
man pages section 9: DDI and DKI
Kernel Functions

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 816–0225–10
May 2002

Copyright 2002 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or service marks
of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2002 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, ou
marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des
marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques
SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

020313@3332

Contents

Preface 13

Introduction 19

Intro(9F) 20

Kernel Functions for Drivers 39

adjmsg(9F) 40
allocb(9F) 41
anocancel(9F) 44
aphysio(9F) 45
ASSERT(9F) 47
backq(9F) 48
bcanput(9F) 49
bcmp(9F) 50
bcopy(9F) 51
bioclone(9F) 53
biodone(9F) 56
bioerror(9F) 58
biofini(9F) 59
bioinit(9F) 60
biomodified(9F) 61
bioreset(9F) 62
biosize(9F) 63
biowait(9F) 64
bp_mapin(9F) 65

3

bp_mapout(9F) 66

btop(9F) 67

btopr(9F) 68

bufcall(9F) 69

bzero(9F) 72

canput(9F) 73

canputnext(9F) 74

clrbuf(9F) 75

cmn_err(9F) 76

condvar(9F) 81

copyb(9F) 84

copyin(9F) 86

copymsg(9F) 88

copyout(9F) 90

csx_AccessConfigurationRegister(9F) 92

csx_ConvertSize(9F) 94

csx_ConvertSpeed(9F) 95

csx_CS_DDI_Info(9F) 96

csx_DeregisterClient(9F) 98

csx_DupHandle(9F) 99

csx_Error2Text(9F) 101

csx_Event2Text(9F) 102

csx_FreeHandle(9F) 103

csx_Get8(9F) 104

csx_GetFirstClient(9F) 105

csx_GetFirstTuple(9F) 107

csx_GetHandleOffset(9F) 109

csx_GetMappedAddr(9F) 110

csx_GetStatus(9F) 111

csx_GetTupleData(9F) 115

csx_MakeDeviceNode(9F) 117

csx_MapLogSocket(9F) 119

csx_MapMemPage(9F) 120

csx_ModifyConfiguration(9F) 121

csx_ModifyWindow(9F) 123

csx_Parse_CISTPL_BATTERY(9F) 125

csx_Parse_CISTPL_BYTEORDER(9F) 126

csx_Parse_CISTPL_CFTABLE_ENTRY(9F) 128

4 man pages section 9: DDI and DKI Kernel Functions • May 2002

csx_Parse_CISTPL_CONFIG(9F) 134

csx_Parse_CISTPL_DATE(9F) 137

csx_Parse_CISTPL_DEVICE(9F) 138

csx_Parse_CISTPL_DEVICEGEO(9F) 141

csx_Parse_CISTPL_DEVICEGEO_A(9F) 143

csx_Parse_CISTPL_FORMAT(9F) 145

csx_Parse_CISTPL_FUNCE(9F) 147

csx_Parse_CISTPL_FUNCID(9F) 155

csx_Parse_CISTPL_GEOMETRY(9F) 157

csx_Parse_CISTPL_JEDEC_C(9F) 158

csx_Parse_CISTPL_LINKTARGET(9F) 160

csx_Parse_CISTPL_LONGLINK_A(9F) 161

csx_Parse_CISTPL_LONGLINK_MFC(9F) 163

csx_Parse_CISTPL_MANFID(9F) 165

csx_Parse_CISTPL_ORG(9F) 166

csx_Parse_CISTPL_SPCL(9F) 167

csx_Parse_CISTPL_SWIL(9F) 169

csx_Parse_CISTPL_VERS_1(9F) 170

csx_Parse_CISTPL_VERS_2(9F) 171

csx_ParseTuple(9F) 172

csx_Put8(9F) 174

csx_RegisterClient(9F) 175

csx_ReleaseConfiguration(9F) 178

csx_RepGet8(9F) 180

csx_RepPut8(9F) 182

csx_RequestConfiguration(9F) 184

csx_RequestIO(9F) 188

csx_RequestIRQ(9F) 193

csx_RequestSocketMask(9F) 196

csx_RequestWindow(9F) 198

csx_ResetFunction(9F) 203

csx_SetEventMask(9F) 204

csx_SetHandleOffset(9F) 206

csx_ValidateCIS(9F) 207

datamsg(9F) 208

ddi_add_intr(9F) 209

ddi_add_softintr(9F) 212

ddi_binding_name(9F) 219

Contents 5

ddi_btop(9F) 220

ddi_check_acc_handle(9F) 221

ddi_copyin(9F) 223

ddi_copyout(9F) 226

ddi_create_minor_node(9F) 229

ddi_device_copy(9F) 232

ddi_device_zero(9F) 234

ddi_devid_compare(9F) 235

ddi_dev_is_needed(9F) 239

ddi_dev_is_sid(9F) 241

ddi_dev_nintrs(9F) 242

ddi_dev_nregs(9F) 243

ddi_dev_regsize(9F) 244

ddi_dev_report_fault(9F) 245

ddi_dma_addr_bind_handle(9F) 248

ddi_dma_addr_setup(9F) 252

ddi_dma_alloc_handle(9F) 253

ddi_dma_buf_bind_handle(9F) 255

ddi_dma_buf_setup(9F) 259

ddi_dma_burstsizes(9F) 260

ddi_dma_coff(9F) 261

ddi_dma_curwin(9F) 262

ddi_dma_devalign(9F) 263

ddi_dmae(9F) 264

ddi_dma_free(9F) 268

ddi_dma_free_handle(9F) 269

ddi_dma_get_attr(9F) 270

ddi_dma_getwin(9F) 271

ddi_dma_htoc(9F) 273

ddi_dma_mem_alloc(9F) 274

ddi_dma_mem_free(9F) 277

ddi_dma_movwin(9F) 278

ddi_dma_nextcookie(9F) 280

ddi_dma_nextseg(9F) 282

ddi_dma_nextwin(9F) 283

ddi_dma_numwin(9F) 285

ddi_dma_segtocookie(9F) 286

ddi_dma_set_sbus64(9F) 288

6 man pages section 9: DDI and DKI Kernel Functions • May 2002

ddi_dma_setup(9F) 289

ddi_dma_sync(9F) 291

ddi_dma_unbind_handle(9F) 293

ddi_driver_major(9F) 294

ddi_driver_name(9F) 295

ddi_enter_critical(9F) 296

ddi_ffs(9F) 297

ddi_get8(9F) 298

ddi_get_cred(9F) 300

ddi_get_devstate(9F) 301

ddi_get_driver_private(9F) 302

ddi_getiminor(9F) 303

ddi_get_instance(9F) 304

ddi_get_kt_did(9F) 305

ddi_get_lbolt(9F) 306

ddi_get_parent(9F) 307

ddi_get_pid(9F) 308

ddi_get_time(9F) 309

ddi_in_panic(9F) 310

ddi_intr_hilevel(9F) 311

ddi_io_get8(9F) 312

ddi_iomin(9F) 314

ddi_iopb_alloc(9F) 315

ddi_io_put8(9F) 317

ddi_io_rep_get8(9F) 319

ddi_io_rep_put8(9F) 321

ddi_log_sysevent(9F) 323

ddi_mapdev(9F) 326

ddi_mapdev_intercept(9F) 328

ddi_mapdev_set_device_acc_attr(9F) 330

ddi_map_regs(9F) 332

ddi_mem_alloc(9F) 334

ddi_mem_get8(9F) 336

ddi_mem_put8(9F) 337

ddi_mem_rep_get8(9F) 339

ddi_mem_rep_put8(9F) 341

ddi_mmap_get_model(9F) 343

ddi_model_convert_from(9F) 345

Contents 7

ddi_node_name(9F) 347

ddi_peek(9F) 348

ddi_poke(9F) 350

ddi_prop_create(9F) 352

ddi_prop_exists(9F) 356

ddi_prop_get_int(9F) 358

ddi_prop_lookup(9F) 360

ddi_prop_op(9F) 365

ddi_prop_update(9F) 368

ddi_put8(9F) 372

ddi_regs_map_free(9F) 374

ddi_regs_map_setup(9F) 375

ddi_remove_minor_node(9F) 377

ddi_removing_power(9F) 378

ddi_rep_get8(9F) 380

ddi_report_dev(9F) 382

ddi_rep_put8(9F) 383

ddi_root_node(9F) 385

ddi_segmap(9F) 386

ddi_slaveonly(9F) 389

ddi_soft_state(9F) 390

ddi_umem_alloc(9F) 395

ddi_umem_iosetup(9F) 397

ddi_umem_lock(9F) 399

delay(9F) 401

devmap_default_access(9F) 403

devmap_devmem_setup(9F) 405

devmap_do_ctxmgt(9F) 408

devmap_set_ctx_timeout(9F) 411

devmap_setup(9F) 412

devmap_unload(9F) 414

disksort(9F) 416

drv_getparm(9F) 417

drv_hztousec(9F) 419

drv_priv(9F) 420

drv_usectohz(9F) 421

drv_usecwait(9F) 422

dupb(9F) 423

8 man pages section 9: DDI and DKI Kernel Functions • May 2002

dupmsg(9F) 426

enableok(9F) 427

esballoc(9F) 428

esbbcall(9F) 430

flushband(9F) 431

flushq(9F) 432

freeb(9F) 434

freemsg(9F) 435

freerbuf(9F) 436

freezestr(9F) 437

geterror(9F) 438

gethrtime(9F) 439

getmajor(9F) 440

getminor(9F) 441

get_pktiopb(9F) 442

getq(9F) 444

getrbuf(9F) 445

gld(9F) 446

hat_getkpfnum(9F) 449

id32_alloc(9F) 450

inb(9F) 451

insq(9F) 452

IOC_CONVERT_FROM(9F) 454

kmem_alloc(9F) 455

kstat_create(9F) 457

kstat_delete(9F) 459

kstat_install(9F) 460

kstat_named_init(9F) 461

kstat_queue(9F) 462

linkb(9F) 464

makecom(9F) 465

makedevice(9F) 467

max(9F) 468

min(9F) 469

mkiocb(9F) 470

mod_install(9F) 473

msgdsize(9F) 474

msgpullup(9F) 475

Contents 9

mt-streams(9F) 476

mutex(9F) 478

nochpoll(9F) 481

nodev(9F) 482

noenable(9F) 483

nulldev(9F) 484

nvlist_add_boolean(9F) 485

nvlist_alloc(9F) 487

nvlist_lookup_boolean(9F) 489

nvlist_next_nvpair(9F) 491

nvlist_remove(9F) 493

nvpair_value_byte(9F) 494

OTHERQ(9F) 496

outb(9F) 497

pci_config_get8(9F) 498

pci_config_setup(9F) 500

pci_report_pmcap(9F) 501

pci_save_config_regs(9F) 503

physio(9F) 505

pm_busy_component(9F) 507

pm_create_components(9F) 509

pm_get_normal_power(9F) 510

pm_power_has_changed(9F) 512

pm_raise_power(9F) 514

pm_trans_check(9F) 517

pollwakeup(9F) 519

proc_signal(9F) 520

ptob(9F) 522

pullupmsg(9F) 523

put(9F) 525

putbq(9F) 526

putctl1(9F) 527

putctl(9F) 528

putnext(9F) 530

putnextctl1(9F) 531

putnextctl(9F) 532

putq(9F) 534

qbufcall(9F) 535

10 man pages section 9: DDI and DKI Kernel Functions • May 2002

qenable(9F) 536

qprocson(9F) 537

qreply(9F) 538

qsize(9F) 540

qtimeout(9F) 541

qunbufcall(9F) 542

quntimeout(9F) 543

qwait(9F) 544

qwriter(9F) 546

RD(9F) 547

rmalloc(9F) 548

rmallocmap(9F) 551

rmalloc_wait(9F) 552

rmfree(9F) 553

rmvb(9F) 554

rmvq(9F) 555

rwlock(9F) 557

SAMESTR(9F) 560

scsi_abort(9F) 561

scsi_alloc_consistent_buf(9F) 562

scsi_cname(9F) 564

scsi_destroy_pkt(9F) 566

scsi_dmaget(9F) 567

scsi_errmsg(9F) 569

scsi_free_consistent_buf(9F) 572

scsi_get_device_type_scsi_options(9F) 573

scsi_hba_attach_setup(9F) 575

scsi_hba_init(9F) 578

scsi_hba_lookup_capstr(9F) 579

scsi_hba_pkt_alloc(9F) 581

scsi_hba_probe(9F) 583

scsi_hba_tran_alloc(9F) 584

scsi_ifgetcap(9F) 585

scsi_init_pkt(9F) 588

scsi_log(9F) 592

scsi_pktalloc(9F) 594

scsi_poll(9F) 596

scsi_probe(9F) 597

Contents 11

scsi_reset(9F) 599

scsi_reset_notify(9F) 600

scsi_setup_cdb(9F) 601

scsi_slave(9F) 602

scsi_sync_pkt(9F) 604

scsi_transport(9F) 605

scsi_unprobe(9F) 606

scsi_vu_errmsg(9F) 607

semaphore(9F) 610

sprintf(9F) 612

stoi(9F) 614

strchr(9F) 615

strcmp(9F) 616

strcpy(9F) 617

strlen(9F) 618

strlog(9F) 619

strqget(9F) 621

strqset(9F) 622

STRUCT_DECL(9F) 623

swab(9F) 628

testb(9F) 629

timeout(9F) 631

uiomove(9F) 633

unbufcall(9F) 634

unlinkb(9F) 635

untimeout(9F) 636

ureadc(9F) 638

uwritec(9F) 639

va_arg(9F) 640

vsprintf(9F) 642

WR(9F) 645

Index 647

12 man pages section 9: DDI and DKI Kernel Functions • May 2002

Preface

Both novice users and those familar with the SunOS operating system can use online
man pages to obtain information about the system and its features. A man page is
intended to answer concisely the question “What does it do?” The man pages in
general comprise a reference manual. They are not intended to be a tutorial.

Overview
The following contains a brief description of each man page section and the
information it references:

� Section 1 describes, in alphabetical order, commands available with the operating
system.

� Section 1M describes, in alphabetical order, commands that are used chiefly for
system maintenance and administration purposes.

� Section 2 describes all of the system calls. Most of these calls have one or more
error returns. An error condition is indicated by an otherwise impossible returned
value.

� Section 3 describes functions found in various libraries, other than those functions
that directly invoke UNIX system primitives, which are described in Section 2.

� Section 4 outlines the formats of various files. The C structure declarations for the
file formats are given where applicable.

� Section 5 contains miscellaneous documentation such as character-set tables.
� Section 6 contains available games and demos.
� Section 7 describes various special files that refer to specific hardware peripherals

and device drivers. STREAMS software drivers, modules and the
STREAMS-generic set of system calls are also described.

13

� Section 9 provides reference information needed to write device drivers in the
kernel environment. It describes two device driver interface specifications: the
Device Driver Interface (DDI) and the Driver⁄Kernel Interface (DKI).

� Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point routines a
developer can include in a device driver.

� Section 9F describes the kernel functions available for use by device drivers.
� Section 9S describes the data structures used by drivers to share information

between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual section
generally follow this order, but include only needed headings. For example, if there
are no bugs to report, there is no BUGS section. See the intro pages for more
information and detail about each section, and man(1) for more information about man
pages in general.

NAME This section gives the names of the commands or
functions documented, followed by a brief
description of what they do.

SYNOPSIS This section shows the syntax of commands or
functions. When a command or file does not exist
in the standard path, its full path name is shown.
Options and arguments are alphabetized, with
single letter arguments first, and options with
arguments next, unless a different argument order
is required.

The following special characters are used in this
section:

[] Brackets. The option or argument
enclosed in these brackets is optional. If
the brackets are omitted, the argument
must be specified.

. . . Ellipses. Several values can be provided
for the previous argument, or the
previous argument can be specified
multiple times, for example, "filename
. . ." .

| Separator. Only one of the arguments
separated by this character can be
specified at a time.

{ } Braces. The options and/or arguments
enclosed within braces are
interdependent, such that everything
enclosed must be treated as a unit.

14 man pages section 9: DDI and DKI Kernel Functions • May 2002

PROTOCOL This section occurs only in subsection 3R to
indicate the protocol description file.

DESCRIPTION This section defines the functionality and behavior
of the service. Thus it describes concisely what the
command does. It does not discuss OPTIONS or
cite EXAMPLES. Interactive commands,
subcommands, requests, macros, and functions are
described under USAGE.

IOCTL This section appears on pages in Section 7 only.
Only the device class that supplies appropriate
parameters to the ioctl(2) system call is called
ioctl and generates its own heading. ioctl calls
for a specific device are listed alphabetically (on the
man page for that specific device). ioctl calls are
used for a particular class of devices all of which
have an io ending, such as mtio(7I).

OPTIONS This secton lists the command options with a
concise summary of what each option does. The
options are listed literally and in the order they
appear in the SYNOPSIS section. Possible
arguments to options are discussed under the
option, and where appropriate, default values are
supplied.

OPERANDS This section lists the command operands and
describes how they affect the actions of the
command.

OUTPUT This section describes the output – standard output,
standard error, or output files – generated by the
command.

RETURN VALUES If the man page documents functions that return
values, this section lists these values and describes
the conditions under which they are returned. If a
function can return only constant values, such as 0
or –1, these values are listed in tagged paragraphs.
Otherwise, a single paragraph describes the return
values of each function. Functions declared void do
not return values, so they are not discussed in
RETURN VALUES.

ERRORS On failure, most functions place an error code in
the global variable errno indicating why they
failed. This section lists alphabetically all error
codes a function can generate and describes the
conditions that cause each error. When more than

Preface 15

one condition can cause the same error, each
condition is described in a separate paragraph
under the error code.

USAGE This section lists special rules, features, and
commands that require in-depth explanations. The
subsections listed here are used to explain built-in
functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

EXAMPLES This section provides examples of usage or of how
to use a command or function. Wherever possible a
complete example including command-line entry
and machine response is shown. Whenever an
example is given, the prompt is shown as
example%, or if the user must be superuser,
example#. Examples are followed by explanations,
variable substitution rules, or returned values. Most
examples illustrate concepts from the SYNOPSIS,
DESCRIPTION, OPTIONS, and USAGE sections.

ENVIRONMENT VARIABLES This section lists any environment variables that
the command or function affects, followed by a
brief description of the effect.

EXIT STATUS This section lists the values the command returns to
the calling program or shell and the conditions that
cause these values to be returned. Usually, zero is
returned for successful completion, and values
other than zero for various error conditions.

FILES This section lists all file names referred to by the
man page, files of interest, and files created or
required by commands. Each is followed by a
descriptive summary or explanation.

ATTRIBUTES This section lists characteristics of commands,
utilities, and device drivers by defining the
attribute type and its corresponding value. See
attributes(5) for more information.

SEE ALSO This section lists references to other man pages,
in-house documentation, and outside publications.

16 man pages section 9: DDI and DKI Kernel Functions • May 2002

DIAGNOSTICS This section lists diagnostic messages with a brief
explanation of the condition causing the error.

WARNINGS This section lists warnings about special conditions
which could seriously affect your working
conditions. This is not a list of diagnostics.

NOTES This section lists additional information that does
not belong anywhere else on the page. It takes the
form of an aside to the user, covering points of
special interest. Critical information is never
covered here.

BUGS This section describes known bugs and, wherever
possible, suggests workarounds.

Preface 17

18 man pages section 9: DDI and DKI Kernel Functions • May 2002

Introduction

19

Intro – introduction to DDI/DKI functions

Section 9F describes the kernel functions available for use by device drivers. See
Intro(9E) for an overview of device driver interfaces.

In this section, the information for each driver function is organized under the
following headings:

� NAME summarizes the function’s purpose.

� SYNOPSIS shows the syntax of the function’s entry point in the source code.
#include directives are shown for required headers.

� INTERFACE LEVEL describes any architecture dependencies.

� ARGUMENTS describes any arguments required to invoke the function.

� DESCRIPTION describes general information about the function.

� RETURN VALUES describes the return values and messages that can result from
invoking the function.

� CONTEXT indicates from which driver context (user, kernel, interrupt, or high-level
interrupt) the function can be called.

� A driver function has user context if it was directly invoked because of a user
thread. The read(9E) entry point of the driver, invoked by a read(2) system call,
has user context.

� A driver function has kernel context if was invoked by some other part of the kernel.
In a block device driver, the strategy(9E) entry point may be called by the page
daemon to write pages to the device. The page daemon has no relation to the
current user thread, so in this case strategy(9E) has kernel context.

� Interrupt context is kernel context, but also has an interrupt level associated with it.
Driver interrupt routines have interrupt context.

� High-level interrupt context is a more restricted form of interrupt context. If
ddi_intr_hilevel(9F) indicates that an interrupt is high-level, driver interrupt
routines added for that interrupt with ddi_add_intr(9F) run in high-level
interrupt context. These interrupt routines are only allowed to call
ddi_trigger_softintr(9F) mutex_enter(9F) and mutex_exit(9F).
Furthermore, mutex_enter(9F) and mutex_exit(9F) may only be called on
mutexes initialized with the ddi_iblock_cookie returned by
ddi_get_iblock_cookie(9F).

� SEE ALSO indicates functions that are related by usage and sources, and which can
be referred to for further information.

� EXAMPLES shows how the function can be used in driver code.

Every driver MUST include <sys/ddi.h> and <sys/sunddi.h>, in that order, and
as the last files the driver includes.

The following table summarizes the STREAMS functions described in this section.

Intro(9F)

NAME

DESCRIPTION

STREAMS Kernel
Function Summary

20 man pages section 9: DDI and DKI Kernel Functions • Last Revised 15 May 2001

Routine Type

adjmsg DDI/DKI

allocb DDI/DKI

backq DDI/DKI

bcanput DDI/DKI

bcanputnext DDI/DKI

bufcall DDI/DKI

canput DDI/DKI

canputnext DDI/DKI

clrbuf DDI/DKI

copyb DDI/DKI

copymsg DDI/DKI

datamsg DDI/DKI

dupb DDI/DKI

dupmsg DDI/DKI

enableok DDI/DKI

esballoc DDI/DKI

esbbcall DDI/DKI

flushband DDI/DKI

flushq DDI/DKI

freeb DDI/DKI

freemsg DDI/DKI

freezestr DDI/DKI

getq DDI/DKI

insq DDI/DKI

linkb DDI/DKI

msgdsize DDI/DKI

msgpullup DDI/DKI

mt-streams Solaris DDI

noenable DDI/DKI

Intro(9F)

Introduction 21

Routine Type

OTHERQ DDI/DKI

pullupmsg DDI/DKI

put DDI/DKI

putbq DDI/DKI

putctl DDI/DKI

putctl1 DDI/DKI

putnext DDI/DKI

putnextctl DDI/DKI

putq DDI/DKI

qbufcall Solaris DDI

qenable DDI/DKI

qprocson DDI/DKI

qprocsoff DDI/DKI

qreply DDI/DKI

qsize DDI/DKI

qtimeout Solaris DDI

qunbufcall Solaris DDI

quntimeout Solaris DDI

qwait Solaris DDI

qwait_sig Solaris DDI

qwriter Solaris DDI

RD DDI/DKI

rmvb DDI/DKI

rmvq DDI/DKI

SAMESTR DDI/DKI

strlog DDI/DKI

strqget DDI/DKI

strqset DDI/DKI

testb DDI/DKI

Intro(9F)

22 man pages section 9: DDI and DKI Kernel Functions • Last Revised 15 May 2001

Routine Type

unbufcall DDI/DKI

unfreezestr DDI/DKI

unlinkb DDI/DKI

WR DDI/DKI

The following table summarizes the functions not specific to STREAMS.

Routine Type

ASSERT DDI/DKI

anocancel Solaris DDI

aphysio Solaris DDI

bcmp DDI/DKI

bcopy DDI/DKI

biodone DDI/DKI

bioclone Solaris DDI

biofini Solaris DDI

bioinit Solaris DDI

biomodified Solaris DDI

biosize Solaris DDI

bioerror Solaris DDI

bioreset Solaris DDI

biowait DDI/DKI

bp_mapin DDI/DKI

bp_mapout DDI/DKI

btop DDI/DKI

btopr DDI/DKI

bzero DDI/DKI

cmn_err DDI/DKI

copyin DDI/DKI

copyout DDI/DKI

Intro(9F)

Introduction 23

Routine Type

cv_broadcast Solaris DDI

cv_destroy Solaris DDI

cv_init Solaris DDI

cv_signal Solaris DDI

cv_timedwait Solaris DDI

cv_wait Solaris DDI

cv_wait_sig Solaris DDI

ddi_add_intr Solaris DDI

ddi_add_softintr Solaris DDI

ddi_btop Solaris DDI

ddi_btopr Solaris DDI

ddi_copyin Solaris DDI

ddi_copyout Solaris DDI

ddi_create_minor_node Solaris DDI

ddi_dev_is_sid Solaris DDI

ddi_dev_nintrs Solaris DDI

ddi_dev_nregs Solaris DDI

ddi_dev_regsize Solaris DDI

ddi_device_copy Solaris DDI

ddi_device_zero Solaris DDI

ddi_devmap_segmap Solaris DDI

ddi_dma_addr_bind_handle Solaris DDI

ddi_dma_addr_setup Solaris DDI

ddi_dma_alloc_handle Solaris DDI

ddi_dma_buf_bind_handle Solaris DDI

ddi_dma_buf_setup Solaris DDI

ddi_dma_burstsizes Solaris DDI

ddi_dma_coff Solaris SPARC DDI

ddi_dma_curwin Solaris SPARC DDI

Intro(9F)

24 man pages section 9: DDI and DKI Kernel Functions • Last Revised 15 May 2001

Routine Type

ddi_dma_devalign Solaris DDI

ddi_dma_free Solaris DDI

ddi_dma_free_handle Solaris DDI

ddi_dma_getwin Solaris DDI

ddi_dma_htoc Solaris SPARC DDI

ddi_dma_mem_alloc Solaris DDI

ddi_dma_mem_free Solaris DDI

ddi_dma_movwin Solaris SPARC DDI

ddi_dma_nextcookie Solaris DDI

ddi_dma_nextseg Solaris DDI

ddi_dma_nextwin Solaris DDI

ddi_dma_numwin Solaris DDI

ddi_dma_segtocookie Solaris DDI

ddi_dma_set_sbus64 Solaris DDI

ddi_dma_setup Solaris DDI

ddi_dma_sync Solaris DDI

ddi_dma_unbind_handle Solaris DDI

ddi_dmae Solaris IA DDI

ddi_dmae_1stparty Solaris IA DDI

ddi_dmae_alloc Solaris IA DDI

ddi_dmae_disable Solaris IA DDI

ddi_dmae_enable Solaris IA DDI

ddi_dmae_getattr Solaris IA DDI

ddi_dmae_getcnt Solaris IA DDI

ddi_dmae_getlim Solaris IA DDI

ddi_dmae_prog Solaris IA DDI

ddi_dmae_release Solaris IA DDI

ddi_dmae_stop Solaris IA DDI

ddi_enter_critical Solaris DDI

Intro(9F)

Introduction 25

Routine Type

ddi_exit_critical Solaris DDI

ddi_ffs Solaris DDI

ddi_fls Solaris DDI

ddi_get16 Solaris DDI

ddi_get32 Solaris DDI

ddi_get64 Solaris DDI

ddi_get8 Solaris DDI

ddi_get_cred Solaris DDI

ddi_get_driver_private Solaris DDI

ddi_get_iblock_cookie Solaris DDI

ddi_get_instance Solaris DDI

ddi_get_name Solaris DDI

ddi_get_parent Solaris DDI

ddi_get_soft_iblock_cookie Solaris DDI

ddi_get_soft_state Solaris DDI

ddi_getb Solaris DDI

ddi_getl Solaris DDI

ddi_getll Solaris DDI

ddi_getlongprop Solaris DDI

ddi_getlongprop_buf Solaris DDI

ddi_getprop Solaris DDI

ddi_getproplen Solaris DDI

ddi_getw Solaris DDI

ddi_intr_hilevel Solaris DDI

ddi_io_get16 Solaris DDI

ddi_io_get32 Solaris DDI

ddi_io_get8 Solaris DDI

ddi_io_getb Solaris DDI

ddi_io_getl Solaris DDI

Intro(9F)

