanced here, since this is a filter prefix, not an entire
filter.

The next line is an LDAP filter tag which specifies the set of LDAP filters to be applied
for "Fewer Choices" searching. The line

"x500-People"

would tell the client program to use the set of LDAP filters from the Idap filter
configuration file tagged "x500-People".

The next line specifies an LDAP attribute to retrieve to help the user choose when
several entries match the search terms specified. For example:

"title"

specifies that if more than one entry matches the search criteria, the client program
should retrieve the title attribute that and present that to the user to allow them to
select the appropriate entry. The next line specifies a label for the above attribute, for
example,

"Title:"

Note that the values defined so far in the file are defaults, and are intended to be
overridden by the specific search options that follow.

The next line specifies the scope of the LDAP search to be performed. Acceptable
values are subtree, onelevel, and base.

The next section is a list of "More Choices" search options, terminated by a line
containing only the string END. For example:

"Common Name" cn 11111 " W
"Surname" sn 11111 wn nwn

"Business Phone" "telephoneNumber" 11101 nn wn
END

Each line represents one method of searching. In this example, there are three ways of
searching - by Common Name, by Surname, and by Business Phone number. The first
field is the text which should be displayed to user. The second field is the attribute
which will be searched. The third field is a bitmap which specifies which of the match
types are permitted for this search type. A "1" value in a given bit position indicates
that a particular match type is valid, and a "0" indicates that is it not valid. The fourth
and fifth fields are, respectively, the select attribute name and on-screen name for the
selected attribute. These values are intended to override the defaults defined above. If
no specific values are specified, the client software uses the default values above.

The next section is a list of search match options, terminated by a a line containing
only the string END. Example:

File Formats 239

ldapsearchprefs.conf(4)

"exactly matches" "(%a=%v))"
"approximately matches" "(%a~=%v))"
"starts with" " (Fa=%vr))"

"ends with" "(%a=*3v))"

"contains" "(Sa=*Fvr))"

END

In this example, there are five ways of refining the search. For each method, there is an
LDAP filter suffix which is appended to the ldap filter.

EXAMPLES | EXAMPLE 1 A Sample Configuration Using Search Preference for “people”

The following example illustrates one possible configuration of search preferences for
"people".

Version number

Version 1

Name for this search object

People

Label to place before text box user types in

"Search For:"

Filter prefix to append to all "More Choices" searches

" (& (objectClass=person) "

Tag to use for "Fewer Choices" searches - from ldapfilter.conf file
"x500-People"

If a search results in > 1 match, retrieve this attribute to help
user distinguish between the entries...

multilineDescription

...and label it with this string:
"Description"

Search scope to use when searching
subtree

Follows a list of "More Choices" search options. Format is:
Label, attribute, select-bitmap, extra attr display name, extra attr ldap name
If last two are null, "Fewer Choices" name/attributes used

"Common Name" cn 11111 "m unm
"Surname" sn 11111 "n un
"Business Phone" "telephoneNumber" 11101 "™ v
"E-Mail Address" "mail" 11111 v ww
"Unigname" muidn 11111 nmwo oww
END

Match types

"exactly matches" "(%a=%v))"
"approximately matches" "(%a~=%v))"
"starts with" " (%a=%vk))"
"ends with" " (Sa=*3v))"
"contains" " (Sa=*Syr))"
END

In this example, the user may search for People. For "fewer choices" searching, the tag
for the 1dapfilter.conf(4) file is "x500-People".

ATTRIBUTES | See attributes(5) for a description of the following attributes:

240 man pages section 4: File Formats Last Revised 25 May 1998

ldapsearchprefs.conf(4)

ATTRIBUTE TYPE ATTRIBUTE VALUE
Availability SUNWIldap (32-bit)
SUNWIdapx (64-bit)
Stability Level Evolving

SEE ALSO | ldap_searchprefs(3LDAP), attributes(5)

File Formats 241

ldaptemplates.conf(4)

242

NAME
SYNOPSIS

DESCRIPTION

ldaptemplates.conf — configuration file for LDAP display template routines

/etc/opt/SUNWconn/ldap/current/ldaptemplates.conf

The 1daptemplates. conf file contains information used by the LDAP display
routines.

Blank lines and lines that start with a hash character ('#’) are treated as comments and
ignored. Non-comment lines contain one or more tokens. Tokens are separated by
white space, and double quotes can be used to include white space inside a token.

The first non-commment line specifies the version of the template information and
must contain the token Version followed by an integer version number. For example,

Version 1
The current version is 1, so the above example is always the correct first line.

The remainder of the file consists of one or more display templates. The first two lines
of the display template each contain a single token that specifies singular and plural
names for the template in a user-friendly format. For example,

"Person"
"People"

specifies appropriate names for a template designed to display person information.

The next line specifies the name of the icon or similar element that is associated with
this template. For example,

"person icon"

"

The next line is a blank-separated list of template options. " can be used if no options
are desired. Available options are: addable (it is appropriate to allow entries of this
type to be added), modrdn (it is appropriate to offer the modify rdn operation),
altview (this template is an alternate view of another template). For example,

"addable" "modrdn"

The next portion of the template is a list of X.500 object classes that is used to
determine whether the template should be used to display a given entry. The object
class information consists of one or more lines, followed by a terminating line that
contains the single token END. Each line contains one or more object class names, all of
which must be present in a directory entry. Multiple lines can be used to associate
more than one set of object classes with a given template. For example,

emailPerson
orgPerson
END

means that the template is appropriate for display of emailPerson entries or
orgPerson entries.

man pages section 4: File Formats ¢ Last Revised 25 May 1998

ldaptemplates.conf(4)

The next line after the object class list is the name of the attribute to authenticate as to
make changes (use "" if it is appropriate to authenticate as the entry itself). For
example,

"owner"

The next line is the default attribute to use when naming a new entry, for example,

nen"

The next line is the distinguished name of the default location under which new
entries are created. For example,

"o=XYZ, c=Us"

The next section is a list of rules used to assign default values to new entries. The list
should be terminated with a line that contains the single token END. Each line in this
section should either begin with the token constant and be followed by the name of
the attribute and a constant value to assign, or the line should begin with addersdn
followed by the name of an attribute whose value will be the DN of the person who
has authenticated to add the entry. For example,

constant associatedDomain XYZ.us
addersdn seeAlso
END

The last portion of the template is a list of items to display. It consists of one or more
lines, followed by a terminating line that contains the single token END. Each line is
must begin with the token samerow or the token item

It is assumed that each item appears on a row by itself unless it was preceded by a
samerow line (in which case it should be displayed on the same line as the previous
item, if possible). Lines that begin with samerow should not have any other tokens on
them.

Lines that begin with item must have at least three more tokens on them: an item
type, a label, and an attribute name. Any extra tokens are taken as extra arguments.

The item type token must be one of the following strings:

cis case-ignore string attributes

mls multiline string attributes

mail RFC-822 conformant mail address attributes

dn distinguished name pointer attributes

bool Boolean attributes

jpeg JPEG photo attributes

jpegbtn a button that will retrieve and show a JPEG photo attribute
fax FAX T.4 format image attributes

File Formats 243

ldaptemplates.conf(4)

Phone"):

item cis

faxbtn a button that will retrieve and show a FAX photo attribute
audiobtn audio attributes

time UTC time attributes

date UTC time attributes where only the date portion should be shown
url labeled Uniform Resource Locator attributes

searchact define an action that will do a directory search for other entries
linkact define an action which is a link to another display template
protected for an encrypted attribute, with values displayed as asterisks

An example of an item line for the drink attribute (displayed with label "Work

"Work Phone" telephoneNumber

EXAMPLES | EXAMPLE 1 A Sample Configuration File Containing a Template that Displays People Entries

entries.

#

The following template configuration file contains a templates for display of people

LDAP display templates

#

Version must be 1 for now
#

Version 1

#

Person template

"Person"

"People"

name of the icon that is associated with this template
"person icon"

blank-separated list of template options ("" for none)
"addable"

#

objectclass list
person

END

#

name of attribute to authenticate as ("" means auth as this entry)

#

default attribute name to use when forming RDN of a new entry

#

nen"

244 man pages section 4: File Formats Last Revised 25 May 1998

ATTRIBUTES

SEE ALSO

ldaptemplates.conf(4)

EXAMPLE 1 A Sample Configuration File Containing a Template that Displays People

Entries (Continued)

#
default location when adding
"o=XYZ, c=Us"

new entries (DN; "" means no default)

#

rules used to define default values for new entries
END

#

list of items for display

item jpegbtn "View Photo" jpegPhoto "Next Photo"
item audiobtn "Play Sound" audio

item cis "Also Known As" cn

item cis "Title" title

item mls "Work Address" postalAddress

item cis "Work Phone" telephoneNumber

item cis "Fax Number" facsimileTelephoneNumber
item mls "Home Address" homePostalAddress

item cis "Home Phone" homePhone

item cis "User ID" uid

item mail "E-Mail Address" mail

item cis "Description" description

item dn "See Also" seeAlso

END

See attributes(d) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE
Availability SUNWIldap (32-bit)
SUNWIdapx (64-bit)
Stability Level Evolving

ldap disptmpl(3LDAP), l1dap_ entry2text(3LDAP), attributes(5)

File Formats 245

limits(4)
NAME
SYNOPSIS

DESCRIPTION

limits — header for implementation-specific constants

#include <limits.h>

The header <1imits.h> is a list of minimal magnitude limitations imposed by a

specific implementation of the operating system.

_ARG_MAX32

_ARG_MAX64

CHAR_BIT
CHAR_MAX
CHAR_MIN
CHILD_MAX
CLK_TCK
DBL_DIG
DBL_MAX
DBL_MIN
FCHR_MAX

FLT_DIG
FLT_MAX
FLT_MIN
INT_MAX
INT_MIN
LINK_MAX
LOGNAME_MAX

LONG_BIT
LONG_MAX

1048320

2096640

255

0

25
_sysconf(3)
15

1.7976931348623157E+308
2.2250738585072014E-308

1048576

6
3.40282347e+38F
1.17549435E-38F
2147483647
(-2147483647-1)
1000

8

32
2147483647L

9223372036854775807L

/* max length of arguments to exec
32-bit program */

/* max length of arguments to exec
64-bit program */

/* max # of bits in a char */

/* max value of a char */

/* min value of a char */

/* max # of processes per user id */
/* clock ticks per second */

/* digits of precision of a double */
/* max decimal value of a double*/
/* min decimal value of a double*/

/* historical default file size limit in
bytes */

/* digits of precision of a float */
/* max decimal value of a float */
/* min decimal value of a float */
/* max value of an int */

/* min value of an int */

/* max # of links to a single file */

/* max # of characters in a login name

*/
/* # of bits in a long */

/* max value of a long int if _TLP32
defined */

/* max value of a long int if _LP64
defined */

246 man pages section 4: File Formats Last Revised 19 Mar 1999

limits(4)

LONG_MIN

MAX_CANON

MAX_INPUT
MB_LEN_MAX

NAME_MAX

NGROUPS_MAX

NL_ARGMAX

NL_LANGMAX
NL_MSGMAX
NL_NMAX

NL_SETMAX
NL_TEXTMAX

NZERO
OPEN_MAX

PASS_MAX

PATH_MAX

PID_MAX
PIPE_BUF

PIPE_MAX

SCHAR_MAX
SCHAR_MIN
SHRT_MAX

(-2147483647-1L)

(-9223372036854775807L-1L)

256

512
5

14
16

14
32767
1

255
255

20
20

1024

999999
5120

5120

127
(-128)
32767

/* min value of a long int if _ILP32
defined */

/* min value of a long int if _LP64
defined */

/* max bytes in a line for canonical
processing */

/* max size of a char input buffer */

/* max # of bytes in a multibyte
character */

/* max # of characters in a file name */
/* max # of groups for a user */

/* max value of "digit" in calls to the
NLS printf() and scanf() */

/* max # of bytes in a LANG name */
/* max message number */

/* max # of bytes in N-to-1 mapping
characters */

/* max set number */

/* max # of bytes in a message string

*/
/* default process priority */

/* max # of files a process can have
open */

/* max # of characters in a password

*/

/* max # of characters in a path name

*/
/* max value for a process ID */

/* max # bytes atomic in write to a
pipe */

/* max # bytes written to a pipe in a
write */

/* max value of a "signed char" */
/* min value of a "signed char" */

/* max value of a "short int" */

File Formats 247

limits(4)

SHRT_MIN (-32768)
STD_BLK 1024
SYS_NMLN 257
SYSPID_MAX 1
TMP_MAX 17576
UCHAR_MAX 255
UID_MAX 2147483647
UINT_MAX 4294967295
ULONG_MAX 4294967295UL
18446744073709551615UL
USHRT_MAX 65535
USI_MAX 4294967295
WORD_BIT 32

/* min value of a "short int" */

/* #bytes in a physical I/O block */
/* 4.0 size of utsname elements */
/* also defined in sys/utsname.h */
/* max pid of system processes */

/* max # of unique names generated
by tmpnam */

/* max value of an "unsigned char" */
/* max value for a user or group ID */
/* max value of an "unsigned int" */

/* max value of an "unsigned long int"
if _ILP32 defined */

/* max value of an "unsigned long int"
if _LP64 defined */

/* max value of an "unsigned short
int" */

/* max decimal value of an "unsigned"

*/

/* # of bits in a word or int */

The following POSIX definitions are the most restrictive values to be used by a
POSIX-conforming application (see standards(5)). Conforming implementations
shall provide values at least this large.

_POSIX_ARG_MAX
_POSIX_CHILD_MAX
_POSIX_LINK_MAX
_POSIX_MAX_CANON
_POSIX_MAX_INPUT
_POSIX_NAME_MAX
_POSIX_NGROUPS_MAX
_POSIX_OPEN_MAX
_POSIX_PATH_MAX

4096
6

8
255
255
14

16
255

/* max length of arguments to exec */

/* max # of processes per user ID */

/* max # of links to a single file */

/* max # of bytes in a line of input */

/* max # of bytes in terminal input queue */
/* # of bytes in a filename */

/* max # of groups in a process */

/* max # of files a process can have open */

/* max # of characters in a pathname */

248 man pages section 4: File Formats ¢ Last Revised 19 Mar 1999

limits(4)

_POSIX_PIPE_BUF 512 /* max # of bytes atomic in write to a pipe
*/

SEE ALSO | standards(5)

File Formats 249

1c2(4)
NAME
SYNOPSIS

DESCRIPTION

MAC specific
Parameters

Host-Based LLC2
Parameters

llc2 — LLC2 Configuration file

/etc/11lc2/default/11c2.*

The [lc2 files contain information needed by LLC2 to establish the appropriate links to
the underlying MAC layer drivers as well as the parameters necessary to configure the
LLC (Logical Link Control) Class II Station Component structures for that link.

The comments are made up of one or more lines starting with the "#" character in
column 1.

The main section consists of keyword/value pairs of the form keyword=value, used to
initialize the particular adapter.

A sample of the lic2 is presented below:

devicename=/dev/dnet

deviceinstance=1

1lc2_on=1 # LLC2: On/Off on this device
deviceloopback=1
timeinterval=0
acktimer=2
rsptimer=2
polltimer=4
rejecttimer=6
rembusytimer=8
inacttimer=30
maxretry=6
xmitwindowsz=14

LLC2: Timer Multiplier
LLC2: Ack Timer

LLC2: Response Timer

LLC2: Poll Timer

LLC2: Reject Timer

LLC2: Remote Busy Timer
LLC2: Inactivity Timer
LLC2: Maximum Retry Value
LLC2: Transmit Window Size

#
#
#
#
#
#
#
#
#
#

rcvwindowsz=14 LLC2: Receive Window Size

The llc2.ppa file contains 4 parameters directly related to the underlying MAC-level
driver. These are the name of the physical device, the instance of the device, whether
LLC2 can be used with this device, and whether the device is capable of looping back
data addressed to the node’s unique MAC address, broadcast address, or multicast
addresses.

Setting the 11c2_on parameter to 1 means that LLC2 can be used with this device;
setting it to 0 means otherwise. Setting the loopback parameter to 1 means that the
LLC2 module will loop back data addressed to this node’s unique MAC address or to
a broadcast/multicast address.

The most likely use is for a media that cannot receive its own transmissions (for
example, ethernet) or when the MAC-level driver intentionally does not loop back
data addressed to the local node under the assumption that the upper layers have
already done so.

The LLC2 contains ten parameters in the configuration file
(/etc/1lc2/default/11c2.ppa) that apply to configurations using the Host-Based
LLC2 component for connection-oriented operation over an Ethernet, Token Ring, or
FDDI media.

The ten parameters break down into the following four groups:

250 man pages section 4: File Formats Last Revised 7 Feb 2000

1c2(4)

® Six parameters deal with timer settings for managing the flow of LLC elements of
procedure (PDUs) on a data link connection.

® One parameter is the multiplier that is used to determine the period of the interval
timer for the station. A value of 1 means that each tick count represents 100
milliseconds; 5 means each tick count is 500 milliseconds. Should the parameter be
omitted, the default value is 5, except for Token Ring links which use a default of
1.

® One parameter indicates how many times an operation should be retried on a data
link connection.

®m Two parameters are for controlling the number of unacknowledged I PDUs to send
or receive on a data link connection.

Additional information on these parameters can be found in ISO 8802-2:1989, Section
7.8.

The following table of Logical Link Control Parameters provides the LLC
configuration parameter names, default values, and ranges.

Parameter Description Default Range

timeinterval The timer ticks in 100 ms intervals. This 5, except TPR- 0-10
parameter is used to scale the following 5 1
timer parameters.

acktimer The connection acknowledgment timer 2 >0
length in (100 * timeinterval) ms.

rsptimer The response acknowledgment timer 2 >0
length in (100 * timeinterval) ms.

polltimer The connection poll timer length in (100 * 4 >0
timeinterval) ms.

rejecttimer The connection reject timer length in (100 * 6 >0
timeinterval) ms.

rembusytimer The connection remote busy timer length 8 >0
in (100 * timeinterval) ms.

File Formats 251

1c2(4)

Timer Parameter

Descriptions

Parameter Description Default Range

inacttimer The connection inactivity timer lengthin 30 >0
(100 * timeinterval) ms.

maxretr e maximum number of retries of an -
try Th b f ret f 6 0-100
action on a connection.

xmitwindowsz The maximum number of 14 0-127
unacknowledged I-format protocol data
units that can be transmitted on a
connection before awaiting an
acknowledgment.

rcvwindowsz The maximum number of 14 0-127
unacknowledged I-format protocol data
units that can be received on a connection
before an acknowledgment is sent.

Default values are set when the following conditions are true:

® The parameter is not set by the user.

m The user requests a default /etc/11c2/default/11c2.instance file, where
instance is the sequence number, starting with 0, of the adapter as detected by
ifconfig(1M). For example, if there are 3 adapters on the machine, the default
configuration files will be named in order as /etc/11c2/default/11c2.0,
/etc/1llc2/default/11c2.1,and /etc/1llc2/default/11lc2.2.

® The user codes a value of 0 for a parameter.

acktimer The acktimer parameter is used to manage the following sample
sequences:

1. Attempting to establish, reset, or disconnect a connection.

SABME start acknowledgment timer
OF mmmmm oo m e oo >
DISC

The acknowledgment timer expires before the receipt of a
response.

SABME start acknowledgment timer
OF mmmmmmmmm e m e m oo >
DISC

stop acknowledgment timer

2. Sending an FRMR in response to a received PDU of dubious
distinction:

252 man pages section 4: File Formats Last Revised 7 Feb 2000

polltimer

rejecttimer

1c2(4)

PDU with invalid N(R)
or

I PDU with invalid N(S)
or

K-mmmmmmmmooo——oooo - PDU of invalid length

or

unexpected UA PDU
or

response PDU with

invalid P/F setting

start acknowledgment timer

Acknowledgment timer expires before the receipt of a PDU.

start acknowledgment timer

SABME, FRMR
Cm e DISC, or DM

3. There is also a special case of the acknowledgment timer,

referred to in this implementation as the response
acknowledgment timer (rsptimer). It is used when sending
an I PDU.

start response acknowledgement timer

Response acknowledgment timer expires before the receipt of
an acknowledgment.

start poll timer
RR -------mmmmmmmmm e m e >

The polltimer parameter is used to manage situations where a
Supervisory command PDU (RR, RNR, or REJ) is sent with the
P/F bit set. This type of PDU is typically sent when:

m There has been a period of inactivity on a connection in
information transfer mode.

® The remote node must be notified of a local busy condition
occurring in information transfer mode.

The expiration of the poll timer causes another Supervisory
command PDU (which may be of a different type than the first) to
be sent with the P/F bit set, provided the retry count has not
exceeded the maximum retry value. This timer, then, provides an
extended retry mechanism for a connection in information transfer
mode.

The rejecttimer parameter controls the frequency with which a
RE]J PDU is sent to a remote node from which an I PDU with an

File Formats 253

1c2(4)

rembusytimer

inacttimer

unexpected N(S) was received and which has not corrected the
situation by sending an I PDU with the expected N(S).

R I PDU with
unexpected N(S)
start reject timer

Reject timer expires before the receipt of an I PDU with an
expected N(S).

start reject and poll timer

e I PDU with
expected N(S)

The rembusytimer parameter is used to determine how long the
local node should wait, after the remote node sends an RNR to
indicate it is busy, before sending a Supervisory PDU with the P/F
bit set to solicit the current state of the remote node. If the remote
node indicates that it has cleared its busy condition before the
timer expires, the local node stops the remote busy timer.

The inacttimer parameter controls how much time is allowed to
elapse on a connection in information transfer mode between the
issuing of command PDUs by the local node. If the inactivity timer
expires because a command PDU has not been generated in the
configured time interval, a Supervisory PDU with the P/F bit set is
sent to the remote node to solicit its current state, provided that
the connection is in information transfer mode. Each time a
command PDU is sent by the local node, the inactivity timer is
restarted.

The following rules of thumb should apply for the timer parameters:

®m The acktimer, rsptimer, and polltimer parameters should have small
relative values to allow for quick recovery from common transient error conditions

on a connection.

®m The rejecttimer and rembusytimer parameters should have intermediate
relative values to allow the local and remote nodes time to recover without
resorting to possibly unnecessary polling cycles.

® The inacttimer parameter should be set to a large relative value to provide a
safety net in information transfer mode.

You may need to shift the values for the timer parameters to higher values if bridges

are included in the network or a user application requires a substantial amount of time
to respond to connection establishment requests or handle information flow.

254 man pages section 4: File Formats Last Revised 7 Feb 2000

Maximum Retry
Parameter
Description

Window Size
Parameter
Descriptions

FILES

SEE ALSO

1c2(4)

The maxretry parameter determines the number of times a recovery operation is
performed before notifying the user that an error has occurred on a connection.
Typical examples of its use include the following:

® When the remote node fails to respond to a SABME sent by the local node to
establish or reset the connection, the SABME is resent each time the
acknowledgment timer expires, up to maxretry number of times.

® In information transfer mode, if the response acknowledgment timer expires after
an I PDU has been sent, an RR with the P/F bit set is sent (and resent each time the
poll timer expires) until the remote node responds or maxretry number of RRs
have been sent.

In general, the maxretry value should not need to be large. Since the
acknowledgment and poll timers are typically used in recovery operations that
involve the maxretry parameter, the product of maxretry and either acktimer,
rsptimer, or polltimer gives a rough estimate of the length of time allotted for the
connection to attempt internal error recovery before notifying the user.

rcvwindowsz The rcvwindowsz parameter is used to set the receive window
size for I PDUs received locally on a connection. This value should
agree with the transmit window size set for the connection at the
remote node. If the local rcvwindowsz is greater than the remote
transmit window size, I PDUs sent by the remote node are not
acknowledged quickly. If the local revwindowsz is less than the
remote transmit window size, there is a greater risk of the local
node generating FRMR PDUs, requiring intervention by the user
application when transient errors on the connection require the
remote node to retransmit an I PDU. REJ PDUs are recovered
internally.

xmitwindowsz The xmitwindowsz parameter sets the local transmit window size
for a connection. It denotes the number of unacknowledged I
PDUs that the local node may have outstanding. The configured
value should match the receive window size for the connection at
the remote node, based on the same reasoning as for the
rcvwindowsz parameter.