26 man pages section 9: DDI and DKI Kernel Functions • Last Revised 15 May 2001

Routine Type

ddi_io_getw Solaris DDI

ddi_io_put16 Solaris DDI

ddi_io_put32 Solaris DDI

ddi_io_put8 Solaris DDI

ddi_io_putb Solaris DDI

ddi_io_putl Solaris DDI

ddi_io_putw Solaris DDI

ddi_io_rep_get16 Solaris DDI

ddi_io_rep_get32 Solaris DDI

ddi_io_rep_get8 Solaris DDI

ddi_io_rep_getb Solaris DDI

ddi_io_rep_getl Solaris DDI

ddi_io_rep_getw Solaris DDI

ddi_io_rep_put16 Solaris DDI

ddi_io_rep_put32 Solaris DDI

ddi_io_rep_put8 Solaris DDI

ddi_io_rep_putb Solaris DDI

ddi_io_rep_putl Solaris DDI

ddi_io_rep_putw Solaris DDI

ddi_iomin Solaris DDI

ddi_iopb_alloc Solaris DDI

ddi_iopb_free Solaris DDI

ddi_map_regs Solaris DDI

ddi_mapdev Solaris DDI

ddi_mapdev_intercept Solaris DDI

ddi_mapdev_nointercept Solaris DDI

ddi_mapdev_set_device_acc_attr Solaris DDI

ddi_mem_alloc Solaris DDI

ddi_mem_free Solaris DDI

Intro(9F)

Introduction 27

Routine Type

ddi_mem_get16 Solaris DDI

ddi_mem_get32 Solaris DDI

ddi_mem_get64 Solaris DDI

ddi_mem_get8 Solaris DDI

ddi_mem_getb Solaris DDI

ddi_mem_getl Solaris DDI

ddi_mem_getll Solaris DDI

ddi_mem_getw Solaris DDI

ddi_mem_put16 Solaris DDI

ddi_mem_put32 Solaris DDI

ddi_mem_put64 Solaris DDI

ddi_mem_put8 Solaris DDI

ddi_mem_putb Solaris DDI

ddi_mem_putl Solaris DDI

ddi_mem_putll Solaris DDI

ddi_mem_putw Solaris DDI

ddi_mem_rep_get16 Solaris DDI

ddi_mem_rep_get32 Solaris DDI

ddi_mem_rep_get64 Solaris DDI

ddi_mem_rep_get8 Solaris DDI

ddi_mem_rep_getb Solaris DDI

ddi_mem_rep_getl Solaris DDI

ddi_mem_rep_getll Solaris DDI

ddi_mem_rep_getw Solaris DDI

ddi_mem_rep_put16 Solaris DDI

ddi_mem_rep_put32 Solaris DDI

ddi_mem_rep_put64 Solaris DDI

ddi_mem_rep_put8 Solaris DDI

ddi_mem_rep_putb Solaris DDI

Intro(9F)

28 man pages section 9: DDI and DKI Kernel Functions • Last Revised 15 May 2001

Routine Type

ddi_mem_rep_putl Solaris DDI

ddi_mem_rep_putll Solaris DDI

ddi_mem_rep_putw Solaris DDI

ddi_mmap_get_model Solaris DDI

ddi_model_convert_from Solaris DDI

ddi_node_name Solaris DDI

ddi_peek16 Solaris DDI

ddi_peek32 Solaris DDI

ddi_peek64 Solaris DDI

ddi_peek8 Solaris DDI

ddi_peekc Solaris DDI

ddi_peekd Solaris DDI

ddi_peekl Solaris DDI

ddi_peeks Solaris DDI

ddi_poke16 Solaris DDI

ddi_poke32 Solaris DDI

ddi_poke64 Solaris DDI

ddi_poke8 Solaris DDI

ddi_pokec Solaris DDI

ddi_poked Solaris DDI

ddi_pokel Solaris DDI

ddi_pokes Solaris DDI

ddi_prop_create Solaris DDI

ddi_prop_exists Solaris DDI

ddi_prop_free Solaris DDI

ddi_prop_get_int Solaris DDI

ddi_prop_lookup Solaris DDI

ddi_prop_lookup_byte_array Solaris DDI

ddi_prop_lookup_int_array Solaris DDI

Intro(9F)

Introduction 29

Routine Type

ddi_prop_lookup_string Solaris DDI

ddi_prop_lookup_string_array Solaris DDI

ddi_prop_modify Solaris DDI

ddi_prop_op Solaris DDI

ddi_prop_remove Solaris DDI

ddi_prop_remove_all Solaris DDI

ddi_prop_undefine Solaris DDI

ddi_prop_update Solaris DDI

ddi_prop_update_byte_array Solaris DDI

ddi_prop_update_int Solaris DDI

ddi_prop_update_int_array Solaris DDI

ddi_prop_update_string Solaris DDI

ddi_prop_update_string_array Solaris DDI

ddi_ptob Solaris DDI

ddi_put16 Solaris DDI

ddi_put32 Solaris DDI

ddi_put64 Solaris DDI

ddi_put8 Solaris DDI

ddi_putb Solaris DDI

ddi_putl Solaris DDI

ddi_putll Solaris DDI

ddi_putw Solaris DDI

ddi_regs_map_free Solaris DDI

ddi_regs_map_setup Solaris DDI

ddi_remove_intr Solaris DDI

ddi_remove_minor_node Solaris DDI

ddi_remove_softintr Solaris DDI

ddi_rep_get16 Solaris DDI

ddi_rep_get32 Solaris DDI

Intro(9F)

30 man pages section 9: DDI and DKI Kernel Functions • Last Revised 15 May 2001

Routine Type

ddi_rep_get64 Solaris DDI

ddi_rep_get8 Solaris DDI

ddi_rep_getb Solaris DDI

ddi_rep_getl Solaris DDI

ddi_rep_getll Solaris DDI

ddi_rep_getw Solaris DDI

ddi_rep_put16 Solaris DDI

ddi_rep_put32 Solaris DDI

ddi_rep_put64 Solaris DDI

ddi_rep_put8 Solaris DDI

ddi_rep_putb Solaris DDI

ddi_rep_putl Solaris DDI

ddi_rep_putll Solaris DDI

ddi_rep_putw Solaris DDI

ddi_report_dev Solaris DDI

ddi_root_node Solaris DDI

ddi_segmap Solaris DDI

ddi_segmap_setup Solaris DDI

ddi_set_driver_private Solaris DDI

ddi_slaveonly Solaris DDI

ddi_soft_state Solaris DDI

ddi_soft_state_fini Solaris DDI

ddi_soft_state_free Solaris DDI

ddi_soft_state_init Solaris DDI

ddi_soft_state_zalloc Solaris DDI

ddi_trigger_softintr Solaris DDI

ddi_umem_alloc Solaris DDI

ddi_umem_free Solaris DDI

ddi_unmap_regs Solaris DDI

Intro(9F)

Introduction 31

Routine Type

delay DDI/DKI

devmap_default_access Solaris DDI

devmap_devmem_setup Solaris DDI

devmap_do_ctxmgt Solaris DDI

devmap_load Solaris DDI

devmap_set_ctx_timeout Solaris DDI

devmap_setup Solaris DDI

devmap_umem_setup Solaris DDI

devmap_unload Solaris DDI

disksort Solaris DDI

drv_getparm DDI/DKI

drv_hztousec DDI/DKI

drv_priv DDI/DKI

drv_usectohz DDI/DKI

drv_usecwait DDI/DKI

free_pktiopb Solaris DDI

freerbuf DDI/DKI

get_pktiopb Solaris DDI

geterror DDI/DKI

getmajor DDI/DKI

getminor DDI/DKI

getrbuf DDI/DKI

hat_getkpfnum DKI only

inb Solaris IA DDI

inl Solaris IA DDI

inw Solaris IA DDI

kmem_alloc DDI/DKI

kmem_free DDI/DKI

kmem_zalloc DDI/DKI

Intro(9F)

32 man pages section 9: DDI and DKI Kernel Functions • Last Revised 15 May 2001

Routine Type

kstat_create Solaris DDI

kstat_delete Solaris DDI

kstat_install Solaris DDI

kstat_named_init Solaris DDI

kstat_queue Solaris DDI

kstat_runq_back_to_waitq Solaris DDI

kstat_runq_enter Solaris DDI

kstat_runq_exit Solaris DDI

kstat_waitq_enter Solaris DDI

kstat_waitq_exit Solaris DDI

kstat_waitq_to_runq Solaris DDI

makecom_g0 Solaris DDI

makecom_g0_s Solaris DDI

makecom_g1 Solaris DDI

makecom_g5 Solaris DDI

makedevice DDI/DKI

max DDI/DKI

min DDI/DKI

minphys Solaris DDI

mod_info Solaris DDI

mod_install Solaris DDI

mod_remove Solaris DDI

mutex_destroy Solaris DDI

mutex_enter Solaris DDI

mutex_exit Solaris DDI

mutex_init Solaris DDI

mutex_owned Solaris DDI

mutex_tryenter Solaris DDI

nochpoll Solaris DDI

Intro(9F)

Introduction 33

Routine Type

nodev DDI/DKI

nulldev DDI/DKI

numtos Solaris DDI

outb Solaris IA DDI

outl Solaris IA DDI

outw Solaris IA DDI

pci_config_get16 Solaris DDI

pci_config_get32 Solaris DDI

pci_config_get64 Solaris DDI

pci_config_get8 Solaris DDI

pci_config_getb Solaris DDI

pci_config_getl Solaris DDI

pci_config_getw Solaris DDI

pci_config_put16 Solaris DDI

pci_config_put32 Solaris DDI

pci_config_put64 Solaris DDI

pci_config_put8 Solaris DDI

pci_config_putb Solaris DDI

pci_config_putl Solaris DDI

pci_config_putw Solaris DDI

pci_config_setup Solaris DDI

pci_config_teardown Solaris DDI

physio Solaris DDI

pollwakeup DDI/DKI

proc_ref Solaris DDI

proc_signal Solaris DDI

proc_unref Solaris DDI

ptob DDI/DKI

repinsb Solaris IA DDI

Intro(9F)

34 man pages section 9: DDI and DKI Kernel Functions • Last Revised 15 May 2001

Routine Type

repinsd Solaris IA DDI

repinsw Solaris IA DDI

repoutsb Solaris IA DDI

repoutsd Solaris IA DDI

repoutsw Solaris IA DDI

rmalloc DDI/DKI

rmalloc_wait DDI/DKI

rmallocmap DDI/DKI

rmallocmap_wait DDI/DKI

rmfree DDI/DKI

rmfreemap DDI/DKI

rw_destroy Solaris DDI

rw_downgrade Solaris DDI

rw_enter Solaris DDI

rw_exit Solaris DDI

rw_init Solaris DDI

rw_read_locked Solaris DDI

rw_tryenter Solaris DDI

rw_tryupgrade Solaris DDI

scsi_abort Solaris DDI

scsi_alloc_consistent_buf Solaris DDI

scsi_cname Solaris DDI

scsi_destroy_pkt Solaris DDI

scsi_dmafree Solaris DDI

scsi_dmaget Solaris DDI

scsi_dname Solaris DDI

scsi_errmsg Solaris DDI

scsi_free_consistent_buf Solaris DDI

scsi_hba_attach Solaris DDI

Intro(9F)

Introduction 35

Routine Type

scsi_hba_attach_setup Solaris DDI

scsi_hba_detach Solaris DDI

scsi_hba_fini Solaris DDI

scsi_hba_init Solaris DDI

scsi_hba_lookup_capstr Solaris DDI

scsi_hba_pkt_alloc Solaris DDI

scsi_hba_pkt_free Solaris DDI

scsi_hba_probe Solaris DDI

scsi_hba_tran_alloc Solaris DDI

scsi_hba_tran_free Solaris DDI

scsi_ifgetcap Solaris DDI

scsi_ifsetcap Solaris DDI

scsi_init_pkt Solaris DDI

scsi_log Solaris DDI

scsi_mname Solaris DDI

scsi_pktalloc Solaris DDI

scsi_pktfree Solaris DDI

scsi_poll Solaris DDI

scsi_probe Solaris DDI

scsi_resalloc Solaris DDI

scsi_reset Solaris DDI

scsi_reset_notify Solaris DDI

scsi_resfree Solaris DDI

scsi_rname Solaris DDI

scsi_slave Solaris DDI

scsi_sname Solaris DDI

scsi_sync_pkt Solaris DDI

scsi_transport Solaris DDI

scsi_unprobe Solaris DDI

Intro(9F)

36 man pages section 9: DDI and DKI Kernel Functions • Last Revised 15 May 2001

Routine Type

scsi_unslave Solaris DDI

sema_destroy Solaris DDI

sema_init Solaris DDI

sema_p Solaris DDI

sema_p_sig Solaris DDI

sema_tryp Solaris DDI

sema_v Solaris DDI

sprintf Solaris DDI

stoi Solaris DDI

strchr Solaris DDI

strcmp Solaris DDI

strcpy Solaris DDI

strlen Solaris DDI

strncmp Solaris DDI

strncpy Solaris DDI

swab DDI/DKI

timeout DDI/DKI

uiomove DDI/DKI

untimeout DDI/DKI

ureadc DDI/DKI

uwritec DDI/DKI

va_arg Solaris DDI

va_end Solaris DDI

va_start Solaris DDI

vcmn_err DDI/DKI

vsprintf Solaris DDI

Intro(9E)

Intro(9F)

SEE ALSO

Introduction 37

Intro(9F)

38 man pages section 9: DDI and DKI Kernel Functions • Last Revised 15 May 2001

Kernel Functions for Drivers

39

adjmsg – trim bytes from a message

#include <sys/stream.h>

int adjmsg(mblk_t *mp, ssize_t len);

Architecture independent level 1 (DDI/DKI).

mp Pointer to the message to be trimmed.

len The number of bytes to be removed.

The adjmsg() function removes bytes from a message. |len| (the absolute value of
len) specifies the number of bytes to be removed. The adjmsg() function only trims
bytes across message blocks of the same type.

The adjmsg() function finds the maximal leading sequence of message blocks of the
same type as that of mp and starts removing bytes either from the head of that
sequence or from the tail of that sequence. If len is greater than 0, adjmsg() removes
bytes from the start of the first message block in that sequence. If len is less than 0, it
removes bytes from the end of the last message block in that sequence.

The adjmsg() function fails if |len| is greater than the number of bytes in the
maximal leading sequence it finds.

The adjmsg() function may remove any except the first zero-length message block
created during adjusting. It may also remove any zero-length message blocks that
occur within the scope of |len|.

The adjmsg() function returns:

1 Successful completion.

0 An error occurred.

The adjmsg() function can be called from user or interrupt context.

STREAMS Programming Guide

adjmsg(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

40 man pages section 9: DDI and DKI Kernel Functions • Last Revised 20 Nov 1996

allocb – allocate a message block

#include <sys/stream.h>

mblk_t *allocb(size_t size, uint_t pri);

Architecture independent level 1 (DDI/DKI).

size The number of bytes in the message block.

pri Priority of the request (no longer used).

allocb() tries to allocate a STREAMS message block. Buffer allocation fails only
when the system is out of memory. If no buffer is available, the bufcall(9F) function
can help a module recover from an allocation failure.

A STREAMS message block is composed of three structures. The first structure is a
message block (mblk_t). See msgb(9S). The mblk_t structure points to a data block
structure (dblk_t). See datab(9S). Together these two structures describe the
message type (if applicable) and the size and location of the third structure, the data
buffer. The data buffer contains the data for this message block. The allocated data
buffer is at least double-word aligned, so it can hold any C data structure.

The fields in the mblk_t structure are initialized as follows:

b_cont set to NULL

b_rptr points to the beginning of the data buffer

b_wptr points to the beginning of the data buffer

b_datap points to the dblk_t structure

The fields in the dblk_t structure are initialized as follows:

db_base points to the first byte of the data buffer

db_lim points to the last byte + 1 of the buffer

db_type set to M_DATA

The following figure identifies the data structure members that are affected when a
message block is allocated.

allocb(9F)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

Kernel Functions for Drivers 41

A pointer to the allocated message block of type M_DATA on success.

A NULL pointer on failure.

allocb() can be called from user or interrupt context.

EXAMPLE 1 allocb()Code Sample

Given a pointer to a queue (q) and an error number (err), the send_error() routine
sends an M_ERROR type message to the stream head.

If a message cannot be allocated, NULL is returned, indicating an allocation failure
(line 8). Otherwise, the message type is set to M_ERROR (line 10). Line 11 increments
the write pointer (bp->b_wptr) by the size (one byte) of the data in the message.

A message must be sent up the read side of the stream to arrive at the stream head. To
determine whether q points to a read queue or to a write queue, the q->q_flag
member is tested to see if QREADR is set (line 13). If it is not set, q points to a write
queue, and in line 14 the RD(9F) function is used to find the corresponding read queue.
In line 15, the putnext(9F) function is used to send the message upstream, returning
1 if successful.

1 send_error(q,err)
2 queue_t *q;
3 unsigned char err;
4 {
5 mblk_t *bp;
6
7 if ((bp = allocb(1, BPRI_HI)) == NULL) /* allocate msg. block */
8 return(0);
9
10 bp->b_datap->db_type = M_ERROR; /* set msg type to M_ERROR */
11 *bp->b_wptr++ = err; /* increment write pointer */
12
13 if (!(q->q_flag & QREADR)) /* if not read queue */
14 q = RD(q); /* get read queue */
15 putnext(q,bp); /* send message upstream */

allocb(9F)

RETURN VALUES

CONTEXT

EXAMPLES

42 man pages section 9: DDI and DKI Kernel Functions • Last Revised 23 Jun 1997

EXAMPLE 1 allocb()Code Sample (Continued)

16 return(1);
17 }

RD(9F), bufcall(9F), esballoc(9F), esbbcall(9F), putnext(9F), testb(9F),
datab(9S), msgb(9S)

Writing Device Drivers

STREAMS Programming Guide

The pri argument is no longer used, but is retained for compatibility with existing
drivers.

allocb(9F)

SEE ALSO

NOTES

Kernel Functions for Drivers 43

anocancel – prevent cancellation of asynchronous I/O request

#include <sys/ddi.h>

#include <sys/sunddi.h>

int anocancel();

Solaris DDI specific (Solaris DDI).

anocancel() should be used by drivers that do not support canceling asynchronous
I/O requests. anocancel() is passed as the driver cancel routine parameter to
aphysio(9F).

anocancel() returns ENXIO.

aread(9E), awrite(9E), aphysio(9F)

Writing Device Drivers

anocancel(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

RETURN VALUES

SEE ALSO

44 man pages section 9: DDI and DKI Kernel Functions • Last Revised 9 Nov 1994

aphysio – perform asynchronous physical I/O

#include <sys/types.h>
#include <sys/buf.h>
#include <sys/uio.h>
#include <sys/aio_req.h>
#include <sys/ddi.h>

#include <sys/sunddi.h>

int aphysio(int *stratstruct buf *, int *cancelstruct buf *, dev_t
dev, int rw, void *mincntstruct buf *, struct aio_req *aio_reqp);

strat Pointer to device strategy routine.

cancel Pointer to driver cancel routine. Used to cancel a submitted
request. The driver must pass the address of the function
anocancel(9F) because cancellation is not supported.

dev The device number.

rw Read/write flag. This is either B_READ when reading from the
device or B_WRITE when writing to the device.

mincnt Routine which bounds the maximum transfer unit size.

aio_reqp Pointer to the aio_req(9S) structure which describes the user I/O
request.

Solaris DDI specific (Solaris DDI).

aphysio() performs asynchronous I/O operations between the device and the
address space described by aio_reqp→aio_uio.

Prior to the start of the transfer, aphysio() verifies the requested operation is valid.
It then locks the pages involved in the I/O transfer so they can not be paged out. The
device strategy routine, strat, is then called one or more times to perform the physical
I/O operations. aphysio() does not wait for each transfer to complete, but returns as
soon as the necessary requests have been made.

aphysio() calls mincnt to bound the maximum transfer unit size to a sensible default
for the device and the system. Drivers which do not provide their own local mincnt
routine should call aphysio() with minphys(9F). minphys(9F) is the system mincnt
routine. minphys(9F) ensures the transfer size does not exceed any system limits.

If a driver supplies a local mincnt routine, this routine should perform the following
actions:

� If bp→b_bcount exceeds a device limit, set bp→b_bcount to a value supported by the
device.

� Call minphys(9F) to ensure that the driver does not circumvent additional system
limits.

aphysio() returns:

aphysio(9F)

NAME

SYNOPSIS

PARAMETERS

INTERFACE
LEVEL

DESCRIPTION

RETURN VALUES

Kernel Functions for Drivers 45

0 Upon success.

non-zero Upon failure.

aphysio() can be called from user context only.

aread(9E), awrite(9E), strategy(9E), anocancel(9F), biodone(9F), biowait(9F),
minphys(9F), physio(9F), aio_req(9S), buf(9S), uio(9S)

Writing Device Drivers

It is the driver’s responsibility to call biodone(9F) when the transfer is complete.

Cancellation is not supported in this release. The address of the function
anocancel(9F) must be used as the cancel argument.

aphysio(9F)

CONTEXT

SEE ALSO

WARNINGS

BUGS

46 man pages section 9: DDI and DKI Kernel Functions • Last Revised 9 Nov 1994

ASSERT, assert – expression verification

#include <sys/debug.h>

void ASSERT(EX);

Architecture independent level 1 (DDI/DKI).

EX boolean expression.

ASSERT() is a macro which checks to see if the expression EX is true. If it is not, then
ASSERT() causes an error message to be logged to the console and the system to
panic. ASSERT() works only if the preprocessor symbol DEBUG is defined.

ASSERT() can be used from user or interrupt context.

Writing Device Drivers

ASSERT(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

SEE ALSO

Kernel Functions for Drivers 47

backq – get pointer to the queue behind the current queue

#include <sys/stream.h>

queue_t *backq(queue_t *cq);

Architecture independent level 1 (DDI/DKI).

cq The pointer to the current queue. queue_t is an alias for the queue(9S)
structure.

backq() returns a pointer to the queue preceding cq (the current queue). If cq is a
read queue, backq() returns a pointer to the queue downstream from cq, unless it is
the stream end. If cq is a write queue, backq() returns a pointer to the next queue
upstream from cq, unless it is the stream head.

If successful, backq() returns a pointer to the queue preceding the current queue.
Otherwise, it returns NULL.

backq() can be called from user or interrupt context.

queue(9S)

Writing Device Drivers

STREAMS Programming Guide

backq(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

48 man pages section 9: DDI and DKI Kernel Functions • Last Revised 11 Apr 1991

bcanput – test for flow control in specified priority band

#include <sys/stream.h>

int bcanput(queue_t *q, unsigned char pri);

Architecture independent level 1 (DDI/DKI).

q Pointer to the message queue.

pri Message priority.

bcanput() searches through the stream (starting at q) until it finds a queue
containing a service routine where the message can be enqueued, or until it reaches
the end of the stream. If found, the queue containing the service routine is tested to see
if there is room for a message of priority pri in the queue.

If pri is 0, bcanput() is equivalent to a call with canput(9F).

canputnext(q) and bcanputnext(q, pri) should always be used in preference to
canput(q→q_next) and bcanput(q→q_next, pri) respectively.

1 If a message of priority pri can be placed on the queue.

0 If the priority band is full.

bcanput() can be called from user or interrupt context.

bcanputnext(9F), canput(9F), canputnext(9F), putbq(9F), putnext(9F)

Writing Device Drivers

STREAMS Programming Guide

Drivers are responsible for both testing a queue with bcanput() and refraining from
placing a message on the queue if bcanput() fails.

bcanput(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

WARNINGS

Kernel Functions for Drivers 49

bcmp – compare two byte arrays

#include <sys/types.h>

#include <sys/ddi.h>

int bcmp(const void *s1, const void *s2, size_t len);

Architecture independent level 1 (DDI/DKI).

s1 Pointer to the first character string.

s2 Pointer to the second character string.

len Number of bytes to be compared.

bcmp() compares two byte arrays of length len.

bcmp() returns 0 if the arrays are identical, or 1 if they are not.

bcmp() can be called from user or interrupt context.

strcmp(9F)

Writing Device Drivers

Unlike strcmp(9F), bcmp() does not terminate when it encounters a null byte.

bcmp(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

NOTES

50 man pages section 9: DDI and DKI Kernel Functions • Last Revised 1 May 1996

bcopy – copy data between address locations in the kernel

#include <sys/types.h>

void bcopy(const void *from, void *to, size_t bcount);

Architecture independent level 1 (DDI/DKI).

from Source address from which the copy is made.

to Destination address to which copy is made.

bcount The number of bytes moved.

bcopy() copies bcount bytes from one kernel address to another. If the input and
output addresses overlap, the command executes, but the results may not be as
expected.

Note that bcopy() should never be used to move data in or out of a user buffer,
because it has no provision for handling page faults. The user address space can be
swapped out at any time, and bcopy() always assumes that there will be no paging
faults. If bcopy() attempts to access the user buffer when it is swapped out, the
system will panic. It is safe to use bcopy() to move data within kernel space, since
kernel space is never swapped out.

bcopy() can be called from user or interrupt context.

EXAMPLE 1 Copying data between address locations in the kernel:

An I/O request is made for data stored in a RAM disk. If the I/O operation is a read
request, the data is copied from the RAM disk to a buffer (line 8). If it is a write
request, the data is copied from a buffer to the RAM disk (line 15). bcopy() is used
since both the RAM disk and the buffer are part of the kernel address space.

1 #define RAMDNBLK 1000 /* blocks in the RAM disk */
2 #define RAMDBSIZ 512 /* bytes per block */
3 char ramdblks[RAMDNBLK][RAMDBSIZ]; /* blocks forming RAM

/* disk
...

4
5 if (bp->b_flags & B_READ) /* if read request, copy data */
6 /* from RAM disk data block */
7 /* to system buffer */
8 bcopy(&ramdblks[bp->b_blkno][0], bp->b_un.b_addr,
9 bp->b_bcount);
10
11 else /* else write request, */
12 /* copy data from a */
13 /* system buffer to RAM disk */
14 /* data block */
15 bcopy(bp->b_un.b_addr, &ramdblks[bp->b_blkno][0],
16 bp->b_bcount);

copyin(9F), copyout(9F)

bcopy(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

EXAMPLES

SEE ALSO

Kernel Functions for Drivers 51

Writing Device Drivers

The from and to addresses must be within the kernel space. No range checking is done.
If an address outside of the kernel space is selected, the driver may corrupt the system
in an unpredictable way.

bcopy(9F)

WARNINGS

52 man pages section 9: DDI and DKI Kernel Functions • Last Revised 1 May 1996

bioclone – clone another buffer

#include <sys/ddi.h> #include <sys/sunddi.h>

struct buf *bioclone(struct buf *bp, off_t off, size_t len, dev_t dev,
daddr_t blkno, int (*iodone) (struct buf *), struct buf *bp_mem,
int sleepflag);

Solaris DDI specific (Solaris DDI).

bp Pointer to the buf(9S) structure describing the original I/O
request.

off Offset within original I/O request where new I/O request should
start.

len Length of the I/O request.

dev Device number.

blkno Block number on device.

iodone Specific biodone(9F) routine.

bp_mem Pointer to a buffer structure to be filled in or NULL.

sleepflag Determines whether caller can sleep for memory. Possible flags are
KM_SLEEP to allow sleeping until memory is available, or
KM_NOSLEEP to return NULL immediately if memory is not
available.

bioclone() returns an initialized buffer to perform I/O to a portion of another
buffer. The new buffer will be set up to perform I/O to the range within the original
I/O request specified by the parameters off and len. An offset 0 starts the new I/O
request at the same address as the original request. off + len must not exceed b_bcount,
the length of the original request. The device number dev specifies the device to which
the buffer is to perform I/O. blkno is the block number on device. It will be assigned to
the b_blkno field of the cloned buffer structure. iodone lets the driver identify a specific
biodone(9F) routine to be called by the driver when the I/O is complete. bp_mem
determines from where the space for the buffer should be allocated. If bp_mem is
NULL, bioclone() will allocate a new buffer using getrbuf(9F). If sleepflag is set to
KM_SLEEP, the driver may sleep until space is freed up. If sleepflag is set to
KM_NOSLEEP, the driver will not sleep. In either case, a pointer to the allocated space
is returned or NULL to indicate that no space was available. After the transfer is
completed, the buffer has to be freed using freerbuf(9F). If bp_mem is not NULL, it
will be used as the space for the buffer structure. The driver has to ensure that bp_mem
is initialized properly either using getrbuf(9F) or bioinit(9F).

If the original buffer is mapped into the kernel virtual address space using
bp_mapin(9F) before calling bp_clone(), a clone buffer will share the kernel
mapping of the original buffer. An additional bp_mapin() to get a kernel mapping
for the clone buffer is not necessary.

bioclone(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

Kernel Functions for Drivers 53

The driver has to ensure that the original buffer is not freed while any of the clone
buffers is still performing I/O. The biodone() function has to be called on all clone
buffers before it is called on the original buffer.

The bioclone() function returns a pointer to the initialized buffer header, or NULL if
no space is available.

bioclone() can be called from user or interrupt context. Drivers must not allow
bioclone() to sleep if called from an interrupt routine.

EXAMPLE 1 : Using bioclone()

A device driver can use bioclone() for disk striping. For each disk in the stripe, a
clone buffer is created which performs I/O to a portion of the original buffer.

static int
stripe_strategy(struct buf *bp)
{

...
bp_orig = bp;
bp_1 = bioclone(bp_orig, 0, size_1, dev_1, blkno_1,

stripe_done, NULL, KM_SLEEP);
fragment++;
...
bp_n = bioclone(bp_orig, offset_n, size_n, dev_n,

blkno_n, stripe_done, NULL, KM_SLEEP);
fragment++;
/* submit bp_1 ... bp_n to device */
xxstrategy(bp_x);
return (0);

}

static uint_t
xxintr(caddr_t arg)
{

...
/*
* get bp of completed subrequest. biodone(9F) will
* call stripe_done()
*/
biodone(bp);
return (0);

}

static int
stripe_done(struct buf *bp)
{

...
freerbuf(bp);
fragment--;
if (fragment == 0) {

/* get bp_orig */
biodone(bp_orig);

}

bioclone(9F)

RETURN VALUES

CONTEXT

EXAMPLES

54 man pages section 9: DDI and DKI Kernel Functions • Last Revised 20 Nov 1996

EXAMPLE 1 : Using bioclone() (Continued)

return (0);
}

biodone(9F), bp_mapin(9F), freerbuf(9F), getrbuf(9F), buf(9S)

Writing Device Drivers

bioclone(9F)

SEE ALSO

Kernel Functions for Drivers 55

biodone – release buffer after buffer I/O transfer and notify blocked threads

#include <sys/types.h>

#include <sys/buf.h>

void biodone(struct buf *bp);

Architecture independent level 1 (DDI/DKI).

bp Pointer to a buf(9S) structure.

biodone() notifies blocked processes waiting for the I/O to complete, sets the
B_DONE flag in the b_flags field of the buf(9S) structure, and releases the buffer if
the I/O is asynchronous. biodone() is called by either the driver interrupt or
strategy(9E) routines when a buffer I/O request is complete.

biodone() provides the capability to call a completion routine if bp describes a
kernel buffer. The address of the routine is specified in the b_iodone field of the
buf(9S) structure. If such a routine is specified, biodone() calls it and returns
without performing any other actions. Otherwise, it performs the steps above.

biodone() can be called from user or interrupt context.

EXAMPLE 1

Generally, the first validation test performed by any block device strategy(9E)
routine is a check for an end-of-file (EOF) condition. The strategy(9E) routine is
responsible for determining an EOF condition when the device is accessed directly. If a
read(2) request is made for one block beyond the limits of the device (line 10), it will
report an EOF condition. Otherwise, if the request is outside the limits of the device,
the routine will report an error condition. In either case, report the I/O operation as
complete (line 27).

1 #define RAMDNBLK 1000 /* Number of blocks in RAM disk */
2 #define RAMDBSIZ 512 /* Number of bytes per block */
3 char ramdblks[RAMDNBLK][RAMDBSIZ]; /* Array containing RAM disk */
4
5 static int
6 ramdstrategy(struct buf *bp)
7 {
8 daddr_t blkno = bp->b_blkno; /* get block number */
9
10 if ((blkno < 0) || (blkno >= RAMDNBLK)) {
11 /*
12 * If requested block is outside RAM disk
13 * limits, test for EOF which could result
14 * from a direct (physio) request.
15 */
16 if ((blkno == RAMDNBLK) && (bp->b_flags & B_READ)) {
17 /*
18 * If read is for block beyond RAM disk
19 * limits, mark EOF condition.
20 */
21 bp->b_resid = bp->b_bcount; /* compute return value */

biodone(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

EXAMPLES

56 man pages section 9: DDI and DKI Kernel Functions • Last Revised 23 Apr 1996

EXAMPLE 1 (Continued)

22
23 } else { /* I/O attempt is beyond */
24 bp->b_error = ENXIO; /* limits of RAM disk */
25 bp->b_flags |= B_ERROR; /* return error */
26 }
27 biodone(bp); /* mark I/O complete (B_DONE) */
28 /*
29 * Wake any processes awaiting this I/O
30 * or release buffer for asynchronous
31 * (B_ASYNC) request.
32 */
33 return (0);
34 }

. . .

read(2), strategy(9E), biowait(9F), ddi_add_intr(9F), delay(9F), timeout(9F),
untimeout(9F), buf(9S)

Writing Device Drivers

After calling biodone(), bp is no longer available to be referred to by the driver. If
the driver makes any reference to bp after calling biodone(), a panic may result.

Drivers that use the b_iodone field of the buf(9S) structure to specify a substitute
completion routine should save the value of b_iodone before changing it, and then
restore the old value before calling biodone() to release the buffer.

biodone(9F)

SEE ALSO

WARNINGS

NOTES

Kernel Functions for Drivers 57

bioerror – indicate error in buffer header

#include <sys/types.h>
#include <sys/buf.h>

#include <sys/ddi.h>

void bioerror(struct buf *bp, int error);

Solaris DDI specific (Solaris DDI)

bp Pointer to the buf(9S) structure describing the transfer.

error Error number to be set, or zero to clear an error indication.

If error is non-zero, bioerror() indicates an error has occured in the buf(9S)
structure. A subsequent call to geterror(9F) will return error.

If error is 0, the error indication is cleared and a subsequent call to geterror(9F) will
return 0.

bioerror() can be called from any context.

strategy(9E), geterror(9F), getrbuf(9F), buf(9S)

bioerror(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

SEE ALSO

58 man pages section 9: DDI and DKI Kernel Functions • Last Revised 26 May 1994

biofini – uninitialize a buffer structure

#include <sys/ddi.h>

#include <sys/sunddi.h>

voidbiofini(struct buf *bp);

Solaris DDI specific (Solaris DDI).

bp Pointer to the buffer header structure.

The biofini() function uninitializes a buf(9S) structure. If a buffer structure has
been allocated and initialized using kmem_alloc(9F) and bioinit(9F) it needs to be
uninitialized using biofini() before calling kmem_free(9F). It is not necessary to
call biofini() before freeing a buffer structure using freerbuf(9F) because
freerbuf() will call biofini() directly.

The biofini() function can be called from any context.

EXAMPLE 1 Using biofini()

struct buf *bp = kmem_alloc(biosize(), KM_SLEEP);
bioinit(bp);
/* use buffer */
biofini(bp);
kmem_free(bp, biosize());

bioinit(9F), bioreset(9F), biosize(9F), freerbuf(9F), kmem_alloc(9F),
kmem_free(9F), buf(9S)

Writing Device Drivers

biofini(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

EXAMPLES

SEE ALSO

Kernel Functions for Drivers 59

bioinit – initialize a buffer structure

#include <sys/ddi.h>

#include <sys/sunddi.h>

voidbioinit(struct buf *bp);

Solaris DDI specific (Solaris DDI).

bp Pointer to the buffer header structure.

The bioinit() function initializes a buf(9S) structure. A buffer structure contains
state information which has to be initialized if the memory for the buffer was allocated
using kmem_alloc(9F). This is not necessary for a buffer allocated using getrbuf(9F)
because getrbuf() will call bioinit() directly.

The bioinit() function can be called from any context.

EXAMPLE 1 Using bioinit()

struct buf *bp = kmem_alloc(biosize(), KM_SLEEP);
bioinit(bp);
/* use buffer */

biofini(9F), bioreset(9F), biosize(9F), getrbuf(9F), kmem_alloc(9F), buf(9S)

Writing Device Drivers

bioinit(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

EXAMPLES

SEE ALSO

60 man pages section 9: DDI and DKI Kernel Functions • Last Revised 20 Nov 1996

biomodified – check if a buffer is modified

#include <sys/ddi.h>

#include <sys/sunddi.h>

intbiomodified(struct buf *bp);

Solaris DDI specific (Solaris DDI).

bp Pointer to the buffer header structure.

The biomodified() function returns status to indicate if the buffer is modified. The
biomodified() function is only supported for paged- I/O request, that is the
B_PAGEIO flag must be set in the b_flags field of the buf(9S) structure. The
biomodified() function will check the memory pages associated with this buffer
whether the Virtual Memory system’s modification bit is set. If at least one of these
pages is modified, the buffer is indicated as modified. A filesystem will mark the pages
unmodified when it writes the pages to the backing store. The biomodified()
function can be used to detect any modifications to the memory pages while I/O is in
progress.

A device driver can use biomodified() for disk mirroring. An application is
allowed to mmap a file which can reside on a disk which is mirrored by multiple
submirrors. If the file system writes the file to the backing store, it is written to all
submirrors in parallel. It must be ensured that the copies on all submirrors are
identical. The biomodified() function can be used in the device driver to detect any
modifications to the buffer by the user program during the time the buffer is written to
multiple submirrors.

The biomodified() function returns the following values:

1 Buffer is modified.

0 Buffer is not modified.

-1 Buffer is not used for paged I/O request.

biomodified() can be called from any context.

bp_mapin(9F), buf(9S)

Writing Device Drivers

biomodified(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 61

bioreset – reuse a private buffer header after I/O is complete

#include <sys/buf.h>

#include <sys/ddi.h>

void bioreset(struct buf *bp);

Solaris DDI specific (Solaris DDI)

bp Pointer to the buf(9S) structure.

bioreset() is used by drivers that allocate private buffers with getrbuf(9F) or
kmem_alloc(9F) and want to reuse them in multiple transfers before freeing them
with freerbuf(9F) or kmem_free(9F). bioreset() resets the buffer header to the
state it had when initially allocated by getrbuf() or initialized by bioinit(9F).

bioreset() can be called from any context.

strategy(9E), bioinit(9F), biofini(9F), freerbuf(9F), getrbuf(9F),
kmem_alloc(9F), kmem_free(9F), buf(9S)

bp must not describe a transfer in progress.

bioreset(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

SEE ALSO

NOTES

62 man pages section 9: DDI and DKI Kernel Functions • Last Revised 15 Nov 1996

biosize – returns size of a buffer structure

#include <sys/ddi.h>

#include <sys/sunddi.h>

size_tbiosize(void);

Solaris DDI specific (Solaris DDI).

The biosize() function returns the size in bytes of the buf(9S) structure. The
biosize() function is used by drivers in combination with kmem_alloc(9F) and
bioinit(9F) to allocate buffer structures embedded in other data structures.

The biosize() function can be called from any context.

biofini(9F), bioinit(9F), getrbuf(9F), kmem_alloc(9F), buf(9S)

Writing Device Drivers

biosize(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

CONTEXT

SEE ALSO

Kernel Functions for Drivers 63

biowait – suspend processes pending completion of block I/O

#include <sys/types.h>

#include <sys/buf.h>

int biowait(struct buf *bp);

Architecture independent level 1 (DDI/DKI).

bp Pointer to the buf structure describing the transfer.

Drivers allocating their own buf structures with getrbuf(9F) can use the
biowait() function to suspend the current thread and wait for completion of the
transfer.

Drivers must call biodone(9F) when the transfer is complete to notify the thread
blocked by biowait(). biodone() is usually called in the interrupt routine.

0 Upon success

non-zero Upon I/O failure. biowait() calls geterror(9F) to retrieve the
error number which it returns.

biowait() can be called from user context only.

biodone(9F), geterror(9F), getrbuf(9F), buf(9S)

Writing Device Drivers

biowait(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

64 man pages section 9: DDI and DKI Kernel Functions • Last Revised 11 Apr 1991

bp_mapin – allocate virtual address space

#include <sys/types.h>

#include <sys/buf.h>

void bp_mapin(struct buf *bp);

Architecture independent level 1 (DDI/DKI).

bp Pointer to the buffer header structure.

bp_mapin() is used to map virtual address space to a page list maintained by the
buffer header during a paged- I/O request. bp_mapin() allocates system virtual
address space, maps that space to the page list, and returns the starting address of the
space in the bp->b_un.b_addr field of the buf(9S) structure. Virtual address space is
then deallocated using the bp_mapout(9F) function.

If a null page list is encountered, bp_mapin() returns without allocating space and
no mapping is performed.

bp_mapin() can be called from user and kernel contexts.

bp_mapout(9F), buf(9S)

Writing Device Drivers

bp_mapin(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

SEE ALSO

Kernel Functions for Drivers 65

bp_mapout – deallocate virtual address space

#include <sys/types.h>

#include <sys/buf.h>

void bp_mapout(struct buf *bp);

Architecture independent level 1 (DDI/DKI).

bp Pointer to the buffer header structure.

bp_mapout() deallocates system virtual address space allocated by a previous call to
bp_mapin(9F).bp_mapout() should only be called on buffers which have been
allocated and are owned by the device driver. It must not be called on buffers passed
to the driver through the strategy(9E) entry point (for example a filesystem).
Because bp_mapin(9F) does not keep a reference count, bp_mapout() will wipe out
any kernel mapping that a layer above the device driver might rely on.

bp_mapout() can be called from user context only.

strategy(9E), bp_mapin(9F), buf(9S)

Writing Device Drivers

bp_mapout(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

SEE ALSO

66 man pages section 9: DDI and DKI Kernel Functions • Last Revised 15 Nov 1996

btop – convert size in bytes to size in pages (round down)

#include <sys/ddi.h>

unsigned long btop(unsigned long numbytes);

Architecture independent level 1 (DDI/DKI).

numbytes Number of bytes.

btop() returns the number of memory pages that are contained in the specified
number of bytes, with downward rounding in the case that the byte count is not a
page multiple. For example, if the page size is 2048, then btop(4096) returns 2, and
btop(4097) returns 2 as well. btop(0) returns 0.

The return value is always the number of pages. There are no invalid input values,
and therefore no error return values.

btop() can be called from user or interrupt context.

btopr(9F), ddi_btop(9F), ptob(9F)

Writing Device Drivers

btop(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 67

btopr – convert size in bytes to size in pages (round up)

#include <sys/ddi.h>

unsigned long btopr(unsigned long numbytes);

Architecture independent level 1 (DDI/DKI).

numbytes Number of bytes.

btopr() returns the number of memory pages contained in the specified number of
bytes memory, rounded up to the next whole page. For example, if the page size is
2048, then btopr(4096) returns 2, and btopr(4097) returns 3.

The return value is always the number of pages. There are no invalid input values,
and therefore no error return values.

btopr() can be called from user or interrupt context.

btop(9F), ddi_btopr(9F), ptob(9F)

Writing Device Drivers

btopr(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

68 man pages section 9: DDI and DKI Kernel Functions • Last Revised 11 Apr 1991

bufcall – call a function when a buffer becomes available

#include <sys/types.h>

#include <sys/stream.h>

bufcall_id_t bufcall(size_t size, uint_t pri, void *funcvoid *arg,
void *arg);

Architecture independent level 1 (DDI/DKI).

size Number of bytes required for the buffer.

pri Priority of the allocb(9F) allocation request (not used).

func Function or driver routine to be called when a buffer becomes available.

arg Argument to the function to be called when a buffer becomes available.

bufcall() serves as a timeout(9F) call of indeterminate length. When a buffer
allocation request fails, bufcall() can be used to schedule the routine func, to be
called with the argument arg when a buffer becomes available. func may call
allocb() or it may do something else.

If successful, bufcall() returns a bufcall ID that can be used in a call to
unbufcall() to cancel the request. If the bufcall() scheduling fails, func is never
called and 0 is returned.

bufcall() can be called from user or interrupt context.

EXAMPLE 1 Calling a function when a buffer becomes available:

The purpose of this srv(9E) service routine is to add a header to all M_DATA messages.
Service routines must process all messages on their queues before returning, or
arrange to be rescheduled

While there are messages to be processed (line 13), check to see if it is a high priority
message or a normal priority message that can be sent on (line 14). Normal priority
message that cannot be sent are put back on the message queue (lie 34). If the message
was a high priority one, or if it was normal priority and canputnext(9F) succeeded,
then send all but M_DATA messages to the next module with putnext(9F) (line 16).

For M_DATA messages, try to allocate a buffer large enough to hold the header (line
18). If no such buffer is available, the service routine must be rescheduled for a time
when a buffer is available. The original message is put back on the queue (line 20) and
bufcall (line 21) is used to attempt the rescheduling. It will succeed if the
rescheduling succeeds, indicating that qenable will be called subsequently with the
argument q once a buffer of the specified size (sizeof (struct hdr)) becomes
available. If it does, qenable(9F) will put q on the list of queues to have their service
routines called. If bufcall() fails, timeout(9F) (line 22) is used to try again in about
a half second.

bufcall(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

EXAMPLES

Kernel Functions for Drivers 69

EXAMPLE 1 Calling a function when a buffer becomes available: (Continued)

If the buffer allocation was successful, initialize the header (lines 25–28), make the
message type M_PROTO (line 29), link the M_DATA message to it (line 30), and pass it
on (line 31).

Note that this example ignores the bookkeeping needed to handle bufcall() and
timeout(9F) cancellation for ones that are still outstanding at close time.

1 struct hdr {
2 unsigned int h_size;
3 int h_version;
4 };
5
6 void xxxsrv(q)
7 queue_t *q;
8 {
9 mblk_t *bp;
10 mblk_t *mp;
11 struct hdr *hp;
12
13 while ((mp = getq(q)) != NULL) { /* get next message */
14 if (mp->b_datap->db_type >= QPCTL || /* if high priority */

canputnext(q)) { /* normal & can be passed */
15 if (mp->b_datap->db_type != M_DATA)
16 putnext(q, mp); /* send all but M_DATA */
17 else {
18 bp = allocb(sizeof(struct hdr), BPRI_LO);
19 if (bp == NULL) { /* if unsuccessful */
20 putbq(q, mp); /* put it back */
21 if (!bufcall(sizeof(struct hdr), BPRI_LO,

qenable, q)) /* try to reschedule */
22 timeout(qenable, q, drv_usectohz(500000));
23 return (0);
24 }
25 hp = (struct hdr *)bp->b_wptr;
26 hp->h_size = msgdsize(mp); /* initialize header */
27 hp->h_version = 1;
28 bp->b_wptr += sizeof(struct hdr);
29 bp->b_datap->db_type = M_PROTO; /* make M_PROTO */
30 bp->b_cont = mp; /* link it */
31 putnext(q, bp); /* pass it on */
32 }
33 } else { /* normal priority, canputnext failed */
34 putbq(q, mp); /* put back on the message queue */
35 return (0);
36 }
37 }

return (0);
38 }

srv(9E), allocb(9F), canputnext(9F), esballoc(9F), esbbcall(9F), putnext(9F),
qenable(9F), testb(9F), timeout(9F), unbufcall(9F)

bufcall(9F)

SEE ALSO

70 man pages section 9: DDI and DKI Kernel Functions • Last Revised 13 Feb 1998

Writing Device Drivers

STREAMS Programming Guide

Even when func is called by bufcall(), allocb(9F) can fail if another module or
driver had allocated the memory before func was able to call allocb(9F).

bufcall(9F)

WARNINGS

Kernel Functions for Drivers 71

bzero – clear memory for a given number of bytes

#include <sys/types.h>

#include <sys/ddi.h>

void bzero(void *addr, size_t bytes);

Architecture independent level 1 (DDI/DKI).

addr Starting virtual address of memory to be cleared.

bytes The number of bytes to clear starting at addr.

bzero() clears a contiguous portion of memory by filling it with zeros.

bzero() can be called from user or interrupt context.

bcopy(9F), clrbuf(9F), kmem_zalloc(9F)

Writing Device Drivers

The address range specified must be within the kernel space. No range checking is
done. If an address outside of the kernel space is selected, the driver may corrupt the
system in an unpredictable way.

bzero(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

SEE ALSO

WARNINGS

72 man pages section 9: DDI and DKI Kernel Functions • Last Revised 1 May 1996

canput – test for room in a message queue

#include <sys/stream.h>

int canput(queue_t *q);

Architecture independent level 1 (DDI/DKI).

q Pointer to the message queue.

canput() searches through the stream (starting at q) until it finds a queue containing
a service routine where the message can be enqueued, or until it reaches the end of the
stream. If found, the queue containing the service routine is tested to see if there is
room for a message in the queue.

canputnext(q) and bcanputnext(q, pri) should always be used in preference to
canput(q→q_next) and bcanput(q→q_next, pri) respectively.

1 If the message queue is not full.

0 If the queue is full.

canput() can be called from user or interrupt context.

bcanput(9F), bcanputnext(9F), canputnext(9F), putbq(9F), putnext(9F)

Writing Device Drivers

STREAMS Programming Guide

Drivers are responsible for both testing a queue with canput() and refraining from
placing a message on the queue if canput() fails.

canput(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

WARNINGS

Kernel Functions for Drivers 73

canputnext, bcanputnext – test for room in next module’s message queue

#include <sys/stream.h>

int canputnext(queue_t *q);

int bcanputnext(queue_t *q, unsigned char pri);

Architecture independent level 1 (DDI/DKI).

q Pointer to a message queue belonging to the invoking module.

pri Minimum priority level.

The invocation canputnext(q); is an atomic equivalent of the
canput(q→q_next); routine. That is, the STREAMS framework provides whatever
mutual exclusion is necessary to insure that dereferencing q through its q_next field
and then invoking canput(9F) proceeds without interference from other threads.

bcanputnext(q, pri); is the equivalent of the bcanput(q→q_next, pri); routine.

canputnext(q); and bcanputnext(q, pri); should always be used in preference
to canput(q→q_next); and bcanput(q→q_next, pri); respectively.

See canput(9F) and bcanput(9F) for further details.

1 If the message queue is not full.

0 If the queue is full.

canputnext() and bcanputnext() can be called from user or interrupt context.

Drivers are responsible for both testing a queue with canputnext() or
bcanputnext() and refraining from placing a message on the queue if the queue is
full.

bcanput(9F), canput(9F)

Writing Device Drivers

STREAMS Programming Guide

canputnext(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

WARNINGS

SEE ALSO

74 man pages section 9: DDI and DKI Kernel Functions • Last Revised 31 Jan 1993

clrbuf – erase the contents of a buffer

#include <sys/types.h>

#include <sys/buf.h>

void clrbuf(struct buf *bp);

Architecture independent level 1 (DDI/DKI).

bp Pointer to the buf(9S) structure.

clrbuf() zeros a buffer and sets the b_resid member of the buf(9S) structure to 0.
Zeros are placed in the buffer starting at bp→b_un.b_addr for a length of
bp→b_bcount bytes. b_un.b_addr and b_bcount are members of the buf(9S) data
structure.

clrbuf() can be called from user or interrupt context.

getrbuf(9F), buf(9S)

Writing Device Drivers

clrbuf(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

SEE ALSO

Kernel Functions for Drivers 75

cmn_err, vcmn_err – display an error message or panic the system

#include <sys/cmn_err.h>
#include <sys/ddi.h>

#include <sys/sunddi.h>

void cmn_err(int level, char *format...);

#include <sys/varargs.h>

void vcmn_err(int level, char *format, va_list ap);

Architecture independent level 1 (DDI/DKI).

level A constant indicating the severity of the error condition.

format The message to be displayed.

vcmn_err() takes level and format as described for cmn_err(), but its third
argument is different:

ap The variable argument list passed to the function.

cmn_err() displays a specified message on the console. cmn_err() can also panic
the system. When the system panics, it attempts to save recent changes to data,
display a “panic message” on the console, attempt to write a core file, and halt system
processing. See the CE_PANIC level below.

level is a constant indicating the severity of the error condition. The four severity levels
are:

CE_CONT Used to continue another message or to display an informative
message not associated with an error. Note that multiple CE_CONT
messages without a newline may or may not appear on the system
console or in the system log as a single line message. A single line
message may be produced by constructing the message with
sprintf(9F) or vsprintf(9F) before calling cmn_err().

CE_NOTE Used to display a message preceded with NOTICE. This message is
used to report system events that do not necessarily require user
action, but may interest the system administrator. For example, a
message saying that a sector on a disk needs to be accessed
repeatedly before it can be accessed correctly might be noteworthy.

CE_WARN Used to display a message preceded with WARNING. This message
is used to report system events that require immediate attention,
such as those where if an action is not taken, the system may
panic. For example, when a peripheral device does not initialize
correctly, this level should be used.

CE_PANIC Used to display a message preceded with “panic”, and to panic
the system. Drivers should specify this level only under the most
severe conditions or when debugging a driver. A valid use of this

cmn_err(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

cmn_err()

vcmn_err()

cmn_err()

76 man pages section 9: DDI and DKI Kernel Functions • Last Revised 3 Oct 2001

level is when the system cannot continue to function. If the error is
recoverable, or not essential to continued system operation, do not
panic the system.

format is the message to be displayed. It is a character string which may contain plain
characters and conversion specifications. By default, the message is sent both to the
system console and to the system log.

Each conversion specification in format is introduced by the % character, after which
the following appear in sequence:

An optional decimal digit specifying a minimum field width for numeric conversion.
The converted value will be right-justified and padded with leading zeroes if it has
fewer characters than the minimum.

An optional l (ll) specifying that a following d, D, o, O, x, X, or u conversion
character applies to a long (long long) integer argument. An l (ll) before any
other conversion character is ignored.

A character indicating the type of conversion to be applied:

d,D,o,O,x,X,u The integer argument is converted to signed decimal (d, D),
unsigned octal (o, O), unsigned hexadecimal (x, X), or unsigned
decimal (u), respectively, and displayed. The letters abcdef are
used for x and X conversion.

c The character value of the argument is displayed.

b The %b conversion specification allows bit values to be displayed
meaningfully. Each %b takes an integer value and a format string
from the argument list. The first character of the format string
should be the output base encoded as a control character. This base
is used to display the integer argument. The remaining groups of
characters in the format string consist of a bit number (between 1
and 32, also encoded as a control character) and the next characters
(up to the next control character or ’\0’) give the name of the bit
field. The string corresponding to the bit fields set in the integer
argument is displayed after the numerical value. See EXAMPLE
section.

p The argument is taken to be a pointer; the value of the pointer is
displayed in unsigned hexadecimal. The display format is
equivalent to %lx. To avoid lint warnings, cast pointers to type
void * when using the %p format specifier.

s The argument is taken to be a string (character pointer), and
characters from the string are displayed until a null character is
encountered. If the character pointer is NULL, the string <null
string> is used in its place.

% Copy a %; no argument is converted.

cmn_err(9F)

Kernel Functions for Drivers 77

The first character in format affects where the message will be written:

! The message goes only to the system log.

^ The message goes only to the console.

? If level is also CE_CONT, the message is always sent to the system log, but
is only written to the console when the system has been booted in verbose
mode. See kernel(1M). If neither condition is met, the ’? ’ character has no
effect and is simply ignored.

Refer to syslogd(1M) to determine where the system log is written.

cmn_err() appends a \n to each format, except when level is CE_CONT.

vcmn_err() is identical to cmn_err() except that its last argument, ap, is a pointer
to a variable list of arguments. ap contains the list of arguments used by the
conversion specifications in format. ap must be initialized by calling va_start(9F).
va_end(9F) is used to clean up and must be called after each traversal of the list.
Multiple traversals of the argument list, each bracketed by va_start(9F) and
va_end(9F), are possible.

None. However, if an unknown level is passed to cmn_err(), the following panic
error message is displayed:

panic: unknown level in cmn_err (level=level, msg=format)

cmn_err() can be called from user, kernel, interrupt, or high-level interrupt context.

EXAMPLE 1 Using cmn_err()

This first example shows how cmn_err() can record tracing and debugging
information only in the system log (lines 17); display problems with a device only on
the system console (line 23); or display problems with the device on both the system
console and in the system log (line 28).

1 struct reg {
2 uchar_t data;
3 uchar_t csr;
4 };
5
6 struct xxstate {
7 . . .
8 dev_info_t *dip;
9 struct reg *regp;
10 . . .
11 };
12
13 dev_t dev;
14 struct xxstate *xsp;
15 . . .
16 #ifdef DEBUG /* in debugging mode, log function call */
17 cmn_err(CE_CONT, "!%s%d: xxopen function called.",
18 ddi_binding_name(xsp->dip), getminor(dev));

cmn_err(9F)

vcmn_err()

RETURN VALUES

CONTEXT

EXAMPLES

78 man pages section 9: DDI and DKI Kernel Functions • Last Revised 3 Oct 2001

EXAMPLE 1 Using cmn_err() (Continued)

19 #endif /* end DEBUG */
20 . . .
21 /* display device power failure on system console */
22 if ((xsp->regp->csr & POWER) == OFF)
23 cmn_err(CE_NOTE, "^OFF.",
24 ddi_binding_name(xsp->dip), getminor(dev));
25 . . .
26 /* display warning if device has bad VTOC */
27 if (xsp->regp->csr & BADVTOC)
28 cmn_err(CE_WARN, "%s%d: xxopen: Bad VTOC.",
29 ddi_binding_name(xsp->dip), getminor(dev));

EXAMPLE 2 Using the %b conversion specification

This example shows how to use the %b conversion specification. Because of the
leading ’? ’ character in the format string, this message will always be logged, but it
will only be displayed when the kernel is booted in verbose mode.

cmn_err(CE_CONT, "?reg=0x%b\n", regval, "\020\3Intr\2Err\1Enable");

EXAMPLE 3 Using regval

When regval is set to (decimal) 13, the following message would be displayed:

reg=0xd<Intr,,Enable>

EXAMPLE 4 Error Routine

The third example is an error reporting routine which accepts a variable number of
arguments and displays a single line error message both in the system log and on the
system console. Note the use of vsprintf() to construct the error message before
calling cmn_err().