In many cases, the values assigned to rcvwindowsz and xmitwindowsz for adapters
on a server node will depend on the transmit and receive window sizes specified for
another LLC implementation on a client node. In cases where this LLC
implementation is resident in both nodes, larger values for these parameters are useful
in environments where much of the activity on a connection consists of file transfer
operations. Smaller values are warranted if analysis of LLC2 connection component
statistics reveals that connections are entering local or remote busy state frequently.

/etc/llc2/default/llc2.*

1lc2 autoconfig(l), 11c2 config(l), ifconfig(1M), 11c2(7D)

File Formats 255

logadm.conf(4)

256

NAME
SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

logadm.conf — configuration file for logadm command

/etc/logadm.conf

/etc/logadm. conf is the default configuration file for the log management tool
logadm(1M). Comments are allowed using the pound character (#) and extend to the
end of line. Each non-comment line has the form:

logname options

where logname is the name of the entry and options are the default command line
options for the 1logadm command. The name of the entry may be the same as the
name of the log file, or a log file name may be given in the options section of the entry.
Long lines may be folded using a backslash followed by a newline to continue an
entry on the next line. Single or double quotes may be used to protect spaces or
alternate-style quotes in strings.

The preferred method for changing /etc/logadm.conf is to use the -V, -w, and -r
options to the 1ogadm(1M) command, which allow you to lookup an entry, write an
entry, or remove an entry from /etc/logadm. conf.

A full description of how and when /etc/logadm. conf is used and sample entries
are found in 1ogadm(1M).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWecsr

logadm(1M), attributes(5)

man pages section 4: File Formats ¢ Last Revised 6 Dec 2001

NAME
SYNOPSIS

DESCRIPTION

FILES
SEE ALSO

NOTES

logindevperm(4)
logindevperm, fbtab — login-based device permissions

/etc/logindevperm

The /etc/logindevpern file contains information that is used by 1ogin(1) and
ttymon(1M) to change the owner, group, and permissions of devices upon logging
into or out of a console device. By default, this file contains lines for the keyboard,
mouse, audio, and frame buffer devices.

The owner of the devices listed in /etc/logindevpermis set to the owner of the
console by 1ogin(1). The group of the devices is set to the owner’s group specified in
/etc/passwd. The permissions are set as specified in /etc/logindevperm.

Fields are separated by TAB and/or SPACE characters. Blank lines and comments can
appear anywhere in the file; comments start with a hashmark, ‘ #’, and continue to the
end of the line.

The first field specifies the name of a console device (for example, /dev/console).
The second field specifies the permissions to which the devices in the device_list field
(third field) will be set. A device_list is a colon-separated list of device names. A device
entry that is a directory name and ends with "/*" specifies all entries in the directory

"non "non

(except "." and ".."). For example, "/dev/fbs/*" specifies all frame buffer devices.

Once the devices are owned by the user, their permissions and ownership can be
changed using chmod(1) and chown(1), as with any other user-owned file.

Upon logout the owner and group of these devices will be reset by t tymon(1M) to
owner root and root’s group as specified in /etc/passwd (typically other). The
permissions are set as specified in the /etc/logindevpern file.

/etc/passwd File that contains user group information.
chmod(1), chown(1), login(1), ttymon(1M), passwd(4)

/etc/logindevperm provides a superset of the functionality provided by
/etc/fbtab in SunOS 4.x releases.

File Formats 257

loginlog(4)
NAME

DESCRIPTION

FILES

SEE ALSO

loginlog — log of failed login attempts

After five unsuccessful login attempts, all the attempts are logged in the file
/var/adm/loginlog. This file contains one record for each failed attempt. Each
record contains the login name, tty specification, and time.

This is an ASCII file. Each field within each entry is separated from the next by a
colon. Each entry is separated from the next by a new-line.

By default, loginlog does not exist, so no logging is done. To enable logging, the log
file must be created with read and write permission for owner only. Owner must be
root and group must be sys.

/var/adm/loginlog

login(l), passwd(l)

258 man pages section 4: File Formats Last Revised 3 Jul 1990

NAME
SYNOPSIS

DESCRIPTION

SEE ALSO

WARNINGS

lutab(4)

lutab - list of boot environments

/etc/lutab

The file /etc/lutab is a list of the boot environments (BEs) configured on a system.
There are two entries for each BE. These entries have the following form:

BE_id : BE_name : completion_flag : 0
BE_id : root_slice : root_device : 1

The fields in the 1utab entries are described as follows:
BE_id A unique, internally generated id for a BE.
BE_name The user-assigned name of a BE.

completion_flag Indicates whether the BE is complete (C) or incomplete (NC). A
complete BE is one that is not involved in any copy or upgrade
operation. A BE can be activated or compared only when it is

complete.
0 Indicates first of two lines.
BE_id As described above.
root_slice Designation of the root slice.
root_device Device on which the root slice is mounted.
1 Indicates second of two lines.

The lutab file must not be edited by hand. Any user modification to this file will
result in the incorrect operation of live upgrade.

1u(1M), luactivate(IM), lucreate(1M), lucurr(1M), lufslist(1M),
lustatus(1M), luupgrade(lM), attributes(5), 1ive upgrade(5)

The lutab file is not a public interface. The format and contents of 1utab are subject
to change. Use lufslist(1M) and lustatus(1M) to obtain information about BEs.

File Formats 259

magic(4)

260

NAME
SYNOPSIS

DESCRIPTION

magic — file command’s magic number file

/etc/magic

The £ile(l) command identifies the type of a file using, among other tests, a test for
whether the file begins with a certain magic number. The /etc/magic file specifies
what magic numbers are to be tested for, what message to print if a particular magic
number is found, and additional information to extract from the file.

Each line of the file specifies a test to perform. A test compares the data starting at a
particular offset in the file with a 1-byte, 2-byte, or 4-byte numeric value or a string. If
the test succeeds, a message is printed. The line consists of the following fields

(separated by tabs):

offset type wvalue message

offset

type

value

A number specifying the offset, in bytes, into the file of the data
which is to be tested.

The type of the data to be tested. The possible values are:
byte A one-byte value.
short A two-byte value.
long A four-byte value.

string A string of bytes.

The types byte, short, and long may optionally be followed by
a mask specifier of the form &number. If a mask specifier is given,
the value is AND’ed with the number before any comparisons are
done. The number is specified in C form. For instance, 13 is
decimal, 013 is octal, and 0x13 is hexadecimal.

The value to be compared with the value from the file. If the type
is numeric, this value is specified in C form. If it is a string, it is
specified as a C string with the usual escapes permitted (for
instance, \n for NEWLINE).

Numeric values may be preceded by a character indicating the
operation to be performed. It may be ‘=’, to specify that the value
from the file must equal the specified value, ‘<’, to specify that the
value from the file must be less than the specified value, ‘>, to
specify that the value from the file must be greater than the
specified value, ‘&, to specify that all the bits in the specified value
must be set in the value from the file, “*’, to specify that at least
one of the bits in the specified value must not be set in the value
from the file, or x to specify that any value will match. If the
character is omitted, it is assumed to be ‘=".

man pages section 4: File Formats ¢ Last Revised 8 May 1995

magic(4)

For string values, the byte string from the file must match the
specified byte string. The byte string from the file which is
matched is the same length as the specified byte string.

message The message to be printed if the comparison succeeds. If the string
contains a print £(3C) format specification, the value from the file
(with any specified masking performed) is printed using the
message as the format string.

Some file formats contain additional information which is to be printed along with the
file type. A line which begins with the character “>" indicates additional tests and
messages to be printed. If the test on the line preceding the first line with a *>’
succeeds, the tests specified in all the subsequent lines beginning with “>" are
performed, and the messages printed if the tests succeed. The next line which does not
begin with a “>” terminates this.

FILES | /etc/magic
SEE ALSO | £ile(l), £ile(1B), print£(3C)

BUGS | There should be more than one level of subtests, with the level indicated by the
number of ‘>" at the beginning of the line.

File Formats 261

mddb.cf(4)

262

NAME
SYNOPSIS

DESCRIPTION

EXAMPLES

FILES

SEE ALSO

mddb.cf — metadevice state database replica locations

/etc/1lvm/mddb.cf

The /etc/1lvm/mddb. cf file is created when the metadb(1M)metadb command is
invoked. You should never directly edit this file.

The file /etc/1vn/mddb. cf is used by the metainit(1M) command to find the
locations of the metadevice state databases replicas. The metadb command creates the
file and updates it each time it is run. Similar information is entered in the
/etc/systenm file.

Each metadevice state database replica has a unique entry in the /etc/1lvm/mddb.cf
file. Each entry contains the driver and minor unit numbers associated with the block
physical device where a replica is stored. Each entry also contains the block number of
the master block, which contains a list of all other blocks in the replica.

Entries in the /etc/1vm/mddb. cf file are of the form: driver_name minor_t daddr_t

checksum where driver_name and minor_t represent the device number of the physical
device storing this replica. daddr_t is the disk block address. checksum is used to make
certain the entry has not been corrupted. A pound sign (#) introduces a comment.

EXAMPLE 1 Sample File

The following example shows a mddb . cf file.

#metadevice database location file do not hand edit
#driver minor_t daddr t device id checksum
sd 152 16 idl,Sd@SSEAGATE_JDD288110MC9LH/a -2613

In the example above, the value for daddr_t indicates that the offset from the start of
a given partition is 16 disk blocks from the start of that partition.

®m /etc/lvm/mddb.cf
m /etc/system

metaclear(1M), metadb(1M), metadetach(1M), metahs(1M), metainit(1M),
metaoffline(1M), metaonline(1M), metaparam(1M), metareplace(1M),
metaroot(1M), metastat(IM), metasync(1M), metattach(1M), md. tab(4)

Solaris Volume Manager Administration Guide

man pages section 4: File Formats ¢ Last Revised 11 Jan 2001

NAME
SYNOPSIS

DESCRIPTION

EXAMPLES

md.tab(4)
md.tab, md.cf — metadisk utility files

/etc/lvm/md.tab
/etc/lvm/md.cf

The file /etc/1vm/md. tab can be used by metainit(1M) and metadb(1M) to
configure metadevices, hot spare pools, and metadevice state database replicas in a
batch-like mode. Solaris Volume Manager does not store configuration information in
the /etc/1lvm/md. tab file. The only way information appears in md. tab is through
editing it by hand. When using the md . tab file, each metadevice, hot spare pool, or
state database replica in the file must have a unique entry. Entries can include the
following: simple metadevices (stripes, concatenations, and concatenations of stripes);
mirrors, trans metadevices, soft partitions, and RAID5 metadevices; hot spare pools;
and state database replicas. Because md. tab contains only entries that you enter in it,
do not rely on the file for the current configuration of metadevices, hot spare pools,
and replicas on the system at any given time.

Tabs, spaces, comments (by using a pound sign, #), and continuation of lines (by using
a backslash-newline), are allowed.

Typically, you set up metadevices according to information specified on the command
line by using the metainit command. Likewise, you set up state database replicas
with the metadb command.

An alternative to the command line is to use the md. tab file. Metadevices and state
database replicas can be specified in the md. tab file in any order, and then activated
in a batch-like mode with the metainit and metadb commands.

If you edit the md. tab file, you specify one complete configuration entry per line.
Metadevices are defined using the same syntax as required by the metainit
command. You then run the metainit command with either the -a option, to
activate all metadevices in the md . tab file, or with the metadevice name
corresponding to a specific configuration entry. State database replicas are defined in
the /etc/1lvm/md. tab file as follows: mddbnumber options [slice...] Where
mddbnumber is the characters mddb followed by a two digit number that identifies the
state database replica. slice is a physical slice. For example: mddb05
/dev/dsk/c0t1d0s2. The file /etc/1lvm/md. cf is a backup of the configuration
used for disaster recovery. Whenever the Volume Manager configuration is changed,
this file is automatically updated (except when hot sparing occurs). You should not
directly edit this file.

EXAMPLE 1 Concatenation

All drives in the following examples have the same size of 525 Mbytes.

This example shows a metadevice, /dev/md/dsk/d7, consisting of a concatenation of
four disks.

#

(concatenation of four disks)

File Formats 263

md.tab(4)

EXAMPLE 1 Concatenation (Continued)

#
d7 4 1 cO0tld0s0 1 c0t2d0s0 1 c0t3d0s0 1 cO0t4d0s0

The number 4 indicates there are four individual stripes in the concatenation. Each
stripe is made of one slice, hence the number 1 appears in front of each slice. Note that
the first disk sector in all of the above devices contains a disk label. To preserve the
labels on devices /dev/dsk/c0t2d0s0, /dev/dsk/c0t3d0s0, and
/dev/dsk/c0t4d0s0, the metadisk driver must skip at least the first sector of those
disks when mapping accesses across the concatenation boundaries. Since skipping
only the first sector would create an irregular disk geometry, the entire first cylinder of
these disks will be skipped. This allows higher level file system software to optimize
block allocations correctly.

EXAMPLE 2 Stripe

This example shows a metadevice, /dev/md/dsk/d15, consisting of two slices.

#
(stripe consisting of two disks)

#

dl5 1 2 c0tld0s2 c0t2d0s2 -i 32k

The number 1 indicates that one stripe is being created. Because the stripe is made of
two slices, the number 2 follows next. The optional -1 followed by 32k specifies the
interlace size will be 32 Kbytes. If the interlace size were not specified, the stripe
would use the default value of 16 Kbytes.

EXAMPLE 3 Concatenation of Stripes

This example shows a metadevice, /dev/md/dsk/d75, consisting of a concatenation
of two stripes of three disks.

#
(concatenation of two stripes, each consisting of three disks)
#
d75 2 3 c0tld0s2 c0t2d0s2 c0t3d0s2 -1 16k \

3 cltld0s2 clt2d0s2 clt3d0s2 -i 32k

On the first line, the -1 followed by 16k specifies that the stripe’s interlace size is 16
Kbytes. The second set specifies the stripe interlace size will be 32 Kbytes. If the
second set did not specify 32 Kbytes, the set would use default interlace value of 16
Kbytes. The blocks of each set of three disks are interlaced across three disks.

EXAMPLE 4 Mirroring

This example shows a three-way mirror, /dev/md/dsk/d50, consisting of three
submirrors. This mirror does not contain any existing data.

264 man pages section 4: File Formats » Last Revised 4 Jun 2001

md.tab(4)

EXAMPLE 4 Mirroring (Continued)

#
(mirror)
#
d50 -m d51

ds1 1 1 cO0tldos2
ds52 1 1 c0t2d0s2
ds53 1 1 c0t3dos2

In this example, a one-way mirror is first defined using the -m option. The one-way
mirror consists of submirror d51. The other two submirrors, d52 and d53, are
attached later using the metattach command. The default read and write options in
this example are a round-robin read algorithm and parallel writes to all submirrors.
The order in which mirrors appear in the /etc/1lvm/md. tab file is unimportant.

EXAMPLE 5 Logging (trans)

This example shows a trans metadevice, /dev/md/dsk/d1, with mirrors for the
master and logging devices. This trans does not contain any existing data.

#

(trans)

#

dl -t di10 d20
dl0 -m di1l

dll 1 1 c0tldos2
dl2 1 1 c0t2d0s2
d20 -m d21

d21 1 1 cltldo0s2
d22 1 1 clt2d0s2

In this example, the two mirrors, d10 and d20, are defined using the -m option. d10 is
defined as the master device and d20 is defined as the logging device for the trans, d1,
by using the -t option. The order in which mirrors or trans appear in the
/etc/lvm/md. tab file is unimportant. The submirrors d12 and d22 are attached
later (using the metattach command) to the d10 and d20 mirrors.

EXAMPLE 6 RAID5

This example shows a RAID5 metadevice, d80, consisting of three slices:

#

(RAID devices)

#

d80 -r c0tldO0sl clt0d0sl c2t0d0sl -i 20k

In this example, a RAID5 metadevice is defined using the -r option with an interlace
size of 20 Kbytes. The data and parity segments will be striped across the slices,
c0t1dosl, c1t0d0sl, and c2t0d0s1.

File Formats 265

md.tab(4)

EXAMPLE 7 Soft Partition

This example shows a soft partition, d85, that reformats an entire 9 GB disk. Slice 0
occupies all of the disk except for the few Mbytes taken by slice 7, which is space
reserved for a state database replica. (Slice 7 will be a minimum of 2Mbytes, but could
be larger, depending on the disk geometry.) d85 sits on c3t4d0s0.

#
(Soft Partitions)
d85 -p -e c3t4d0 9g

In this example, creating the soft partition and required space for the state database
replica occupies all 9 GB of disk c3t44do0.

EXAMPLE 8 Soft Partition

This example shows the command used to re-create a soft partition with two extents,
the first one starting at offset 20483 and extending for 20480 blocks and the second
extent starting at 135398 and extending for 20480 blocks:

#
(Soft Partitions)
#
d

1 -p c0t3d0s0 -o 20483 -b 20480 -o 135398 -b 20480

EXAMPLE 9 Hot Spare

This example shows a three-way mirror, /dev/md/dsk/d10, consisting of three
submirrors and three hot spare pools.

#

(mirror and hot spare)
#

dl0 -m d20

d20 1 1 c1t0d0s2 -h hsp001
d30 1 1 c2t0d0s2 -h hsp002
d40 1 1 c¢3t0d0s2 -h hsp003
hsp001 c2t2d0s2 c3t2d0s2 clt2d0s2
hsp002 c¢3t2d0s2 clt2d0s2 c2t2d0s2
hsp003 cl1t2d0s2 c2t2d0s2 c3t2d0s2

In this example, a one-way mirror is first defined using the -m option. The submirrors
are attached later using the metattach(1M) command. The hot spare pools to be
used are tied to the submirrors with the -h option. In this example, there are three
disks used as hot spares, defined in three separate hot spare pools. The hot spare pools
are given the names hsp001, hsp002, and hsp003. Setting up three hot spare pools
rather than assigning just one hot spare with each component helps to maximize the
use of hardware. This configuration enables the user to specify that the most desirable
hot spare be selected first, and improves availability by having more hot spares
available. At the end of the entry, the hot spares to be used are defined. Note that,
when using the md. tab file, to associate hot spares with metadevices, the hot spare
spool does not have to exist prior to the association. Volume Manager takes care of the

266 man pages section 4: File Formats » Last Revised 4 Jun 2001

FILES

SEE ALSO

LIMITATIONS

md.tab(4)

EXAMPLE 9 Hot Spare (Continued)

order in which metadevices and hot spares are created when using the md. tab file.

EXAMPLE 10 State Database Replicas

This example shows how to set up an initial state database and three replicas on a
server that has three disks.

#

(state database and replicas)

#
mddb0l -c 3 c0t1ld0s0 c0t2d0s0 c0t3d0s0

In this example, three state database replicas are stored on each of the three slices.
Once the above entry is made in the /etc/1vm/md. tab file, the metadb command
must be run with both the -a and - f options. For example, typing the following
command creates one state database replicas on three slices:

metadb -a -f mddbol
m /etc/lvm/md.tab
m /etc/lvm/md.cf

metaclear(1M), metadb(1M), metadetach(IM), metahs(1M), metainit(1M),
metaoffline(1M), metaonline(1M), metaparam(1M), metarecover(1M),
metareplace(lM), metaroot(1M), metastat(1M), metasync(1M),
metattach(1M), mddb.cf(4)

Solaris Volume Manager Administration Guide

Recursive mirroring is not allowed; that is, a mirror cannot appear in the definition of
another mirror.

Recursive logging is not allowed; that is, a trans metadevice cannot appear in the
definition of another metadevice.

Stripes and RAID5 metadevices must contains slices or soft partitions only.
Mirroring of RAID5 metadevices is not allowed.

Soft partitions can be built directly on slices or can be the top level (accessible by
applications directly), but cannot be in the middle, with other metadevices above and
below them.

File Formats 267

mech(4)

268

NAME
SYNOPSIS

DESCRIPTION

EXAMPLES

SEE ALSO

mech, qop — mechanism and QOP files

/etc/gss/mech
/etc/gss/gop

The /etc/gss/mech and /etc/gss/qgop files contain tables showing installed
security mechanisms and the Quality of Protection (QOP) associated with them,
respectively. As security mechanisms are installed on the system, entries are added to
these two files. Contents of these files may be accessed either manually (for example,
with cat(1) or more(1)) or programmatically (with either

rpc_gss_get mechanisms(3NSL) or rpc_gss get mech info(3NSL)).

The /etc/gss/mech file contains four fields:

mechanism name ASCII string representing the mechanism.
object identifier RPC OID for this mechanism.
shared library Shared library which implements the services provided

by this mechanism.

kernel module Kernel module which implements the services
provided by this mechanism.

The /etc/gss/gop file contains three fields:

QOP string Name, in ASCII, of this Quality of Protection.
QOP value Numeric value by which RPC identifies this QOP.
mechanism name ASCII string representing the mechanism with which

this QOP is associated.

EXAMPLE 1 A Typical Entry in /etc/gss/mech
This is a typical entry in a /etc/gss/mech file:

kerberosvs 1.2.840.113554.1.2.2 mech _krb5.so kmech krbs

EXAMPLE 2 A Typical Entry in /etc/gss/qgop
This is a typical entry ina /etc/gss/qgop file:

GSS_KRB5_CONF_C_QOP_DES 0 kerberosvs

rpc(3NSL), rpc_gss _get mechanisms(3NSL), rpc _gss _get mech info(3NSL),
rpcsec_gss(3NSL)

ONC+ Developer’s Guide

man pages section 4: File Formats ¢ Last Revised 12 May 1998

NAME
SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

meddb — mediator data file

/etc/lvm/meddb

The file /etc/1vm/meddb is a data file used by rpc . metamedd(1M) to store the

mediator data used in 2-string HA configurations.

/etc/lvm/meddb
rpc.metamedd(1M)
Sun Cluster 3.0 Collection

Solaris Volume Manager Administration Guide

meddb(4)

File Formats

269

mipagent.conf(4)

270

NAME
SYNOPSIS

DESCRIPTION

mipagent.conf — configuration file for Mobile IP mobility agent

/etc/inet/mipagent .conf

/etc/inet/mipagent . conf is the configuration file used to initialize the Mobile IP
mobility agent described in mipagent(1M). Three sample configuration files are
located in the /etc/inet directory:

/etc/inet/mipagent.conf-sample
/etc/inet/mipagent.conf.ha-sample
/etc/inet/mipagent.conf.fa-sample

Blank lines are ignored. Lines beginning with the hash character (#) are treated as
comments. Sections are denoted by identifiers in brackets. Each section can contain
multiple attribute-value pairs. The syntax of an attribute-value pair is an identifier,
followed by an equal sign (=), followed by a value.

The following sections and attribute-value pairs must be present in
/etc/inet/mipagent.conf:

[General]
This section contains the Version attribute.

Version
Version is required. For the current release of Mobile IP in Solaris, Version
must be 1. Consequently, the default value is 1.

[Advertisements interface]
This section identifies the interfaces that will serve as Mobile IP mobility agents.
interface is the interface name of the advertising interface. Advertising interface
name must be specified in the mipagent.conf file, if the interface is already
configured. interface attribute has two components, device name and device
number, that is, interface=1e0 indicates device name is 1e and the device number is
0. The device number part of interface attribute can also have a special symbol *
which indicates support of advertisments on interfaces that are configured after the
mipagent has started. For example, if 1e0 and 1el are defined specifically on the
mipagent . conf file, then the advertisement should be done based on that
configuration. If 1e* is present in an Advertisements section, then * represents
dynamic interfaces, that is, only those those interfaces that are not already
configured in the mipagent . conf file and newly created on the system while
mipagent is running. One or more of the following attribute-value pairs may be
found in this section:

AdvLifeTime
Lifetime (in seconds) advertised in the ICMP router discovery portion of an
agent advertisement. See RFC 1256. The default value is 300.

RegLifeTime
Lifetime (in seconds) advertised in the mobility extension of an agent
advertisement. The default value is 300.

man pages section 4: File Formats * Last Revised 25 Sep 2001

mipagent.conf(4)

AdvFrequency
The frequency at which agent advertisements are sent and when different entries
are aged. This interval must be less than one-third of AdvLifeTime. The
recommended value for AdvFrequency is 1 when AdvLimitSolicited is set
to yes.The default value is 4.