#include <sys/varargs.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#define MAX_MSG 256;

void
xxerror(dev_info_t *dip, int level, const char *fmt, . . .)
{

va_list ap;
int instance;
char buf[MAX_MSG], *name;

instance = ddi_get_instance(dip);
name = ddi_binding_name(dip);

/* format buf using fmt and arguments contained in ap */

va_start(ap, fmt);

cmn_err(9F)

Kernel Functions for Drivers 79

EXAMPLE 4 Error Routine (Continued)

vsprintf(buf, fmt, ap);
va_end(ap);

/* pass formatted string to cmn_err(9F) */

cmn_err(level, "%s%d: %s", name, instance, buf);

}

dmesg(1M), kernel(1M), printf(3C), ddi_binding_name(9F), sprintf(9F),
va_arg(9F), va_end(9F), va_start(9F), vsprintf(9F)

Writing Device Drivers

cmn_err() with the CE_CONT argument can be used by driver developers as a driver
code debugging tool. However, using cmn_err() in this capacity can change system
timing characteristics.

At times, a driver may encounter error conditions requiring the attention of a primary
or secondary system console monitor. These conditions may mean halting multiuser
processing; however, this must be done with caution. Except during the debugging
stage, a driver should never stop the system.

See the “Debugging” chapter in Writing Device Drivers

For severities of CE_NOTE and CE_WARN, the maximum message length is 256 bytes
excluding “Note:” or “Warning:” respectively.

Any message greater than 128 bytes in length is divided into separate 128 byte
messages.

cmn_err() does not provide all of the functionality provided by printf(3C)

cmn_err(9F)

SEE ALSO

WARNINGS

NOTES

BUGS

80 man pages section 9: DDI and DKI Kernel Functions • Last Revised 3 Oct 2001

condvar, cv_init, cv_destroy, cv_wait, cv_signal, cv_broadcast, cv_wait_sig,
cv_timedwait, cv_timedwait_sig – condition variable routines

#include <sys/ksynch.h>

void cv_init(kcondvar_t *cvp, char *name, kcv_type_t type, void
*arg);

void cv_destroy(kcondvar_t *cvp);

void cv_wait(kcondvar_t *cvp, kmutex_t *mp);

void cv_signal(kcondvar_t *cvp);

void cv_broadcast(kcondvar_t *cvp);

int cv_wait_sig(kcondvar_t *cvp, kmutex_t *mp);

clock_t cv_timedwait(kcondvar_t *cvp, kmutex_t *mp, clock_t
timeout);

clock_t cv_timedwait_sig(kcondvar_t *cvp, kmutex_t *mp, clock_t
timeout);

Solaris DDI specific (Solaris DDI).

cvp A pointer to an abstract data type kcondvar_t.

mp A pointer to a mutual exclusion lock (kmutex_t), initialized by
mutex_init(9F) and held by the caller.

name Descriptive string. This is obsolete and should be NULL.
(Non-NULL strings are legal, but they’re a waste of kernel
memory.)

type The constant CV_DRIVER.

arg A type-specific argument, drivers should pass arg as NULL.

timeout A time, in absolute ticks since boot, when cv_timedwait() or
cv_timedwait_sig() should return.

Condition variables are a standard form of thread synchronization. They are designed
to be used with mutual exclusion locks (mutexes). The associated mutex is used to
ensure that a condition can be checked atomically and that the thread can block on the
associated condition variable without missing either a change to the condition or a
signal that the condition has changed. Condition variables must be initialized by
calling cv_init(), and must be deallocated by calling cv_destroy().

The usual use of condition variables is to check a condition (for example, device state,
data structure reference count, etc.) while holding a mutex which keeps other threads
from changing the condition. If the condition is such that the thread should block,
cv_wait() is called with a related condition variable and the mutex. At some later

condvar(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

Kernel Functions for Drivers 81

point in time, another thread would acquire the mutex, set the condition such that the
previous thread can be unblocked, unblock the previous thread with cv_signal() or
cv_broadcast(), and then release the mutex.

cv_wait() suspends the calling thread and exits the mutex atomically so that
another thread which holds the mutex cannot signal on the condition variable until
the blocking thread is blocked. Before returning, the mutex is reacquired.

cv_signal() signals the condition and wakes one blocked thread. All blocked
threads can be unblocked by calling cv_broadcast(). You must acquire the mutex
passed into cv_wait() before calling cv_signal() or cv_broadcast().

The function cv_wait_sig() is similar to cv_wait() but returns 0 if a signal (for
example, by kill(2)) is sent to the thread. In any case, the mutex is reacquired before
returning.

The function cv_timedwait() is similar to cv_wait(), except that it returns −1
without the condition being signaled after the timeout time has been reached.

The function cv_timedwait_sig() is similar to cv_timedwait() and
cv_wait_sig(), except that it returns −1 without the condition being signaled after
the timeout time has been reached, or 0 if a signal (for example, by kill(2)) is sent to
the thread.

For both cv_timedwait() and cv_timedwait_sig(), time is in absolute clock
ticks since the last system reboot. The current time may be found by calling
ddi_get_lbolt(9F).

0 For cv_wait_sig() and cv_timedwait_sig() indicates that
the condition was not necessarily signaled and the function
returned because a signal (as in kill(2)) was pending.

−1 For cv_timedwait() and cv_timedwait_sig() indicates that
the condition was not necessarily signaled and the function
returned because the timeout time was reached.

>0 For cv_wait_sig(), cv_timedwait() or
cv_timedwait_sig() indicates that the condition was met and
the function returned due to a call to cv_signal() or
cv_broadcast(), or due to a premature wakeup (see NOTES).

These functions can be called from user, kernel or interrupt context. In most cases,
however, cv_wait(), cv_timedwait(), cv_wait_sig(), and
cv_timedwait_sig() should not be called from interrupt context, and cannot be
called from a high-level interrupt context.

If cv_wait(), cv_timedwait(), cv_wait_sig(), or cv_timedwait_sig() are
used from interrupt context, lower-priority interrupts will not be serviced during the
wait. This means that if the thread that will eventually perform the wakeup becomes
blocked on anything that requires the lower-priority interrupt, the system will hang.

condvar(9F)

RETURN VALUES

CONTEXT

82 man pages section 9: DDI and DKI Kernel Functions • Last Revised 23 Jan 2002

For example, the thread that will perform the wakeup may need to first allocate
memory. This memory allocation may require waiting for paging I/O to complete,
which may require a lower-priority disk or network interrupt to be serviced. In
general, situations like this are hard to predict, so it is advisable to avoid waiting on
condition variables or semaphores in an interrupt context.

EXAMPLE 1 Waiting for a Flag Value in a Driver’s Unit

Here the condition being waited for is a flag value in a driver’s unit structure. The
condition variable is also in the unit structure, and the flag word is protected by a
mutex in the unit structure.

mutex_enter(&un->un_lock);
while (un->un_flag & UNIT_BUSY)

cv_wait(&un->un_cv, &un->un_lock);
un->un_flag |= UNIT_BUSY;
mutex_exit(&un->un_lock);

EXAMPLE 2 Unblocking Threads Blocked by the Code in Example 1

At some later point in time, another thread would execute the following to unblock
any threads blocked by the above code.

mutex_enter(&un->un_lock);
un->un_flag &= ~UNIT_BUSY;
cv_broadcast(&un->un_cv);
mutex_exit(&un->un_lock);

It is possible for cv_wait(), cv_wait_sig(), cv_timedwait(), and
cv_timedwait_sig() to return prematurely, that is, not due to a call to
cv_signal() or cv_broadcast(). This occurs most commonly in the case of
cv_wait_sig() and cv_timedwait_sig() when the thread is stopped and
restarted by job control signals or by a debugger, but can happen in other cases as
well, even for cv_wait(). Code that calls these functions must always recheck the
reason for blocking and call again if the reason for blocking is still true.

If your driver needs to wait on behalf of processes that have real-time constraints, use
cv_timedwait() rather than delay(9F). The delay() function calls timeout(9F),
which can be subject to priority inversions.

kill(2), ddi_get_lbolt(9F), mutex(9F), mutex_init(9F)

Writing Device Drivers

condvar(9F)

EXAMPLES

NOTES

SEE ALSO

Kernel Functions for Drivers 83

copyb – copy a message block

#include <sys/stream.h>

mblk_t *copyb(mblk_t *bp);

Architecture independent level 1 (DDI/DKI).

bp Pointer to the message block from which data is copied.

copyb() allocates a new message block, and copies into it the data from the block
that bp denotes. The new block will be at least as large as the block being copied.
copyb() uses the b_rptr and b_wptr members of bp to determine how many bytes
to copy.

If successful, copyb() returns a pointer to the newly allocated message block
containing the copied data. Otherwise, it returns a NULL pointer.

copyb() can be called from user or interrupt context.

EXAMPLE 1 : Using copyb

For each message in the list, test to see if the downstream queue is full with the
canputnext(9F) function (line 21). If it is not full, use copyb to copy a header
message block, and dupmsg(9F) to duplicate the data to be retransmitted. If either
operation fails, reschedule a timeout at the next valid interval.

Update the new header block with the correct destination address (line 34), link the
message to it (line 35), and send it downstream (line 36). At the end of the list,
reschedule this routine.

1 struct retrans {
2 mblk_t *r_mp;
3 int r_address;
4 queue_t *r_outq;
5 struct retrans *r_next;
6 };
7
8 struct protoheader {

...
9 int h_address;

...
10 };
11
12 mblk_t *header;
13
14 void
15 retransmit(struct retrans *ret)
16 {
17 mblk_t *bp, *mp;
18 struct protoheader *php;
19
20 while (ret) {
21 if (!canputnext(ret->r_outq)) { /* no room */

copyb(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

EXAMPLES

84 man pages section 9: DDI and DKI Kernel Functions • Last Revised 07 Nov 1996

EXAMPLE 1 : Using copyb (Continued)

22 ret = ret->r_next;
23 continue;
24 }
25 bp = copyb(header); /* copy header msg. block */
26 if (bp == NULL)
27 break;
28 mp = dupmsg(ret->r_mp); /* duplicate data */
29 if (mp == NULL) { /* if unsuccessful */
30 freeb(bp); /* free the block */
31 break;
32 }
33 php = (struct protoheader *)bp->b_rptr;
34 php->h_address = ret->r_address; /* new header */
35 bp->bp_cont = mp; /* link the message */
36 putnext(ret->r_outq, bp); /* send downstream */
37 ret = ret->r_next;
38 }
39 /* reschedule */
40 (void) timeout(retransmit, (caddr_t)ret, RETRANS_TIME);
41 }

allocb(9F), canputnext(9F), dupmsg(9F)

Writing Device Drivers

STREAMS Programming Guide

copyb(9F)

SEE ALSO

Kernel Functions for Drivers 85

copyin – copy data from a user program to a driver buffer

#include <sys/types.h>

#include <sys/ddi.h>

int copyin(const void *userbuf, void *driverbuf, size_t cn);

Architecture independent level 1 (DDI/DKI).

userbuf User program source address from which data is transferred.

driverbuf Driver destination address to which data is transferred.

cn Number of bytes transferred.

copyin() copies data from a user program source address to a driver buffer. The
driver developer must ensure that adequate space is allocated for the destination
address.

Addresses that are word-aligned are moved most efficiently. However, the driver
developer is not obligated to ensure alignment. This function automatically finds the
most efficient move according to address alignment.

Under normal conditions, a 0 is returned indicating a successful copy. Otherwise, a −1
is returned if one of the following occurs:

� Paging fault; the driver tried to access a page of memory for which it did not have
read or write access.

� Invalid user address, such as a user area or stack area.

� Invalid address that would have resulted in data being copied into the user block.

� Hardware fault; a hardware error prevented access to the specified user memory.
For example, an uncorrectable parity or ECC error occurred.

If a −1 is returned to the caller, driver entry point routines should return EFAULT.

copyin() can be called from user context only.

EXAMPLE 1 An ioctl() Routine

A driver ioctl(9E) routine (line 10) can be used to get or set device attributes or
registers. In the XX_GETREGS condition (line 17), the driver copies the current device
register values to a user data area (line 18). If the specified argument contains an
invalid address, an error code is returned.

1 struct device { /* layout of physical device registers */
2 int control; /* physical device control word */
3 int status; /* physical device status word */
4 short recv_char; /* receive character from device */
5 short xmit_char; /* transmit character to device */
6 };
7
8 extern struct device xx_addr[]; /* phys. device regs. location */

copyin(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

EXAMPLES

86 man pages section 9: DDI and DKI Kernel Functions • Last Revised 19 Apr 2000

EXAMPLE 1 An ioctl() Routine (Continued)

9 . . .
10 xx_ioctl(dev_t dev, int cmd, int arg, int mode,
11 cred_t *cred_p, int *rval_p)
12 ...
13 {
14 register struct device *rp = &xx_addr[getminor(dev) >> 4];
15 switch (cmd) {
16
17 case XX_GETREGS: /* copy device regs. to user program */
18 if (copyin(arg, rp, sizeof(struct device)))
19 return(EFAULT);
20 break;
21 ...
22 }
23 ...
24 }

ioctl(9E), bcopy(9F), copyout(9F), ddi_copyin(9F), ddi_copyout(9F),
uiomove(9F).

Writing Device Drivers

Driver writers who intend to support layered ioctls in their ioctl(9E) routines should
use ddi_copyin(9F) instead.

Driver defined locks should not be held across calls to this function.

copyin() should not be used from a streams driver. See M_COPYIN and M_COPYOUT
in STREAMS Programming Guide.

copyin(9F)

SEE ALSO

NOTES

Kernel Functions for Drivers 87

copymsg – copy a message

#include <sys/stream.h>

mblk_t *copymsg(mblk_t *mp);

Architecture independent level 1 (DDI/DKI).

mp Pointer to the message to be copied.

copymsg() forms a new message by allocating new message blocks, and copying the
contents of the message referred to by mp (using the copyb(9F) function). It returns a
pointer to the new message.

If the copy is successful, copymsg() returns a pointer to the new message. Otherwise,
it returns a NULL pointer.

copymsg() can be called from user or interrupt context.

EXAMPLE 1 : Using copymsg

The routine lctouc() converts all the lowercase ASCII characters in the message to
uppercase. If the reference count is greater than one (line 8), then the message is
shared, and must be copied before changing the contents of the data buffer. If the call
to the copymsg() function fails (line 9), return NULL (line 10), otherwise, free the
original message (line 11). If the reference count was equal to 1, the message can be
modified. For each character (line 16) in each message block (line 15), if it is a
lowercase letter, convert it to an uppercase letter (line 18). A pointer to the converted
message is returned (line 21).

1 mblk_t *lctouc(mp)
2 mblk_t *mp;
3 {
4 mblk_t *cmp;
5 mblk_t *tmp;
6 unsigned char *cp;
7
8 if (mp->b_datap->db_ref > 1) {
9 if ((cmp = copymsg(mp)) == NULL)
10 return (NULL);
11 freemsg(mp);
12 } else {
13 cmp = mp;
14 }
15 for (tmp = cmp; tmp; tmp = tmp->b_cont) {
16 for (cp = tmp->b_rptr; cp < tmp->b_wptr; cp++) {
17 if ((*cp <= ’z’) && (*cp >= ’a’))
18 *cp -= 0x20;
19 }
20 }
21 return(cmp);
22 }

copymsg(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

EXAMPLES

88 man pages section 9: DDI and DKI Kernel Functions • Last Revised 27 Jun 1995

EXAMPLE 1 : Using copymsg (Continued)

allocb(9F), copyb(9F), msgb(9S)

Writing Device Drivers

STREAMS Programming Guide

copymsg(9F)

SEE ALSO

Kernel Functions for Drivers 89

copyout – copy data from a driver to a user program

#include <sys/types.h>

#include <sys/ddi.h>

int copyout(const void *driverbuf, void *userbuf, size_t cn);

Architecture independent level 1 (DDI/DKI).

driverbuf Source address in the driver from which the data is transferred.

userbuf Destination address in the user program to which the data is
transferred.

cn Number of bytes moved.

copyout() copies data from driver buffers to user data space.

Addresses that are word-aligned are moved most efficiently. However, the driver
developer is not obligated to ensure alignment. This function automatically finds the
most efficient move algorithm according to address alignment.

Under normal conditions, a 0 is returned to indicate a successful copy. Otherwise, a −1
is returned if one of the following occurs:

� Paging fault; the driver tried to access a page of memory for which it did not have
read or write access.

� Invalid user address, such as a user area or stack area.

� Invalid address that would have resulted in data being copied into the user block.

� Hardware fault; a hardware error prevented access to the specified user memory.
For example, an uncorrectable parity or ECC error occurred.

If a −1 is returned to the caller, driver entry point routines should return EFAULT.

copyout() can be called from user context only.

EXAMPLE 1 An ioctl() Routine

A driver ioctl(9E) routine (line 10) can be used to get or set device attributes or
registers. In the XX_GETREGS condition (line 17), the driver copies the current device
register values to a user data area (line 18). If the specified argument contains an
invalid address, an error code is returned.

1 struct device { /* layout of physical device registers */
2 int control; /* physical device control word */
3 int status; /* physical device status word */
4 short recv_char; /* receive character from device */
5 short xmit_char; /* transmit character to device */
6 };
7
8 extern struct device xx_addr[]; /* phys. device regs. location */
9 . . .
10 xx_ioctl(dev_t dev, int cmd, int arg, int mode,

copyout(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

EXAMPLES

90 man pages section 9: DDI and DKI Kernel Functions • Last Revised 19 Apr 2000

EXAMPLE 1 An ioctl() Routine (Continued)

11 cred_t *cred_p, int *rval_p)
12 ...
13 {
14 register struct device *rp = &xx_addr[getminor(dev) >> 4];
15 switch (cmd) {
16
17 case XX_GETREGS: /* copy device regs. to user program */
18 if (copyout(rp, arg, sizeof(struct device)))
19 return(EFAULT);
20 break;
21 ...
22 }
23 ...
24 }

ioctl(9E), bcopy(9F), copyin(9F), ddi_copyin(9F), ddi_copyout(9F),
uiomove(9F)

Writing Device Drivers

Driver writers who intend to support layered ioctls in their ioctl(9E) routines should
use ddi_copyout(9F) instead.

Driver defined locks should not be held across calls to this function.

copyout() should not be used from a streams driver. See M_COPYIN and
M_COPYOUT in STREAMS Programming Guide.

copyout(9F)

SEE ALSO

NOTES

Kernel Functions for Drivers 91

csx_AccessConfigurationRegister – read or write a PC Card Configuration Register

#include <sys/pccard.h>

int32_t csx_AccessConfigurationRegister(client_handle_t ch,
access_config_reg_t *acr);

Solaris DDI Specific (Solaris DDI)

ch Client handle returned from csx_RegisterClient(9F).

acr Pointer to an access_config_reg_t structure.

This function allows a client to read or write a PC Card Configuration Register.

The structure members of access_config_reg_t are:

uint32_t Socket; /* socket number*/
uint32_t Action; /* register access operation*/
uint32_t Offset; /* config register offset*/
uint32_t Value; /* value read or written*/

The fields are defined as follows:

Socket Not used in Solaris, but for portability with other Card Services
implementations, it should be set to the logical socket number.

Action May be set to CONFIG_REG_READ or CONFIG_REG_WRITE. All
other values in the Action field are reserved for future use. If the
Action field is set to CONFIG_REG_WRITE, the Value field is
written to the specified configuration register. Card Services does
not read the configuration register after a write operation. For that
reason, the Value field is only updated by a CONFIG_REG_READ
request.

Offset Specifies the byte offset for the desired configuration register from
the PC Card configuration register base specified in
csx_RequestConfiguration(9F).

Value Contains the value read from the PC Card Configuration Register
for a read operation. For a write operation, the Value field
contains the value to write to the configuration register. As noted
above, on return from a write request, the Value field is the value
written to the PC Card and not any changed value that may have
resulted from the write request (that is, no read after write is
performed).

A client must be very careful when writing to the COR (Configuration Option
Register) at offset 0. This has the potential to change the type of interrupt request
generated by the PC Card or place the card in the reset state. Either request may have
undefined results. The client should read the register to determine the appropriate
setting for the interrupt mode (Bit 6) before writing to the register.

csx_AccessConfigurationRegister(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

92 man pages section 9: DDI and DKI Kernel Functions • Last Revised 19 Jul 1996

If a client wants to reset a PC Card, the csx_ResetFunction(9F) function should be
used. Unlike csx_AccessConfigurationRegister(), the
csx_ResetFunction(9F) function generates a series of event notifications to all
clients using the PC Card, so they can re-establish the appropriate card state after the
reset operation is complete.

CS_SUCCESS Successful operation.

CS_BAD_ARGS Specified arguments are invalid. Client
specifies an Offset that is out of range or
neither CONFIG_REG_READ or
CONFIG_REG_WRITE is set.

CS_UNSUPPORTED_MODE Client has not called
csx_RequestConfiguration(9F) before
calling this function.

CS_BAD_HANDLE Client handle is invalid.

CS_NO_CARD No PC card in socket.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

This function may be called from user or kernel context.

csx_ParseTuple(9F), csx_RegisterClient(9F),
csx_RequestConfiguration(9F), csx_ResetFunction(9F)

PCCard 95 Standard, PCMCIA/JEIDA

csx_AccessConfigurationRegister(9F)

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 93

csx_ConvertSize – convert device sizes

#include <sys/pccard.h>

int32_t csx_ConvertSize(convert_size_t *cs);

Solaris DDI Specific (Solaris DDI)

cs Pointer to a convert_size_t structure.

csx_ConvertSize() is a Solaris-specific extension that provides a method for
clients to convert from one type of device size representation to another, that is, from
devsize format to bytes and vice versa.

The structure members of convert_size_t are:

uint32_t Attributes;
uint32_t bytes;
uint32_t devsize;

The fields are defined as follows:

Attributes This is a bit-mapped field that identifies the type of size
conversion to be performed. The field is defined as follows:

CONVERT_BYTES_TO_DEVSIZE
Converts bytes to devsize format.

CONVERT_DEVSIZE_TO_BYTES
Converts devsize format to bytes.

bytes If CONVERT_BYTES_TO_DEVSIZE is set, the value in the bytes
field is converted to a devsize format and returned in the devsize
field.

devsize If CONVERT_DEVSIZE_TO_BYTES is set, the value in the devsize
field is converted to a bytes value and returned in the bytes field.

CS_SUCCESS Successful operation.

CS_BAD_SIZE Invalid bytes or devsize.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

This function may be called from user or kernel context.

csx_ModifyWindow(9F), csx_RequestWindow(9F)

PCCard 95 Standard, PCMCIA/JEIDA

csx_ConvertSize(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

RETURN VALUES

CONTEXT

SEE ALSO

94 man pages section 9: DDI and DKI Kernel Functions • Last Revised 19 Jul 1996

csx_ConvertSpeed – convert device speeds

#include <sys/pccard.h>

int32_t csx_ConvertSpeed(convert_speed_t *cs);

Solaris DDI Specific (Solaris DDI)

cs Pointer to a convert_speed_t structure.

This function is a Solaris-specific extension that provides a method for clients to
convert from one type of device speed representation to another, that is, from devspeed
format to nS and vice versa.

The structure members of convert_speed_t are:

uint32_t Attributes;
uint32_t nS;
uint32_t devspeed;

The fields are defined as follows:

Attributes This is a bit-mapped field that identifies the type of speed
conversion to be performed. The field is defined as follows:

CONVERT_NS_TO_DEVSPEED
Converts nS to devspeed format

CONVERT_DEVSPEED_TO_NS
Converts devspeed format to nS

nS If CONVERT_NS_TO_DEVSPEED is set, the value in the nS field is
converted to a devspeed format and returned in the devspeed
field.

devspeed If CONVERT_DEVSPEED_TO_NS is set, the value in the devspeed
field is converted to an nS value and returned in the nS field.

CS_SUCCESS Successful operation.

CS_BAD_SPEED Invalid nS or devspeed.

CS_BAD_ATTRIBUTE Bad Attributes value.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

This function may be called from user or kernel context.

csx_ModifyWindow(9F), csx_RequestWindow(9F)

PC Card 95 Standard, PCMCIA/JEIDA

csx_ConvertSpeed(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 95

csx_CS_DDI_Info – obtain DDI information

#include <sys/pccard.h>

int32_t csx_CS_DDI_Info(cs_ddi_info_t *cdi);

Solaris DDI Specific (Solaris DDI)

cdi Pointer to a cs_ddi_info_t structure.

This function is a Solaris-specific extension that is used by clients that need to provide
the xx_getinfo driver entry point (see getinfo(9E)). It provides a method for clients to
obtain DDI information based on their socket number and client driver name.

The structure members of cs_ddi_info_t are:

uint32_t Socket; /* socket number */
char* driver_name; /* unique driver name */
dev_info_t *dip; /* dip */
int32_t instance; /* instance */

The fields are defined as follows:

Socket This field must be set to the physical socket number that the client
is interested in getting information about.

driver_name This field must be set to a string containing the name of the client
driver to get information about.

If csx_CS_DDI_Info() is used in a client’s xx_getinfo function, then the client will
typically extract the Socket value from the *arg argument and it must set the
driver_name field to the same string used with csx_RegisterClient(9F).

If the driver_name is found on the Socket, the csx_CS_DDI_Info() function
returns both the dev_info pointer and the instance fields for the requested driver
instance.

CS_SUCCESS Successful operation.

CS_BAD_SOCKET Client not found on Socket.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

This function may be called from user or kernel context.

EXAMPLE 1 : Using csx_CS_DDI_Info

The following example shows how a client might call the csx_CS_DDI_Info() in
the client’s xx_getinfo function to return the dip or the instance number:

static int
pcepp_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg,

void **result)
{

int error = DDI_SUCCESS;

csx_CS_DDI_Info(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

RETURN VALUES

CONTEXT

EXAMPLES

96 man pages section 9: DDI and DKI Kernel Functions • Last Revised 19 Jul 1996

EXAMPLE 1 : Using csx_CS_DDI_Info (Continued)

pcepp_state_t *pps;
cs_ddi_info_t cs_ddi_info;

switch (cmd) {

case DDI_INFO_DEVT2DEVINFO:
cs_ddi_info.Socket = getminor((dev_t)arg) & 0x3f;
cs_ddi_info.driver_name = pcepp_name;
if (csx_CS_DDI_Info(&cs_ddi_info) != CS_SUCCESS)

return (DDI_FAILURE);
if (!(pps = ddi_get_soft_state(pcepp_soft_state_p,

cs_ddi_info.instance))) {
*result = NULL;

} else {
*result = pps->dip;

}
break;

case DDI_INFO_DEVT2INSTANCE:
cs_ddi_info.Socket = getminor((dev_t)arg) & 0x3f;
cs_ddi_info.driver_name = pcepp_name;
if (csx_CS_DDI_Info(&cs_ddi_info) != CS_SUCCESS)

return (DDI_FAILURE);
*result = (void *)cs_ddi_info.instance;
break;

default:
error = DDI_FAILURE;
break;

}

return (error);
}

getinfo(9E), csx_RegisterClient(9F), ddi_get_instance(9F)

PC Card 95 Standard, PCMCIA/JEIDA

csx_CS_DDI_Info(9F)

SEE ALSO

Kernel Functions for Drivers 97

csx_DeregisterClient – remove client from Card Services list

#include <sys/pccard.h>

int32_t csx_DeregisterClient(client_handle_t ch);

Solaris DDI Specific (Solaris DDI)

ch Client handle returned from csx_RegisterClient(9F).

This function removes a client from the list of registered clients maintained by Card
Services. The Client Handle returned by csx_RegisterClient(9F) is passed in the
client_handle_t argument.

The client must have returned all requested resources before this function is called. If
any resources have not been released, CS_IN_USE is returned.

CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_IN_USE Resources not released by this client.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

This function may be called from user or kernel context.

csx_RegisterClient(9F)

PC Card 95 Standard, PCMCIA/JEIDA

Clients should be prepared to receive callbacks until Card Services returns from this
request successfully.

csx_DeregisterClient(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

WARNINGS

98 man pages section 9: DDI and DKI Kernel Functions • Last Revised 19 Jul 1996

csx_DupHandle – duplicate access handle

#include <sys/pccard.h>

int32_t csx_DupHandle(acc_handle_t handle1, acc_handle_t *handle2,
uint32_t flags);

Solaris DDI Specific (Solaris DDI)

handle1 The access handle returned from csx_RequestIO(9F) or
csx_RequestWindow(9F) that is to be duplicated.

handle2 A pointer to the newly-created duplicated data access handle.

flags The access attributes that will be applied to the new handle.