AdvInitCount
The initial number of unsolicited advertisements which are sent when an
interface first starts advertising. If this value is set to zero, no unsolicited
advertisements are sent out on the interface. The default value is 1.

AdvLimitUnsolicited
Determines whether the interface performs limited or unlimited unsolicited
agent advertisements. The agent always responds to the agent solicitations in
both cases.

yes If the value is set to yes, then the interface performs AdvInitCount
number of advertisements when it comes up and then it stops
sending unsolicited advertisements.

no When the value is set to no, the interface performs periodic and
unlimited number of unsolicited advertisements. The default value
for AdvLimitUnsolicited is no. When AdvLimitUnsolicited
is set to the default value, advInitCount is also set to its default
value.

HomeAgent
Indicates if this agent can act as a home agent. The default value is yes.

ForeignAgent
Indicates if this agent can act as a foreign agent. The default value is yes.

PrefixFlags
Enables the prefix length extension. The default value is yes.

NAIExt
Enables the Network Access Identifier (NAI) extension. The default value is yes.

ReverseTunnel
Indicates if this interface supports reverse tunneling as specified in RFC 2344.
ReverseTunnel can contain one of the following values:

noorneither Indicates this interface does not support reverse tunneling.

FA Indicates only the foreign agent supports reverse tunneling.
HA Indicates only the home agent supports reverse tunneling.
yes or both Indicates that both foreign and home agents support reverse

tunneling as specified in RFC 2344.

The default value for ReverseTunnel is no.

File Formats 271

mipagent.conf(4)

ReverseTunnelRequired
Indicates if this interface will require reverse tunneling as specified in RFC 2344.
ReverseTunnelRequired can contain one of the following values:

noorneither Indicates this interface will not require reverse tunneling.

FA Indicates only the foreign agent will require a reverse tunnel.
HA Indicates only the home agent will require a reverse tunnel.
yes or both Indicates that both foreign and home agents will require a

reverse tunnel.

The default value for ReverseTunnelRequired is no.

[GlobalSecurityParameters]
This section defines the global security parameters that will be used to authenticate
mobile nodes. MN-HA authentication is always enabled. This section may contain
one or more the of the following attribute-value pairs:

Challenge Enables the foreign agent challenge extension. The default
value is no.

HA-FAAuth Enables home agent - foreign agent authentication. The default
value is yes.

MN-FAAuth Enables mobile node - foreign agent authentication. The default
value is no.

MaxClockSkew The maximum allowable difference in clocks, in seconds, that
will be tolerated. This is used for replay protection. The default
value is 300.

KeyDistribution ~ This attribute defines where keys are found. The default for
this Version of Solaris Mobile IP software is files.

[SPI number |
These sections define multiple Security Parameter Indices (SPIs). One section is
required for each security context. These SPI values are used in the Address
section to define the security used for a particular mobile node or agent. In this
section, both the Key and ReplayMethod attributes must be present.

Key The hexadecimal representation of the key used for
authentication.

ReplayMethod = The replay method. Possible values are t imestamps or none.

[Pool number |
These sections define address pools for dynamically assigned IP addresses. The
Start and Length attributes both must be present.

Start The beginning range of the IP address from which to allocate an IP
address in dotted quad notation.

Length ~ The length of the IP address range.

272 man pages section 4: File Formats * Last Revised 25 Sep 2001

EXAMPLES

mipagent.conf(4)

[Address NAI | IPaddr | node-default |
This section defines the security policy used for each host for which an NAI or IP
address is specified in the section header. The keyword node-default is used to
create a single entry that can be used by any mobile node that has the correct SPI
and associated keying information. This section specifies the SPI, and in the case of
mobile nodes, pool numbers for NAI addresses.

Type Indicates whether the address entry specifies a mobile node or a mobility
agent.

SPI The SPI used for this Address.

Pool The Pool used for this NAI address. The Pool keyword may only be
present if the Type operand is set to mobile node.

The following entries are valid only for Addresss sections where type = agent:

IPsecRequest ~ The IPsec policies to add to the global IPsec policy file so as to be
enforced for Registration Requests to and from this mobility agent
peer. These are the IPsec properties which foreign agent’s apply,
and which home agents permit.

IPsecReply The IPsec policis to add to the global IPsec policy file so as to be
enforced for Registration Replies to and from this mobility agent
peer. These are the IPsec properties which home agents apply, and
which foreign agents permit.

IPsecTunnel The IPsec policies to enforce on all tunnel traffic with this mobility
agent peer. These are the IPsec properties which home agent’s
apply, and which foreign agents permit.

Mobility agents can be functioning as home agents for some mobile nodes, and as
foreign agents for others. To allow for different policy configurations as both a home
agent for some mobile nodes, and as a foreign agent for other mobile nodes all using
the same mobility agent peer, "apply” and "permit policies need to be specified for the
same entry. This is achieved by using a colon (:) to separte the IPsec policies. For
example:

IPsecRequest apply {properties} : permit {properties}

This configuration for IPsecRequest could indicate a set of properties that are to be
applied when sending regisration requests, and a different property to enforce when
receiving registration requests in a session with the same mobility agent peer.

EXAMPLE 1 Configuration for Providing Mobility Services on One Interface

The following example shows the configuration file for a mobility agent that provides
mobility services on one interface (1e0). The mobility agent acts both as a home agent
as well as a foreign agent on that interface. It includes the prefix length in its
advertisements. Its home and foreign agent functions support reverse tunneling, but
only the foreign agent requires that a reverse tunnel be configured.

File Formats 273

mipagent.conf(4)

EXAMPLE 1 Configuration for Providing Mobility Services on One Interface (Continued)

The mobility agent has IPsec relationships with two mobilty agent peers, 192.168.10.1 -
with which it will be a foreignagent peer, and 192.168.10.2 - with which it will be a
home- agent peer.

All registration request packets being sent to 192.168.10.1 will use md5 as the IPsec
authentication algorithm, and all registration replies from 192.168.10.1 must be
protected using md>5 as the IPsec authentication algorithm. Should a tunnel be
established with this mobility agent peer, all tunnel traffic must arrive using md5 as an
encryption authentication algorithm, and must also be encrypted using triple-DES. If a
reverse tunnel is configured, all reverse tunnel traffic will be sent using md>5 as the
encryption authentication algorithm, and will also be enctrypted using triple-DES.

Identically, all registration requeset packets being received from 192.168.10.2 must be
protected using md>5 as the IPsec authentication algorithm, and all registration replies
sent to 192.168.10.2 will use md5 as the IPsec authentication algorithm. Should a
tunnel be established with 192.168.10.2, all tunnel traffic sent will be protected using
md5 as the encryption authentication algorithm, and will also be encrypted using
triple-DES. Should a reverse tunnel be configured as well, tunnel traffic must arrive
secured with md>5 as the encryption authentication algorithm, and must also have
been encrypted using triple-DES as the encryption algorithm.

Any registration or tunnel traffic that does not conform to these policies will be silently
dropped by IPsec. Note that ipsec Keys are managed through IPsec. See ipsec(7P).

The mobility agent provides home agent services to three mobile nodes:
192.168.10.17,192.168.10.18, and the NAI address
user@defaultdomain.com.The configuration file also indicates that it provides
foreign agent service on any PPP interfaces that are dynamically created after the
mipagent starts.

With the first mobile node, the agent uses an SPI of 257 (decimal) and a shared secret
key that is six bytes long containing alternate bytes that are 0 and 255 (decimal). For
the second mobile node, the SPI is 541 (decimal), the key is 10 bytes, and it contains
the decimal values 11 through 20 in those bytes. The first mobile node uses no replay
protection, and the second uses timestamps. The third mobile node uses NAI and
gets its address from Pool 1.

The mobile node will also need to be configured with the same security association
that is specified in the home agent’s configuration file.

start of file
[General]
Version = 1

[Advertisements 1leO]
AdvLifeTime 200
RegLifetime 200
AdvFrequency = 5

274 man pages section 4: File Formats ¢ Last Revised 25 Sep 2001

mipagent.conf(4)

EXAMPLE 1 Configuration for Providing Mobility Services on One Interface (Continued)

AdvInitCount = 1
AdvLimitUnsolicited = no
AdvertiseOnBcast = yes
HomeAgent = yes
ForeignAgent = yes
PrefixFlags = yes
ReverseTunnel = both
ReverseTunnelRequired = FA

Advertisements over PPP interfaces that are created
while the mipagent is running. Note we are doing limited
unsolicited advertisements here.

[Advertisements ppp*]
homeagent = no
foreignagent = yes
PrefixFlags = 1
reglifetime = 200
advlifetime = 200
advFrequency = 1
advInitCount = 2
advLimitUnsolicited = yes
reverseTunnel = yes
reverseTunnelReq = no

[GlobalSecurityParameters]
HA-FAAuth = no

MN-FAAuth = no
KeyDistribution = files

[SPT 257]
Key = 00ff00ff00ff
ReplayMethod = none

[SPI 541]
Key = 0b0c0d0e0£1011121314
ReplayMethod = timestamps

[Pool 1 1]
Start = 192.168.167.1
Length = 250

[Address 192.168.10.1]
Type = agent
SPI = 257
IPsecRequest = apply {auth algs md5 sa shared}
IPsecReply = permit {auth algs mdS}
IPsecTunnel = permit {encr auth algs md5 encr_algs 3des}

[Address 192.168.10.2]
Type = agent
SPI = 257
IPsecRequest = permit {auth algs md5}

File Formats 275

mipagent.conf(4)

FILES

ATTRIBUTES

SEE ALSO

EXAMPLE 1 Configuration for Providing Mobility Services on One Interface (Continued)

IPsecReply = apply {auth_algs md5 sa shared}
IPsecTunnel = apply {encr auth algs md5 encr algs 3des}

[Address 192.168.10.17]
Type = node
SPI = 257

[Address 192.168.10.18]
Type = node
SPI = 541

[Address usere@defaultdomain.com]
Type = node
SPI = 541
Pool =1

[Address node-default]
Type = node
SPI = 541
Pool =1

#end of file

/etc/inet/mipagent.conf
Configuration file for Mobile IP mobility agent

/etc/inet/mipagent.conf-sample
Sample configuration file for mobility agents.

/etc/inet/mipagent.conf.ha-sample
Sample configuration file for home agent functionality.

/etc/inet/mipagent.conf.fa-sample
Sample configuration file for foreign agent functionality.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWmipr

mipagent(1M), mipagentconfig(1M), attributes(5), ipsec(7P)

Deering, S., Editor. RFC 1256, ICMP Router Discovery Messages. Network Working
Group. September 1991.

Montenegro, G., Editor. RFC 2344, Reverse Tunneling For Mobile IP. Network Working
Group. May 1998.

276 man pages section 4: File Formats ¢ Last Revised 25 Sep 2001

NOTES

mipagent.conf(4)

Perkins, C., Editor. RFC 2002, IP Mobility Support. Network Working Group. October
1996.

The base Mobile IP protocol, RFC 2002, does not address the problem of scalable key
distribution and treats key distribution as an orthogonal issue. The Solaris Mobile IP
software utilizes manually configured keys only, specified in a configuration file.

The * symbol for the interface number determines only those interfaces that are newly
configured while mipagent is running. Thus the symbol * in the interface excludes
any preconfigured interfaces in the system. Interfaces that are already configured in
the system need to be specifically mentioned in the mipagent . conf file for
advertisement on those interfaces.

The AdvLimitUnsolicited parameter is useful when someone wants to limit
unsolicited advertisements on the interface. Limited unsolicited agent advertisment is
required for some wireless mobile IP usage.

Note that IPsec protection requires keying information that depends on the algorithms
being used. IPsec manages its own keys, whether they are manually configured, or
managed with some other mechanism such as Internet Key Exchange (IKE). See
ipsec(7P).

File Formats 277

mnttab(4)

278

NAME

DESCRIPTION

IOCTLS

mnttab — mounted file system table

The file /etc/mnttab is really a file system that provides read-only access to the
table of mounted file systems for the current host. /etc/mnttab is read by programs
using the routines described in getmntent(3C). Mounting a file system adds an entry
to this table. Unmounting removes an entry from this table. Remounting a file system
causes the information in the mounted file system table to be updated to reflect any
changes caused by the remount. The list is maintained by the kernel in order of mount
time. That is, the first mounted file system is first in the list and the most recently
mounted file system is last. When mounted on a mount point the file system appears
as a regular file containing the current mnt tab information.

Each entry is a line of fields separated by spaces in the form:

special ~ mount_point fstype options time

where:

special The name of the resource to be mounted.

mount_point The pathname of the directory on which the filesystem is mounted.

fstype The file system type of the mounted file system.

options The mount options. (See respective mount file system man page in
SEE ALSO.)

time The time at which the file system was mounted.

Examples of entries for the special field include the pathname of a block-special device,
the name of a remote file system in the form of host:pathname, or the name of a swap file
(for example, a file made with mkfile(1M)).

The following ioct1(2) calls are supported:

MNTIOC_NMNTS Returns the count of mounted resources in the current
snapshot in the uint32_t pointed to by arg.

MNTIOC_GETDEVLIST = Returns an array of uint32_ t’s that is twice as long as
the length returned by MNTIOC_NMNTS. Each pair of
numbers is the major and minor device number for the
file system at the corresponding line in the current
/etc/mnttab snapshot. arg points to the memory buffer
to receive the device number information.

MNTIOC_SETTAG Sets a tag word into the options list for a mounted file
system. A tag is a notation that will appear in the options
string of a mounted file system but it is not recognized or
interpreted by the file system code. arg points to a filled
in mnttagdesc structure, as shown in the following
example:

man pages section 4: File Formats * Last Revised 29 Sep 1999

ERRORS

WARNINGS

FILES

SEE ALSO

NOTES

mnttab(4)

uint_t mtd_major; /* major number for mounted fs */
uint_t mtd_minor; /* minor number for mounted fs */
char *mtd_mntpt; /* mount point of file system */
char *mtd_tag; /* tag to set/clear */

If the tag already exists then it is marked as set but not
re-added. Tags can be at most MAX_MNTOPT_TAG long.

MNTIOC_CLRTAG Marks a tag in the options list for a mounted file system
as not set. arg points to the same structure as
MNTIOC_SETTAG, which identifies the file system and tag
to be cleared.

EFAULT The arg pointer in an MNTIOC_ ioctl call pointed to an
inaccessible memory location or a character pointer in a
mnttagdesc structure pointed to an inaccessible memory
location.

EINVAL The tag specified in a MNTIOC_SETTAG call already exists as a

file system option, or the tag specified in a MNTIOC CLRTAG
call does not exist.

ENAMETOOLONG The tag specified in a MNTIOC_SETTAG call is too long or the
tag would make the total length of the option string for the
mounted file system too long.

The mnttab file system provides the previously undocumented dev=xxx option in the
option string for each mounted file system. This is provided for legacy applications
that might have been using the dev=information option.

Using dev=option in applications is strongly discouraged. The device number string
represents a 32-bit quantity and might not contain correct information in 64-bit
environments.

Applications requiring device number information for mounted file systems should
use the getextmntent(3C) interface, which functions properly in either 32- or 64-bit
environments.

/etc/mnttab
Usual mount point for mnttab file system

/usr/include/sys/mntio.h
Header file that contains TOCTL definitions

mkfile(1M), mount cachefs(1M), mount hsfs(1M), mount nfs(1M),
mount_pcfs(1M), mount ufs(1M), mount(1M), ioctl(2), read(2), poll(2),
stat(2), getmntent(3C)

The snapshot of the mnt tab information is taken any time a read(2) is performed at
offset 0 (the beginning) of the mnttab file. The file modification time returned by
stat(2) for the mnttab file is the time of the last change to mounted file system

File Formats 279

mnttab(4)

information. A pol1(2) system call requesting a POLLRDBAND event can be used to
block and wait for the system’s mounted file system information to be different from
the most recent snapshot since the mnttab file was opened.

280 man pages section 4: File Formats ¢ Last Revised 29 Sep 1999

NAME
SYNOPSIS

DESCRIPTION

General Syntax

named.conf(4)
named.conf — configuration file for in.named

/etc/named.conf

BIND version 8 is a much more configurable version than previous releases of BIND.
New areas of configuration include access control lists and categorized logging. Many
options that previously applied to all zones can now be used selectively. The new
configuration file format in named. conf incorporates these features and allows for
consideration of future configuration needs.

A BIND 8 configuration file consists of two general features, statements and
comments.

All statements end with a semicolon. Many statements allow substatements, which
also terminate with a semicolon. BIND 8 supports the following statements:

logging Specifies what the server logs, and where the log messages are
sent.

options Controls global server configuration options and sets defaults for
other statements.

zone Defines a zone.

acl Defines a named IP address matching list, for access control and
other uses.

key Specifies key information for use in authentication and
authorization.

trusted-keys Defines DNSSEC keys that are preconfigured into the server and
implicitly trusted.

server Sets certain configuration options for individual remote servers.
controls Declares control channels to be used by the ndc(1M) utility.
include Includes another file.

The logging and options statements may only occur once per configuration, while
the rest may appear numerous times. Further detail on each statement is provided in
individual sections below.

Comments may appear anywhere that whitespace may appear in a BIND
configuration file. To appeal to programmers of all kinds, they can be written in C,
C++, shell or perl constructs.

C-style comments start with the two characters /* (slash, star) and end with */ (star,
slash). Because comments are completely delimited by these characters, they can be
used to comment either a portion of a line or to span multiple lines.

C-style comments cannot be nested. For example, the following is not valid because
the entire comment ends with the first * /:

File Formats 281

named.conf(4)

/* This is the start of a comment.
This is still part of the comment.

/* This is an incorrect attempt at nesting a comment. */
This is no longer in any comment. */

C++ style comments start with the two characters // (slash, slash) and continue to the
end of the physical line. They cannot be continued across multiple physical lines. To
have one logical comment span multiple lines, each line must use the // pair. For
example:

// This is the start of a comment. The next line

// is a new comment, even though it is logically

// part of the previous comment.

Shell-style or perl-style comments start with the character # (hash or pound or number
or octothorpe or whatever) and like C++ comments, continue to the end of the
physical line. For example:

This is the start of a comment. The next line
is a new comment, even though it is logically
part of the previous comment.

You can covert BIND 4.9.x configuration files to the new format by using
named-bootconf(1M).

Documentation | The elements described below are used throughout the BIND configuration file
Definitions | documentation. Elements which are only associated with one statement are described
only in the section describing that statement.

acl_name The name of an address_match_list as defined by the acl
statement.

address_match_list A list of one or more ip_addr, ip_prefix, key_id, or acl_name
elements, as described in the ADDRESS MATCH LISTS section.

dotted-decimal One or more integers valued 0 through 255 separated only by
dots (“.”),such as 123,45.67 or 89.123.45.67.

domain_name A quoted string which will be used as a DNS name, for example
"my.test.domain".

path_name A quoted string which will be used as a pathname, such as
"zones/master/my.test.domain".

ip_add An IP address in with exactly four elements in dotted-decimal
notation.

ip_port An IP port number. number is limited to 0 through 65535, with

values below 1024 typically restricted to root-owned processes.
In some cases an asterisk (“*”) character can be used as a
placeholder to select a random high-numbered port.

ip_prefix IP network specified in dotted-decimal form, followed by “/”
and then the number of bits in the netmask. For example, 127/8

282 man pages section 4: File Formats * Last Revised 6 Sep 2001

Syntax

Definition and
Usage

named.conf(4)

is the network 127.0.0.0 with netmask 255.0.0.0. 1.2.3.0/28 is
network 1.2.3.0 with netmask 255.255.255.240.

key_name A string representing the name of a shared key, to be used for
transaction security.

number A non-negative integer with an entire range limited by the range
of a C language signed integer (2,147,483,647 on a machine with
32 bit integers). Its acceptable value might be further limited by
the context in which it is used.

size_spec number, the word unlimited, or the word default.

The maximum value of size_spec is that of unsigned long integers
on the machine. unlimited requests unlimited use, or the
maximum available amount. default uses the limit that was in
force when the server was started.

A number can optionally be followed by a scaling factor: K or k
for kilobytes, M or m for megabytes, and G or g for gigabytes,
which scale by 1024, 1024*1024, and 1024*1024*1024 respectively.

Integer storage overflow is currently silently ignored during
conversion of scaled values, resulting in values less than
intended, possibly even negative. Using unlimited is the best
way to safely set a really large number.

yes_or_no Either yes or no. The words true and false are also accepted,
as are the numbers 1 and 0.

address_match list = l*address_match_element

address_match element = ["!"] (address_match list /
ip address / ip prefix /
acl _name / "key " key id) ";"

Address match lists are primarily used to determine access control for various server
operations. They are also used to define priorities for querying other name servers and
to set the addresses on which in.named(IM) in.named will listen for queries. The
elements which constitute an address match list can be any of the following:

an ip-address (in dotted-decimal notation)

® an ip-prefix (in the '/’-notation)

m Akey_id, as defined by the key statement

m the name of an address match list previously defined with the acl statement

m or, another address_match_list.

Elements can be negated with a leading exclamation mark ("“!”’), and the match list

names any, none, localhost and localnets are predefined. More information on
those names can be found in the description of the acl statement.

File Formats 283

named.conf(4)

284

Syntax

The addition of the key clause made the name of this syntactic element something of a
misnomer, since security keys can be used to validate access without regard to a host
or network address. Nonetheless, the term “address match list” is still used
throughout the documentation.

When a given IP address or prefix is compared to an address match list the list is
traversed, in order, until an element matches. The interpretation of a match depends
on whether the list is being used for access control, for defining listen-on ports, or as a
topology, and whether the element is negated.

When used as an access control list, a non-negated match allows access, and a negated
match denies access. If there is no match at all in the list, access is denied. The clauses
allow-query, allow-transfer, allow-update, allow-recursion and
blackhole all use address match lists like this. Similarly, the 1isten-on option will
cause the server to not accept queries on any of the machine’s addresses that do not
match the list.

When used with the topology option, a non-negated match returns a distance based
on its position on the list. The closer the match is to the start of the list, the shorter the
distance is between it and the server. A negated match will be assigned the maximum
distance from the server. If there is no match, the address will get a distance which is
further than any non-negated list element, and closer than any negated element.

Because of the first-match aspect of the algorithm, an element that defines a subset of
another element in the list should come before the broader element, regardless of
whether either is negated. For example, in

1.2.3/24; 11.2.3.13

the 1.2.3.13 element is completely useless, because the algorithm will match any
lookup for 1.2.3.13 to the 1.2.3/24 element. Using

11.2.3.13; 1.2.3/24

fixes that problem by having 1.2.3.13 blocked by the negation but all other 1.2.3.* hosts
fall through.

logging {
[channel channel name {
(file path name
[versions (number | unlimited) 1
[size size_spec]
| syslog (kern | user | mail | daemon | auth | syslog | lpr |
news | uucp | cron | authpriv | ftp |
local0 | locall | local2 | local3 |
local4 | local5 | localé | local7)
| null);

[severity (critical | error | warning | notice |
info | debug [level] | dynamic);]

[print-category yes_or_no; 1

[print-severity yes _or no;]

man pages section 4: File Formats * Last Revised 6 Sep 2001

Definition and
Usage

The Channel
Phrase

named.conf(4)

[print-time yes_or no;]

}il

[category category name {
channel_name; [channel_name; ...]

}il
}i

The logging statement configures a wide variety of logging options for the name
server. Its channel phrase associates output methods, format options and severity
levels with a name that can then be used with the category phrase to select how
various classes of messages are logged.

Only one logging statement is used to define as many channels and categories as are
wanted. If there are multiple logging statements in a configuration, the first defined
determines the logging, and warnings are issued for the others. If there is no logging
statement, the logging configuration will be:
logging {

category default { default syslog; default_debug; };

category panic { default syslog; default stderr; };

category packet { default debug; };
category eventlib { default_debug; };

}i

The logging configuration is established as soon as the logging statement is parsed. If
you want to redirect messages about processing of the entire configuration file, the
logging statement must appear first. Even if you do not redirect configuration file
parsing messages, we recommend always putting the logging statement first so that
this rule need not be consciously recalled if you ever do want to relocate the parser’s
messages.

All log output goes to one or more “channels.” You can make as many of them as
you want.

Every channel definition must include a clause that says whether messages selected
for the channel go to a file, to a particular syslog(3C) facility, or are discarded. It can
optionally also limit the message severity level that will be accepted by the channel
(the default is info), and whether to include a time stamp generated by
in.named(1M), the category name, or severity level. The default is not to include any
of those three.

The word null as the destination option for the channel will cause all messages sent
to it to be discarded. Other options for the channel are meaningless.

The file clause can include limitations both on how large the file is allowed to become
and how many versions of the file will be saved each time the file is opened.

File Formats 285

named.conf(4)

The size option for files is simply a hard ceiling on log growth. If the file ever
exceeds the size, then in.named will not write anything more to it until the file is
reopened. That the size is exceeded does not automatically trigger a reopen. The
default behavior does not limit the size of the file.

If you use the version logfile option, then in.named will retain the backup versions of
the file by renaming them when it opens them. For example, if you choose to keep 3
old versions of the file lamers. log then just before it is opened lamers.log.1 is
renamed to lamers.log.2, lamers.log. 0 is renamed to lamers.log.1, and
lamers.log is renamed to lamers.log. 0. No rolled versions are kept by default.
Any existing log file is simply appended. The unlimited keyword is synonymous with
99 in current BIND releases. Example usage of size and versions options:

channel an example level
file "lamers.log" versions 3 size 20m;
print-time yes;
print-category yes;

}i

The argument for the syslog () clause is a syslog () facility as described in the
syslog(3C) manual page. How syslogd(1M) will handle messages sent to this
facility is described in the syslog.conf(4).

The severity clause works like the priority levels for syslog (), except that they can
also be used if you are writing straight to a file rather than using syslog (). Messages
which are not at least of the severity level given will not be selected for the channel;
messages of higher severity levels will be accepted.

If you are using syslog (), then the syslog. conf priorities will also determine
what eventually passes through. For example, defining a channel facility and
severity as daemon and debug but only logging daemon warnings by means of
syslog.conf will cause messages of severity info and notice to be dropped. If the
situation were reversed, with in.named writing messages of only warning or higher,
then syslogd will print all messages it receives from the channel.

The server can supply extensive debugging information when it is in debugging
mode. If the server’s global debug level is greater than zero, then the debugging mode
will be active. The global debug level is set either by starting the in.named server
with the -4 flag followed by a positive integer, or by sending the running server the
SIGUSR1 signal (for example, by using ndc trace). The global debug level can be set to
zero and debugging mode turned off, by sending the server the SIGUSR2 signal (as
with ndc notrace). All debugging messages in the server have a debug level, and
higher debug levels give more more detailed output. Channels that specify a specific
debug severity, for example:

channel specific_debug level {
file "foo";
severity debug 3;

}i

286 man pages section 4: File Formats » Last Revised 6 Sep 2001

The Category
Phrase

named.conf(4)

will get debugging output of level 3 or less any time the server is in debugging mode,
regardless of the global debugging level. Channels with dynamic severity use the
server’s global level to determine what messages to print.

If print -time has been turned on, then the date and time will be logged.
print-time may be specified for a syslog () channel, but is usually unnecessary
since syslog () also prints the date and time. If print -category is requested, then
the category of the message will be logged as well. Finally, if print-severity is on,
then the severity level of the message will be logged. The print- options may be
used in any combination, and will always be printed in the following order: time,
category, severity. Here is an example where all three print - options are on:

28-Apr-1997 15:05:32.863 default: notice: Ready to answer queries.

There are four predefined channels that are used for default logging in.named(1M).
How they are used is described in the next section, The Category Phrase.

channel default syslog {
syslog daemon; # send to syslog’s daemon facility
severity info; # only send priority info and higher

}i

channel default debug {
file "named.run"; # write to named.run in the working directory

Note: stderr is used instead of "named.run"
if the server is started with the -f option.
severity dynamic; # log at the server’s current debug level

}i

channel default stderr { # writes to stderr
file "<stderr>"; # this is illustrative only; there’s currently
no way of specifying an internal file
descriptor in the configuration language.
severity info; # only send priority info and higher
}i
channel null ({
null; # toss anything sent to this channel

}i

Once a channel is defined, it cannot be redefined. Thus you cannot alter the built-in
channels directly, but you can modify the default logging by pointing categories at
channels you have defined.

There are many categories, so you can send the logs you want to see wherever you
want, without seeing logs you do not want. If you do not specify a list of channels for
a category, then log messages in that category will be sent to the default category
instead. If you do not specify a default category, the following “default default” is
used:

category default { default syslog; default debug; };

File Formats 287

named.conf(4)

To log security events to a file but also keep the default logging behavior, specify the

following;:

channel my security channel {
file "my_security file";

severity info;

}i

category security { my_security_channel;

default syslog; default debug; };

To discard all messages in a category, specify the null channel:

category lame-servers { null; };

category cname { null; };

The following categories are available:

default

config
parser

queries

lame-servers
statistics

panic

update
ncache
xfer-in
xfer-out
db

eventlib

The catch-all. Many things still are not classified into
categories, and they all end up here. Also, if you don not
specify any channels for a category, the default category is
used instead. If you do not define the default category, the
following definition is used

category default { default syslog; default debug; };
High-level configuration file processing.
Low-level configuration file processing.

A short log message is generated for every query the server
receives.

Messages like “Lame server on ...”
Statistics.

If the server has to shut itself down due to an internal
problem, it will log the problem in this category as well as in
the problem’s native category. If you do not define the panic
category, the following definition is used:

category panic { default syslog; default stderr; };
Dynamic updates.

Negative caching.

Zone transfers the server is receiving.

Zone transfers the server is sending

All database operations.

Debugging information from the event system. Only one
channel may be specified for this category, and it must be a
file channel. If you do not define the event1ib category, the
following definition is used:

288 man pages section 4: File Formats » Last Revised 6 Sep 2001

Syntax

packet

notify

cname

security

oS

insist

maintenance

load

response-checks

options {

[

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

named.conf(4)
category eventlib { default debug; };

Dumps of packets received and sent. Only one channel may
be specified for this category, and it must be a file channel. If
you do not define the packet category, the following
definition is used:

category packet { default debug; };
The Notify protocol.

Messages like “... points to a CNAME”.
Approved or unapproved requests.
Operating system problems.

Internal consistency check failures.
Periodic maintenance events.

Load.

Messages arising from response checking, such as

7 7y

“Malformed response ...”, “wrong ans. name ...”, “unrelated
additional info ...”, “invalid RR type ...”’, and “bad referral

7

version version_string; |
directory path name;]
named-xfer path name;]
dump-file path name;]

memstatistics-file
pid-file path name;

path _name;]

]

statistics-file path_name;]
auth-nxdomain yes or no;]

deallocate-on-exit
dialup yes_or no;

yes_or_no;]

fake-iquery yes_or no;]
fetch-glue yes or no; 1]
has-old-clients yes_or no; 1
host-statistics yes or no; 1
host-statistics-max number;]
multiple-cnames yes_or no;]

notify yes_or_no; 1

recursion yes or no;]

rfc2308-typel yes_or no; 1]

use-id-pool yes or no; 1]

treat-cr-as-space yes_or no; 1]

also-notify yes or no;]

forward (only | first);]

forwarders { [in addr ; [in addr ; ... 1 1 };]
check-names (master | slave | response) (warn | fail | ignore); 1
allow-query { address_match list };]
allow-recursion { address match list }; 1
allow-transfer { address match list };]

File Formats 289

named.conf(4)

290

blackhole { address _match_list };]
listen-on [port ip port] { address _match_list }; 1
query-source [address (ip_addr | *)]
[port (ip port | *) 1 ; 1
lame-ttl number;]
max-transfer-time-in number;]
max-ncache-ttl number;]
min-roots number;]
transfer-format (one-answer | many-answers);]
transfers-in number;]
transfers-out number;]
transfers-per-ns number;]
transfer-source ip_addr; 1]
maintain-ixfr-base yes_or no;]
max-ixfr-log-size number;]
coresize size_spec ; |
datasize size spec ;]
files size_spec ; 1]
stacksize size spec ; 1
cleaning-interval number;]
heartbeat-interval number;]
interface-interval number;]
statistics-interval number;]
topology { address match list };]
sortlist { address match list };]
rrset-order { order spec ; [order spec ; ... 1 };

}i

Definition and | The options statement sets up global options to be used by BIND. This statement

Usage | may appear only once in a configuration file. If more than one occurrence is found, the
first occurrence determines the options used, and a warning will be generated. If there
is no options statement, an options block with each option set to its default will be
used.

Pathnames | version The version the server should report by means of the
ndc(1M) command or by means of a query of name
version.bind in class chaos. The default is the real
version number of the server.

directory The working directory of the server. Any non-absolute
pathnames in the configuration file will be taken as
relative to this directory. The default location for most
server output files, for example, named. run, is this
directory. If a directory is not specified, the working
directory defaults to “.”, the directory from which the
server was started. The directory specified should be an

absolute path.

named-xfer The pathname to the named-xfer program that the
server uses for inbound zone transfers. If not specified,
the defaultis /usr/sbin/named-xfer.

man pages section 4: File Formats * Last Revised 6 Sep 2001

Boolean
Operations

dump-£file

memstatistics-file

pid-file

statistics-file

auth-nxdomain

deallocate-on-exit

dialup

named.conf(4)

The pathname of the file to which the server dumps the
database when it receives a SIGINT signal, for example,
as sent by ndc dump. If not specified, the default is
named_dump.db.

The pathname of the file the server writes memory usage
statistics to on exit, if deallocate-on-exit is yes. If
not specified, the default is named.memstats.

The pathname of the file in which the server writes its
process ID. If not specified, the default is
/var/run/named.pid.

The pathname of the file the server appends statistics to
when it receives a SIGILL signal. If not specified, the
default is named. stats.

If the value is yes, then the AA bit is always set on
NXDOMAIN responses, even if the server is not
actually authoritative. The default is yes. Do not turn
off auth-nxdomain unless you are sure you know
what you are doing, as some older software will not like
it.

If the value is yes, then when the server exits it will
painstakingly deallocate every object it allocated, and
then write a memory usage report to the
memstatistics-file. The default is no because it is
faster to let the operating system clean up.
deallocate-on-exit is handy for detecting memory
leaks.

If the value is yes, then the server treats all zones as if
they are doing zone transfers across a dial on a demand
dialup link, which can be brought up by traffic
originating from this server. This has different effects
according to the zone type. It concentrates the zone
maintenance so that it all happens in a short interval,
once every heartbeat-interval and hopefully,
during the one call. It also suppresses some of the
normal zone maintenance traffic. The default is no. The
dialup option may also be specified in the zone
statement, in which case it overrides the options
dialup statement.

If the zone is a master then the server will send out
NOTIFY request to all the slaves. This will trigger the
zone up to date checking in the slave, providing the
slave supports NOTIFY, and allowing the slave to verify

File Formats 291

named.conf(4)

292

fake-iquery

fetch-glue

has-old-clients

host-statistics

host-statistics-max

maintain-ixfr-base

multiple-cnames

notify

the zone while they call us up. If the zone is a slave or
stub, then the server will suppress the regular zone up
to date queries, and only perform them when the
heartbeat-interval expires.

If yes, the server will simulate the obsolete DNS query
type IQUERY. The default is no.

If yes (the default), the server will fetch “glue” resource
records it does not have when it constructs the
additional data section of a response. fetch-glue no
can be used in conjunction with recursion no to
prevent the server’s cache from growing or becoming
corrupted. However, it requires more work from the
client.

Setting the option to yes is equivalent to setting the
following three options: auth-nxdomain yes,
maintain-ixfr-base yes, and rfc2308-typel
no. has-old-clients with auth-nxdomain,
maintain-ixfr-base, and rfc2308-typel is order
dependant.

If yes, then statistics are kept for every host with which
the name server interacts. The default is no. Turning on
host-statistics can consume huge amounts of
memory.

The maximum number of host records that will be kept.
When this limit is reached no new hosts will be added to
the host statistics. If host-statistics-max is set to
zero, then there is no limit set. The default value is
zZero.

If yes, a IXFR database file is kept for all dynamically
updated zones. This enables the server to answer IXFR
queries, which speeds up zone transfers enormously.
The default value is no.

If yes, then multiple CNAME resource records will be
allowed for a domain name. The default is no. Allowing
multiple CNAME records is against standards and is not
recommended. Multiple CNAME support is available
because previous versions of BIND allowed multiple
CNAME records, and these records have been used for
load balancing by a number of sites.

If yes (the default), DNS NOTIFY messages are sent
when a zone for which the server is authoritative
changes. The use of NOTIFY speeds convergence
between the master and its slaves. Slave servers that

man pages section 4: File Formats * Last Revised 6 Sep 2001

Also-Notify

Forwarding

recursion

rfc2308-typel

use-id-pool

treat-cr-as-space

named.conf(4)

receive a NOTIFY message and understand it will
contact the master server for the zone and see if they
need to do a zone transfer. If they do, they will initiate it
immediately. The notify option may also be specified
in the zone statement, in which case it overrides the
options not ify statement.

If yes, and a DNS query requests recursion, then the
server will attempt to do all the work required to answer
the query. If recursion is not on, the server will return
a referral to the client if it does not know the answer.
The default is yes. See also fetch-glue above.

If yes, the server will send NS records along with the
SOA record for negative answers. If you have an old
BIND server using you as a forwarder, which does not
understand negative answers that contain both SOA and
NS records, or you have an old version of
sendmail(1M), set this to no. The correct fix is to
upgrade the broken server or sendmail. The default is
no.

If yes, the server will keep track of its own outstanding
query ID’s to avoid duplication and increase
randomness. As a result, the server will consume 128KB
more memory. The default is no.

If yes, the server will treat CR characters the same way
it treats a space or tab. This may be necessary when
loading zone files on a UNIX system that were
generated on either an NT or a DOS machine. The
default is no.

also-notify Defines a global list of IP addresses that also get sent NOTIFY
messages whenever a fresh copy of the zone is loaded. This helps
to ensure that copies of the zones will quickly converge on
“stealth” servers. If an also-notify list is given in a zone
statement, it will override the options also-notify statement.
When a zone notify statement is set to no, the IP addresses in the
global also-notify list will not get sent NOTIFY messages for
that zone. The default is the empty list (no global notification list).

The forwarding facility can be used to create a large site-wide cache on a few servers.
This reduces traffic over links to external name servers. It can also be used to allow
queries by servers that do not have direct access to the Internet but wish to look up
exterior names anyway. Forwarding occurs only on those queries for which the server
is not authoritative and does not have the answer in its cache.

forward This option is only meaningful if the forwarders list is not empty. A
value of first, the default, causes the server to query the

File Formats 293

named.conf(4)

294

Name Checking

Access Control

forwarders first. If the forwarders do not answer the question, the
server will then look for the answer itself. If only is specified, the
server will only query the forwarders.

forwarders Specifies the IP addresses to be used for forwarding. The default is
the empty list (no forwarding).

Forwarding can also be configured on a per-zone basis, allowing for the global
forwarding options to be overridden in a variety of ways. You can set particular zones
to use different forwarders, have different forward only or forward first
behavior, or not forward at all. See THE ZONE STATEMENT section for more
information.

Future versions of BIND 8 may provide a more powerful forwarding system. The
syntax described above will continue to be supported.

The server can check domain names based upon their expected client contexts. For
example, a domain name used as a hostname can be checked for compliance with the
RFCs that define valid hostnames.

Three checking methods are available:
ignore No checking is done.

warn Names are checked against their expected client contexts. Invalid names
are logged, but processing continues normally.

fail Names are checked against their expected client contexts. Invalid names
are logged, and the offending data is rejected.

The server can check names three areas: master zone files, slave zone files, and
responses to queries the server has initiated. If check-names response fail has
been specified, and to answer the client’s question would require sending an invalid
name to the client, the server will send a REFUSED response code to the client.

The defaults are:

B check-names master fail
B check-names slave warn
B check-names response ignore

check-names may also be specified in the zone statement, in which case it overrides
the options check-names statement. When used in a zone statement, the area is not
specified, as it can be deduced from the zone type.

Access to the server can be restricted based on the IP address of the requesting system
or by means of shared secret keys. See ADDRESS MATCH LISTS for details on how to
specify access criteria.

man pages section 4: File Formats * Last Revised 6 Sep 2001

Interfaces

Query Address

named.conf(4)

allow-query Specifies which hosts are allowed to ask ordinary questions.
allow-query may also be specified in the zone statement, in
which case it overrides the options allow-query statement. If not
specified, the default is:

allow-recursion Specifies which hosts are allowed to ask
recursive questions. allow-recursion
may also be specified in the zone
statement, in which case it overrides the
options allow-recursion statement. If
not specified, the default is to allow
recursive queries from all hosts.

allow-transfer Specifies which hosts are allowed to
receive zone transfers from the server.
allow-transfer may also be specified
in the zone statement, in which case it
overrides the options allow-transfer
statement. If not specified, the default is to
allow transfers from all hosts.

blackhole Specifies a list of addresses that the server
will not accept queries from or use to
resolve a query. Queries from these
addresses will not receive a response.

The interfaces and ports that the server will answer queries from may be specified
using the 1isten-on option. 1isten-on takes an optional port and an address
match list. The server will listen on all interfaces allowed by the address match list. If a
port is not specified, port 53 will be used.

Multiple 1isten-on statements are allowed. For example,

listen-on { 5.6.7.8; };
listen-on port 1234 { !1.2.3.4; 1.2/16; };

will enable the name server on port 53 for the IP address 5.6.7.8, and on port 1234 of
an address on the machine in net 1.2 that is not 1.2.3.4.

If no 1listen-on is specified, the server will listen on port 53 on all interfaces.

If the server does not know the answer to a question, it will query other name servers.
query-source specifies the address and port used for such queries. If address is * or
is omitted, a wildcard IP address (INADDR_ANY) will be used. If port is * or is omitted,
a random unprivileged port will be used. The default is

query-source address * port *;

query-source currently applies only to UDP queries; TCP queries always use a
wildcard IP address and a random unprivileged port.

File Formats 295

named.conf(4)

296

Zone Transfers | max-transfer-time-in

transfer-format

transfers-in

transfers-out

transfers-per-ns

transfer-source

Inbound zone transfers (named-xfer processes)
running longer than max-transfer-time-in
minutes will be terminated. The default value for
max-transfer-time-in is 120 minutes (2 hours).

The server supports two zone transfer methods.
one-answer uses one DNS message per resource
record transferred. many-answers packs as many
resource records as possible into a message.
many-answers is more efficient, but is only known to
be understood by BIND 8.1 and patched versions of
BIND 4.9.5. The default is one-answer.
transfer-format may be overridden on a
per-server basis by using the server statement.

The maximum number of inbound zone transfers that
can be running concurrently. The default value is 10.
Increasing transfers-in may speed up the
convergence of slave zones, but it also may increase the
load on the local system.

This option will be used in the future to limit the
number of concurrent outbound zone transfers. It is
checked for syntax, but is otherwise ignored.

The maximum number of inbound zone transfers (
named-xfer processes) that can be concurrently
transferred from a given remote name server. The
default value is 2. Increasing transfers-per-ns
may speed up the convergence of slave zones, but it
also may increase the load on the remote name server.
transfers-per-ns may be overridden on a
per-server basis by using the transfers phrase of the
server statement.

transfer-source determines which local address
will be bound to the TCP connection used to fetch all
zones transferred inbound by the server. If not set, it
defaults to a system controlled value which will
usually be the address of the interface “closest to” the
remote end. This address must appear in the remote
end’s allow-transfer option for the zones being
transferred, if one is specified. This statement sets the
transfer-source for all zones, but can be overriden
on a per-zone basis by including a transfer-source
statement within the zone block in the configuration
file.

man pages section 4: File Formats * Last Revised 6 Sep 2001

Resource Limits

Periodic Task
Intervals

named.conf(4)

The server’s usage of many system resources can be limited. Some operating systems
do not support some of the limits. On such systems, a warning will be issued if the
unsupported limit is used. Some operating systems do not support resource limits,
and on these systems a

set resource limits on this system
will be logged.

Scaled values are allowed when specifying resource limits. For example, 1G can be
used instead of 1073741824 to specify a limit of one gigabyte. Other values include:
unlimited requests, unlimited use, or the maximum available amount.
The value default uses the limit that was in force when the server was started. See
the definition of size spec for more details.

coresize The maximum size of a core dump. The default value is
default.
datasize The maximum amount of data memory the server may

use. The default value is default.

files The maximum number of files the server may have open
concurrently. The default value is unlimited. Note that
on some operating systems the server cannot set an
unlimited value and cannot determine the maximum
number of open files the kernel can support. On such
systems, choosing unlimited will cause the server to use
the larger of the r1im max from
getrlimitRLIMIT_NOFILE () and the value returned by
sysconf_SC_OPEN_MAX (). If the actual kernel limit is
larger than this value, use limit files to specify the limit
explicitly.

max-ixfr-log-size The max-ixfr-log-size will be used in a future release
of the server to limit the size of the transaction log kept for
Incremental Zone Transfer.

stacksize The maximum amount of stack memory the server may
use. The default value is default.

cleaning-interval The server will remove expired resource records from
the cache every cleaning-interval minutes. The
default is 60 minutes. If set to 0, no periodic cleaning
will occur.

heartbeat-interval The server will perform zone maintenance tasks for all
zones marked dialup yes whenever this interval
expires. The default is 60 minutes. Reasonable values are
up to 1 day (1440 minutes). If set to 0, no zone
maintenance for these zones will occur.

File Formats 297

named.conf(4)

Topology

Resource Record

298

Sorting

interface-interval The server will scan the network interface list every
interface-interval minutes. The default is 60
minutes. If set to 0, interface scanning will only occur
when the configuration file is loaded. After the scan,
listeners will be started on any new interfaces, provided
they are allowed by the 1isten-on configuration..
Listeners on interfaces that have gone away will be
cleaned up.

statistics-interval Name server statistics will be logged every
statistics-interval minutes. The default is 60. If
set to 0, no statistics will be logged.

All other things being equal, when the server chooses a name server to query from a
list of name servers, it prefers the one that is topologically closest to itself. The
topology statement takes an address match list and interprets it in a special way. Each
top-level list element is assigned a distance. Non-negated elements get a distance
based on their position in the list, where the closer the match is to the start of the list,
the shorter the distance is between it and the server. A negated match will be assigned
the maximum distance from the server. If there is no match, the address will get a
distance which is further than any non-negated list element, and closer than any
negated element. For example:

topology {
10/8;
11.2.3/24;
{ 1.2/16; 3/8; };

}i

will prefer servers on network 10, followed by hosts on network 1.2.0.0 (netmask
255.255.0.0) and network 3, with the exception of hosts on network 1.2.3 (netmask
255.255.255.0), which is the least preferred.

The default topology is:

topology { localhost; localnets; };

When returning multiple resource records (“RRs”), the name server will normally
return them in round robin, that is, after each request, the first RR is put to the end of
the list. As the order of RRs is not defined, this should not cause any problems.

The client resolver code should rearrange the RRs as appropriate, for example, using
any addresses on the local network before other addresses. However, not all resolvers
can do this, or are not correctly configured to do so.

When a client is using a local server, the sorting can be performed by the server, based
on the client’s address. This only requires configuring the name servers, not all the
clients.

The sortlist statement takes an address match list and interprets it even more
specially than the topology statement does.

man pages section 4: File Formats * Last Revised 6 Sep 2001

named.conf(4)

Each top level statement in the sort1ist must itself be an explicit address match list
with one or two elements. The first element of each top level list, which may be an IP
address, an IP prefix, an acl name or nested address match list, is checked against the
source address of the query until a match is found.

Once the source address of the query has been matched, if the top level statement
contains only one element, the actual primitive element that matched the source
address is used to select the address in the response to move to the beginning of the
response. If the statement is a list of two elements, the second element is treated like
the address match list in a topology statement. Each top level element is assigned a
distance and the address in the response with the minimum distance is moved to the
beginning of the response.