This function duplicates the handle, handle1, into a new handle, handle2, that has the
access attributes specified in the flags argument. Both the original handle and the new
handle are active and can be used with the common access functions.

Both handles must be explicitly freed when they are no longer necessary.

The flags argument is bit-mapped. The following bits are defined:

WIN_ACC_NEVER_SWAP Host endian byte ordering
WIN_ACC_BIG_ENDIAN Big endian byte ordering
WIN_ACC_LITTLE_ENDIAN Little endian byte ordering
WIN_ACC_STRICT_ORDER Program ordering references
WIN_ACC_UNORDERED_OK May re-order references
WIN_ACC_MERGING_OK Merge stores to consecutive locations
WIN_ACC_LOADCACHING_OK May cache load operations
WIN_ACC_STORECACHING_OK May cache store operations

WIN_ACC_BIG_ENDIAN and WIN_ACC_LITTLE_ENDIAN describe the endian
characteristics of the device as big endian or little endian, respectively. Even though
most of the devices will have the same endian characteristics as their busses, there are
examples of devices with an I/O processor that has opposite endian characteristics of
the busses. When WIN_ACC_BIG_ENDIAN or WIN_ACC_LITTLE_ENDIAN is set, byte
swapping will automatically be performed by the system if the host machine and the
device data formats have opposite endian characteristics. The implementation may
take advantage of hardware platform byte swapping capabilities. When
WIN_ACC_NEVER_SWAP is specified, byte swapping will not be invoked in the data
access functions. The ability to specify the order in which the CPU will reference data
is provided by the following flags bits. Only one of the following bits may be specified:

WIN_ACC_STRICT_ORDER The data references must be issued by a
CPU in program order. Strict ordering is the
default behavior.

WIN_ACC_UNORDERED_OK The CPU may re-order the data references.
This includes all kinds of re-ordering (that
is, a load followed by a store may be
replaced by a store followed by a load).

csx_DupHandle(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

Kernel Functions for Drivers 99

WIN_ACC_MERGING_OK The CPU may merge individual stores to
consecutive locations. For example, the CPU
may turn two consecutive byte stores into
one halfword store. It may also batch
individual loads. For example, the CPU
may turn two consecutive byte loads into
one halfword load. Setting this bit also
implies re-ordering.

WIN_ACC_LOADCACHING_OK The CPU may cache the data it fetches and
reuse it until another store occurs. The
default behavior is to fetch new data on
every load. Setting this bit also implies
merging and re-ordering.

WIN_ACC_STORECACHING_OK The CPU may keep the data in the cache
and push it to the device (perhaps with
other data) at a later time. The default
behavior is to push the data right away.
Setting this bit also implies load caching,
merging, and re-ordering.

These values are advisory, not mandatory. For example, data can be ordered without
being merged or cached, even though a driver requests unordered, merged and
cached together.

CS_SUCCESS
Successful operation.

CS_FAILURE
Error in flags argument or handle could not be duplicated for some reason.

CS_UNSUPPORTED_FUNCTION
No PCMCIA hardware installed.

This function may be called from user or kernel context.

csx_Get8(9F), csx_GetMappedAddr(9F), csx_Put8(9F), csx_RepGet8(9F),
csx_RepPut8(9F), csx_RequestIO(9F), csx_RequestWindow(9F)

PC Card 95 Standard, PCMCIA/JEIDA

csx_DupHandle(9F)

RETURN VALUES

CONTEXT

SEE ALSO

100 man pages section 9: DDI and DKI Kernel Functions • Last Revised 19 Jul 1996

csx_Error2Text – convert error return codes to text strings

#include <sys/pccard.h>

int32_t csx_Error2Text(error2text_t *er);

Solaris DDI Specific (Solaris DDI)

er Pointer to an error2text_t structure.

This function is a Solaris-specific extension that provides a method for clients to
convert Card Services error return codes to text strings.

The structure members of error2text_t are:

uint32_t item; /*the error code*/

char test[CS_ERROR_MAX_BUFSIZE}; /*the error code*/

A pointer to the text for the Card Services error return code in the item field is
returned in the text field if the error return code is found. The client is not
responsible for allocating a buffer to hold the text. If the Card Services error return
code specified in the item field is not found, the text field will be set to a string of the
form:

"{unknown Card Services return code}"

CS_SUCCESS Successful operation.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

This function may be called from user or kernel context.

EXAMPLE 1 : Using the csxError2Text function

if ((ret = csx_RegisterClient(&client_handle, &
client_reg)) != CS_SUCCESS)

{
error2text_t error2text;
error2text.item = ret;
csx_Error2Text(&error2text);
cmn_err(CE_CONT, "RegisterClient failed %s (0x%x)",

error2text.text, ret);
}

csx_Event2Text(9F)

PC Card 95 Standard, PCMCIA/JEIDA

csx_Error2Text(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

RETURN VALUES

CONTEXT

EXAMPLES

SEE ALSO

Kernel Functions for Drivers 101

csx_Event2Text – convert events to text strings

#include <sys/pccard.h>

int32_t csx_Event2Text(event2text_t *ev);

Solaris DDI Specific (Solaris DDI)

ev Pointer to an event2text_t structure.

This function is a Solaris-specific extension that provides a method for clients to
convert Card Services events to text strings.

The structure members of event2text_t are:

event_t event; /*the event code*/
char text[CS_EVENT_MAX_BUFSIZE] /*the event code*/

The fields are defined as follows:

event The text for the event code in the event field is returned in the
text field.

text The text string describing the name of the event.

CS_SUCCESS Successful operation.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

This function may be called from user or kernel context.

EXAMPLE 1 : Using csx_Event2Text()

xx_event(event_t event, int priority, event_callback_args_t *eca)
{

event2text_t event2text;

event2text.event = event;
csx_Event2Text(&event2text);
cmn_err(CE_CONT, "event %s (0x%x)", event2text.text, (int)event);

}

csx_event_handler(9E), csx_Error2Text(9F)

PC Card 95 Standard, PCMCIA/JEIDA

csx_Event2Text(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

RETURN VALUES

CONTEXT

EXAMPLES

SEE ALSO

102 man pages section 9: DDI and DKI Kernel Functions • Last Revised 19 Jul 1996

csx_FreeHandle – free access handle

#include <sys/pccard.h>

int32_t csx_FreeHandle(acc_handle_t *handle);

Solaris DDI Specific (Solaris DDI)

handle The access handle returned from csx_RequestIO(9F),
csx_RequestWindow(9F), or csx_DupHandle(9F).

This function frees the handle, handle. If the handle was created by the
csx_DupHandle(9F) function, this function will free the storage associated with this
handle, but will not modify any resources that the original handle refers to. If the
handle was created by a common access setup function, this function will release the
resources associated with this handle.

CS_SUCCESS Successful operation.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

This function may be called from user or kernel context.

csx_DupHandle(9F), csx_RequestIO(9F), csx_RequestWindow(9F)

PC Card95 Standard, PCMCIA/JEIDA

csx_FreeHandle(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 103

csx_Get8, csx_Get16, csx_Get32, csx_Get64 – read data from device address

#include <sys/pccard.h>

uint8_t csx_Get8(acc_handle_t handle, uint32_t offset);

uint16_t csx_Get16(acc_handle_t handle, uint32_t offset);

uint32_t csx_Get32(acc_handle_t handle, uint32_t offset);

uint64_t csx_Get64(acc_handle_t handle, uint64_t offset);

Solaris DDI Specific (Solaris DDI)

handle The access handle returned from csx_RequestIO(9F),
csx_RequestWindow(9F), or csx_DupHandle(9F).

offset The offset in bytes from the base of the mapped resource.

These functions generate a read of various sizes from the mapped memory or device
register.

The csx_Get8(), csx_Get16(), csx_Get32(), and csx_Get64() functions read
8 bits, 16 bits, 32 bits, and 64 bits of data, respectively, from the device address
represented by the handle, handle, at an offset in bytes represented by the offset, offset.

Data that consists of more than one byte will automatically be translated to maintain a
consistent view between the host and the device based on the encoded information in
the data access handle. The translation may involve byte swapping if the host and the
device have incompatible endian characteristics.

These functions return the value read from the mapped address.

These functions may be called from user, kernel, or interrupt context.

csx_DupHandle(9F), csx_GetMappedAddr(9F), csx_Put8(9F), csx_RepGet8(9F),
csx_RepPut8(9F), csx_RequestIO(9F), csx_RequestWindow(9F)

PC Card 95 Standard, PCMCIA/JEIDA

csx_Get8(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

104 man pages section 9: DDI and DKI Kernel Functions • Last Revised 19 Jul 1996

csx_GetFirstClient, csx_GetNextClient – return first or next client

#include <sys/pccard.h>

int32_t csx_GetFirstClient(get_firstnext_client_t *fnc);

int32_t csx_GetNextClient(get_firstnext_client_t *fnc);

Solaris DDI Specific (Solaris DDI)

fnc Pointer to a get_firstnext_client_t structure.

The functions csx_GetFirstClient() and csx_GetNextClient() return
information about the first or subsequent PC cards, respectively, that are installed in
the system.

The structure members of get_firstnext_client_t are:

uint32_t Socket; /* socket number */
uint32_t Attributes; /* attributes */
client_handle_t client_handle; /* client handle */
uint32_t num_clients; /* number of clients */

The fields are defined as follows:

Socket If the CS_GET_FIRSTNEXT_CLIENT_SOCKET_ONLY attribute is
set, return information only on the PC card installed in this socket.

Attributes This field indicates the type of client. The field is bit-mapped; the
following bits are defined:

CS_GET_FIRSTNEXT_CLIENT_ALL_CLIENTS
Return information on all clients.

CS_GET_FIRSTNEXT_CLIENT_SOCKET_ONLY
Return client information for the specified socket only.

client_handle The client handle of the PC card driver is returned in this field.

num_clients The number of clients is returned in this field.

CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_BAD_SOCKET Socket number is invalid.

CS_NO_CARD No PC Card in socket.

CS_NO_MORE_ITEMS PC Card driver does not handle the
CS_EVENT_CLIENT_INFO event.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

This function may be called from user or kernel context.

csx_event_handler(9E)

csx_GetFirstClient(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 105

PC Card 95 Standard, PCMCIA/JEIDA

csx_GetFirstClient(9F)

106 man pages section 9: DDI and DKI Kernel Functions • Last Revised 16 May 1997

csx_GetFirstTuple, csx_GetNextTuple – return Card Information Structure tuple

#include <sys/pccard.h>

int32_t csx_GetFirstTuple(client_handle_t ch, tuple_t *tu);

int32_t csx_GetNextTuple(client_handle_t ch, tuple_t *tu);

Solaris DDI Specific (Solaris DDI)

ch Client handle returned from csx_RegisterClient(9F).

tu Pointer to a tuple_t structure.

The functions csx_GetFirstTuple() and csx_GetNextTuple() return the first
and next tuple, respectively, of the specified type in the Card Information Structure
(CIS) for the specified socket.

The structure members of tuple_t are:

uint32_t Socket; /* socket number */
uint32_t Attributes; /* Attributes */
cisdata_t DesiredTuple; /* tuple to search for or flags */
cisdata_t TupleCode; /* tuple type code */

cisdata_t TupleLink; /* tuple data body size */

The fields are defined as follows:

Socket
Not used in Solaris, but for portability with other Card Services implementations, it
should be set to the logical socket number.

Attributes
This field is bit-mapped. The following bits are defined:

TUPLE_RETURN_LINK
Return link tuples if set. The following are link tuples and will only be returned
by this function if the TUPLE_RETURN_LINK bit in the Attributes field is set:

CISTPL_NULL CISTPL_LONGLINK_MFC
CISTPL_LONGLINK_A CISTPL_LINKTARGET
CISTPL_LONGLINK_C CISTPL_NO_LINK
CISTPL_LONGLINK_CB CISTPL_END

TUPLE_RETURN_IGNORED_TUPLES
Return ignored tuples if set. Ignored tuples will be returned by this function if
the TUPLE_RETURN_IGNORED_TUPLES bit in the Attributes field is set, see
tuple(9S)for more information. The CIS is parsed from the location setup by the
previous csx_GetFirstTuple() or csx_GetNextTuple() request.

DesiredTuple
This field is the tuple value desired. If it is RETURN_FIRST_TUPLE, the very first
tuple of the CIS is returned (if it exists). If this field is set to RETURN_NEXT_TUPLE,

csx_GetFirstTuple(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

Kernel Functions for Drivers 107

the very next tuple of the CIS is returned (if it exists). If the DesiredTuple field is
any other value on entry, the CIS is searched in an attempt to locate a tuple which
matches.

TupleCode,TupleLink
These fields are the values returned from the tuple found. If there are no tuples on
the card, CS_NO_MORE_ITEMS is returned.

Since the csx_GetFirstTuple(), csx_GetNextTuple(), and
csx_GetTupleData(9F) functions all share the same tuple_t structure, some fields
in the tuple_t structure are unused or reserved when calling this function and these
fields must not be initialized by the client.

CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_NO_CARD No PC Card in socket.

CS_NO_CIS No Card Information Structure (CIS) on PC
card.

CS_NO_MORE_ITEMS Desired tuple not found.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

These functions may be called from user or kernel context.

csx_GetTupleData(9F), csx_ParseTuple(9F), csx_RegisterClient(9F),
csx_ValidateCIS(9F), tuple(9S)

PC Card 95Standard, PCMCIA/JEIDA

csx_GetFirstTuple(9F)

RETURN VALUES

CONTEXT

SEE ALSO

108 man pages section 9: DDI and DKI Kernel Functions • Last Revised 20 Dec 1996

csx_GetHandleOffset – return current access handle offset

#include <sys/pccard.h>

int32_t csx_GetHandleOffset(acc_handle_t handle, uint32_t *offset);

Solaris DDI Specific (Solaris DDI)

handle Access handle returned by csx_RequestIRQ(9F) or
csx_RequestIO(9F).

offset Pointer to a uint32_t in which the current access handle offset is
returned.

This function returns the current offset for the access handle, handle, in offset.

CS_SUCCESS
Successful operation.

This function may be called from user or kernel context.

csx_RequestIO(9F), csx_RequestIRQ(9F), csx_SetHandleOffset(9F)

PC Card 95 Standard, PCMCIA/JEIDA

csx_GetHandleOffset(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 109

csx_GetMappedAddr – return mapped virtual address

#include <sys/pccard.h>

int32_t csx_GetMappedAddr(acc_handle_t handle, void **addr);

Solaris DDI Specific (Solaris DDI)

handle The access handle returned from csx_RequestIO(9F),
csx_RequestWindow(9F), or csx_DupHandle(9F).

addr The virtual or I/O port number represented by the handle.

This function returns the mapped virtual address or the mapped I/O port number
represented by the handle, handle.

CS_SUCCESS The resulting address or I/O port number
can be directly accessed by the caller.

CS_FAILURE The resulting address or I/O port number
can not be directly accessed by the caller;
the caller must make all accesses to the
mapped area via the common access
functions.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

This function may be called from user, kernel, or interrupt context.

csx_DupHandle(9F), csx_Get8(9F), csx_Put8(9F), csx_RepGet8(9F),
csx_RepPut8(9F), csx_RequestIO(9F), csx_RequestWindow(9F)

PC Card 95 Standard, PCMCIA/JEIDA

csx_GetMappedAddr(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

110 man pages section 9: DDI and DKI Kernel Functions • Last Revised 19 Jul 1996

csx_GetStatus – return the current status of a PC Card and its socket

#include <sys/pccard.h>

int32_t csx_GetStatus(client_handle_t ch, get_status_t *gs);

Solaris DDI Specific (Solaris DDI)

ch Client handle returned from csx_RegisterClient(9F).

gs Pointer to a get_status_t structure.

This function returns the current status of a PC Card and its socket.

The structure members of get_status_t are:

uint32_t Socket; /* socket number*/
uint32_t CardState; /* "live" card status for this client*/
uint32_t SocketState; /* latched socket values */
uint32_t raw_CardState; /* raw live card status */

The fields are defined as follows:

Socket Not used in Solaris, but for portability with other Card Services
implementations, it should be set to the logical socket number.

CardState The CardState field is the bit-mapped output data returned from
Card Services. The bits identify what Card Services thinks the
current state of the installed PC Card is. The bits are:

CS_STATUS_WRITE_PROTECTED
Card is write protected

CS_STATUS_CARD_LOCKED
Card is locked

CS_STATUS_EJECTION_REQUEST
Ejection request in progress

CS_STATUS_INSERTION_REQUEST
Insertion request in progress

CS_STATUS_BATTERY_DEAD
Card battery is dead

CS_STATUS_BATTERY_DEAD
Card battery is dead (BVD1)

CS_STATUS_BATTERY_LOW
Card battery is low (BVD2)

CS_STATUS_CARD_READY
Card is READY

CS_STATUS_CARD_INSERTED
Card is inserted

csx_GetStatus(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

Kernel Functions for Drivers 111

CS_STATUS_REQ_ATTN
Extended status attention request

CS_STATUS_RES_EVT1
Extended status reserved event status

CS_STATUS_RES_EVT2
Extended status reserved event status

CS_STATUS_RES_EVT3
Extended status reserved event status

CS_STATUS_VCC_50
5.0 Volts Vcc Indicated

CS_STATUS_VCC_33
3.3 Volts Vcc Indicated

CS_STATUS_VCC_XX
X.X Volts Vcc Indicated

The state of the CS_STATUS_CARD_INSERTED bit indicates
whether the PC Card associated with this driver instance, not just
any card, is inserted in the socket. If an I/O card is installed in the
specified socket, card state is returned from the PRR (Pin
Replacement Register) and the ESR (Extended Status Register) (if
present). If certain state bits are not present in the PRR or ESR, a
simulated state bit value is returned as defined below:

CS_STATUS_WRITE_PROTECTED
Not write protected

CS_STATUS_BATTERY_DEAD
Power good

PCS_STATUS_BATTERY_LOW
Power good

CS_STATUS_CARD_READY
Ready

CS_STATUS_REQ_ATTN
Not set

CS_STATUS_RES_EVT1
Not set

CS_STATUS_RES_EVT2
Not set

CS_STATUS_RES_EVT3
Not set

SocketState The SocketState field is a bit-map of the current card and socket
state. The bits are:

csx_GetStatus(9F)

112 man pages section 9: DDI and DKI Kernel Functions • Last Revised 19 Jul 1996

CS_SOCK_STATUS_WRITE_PROTECT_CHANGE
Write Protect

ECS_SOCK_STATUS_CARD_LOCK_CHANGE
Card Lock Change

CS_SOCK_STATUS_EJECTION_PENDING
Ejection Request

CS_SOCK_STATUS_INSERTION_PENDING
Insertion Request

CS_SOCK_STATUS_BATTERY_DEAD_CHANGE
Battery Dead

CS_SOCK_STATUS_BATTERY_LOW_CHANGE
Battery Low

CS_SOCK_STATUS_CARD_READY_CHANGE
Ready Change

CS_SOCK_STATUS_CARD_INSERTION_CHANGE
Card is inserted

The state reported in the SocketState field may be different from
the state reported in the CardState field. Clients should
normally depend only on the state reported in the CardState
field.

The state reported in the SocketState field may be different
from the state reported in the CardState field. Clients should
normally depend only on the state reported in the CardState
field.

raw_CardState The raw_CardState field is a Solaris-specific extension that
allows the client to determine if any card is inserted in the socket.
The bit definitions in the raw_CardState field are identical to
those in the CardState field with the exception that the
CS_STATUS_CARD_INSERTED bit in the raw_CardState field is
set whenever any card is inserted into the socket.

CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_BAD_SOCKET Error getting socket state.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CS_NO_CARD will not be returned if there is no PC Card present in the socket.

This function may be called from user or kernel context.

csx_RegisterClient(9F)

csx_GetStatus(9F)

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 113

PC Card 95 Standard, PCMCIA/JEIDA

csx_GetStatus(9F)

114 man pages section 9: DDI and DKI Kernel Functions • Last Revised 19 Jul 1996

csx_GetTupleData – return the data portion of a tuple

#include <sys/pccard.h>

int32_t csx_GetTupleData(client_handle_t ch, tuple_t *tu);

Solaris DDI Specific (Solaris DDI)

ch Client handle returned from csx_RegisterClient(9F).

tu Pointer to a tuple_t structure.

This function returns the data portion of a tuple, as returned by the
csx_GetFirstTuple(9F) and csx_GetNextTuple(9F) functions.

The structure members of tuple_t are:

The fields are defined as follows:

uint32_t Socket; /* socket number */
uint32_t Attributes; /* tuple attributes*/
cisdata_t DesiredTuple; /* tuple to search for*/
cisdata_t TupleOffset; /* tuple data offset*/
cisdata_t TupleDataMax; /* max tuple data size*/
cisdata_t TupleDataLen; /* actual tuple data length*/
cisdata_t TupleData[CIS_MAX_TUPLE_DATA_LEN]; /* tuple body data buffer*/
cisdata_t TupleCode; /* tuple type code*/
cisdata_t TupleLink; /* tuple link */

Socket Not used in Solaris, but for portability with other Card
Services implementations, it should be set to the logical
socket number.

Attributes Initialized by csx_GetFirstTuple(9F) or
csx_GetNextTuple(9F); the client must not modify
the value in this field.

DesiredTuple Initialized by csx_GetFirstTuple(9F) or
csx_GetNextTuple(9F); the client must not modify
the value in this field.

TupleOffset This field allows partial tuple information to be
retrieved, starting anywhere within the tuple.

TupleDataMax This field is the size of the tuple data buffer that Card
Services uses to return raw tuple data from
csx_GetTupleData(9F). It can be larger than the
number of bytes in the tuple data body. Card Services
ignores any value placed here by the client.

TupleDataLen This field is the actual size of the tuple data body. It
represents the number of tuple data body bytes
returned.

csx_GetTupleData(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

Kernel Functions for Drivers 115

TupleData This field is an array of bytes containing the raw tuple
data body contents.

TupleCode Initialized by csx_GetFirstTuple(9F) or
csx_GetNextTuple(9F); the client must not modify
the value in this field.

TupleLink Initialized by csx_GetFirstTuple(9F) or
csx_GetNextTuple(9F); the client must not modify
the value in this field.

CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_BAD_ARGS Data from prior csx_GetFirstTuple(9F)
or csx_GetNextTuple(9F) is corrupt.

CS_NO_CARD No PC Card in socket.

CS_NO_CIS No Card Information Structure (CIS) on PC
Card.

CS_NO_MORE_ITEMS Card Services was not able to read the tuple
from the PC Card.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

This function may be called from user or kernel context.

csx_GetFirstTuple(9F), csx_ParseTuple(9F), csx_RegisterClient(9F),
csx_ValidateCIS(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

csx_GetTupleData(9F)

RETURN VALUES

CONTEXT

SEE ALSO

116 man pages section 9: DDI and DKI Kernel Functions • Last Revised 20 Dec 1996

csx_MakeDeviceNode, csx_RemoveDeviceNode – create and remove minor nodes on
behalf of the client

#include <sys/pccard.h>

int32_t csx_MakeDeviceNode(client_handle_t ch, make_device_node_t
*dn);

int32_t csx_RemoveDeviceNode(client_handle_t ch,
remove_device_node_t *dn);

Solaris DDI Specific (Solaris DDI)

ch Client handle returned from csx_RegisterClient(9F).

dn Pointer to a make_device_node_t or remove_device_node_t
structure.

csx_MakeDeviceNode() and csx_RemoveDeviceNode() are Solaris-specific
extensions to allow the client to request that device nodes in the filesystem are created
or removed, respectively, on its behalf.

The structure members of make_device_node_t are:

uint32_t Action; /* device operation */
uint32_t NumDevNodes; /* number of nodes to create */
devnode_desc_t *devnode_desc; /* description of device nodes */

The structure members of remove_device_node_t are:

uint32_t Action; /* device operation */
uint32_t NumDevNodes; /* number of nodes to remove */
devnode_desc_t *devnode_desc; /* description of device nodes */

The structure members of devnode_desc_t are:

char *name; /* device node path and name */
int32_t spec_type; /* device special type (block or char) */
int32_t minor_num; /* device node minor number */
char *node_type; /* device node type */

The Action field is used to specify the operation that csx_MakeDeviceNode() and
csx_RemoveDeviceNode() should perform.

The following Action values are defined for csx_MakeDeviceNode():

CREATE_DEVICE_NODE
Create NumDevNodes minor nodes

The following Action values are defined for csx_RemoveDeviceNode():

REMOVE_DEVICE_NODE
Remove NumDevNodes minor nodes

REMOVE_ALL_DEVICE_NODES
Remove all minor nodes for this client

csx_MakeDeviceNode(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

Kernel Functions for Drivers 117

For csx_MakeDeviceNode(), if the Action field is:

CREATE_DEVICE_NODE
The NumDevNodes field must be set to the number of minor devices to create, and
the client must allocate the quantity of devnode_desc_t structures specified by
NumDevNodes and fill out the fields in the devnode_desc_t structure with the
appropriate minor node information. The meanings of the fields in the
devnode_desc_t structure are identical to the parameters of the same name to the
ddi_create_minor_node(9F) DDI function.

For csx_RemoveDeviceNode(), if the Action field is:

REMOVE_DEVICE_NODE
The NumDevNodes field must be set to the number of minor devices to remove, and
the client must allocate the quantity of devnode_desc_t structures specified by
NumDevNodes and fill out the fields in the devnode_desc_t structure with the
appropriate minor node information. The meanings of the fields in the
devnode_desc_t structure are identical to the parameters of the same name to the
ddi_remove_minor_node(9F) DDI function.

REMOVE_ALL_DEVICE_NODES
The NumDevNodes field must be set to 0 and the devnode_desc_t structure
pointer must be set to NULL. All device nodes for this client will be removed from
the filesystem.

CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_BAD_ATTRIBUTE The value of one or more arguments is
invalid.

CS_BAD_ARGS Action is invalid.

CS_OUT_OF_RESOURCE Unable to create or remove device node.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

These functions may be called from user or kernel context.

csx_RegisterClient(9F), ddi_create_minor_node(9F),
ddi_remove_minor_node(9F)

PC Card 95 Standard, PCMCIA/JEIDA

csx_MakeDeviceNode(9F)

RETURN VALUES

CONTEXT

SEE ALSO

118 man pages section 9: DDI and DKI Kernel Functions • Last Revised 19 Jul 1996

csx_MapLogSocket – return the physical socket number associated with the client
handle

#include <sys/pccard.h>

int32_t csx_MapLogSocket(client_handle_t ch, map_log_socket_t
*ls);

Solaris DDI Specific (Solaris DDI)

ch Client handle returned from csx_RegisterClient(9F).

ls Pointer to a map_log_socket_t structure.

This function returns the physical socket number associated with the client handle.

The structure members of map_log_socket_t are:

uint32_t LogSocket; /* logical socket number */
uint32_t PhyAdapter; /* physical adapter number */
uint32_t PhySocket; /* physical socket number */

The fields are defined as follows:

LogSocket Not used by this implementation of Card Services and can be set
to any arbitrary value.

PhyAdapter Returns the physical adapter number, which is always 0 in the
Solaris implementation of Card Services.

PhySocket Returns the physical socket number associated with the client
handle. The physical socket number is typically used as part of an
error or message string or if the client creates minor nodes based
on the physical socket number.

CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

This function may be called from user or kernel context.

csx_RegisterClient(9F)

PC Card 95 Standard, PCMCIA/JEIDA

csx_MapLogSocket(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 119

csx_MapMemPage – map the memory area on a PC Card

#include <sys/pccard.h>

int32_t csx_MapMemPage(window_handle_t wh, map_mem_page_t *mp);

Solaris DDI Specific (Solaris DDI)

wh Window handle returned from csx_RequestWindow(9F).

mp Pointer to a map_mem_page_t structure.

This function maps the memory area on a PC Card into a page of a window allocated
with the csx_RequestWindow(9F) function.

The structure members of map_mem_page_t are:

uint32_t CardOffset; /* card offset */
uint32_t Page; /* page number */

The fields are defined as follows:

CardOffset The absolute offset in bytes from the beginning of the PC Card to
map into system memory.

Page Used internally by Card Services; clients must set this field to 0
before calling this function.

CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_BAD_OFFSET Offset is invalid.

CS_BAD_PAGE Page is not zero.

CS_NO_CARD No PC Card in socket.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

This function may be called from user or kernel context.

csx_ModifyWindow(9F), csx_ReleaseWindow(9F), csx_RequestWindow(9F)

PC Card 95 Standard, PCMCIA/JEIDA

csx_MapMemPage(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

RETURN VALUES

CONTEXT

SEE ALSO

120 man pages section 9: DDI and DKI Kernel Functions • Last Revised 19 Jul 1996

csx_ModifyConfiguration – modify socket and PC Card Configuration Register

#include <sys/pccard.h>

int32_t csx_ModifyConfiguration(client_handle_t ch,
modify_config_t *mc);

Solaris DDI Specific (Solaris DDI)

ch Client handle returned from csx_RegisterClient(9F).

mc Pointer to a modify_config_t structure.