In the following example, any queries received from any of the addresses of the host
itself will get responses that prefer addresses on any of the locally connected
networks. Next most preferred are addresses on the 192.168.1/24 network, and after
that either the 192.168.2/24 or 192.168.3 /24 network with no preference shown
between these two networks. Queries received from a host on the 192.168.1/24
network will prefer other addresses on that network to the 192.168.2/24 and
192.168.3 /24 networks. Queries received from a host on the 192.168.4/24 or the
192.168.5/24 network will only prefer other addresses on their directly connected
networks.

sortlist {

{ localhost; // IF the local host
{ localnets; // THEN first fit on the
192.168.1/24; // following nets
{ 192,168.2/24; 192.168.3/24; }; }; };
{ 192.168.1/24; // IF on class C 192.168.1
{ 192.168.1/24; // THEN use .1, or .2 or .3
{ 192.168.2/24; 192.168.3/24; }; }; };
{ 192.168.2/24; // IF on class C 192.168.2
{ 192.168.2/24; // THEN use .2, or .1 or .3
{ 192.168.1/24; 192.168.3/24; }; }; };
{ 192.168.3/24; // IF on class C 192.168.3
{ 192.168.3/24; // THEN use .3, or .1l or .2

{ 192.168.1/24; 192.168.2/24; }; }; };
{ { 192.168.4/24; 192.168.5/24; }; // if .4 or .5,
// prefer that net
}i
i

The following example will give reasonable behavior for the local host and hosts on
directly connected networks. It is similar to the behavior of the address sort in BIND
4.9.x. Responses sent to queries from the local host will favor any of the directly
connected networks. Responses sent to queries from any other hosts on a directly
connected network will prefer addresses on that same network. Responses to other
queries will not be sorted.

sortlist {
{ localhost; localnets; };
{ localnets; };

File Formats 299

named.conf(4)

300

RRset Ordering

Tuning

}i

When multiple records are returned in an answer it may be useful to configure the
order the records are placed into the response. For example the records for a zone
might be configured to always be returned in the order they are defined in the zone
file. Perhaps you want a random shulffle of the records as they are returned. The
rrset-order statement permits you to configure the order of the records in a
multiple record response. The default, if no ordering is defined, is a cyclic ordering
(round robin).

An order_spec is defined as follows:

[class class name][type type name][name "FQDN"] order ordering

If no class is specified, the default is ANY. If no type is specified, the default is ANY. If
no name is specified, the default is "*".

The legal values for ordering are:
fixed Records are returned in the order they are defined in the zone file.
random Records are returned in some random order.

cyclic Records are returned in a round-robin order.

For example:

rrset-order {
class IN type A name "rc.vix.com" order random;
order cyclic;

}i

will cause any responses for type A records in class IN that have "rc.vix.com"as a
suffix, to always be returned in random order. All other records are returned in
cyclic order.

If multiple rrset -order statements appear, they are not combined. The last one
applies.

If no rrset-order statement is specified, the following default statement is used:
rrset-order { class ANY type ANY name "*" order cyclic ; };

lame-ttl Sets the number of seconds to cache a lame server indication. 0
disables caching. The default is 600 (10 minutes). The
maximum value is 1800 (30 minutes).

max-ncache-ttl To reduce network traffic and increase performance, the server
store negative answers. max-ncache-ttl is used to set a
maximum retention time for these answers in the server in
seconds. The default max-ncache-ttl is 10800 seconds (3
hours). max-ncache-ttl cannot exceed the maximum

man pages section 4: File Formats * Last Revised 6 Sep 2001

Syntax

Definition and
Usage

named.conf(4)

retention time for ordinary (positive) answers (7 days) and will
be silently truncated to 7 days if set to a value which is greater
than 7 days.

min-roots The minimum number of root servers that is required for a
request for the root servers to be accepted. The default is 2.

zone domain name [(in | hs | hesiod | chaos)] {
type master;
file path name;
[check-names (warn | fail | ignore);]
allow-update { address match list };]
[allow-query { address_match list };]
[allow-transfer { address match list };
[forward (only | first);]
[forwarders { [ip addr; [ip addr; ... 1 1 }; 1
[
[
[
[

dialup yes_or no;]

notify yes_or_no; 1

also-notify { ip addr; [ip_addr; ... 1 };
pubkey number number number string;]

}i

zone domain _name [(in | hs | hesiod | chaos) 1 {
type (slave | stub);
[file path_name; 1]
masters [port ip port] { ip_addr; [ip addr; ... 1 };
[check-names (warn | fail | ignore);]
[allow-update { address match list };]
[allow-query { address_match list };]
[allow-transfer { address match list };]
[forward (only | first);]
[forwarders { [ip addr; [ip addr; ... 1 1 }; 1
[transfer-source ip_addr;]
[max-transfer-time-in number;]
[notify yes_or no; 1]
[also-notify { ip addr; [ip_addr; ... 1 };
[pubkey number number number string;]

}i

zone domain name [(in | hs | hesiod | chaos) 1 {
type forward;
[forward (only | first);]

[forwarders { [ip addr ; [ip addr ; ... 1 1 }; 1
[check-names (warn | fail | ignore);]
}i
zone "." [(in | hs | hesiod | chaos) 1 {
type hint;
file path name;
[check-names (warn | fail | ignore);]

Vi

The zone statement is used to define how information about particular DNS zones is
managed by the server. There are five different zone types.

File Formats 301

named.conf(4)

302

Classes

Options

master The server has a master copy of the data for the zone and will be
able to provide authoritative answers for it.

slave A slave zone is a replica of a master zone. The masters list specifies
one or more IP addresses that the slave contacts to update its copy
of the zone. If a port is specified, it then checks to see if the zone is
current and makes zone transfers to the port given. If a file is
specified, then the replica will be written to the named file. Use of
the file clause is highly recommended, since it often speeds server
startup and eliminates a needless waste of bandwidth.

stub A stub zone is like a slave zone, except that it replicates only the
NS records of a master zone instead of the entire zone.

forward A forward zone is used to direct all queries in it to other servers, as
described in THE OPTIONS STATEMENT section. The
specification of opt ions in such a zone will override any global
options declared in the options statement.

If no forwarders clause is present in the zone or an empty list for
forwarders is given, then no forwarding will be done for the zone,
cancelling the effects of any forwarders in the options statement.
Thus if you want to use this type of zone to change only the
behavior of the global forward option, and not the servers used,
then you also need to respecify the global forwarders.

hint The initial set of root name servers is specified using a hint zone.
When the server starts up, it uses the root hints to find a root name
server and get the most recent list of root name servers.

Previous releases of BIND used the term primary for a master zone, secondary for
a slave zone, and cache for a hint zone.

The zone’s name may optionally be followed by a class. If a class is not specified, class
in (for "internet"), is assumed. This is correct for the vast majority of cases.

The hesiod class is for an information service from MIT’s Project Athena. It is used to
share information about various systems databases, such as users, groups, and
printers. More information can be found at
ftp://athena-dist.mit.edu/pub/ATHENA/usenix/athena_ changes.PS.
The keyword hs is a synonym for hesiod.

Another MIT development was CHAOSnet, a LAN protocol created in the mid-1970s.
It is still sometimes seen on LISP stations and other hardware in the Al community,
and zone data for it can be specified with the chaos class.

check-names See the subsection on Name Checking in THE
OPTIONS STATEMENT.
allow-query See the description of allow-query in the Access

Control subsection of THE OPTIONS STATEMENT.

man pages section 4: File Formats * Last Revised 6 Sep 2001

Syntax

allow-update

allow-transfer

transfer-source

max-transfer-time-in

dialup

notify

also-notify

forward

forwarders

pubkey

acl name {
address_match_list

}i

named.conf(4)

Specifies which hosts are allowed to submit dynamic
DNS updates to the server. The default is to deny
updates from all hosts.

See the description of allow-transfer in the Access
Control subsection of THE OPTIONS STATEMENT.

transfer-source determines which local address
will be bound to the TCP connection used to fetch this
zone. If not set, it defaults to a system controlled value
which will usually be the address of the interface
“closest to”” the remote end. This address must appear
in the remote end’s allow-transfer option for this
zone if one is specified.

See the description of max-transfer-time-in in the
Zone Transfers subsection of THE OPTIONS
STATEMENT.

See the description of dialup in the Boolean Options
subsection of THE OPTIONS STATEMENT.

See the description of notify in the Boolean Options
subsection of the THE OPTIONS STATEMENT.

also-notify is only meaningful if notify is active
for this zone. The set of machines that will receive a
DNS NOTIFY message for this zone is made up of all
the listed name servers for the zone (other than the
primary master), plus any IP addresses specified with
also-notify. also-notify is not meaningful for
stub zones. The default is the empty list.

forward is only meaningful if the zone has a
forwarders list. The only value causes the lookup to
fail after trying the forwarders and getting no answer,
while first would allow a normal lookup to be tried.

The forwarders option in a zone is used to override
the list of global forwarders. If it is not specified in a
zone of type forward, no forwarding is done for the
zone, and the global options are not used.

The DNSSEC flags, protocol, and algorithm are
specified, as well as a base-64 encoded string
representing the key.

File Formats 303

named.conf(4)

Definition and
Usage

Syntax

Definition and
Usage

Syntax

Definition and
Usage

Syntax

The acl statement creates a named address match list. It gets its name from a primary
use of address match lists: Access Control Lists (acls).

An address match list’s name must be defined with acl before it can be used
elsewhere. No forward references are allowed.

The following acls are built-in:

any Allows all hosts.

none Denies all hosts.

localhosts Allows the IP addresses of all interfaces on the system.

localnets Allows any host on a network for which the system has an interface.
key key id {

algorithm algorithm_id;

secret secret_string;

}i

The key statement defines a key ID which can be used in a server statement to
associate with a particular name server a method of authentication that is more
rigorous than simple IP address matching. A key ID must be created with the key
statement before it can be used in a server definition or an address match list.

The algorithm_id is a string that specifies a security/authentication algorithm.
secret_string is the secret to be used by the algorithm, and is treated as a base-64
encoded string. If you have a secret_string in your named. conf file, make sure
that it is not be readable by anyone beside superuser.

trusted-keys {
[domain name flags protocol algorithm key; 1]

}i

The trusted-keys statement is for use with DNSSEC-style security, originally specified
in RFC 2065. DNSSEC is meant to provide three distinct services: key distribution,
data origin authentication, and transaction and request authentication.

The contributed section of the ISC BIND distribution includes a dns_signer utility to
sign zone data according to the DNSSEC specifications. The utility is provided as-is,
without any expressed or implied warranties. The contributed source could be
retrieved from the /isc/bind/src/cur/bind-8 directory at ISC’s FTP site,
ftp.isc.org.

Each trusted key is associated with a domain name. Its attributes are the non-negative
integral flags, protocol, and algorithm, as well as a base-64 encoded string
representing the key.

Any number of trusted keys can be specified.

server ip_ addr {
[bogus yes or no;]

304 man pages section 4: File Formats ¢ Last Revised 6 Sep 2001

Definition and
Usage

Syntax

Definition and
Usage

named.conf(4)

[transfers number;]
[transfer-format (one-answer | many-answers);]
[keys { key id [key id ... 1 }; 1

}i

The server statement defines the characteristics to be associated with a remote name
server.

If you discover that a server is giving out bad data, marking it as bogus will prevent
further queries to it. The default value of bogus is no.

If you mark a server as bogus, all other addresses for that server will be marked as
bogus when a match is made when looking up a server’s address by name.

The server supports two zone transfer methods. The first, one-answer, uses one DNS
message per resource record transferred. The second method, many-answers packs
as many resource records as possible into a message. many-answers is more efficient,
but is only understood by BIND 8.1 and patched versions of BIND 4.9.5. You can
specify which method to use for a server with the transfer-format option. If
transfer-format is not specified, the transfer-format specified by the options
statement will be used.

The transfers will be used in a future release of the server to limit the number of
concurrent in-bound zone transfers from the specified server. It is checked for syntax
but is otherwise ignored.

The key clause is used to identify a key_1id defined by the key statement, to be used
for transaction security when talking to the remote server. The key statement must
come before the server statement that references it.

The key statement is intended for future use by the server. It is checked for syntax but
is otherwise ignored.

controls {
[inet ip_addr
port ip port
allow { address match list; }; 1]
[unix path name
perm number
owner number
group number;]

}i

The controls statement declares control channels to be used by system
administrators to affect the operation of the local name server. These control channels
are used by the ndc(1M) utility to send commands to and retrieve non-DNS results
from a name server.

A UNIX control channel is a FIFO in the file system, and access to it is controlled by
normal file system permissions. It is created by in.named(1M) with the specified file
mode bits, user and group owner. See chmod(1). Note that, unlike chmod, the mode

File Formats 305

named.conf(4)

Syntax

Definition and
Usage

EXAMPLES

bits specified for perm will normally have a leading 0 so the number is interpreted as
octal. Also note that the user and group ownership specified as owner and group must
be given as numbers, not names. It is recommended that the permissions be restricted
to administrative personnel only, or else any user on the system may be able to
manage the local name server.

An inet control channel is a TCP/IP socket accessible to the Internet, created at the
specified ip_port on the specified ip_addr. Modern telnet clients are capable of
speaking directly to these sockets, and the control protocol is ARPAnet-style text. It is
recommended that 127.0.0.1 be the only ip_addr used, and this only if you trust all
non-privileged users on the local host to manage your name server.

include path name;
The include statement inserts the specified file at the point that the include

statement is encountered. It cannot be used within another statement, though, so a line
such as

acl internal hosts { include internal hosts.acl; };
is not allowed.

Use include to break the configuration up into easily-managed chunks. For example:
include "/etc/security/keys.bind";

include "/etc/acls.bind";

could be used at the top of a BIND configuration file in order to include any acl or key
information.

Be careful not to use “#include,” like you would in a C program, because “#”’ is
used to start a comment.

EXAMPLE 1 Simple Configuration File

The simplest configuration file that is still realistically useful is one which simply
defines a hint zone that has a full path to the root servers file, for example:
zone "." in {

type hint;

file "/var/named/root.cache";

}i

EXAMPLE 2 Another Example of a Configuration File

Here is a more typical real-world example.

/*
* A simple BIND 8 configuration

*/

306 man pages section 4: File Formats ¢ Last Revised 6 Sep 2001

FILES

ATTRIBUTES

SEE ALSO

named.conf(4)

EXAMPLE 2 Another Example of a Configuration File (Continued)

logging {

category lame-servers { null; };
category cname { null; };

}i

options {

directory "/var/named";

}i

controls {
inet
unix

* port 52 allow { any; }; // a bad idea
"/var/run/ndc" perm 0600 owner 0 group 0; // the default

zone "isc.org" in {

type
file

master;
"master/isc.org";

zone "vix.com" in {

type
file

slave;
"slave/vix.com";

masters { 10.0.0.53; };

zone "0.0.127
type
file

zone "." in {
type
file

Vi

/etc/named.

.in-addr.arpa" in {

master;
"master/127.0.0";

hint;
"root.cache";

conf The BIND 8 in.named configuration file.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard BIND 8.2.4

chmod(1), in.named(1M), named-bootconf(1M), nde(1M), syslogd(1M),
syslog(3C), syslog.conf(4), attributes(5)

Eastlake, D., 3rd, Kaufman, C. RFC 2065, Domain Name System Security Extensions.

Network Working Group. January 1997.

File Formats

307

ncad_addr(4)
NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

FILES

ATTRIBUTES

SEE ALSO

NOTES

ncad_addr — name of the Solaris Network Cache and Accelerator (NCA) socket utility
library

/usr/lib/ncad_addr.so

ncad_addr. so is the Solaris Network Cache and Accelerator (NCA) socket utility
library. Use this library with a web server to avoid support for the PFNCA family type
socket. The web server can take advantage of NCA functionality.

Interpose the ncad addr interfaces before the interfaces in 1ibsocket by setting the
environment variable LD PRELOAD to ncad_addr . so so that it is preloaded before
libsocket.so.1. The ncad_addr. so interfaces will be interposed only if NCA is
enabled. See ncakmod(1).

EXAMPLE 1 Interposing ncad_addr

Using Bourne shell syntax as an example, set LD_PRELOAD as shown below to
interpose the ncad_addr socket utility libary:

LD _PRELOAD=/usr/lib/ncad_addr.so /usr/bin/httpd

/usr/lib/ncad addr.so ncad addr socket utility library shared object

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWncar (32-bit)

SUNWncarx (64-bit)

Interface Stability Unstable

nca(l), ncab2clf(l), ncakmod(l), socket(3SOCKET), nca.i£(4),
ncakmod. conf(4), attributes(5)

Only applications that use the NCA feature, for example, web servers, should
interpose this library.

308 man pages section 4: File Formats ¢ Last Revised 28 Sep 2001

NAME
SYNOPSIS

DESCRIPTION

IA

SPARC

All Platforms

FILES

ATTRIBUTES

nca.if(4)
nca.if — the NCA configuration file that specifies physical interfaces

/etc/nca/nca.if

Specify the physical interfaces for which the Solaris Network Cache and Accelerator
(“NCA”) feature will be configured in the nca . if configuration file. List the physical
interfaces in the file, one per line. To configure NCA to listen on all physical interfaces
present on the system backed by a hostname. {interface_name}, then list only an
asterik (“*”) innca.if.

When the ncakmod(1) initialization script is invoked during system boot, it will
attempt to configure each physical interface specified in the nca. if file by using
ncaconfd(1M). Note that there must be an accompanying

hostname. {interface name} file and an entry in /etc/hosts for the contents of
hostname. {interface name}.

You must reboot in order to implement changes to the nca . if file.

EXAMPLE 1 nca.if onIA

The following is an example of an nca. if file that would be used on an IA system:

iprbl
iprbé6
iprbs

EXAMPLE 2 nca . i £ on SPARC

The following is an example of an nca. if file that would be used on a SPARC
system:

hme2
hme3
hme4

EXAMPLE 3 Configuring NCA to Listen on All Physical Interfaces

The following example shows the contents of an nca. if file that would be used to
configure either platform to listen on all physical interfaces present on the system:

*

/etc/nca/nca.if Lists the physical interfaces on which NCA will run.
/etc/hostname. {}{0-9} Lists all physical interfaces configured on the server.
/etc/hosts Lists all host names associated with the server. Entries

in this file must match with entries in
/etc/hostname. {}{0-9} for NCA to function.

See attributes(5) for descriptions of the following attributes:

File Formats 309

nca.if(4)

310

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWncar

Interface Stability Evolving

SEE ALSO | nca(l), ncab2clf(l), ncakmod(l), ifconfig(1M), ncakmod.conf(4),
ncalogd.conf(4), attributes(5)

System Administration Guide, Volume 3

man pages section 4: File Formats * Last Revised 28 Sep 2001

NAME
SYNOPSIS

DESCRIPTION

EXAMPLES

FILES

ATTRIBUTES

ncakmod.conf(4)
ncakmod.conf — the ncakmod configuration file

/etc/nca/ncakmod. conf

The ncakmod. conf file is used to configure the Solaris Network Cache and
Accelerator (“NCA”) kernel module. The file contains two fields, key and value.

The status key is used to indicate if the user wants to have NCA turned on as a
feature. If the value of status key is enabled, then the NCA kernel module will be
pushed on to the specified interfaces. If the value of the status key is disabled,
then the NCA kernel module will not be pushed on to any interfaces . The default is
disabled.

The httpd_door_path key specifies the path name of the Solaris Door RPC
mechanism that will be used to communicate with the http daemon. The default
value is /var/run/nca_httpd 1.door.

Use the nca_active key to indicate whether to allow NCA to actively open outgoing
TCP connections. The default value for nca_active is disabled. If set to enabled,
ncaconfd sets up NCA for each interface and then operates as a daemon, allowing
NCA to make outgoing TCP connections. This functionality is possible only by using
the doors interface to NCA. A web server that uses the sockets interface with PF_NCA
or ncad_addr. so cannot connect by means of nca_active.

NCA supports the logging of in-kernel cache hits. See ncalogd. conf(4). NCA stores
logs in a binary format. Use the ncab2c1£(1) utility to convert the log from a binary
format to the Common Log File format.

In order to implement changes to the ncakmod. conf file, you will need to reboot.

EXAMPLE 1 A Sample ncakmod. conf File

The following is a sample ncakmod. conf file:

#

NCA Kernel Module Configuration File

#

status=disabled
httpd_door_path=/var/run/nca_httpd 1.door
nca_active=disabled

/etc/nca/ncakmod. conf The NCA kernel module configuration file.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWncar

Interface Stability Evolving

File Formats 311

ncakmod.conf(4)

SEE ALSO | nca(l), ncab2clf(1), ncakmod(l), door create(3DOOR), nca.if(4),
ncad_addr(4), ncalogd.conf(4), attributes(b)

System Administration Guide, Volume 3

312 man pages section 4: File Formats ¢ Last Revised 28 Sep 2001

NAME
SYNOPSIS

DESCRIPTION

EXAMPLES

FILES

ATTRIBUTES

ncalogd.conf(4)
ncalogd.conf — NCA logging configuration file

/etc/nca/ncalogd.conf

The ncalogd. conf is used to configure Solaris Network Cache and Accelerator
("NCA”) logging. The file contains two fields, key and value.

The status key is used to indicate if the user wants to have NCA logging turned on.
If the value of status key is enabled, then NCA logging will be turned on. If the
value of the status key is disabled, then NCA logging will not be invoked. The
default value is disabled.

The 1logd path name key specifies the absolute pathname of the log file. The log file
must be a raw device without a filesystem or a file on a local file system. The default
value is /var/nca/log. logd_path name can also contain a whitespace-delimited
list of values for multiple log files to a maximum of 16. If you specify multiple log
files, you must enclose the list in quotation marks (“). With multiple files, NCA
logging moves to the next file on the list once the file size specified by

logd file size hasbeen reached. When the last file is full, NCA logging rotates
back to the first file in the list. A pointer to the current log file is stored in
/var/nca/current.

The 1logd file size key specifies the value of the file size, in bytes, allowed for
each log file specified in by the logd_path_name key. The default value is 1000000
bytes.

In order to implement changes to the ncalogd. conf file, you will need to stop and
start NCA logging or reboot.

NCA stores logs in a binary format. Use the ncab2c1£(1) utility to convert the log
from a binary format to the Common Log File format.
EXAMPLE 1 A Sample ncalogd. conf File

The following is a sample ncalogd. conf file that specifies three log files:

#
NCA Log Daemon Configuration File
#

status=enabled

logd_path name="/var/nca/logl /var/nca/log2 /var/nca/log3"

logd _file size=1000000

Note that there is no NCA logging daemon. Logging is performed as one of the
functions of the NCA software.

/etc/nca/ncalogd. conf Lists configuration parameters for
NCAlogging.

See attributes(d) for descriptions of the following attributes:

File Formats 313

ncalogd.conf(4)

314

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWncar

Interface Stability Evolving

SEE ALSO | nca(l), ncab2cl£f(1), ncakmod(l), dd(1M), door create(3X), nca.if(4),
ncakmod. conf(4), attributes(5)

System Administration Guide, Volume 3

man pages section 4: File Formats ¢ Last Revised 22 Jan 2002

NAME
SYNOPSIS

DESCRIPTION

ndpd.conf(4)
ndpd.conf — configuration file for IPv6 router autoconfiguration

/etc/inet/ndpd.conf

The ndpd. conf file contains configuration information for in.ndpd()1M when used
on a router. This file does not need to exist or can be empty on a host. The file has one
configuration entry per line; note that lines can be extended with “\" followed by a
newline. There are four forms of configuration entries which are identified by the first
field on the line: ifdefault, prefixdefault, if, or prefix. The ifdefault and
if entries set interface configuration variables; the former establishes the defaults for
all interfaces. Any ifdefault entries must precede any if entries in the file.

The prefixdefault and prefix entries control per-prefix configuration variables.
prefixdefault establishes the defaults for all prefixes on all interfaces. Any
prefixdefault entries must precede any prefix entries in the file.