This function allows a socket and PC Card configuration to be modified. This function
can only modify a configuration requested via csx_RequestConfiguration(9F).

The structure members of modify_config_t are:

uint32_t Socket; /* socket number */
uint32_t Attributes; /* attributes to modify */
uint32_t Vpp1; /* Vpp1 value */
uint32_t Vpp2; /* Vpp2 value */

The fields are defined as follows:

Socket Not used in Solaris, but for portability with other Card Services
implementations, it should be set to the logical socket number.

Attributes This field is bit-mapped. The following bits are defined:

CONF_ENABLE_IRQ_STEERING
Enable IRQ steering. Set to connect the PC Card IREQ line to a
previously selected system interrupt.

CONF_IRQ_CHANGE_VALID
IRQ change valid. Set to request the IRQ steering enable to be
changed.

CONF_VPP1_CHANGE_VALID
Vpp1 change valid. These bits are set to request a change to the
corresponding voltage level for the PC Card.

CONF_VPP2_CHANGE_VALID
Vpp2 change valid. These bits are set to request a change to the
corresponding voltage level for the PC Card.

CONF_VSOVERRIDE
Override VS pins. For Low Voltage keyed cards, must be set if a
client desires to apply a voltage inappropriate for this card to
any pin. After card insertion and prior to the first
csx_RequestConfiguration(9F) call for this client, the
voltage levels applied to the card will be those specified by the
Card Interface Specification. (See WARNINGS.)

csx_ModifyConfiguration(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

Kernel Functions for Drivers 121

Vpp1, Vpp2 Represent voltages expressed in tenths of a volt. Values from 0 to
25.5 volts may be set. To be valid, the exact voltage must be
available from the system. To be compliant with the PC Card 95
Standard, PCMCIA/JEIDA, systems must always support 5.0 volts
for both Vcc and Vpp. (See WARNINGS.)

CS_SUCCESS
Successful operation.

CS_BAD_HANDLE
Client handle is invalid or csx_RequestConfiguration(9F) not done.

CS_BAD_SOCKET
Error getting/setting socket hardware parameters.

CS_BAD_VPP
Requested Vpp is not available on socket.

CS_NO_CARD
No PC Card in socket.

CS_UNSUPPORTED_FUNCTION
No PCMCIA hardware installed.

This function may be called from user or kernel context.

csx_RegisterClient(9F), csx_ReleaseConfiguration(9F),
csx_ReleaseIO(9F), csx_ReleaseIRQ(9F), csx_RequestConfiguration(9F),
csx_RequestIO(9F), csx_RequestIRQ(9F)

PC Card 95 Standard, PCMCIA/JEIDA

1. CONF_VSOVERRIDE is provided for clients that have a need to override the
information provided in the CIS. The client must excercise caution when setting
this as it overrides any voltage level protection provided by Card Services.

2. Using csx_ModifyConfiguration() to set Vpp to 0 volts may result in the loss
of a PC Card’s state. Any client setting Vpp to 0 volts is responsible for insuring
that the PC Card’s state is restored when power is re-applied to the card.

Mapped IO addresses can only be changed by first releasing the current configuration
and IO resources with csx_ReleaseConfiguration(9F) and csx_ReleaseIO(9F),
requesting new IO resources and a new configuration with csx_RequestIO(9F),
followed by csx_RequestConfiguration(9F).

IRQ priority can only be changed by first releasing the current configuration and IRQ
resources with csx_ReleaseConfiguration(9F) and csx_ReleaseIRQ(9F),
requesting new IRQ resources and a new configuration with csx_RequestIRQ(9F),
followed by csx_RequestConfiguration(9F).

Vcc can not be changed using csx_ModifyConfiguration(). Vcc may be changed
by first invoking csx_ReleaseConfiguration(9F), followed by
csx_RequestConfiguration(9F) with a new Vcc value.

csx_ModifyConfiguration(9F)

RETURN VALUES

CONTEXT

SEE ALSO

WARNINGS

NOTES

122 man pages section 9: DDI and DKI Kernel Functions • Last Revised 19 Jul 1996

csx_ModifyWindow – modify window attributes

#include <sys/pccard.h>

int32_t csx_ModifyWindow(window_handle_t wh, modify_win_t *mw);

Solaris DDI Specific (Solaris DDI)

wh Window handle returned from csx_RequestWindow(9F).

mw Pointer to a modify_win_t structure.

This function modifies the attributes of a window allocated by the
csx_RequestWindow(9F) function.

Only some of the window attributes or the access speed field may be modified by this
request. The csx_MapMemPage(9F) function is also used to set the offset into PC Card
memory to be mapped into system memory for paged windows. The
csx_RequestWindow(9F) and csx_ReleaseWindow(9F) functions must be used to
change the window base or size.

The structure members of modify_win_t are:

uint32_t Attributes; /* window flags */
uint32_t AccessSpeed; /* window access speed */

The fields are defined as follows:

Attributes This field is bit-mapped and defined as follows:

WIN_MEMORY_TYPE_CM
Window points to Common Memory area. Set this to map the
window to Common Memory.

WIN_MEMORY_TYPE_AM
Window points to Attribute Memory area. Set this to map the
window to Attribute Memory.

WIN_ENABLE
Enable Window. The client must set this to enable the window.

WIN_ACCESS_SPEED_VALID
AccessSpeed valid. The client must set this when the
AccessSpeed field has a value that the client wants set for the
window.

AccessSpeed The bit definitions for this field use the format of the extended
speed byte of the Device ID tuple. If the mantissa is 0 (noted as
reserved in the PC Card 95 Standard), the lower bits are a binary
code representing a speed from the list below. Numbers in the first
column are codes; items in the second column are speeds.

0 Reserved: do not use

1 250 nsec

csx_ModifyWindow(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

Kernel Functions for Drivers 123

2 200 nsec

3 150 nsec

4 100 nsec

5 - 7 Reserved: do not use

It is recommended that clients use the csx_ConvertSpeed(9F)
function to generate the appropriate AccessSpeed values rather
than manually perturbing the AccessSpeed field.

CS_SUCCESS Successful operation.

CS_BAD_HANDLE Window handle is invalid.

CS_NO_CARD No PC Card in socket.

CS_BAD_OFFSET Error getting/setting window hardware
parameters.

CS_BAD_WINDOW Error getting/setting window hardware
parameters.

CS_BAD_SPEED AccessSpeed is invalid.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

This function may be called from user or kernel context.

csx_ConvertSpeed(9F), csx_MapMemPage(9F), csx_ReleaseWindow(9F),
csx_RequestWindow(9F)

PC Card 95 Standard, PCMCIA/JEIDA

csx_ModifyWindow(9F)

RETURN VALUES

CONTEXT

SEE ALSO

124 man pages section 9: DDI and DKI Kernel Functions • Last Revised 19 Jul 1996

csx_Parse_CISTPL_BATTERY – parse the Battery Replacement Date tuple

#include <sys/pccard.h>

int32_t csx_Parse_CISTPL_BATTERY(client_handle_t ch, tuple_t *tu,
cistpl_battery_t *cb);

Solaris DDI Specific (Solaris DDI)

ch Client handle returned from csx_RegisterClient(9F).

tu Pointer to a tuple_t structure (see tuple(9S)) returned by a call to
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).

cb Pointer to a cistpl_battery_t structure which contains the parsed
CISTPL_BATTERY tuple information upon return from this function.

This function parses the Battery Replacement Date tuple, CISTPL_BATTERY, into a
form usable by PC Card drivers.

The CISTPL_BATTERY tuple is an optional tuple which shall be present only in PC
Cards with battery-backed storage. It indicates the date on which the battery was
replaced, and the date on which the battery is expected to need replacement. Only one
CISTPL_BATTERY tuple is allowed per PC Card.

The structure members of cistpl_battery_t are:

uint32_t rday; /* date battery last replaced */
uint32_t xday; /* date battery due for replacement */

The fields are defined as follows:

rday This field indicates the date on which the battery was last replaced.

xday This field indicates the date on which the battery should be
replaced.

CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_UNKNOWN_TUPLE Parser does not know how to parse tuple.

CS_NO_CARD No PC Card in socket.

CS_NO_CIS No Card Information Structure (CIS) on PC
Card.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

This function may be called from user or kernel context.

csx_GetFirstTuple(9F), csx_GetTupleData(9F), csx_RegisterClient(9F),
csx_ValidateCIS(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

csx_Parse_CISTPL_BATTERY(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 125

csx_Parse_CISTPL_BYTEORDER – parse the Byte Order tuple

#include <sys/pccard.h>

int32_t csx_Parse_CISTPL_BYTEORDER(client_handle_t ch, tuple_t
*tu, cistpl_byteorder_t *cbo);

Solaris DDI Specific (Solaris DDI)

ch Client handle returned from csx_RegisterClient(9F).

tu Pointer to a tuple_t structure (see tuple(9S)) returned by a call to
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).

cbo Pointer to a cistpl_byteorder_t structure which contains the parsed
CISTPL_BYTEORDER tuple information upon return from this function.

This function parses the Byte Order tuple, CISTPL_BYTEORDER, into a form usable by
PC Card drivers.

The CISTPL_BYTEORDER tuple shall only appear in a partition tuple set for a
memory-like partition. It specifies two parameters: the order for multi-byte data, and
the order in which bytes map into words for 16-bit cards.

The structure members of cistpl_byteorder_t are:

uint32_t order; /* byte order code */
uint32_t map; /* byte mapping code */

The fields are defined as follows:

order This field specifies the byte order for multi-byte numeric data.

TPLBYTEORD_LOW
Little endian order

TPLBYTEORD_VS
Vendor specific

map This field specifies the byte mapping for 16-bit or wider cards.

TPLBYTEMAP_LOW
Byte zero is least significant byte

TPLBYTEMAP_HIGH
Byte zero is most significant byte

TPLBYTEMAP_VS
Vendor specific mapping

CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_UNKNOWN_TUPLE Parser does not know how to parse tuple.

CS_NO_CARD No PC Card in socket.

csx_Parse_CISTPL_BYTEORDER(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

RETURN VALUES

126 man pages section 9: DDI and DKI Kernel Functions • Last Revised 20 Dec 1996

CS_NO_CIS No Card Information Structure (CIS) PC
Card.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

This function may be called from user or kernel context.

csx_GetFirstTuple(9F), csx_GetTupleData(9F), csx_RegisterClient(9F),
csx_ValidateCIS(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

csx_Parse_CISTPL_BYTEORDER(9F)

CONTEXT

SEE ALSO

Kernel Functions for Drivers 127

csx_Parse_CISTPL_CFTABLE_ENTRY – parse 16-bit Card Configuration Table Entry
tuple

#include <sys/pccard.h>

int32_t csx_Parse_CISTPL_CFTABLE_ENTRY(client_handle_t ch,
tuple_t *tu, cistpl_cftable_entry_t *cft);

Solaris DDI Specific (Solaris DDI)

ch Client handle returned from csx_RegisterClient(9F).

tu Pointer to a tuple_t structure (see tuple(9S)) returned by a call to
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).

cft Pointer to a cistpl_cftable_entry_t structure which contains the
parsed CISTPL_CFTABLE_ENTRY tuple information upon return from this
function.

This function parses the 16 bit Card Configuration Table Entry tuple,
CISTPL_CFTABLE_ENTRY, into a form usable by PC Card drivers.

The CISTPL_CFTABLE_ENTRY tuple is used to describe each possible configuration of
a PC Card and to distinguish among the permitted configurations. The
CISTPL_CONFIG tuple must precede all CISTPL_CFTABLE_ENTRY tuples.

The structure members of cistpl_cftable_entry_t are:

uint32_t flags; /* valid descriptions */
uint32_t ifc; /* interface description */

/* information */
uint32_t pin; /* values for PRR */
uint32_t index; /* configuration index number */
cistpl_cftable_entry_pd_t pd; /* power requirements */

/* description */
cistpl_cftable_entry_speed_t speed; /* device speed description */
cistpl_cftable_entry_io_t io; /* device I/O map */
cistpl_cftable_entry_irq_t irq; /* device IRQ utilization */
cistpl_cftable_entry_mem_t mem; /* device memory space */
cistpl_cftable_entry_misc_t misc; /* miscellaneous

/* device features */

The flags field is defined and bit-mapped as follows:

CISTPL_CFTABLE_TPCE_DEFAULT
This is a default configuration

CISTPL_CFTABLE_TPCE_IF
If configuration byte exists

CISTPL_CFTABLE_TPCE_FS_PWR
Power information exists

CISTPL_CFTABLE_TPCE_FS_TD
Timing information exists

csx_Parse_CISTPL_CFTABLE_ENTRY(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

128 man pages section 9: DDI and DKI Kernel Functions • Last Revised 20 Dec 1996

CISTPL_CFTABLE_TPCE_FS_IO
I/O information exists

CISTPL_CFTABLE_TPCE_FS_IRQ
IRQ information exists

CISTPL_CFTABLE_TPCE_FS_MEM
MEM space information exists

CISTPL_CFTABLE_TPCE_FS_MISC
MISC information exists

CISTPL_CFTABLE_TPCE_FS_STCE_EV
STCE_EV exists

CISTPL_CFTABLE_TPCE_FS_STCE_PD
STCE_PD exists

If the CISTPL_CFTABLE_TPCE_IF flag is set, the ifc field is bit-mapped and defined
as follows:

CISTPL_CFTABLE_TPCE_IF_MEMORY
Memory interface

CISTPL_CFTABLE_TPCE_IF_IO_MEM
IO and memory

CISTPL_CFTABLE_TPCE_IF_CUSTOM_0
Custom interface 0

CISTPL_CFTABLE_TPCE_IF_CUSTOM_1
Custom interface 1

CISTPL_CFTABLE_TPCE_IF_CUSTOM_2
Custom interface 2

CISTPL_CFTABLE_TPCE_IF_CUSTOM_3
Custom interface 3

CISTPL_CFTABLE_TPCE_IF_MASK
Interface type mask

CISTPL_CFTABLE_TPCE_IF_BVD
BVD active in PRR

CISTPL_CFTABLE_TPCE_IF_WP
WP active in PRR

CISTPL_CFTABLE_TPCE_IF_RDY
RDY active in PRR

CISTPL_CFTABLE_TPCE_IF_MWAIT
WAIT - mem cycles

pin is a value for the Pin Replacement Register.

csx_Parse_CISTPL_CFTABLE_ENTRY(9F)

Kernel Functions for Drivers 129

index is a configuration index number.

The structure members of cistpl_cftable_entry_pd_t are:

uint32_t flags; /* which descriptions are valid */
cistpl_cftable_entry_pwr_t pd_vcc; /* VCC power description */
cistpl_cftable_entry_pwr_t pd_vpp1; /* Vpp1 power description */
cistpl_cftable_entry_pwr_t pd_vpp2; /* Vpp2 power description */

This flags field is bit-mapped and defined as follows:

CISTPL_CFTABLE_TPCE_FS_PWR_VCC
Vcc description valid

CISTPL_CFTABLE_TPCE_FS_PWR_VPP1
Vpp1 description valid

CISTPL_CFTABLE_TPCE_FS_PWR_VPP2
Vpp2 description valid

The structure members of cistpl_cftable_entry_pwr_t are:

uint32_t nomV; /* nominal supply voltage */
uint32_t nomV_flags;
uint32_t minV; /* minimum supply voltage */
uint32_t minV_flags;
uint32_t maxV; /* maximum supply voltage */
uint32_t maxV_flags;
uint32_t staticI; /* continuous supply current */
uint32_t staticI_flags;
uint32_t avgI; /* max current required averaged over 1 sec. */
uint32_t avgI_flags;
uint32_t peakI; /* max current required averaged over 10mS */
uint32_t peakI_flags;
uint32_t pdownI; /* power down supply current required */
uint32_t pdownI_flags;

nomV, minV, maxV, staticI, avgI, peakI_flag, and pdownI are defined and
bit-mapped as follows:

CISTPL_CFTABLE_PD_NOMV
Nominal supply voltage

CISTPL_CFTABLE_PD_MINV
Minimum supply voltage

CISTPL_CFTABLE_PD_MAXV
Maximum supply voltage

CISTPL_CFTABLE_PD_STATICI
Continuous supply current

CISTPL_CFTABLE_PD_AVGI
Maximum current required averaged over 1 second

CISTPL_CFTABLE_PD_PEAKI
Maximum current required averaged over 10mS

csx_Parse_CISTPL_CFTABLE_ENTRY(9F)

130 man pages section 9: DDI and DKI Kernel Functions • Last Revised 20 Dec 1996

CISTPL_CFTABLE_PD_PDOWNI
Power down supply current required

nomV_flags, minV_flags, maxV_flags, staticI_flags, avgI_flags,
peakI_flags, and pdownI_flags are defined and bit-mapped as follows:

CISTPL_CFTABLE_PD_EXISTS
This parameter exists

CISTPL_CFTABLE_PD_MUL10
Multiply return value by 10

CISTPL_CFTABLE_PD_NC_SLEEP
No connection on sleep/power down

CISTPL_CFTABLE_PD_ZERO
Zero value required

CISTPL_CFTABLE_PD_NC
No connection ever

The structure members of cistpl_cftable_entry_speed_t are:

uint32_t flags; /* which timing information is present */
uint32_t wait; /* max WAIT time in device speed format */
uint32_t nS_wait; /* max WAIT time in nS */
uint32_t rdybsy; /* max RDY/BSY time in device speed format */
uint32_t nS_rdybsy; /* max RDY/BSY time in nS */
uint32_t rsvd; /* max RSVD time in device speed format */
uint32_t nS_rsvd; /* max RSVD time in nS */

The flags field is bit-mapped and defined as follows:

CISTPL_CFTABLE_TPCE_FS_TD_WAIT
WAIT timing exists

CISTPL_CFTABLE_TPCE_FS_TD_RDY
RDY/BSY timing exists

CISTPL_CFTABLE_TPCE_FS_TD_RSVD
RSVD timing exists

The structure members of cistpl_cftable_entry_io_t are:

uint32_t flags; /* direct copy of TPCE_IO byte in tuple */
uint32_t addr_lines; /* number of decoded I/O address lines */
uint32_t ranges; /* number of I/O ranges */
cistpl_cftable_entry_io_range_t

range[CISTPL_CFTABLE_ENTRY_MAX_IO_RANGES];

The flags field is defined and bit-mapped as follows:

CISTPL_CFTABLE_TPCE_FS_IO_BUS
Bus width mask

CISTPL_CFTABLE_TPCE_FS_IO_BUS8
8-bit flag

csx_Parse_CISTPL_CFTABLE_ENTRY(9F)

Kernel Functions for Drivers 131

CISTPL_CFTABLE_TPCE_FS_IO_BUS16
16-bit flag

CISTPL_CFTABLE_TPCE_FS_IO_RANGE
IO address ranges exist

The structure members of cistpl_cftable_entry_io_range_t are:

uint32_t addr; /* I/O start address */
uint32_t length; /* I/O register length */

The structure members of cistpl_cftable_entry_irq_t are:

uint32_t flags; /* direct copy of TPCE_IR byte in tuple */
uint32_t irqs; /* bit mask for each allowed IRQ */

The structure members of cistpl_cftable_entry_mem_t are:

uint32_t flags; /* memory descriptor type and host addr info */
uint32_t windows; /* number of memory space descriptors */
cistpl_cftable_entry_mem_window_t

window[CISTPL_CFTABLE_ENTRY_MAX_MEM_WINDOWS];

The flags field is defined and bit-mapped as follows:

CISTPL_CFTABLE_TPCE_FS_MEM3
Space descriptors

CISTPL_CFTABLE_TPCE_FS_MEM2
host_addr=card_addr

CISTPL_CFTABLE_TPCE_FS_MEM1
Card address=0 any host address

CISTPL_CFTABLE_TPCE_FS_MEM_HOST
If host address is present in MEM3

The structure members of cistpl_cftable_entry_mem_window_t are:

uint32_t length; /* length of this window */
uint32_t card_addr; /* card address */
uint32_t host_addr; /* host address */

The structure members of cistpl_cftable_entry_misc_t are:

uint32_t flags; /* miscellaneous features flags */

The flags field is defined and bit-mapped as follows:

CISTPL_CFTABLE_TPCE_MI_MTC_MASK
Max twin cards mask

CISTPL_CFTABLE_TPCE_MI_AUDIO
Audio on BVD2

CISTPL_CFTABLE_TPCE_MI_READONLY
R/O storage

csx_Parse_CISTPL_CFTABLE_ENTRY(9F)

132 man pages section 9: DDI and DKI Kernel Functions • Last Revised 20 Dec 1996

CISTPL_CFTABLE_TPCE_MI_PWRDOWN
Powerdown capable

CISTPL_CFTABLE_TPCE_MI_DRQ_MASK
DMAREQ mask

CISTPL_CFTABLE_TPCE_MI_DRQ_SPK
DMAREQ on SPKR

CISTPL_CFTABLE_TPCE_MI_DRQ_IOIS
DMAREQ on IOIS16

CISTPL_CFTABLE_TPCE_MI_DRQ_INP
DMAREQ on INPACK

CISTPL_CFTABLE_TPCE_MI_DMA_8
DMA width 8 bits

CISTPL_CFTABLE_TPCE_MI_DMA_16
DMA width 16 bits

CS_SUCCESS
Successful operation.

CS_BAD_HANDLE
Client handle is invalid.

CS_UNKNOWN_TUPLE
Parser does not know how to parse tuple.

CS_NO_CARD
No PC Card in socket.

CS_NO_CIS
No Card Information Structure (CIS) on PC Card.

CS_UNSUPPORTED_FUNCTION
No PCMCIA hardware installed.

This function may be called from user or kernel context.

csx_GetFirstTuple(9F), csx_GetTupleData(9F),
csx_Parse_CISTPL_CONFIG(9F), csx_RegisterClient(9F),
csx_ValidateCIS(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

csx_Parse_CISTPL_CFTABLE_ENTRY(9F)

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 133

csx_Parse_CISTPL_CONFIG – parse Configuration tuple

#include <sys/pccard.h>

int32_t csx_Parse_CISTPL_CONFIG(client_handle_t ch, tuple_t *tu,
cistpl_config_t *cc);

Solaris DDI Specific (Solaris DDI)

ch Client handle returned from csx_RegisterClient(9F).

tu Pointer to a tuple_t structure (see tuple(9S)) returned by a call to
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).

cc Pointer to a cistpl_config_t structure which contains the parsed
CISTPL_CONFIG tuple information upon return from this function.

This function parses the Configuration tuple, CISTPL_CONFIG, into a form usable by
PC Card drivers. The CISTPL_CONFIG tuple is used to describe the general
characteristics of 16-bit PC Cards containing I/O devices or using custom interfaces. It
may also describe PC Cards, including Memory Only cards, which exceed nominal
power supply specifications, or which need descriptions of their power requirements
or other information.

The structure members of cistpl_config_t are:

uint32_t present; /* register present flags */
uint32_t nr; /* number of config registers found */
uint32_t hr; /* highest config register index found */
uint32_t regs[CISTPL_CONFIG_MAX_CONFIG_REGS]; /* reg offsets */
uint32_t base; /* base offset of config registers */
uint32_t last; /* last config index */

The fields are defined as follows:

present This field indicates which configuration registers are present on
the PC Card.

CONFIG_OPTION_REG_PRESENT
Configuration Option Register present

CONFIG_STATUS_REG_PRESENT
Configuration Status Register present

CONFIG_PINREPL_REG_PRESENT
Pin Replacement Register present

CONFIG_COPY_REG_PRESENT
Copy Register present

CONFIG_EXSTAT_REG_PRESENT
Extended Status Register present

CONFIG_IOBASE0_REG_PRESENT
IO Base 0 Register present

csx_Parse_CISTPL_CONFIG(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

134 man pages section 9: DDI and DKI Kernel Functions • Last Revised 20 Dec 1996

CONFIG_IOBASE1_REG_PRESENT
IO Base 1 Register present

CONFIG_IOBASE2_REG_PRESENT
IO Base2 Register present

CONFIG_IOBASE3_REG_PRESENT
IO Base3 Register present

CONFIG_IOLIMIT_REG_PRESENT
IO Limit Register present

nr This field specifies the number of configuration registers that are
present on the PC Card.

hr This field specifies the highest configuration register number that
is present on the PC Card.

regs This array contains the offset from the start of Attribute Memory
space for each configuration register that is present on the PC
Card. If a configuration register is not present on the PC Card, the
value in the corresponding entry in the regs array is undefined.

base This field contains the offset from the start of Attribute Memory
space to the base of the PC Card configuration register space.

last This field contains the value of the last valid configuration index
for this PC Card.

CS_SUCCESS
Successful operation.

CS_BAD_HANDLE
Client handle is invalid.

CS_UNKNOWN_TUPLE
Parser does not know how to parse tuple.

CS_NO_CARD
No PC Card in socket.

CS_NO_CIS
No Card Information Structure (CIS) on PC Card.

CS_UNSUPPORTED_FUNCTION
No PCMCIA hardware installed.

This function may be called from user or kernel context.

csx_GetFirstTuple(9F), csx_GetTupleData(9F),
csx_Parse_CISTPL_CFTABLE_ENTRY(9F), csx_RegisterClient(9F),
csx_ValidateCIS(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

csx_Parse_CISTPL_CONFIG(9F)

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 135

PC Card drivers should not attempt to use configurations beyond the "last" member in
the cistpl_config_t structure.

csx_Parse_CISTPL_CONFIG(9F)

NOTES

136 man pages section 9: DDI and DKI Kernel Functions • Last Revised 20 Dec 1996

csx_Parse_CISTPL_DATE – parse the Card Initialization Date tuple

#include <sys/pccard.h>

int32_t csx_Parse_CISTPL_DATE(client_handle_t ch, tuple_t *tu,
cistpl_date_t *cd);

Solaris DDI Specific (Solaris DDI)

ch Client handle returned from csx_RegisterClient(9F).

tu Pointer to a tuple_t structure (see tuple(9S)) returned by a call to
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).

cd Pointer to a cistpl_date_t structure which contains the parsed
CISTPL_DATE tuple information upon return from this function.

This function parses the Card Initialization Date tuple, CISTPL_DATE, into a form
usable by PC Card drivers.

The CISTPL_DATE tuple is an optional tuple. It indicates the date and time at which
the card was formatted. Only one CISTPL_DATE tuple is allowed per PC Card.

The structure members of cistpl_date_t are:

uint32_t time;
uint32_t day

The fields are defined as follows:

time This field indicates the time at which the PC Card was initialized.

day This field indicates the date the PC Card was initialized.

CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_UNKNOWN_TUPLE Parser does not know how to parse tuple.

CS_NO_CARD No PC Card in socket.

CS_NO_CIS No Card Information Structure (CIS) on PC
Card.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

This function may be called from user or kernel context.

csx_GetFirstTuple(9F), csx_GetTupleData(9F), csx_RegisterClient(9F),
csx_ValidateCIS(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

csx_Parse_CISTPL_DATE(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 137

csx_Parse_CISTPL_DEVICE, csx_Parse_CISTPL_DEVICE_A,
csx_Parse_CISTPL_DEVICE_OC, csx_Parse_CISTPL_DEVICE_OA – parse Device
Information tuples

#include <sys/pccard.h>

int32_t csx_Parse_CISTPL_DEVICE(client_handle_t ch, tuple_t *tu,
cistpl_device_t *cd);

int32_t csx_Parse_CISTPL_DEVICE_A(client_handle_t ch, tuple_t *tu,
cistpl_device_t *cd);

int32_t csx_Parse_CISTPL_DEVICE_OC(client_handle_t ch, tuple_t
*tu, cistpl_device_t *cd);

int32_t csx_Parse_CISTPL_DEVICE_OA(client_handle_t ch, tuple_t
*tu, cistpl_device_t *cd);

Solaris DDI Specific (Solaris DDI)

ch Client handle returned from csx_RegisterClient(9F).

tu Pointer to a tuple_t structure (see tuple(9S)) returned by a call to
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).

cd Pointer to a cistpl_device_t structure which contains the parsed
CISTPL_DEVICE, CISTPL_DEVICE_A, CISTPL_DEVICE_OC, or
CISTPL_DEVICE_OA tuple information upon return from these functions,
respectively.

csx_Parse_CISTPL_DEVICE() and csx_Parse_CISTPL_DEVICE_A() parse the 5
volt Device Information tuples, CISTPL_DEVICE and CISTPL_DEVICE_A,
respectively, into a form usable by PC Card drivers.

csx_Parse_CISTPL_DEVICE_OC() and csx_Parse_CISTPL_DEVICE_OA() parse
the Other Condition Device Information tuples, CISTPL_DEVICE_OC and
CISTPL_DEVICE_OA, respectively, into a form usable by PC Card drivers.