Each ifdefault entry is composed of a single line of the form:

ifdefault [if-variable-name value]*

Each if entry is composed of a single line of the form:

if interface [if-variable-name value]*

Each prefixdefault entry is composed of a single line of the form:

prefixdefault [prefix-variable-name value]*

Each prefix entry is composed of a single line of the form:

prefix prefix/prefix length interface [prefix-variable-name value]*

Fields are separated by either SPACE or TAB characters. A ‘#’ (number sign) indicates
the beginning of a comment. Characters up to the end of the line are not interpreted
by routines that search this file.

interface The name of a network interface, for example, 1e0.

prefix An IPv6 address in standard hexadecimal notation, for
exmnpk,fecO:O:O:l::O

prefix length A number between 0 and 128.

if-variable-name An interface variable as discussed in RFC 2461 and
RFC 2462. The following lists the each interface
variable and its default value and unit:

File Formats 315

ndpd.conf(4)

prefix-variable-name

value

Variable Name Default Unit
DupAddrDetectTransmits 1 Counter
AdvSendAdvertisements false Boolean
MaxRtrAdvInterval 600 Seconds
MinRtrAdvInterval 200 Seconds
AdvManagedFlag false Boolean
AdvOtherConfigFlag false Boolean
AdvLinkMTU 0 Bytes
AdvReachableTime 0 Milliseconds
AdvRetransTimer 0 Milliseconds
AdvCurHopLimit 0 Counter
AdvDefaultLifetime 1800 Seconds

A prefix variable as discussed in RFC 2461 and RFC
2462. The following lists the each interface variable and

its default value and unit:

Variable Name Default Unit
AdvValidLifetime 2592000 Seconds
AdvOnLinkFlag true Boolean
AdvPreferredLifetime 604800 Seconds
AdvAutonomousFlag true Boolean
AdvValidExpiration not set Date/Time
AdvPreferredExpiration not set Date/TIme

The “Expiration” variables are used to specify that the
lifetime should be decremented in real time as
specified in RFC 2461. If an "Expiration" variable is set
then it takes precedence over the corresponding

"Lifetime" ariable setting.

The value is a function of the unit. Boolean values are
true, false, on, off, 1, or 0.

316 man pages section 4: File Formats * Last Revised 30 May 2001

ndpd.conf(4)

Values in seconds can have characters appended for
day (d), hour h), minute (m) and second (s). The
default is seconds. For example, 1h means 1 hour. This
is equivalent to the value 3600.

Values in milliseconds can have characters appended
for day (d), hour (h), minute (m) second (s), and
millisecond (ms). The default is milliseconds. For
example, 1h is equivalent to the value 3600000.

Date/time values are strings that use the
recommended ISO date format described as
"$Y-%m-%d $R", which represents a 4 digit year, a
dash character, a numeric month, a dash character, and
a numeric day of the month, followed by one or more
whitespace characters and finally a 24 hour clock with
hours, a colon, and minutes. For example,
1999-01-31 20:00 means 8pm January 31 in 1999.
Since the date/time values contain a space, use single
or double quotes to declare the value. For example:

prefixdefault AdvPreferredExpiration ’1999-01-31 20:00’

EXAMPLES | EXAMPLE 1 Sending Router Advertisements for all Interfaces

The following example can be used to send router advertisements out to all interfaces:

Send router advertisements out all interfaces
ifdefault AdvSendAdvertisements on
prefixdefault AdvOnLinkFlag on AdvAutonomousFlag on

Advertise a (bogus) global prefix and a site

local prefix on three interfaces using the default lifetimes
prefix 2:0:0:9255::0/64 hme0

prefix fec0:0:0:9255::0/64 hme0

prefix 2:0:0:9256::0/64 hmel
prefix fec0:0:0:9256::0/64 hmel

prefix 2:0:0:9259::0/64 hme?2
prefix fec0:0:0:9259::0/64 hme2

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWecsr

SEE ALSO | in.ndpd(1M),attributes(5), icmp6(7P), ip6(7P)

File Formats 317

ndpd.conf(4)

Narten, T., Nordmark, E., and Simpson, W. RFC 2461, Neighbor Discovery for IP Version
6 (IPv6). The Internet Society. December 1998.

Thomson, S., and Narten, T. RFC 2462, IPv6 Stateless Address Autoconfiguration. The
Internet Society. December 1998.

318 man pages section 4: File Formats * Last Revised 30 May 2001

NAME
SYNOPSIS

DESCRIPTION

netconfig(4)
netconfig — network configuration database

/etc/netconfig

The network configuration database, /etc/netconfig, is a system file used to store
information about networks that are connected to the system. The netconfig
database and the routines that access it (see getnetconfig(3NSL)) are part of the
Network Selection component. The Network Selection component also includes
getnetpath(3NSL) routines to provide application-specific network search paths.
These routines access the net config database based on the environment variable
NETPATH. See environ(5).

netconfig contains an entry for each network available on the system. Entries are
separated by newlines. Fields are separated by whitespace and occur in the order in
which they are described below. Whitespace can be embedded as “\blank” or “\tab”.
Backslashes may be embedded as “\\"”. Lines in /etc/netconfig that begin with a
(hash) in column 1 are treated as comments.

Each of the valid lines in the netconf ig database correspond to an available
transport. Each entry is of the form:

network ID semantics flag protocol-family protocol-name \
network-device translation-libraries

network ID A string used to uniquely identify a network. network
ID consists of non-null characters, and has a length of
at least 1. No maximum length is specified. This
namespace is locally significant and the local system
administrator is the naming authority. All network IDs
on a system must be unique.

semantics The semantics field is a string identifying the
“semantics”’ of the network, that is, the set of services it
supports, by identifying the service interface it
provides. The semantics field is mandatory. The
following semantics are recognized.

tpi clts Transport Provider Interface,
connectionless
tpi cots Transport Provider Interface,

connection oriented

tpi cots ord Transport Provider Interface,
connection oriented, supports
orderly release.

flag The flag field records certain two-valued (“true”” and
“false”) attributes of networks. flag is a string
composed of a combination of characters, each of
which indicates the value of the corresponding

File Formats 319

netconfig(4)

protocol family

attribute. If the character is present, the attribute is

“true.” If the character is absent, the attribute is “false.”
indicates that none of the attributes are present.

e

7

Only one character is currently recognized:

v

Visible (“default’”’) network. Used
when the environment variable
NETPATH is unset.

The protocol family and protocol name fields are provided
for protocol-specific applications. The protocol family
field contains a string that identifies a protocol family.
The protocol family identifier follows the same rules as
those for network IDs; the string consists of non-null
characters, it has a length of at least 1, and there is no
maximum length specified. A “~"" in the protocol family
field indicates that no protocol family identifier applies
(the network is experimental). The following are

examples:
loopback

inet

ineteé

implink
pup
chaos
ns

nbs

ecma

datakit
ccitt
sna
decnet
dli

lat
hylink

appletalk

320 man pages section 4: File Formats » Last Revised 7 Jun 1999

Loopback (local to host).

Internetwork: UDP, TCP, and the
like.

Internetwork over IPv6: UDP, TCP,
and the like.

ARPANET imp addresses

PUP protocols: for example, BSP
MIT CHAOS protocols

XEROX NS protocols

NBS protocols

European Computer Manufacturers
Association

DATAKIT protocols

CCITT protocols, X.25, and the like.
IBM SNA

DECNET

Direct data link interface

LAT

NSC Hyperchannel

Apple Talk

protocol name

network device

translation libraries

netconfig(4)

nit Network Interface Tap

ieee802 IEEE 802.2; also ISO 8802

osi Umbrella for all families used by
OSI (for example, protosw lookup)

x25 CCITT X.25 in particular

osinet AFI=47,IDI =4

gosip U.S. Government OSI

The protocol name field contains a string that identifies a
protocol. The protocol name identifier follows the same
rules as those for network IDs; that is, the string consists
of non-NULL characters, it has a length of at least 1,
and there is no maximum length specified. A “~"”
indicates that none of the names listed apply. The
following protocol names are recognized.

tcp Transmission Control Protocol
udp User Datagram Protocol
icmp Internet Control Message Protocol

The network device is the full pathname of the device
used to connect to the transport provider. Typically, this
device will be in the /dev directory. The network device
must be specified.

The name-to-address translation libraries support a
“directory service” (a name-to-address mapping
service) for the network. A “—"" in this field indicates
the absence of any translation libraries. This has a special
meaning for networks of the protocol family inet : its
name-to-address mapping is provided by the name
service switch based on the entries for hosts and
services innsswitch.conf(4). For networks of
other families, a “~"’ indicates non-functional
name-to-address mapping. Otherwise, this field
consists of a comma-separated list of pathnames to
dynamically linked libraries. The pathname of the
library can be either absolute or relative. See
dlopen(3DL).

Each field corresponds to an element in the struct netconfig structure. struct
netconfig and the identifiers described on this manual page are defined in
<netconfig.hs. This structure includes the following members:

char *nc_netid

Network ID, including NULL terminator.

File Formats 321

netconfig(4)

unsigned long nc_semantics
Semantics.

unsigned long nc_flag
Flags.

char *nc_protofmly
Protocol family.

char *nc_proto
Protocol name.

char *nc_device
Full pathname of the network device.

unsigned long nc_nlookups
Number of directory lookup libraries.

char **nc_lookups
Names of the name-to-address translation libraries.

unsigned long nc_unused[9]
Reserved for future expansion.

The nc_semantics field takes the following values, corresponding to the semantics
identified above:

NC_TPI CLTS
NC_TPI_COTS
NC_TPI COTS ORD

The nc_flag field is a bitfield. The following bit, corresponding to the attribute
identified above, is currently recognized. NC_NOFLAG indicates the absence of any
attributes.

NC_VISIBLE

EXAMPLES | EXAMPLE 1 A Sample netconfig File

Below is a sample netconfig file:

#

The "Network Configuration" File.

#

Each entry is of the form:

#

<networkid> <semantics> <flags> <protofamily> <protoname><device> \
<nametoaddrlibs>

#

The "-" in <nametoaddrlibs> for inet family transports indicates
redirection to the name service switch policies for "hosts" and
'"services". The "-" may be replaced by nametoaddr libraries that
#

comply with the SVr4 specs, in which case the name service switch

322 man pages section 4: File Formats * Last Revised 7 Jun 1999

FILES

SEE ALSO

netconfig(4)

EXAMPLE 1 A Sample netconfig File (Continued)

FH oH o o oH H H H I

udp
tcp
raw
tic
tic
tic

will not be used for netdirgetbyname, netdirgetbyaddr,
gethostbyname, gethostbyaddr, getservbyname, and getservbyport.
There are no nametoaddrlibs for the inet family in Solaris anymore.

The following two entries starting with udpé and tcpé are meant to be
used for IPve. If you have Ipvé enabled on your machine then you can
uncomment these two lines to enable RPC and NFS to use the Ipvé stack.
Consult your network administrator before uncommenting.

pé tpi_clts v ineté6 udp /dev/udpé -

p6 tpi _cots ord v ineté6 tecp /dev/tcp6 -
tpiclts v inet udp /dev/udp -
tpicotsord v inet tcp /dev/tcp -

ip tpiraw - inet - /dev/rawip -

1ts tpiclts v loopback - /dev/ticlts straddr.so

otsord tpicotsord v loopback - /dev/ticotsord straddr.so

ots tpicots v loopback - /dev/ticots straddr.so

<netconfig.h>

dlopen(3DL), getnetconfig(3NSL), getnetpath(3NSL), nsswitch.conf(4)

Sys

tem Administration Guide: IP Services

File Formats 323

netgroup(4)

324

NAME
SYNOPSIS

DESCRIPTION

netgroup — list of network groups

/etc/netgroup

A netgroup defines a network-wide group of hosts and users. Use a netgroup to
restrict access to shared NFS filesystems and to restrict remote login and shell access.

Network groups are stored in one of the Network Information Services, either NIS or
NIS+, not in a local file.

This manual page describes the format for a file that may be used to supply input to
the makedbm(1M) or nisaddent(1M) programs that are use to build the NIS map or
NIS+ table, respectively.

Each line of the file defines the name and membership of a network group. The line
should have the format:

groupname member . .. The items on a line may be separated by a combination of one or
more spaces or tabs.

The groupname is the name of the group being defined. This is followed by a list of
members of the group. Each member is either another group name, all of whose
members are to be included in the group being defined, or a triple of the form:

(hostname,username,domainname)

In each triple, any of the three fields hostname, username, and domainname, can be
empty. An empty field signifies a wildcard that matches any value in that field. Thus:

everything (, ,this.domain)defines a group named "everything" for the domain
"this.domain" to which every host and user belongs.

The domainname field refers to the domain in which the triple is valid, not the domain
containing the host or user. In fact, applications using netgroup generally do not
check the the domainname. Therefore, using

(. ,domain)is equivalent to

(. ,)You can also use netgroups to control NFS mount access (see share_nfs(1M))
and to control remote login and shell access (see hosts . equiv(4)). You can also use
them to control local login access (see passwd(4), shadow(4), and compat in
nsswitch.conf(4)).

When used for these purposes, a host is considered a member of a netgroup if the
netgroup contains any triple in which the hostname field matches the name of the
host requesting access and the domainname field matches the domain of the host
controlling access.

man pages section 4: File Formats ¢ Last Revised 6 Apr 2000

FILES

SEE ALSO

NOTES

netgroup(4)

Similarly, a user is considered a member of a netgroup if the netgroup contains any
triple in which the username field matches the name of the user requesting access and
the domainname field matches the domain of the host controlling access.

Note that when netgroups are used to control NFS mount access, access is granted
depending only on whether the requesting host is a member of the netgroup.
Remote login and shell access can be controlled both on the basis of host and user
membership in separate netgroups.

/etc/netgroup used by /var/yp/Makefile on NIS masters to build
the NIS netgroup map

Note that the netgroup information must always be stored in a network information
service, either NIS or NIS+. The local file is only used to construct the netgroup NIS
maps or NIS+ table; it is never consulted directly.

nis+(1), makedbm(1M), nisaddent(1M), share nfs(1M), innetgr(3C), hosts(4),
hosts.equiv(4), nsswitch.conf(4), passwd(4), shadow(4)

netgroup requires NIS or NIS+.

Applications may make general membership tests using the innetgr () function. See
innetgr(3C).

Because the "-" character will not match any specific username or hostname, it is
commonly used as a placeholder that will match only wildcarded membership
queries. So, for example:

onlyhosts (hostl, -,our.domain) (host2,-,our.domain)

onlyusers (-,john,our.domain) (-,linda,our.domain)

effectively define netgroups containing only hosts and only users, respectively. Any
other string that is guaranteed not to be a legal username or hostname will also suffice
for this purpose.

Use of placeholders will improve search performance.

When a machine with multiple interfaces and multiple names is defined as a member
of a netgroup, one must list all of the names. See hosts(4). A manageable way to do
this is to define a netgroup containing all of the machine names. For example, for a
host "gateway" that has names "gateway-subnet1" and "gateway-subnet2" one may
define the netgroup:

gateway (gateway-subnetl, ,our.domain) (gateway-subnet2, ,our.domain)

and use this netgroup “gateway” whenever the host is to be included in another
netgroup.

File Formats 325

netid(4)

326

NAME
SYNOPSIS

DESCRIPTION

netid — netname database

/etc/netid

The netid file is a local source of information on mappings between netnames (see
secure_rpc(3NSL)) and user ids or hostnames in the local domain. The netid file
can be used in conjunction with, or instead of, the network source: NIS or NIS+. The
publickey entry in the nsswitch.conf (see nsswitch.conf(4)) file determines
which of these sources will be queried by the system to translate netnames to local
user ids or hostnames.

Each entry in the netid file is a single line of the form:

netname uid : gid, gid, gid . . .

or

netname 0:hostname
The first entry associates a local user id with a netname. The second entry associates a
hostname with a netname.

The netid file field descriptions are as follows:

netname The operating system independent network name for the user or
host. netname has one of two formats. The format used to specify a
host is of the form:

unix.hostname@domain

where hostname is the name of the host and domain is the
network domain name.

The format used to specify a user id is of the form:
unix.uidedomain

where uid is the numerical id of the user and domain is the network
domain name.

uid The numerical id of the user (see passwd(4)). When specifying a
host name, uid is always zero.

group The numerical id of the group the user belongs to (see group(4)).
Several groups, separated by commas, may be listed for a single
uid.

hostname The local hostname (see hosts(4)).

Blank lines are ignored. Any part of a line to the right of a “#” symbol is treated as a
comment.

man pages section 4: File Formats ¢ Last Revised 23 May 1994

netid(4)
EXAMPLES | EXAMPLE 1 A sample netid file.

Here is a sample netid file:

unix.789@West .Sun.COM 789:30,65
unix.123@Bldg_xy.Sun.COM 123:20,1521
unix.candlestick@campusl.bayarea.EDU 0:candlestick
FILES | /etc/group groups file
/etc/hosts hosts database
/etc/netid netname database
/etc/passwd password file
/etc/publickey public key database

SEE ALSO | netname2user(3NSL), secure rpc(3NSL), group(4), hosts(4),
nsswitch.conf(4), passwd(4), publickey(4)

File Formats 327

netmasks(4)

328

NAME
SYNOPSIS

DESCRIPTION

netmasks — network mask database
/etc/inet/netmasks

/etc/netmasks

The netmasks file contains network masks used to implement IP subnetting. It
supports both standard subnetting as specified in RFC-950 and variable length
subnetting as specified in RFC-1519. When using standard subnetting there should be
a single line for each network that is subnetted in this file with the network number,
any number of SPACE or TAB characters, and the network mask to use on that
network. Network numbers and masks may be specified in the conventional IP *.’
(dot) notation (like IP host addresses, but with zeroes for the host part). For example,

128.32.0.0 255.255.255.0

can be used to specify that the Class B network 128.32.0.0 should have eight bits of
subnet field and eight bits of host field, in addition to the standard sixteen bits in the
network field.

When using variable length subnetting, the format is identical. However, there should
be a line for each subnet with the first field being the subnet and the second field being
the netmask that applies to that subnet. The users of the database, such as
ifconfig(1M), perform a lookup to find the longest possible matching mask. It is
possible to combine the RFC-950 and RFC-1519 form of subnet masks in the netmasks
file. For example,

128.32.0.0 255.255.255.0
128.32.27.0 255.255.255.240
128.32.27.16 255.255.255.240
128.32.27.32 255.255.255.240
128.32.27.48 255.255.255.240
128.32.27.64 255.255.255.240
128.32.27.80 255.255.255.240
128.32.27.96 255.255.255.240
128.32.27.112 255.255.255.240
128.32.27.128 255.255.255.240
128.32.27.144 255.255.255.240
128.32.27.160 255.255.255.240
128.32.27.176 255.255.255.240
128.32.27.192 255.255.255.240
128.32.27.208 255.255.255.240
128.32.27.224 255.255.255.240
128.32.27.240 255.255.255.240
128.32.64.0 255.255.255.192

can be used to specify different netmasks in different parts of the 128.32.0.0 Class B
network number. Addresses 128.32.27.0 through 128.32.27.255 have a subnet mask
with 28 bits in the combined network and subnet fields (often referred to as the subnet
field) and 4 bits in the host field. Furthermore, addresses 128.32.64.0 through
128.32.64.63 have a 26 bits in the subnet field. Finally, all other addresses in the range
128.32.0.0 through 128.32.255.255 have a 24 bit subnet field.

man pages section 4: File Formats ¢ Last Revised 7 Jan 1997

SEE ALSO

NOTES

netmasks(4)
Invalid entries are ignored.
ifconfig(1M), inet(7P)

Postel, Jon, and Mogul, Jeff, Internet Standard Subnetting Procedure, REC 950, Network
Information Center, SRI International, Menlo Park, Calif., August 1985.

V. Fuller, T. Li, J. Yu, K. Varadhan, Classless Inter-Domain Routing (CIDR): an Address
Assignment and Aggregation Strategy, RFC 1519, Network Information Center, SRI
International, Menlo Park, Calif., September 1993.

T. Pummill, B. Manning, Variable Length Subnet Table For IPv4, REC 1878, Network
Information Center, SRI International, Menlo Park, Calif., December 1995.

/etc/inet/netmasks is the official SVr4 name of the netmasks file. The symbolic
link /etc/netmasks exists for BSD compatibility.

File Formats 329

netrc(4)

330

NAME

DESCRIPTION

EXAMPLES

netrc — file for ftp remote login data

The .netrc file contains data for logging in to a remote host over the network for file
transfers by £tp(1). This file resides in the user’s home directory on the machine
initiating the file transfer. Its permissions should be set to disallow read access by
group and others (see chmod(1)).

The following tokens are recognized; they may be separated by SPACE, TAB, or
NEWLINE characters:

machine name

default

login name

password string

account string

macdef name

Identify a remote machine name. The auto-login process searches
the .netrc file for a machine token that matches the remote
machine specified on the ftp command line or as an open
command argument. Once a match is made, the subsequent
.netrc tokens are processed, stopping when the EOF is reached
or another machine token is encountered.

Same as machine name, except that default matches any name.
There can be only one default token, and it must be after all
machine tokens. The default token is normally used as follows:

default login anonymous password usera@site

Such an entry gives the user automatic anonymous ftp login to
machines not specified in .netrec.

Identify a user on the remote machine. If this token is present, the
auto-login process will initiate a login using the specified name.

Supply a password. If this token is present, the auto-login process
will supply the specified string if the remote server requires a
password as part of the login process. Note: if this token is present
in the .netrc file, £tp will abort the auto-login process if the
.netrc is readable by anyone besides the user.

Supply an additional account password. If this token is present,
the auto-login process supplies the specified string if the remote
server requires an additional account password. If the remote
server does not require an additional account password, the
auto-login process will initiate an ACCT command.

Define a macro. This token functions the same as ftp macdef. A
macro is defined with the specified name; its contents begin with
the next .netrc line and continue until a null line (consecutive
NEWLINE characters) is encountered. If a macro named init is
defined, it is automatically executed as the last step in the
auto-login process.

EXAMPLE 1 A Sample .netrc File

A .netrc file containing the following line:

man pages section 4: File Formats ¢ Last Revised 3 Jul 1990

netrc(4)
EXAMPLE 1 A Sample .netrc File (Continued)
machine ray login demo password mypassword

allows an autologin to the machine ray using the login name demo with password
mypassword.

FILES | ~/ .netrc

SEE ALSO | chmod(1), £tp(1), in. ftpd(1M)

File Formats 331

networks(4)

332

NAME
SYNOPSIS

DESCRIPTION

SEE ALSO

NOTES

networks — network name database
/etc/inet/networks

/etc/networks

The networks file is a local source of information regarding the networks which
comprise the Internet. The networks file can be used in conjunction with, or instead of,
other networks sources, including the NIS maps networks . byname and
networks.byaddr and the NIS+ table networks. Programs use the
getnetbyname(3SOCKET) routines to access this information.

The network file has a single line for each network, with the following information:

official-network-name network-number aliases

Items are separated by any number of SPACE or TAB characters. A “#’ indicates the
beginning of a comment. Characters up to the end of the line are not interpreted by
routines which search the file. This file is normally created from the official network
database maintained at the Network Information Control Center (NIC), though local
changes may be required to bring it up to date regarding unofficial aliases and/or
unknown networks.

Network numbers may be specified in the conventional dot (*.’) notation using the
inet_network routine from the Internet address manipulation library, inet(7P).
Network names may contain any printable character other than a field delimiter,
NEWLINE, or comment character.

getnetbyaddr(3SOCKET), getnetbyname(3SOCKET), inet(3SOCKET),
nsswitch.conf(4), inet(7P)

The official SVR4 name of the networks fileis /etc/inet /networks. The symbolic
link /etc/networks exists for BSD compatibility.

The network number in networks database is the host address shifted to the right by
the number of 0 bits in the address mask. For example, for the address
24.132.47.86 that has a mask of f££££e00, its network number is 803351. This is
obtained when the address is shifted right by 9 bits. The address maps to 12.66.23.
The trailing 0 bits should not be specified. The network number here is different from
that described in netmasks(4). For this example, the entry in netmasks would be
24.132.46.0 fffffe00.

man pages section 4: File Formats ¢ Last Revised 17 Jan 2002

NAME
SYNOPSIS

DESCRIPTION

nfs(4)
nfs — file containing parameter values for NFS-related daemons

/etc/default/nfs

The nfs file resides in directory /etc/default and provides startup parameters for
the nfsd(1M) and lockd(1M) daemons.

The nfs file format is ASCII; comment lines begin with the crosshatch (#) character.
Parameters consist of a keyword followed by an equals (=) sign followed by the
parameter value, of the form:

keyword=value

Administrators wanting to change startup parameters for nfsd or Lockd should, as
root, make changes in the nfs file rather than editing the
/etc/init.d/nfs.server ornfs.client files.

The following parameters are currently supported in the nfs file:

NFSD MAX CONNECTIONS=<num>
Sets the maximum number of concurrent, connection-oriented connections. The
default is unlimited and is obtained by not setting (that is, commenting out)
NFSD_MAX_CONNECTIONS. Equivalent to the -c option in nfsd.

NFSD_LISTEN BACKLOG=<num>
Set connection queue length for the NFS over a connection-oriented transport. The
default value is 32, meaning 32 entries in the queue. Equivalent to the -1 option in
nfsd.

NFSD PROTOCOL=ALL
Start nfsd over the specified protocol only. Equivalent to the -p option in nfsd.
ALL is equivalent to -a on the nfsd command line. Mutually exlusive of
NFSD DEVICE. One or the other of NFSD DEVICE and NFSD PROTOCOL must be
commented out.

NFSD_DEVICE=<devname>
Start NFS daemon for the transport specified by the given device only. Equivalent
to the -t option in nfsd. Mutually exclusive of NFSD_PROTOCOL. One or the other
of NFSD_DEVICE and NFSD_PROTOCOL must be commented out.

NFSD_ SERVERS=<num>
Maximum number of concurrent NFS requests. Equivalent to last numeric
argument on the nfsd command line. The default is 16.

LOCKD LISTEN BACKLOG=<num>
Set connection queue length for 1ockd over a connection-oriented transport. The
default and minimum value is 32.

LOCKD SERVERS=<num>
Maximum number of conncurent 1ockd requests. The default is 20.

LOCKD_RETRANSMIT_TIMEOUT=<1’lum>
Retransmit timeout, in seconds, before 1ockd retries. The default is 5.

File Formats 333

nfs(4)

LOCKD GRACE PERIOD=<num>
Grace period, in seconds, that clients have to reclaim locks after a server reboot. The
default is 45.

SEE ALSO | lockd(IM), nfsd(1M)

334 man pages section 4: File Formats ¢ Last Revised 8 Nov 2001

NAME
SYNOPSIS

DESCRIPTION

nfslog.conf(4)
nfslog.conf — NFS server logging configuration file

/etc/nfs/nfslog.conf

The nfslog. conf file specifies the location of the NFS server logs, as well as the
location of the private work files used by the NFS server and nfslogd(1M) daemon
during logging. Each entry in the file consists of a mandatory tag identifier and one or
more parameter identifiers. The parameter identifier specifies the value or location of
the specific parameter. For instance, the parameter identifier
"log=/var/nfs/logs/serverLog" specifies the location of the NFS server activity
log. The mandatory tag identifier serves as an index into the

/etc/nfs/nfslog. conf file to identify the various parameters to be used. At
export time, the share_nfs(1M) command specifies the NFS server logging
parameters to use by associating a tag from the /etc/nfs/nfslog. conf file to the
exported file system. It is legal for more than one file system to be exported using the
same logging tag identifier.

A "global" tag identifier is included in /etc/nfs/nfslog. conf. It specifies the
default set of values to be used during logging. If no tag identifier is specified at
export time, then the values in the "global" entry are used. The "global" values can be
modified by updating this entry in /etc/nfs/nfslog.conf.

Each entry in the file must contain a mandatory tag identifier and at least one
parameter/value pair. If a parameter is not specified in a given entry, the global value
of the parameter will be used. The exact entry syntax follows:

<tag> [defaultdir=<path>] [log=<path><file>] [fhtable=<path><file>] \
[buffer=<path><file>] [logformat=basic|extended]

defaultdir=<paths> Specifies the directory where the logging
files and working files will be placed. This
path is prepended to all relative paths
specified in other parameters.

log=<path><file> Specifies the location of the user-readable
log file. The log will be located in the
defaultdir, unless <path> is an absolute
path.

fhtable=<path><file> Specifies the location of the private file
handle to path mapping database files.
These database files are for the private use
of the NFS server kernel module and the
nfslogd daemon. These files will be
located in the defaultdir, unless <path>
is an absolute path. These database files are
permanently stored in the file system.
Consult nfslogd(1M) for information on
pruning the database files.

File Formats 335

nfslog.conf(4)

336

EXAMPLES

buffer=<path><file> Specifies the location of the private work
buffer file used by the NFS server kernel
module to record raw RPC information.
This file is later processed by the nfslog
daemon, which in turn generates the
user-readable log file. This work buffer file
will be located in the defaultdir, unless
<path> is an absolute path.

logformat=basic|extended Sets the format of the user-readable log file.
If not specified, the basic format is used.
The basic format is compatible with log files
generated by the Washington University
FTPd. The extended format provides a more
detailed log, which includes directory
modification operations not included in the
basic format, such as mkdir, rmdir and
remove. Note that the extended format is
not compatible with Washington
University’s FTPd log format.

EXAMPLE 1 Using the global Tag

The "global" tag may be modified so that all exported file systems that enabled logging
use a common set of parameters that conform to the specific needs of the user. These
values are used until a specific tag identifier overrides them.

global defaultdir=/var/nfs log=logs/nfslog \
fhtable=tables/fhtable buffer=buffers/nfslog workbuffer \
logformat=basic

EXAMPLE 2 Overriding the Global defaultdir and logformat

Because log files can become very large, it may be desirable to store the logs and
working files in separate file systems. This can be easily accomplished by simply
specifying a different defaultdir for every file system exported by means of a
unique tag:
engineering defaultdir=/engineering/logging \

logformat=extended
accounting defaultdir=/accounting/logging
marketing defaultdir=/marketing/logging
File systems shared with the engineering identifier will have their logs and workfiles
located in /engineering/logging. For instance, the log file will be located at
/engineering/logging/logs/nfslog. Note that the engineering log file will be
stored in the extended format, while the rest of the log files will remain in the basic
format.

Any of the parameters can be updated in a tag identifier, which overrides the global
settings.

man pages section 4: File Formats * Last Revised 7 Nov 1999

ATTRIBUTES

SEE ALSO

NOTES

nfslog.conf(4)

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Availability

SUNWnNfssr

nfslogd(lM), share nfs(1M), attributes(5)

Logs, work files, and file handle to path mapping database can become very large. Be
aware of appropriate placement within the file system name space. See nfslogd(1M))
for information on pruning the database files and cycling logs.

File Formats 337

nfssec.conf(4)
NAME | nfssec.conf — list NFS security modes
SYNOPSIS | /etc/nfssec.conf

DESCRIPTION | The nfssec. conf file lists the NFS security modes supported on a system. These
modes are defined in nfssec(b).

The nfssec. conf file should not be edited by a user.

SEE ALSO | nfssec(b)

338 man pages section 4: File Formats ¢ Last Revised 12 Nov 2001

NAME
SYNOPSIS

DESCRIPTION

nisfiles(4)
nisfiles — NIS+ database files and directory structure

/var/nis

The Network Information Service Plus (NIS+) uses a memory based, replicated
database. This database uses a set of files in the /var/nis directory for checkpointing
to table storage and for maintaining a transaction log. Additionally, the NIS+ server
and client use files in this directory to store binding and state information.

The NIS+ service implements an authentication and authorization system that is built
upon Secure RPC. In this implementation, the service uses a table named
cred.org_dir.domain-name to store the public and private keys of principals that
are authorized to access the NIS+ namespace. It stores group access information in the
subdomain groups_dir.domain-name as group objects. These two tables appear as
files in the /var/nis/data directory on the NIS+ server.

Unlike the previous versions of the network information service, in NIS+, the
information in the tables is initially loaded into the service from the ASCII files on the
server and then updated using NIS+ utilities. See nistbladm(1l). Some sites may wish
to periodically regenerate the ASCII files for archival purposes. To do this, a script
should be added in the crontab(1) of the server that lists these tables and creates the
ASCII file from the result.

Note that except for the NIS_COLDSTART and NIS_SHARED DIRCACHE file, no other
files should be manipulated by commands such as cp(1), mv(1) or rm(1). The
transaction log file keeps logs of all changes made, and hence the files cannot be
manipulated independently.

The files described below are stored in the /var/nis directory:

NIS_COLDSTART Contains NIS+ directory objects that are to be
preloaded into the NIS+ cache at startup time. This file
is usually created at NIS+ installation time. See
nisinit(lIM)or nisclient(1M).

NIS_SHARED_DIRCACHE Contains the current cache of NIS+ bindings being
maintained by the cache manager. The contents can be
viewed with nisshowcache(1M).

client info Contains configuration information, for example,
preferred servers, options, and the like, for
nis_cachemgr(1M) and potentially other NIS+ clients
on the system. It is manipulated by the
nisprefadm(lM) command.

.pref servers A cached copy of preferred server information. It is
maintained by nis_cachemgr. Do not edit this file
manually.

trans.log Contains a transaction log that is maintained by the

NIS+ service. It can be viewed using the nislog(1M)

File Formats 339

nisfiles(4)

340

data.dict

data.dict.log

data

data/root.object

data/parent.object

data/table_name

data/table_name.log

data/root_dir

data/cred.org_dir

data/groups dir

command. This file contains holes. Its apparent size
may be a lot higher than its actual size. There is only
one transaction log per server.

A dictionary that is used by the NIS+ database to locate
its files. It is created by the default NIS+ database
package.

The log file for the database dictionary. When the
server is checkpointed, this file will be deleted. See the
discussion of the -C option of nisping(1M).

Contains databases that the server uses.

On root servers, this file contains a directory object that
describes the root of the name space.

On root servers, this file contains a directory object that
describes the parent namespace. This file is created by
the nisinit(1M) command.

For each table in the directory there is a file with the
same name that stores the information about that table.
If there are subdirectories within this directory, the
database for the table is stored in the file,
table_name.subdirectory.

Contains the database log for the table table_name. The
log file maintains the state of individual transactions to
each database. When a database has been
checkpointed, that is, all changes have been made to
the data/table_name stable storage, this log file will be
deleted.

Currently, NIS+ does not automatically do
checkpointing. The system administrator may want to
do nisping-C operations periodically, perhaps once a
day, to checkpoint the log file. This can be done either
through a cron(1M) job, or manually.

On root servers, this file stores the database associated
with the root directory. It is similar to other table
databases. The corresponding log file is called

root dir.log.

Table containing the credentials of principals in this
NIS+ domain.

Table containing the group authorization objects
needed by NIS+ to authorize group access.

man pages section 4: File Formats ¢ Last Revised 18 Dec 2001

nisfiles(4)

data/serving list Contains a list of all NIS+ directories that are being
served by the NIS+ server on this server. When this
server is added or deleted from any NIS+ directory
object, this file is updated by the server.

SEE ALSO | cp(1), crontab(l), mv(1l), nis(1l), nis_cachemgr(1M), niscat(l), nismatch(l),
nistbladm(l), rm(1), cron(lM), nisclient(1M), nisinit(1M), nislog(1M),
nisping(IM), nisprefadm(lM), nisshowcache(lM), nis_objects(3NSL)

NOTES | NIS+ might not be supported in future releases of the Solaris™ Operating
Environment. Tools to aid the migration from NIS+ to LDAP are available in the
Solaris 9 operating environment. For more information, visit

http:/ /www.sun.com/directory /nisplus/transition.html.

File Formats 341

NIS+LDAPmapping(4)

NAME
SYNOPSIS

DESCRIPTION

Getting Started

NIS+LDAPmapping — configuration file for mapping between NIS+ and LDAP

/var/nis/NIS+LDAPmapping

The /var/nis/NIS+LDAPmapping configuration file contains the mapping between
NIS+ objects, particularly table entries, and LDAP entries and attributes. This
information can come from LDAP, from this file, from the rpc.nisd(1M) command
line, or from a combination of all three. The values in this file supersede those
obtained from the LDAP server, but values from the command line supersede those in
the file.

Each line in the file can be up to 8191 bytes long, not counting the newline. There can
be an indefinite number of continuation lines. A continuation is indicated by a "\”
(backslash) in the last position, immediately before the newline of a line. Characters
are escaped, that is, exempted from special interpretation, when preceeded by a
backslash character.

The '#" (hash) character starts a comment. White space is either ASCII space or a
horizontal tab. In general, lines consist of optional white space, an attribute name, at
least one white space character, and an attribute value.

The default rpc.nisd(4) configuration file at /etc/default/rpc.nisd and the
template file at /var/nis/NIS+LDAPmapping.template are sufficient for the
minimum NIS+ installation. The following assumptions are made:

1. The NIS+ standard directories, tables, and groups created by nissetup(1M) or
nisserver(1M) should be mapped. However, the timezone.org dir and
client info.org dir tables should not be mapped.

2. The NIS+ objects for which the rpc.nisd is a master are mapped both to and
from LDAP.

3. Those NIS+ objects for which the rpc.nisdis a replica are mapped from LDAP.

4. The LDAP server is running on the local machine, and it can be reached at port 389
onthe 127.0.0.1 IP address.

5. The authentication method is none, meaning that all LDAP calls, whether for
reading or writing, are unauthenticated. There is no transport layer security.

6. The default values for TTLs and LDAP container locations and object classes are
valid.

7. The LDAP server supports RFC 2307bis. You want to use the RFC 2307bis object
classes and attributes. See NOTES

8. The nisplusObject attribute, the nisplusObjectContainer object class, and
the ou=nisPlus container have been created.

9. You do not need to store or retrieve table entry owner, group owner, entry access
rights, or entry object TTL in or from LDAP. For more information on these
pseudo-columns, see the discussion of zo_owner, and the like, in the description
of the nisplusLDAPcolumnFromAttribute attribute.

342 man pages section 4: File Formats ¢ Last Revised 12 Nov 2001

NIS+LDAPmapping(4)

10. NIS+ principal names and RPC netnames (the cname and auth_name columns,

respectively, in the cred.org_dir table) should be derived from the owner of the
cred table. For example, if the owner is npadm.my.dom. ain., the cname and
auth_name values for entries created from LDAP data will be of the form:

user-or-host .my .dom.ain.
and

unix.uid-or-hostemy .dom.ain

respectively.

If these assumptions are true, you can enable mapping by copying the
/var/nis/NIS+LDAPmapping.template file to /var/nis/NIS+LDAPmapping
and restart the rpc.nisd. If you want to either upload NIS+ data to LDAP, or
download LDAP data to NIS+, see the description of the
nispluslLDAPinitialUpdateAction attribute on rpc.nisd(4).

If one or more of the assumptions are false, do the following;:

1.

To remove mappings, identify the database id of the NIS+ object that should not be
mapped, then delete or comment out the nisplusLDAPdatabaseIdMapping,
nisplusLDAPentryTtl, nisplusLDAPobjectDN,
nisplusLDAPattributeFromColumn, and
nisplusLDAPcolumnFromAttribute attributes for that database id.

To add mappings, find an existing mapping for a NIS+ object similar to the one
you want to map, and then use that mapping as a template to create the
nisplusLDAPdatabaseIdMapping, nisplusLDAPentryTtl,
nisplusLDAPobjectDN, nisplusLDAPattributeFromColumn, and
nisplusLDAPcolumnFromAttribute attributes for the new mapping. The new
mapping must have a unique database id.

To enable mapping of the timezone or client_info tables, consult your LDAP
server documentation about how to create attributes and object classes, and set up
the following. The following is LDIF data for 1dapadd(1). Attribute and object
class OIDs are examples only.

For client info:

dn: cn=schema
changetype: modify
add: attributetypes
attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.12.0 \
NAME ’‘nisplusClientInfoAttr’ \
DESC ’'NIS+ client info table client column’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE)
attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.12.1 \
NAME ‘nisplusClientInfoInfo’ \
DESC ’'NIS+ client info table info column’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)
attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.12.2 \
NAME ’‘nisplusClientInfoFlags’ \

File Formats 343

NIS+LDAPmapping(4)

DESC ’'NIS+ client info table flags column’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

dn: cn=schema
changetype: modify
add: objectclasses
objectclasses: (1.3.6.1.4.1.42.2.27.5.42.42.13.0 \
NAME ’‘nisplusClientInfoData’ \
DESC ’'NIS+ client info table data’ \
SUP top STRUCTURAL MUST (cn) \
MAY (nisplusClientInfoAttr $ nisplusClientInfoInfo $ nisplusClientInfoFlags))

For the ou=ClientInfo container, substitute your actual search base for
searchBase):

dn: ou=ClientInfo, searchBase

ou: ClientInfo

objectClass: top

objectClass: organizationalUnit

For timezone:

dn: cn=schema

changetype: modify

add: attributetypes

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.15.0 NAME ’'nisplusTimeZone’ \
DESC ’tzone column from NIS+ timezone table’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

dn: cn=schema

changetype: modify

add: objectclasses

objectclasses: (1.3.6.1.4.1.42.2.27.5.42.42.16.0 NAME 'nisplusTimeZoneData’ \
DESC 'NIS+ timezone table data’ \
SUP top STRUCTURAL MUST (cn) \

MAY (nisplusTimeZone $ description))

For the ou=Timezone container:

dn: ou=Timezone, searchBase

ou: Timezone

objectClass: top

objectClass: organizationalUnit

Uncomment the mapping attributes for timezone and client_info in the
mapping file, and restart the the rpc.nisd(1M) daemon.

2. To disable write mapping, edit the nisplusLDAPobjectDN value for the
appropriate database id,. Remove the writeObjectSpec value, leaving only the
the readObjectSpec value. Make sure there are no trailing colons.

To disable read mapping, remove the readObjectSpec, leaving the database id,
two colons, and the writeObjectSpec value.

3. Replicas cannot write-map objects. Remove disable read mapping, remove
mapping entirely for the relevant database ids, as described above.

344 man pages section 4: File Formats ¢ Last Revised 12 Nov 2001

NIS+LDAPmapping(4)

4. Change the preferredServerList value to the correct server address(es) and
port(s). If configuration data is retrieved fromLDADP, also edit the
nisplusLDAPpreferredServerList value.

5. Edit the authenticationMethod attribute value to the authentication method
that you want to use. If configuration data is retrieved from LDAP, edit the
nisplusLDAPconfigAuthenticationMethod value. If the method is anything
other than none, you will need to specify one or more of the following, depending
upon the method.

nisplusLDAPconfigProxyUser
nisplusLDAPproxyUser
The bind-DN to use for authentication.

nisplusLDAPconfigProxyPassword

nisplusLDAPproxyPassword
The password or key for the bind-DN and method. Make sure that the file
containing the password or key is protected from access by unauthorized users.

To use transport layer security, set nisplusLDAPconfigTLS or
nisplusLDAPTLS to ssl, and set
nisplusLDAPconfigTLSCertificateDBPath or
nisplusLDAPTLSCertificateDBPath to the file containing the certificate DB.
In order to successfully use authentication and transport layer security, the server
must also support the chosen values.

6. To change the TTLs, edit the nisplusLDAPentryTt1l for the appropriate database
id.

To change LDAP container locations or object classes, edit the
nisplusLDAPobjectDN value for the appropriate database id.

7. To determine which object classes and attributes are supported, consult your LDAP
server documentation. If you are using the iPlanet directory server, see
idsconfig(1M) for information to set up RFC 2307bis object classes and attributes.

8. Refer to your LDAP server documentation for how to create attributes and object
classes, and set up the following;:

dn: cn=schema

changetype: modify

add: attributetypes

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.1.0 NAME 'nisplusObject’ \
DESC ’'An opaque representation of a NIS+ object’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.5 SINGLE-VALUE)

dn: cn=schema

changetype: modify

add: objectclasses

objectclasses: (1.3.6.1.4.1.42.2.27.5.42.42.2.0 NAME ’'nisplusObjectContainer’ \
SUP top STRUCTURAL DESC ’Abstraction of a NIS+ object’ \
MUST (cn $ nisplusObject))

File Formats 345

NIS+LDAPmapping(4)

ou=nisPlus is a container assumed to reside at the defaultSearchBase. See
rpc.nisd(4). The following LDIF input to 1dapadd(1) will create the
ou=nisPlus container. Replace dc=some, dc=domain with your actual base.

dn: ou=nisPlus,dc=some, dc=domain
ou: nisPlus

objectClass: top

objectClass: organizationalUnit

The nisplusObjectContainer, nisplusObject, and ou=nisPlus labels are
suggestions. If you change nisplusObjectContainer, or ou=nisPlus, edit the
mapping file to reflect this. To change nisplusObject, for example, to
myObject, add nisplusObject=myObject to the filterAttrvalList and
attrValList portions of the readObjectSpec and writeObjectSpec of the
nisplusLDAPobjectDN value for the mapping. See the description of
nisplusLDAPobjectDN below.

9. Refer to your LDAP server documentation for how to create attributes and object
classes, and set up the following. The following is LDIF data for 1dapadd(1).
Attribute and object class OIDs are examples only.

dn: cn=schema

changetype: modify

add: attributetypes

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.4.0 NAME ’'nisplusEntryOwner’ \
DESC 'Opaque representation of NIS+ entry owner’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.4.1 NAME 'nisplusEntryGroup’ \

DESC ‘Opaque representation
SYNTAX 1.3.6.1.4.1.1466.115

attributetypes: (1.3.6.1.4.1.42.2.27.

DESC 'Opaque representation

SYNTAX 1.3.6.1.4.1.1466.115.
attributetypes: (1.3.6.1.4.1.42.2.27.

of NIS+ entry group’ \

.121.1.26 SINGLE-VALUE)

5.42.42.4.2 NAME ’'nisplusEntryAccess’ \
of NIS+ entry access’ \

121.1.26 SINGLE-VALUE)

5.42.42.4.3 NAME ’'nisplusEntryTtl’ \

DESC 'Opaque representation of NIS+ entry TTL’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

dn: cn=schema

changetype: modify

add: objectclasses

objectclasses: (1.3.6.1.4.1.42.2.27.5.42.42.5.0 NAME ’'nisplusEntryData’ \
SUP top STRUCTURAL DESC ’'NIS+ entry object non-column data’ \
MUST (cn) MAY (nisplusEntryOwner $ nisplusEntryGroup $ \
nisplusEntryAccess $ nisplusEntryTtl))

Edit the mapping file to enable storing entry owner, group, access, and TTL in
LDAP. The template mapping file /var/nis/NIS+LDAPmapping.template has
commented-out sections for the passwd and cred database ids that show how this
can be done.

10. To preserve the cname and auth_name column data when cred.org_ dir entries
are stored in NIS+, you can create the nisplusPrincipalName and
nisplusNetname attributes. See your LDAP server documentation for how to
create attributes and object classes, and set up the following:

346 man pages section 4: File Formats ¢ Last Revised 12 Nov 2001

NIS+LDAPmapping(4)

dn: cn=schema

changetype: modify

add: attributetypes

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.7.0 NAME ’'nisplusPrincipalName’ \
DESC ’'NIS+ principal name’ \
EQUALITY caselgnoreIASMatch SINGLE-VALUE \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.9.0 NAME ’'nisplusNetname’ \
DESC 'Secure RPC netname’ \
EQUALITY caseIgnoreIASMatch SINGLE-VALUE \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)

dn: cn=schema

changetype: modify

add: objectclasses

objectclasses: (1.3.6.1.4.1.42.2.27.5.42.42.10.0 NAME ’'nisplusAuthName’ \
SUP top AUXILLIARY DESC ’'NIS+ authentication identifiers’ \
MAY (nisplusPrincipalName $ nisplusNetname))

Edit the mapping file to use the new nisplusPrincipalName and
nisplusNetname. The template /var/nis/NIS+LDAPmapping file contains
commented-out sections that support the nisplusPrincipalName and
nisplusNetname attributes. See the nisplusLDAPobjectDN,
nisplusLDAPattributeFromColumn and
nisplusLDAPcolumnFromAttribute attribute values for the credlocal,
creduser, and crednode database ids .

Attributes for Data | The following attributes are recognized. Any values specified for these attributes in
Mapping | the file, including an empty value, override values obtained from LDAP.

There are several attributes that can have multiple values, one for each database id.
Depending on the source, the multiple values are specified in the following ways:

LDAP Multi-valued attributes, where each value corresponds to one database
id.
File One line, which may be continued, for each value (database id). The line

starts with the name of the attribute

Command -x option for each value (database id).