The CISTPL_DEVICE and CISTPL_DEVICE_A tuples are used to describe the card’s
device information, such as device speed, device size, device type, and address space
layout information for Common Memory or Attribute Memory space, respectively.

The CISTPL_DEVICE_OC and CISTPL_DEVICE_OA tuples are used to describe the
information about the card’s device under a set of operating conditions for Common
Memory or Attribute Memory space, respectively.

The structure members of cistpl_device_t are:

uint32_t num_devices; /* number of devices found */
cistpl_device_node_t devnode[CISTPL_DEVICE_MAX_DEVICES];

The structure members of cistpl_device_node_t are:

csx_Parse_CISTPL_DEVICE(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

138 man pages section 9: DDI and DKI Kernel Functions • Last Revised 20 Dec 1996

uint32_t flags; /* flags specific to this device */
uint32_t speed; /* device speed in device

/* speed code format */
uint32_t nS_speed; /* device speed in nS */
uint32_t type; /* device type */
uint32_t size; /* device size */
uint32_t size_in_bytes; /* device size in bytes */

The fields are defined as follows:

flags This field indicates whether or not the device is writable, and
describes a Vcc voltage at which the PC Card can be operated.

CISTPL_DEVICE_WPS
Write Protect Switch bit is set

Bits which are applicable only for CISTPL_DEVICE_OC and
CISTPL_DEVICE_OA are:

CISTPL_DEVICE_OC_MWAIT
Use MWAIT

CISTPL_DEVICE_OC_Vcc_MASK
Mask for Vcc value

CISTPL_DEVICE_OC_Vcc5
5.0 volt operation

CISTPL_DEVICE_OC_Vcc33
3.3 volt operation

CISTPL_DEVICE_OC_VccXX
X.X volt operation

CISTPL_DEVICE_OC_VccYY
Y.Y volt operation

speed The device speed value described in the device speed
code unit. If this field is set to
CISTPL_DEVICE_SPEED_SIZE_IGNORE, then the
speed information will be ignored.

nS_speed The device speed value described in nanosecond units.

size The device size value described in the device size code
unit. If this field is set to
CISTPL_DEVICE_SPEED_SIZE_IGNORE, then the
size information will be ignored.

size_in_bytes The device size value described in byte units.

type This is the device type code field which is defined as
follows:

CISTPL_DEVICE_DTYPE_NULL
No device

csx_Parse_CISTPL_DEVICE(9F)

Kernel Functions for Drivers 139

CISTPL_DEVICE_DTYPE_ROM
Masked ROM

CISTPL_DEVICE_DTYPE_OTPROM
One Time Programmable ROM

CISTPL_DEVICE_DTYPE_EPROM
UV EPROM

CISTPL_DEVICE_DTYPE_EEPROM
EEPROM

CISTPL_DEVICE_DTYPE_FLASH
FLASH

CISTPL_DEVICE_DTYPE_SRAM
Static RAM

CISTPL_DEVICE_DTYPE_DRAM
Dynamic RAM

CISTPL_DEVICE_DTYPE_FUNCSPEC
Function-specific memory address range

CISTPL_DEVICE_DTYPE_EXTEND
Extended type follows

CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_UNKNOWN_TUPLE Parser does not know how to parse tuple.

CS_NO_CARD No PC Card in socket.

CS_NO_CIS No Card Information Structure (CIS) on PC
Card.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

These functions may be called from user or kernel context.

csx_GetFirstTuple(9F), csx_GetTupleData(9F),
csx_Parse_CISTPL_JEDEC_C(9F), csx_RegisterClient(9F),
csx_ValidateCIS(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

csx_Parse_CISTPL_DEVICE(9F)

RETURN VALUES

CONTEXT

SEE ALSO

140 man pages section 9: DDI and DKI Kernel Functions • Last Revised 20 Dec 1996

csx_Parse_CISTPL_DEVICEGEO – parse the Device Geo tuple

#include <sys/pccard.h>

int32_t csx_Parse_CISTPL_DEVICEGEO(client_handle_t ch, tuple_t
*tp, cistpl_devicegeo_t *pt);

Solaris DDI Specific (Solaris DDI)

ch Client handle returned from csx_RegisterClient(9F).

tp Pointer to a tuple_t structure (see tuple(9S)) returned by a call to
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).

pt Pointer to a cistpl_devicegeo_t structure which contains the parsed
Device Geo tuple information upon return from this function.

This function parses the Device Geo tuple, CISTPL_DEVICEGEO, into a form usable
by PC Card drivers.

The CISTPL_DEVICEGEO tuple describes the device geometry of common memory
partitions.

The structure members of cistpl_devicegeo_t are:

uint32_t info[CISTPL_DEVICEGEO_MAX_PARTITIONS].bus;
uint32_t info[CISTPL_DEVICEGEO_MAX_PARTITIONS].ebs;
uint32_t info[CISTPL_DEVICEGEO_MAX_PARTITIONS].rbs;
uint32_t info[CISTPL_DEVICEGEO_MAX_PARTITIONS].wbs;
uint32_t info[CISTPL_DEVICEGEO_MAX_PARTITIONS].part;
uint32_t info[CISTPL_DEVICEGEO_MAX_PARTITIONS].hwil;

The fields are defined as follows:

info[CISTPL_DEVICEGEO_MAX_PARTITIONS].bus
This field indicates the card interface width in bytes for the given partition.

info[CISTPL_DEVICEGEO_MAX_PARTITIONS].ebs
This field indicates the minimum erase block size for the given partition.

info[CISTPL_DEVICEGEO_MAX_PARTITIONS].rbs
This field indicates the minimum read block size for the given partition.

info[CISTPL_DEVICEGEO_MAX_PARTITIONS].wbs
This field indicates the minimum write block size for the given partition.

info[CISTPL_DEVICEGEO_MAX_PARTITIONS].part
This field indicates the segment partition subdivisions for the given partition.

info[CISTPL_DEVICEGEO_MAX_PARTITIONS].hwil
This field indicates the hardware interleave

CS_SUCCESS
Successful operation.

csx_Parse_CISTPL_DEVICEGEO(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

RETURN VALUES

Kernel Functions for Drivers 141

CS_BAD_HANDLE
Client handle is invalid.

CS_UNKNOWN_TUPLE
Parser does not know how to parse tuple.

CS_NO_CARD
No PC Card in socket.

CS_NO_CIS
No Card Information Structure (CIS) on PC Card.

CS_UNSUPPORTED_FUNCTION
No PCMCIA hardware installed.

This function may be called from user or kernel context.

csx_GetFirstTuple(9F), csx_GetNextTuple(9F), csx_GetTupleData(9F),
csx_Parse_CISTPL_DEVICEGEO_A(9F), csx_RegisterClient(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

csx_Parse_CISTPL_DEVICEGEO(9F)

CONTEXT

SEE ALSO

142 man pages section 9: DDI and DKI Kernel Functions • Last Revised 16 May 1997

csx_Parse_CISTPL_DEVICEGEO_A – parse the Device Geo A tuple

#include <sys/pccard.h>

int32_t csx_Parse_CISTPL_DEVICEGEO_A(client_handle_t ch, tuple_t
*tp, cistpl_devicegeo_t *pt);

Solaris DDI Specific (Solaris DDI)

ch Client handle returned from csx_RegisterClient(9F).

tp Pointer to a tuple_t structure (see tuple(9S)) returned by a call to
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).

pt Pointer to a cistpl_devicegeo_t structure which contains the parsed
Device Geo A tuple information upon return from this function.

This function parses the Device Geo A tuple, CISTPL_DEVICEGEO_A, into a form
usable by PC Card drivers.

The CISTPL_DEVICEGEO_A tuple describes the device geometry of attribute memory
partitions.

The structure members of cistpl_devicegeo_t are:

uint32_t info[CISTPL_DEVICEGEO_MAX_PARTITIONS].bus;
uint32_t info[CISTPL_DEVICEGEO_MAX_PARTITIONS].ebs;
uint32_t info[CISTPL_DEVICEGEO_MAX_PARTITIONS].rbs;
uint32_t info[CISTPL_DEVICEGEO_MAX_PARTITIONS].wbs;
uint32_t info[CISTPL_DEVICEGEO_MAX_PARTITIONS].part;
uint32_t info[CISTPL_DEVICEGEO_MAX_PARTITIONS].hwil;

The fields are defined as follows:

info[CISTPL_DEVICEGEO_MAX_PARTITIONS].bus
This field indicates the card interface width in bytes for the given partition.

info[CISTPL_DEVICEGEO_MAX_PARTITIONS].ebs
This field indicates the minimum erase block size for the given partition.

info[CISTPL_DEVICEGEO_MAX_PARTITIONS].rbs
This field indicates the minimum read block size for the given partition.

info[CISTPL_DEVICEGEO_MAX_PARTITIONS].wbs
This field indicates the minimum write block size for the given partition.

info[CISTPL_DEVICEGEO_MAX_PARTITIONS].part
This field indicates the segment partition subdivisions for the given partition.

info[CISTPL_DEVICEGEO_MAX_PARTITIONS].hwil
This field indicates the hardware interleave for the given partition.

CS_SUCCESS
Successful operation.

csx_Parse_CISTPL_DEVICEGEO_A(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

RETURN VALUES

Kernel Functions for Drivers 143

CS_BAD_HANDLE
Client handle is invalid.

CS_UNKNOWN_TUPLE
Parser does not know how to parse tuple.

CS_NO_CARD
No PC Card in socket.

CS_NO_CIS
No Card Information Structure (CIS) on PC Card.

CS_UNSUPPORTED_FUNCTION
No PCMCIA hardware installed.

This function may be called from user or kernel context.

csx_GetFirstTuple(9F), csx_GetNextTuple(9F), csx_GetTupleData(9F),
csx_Parse_CISTPL_DEVICEGEO(9F), csx_RegisterClient(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

csx_Parse_CISTPL_DEVICEGEO_A(9F)

CONTEXT

SEE ALSO

144 man pages section 9: DDI and DKI Kernel Functions • Last Revised 16 May 1997

csx_Parse_CISTPL_FORMAT – parse the Data Recording Format tuple

#include <sys/pccard.h>

int32_t csx_Parse_CISTPL_FORMAT(client_handle_t ch, tuple_t *tu,
cistpl_format_t *pt);

Solaris DDI Specific (Solaris DDI)

ch Client handle returned from csx_RegisterClient(9F).

tu Pointer to a tuple_t structure (see tuple(9S)) returned by a call to
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).

pt Pointer to a cistpl_format_t structure which contains the parsed
CISTPL_FORMAT tuple information upon return from this function.

This function parses the Data Recording Format tuple, CISTPL_FORMAT, into a form
usable by PC Card drivers.

The CISTPL_FORMAT tuple indicates the data recording format for a device partition.

The structure members of cistpl_format_t are:

uint32_t type;
uint32_t edc_length;
uint32_t edc_type;
uint32_t offset;
uint32_t nbytes;
uint32_t dev.disk.bksize;
uint32_t dev.disk.nblocks;
uint32_t dev.disk.edcloc;
uint32_t dev.mem.flags;
uint32_t dev.mem.reserved;
caddr_t dev.mem.address;
uint32_t dev.mem.edcloc;

The fields are defined as follows:

type This field indicates the type of device:

TPLFMTTYPE_DISK
disk-like device

TPLFMTTYPE_MEM
memory-like device

TPLFMTTYPE_VS
vendor-specific device

edc_length This field indicates the error detection code length.

edc_type This field indicates the error detection code type.

offset This field indicates the offset of the first byte of data in
this partition.

csx_Parse_CISTPL_FORMAT(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

Kernel Functions for Drivers 145

nbytes This field indicates the number of bytes of data in this
partition

dev.disk.bksize This field indicates the block size, for disk devices.

dev.disk.nblocks This field indicates the number of blocks, for disk
devices.

dev.disk.edcloc This field indicates the location of the error detection
code, for disk devices.

dev.mem.flags This field provides flags, for memory devices. Valid
flags are:

TPLFMTFLAGS_ADDR
address is valid

TPLFMTFLAGS_AUTO
automatically map memory region

dev.mem.reserved This field is reserved.

dev.mem.address This field indicates the physical address, for memory
devices.

dev.mem.edcloc This field indicates the location of the error detection
code, for memory devices.

CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_UNKNOWN_TUPLE Parser does not know how to parse tuple.

CS_NO_CARD No PC Card in socket.

CS_NO_CIS No Card Information Structure (CIS) on PC
Card.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

This function may be called from user or kernel context.

csx_GetFirstTuple(9F), csx_GetTupleData(9F), csx_RegisterClient(9F),
csx_ValidateCIS(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

csx_Parse_CISTPL_FORMAT(9F)

RETURN VALUES

CONTEXT

SEE ALSO

146 man pages section 9: DDI and DKI Kernel Functions • Last Revised 24 Jan 1997

csx_Parse_CISTPL_FUNCE – parse Function Extension tuple

#include <sys/pccard.h>

int32_t csx_Parse_CISTPL_FUNCE(client_handle_t ch, tuple_t *tu,
cistpl_funce_t *cf, uint32_t fid);

Solaris DDI Specific (Solaris DDI)

ch Client handle returned from csx_RegisterClient(9F).

tu Pointer to a tuple_t structure (see tuple(9S)) returned by a call to
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).

cf Pointer to a cistpl_funce_t structure which contains the parsed
CISTPL_FUNCE tuple information upon return from this function.

fid The function ID code to which this CISTPL_FUNCE tuple refers. See
csx_Parse_CISTPL_FUNCID(9F).

This function parses the Function Extension tuple, CISTPL_FUNCE, into a form
usable by PC Card drivers.

The CISTPL_FUNCE tuple is used to describe information about a specific PCCard
function. The information provided is determined by the Function Identification tuple,
CISTPL_FUNCID, that is being extended. Each function has a defined set of extension
tuples.

The structure members of cistpl_funce_t are:

uint32_t function; /* type of extended data */
uint32_t subfunction;
union {

struct serial {
uint32_t ua; /* UART in use */
uint32_t uc; /* UART capabilities */

} serial;
struct modem {

uint32_t fc; /* supported flow control methods */
uint32_t cb; /* size of DCE command buffer */
uint32_t eb; /* size of DCE to DCE buffer */
uint32_t tb; /* size of DTE to DCE buffer */

} modem;
struct data_modem {

uint32_t ud; /* highest data rate */
uint32_t ms; /* modulation standards */
uint32_t em; /* err correct proto and

/* non-CCITT modulation */
uint32_t dc; /* data compression protocols */
uint32_t cm; /* command protocols */
uint32_t ex; /* escape mechanisms */
uint32_t dy; /* standardized data encryption */
uint32_t ef; /* miscellaneous end user features */
uint32_t ncd; /* number of country codes */
uchar_t cd[16]; /* CCITT country code */

} data_modem;

csx_Parse_CISTPL_FUNCE(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

Kernel Functions for Drivers 147

struct fax {
uint32_t uf; /* highest data rate in DTE/UART */
uint32_t fm; /* CCITT modulation standards */
uint32_t fy; /* standardized data encryption */
uint32_t fs; /* feature selection */
uint32_t ncf; /* number of country codes */
uchar_t cf[16]; /* CCITT country codes */

} fax;
struct voice {

uint32_t uv; /* highest data rate */
uint32_t nsr;
uint32_t sr[16]; /* voice sampling rates (*100) */
uint32_t nss;
uint32_t ss[16]; /* voice sample sizes (*10) */
uint32_t nsc;
uint32_t sc[16]; /* voice compression methods */

} voice;
struct lan {

uint32_t tech; /* network technology */
uint32_t speed; /* media bit or baud rate */
uint32_t media; /* network media supported */
uint32_t con; /* open/closed connector standard */
uint32_t id_sz; /* length of lan station id */
uchar_t id[16]; /* station ID */

} lan;
} data;

The fields are defined as follows:

function This field identifies the type of extended information
provided about a function by the CISTPL_FUNCE
tuple. This field is defined as follows:

TPLFE_SUB_SERIAL
Serial port interface

TPLFE_SUB_MODEM_COMMON
Common modem interface

TPLFE_SUB_MODEM_DATA
Data modem services

TPLFE_SUB_MODEM_FAX
Fax modem services

TPLFE_SUB_VOICE
Voice services

TPLFE_CAP_MODEM_DATA
Capabilities of the data modem interface

TPLFE_CAP_MODEM_FAX
Capabilities of the fax modem interface

TPLFE_CAP_MODEM_VOICE
Capabilities of the voice modem interface

csx_Parse_CISTPL_FUNCE(9F)

148 man pages section 9: DDI and DKI Kernel Functions • Last Revised 20 Dec 1996

TPLFE_CAP_SERIAL_DATA
Serial port interface for data modem services

TPLFE_CAP_SERIAL_FAX
Serial port interface for fax modem services

TPLFE_CAP_SERIAL_VOICE
Serial port interface for voice modem services

subfunction This is for identifying a sub-category of services
provided by a function in the CISTPL_FUNCE tuple.
The numeric value of the code is in the range of 1 to
15.

ua This is the serial port UART identification and is
defined as follows:

TPLFE_UA_8250
Intel 8250

TPLFE_UA_16450
NS 16450

TPLFE_UA_16550
NS 16550

uc This identifies the serial port UART capabilities and is
defined as follows:

TPLFE_UC_PARITY_SPACE
Space parity supported

TPLFE_UC_PARITY_MARK
Mark parity supported

TPLFE_UC_PARITY_ODD
Odd parity supported

TPLFE_UC_PARITY_EVEN
Even parity supported

TPLFE_UC_CS5
5 bit characters supported

TPLFE_UC_CS6
6 bit characters supported

TPLFE_UC_CS7
7 bit characters supported

TPLFE_UC_CS8
8 bit characters supported

TPLFE_UC_STOP_1
1 stop bit supported

csx_Parse_CISTPL_FUNCE(9F)

Kernel Functions for Drivers 149

TPLFE_UC_STOP_15
1.5 stop bits supported

TPLFE_UC_STOP_2
2 stop bits supported

fc This identifies the modem flow control methods and is
defined as follows:

TPLFE_FC_TX_XONOFF
Transmit XON/XOFF

TPLFE_FC_RX_XONOFF
Receiver XON/XOFF

TPLFE_FC_TX_HW
Transmit hardware flow control (CTS)

TPLFE_FC_RX_HW
Receiver hardware flow control (RTS)

TPLFE_FC_TRANS
Tranparent flow control

ms This identifies the
modem modulation
standards and is defined
as follows:

TPLFE_MS_BELL103
300bps

TPLFE_MS_V21
300bps (V.21)

TPLFE_MS_V23
600/1200bps (V.23)

TPLFE_MS_V22AB
1200bps (V.22A V.22B)

TPLFE_MS_BELL212
2400bsp (US Bell 212

TPLFE_MS_V22BIS
2400bps (V.22bis)

TPLFE_MS_V26
2400bps leased line (V.26)

TPLFE_MS_V26BIS
2400bps (V.26bis)

TPLFE_MS_V27BIS
4800/2400bps leased line (V.27bis)

csx_Parse_CISTPL_FUNCE(9F)

150 man pages section 9: DDI and DKI Kernel Functions • Last Revised 20 Dec 1996

TPLFE_MS_V29
9600/7200/4800 leased line (V.29)

TPLFE_MS_V32
Up to 9600bps (V.32)

TPLFE_MS_V32BIS
Up to 14400bps (V.32bis)

TPLFE_MS_VFAST
Up to 28800 V.FAST

em This identifies modem error correction/detection
protocols and is defined as follows:

TPLFE_EM_MNP
MNP levels 2-4

TPLFE_EM_V42
CCITT LAPM (V.42)

dc This identifies modem data compression protocols and
is defined as follows:

TPLFE_DC_V42BI
CCITT compression V.42

TPLFE_DC_MNP5
MNP compression (uses MNP 2, 3 or 4)

cm This identifies modem command protocols and is
defined as follows:

TPLFE_CM_AT1
ANSI/EIA/TIA 602 "Action" commands

TPLFE_CM_AT2
ANSI/EIA/TIA 602 "ACE/DCE IF Params"

TPLFE_CM_AT3
ANSI/EIA/TIA 602 "Ace Parameters"

TPLFE_CM_MNP_AT
MNP specification AT commands

TPLFE_CM_V25BIS
V.25bis calling commands

TPLFE_CM_V25A
V.25bis test procedures

TPLFE_CM_DMCL
DMCL command mode

ex This identifies the modem escape mechanism and is
defined as follows:

csx_Parse_CISTPL_FUNCE(9F)

Kernel Functions for Drivers 151

TPLFE_EX_BREAK
BREAK support standardized

TPLFE_EX_PLUS
+++ returns to command mode

TPLFE_EX_UD
User defined escape character

dy This identifies modem standardized data encryption
and is a reserved field for future use and must be set to
0.

ef This identifies modem miscellaneous features and is
defined as follows:

TPLFE_EF_CALLERID
Caller ID is supported

fm This identifies fax modulation standards and is defined
as follows:

TPLFE_FM_V21C2
300bps (V.21-C2)

TPLFE_FM_V27TER
4800/2400bps (V.27ter)

TPLFE_FM_V29
9600/7200/4800 leased line (V.29)

TPLFE_FM_V17
14.4K/12K/9600/7200bps (V.17)

TPLFE_FM_V33
4.4K/12K/9600/7200 leased line (V.33)

fs This identifies the fax feature selection and is defined
as follows:

TPLFE_FS_T3
Group 2 (T.3) service class

TPLFE_FS_T4
Group 3 (T.4) service class

TPLFE_FS_T6
Group 4 (T.6) service class

TPLFE_FS_ECM
Error Correction Mode

TPLFE_FS_VOICEREQ
Voice requests allowed

csx_Parse_CISTPL_FUNCE(9F)

152 man pages section 9: DDI and DKI Kernel Functions • Last Revised 20 Dec 1996

TPLFE_FS_POLLING
Polling support

TPLFE_FS_FTP
File transfer support

TPLFE_FS_PASSWORD
Password support

tech This identifies the LAN technology type and is defined
as follows:

TPLFE_LAN_TECH_ARCNET
Arcnet

TPLFE_LAN_TECH_ETHERNET
Ethernet

TPLFE_LAN_TECH_TOKENRING
Token Ring

TPLFE_LAN_TECH_LOCALTALK
Local Talk

TPLFE_LAN_TECH_FDDI
FDDI/CDDI

TPLFE_LAN_TECH_ATM
ATM

TPLFE_LAN_TECH_WIRELESS
Wireless

media This identifies the LAN media type and is defined as
follows:

TPLFE_LAN_MEDIA_INHERENT
Generic interface

TPLFE_LAN_MEDIA_UTP
Unshielded twisted pair

TPLFE_LAN_MEDIA_STP
Shielded twisted pair

TPLFE_LAN_MEDIA_THIN_COAX
Thin coax

TPLFE_LAN_MEDIA_THICK_COAX
Thick coax

TPLFE_LAN_MEDIA_FIBER
Fiber

TPLFE_LAN_MEDIA_SSR_902
Spread spectrum radio 902-928 MHz

csx_Parse_CISTPL_FUNCE(9F)

Kernel Functions for Drivers 153

TPLFE_LAN_MEDIA_SSR_2_4
Spread spectrum radio 2.4 GHz

TPLFE_LAN_MEDIA_SSR_5_4
Spread spectrum radio 5.4 GHz

TPLFE_LAN_MEDIA_DIFFUSE_IR
Diffuse infra red

TPLFE_LAN_MEDIA_PTP_IR
Point to point infra red

CS_SUCCESS
Successful operation.

CS_BAD_HANDLE
Client handle is invalid.

CS_UNKNOWN_TUPLE
Parser does not know how to parse tuple.

CS_NO_CARD
No PC Card in socket.

CS_NO_CIS
No Card Information Structure (CIS) on PC Card.

CS_UNSUPPORTED_FUNCTION
No PCMCIA hardware installed.

This function may be called from user or kernel context.

csx_GetFirstTuple(9F), csx_GetTupleData(9F),
csx_Parse_CISTPL_FUNCID(9F), csx_RegisterClient(9F),
csx_ValidateCIS(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

csx_Parse_CISTPL_FUNCE(9F)

RETURN VALUES

CONTEXT

SEE ALSO

154 man pages section 9: DDI and DKI Kernel Functions • Last Revised 20 Dec 1996

csx_Parse_CISTPL_FUNCID – parse Function Identification tuple

#include <sys/pccard.h>

int32_t csx_Parse_CISTPL_FUNCID(client_handle_t ch, tuple_t *tu,
cistpl_funcid_t *cf);

Solaris DDI Specific (Solaris DDI)

ch Client handle returned from csx_RegisterClient(9F).

tu Pointer to a tuple_t structure (see tuple(9S)) returned by a call to
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).

cf Pointer to a cistpl_funcid_t structure which contains the parsed
CISTPL_FUNCID tuple information upon return from this function.

This function parses the Function Identification tuple, CISTPL_FUNCID, into a form
usable by PC Card drivers.

The CISTPL_FUNCID tuple is used to describe information about the functionality
provided by a PC Card. Information is also provided to enable system utilities to
decide if the PC Card should be configured during system initialization. If additional
function specific information is available, one or more function extension tuples of
type CISTPL_FUNCE follow this tuple (see csx_Parse_CISTPL_FUNCE(9F)).

The structure members of cistpl_funcid_t are:

uint32_t function; /* PC Card function code */
uint32_t sysinit; /* system initialization mask */

The fields are defined as follows:

function This is the function type for CISTPL_FUNCID:

TPLFUNC_MULTI
Vendor-specific multifunction card

TPLFUNC_MEMORY
Memory card

TPLFUNC_SERIAL
Serial I/O port

TPLFUNC_PARALLEL
Parallel printer port

TPLFUNC_FIXED
Fixed disk, silicon or removable

TPLFUNC_VIDEO
Video interface

TPLFUNC_LAN
Local Area Network adapter

csx_Parse_CISTPL_FUNCID(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

Kernel Functions for Drivers 155

TPLFUNC_AIMS
Auto Incrementing Mass Storage

TPLFUNC_SCSI
SCSI bridge

TPLFUNC_SECURITY
Security cards

TPLFUNC_VENDOR_SPECIFIC
Vendor specific

TPLFUNC_UNKNOWN
Unknown function(s)

sysinit This field is bit-mapped and defined as follows:

TPLINIT_POST
POST should attempt configure

TPLINIT_ROM
Map ROM during sys init

CS_SUCCESS
Successful operation.

CS_BAD_HANDLE
Client handle is invalid.

CS_UNKNOWN_TUPLE
Parser does not know how to parse tuple.

CS_NO_CARD
No PC Card in socket.

CS_NO_CIS
No Card Information Structure (CIS) on PC Card.

CS_UNSUPPORTED_FUNCTION
No PCMCIA hardware installed.

This function may be called from user or kernel context.

csx_GetFirstTuple(9F), csx_GetTupleData(9F),
csx_Parse_CISTPL_FUNCE(9F), csx_RegisterClient(9F),
csx_ValidateCIS(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

csx_Parse_CISTPL_FUNCID(9F)

RETURN VALUES

CONTEXT

SEE ALSO

156 man pages section 9: DDI and DKI Kernel Functions • Last Revised 20 Dec 1996

csx_Parse_CISTPL_GEOMETRY – parse the Geometry tuple

#include <sys/pccard.h>

int32_t csx_Parse_CISTPL_GEOMETRY(client_handle_t ch, tuple_t *tu,
cistpl_geometry_t *pt);

Solaris DDI Specific (Solaris DDI)

ch Client handle returned from csx_RegisterClient(9F).

tu Pointer to a tuple_t structure (see tuple(9S)) returned by a call to
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).

pt Pointer to a cistpl_geometry_t structure which contains the parsed
CISTPL_GEOMETRY tuple information upon return from this function.

This function parses the Geometry tuple, CISTPL_GEOMETRY, into a form usable by
PC Card drivers.

The CISTPL_GEOMETRY tuple indicates the geometry of a disk-like device.

The structure members of cistpl_geometry_t are:

uint32_t spt;
uint32_t tpc;

uint32_t ncyl;

The fields are defined as follows:

spt This field indicates the number of sectors per track.

tpc This field indicates the number of tracks per cylinder.

ncyl This field indicates the number of cylinders.

CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_UNKNOWN_TUPLE Parser does not know how to parse tuple.

CS_NO_CARD No PC Card in socket.