Unless otherwise noted, all elements of the syntaxes below may be surrounded by
white space. Separator characters and white space must be escaped if they are part of
syntactic elements.

nisplusLDAPdatabaseIdMapping
Maps a database id to a NIS+ object. If the object name is not fully qualified, that is,
it does not end in a dot, the nisplusLDAPbaseDomain is appended. See
rpc.nisd(4). There is no default value. The syntax of the value is:

databaseId ":" objectspec

where

File Formats 347

NIS+LDAPmapping(4)

348

databaseId Label identifying a subset of a NIS+ object for mapping
purposes.

objectspec objectname | "[" indexlist "]" tablename

objectname The name of a NIS+ object (including tables)

tablename The name of a NIS+ table

indexlist colspec ["," colspec]

colspec colname "=" colvalue

colname The name of a column in the table

colvalue colvaluestring | \" colvaluestring \"

The [indexlist]tablename form is intended for those cases where it is necessary
to select a subset of a NIS+ table. The subset are those NIS+ entries that match the
indexlist. If there are multiple indexed specifications for a particular NIS+ table,
they are tried in the order retrieved until one matches. Note that retrieval order
usually is unspecified for multi-valued LDAP attributes. Hence, if using indexed
specifications when nisplusLDAPdatabaseIdMapping is retrieved from LDAP,
make sure that the subset match is unambiguous.

If the colvaluestring contains white space or commas, it must either be
surrounded by double quotes, or the special characters must be escaped.Wildcards are
allowed in the colvaluestring. If the objectname or tablename is not fully
qualified, the nisplusLDAPbaseDomain value is appended. If the objectname is
empty the value of nisplusLDAPbaseDomain is substituted.

The following example shows how to associate the passwd database id with the
passwd.org_ dir table:

passwd:passwd.org_dir

The following example shows how to associate the LOCAL entries in the
cred.org dir table with the credlocal database id:

credlocal: [auth type=LOCAL]cred.org_dir

The following example shows how to use the creduser database id for those entries
in the cred.org_dir table that represent credentials (keys) for users. That is, they
have a netname (auth_name) of the type unix. <numeric-id>@domain.

creduser: [auth_type="D*",auth name="unix. [0-9]*"]cred.org dir

nisplusLDAPentryTtl
Establish TTLs for NIS+ entries derived from LDAP. The syntax of the value is:

databaseId ":" initialTTLlo ":" initialTTLhi ":" runningTTL

initialTTLlo The lower limit for the initial TTL (in seconds) for data read
from disk when the rpc.nisd starts, or from LDAP during

man pages section 4: File Formats ¢ Last Revised 12 Nov 2001

NIS+LDAPmapping(4)

an initial down-load. See rpc.nisd(4) for the description of
the nisplusLDAPinitialUpdate attribute. If
initialTTLhi also is specified, the actual initialTTL will
be randomly selected from the interval initialTTLlo to
initialTTLhi, inclusive. If the field is left empty, it yields
the default value of 1800 seconds.

initialTTLhi The upper limit for the initial TTL. If left empty, it defaults to
5400.

runningTTL The TTL (in seconds) for data retrieved from LDAP while the
rpc.nisd is running. Leave the field empty to obtain the
default value of 3600 seconds.

If there is no specification of TTLs for a particular databaseId, the default values are
used. If the initialTTLlo and initialTTLhi have the same value, the effect will
be that all data known to the rpc.nisd at startup times out at the same time.
Depending on NIS+ data lookup patterns, this could cause spikes in rpc.nisd-to-LDAP
traffic. In order to avoid that, you can specify different initialTTLlo and
initialTTLhi values and obtain a spread in initial TTLs. The NIS+ object TTL is a
separate and distinct entity used for other purposes, notably the TTL of NIS+ directory
objects in the shared directory cache managed by the nis_cachemgr(1M). There is no
connection between the nisplusLDAPentryTt1l and object TTL values for a NIS+
object.

The following example shows how to specify that entries in the NIS+ hosts table read
from LDAP should be valid for four hours. When the rpc.nisd restarts, the disk
database entries are valid for between two and three hours.

hosts:7200:10800:14400

nisplusLDAPobjectDN
Specifies the connection between a databaseId and the LDAP directory. The
syntax of the value is:

databaseId ":" objectDN *(";" objectDN)

objectDN readObjectSpec [":" [writeObjectSpec]]
readObjectSpec [baseAndScope [filterAttrValList]]
writeObjectSpec [baseAndScope [attrValList [":"

deleteDisp]]]
baseAndScope [baseDN] ["?" [scope]]

filterAttrVallList ["?" [filter | attrValList]]

scope "base" | "one" | "sub"

attrValList attribute "=" value *("," attribute "="
value)

deleteDisp "always" | perDbId | "never"

File Formats 349

NIS+LDAPmapping(4)

350

perDbId "dbid" "=" delDatabaseId
delDatabaseId database id per nisplusLDAPdatabaseIdMapping
above.

The baseDN defaults to the value of the defaultSearchBase attribute. If the
baseDN ends in a comma, the defaultSearchBase is appended.

scope defaults to one. It has no meaning and is ignored in a writeObjectSpec. The
filter is an LDAP search filter. There is no default value. The attrvalList is a list
of attribute and value pairs. There is no default value. As a convenience, if an
attrValList is specified in a readObjectSpec, it is converted to a search filter by
ANDing together the attributes and values. For example, the attribute and value list:

objectClass=posixAccount, objectClass=shadowAccount

is converted to the filter:

(& (objectClass=posixAccount) (objectClass=shadowAccount))

Entry objects are mapped by means of the relevant table mapping rules in the
nisplusLDAPattributeFromColumn and nisplusLDAPcolumnFromAttribute
attributes. Entry objects do not have explicit nisplusLDAPobjectDN attributes.

If a writeObjectSpec is omitted, and there is no trailing colon, the effect is to not
attempt writes at all. If there is a trailing colon after the readObjectSpec, itis
implied that the writeObjectSpec is the same as the readObjectSpec.

Note that writes only are attempted by a master server for the mapped NIS+ object.
Replicas silently ignore any writeObjectSpec:s.

The deleteDisp specifies how NIS+ object deletion should be reflected in LDAP. The
following values are recognized:

always Always attempt to remove the LDAP entry. This is the
default.

dbid=delDatabaseId Set the mapped entries to values specified by the
nisplusLDAPattributeFromColumn attribute values
for delDatabaseId. This only makes sense for the
databaselId:s corresponding to NIS+ tables or subsets
of tables. For other NIS+ objects, if dbid= is specified, the
action will be always. In the delDatabaseId, deletion
of individual attributes can be specified by leaving the
RHS of the = in a mapping rule empty. The
delDatabaseId rule set should specify a dn. Otherwise,
the rpc.nisd might try to derive a dn by performing
an LDAP lookup on the attributes and values from the
rule set, quite possibly with unexpected results.

man pages section 4: File Formats ¢ Last Revised 12 Nov 2001

NIS+LDAPmapping(4)

never Upon NIS+ object deletion, the corresponding LDAP data
is left unchanged. If the NIS+ object is an entry, this
means that the only effect of the deletion is to temporarily
remove it from the rpc.nisd’s cache.

The following is an example of how to get the ipnodes table entries from the
ou=Hosts container under the default search base, and write to the same place.

ipnodes:ou=Hosts, ?one?objectClass=ipHost:

The following example shows how to obtain the passwd table entries from the
ou=People containers under the default search base, and also from
dc=another, dc=domain. The latter is an example of the equivalent of and
replacement for a NIS+ table path. Writes should only be attempted to the first
objectDN. NIS+ entry deletions for the first objectDN are not reflected in LDAP:

passwd:ou=People, ?one?objectClass=shadowAccount, \
objectClass=posixAccount: :never;\
ou=People,dc=another,dc=domain, ?one?\
objectClass=shadowAccount, \
objectClass=posixAccount

The following example shows how to obtain the passwd table entries from the
ou=People container under the default search base. Upon NIS+ entry deletion,
update the LDAP entry per the passwd_delete database id:

passwd:ou=People, ?one?objectClass=shadowAccount, \
objectClass=posixAccount: :\
dbid=passwd delete

where nisplusLDAPattributeFromColumn for passwd delete could be:

passwd_delete:\

dn=("uid=%s,", name), \
uid=name, \
userPasswords= ("*NP*"), \

uidNumber=uid, \

gidNumber=gid, \

gecos=("INVALID: %s", gcos), \
homeDirectory=home, \
loginShell=("/bin/false"), \
(shadowLastChange, shadowMin, shadowMax, \
shadowWarning, shadowInactive,shadowExpire, \
shadowFlag) = (shadow, ":"), \

nisplusEntryOwner=zo_owner, \

nisplusEntryGroup=zo_group, \

nisplusEntryAccess=z0_access

nisplusLDAPcolumnFromAttribute
Specifies how a NIS+ table and column value is derived from LDAP attribute
values. The syntax is:

databaseId ":" colattrspec *("," colattrspec)

File Formats 351

NIS+LDAPmapping(4)

352

The format of colattrspec is shown below in the discussion of the column and
attribute conversion syntax.

The following is an example of how to map by direct copy and assignment the
value of the ipHostNumber attribute to the addr column:

addr=ipHostNumber

Formats for the column and attribute conversion syntax are discussed below,
including examples of complex attribute to column conversions..

There are four special pseudo-columns that are used to indicate non-column entry
object data:

zZo_owner The NIS+ principal that owns the entry object. By default, the
zo_owner value is inherited from the table.

ZO_group The NIS+ group owner of the entry object. By default, the
zo_group value is inherited from the table.

Z0_access The NIS+ access rights to the entry. Table column rights are
stored in the table. By default, the zo_access value is
inherited from the table.

zo_ttl The NIS+ TTL for the entry. This is not the TTL for the entry
when cached by the rpc.nisd. By default, the zo_tt1 value is
inherited from the table.

The default /var/nis/NIS+LDAPmapping.template assumes the existence of the
following corresponding LDAP attributes in the containers for the passwd and cred
tables:

nisplusEntryOwner
nisplusEntryGroup
nisplusEntryAccess
nisplusEntryTtl

These attributes are not part of any schema specified in an RFC or similar document.
They must be created if they are to be used. They are assumed to belong to the as
nisplusEntryData object class, and they contain a single string value. The format
of this string is private, and subject to change without notice.

For most tables, the non-column entry data can be inherited from the containing table,
and the pseudo-columns should be left unmapped. Notable exceptions are the
passwd and cred tables, if individual users have access to modify their own passwd
and cred entries. This would usually be the case if the site is not running the
rpc.nispasswdd(1M) daemon.

nisplusLDAPattributeFromColumn
Specifies how an LDAP attribute value is derived from NIS+ table and column
values. The syntax is:

man pages section 4: File Formats ¢ Last Revised 12 Nov 2001

Column and
Attribute
Conversion Syntax

NIS+LDAPmapping(4)

databaseId ":" colattrspec *("," colattrspec)

The format of colattrspec is shown below in the discussion of the column and
attribute conversion syntax.

As a special case, if the dn attribute value derived from a colattrspec ends in a
comma (’,’), the baseDN from the writeObjectSpec is appended.

The following is an example of how to map the value of the addr column to the
ipHostNumber attribute by direct copy and assignment:

ipHostNumber=addr

All relevant attributes, including the dn, must be specified. Non-column entry
object data can be mapped as noted under the discussion of
nisplusLDAPcolumnFromAttribute above.

The general format of a colattrspec is:

colattrspec = lhs "=" rhs

lhs = lval | namespeclist

rhs = rval | [namespec]

namespeclist = namespec | " (" namespec *("," namespec) ")"

The 1val and rval syntax are defined below at Values. The format of a namespec is:

namespec ["1dap:"] attrspec [searchTriple] | ["nis+:"]
colspec [objectspec]

colspec column | " (" column ")"

attrspec attribute | " (" attribute ")"

searchTriple ":" [baseDN] ["?" [scope] ["?" [filter]]]
baseDN Base DN for search

filter LDAP search filter

objectspec objectspec per nisplusLDAPdatabaseIdMapping

The repository specification in a namespec defaults as follows:

m For assignments to a column, nis+: on the LHS, 1dap: on the RHS. NIS+ column
values on the RHS are those that exist before the NIS+ entry is modified.

m For assignments to an attribute, 1dap: on the LHS, nis+: on the RHS. LDAP
attribute values on the RHS are those that exist before the LDAP entry is modified.

Enclosing the column or attribute name in parenthesis denotes a list of column or
attribute values. For attributes, the meaning is the list of all attributes of that name,
and the interpretation depends on the context. See the discussion at Values. This list
specification is ignored when a searchTriple or objectspec is supplied.

File Formats 353

NIS+LDAPmapping(4)

354

Wildcards

For columns, the (colname) syntax is used to map multiple attribute instances to
multiple NIS+ entries.

The searchTriple can be used to specify an attribute from a location other than the
read or write target. The defaults are as follows:

baseDN If omitted, the default is the current objectDN. If the baseDN ends in a
comma, the value of the defaultSearchBase attribute is appended.

scope one

filter Empty

Similarly, the objectspec can be used to specify a column value from a NIS+ table
other than the one implicitly indicated by the databaseId. If searchTriple or
objectspec is explicitly specified in a namespec, the retrieval or assignment,
whether from or to LDAP or NIS+, is performed without checking if read and write
are enabled for the LDAP container or NIS+ table.

Omitting the namespec in an rhs is only allowed if the 1hs is one or more attributes.
The effect is to delete the specified attribute(s). In all other situations, an omitted
namespec means that the rule is ignored.

The filter can be a value. See Values. For example, to find the ipHostNumber
using the cn, you could specify the following in the filter field:

ldap:ipHostNumber:?one? ("cn=%s", (cname, "%s.*"))

In order to remove ambiguity, the unmodified value of a single column or attribute
must be specified as the following when used in the filter field.

("$s", namespec)

If the f£ilter is not specified, the scope will be base, and the baseDN is assumed to
be the DN of the entry that contains the attribute to be retrieved or modified. To use
previously existing column or attribute values in the mapping rules requires a lookup
to find those values. Obviously, this will add to the time required to perform the
modification. Also, there is a window between the time when a value is retrieved, and
then slightly later, stored back. If the values have changed in the mean time, the
change may be overwritten.

When colattrspecs are grouped into rule sets, in the value of a
nisplusLDAPcolumnFromAttribute or nisplusLDAPattributeFromColumn
attribute, the evaluation of the colattrspecs proceed in the listed order. However,
evaluation may be done in parallel for multiple colattrspecs. If there is an error
when evaluating a certain colattrspec, including retrieval or assignment of entry
or column values, the extent to which the other colattrspec rules are evaluated is
unspecified

Where wildcard support is available, it is of the following limited form:

* Matches any number of characters.

man pages section 4: File Formats ¢ Last Revised 12 Nov 2001

NIS+LDAPmapping(4)
[x] Matches the character x.

[x-y] Matches any character in the range x to y, inclusive..

Combinations such as [a-cA-C0123] are also allowed.This example would match
anyoneofa,b,c,A,B,C0,1,2,0r3.

Subshﬁng substringextract = " (" namespec "," matchspec ")'
Extraction | name = column or attribute name
matchspec = \" formatstring \"

The matchspec is a string like the sscanf(3C) format string, except that there may
be at most one format specifier, a single %s. The output value of the
substringextract is the substring matching the location of the %s.

If there is no %s in the formatstring, it must instead be a single character, which is
assumed to be a field separator for the namespec. The output values are the field
values. Wild cards are supported. If there is no match, the output value is the empty
string, "".

For example, if the column cname has the value user.some.domain.name., the
value of the expression:

(cname, "%s.*")
is user, which can be used to extract the user name from a NIS+ principal name.

Similarly, use this expression to extract the third of the colon-separated fields of the
shadow column:

(shadow, "*:*:%g:%")

This form can be used to extract all of the shadow fields. However, a simpler way to
specify that special case is:

(shadow, ":")

Values | 1val = "(" formatspec "," namespec *("," namespec) ")"
rval = "(" formatspec ["," namelist ["," elide]] ")"
namelist = name_or_sse *("," name_or_sse)
name_or_sse = namespec | substringextract
formatspec = \" formatstring \"
formatstring = A string combining text and % field specifications
elide =\" singlechar \"
singlechar = Any character

This syntax is used to produce rval values that incorporate column or attribute
values, in a manner like sprint £(3C), or to perform assignments to 1val like
sscanf(3C). One important restriction is that the format specifications,% plus a single
character, use the designations from ber print£(3LDAP). Thus, while %s is used to
extract a string value, %1 causes BER conversion from an integer. Formats other than
%s, for instance, %1, are only meaningfully defined in simple format strings without
any other text.

File Formats 355

NIS+LDAPmapping(4)

356

The following ber printf () format characters are recognized:
b i B n o s
If there are too few format specifiers, the format string may be repeated as needed.

When used as an 1val, there is a combination of pattern matching and assignment,
possibly to multiple columns or attributes.

For example, in an assignment to an attribute, if the value of the addr column is
1.2.3.4,therval:

("ipNetworkNumber=%s, ", addr)

produces the value ipNetworkNumber=1.2.3.4,, while:

("(%s,%s,%s)", host, user, domain)
results in (assuming host="xyzzy", user="-", domain="x.y.z")

"(xyzzy, -,x.y.z)". The elide character feature is used with attribute lists. For
example:

("%s,", (mgrprfc822mailmember), ",")

concatenates all ngrprfc822mailmember values into one comma-separated string,
and then elides the final trailing comma. Thus, for

mgrprfc822mailmember=usera
mgrprfc822mailmember=userb

mgrprfc822mailmember=userc
the value would be usera, userb, userc.

If the NIS+ column intval is in binary format, that is, the B column flag is set, and it
is to be interpreted as an integer, the following:

("si", intval)
produces a value suitable for assignment to an integer-valued attribute.

The nisPublicKey attribute encodes the algorithm type and number (equivalent to
the auth type column) and the public key as a single string such as
{dh192-0}xxxxxxxx (public key truncated for clarity). The following will extract the
corresponding auth_type and public_data values:

("{%s}%s", auth_type, public data)

As a special case, to combine an LHS extraction with an RHS implicit list creates
multiple entries and values. For example,

("(%$s,%s,%s)", host, user, domain)=(nisNetgroupTriple)

creates one NIS+ entry for each nisNetgroupTriple value.

man pages section 4: File Formats ¢ Last Revised 12 Nov 2001

Assignments

EXAMPLES

NIS+LDAPmapping(4)

The assignment syntax, also found at Column and Attribute Conversion Syntax , is as
follows:

colattrspec = lhs "=" rhs

lhs = lval | namespeclist

rhs = rval | namespec

namespeclist = namespec | " (" namespec *("," namespec) ")"

By using the syntax defined above, the general form of a simple assignment, which is
a one-to-one mapping of column to attribute, would be:

("$s", colname)=("%s", attrname)
As a convenient short-hand, this can also be written as:

colname=attrname

A list specification, which is a name enclosed in parenthesis, can be used to make
many-to-many assignments. The expression:

(colname) = (attrname)

where there are multiple instances of at t rname, creates one NIS+ entry for each such
instance, differentiated by their colname values. The following combinations of lists
are allowed, but they are not particularly useful:

(attrname) = (colname) Equivalent to attrname=colname
attrname= (colname) Equivalent to at trname=colname
(colname) =attrname Equivalent to colname=attrname
colname= (attrname) Equivalent to colname=attrname

If a multi-valued RHS is assigned to a single-valued LHS, the LHS value will be the
first of the RHS values. If the RHS is an attribute list, the first attribute is the first one
returned by the LDAP server when queried. Otherwise, the definition of “first” is
implementation dependent.

Finally, the LHS might be an explicit list of columns or attributes, such as:

(namel,name2,name3)

If the RHS is single-valued, this assigns the RHS value to all entities in the list. If the
RHS is multi-valued, the first value is assigned to the first entity of the list, the second
value to the second entity, and so on. Excess values or entities are silently ignored.

EXAMPLE 1 Assigning an Attribute Value to a Column

The following example illustrates how to assign the value of the ipHostNumber
attribute to the addr column

addr=ipHostNumber

File Formats 357

NIS+LDAPmapping(4)

358

FILES

ATTRIBUTES

EXAMPLE 2 Creating Multiple NIS+ Entries from Multi-Valued LDAP Attributes
An LDAP entry with:

cn=namel
cn=name2

cn=name3

and the following assignments:

cname=cn

(name) = (cn

creates three NIS+ entries (other attributes/columns omitted for clarity):

cname=namel, name=namel
cname=namel, name=name2

cname=namel, name=name3

EXAMPLE 3 Assigning String Constants
The following expression sets the auth_type column to LOCAL:

auth_type= ("LOCAL")

EXAMPLE 4 Splitting Column Values to Multi-Valued Attributes

The expansion column contains a comma-separated list of alias member names. In
the following example, the expression assigns each such member name to an instance
of mgrprfc822mailmember:

(mgrprfc822mailmember) = (expansion, ",")

EXAMPLE 5 Splitting Column Values to Multiple Attributes

The shadow column contains a colon-separated list of fields. The following assigns the
value of the first field to shadowLastChange, the value of the second field to
shadowMin, and so forth.

(shadowLastChange, shadowMin, shadowMax, shadowWarning, \

shadowInactive, shadowExpire, shadowFlag) = (shadow, ":")

/var/nis/NIS+LDAPmapping
Default mapping file used by rpc.nisd(1M).

/var/nis/NIS+LDAPmapping.template
Template file covering the standard NIS+ directories and tables.

See attributes(5) for descriptions of the following attributes:

man pages section 4: File Formats ¢ Last Revised 12 Nov 2001

SEE ALSO

NOTES

NIS+LDAPmapping(4)

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Availability

SUNWDnisr

Interface Stability

Obsolete

nisldapmaptest(1M), nisserver(1M), nissetup(IM), rpc.nisd(1M),

ber printf(3LDAP), rpc.nisd(4), attributes(b)

System Administration Guide: Naming and Directory Services (DNS, NIS, and LDAP)

RFC 2307bis is an IETF informational document in draft stage that defines an approach

for using LDAP as a naming service.

File Formats

359

nodename(4)
NAME
SYNOPSIS

DESCRIPTION

EXAMPLES

ATTRIBUTES

SEE ALSO

NOTES

nodename — local source for system name

/etc/nodename

When a machine is standalone or its IP address is configured locally, the
/etc/nodename file contains the system name. By convention, the system name is
the same as the hostname associated with the IP address of the primary network
interface, for example, hostname . hmeO.

If the machine’s network configuration is managed remotely and delivered by the
DHCP or RPC bootparams protocols, the /etc/nodename file is not used, as the
system name is delivered by the remote service.

Given a system name value, regardless of source, the uname utility invoked with the
-S option is used to set the system name of the running system.

EXAMPLE 1 Syntax

The syntax for nodename consists of a single line containing the system’s name. For
example, for a system named myhost:

myhost

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

nis+(1), uname(l), named(1M), ypbind(1M), attributes(b)

The nodename file is modified by Solaris installation and de-installation scripts. The
user should not edit the file.

360 man pages section 4: File Formats ¢ Last Revised 7 Jun 2000

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

nologin(4)

nologin — message displayed to users attempting to log on in the process of a system
shutdown

/etc/nologin

The /etc/nologin file contains the message displayed to users attempting to log on
to a machine in the process of being shutdown. After displaying the contents of the
nologin file, the login procedure terminates, preventing the user from logging onto
the machine.

This procedure is preferable to terminating a user’s session by shutdown shortly after
the user has logged on.

Logins by super-user are not affected by this procedure.

The message contained in the nologin file is editable by super-user. A typical
nologin file contains a message similar to:

NO LOGINS: System going down in 10 minutes.

login(l), rlogin(l), telnet(1), shutdown(1M)

File Formats 361

note(4)

NAME
SYNOPSIS

DESCRIPTION

USAGE

ENVIRONMENT

362

VARIABLES

SEE ALSO

note — specify legal annotations

/usr/lib/note

Each file in this directory contains the NOTE (also _ NOTE) annotations legal for a single
tool. The name of the file, by convention, should be the tool vendor’s stock name,
followed by a hyphen, followed by the tool name. For example, for Sun’s lock lint
tool the filename should be SUNW-1lock_ lint.

The file should contain the names of the annotations understood by the tool, one per
line. For example, if a tool understands the following annotations:

NOTE (NOT_REACHED)
NOTE (MUTEX_PROTECTS_DATA (list_lock, list_head))

then its file in /usr/1lib/note should contain the entries:

NOT_REACHED
MUTEX_ PROTECTS_ DATA

Blank lines, and lines beginning with a pound (#), are ignored.

While /usr/1lib/note is the default di