CS_NO_CIS No Card Information Structure (CIS) on PC
Card.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

This function may be called from user or kernel context.

csx_GetFirstTuple(9F), csx_GetTupleData(9F), csx_RegisterClient(9F),
csx_ValidateCIS(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

csx_Parse_CISTPL_GEOMETRY(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 157

csx_Parse_CISTPL_JEDEC_C, csx_Parse_CISTPL_JEDEC_A – parse JEDEC Identifier
tuples

#include <sys/pccard.h>

int32_t csx_Parse_CISTPL_JEDEC_C(client_handle_t ch, tuple_t *tu,
cistpl_jedec_t *cj);

int32_t csx_Parse_CISTPL_JEDEC_A(client_handle_t ch, tuple_t *tu,
cistpl_jedec_t *cj);

Solaris DDI Specific (Solaris DDI)

ch Client handle returned from csx_RegisterClient(9F).

tu Pointer to a tuple_t structure (see tuple(9S)) returned by a call to
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).

cj Pointer to a cistpl_jedec_t structure which contains the parsed
CISTPL_JEDEC_C or CISTPL_JEDEC_A tuple information upon return
from these functions, respectively.

csx_Parse_CISTPL_JEDEC_C() and csx_Parse_CISTPL_JEDEC_A() parse the
JEDEC Identifier tuples, CISTPL_JEDEC_C and CISTPL_JEDEC_A, respectively, into
a form usable by PC Card drivers.

The CISTPL_JEDEC_C and CISTPL_JEDEC_A tuples are optional tuples provided for
cards containing programmable devices. They describe information for Common
Memory or Attribute Memory space, respectively.

The structure members of cistpl_jedec_t are:

uint32_t nid; /* # of JEDEC identifiers present */

jedec_ident_t jid[CISTPL_JEDEC_MAX_IDENTIFIERS];

The structure members of jedec_ident_t are:

uint32_t id; /* manufacturer id */

uint32_t info; /* manufacturer specific info */

CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_UNKNOWN_TUPLE Parser does not know how to parse tuple.

CS_NO_CARD No PC Card in socket.

CS_NO_CIS No Card Information Structure (CIS) on PC
Card.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

These functions may be called from user or kernel context.

csx_Parse_CISTPL_JEDEC_C(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

RETURN VALUES

CONTEXT

158 man pages section 9: DDI and DKI Kernel Functions • Last Revised 20 Dec 1996

csx_GetFirstTuple(9F), csx_GetTupleData(9F),
csx_Parse_CISTPL_DEVICE(9F), csx_RegisterClient(9F),
csx_ValidateCIS(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

csx_Parse_CISTPL_JEDEC_C(9F)

SEE ALSO

Kernel Functions for Drivers 159

csx_Parse_CISTPL_LINKTARGET – parse the Link Target tuple

#include <sys/pccard.h>

int32_t csx_Parse_CISTPL_LINKTARGET(client_handle_t ch, tuple_t
*tu, cistpl_linktarget_t *pt);

Solaris DDI Specific (Solaris DDI)

ch Client handle returned from csx_RegisterClient(9F).

tu Pointer to a tuple_t structure (see tuple(9S)) returned by a call to
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).

pt Pointer to a cistpl_linktarget_t structure which contains the parsed
CISTPL_LINKTARGET tuple information upon return from this function.

This function parses the Link Target tuple, CISTPL_LINKTARGET, into a form usable
by PCCard drivers.

The CISTPL_LINKTARGET tuple is used to verify that tuple chains other than the
primary chain are valid. All secondary tuple chains are required to contain this tuple
as the first tuple of the chain.

The structure members of cistpl_linktarget_t are:

uint32_t length;
char tpltg_tag[CIS_MAX_TUPLE_DATA_LEN];

The fields are defined as follows:

length This field indicates the number of bytes in tpltg_tag.

tpltg_tag This field provides the Link Target tuple information.

CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_UNKNOWN_TUPLE Parser does not know how to parse tuple.

CS_NO_CARD No PC Card in socket.

CS_NO_CIS No Card Information Structure (CIS) on PC
Card.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

This function may be called from user or kernel context.

csx_GetFirstTuple(9F), csx_GetTupleData(9F), csx_RegisterClient(9F),
csx_ValidateCIS(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

csx_Parse_CISTPL_LINKTARGET(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

RETURN VALUES

CONTEXT

SEE ALSO

160 man pages section 9: DDI and DKI Kernel Functions • Last Revised 24 Jan 1997

csx_Parse_CISTPL_LONGLINK_A, csx_Parse_CISTPL_LONGLINK_C – parse the
Long Link A and C tuples

#include <sys/pccard.h>

int32_t csx_Parse_CISTPL_LONGLINK_A(client_handle_t ch, tuple_t
*tu, cistpl_longlink_ac_t *pt);

int32_t csx_Parse_CISTPL_LONGLINK_C(client_handle_t ch, tuple_t
*tu, cistpl_longlink_ac_t *pt);

Solaris DDI Specific (Solaris DDI)

ch Client handle returned from csx_RegisterClient(9F).

tu Pointer to a tuple_t structure (see tuple(9S)) returned by a call to
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).

pt Pointer to a cistpl_longlink_ac_t structure which contains the parsed
CISTPL_LONGLINK_A or CISTPL_LONGLINK_C tuple information upon
return from this function.

This function parses the Long Link A and C tuples, CISTPL_LONGLINK_A and
CISTPL_LONGLINK_A, into a form usable by PC Card drivers.

The CISTPL_LONGLINK_A and CISTPL_LONGLINK_C tuples provide links to
Attribute and Common Memory.

The structure members of cistpl_longlink_ac_t are:

uint32_t flags;

uint32_t tpll_addr;

The fields are defined as follows:

flags This field indicates the type of memory:

CISTPL_LONGLINK_AC_AM
long link to Attribute Memory

CISTPL_LONGLINK_AC_CM
long link to Common Memory

tpll_addr This field provides the offset from the beginning of the specified
address space.

CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_UNKNOWN_TUPLE Parser does not know how to parse tuple.

CS_NO_CARD No PC Card in socket.

CS_NO_CIS No Card Information Structure (CIS) on PC
Card.

csx_Parse_CISTPL_LONGLINK_A(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

RETURN VALUES

Kernel Functions for Drivers 161

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

This function may be called from user or kernel context.

csx_GetFirstTuple(9F), csx_GetTupleData(9F), csx_RegisterClient(9F),
csx_ValidateCIS(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

csx_Parse_CISTPL_LONGLINK_A(9F)

CONTEXT

SEE ALSO

162 man pages section 9: DDI and DKI Kernel Functions • Last Revised 24 Jan 1997

csx_Parse_CISTPL_LONGLINK_MFC – parse the Multi-Function tuple

#include <sys/pccard.h>

int32_t csx_Parse_CISTPL_LONGLINK_MFC(client_handle_t ch, tuple_t
*tu, cistpl_longlink_mfc_t *pt);

Solaris DDI Specific (Solaris DDI)

ch Client handle returned from csx_RegisterClient(9F).

tu Pointer to a tuple_t structure (see tuple(9S)) returned by a call to
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).

pt Pointer to a cistpl_longlink_mfc_t structure which contains the
parsed CISTPL_LONGLINK_MFC tuple information upon return from this
function.

This function parses the Multi-Function tuple, CISTPL_LONGLINK_MFC, into a form
usable by PC Card drivers.

The CISTPL_LONGLINK_MFC tuple describes the start of the function-specific CIS for
each function on a multi-function card.

The structure members of cistpl_longlink_mfc_t are:

uint32_t nfuncs;
uint32_t nregs;
uint32_t function[CIS_MAX_FUNCTIONS].tas

uint32_t function[CIS_MAX_FUNCTIONS].addr

The fields are defined as follows:

nfuncs
This field indicates the number of functions on the PC card.

nregs
This field indicates the number of configuration register sets.

function[CIS_MAX_FUNCTIONS].tas
This field provides the target address space for each function on the PC card. This
field can be one of:

CISTPL_LONGLINK_MFC_TAS_AM
CIS in attribute memory

CISTPL_LONGLINK_MFC_TAS_CM
CIS in common memory

function[CIS_MAX_FUNCTIONS].addr
This field provides the target address offset for each function on the PC card.

CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

csx_Parse_CISTPL_LONGLINK_MFC(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

RETURN VALUES

Kernel Functions for Drivers 163

CS_UNKNOWN_TUPLE Parser does not know how to parse tuple.

CS_NO_CARD No PC Card in socket.

CS_NO_CIS No Card Information Structure (CIS) on PC
Card.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

This function may be called from user or kernel context.

csx_GetFirstTuple(9F), csx_GetTupleData(9F), csx_RegisterClient(9F),
csx_ValidateCIS(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

csx_Parse_CISTPL_LONGLINK_MFC(9F)

CONTEXT

SEE ALSO

164 man pages section 9: DDI and DKI Kernel Functions • Last Revised 24 Jan 1997

csx_Parse_CISTPL_MANFID – parse Manufacturer Identification tuple

#include <sys/pccard.h>

int32_t csx_Parse_CISTPL_MANFID(client_handle_t ch, tuple_t *tu,
cistpl_manfid_t *cm);

Solaris DDI Specific (Solaris DDI)

ch Client handle returned from csx_RegisterClient(9F).

tu Pointer to a tuple_t structure (see tuple(9S)) returned by a call to
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).

cm Pointer to a cistpl_manfid_t structure which contains the parsed
CISTPL_MANFID tuple information upon return from this function.

This function parses the Manufacturer Identification tuple, CISTPL_MANFID, into a
form usable by PC Card drivers.

The CISTPL_MANFID tuple is used to describe the information about the
manufacturer of a PC Card. There are two types of information, the PC Card’s
manufacturer and a manufacturer card number.

The structure members of cistpl_manfid_t are:

uint32_t manf; /* PCMCIA assigned manufacturer code */
uint32_t card; /* manufacturer information

(part number and/or revision) */

CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_UNKNOWN_TUPLE Parser does not know how to parse tuple.

CS_NO_CARD No PC Card in socket.

CS_NO_CIS No Card Information Structure (CIS) on PC
card.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

This function may be called from user or kernel context.

csx_GetFirstTuple(9F), csx_GetTupleData(9F), csx_RegisterClient(9F),
csx_ValidateCIS(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

csx_Parse_CISTPL_MANFID(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 165

csx_Parse_CISTPL_ORG – parse the Data Organization tuple

#include <sys/pccard.h>

int32_t csx_Parse_CISTPL_ORG(client_handle_t ch, tuple_t *tu,
cistpl_org_t *pt);

Solaris DDI Specific (Solaris DDI)

ch Client handle returned from csx_RegisterClient(9F).

tu Pointer to a tuple_t structure (see tuple(9S)) returned by a call to
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).

pt Pointer to a cistpl_org_t structure which contains the parsed
CISTPL_ORG tuple information upon return from this function.

This function parses the Data Organization tuple, CISTPL_ORG, into a form usable by
PC Card drivers.

The CISTPL_ORG tuple provides a text description of the organization.

The structure members of cistpl_org_t are:

uint32_t type;

char desc[CIS_MAX_TUPLE_DATA_LEN];

The fields are defined as follows:

type
This field indicates type of data organization.

desc[CIS_MAX_TUPLE_DATA_LEN]
This field provides the text description of this organization.

CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_UNKNOWN_TUPLE Parser does not know how to parse tuple.

CS_NO_CARD No PC Card in socket.

CS_NO_CIS No Card Information Structure (CIS) on PC
Card.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

This function may be called from user or kernel context.

csx_GetFirstTuple(9F), csx_GetTupleData(9F), csx_RegisterClient(9F),
csx_ValidateCIS(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

csx_Parse_CISTPL_ORG(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

RETURN VALUES

CONTEXT

SEE ALSO

166 man pages section 9: DDI and DKI Kernel Functions • Last Revised 24 Jan 1997

csx_Parse_CISTPL_SPCL – parse the Special Purpose tuple

#include <sys/pccard.h>

int32_t csx_Parse_CISTPL_SPCL(client_handle_t ch, tuple_t *tu,
cistpl_spcl_t *csp);

Solaris DDI Specific (Solaris DDI)

ch Client handle returned from csx_RegisterClient(9F).

tu Pointer to a tuple_t structure (see tuple(9S)) returned by a call to
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).

csp Pointer to a cistpl_spcl_t structure which contains the parsed
CISTPL_SPCL tuple information upon return from this function.

This function parses the Special Purpose tuple, CISTPL_SPCL, into a form usable by
PC Card drivers.

The CISTPL_SPCL tuple is identified by an identification field that is assigned by
PCMCIA or JEIDA. A sequence field allows a series of CISTPL_SPCL tuples to be
used when the data exceeds the size that can be stored in a single tuple; the maximum
data area of a series of CISTPL_SPCL tuples is unlimited. Another field gives the
number of bytes in the data field in this tuple.

The structure members of cistpl_date_t are:

uint32_t id; /* tuple contents identification */
uint32_t seq; /* data sequence number */
uint32_t bytes; /* number of bytes following */
uchar_t data[CIS_MAX_TUPLE_DATA_LEN];

The fields are defined as follows:

id This field contains a PCMCIA or JEIDA assigned value that identifies this
series of one or more CISTPL_SPCL tuples. These field values are assigned
by contacting either PCMCIA or JEIDA.

seq This field contains a data sequence number. CISTPL_SPCL_SEQ_END is
the last tuple in sequence.

bytes This field contains the number of data bytes in the
data[CIS_MAX_TUPLE_DATA_LEN].

data The data component of this tuple.

CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_UNKNOWN_TUPLE Parser does not know how to parse tuple.

CS_NO_CARD No PC Card in socket.

CS_NO_CIS No Card Information Structure (CIS) on PC
Card.

csx_Parse_CISTPL_SPCL(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

RETURN VALUES

Kernel Functions for Drivers 167

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

This function may be called from user or kernel context.

csx_GetFirstTuple(9F), csx_GetTupleData(9F), csx_RegisterClient(9F),
csx_ValidateCIS(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

csx_Parse_CISTPL_SPCL(9F)

CONTEXT

SEE ALSO

168 man pages section 9: DDI and DKI Kernel Functions • Last Revised 20 Dec 1996

csx_Parse_CISTPL_SWIL – parse the Software Interleaving tuple

#include <sys/pccard.h>

int32_t csx_Parse_CISTPL_SWIL(client_handle_t ch, tuple_t *tu,
cistpl_swil_t *pt);

Solaris DDI Specific (Solaris DDI)

ch Client handle returned from csx_RegisterClient(9F).

tu Pointer to a tuple_t structure (see tuple(9S)) returned by a call to
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).

pt Pointer to a cistpl_swil_t structure which contains the parsed
CISTPL_SWIL tuple information upon return from this function.

This function parses the Software Interleaving tuple, CISTPL_SWIL, into a form
usable by PC Card drivers.

The CISTPL_SWIL tuple provides the software interleaving of data within a partition
on the card.

The structure members of cistpl_swil_t are:

uint32_t intrlv;

The fields are defined as follows:

intrlv This field provides the software interleaving for a partition.

CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_UNKNOWN_TUPLE Parser does not know how to parse tuple.

CS_NO_CARD No PC Card in socket.

CS_NO_CIS No Card Information Structure (CIS) on PC
Card.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

This function may be called from user or kernel context.

csx_GetFirstTuple(9F), csx_GetTupleData(9F), csx_RegisterClient(9F),
csx_ValidateCIS(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

csx_Parse_CISTPL_SWIL(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 169

csx_Parse_CISTPL_VERS_1 – parse Level-1 Version/Product Information tuple

#include <sys/pccard.h>

int32_t csx_Parse_CISTPL_VERS_1(client_handle_t ch, tuple_t *tu,
cistpl_vers_1_t *cv1);

Solaris DDI Specific (Solaris DDI)

ch Client handle returned from csx_RegisterClient(9F).

tu Pointer to a tuple_t structure (see tuple(9S)) returned by a call to
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).

cv1 Pointer to a cistpl_vers_1_t structure which contains the parsed
CISTPL_VERS_1 tuple information upon return from this function.

This function parses the Level-1 Version/Product Information tuple,
CISTPL_VERS_1, into a form usable by PC Card drivers.

The CISTPL_VERS_1 tuple is used to describe the card Level-1 version compliance
and card manufacturer information.

The structure members of cistpl_vers_1_t are:

uint32_t major; /* major version number */
uint32_t minor; /* minor version number */
uint32_t ns; /* number of information strings */
char pi[CISTPL_VERS_1_MAX_PROD_STRINGS]

[CIS_MAX_TUPLE_DATA_LEN];
/* pointers to product information strings */

CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_UNKNOWN_TUPLE Parser does not know how to parse tuple.

CS_NO_CARD No PC Card in socket.

CS_NO_CIS No Card Information Structure (CIS) on PC
Card.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

This function may be called from user or kernel context.

csx_GetFirstTuple(9F), csx_GetTupleData(9F), csx_RegisterClient(9F),
csx_ValidateCIS(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

csx_Parse_CISTPL_VERS_1(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

RETURN VALUES

CONTEXT

SEE ALSO

170 man pages section 9: DDI and DKI Kernel Functions • Last Revised 20 Dec 1996

csx_Parse_CISTPL_VERS_2 – parse Level-2 Version and Information tuple

#include <sys/pccard.h>

int32_t csx_Parse_CISTPL_VERS_2(client_handle_t ch, tuple_t *tu,
cistpl_vers_2_t *cv2);

Solaris DDI Specific (Solaris DDI)

ch Client handle returned from csx_RegisterClient(9F).

tu Pointer to a tuple_t structure (see tuple(9S)) returned by a call to
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).

cv2 Pointer to a cistpl_vers_2_t structure which contains the parsed
CISTPL_VERS_2 tuple information upon return from this function.

This function parses the Level-2 Version and Information tuple, CISTPL_VERS_2,
into a form usable by PC Card drivers.

The CISTPL_VERS_2 tuple is used to describe the card Level-2 information which has
the logical organization of the card’s data.

The structure members of cistpl_vers_2_t are:

uint32_t vers; /* version number */
uint32_t comply; /* level of compliance */
uint32_t dindex; /* byte address of first data byte in card */
uint32_t vspec8; /* vendor specific (byte 8) */
uint32_t vspec9; /* vendor specific (byte 9) */
uint32_t nhdr; /* number of copies of CIS present on device */
char oem[CIS_MAX_TUPLE_DATA_LEN];

/* Vendor of software that formatted card */
char info[CIS_MAX_TUPLE_DATA_LEN];

/* Informational message about card */

CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_UNKNOWN_TUPLE Parser does not know how to parse tuple.

CS_NO_CARD No PC Card in socket.

CS_NO_CIS No Card Information Structure (CIS) on PC
Card.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

This function may be called from user or kernel context.

csx_GetFirstTuple(9F), csx_GetTupleData(9F), csx_RegisterClient(9F),
csx_ValidateCIS(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

csx_Parse_CISTPL_VERS_2(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 171

csx_ParseTuple – generic tuple parser

#include <sys/pccard.h>

int32_t csx_ParseTuple(client_handle_t ch, tuple_t *tu, cisparse_t
*cp, cisdata_t cd);

Solaris DDI Specific (Solaris DDI)

ch Client handle returned from csx_RegisterClient(9F).

tu Pointer to a tuple_t structure (see tuple(9S)) returned by a call to
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).

cp Pointer to a cisparse_t structure that unifies all tuple parsing structures.

cd Extended tuple data for some tuples.

This function is the generic tuple parser entry point.

The structure members of cisparse_t are:

typedef union cisparse_t {
cistpl_config_t cistpl_config;
cistpl_device_t cistpl_device;
cistpl_vers_1_t cistpl_vers_1;
cistpl_vers_2_t cistpl_vers_2;
cistpl_jedec_t cistpl_jedec;
cistpl_format_t cistpl_format;
cistpl_geometry_t cistpl_geometry;
cistpl_byteorder_t cistpl_byteorder;
cistpl_date_t cistpl_date;
cistpl_battery_t cistpl_battery;
cistpl_org_t cistpl_org;
cistpl_manfid_t cistpl_manfid;
cistpl_funcid_t cistpl_funcid;
cistpl_funce_t cistpl_funce;
cistpl_cftable_entry_t cistpl_cftable_entry;
cistpl_linktarget_t cistpl_linktarget;
cistpl_longlink_ac_t cistpl_longlink_ac;
cistpl_longlink_mfc_t cistpl_longlink_mfc;
cistpl_spcl_t cistpl_spcl;
cistpl_swil_t cistpl_swil;
cistpl_bar_t cistpl_bar;
cistpl_devicegeo_t cistpl_devicegeo;
cistpl_longlink_cb_t cistpl_longlink_cb;
cistpl_get_tuple_name_t cistpl_get_tuple_name;

} cisparse_t;

CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_UNKNOWN_TUPLE Parser does not know how to parse tuple.

CS_NO_CARD No PC Card in socket.

CS_BAD_CIS Generic parser error.

csx_ParseTuple(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

RETURN VALUES

172 man pages section 9: DDI and DKI Kernel Functions • Last Revised 20 Dec 1996

CS_NO_CIS No Card Information Structure (CIS) on PC
Card.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

This function may be called from user or kernel context.

csx_GetFirstTuple(9F), csx_GetTupleData(9F),
csx_Parse_CISTPL_BATTERY(9F), csx_Parse_CISTPL_BYTEORDER(9F),
csx_Parse_CISTPL_CFTABLE_ENTRY(9F), csx_Parse_CISTPL_CONFIG(9F),
csx_Parse_CISTPL_DATE(9F), csx_Parse_CISTPL_DEVICE(9F),
csx_Parse_CISTPL_FUNCE(9F), csx_Parse_CISTPL_FUNCID(9F),
csx_Parse_CISTPL_JEDEC_C(9F), csx_Parse_CISTPL_MANFID(9F),
csx_Parse_CISTPL_SPCL(9F), csx_Parse_CISTPL_VERS_1(9F),
csx_Parse_CISTPL_VERS_2(9F), csx_RegisterClient(9F),
csx_ValidateCIS(9F), tuple(9S)

PC Card 95 Standard, PCMCIA/JEIDA

csx_ParseTuple(9F)

CONTEXT

SEE ALSO

Kernel Functions for Drivers 173

csx_Put8, csx_Put16, csx_Put32, csx_Put64 – write to device register

#include <sys/pccard.h>

void csx_Put8(acc_handle_t handle, uint32_t offset, uint8_t value);

void csx_Put16(acc_handle_t handle, uint32_t offset, uint16_t value);

void csx_Put32(acc_handle_t handle, uint32_t offset, uint32_t value);

void csx_Put64(acc_handle_t handle, uint32_t offset, uint64_t value);

Solaris DDI Specific (Solaris DDI)

handle The access handle returned from csx_RequestIO(9F),
csx_RequestWindow(9F), or csx_DupHandle(9F).

offset The offset in bytes from the base of the mapped resource.

value The data to be written to the device.

These functions generate a write of various sizes to the mapped memory or device
register.

The csx_Put8(), csx_Put16(), csx_Put32(), and csx_Put64() functions write
8 bits, 16 bits, 32 bits, and 64 bits of data, respectively, to the device address
represented by the handle, handle, at an offset in bytes represented by the offset, offset.

Data that consists of more than one byte will automatically be translated to maintain a
consistent view between the host and the device based on the encoded information in
the data access handle. The translation may involve byte swapping if the host and the
device have incompatible endian characteristics.

These functions may be called from user, kernel, or interrupt context.

csx_DupHandle(9F), csx_Get8(9F), csx_GetMappedAddr(9F), csx_RepGet8(9F),
csx_RepPut8(9F), csx_RequestIO(9F), csx_RequestWindow(9F)

PC Card 95 Standard, PCMCIA/JEIDA

csx_Put8(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

SEE ALSO

174 man pages section 9: DDI and DKI Kernel Functions • Last Revised 19 Jul 1996

csx_RegisterClient – register a client

#include <sys/pccard.h>

int32_t csx_RegisterClient(client_handle_t *ch, client_reg_t *cr);

Solaris DDI Specific (Solaris DDI)

ch Pointer to a client_handle_t structure.

mc Pointer to a client_reg_t structure.

This function registers a client with Card Services and returns a unique client handle
for the client. The client handle must be passed to csx_DeregisterClient(9F)
when the client terminates.

The structure members of client_reg_t are:

uint32_t Attributes;
uint32_t EventMask;
event_callback_args_t event_callback_args;
uint32_t Version; /* CS version to expect */
csfunction_t *event_handler;
ddi_iblock_cookie_t *iblk_cookie; /* event iblk cookie */
ddi_idevice_cookie_t *idev_cookie; /* event idev cookie */
dev_info_t *dip; /* client’s dip */
char driver_name[MODMAXNAMELEN];

The fields are defined as follows:

Attributes
This field is bit-mapped and defined as follows:

INFO_MEM_CLIENT
Memory client device driver.

INFO_MTD_CLIENT
Memory Technology Driver client.

INFO_IO_CLIENT
IO client device driver.

INFO_CARD_SHARE
Generate artificial CS_EVENT_CARD_INSERTION and
CS_EVENT_REGISTRATION_COMPLETE events.

INFO_CARD_EXCL
Generate artificial CS_EVENT_CARD_INSERTION and
CS_EVENT_REGISTRATION_COMPLETE events.

INFO_MEM_CLIENT
INFO_MTD_CLIENT
INFO_IO_CLIENT

These bits are mutually exclusive (that is, only one bit may be set), but one of
the bits must be set.

csx_RegisterClient(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

Kernel Functions for Drivers 175

INFO_CARD_SHARE
INFO_CARD_EXCL

If either of these bits is set, the client will receive a
CS_EVENT_REGISTRATION_COMPLETE event when Card Services has
completed its internal client registration processing and after a sucessful call
to csx_RequestSocketMask(9F).

Also, if either of these bits is set, and if a card of the type that the client can
control is currently inserted in the socket (and after a successful call to
csx_RequestSocketMask(9F)), the client will receive an artificial
CS_EVENT_CARD_INSERTION event.

Event Mask
This field is bit-mapped and specifies the client’s global event mask. Card Services
performs event notification based on this field. See csx_event_handler(9E) for
valid event definitions and for additional information about handling events.

event_callback_args
The event_callback_args_t structure members are:

void *client_data;

The client_data field may be used to provide data available to the event handler
(see csx_event_handler(9E)). Typically, this is the client driver’s soft state
pointer.

Version
This field contains the specific Card Services version number that the client expects
to use. Typically, the client will use the CS_VERSION macro to specify to Card
Services which version of Card Services the client expects.

event_handler
The client event callback handler entry point is passed in the event_handler
field.

iblk_cookie
idev_cookie

These fields must be used by the client to set up mutexes that are used in the
client’s event callback handler when handling high priority events.

dip
The client must set this field with a pointer to the client’s dip.

driver_name
The client must copy a driver-unique name into this member. This name must be
identical across all instances of the driver.

CS_SUCCESS
Successful operation.

CS_BAD_ATTRIBUTE
No client type or more than one client type specified.

csx_RegisterClient(9F)

RETURN VALUES

176 man pages section 9: DDI and DKI Kernel Functions • Last Revised 19 Jul 1996

CS_OUT_OF_RESOURCE
Card Services is unable to register client.

CS_BAD_VERSION
Card Services version is incompatable with client.

CS_BAD_HANDLE
Client has already registered for this socket.

CS_UNSUPPORTED_FUNCTION
No PCMCIA hardware installed.

This function may be called from user or kernel context.

csx_DeregisterClient(9F), csx_RequestSocketMask(9F)

PC Card 95 Standard, PCMCIA/JEIDA

csx_RegisterClient(9F)

CONTEXT

SEE ALSO

Kernel Functions for Drivers 177

csx_ReleaseConfiguration – release PC Card and socket configuration

#include <sys/pccard.h>

int32_t csx_ReleaseConfiguration(client_handle_t ch,
release_config_t *rc);

Solaris DDI Specific (Solaris DDI)

ch Client handle returned from csx_RegisterClient(9F).

rc Pointer to a release_config_t structure.

This function returns a PC Card and socket to a simple memory only interface and sets
the card to configuration zero by writing a 0 to the PC card’s COR (Configuration
Option Register).

Card Services may remove power from the socket if no clients have indicated their
usage of the socket by an active csx_RequestConfiguration(9F) or
csx_RequestWindow(9F).

Card Services is prohibited from resetting the PC Card and is not required to cycle
power through zero (0) volts.

After calling csx_ReleaseConfiguration() any resources requested via the
request functions csx_RequestIO(9F), csx_RequestIRQ(9F), or
csx_RequestWindow(9F) that are no longer needed should be returned to Card
Services via the corresponding csx_ReleaseIO(9F), csx_ReleaseIRQ(9F), or
csx_ReleaseWindow(9F) functions. csx_ReleaseConfiguration() must be
called to release the current card and socket configuration before releasing any
resources requested by the driver via the request functions named above.

The structure members of release_config_t are:

uint32_t Socket; /* socket number */

The Socket field is not used in Solaris, but for portability with other Card Services
implementations, it should be set to the logical socket number.

CS_SUCCESS
Successful operation.

CS_BAD_HANDLE
Client handle is invalid or csx_RequestConfiguration(9F) not done.

CS_BAD_SOCKET
Error getting or setting socket hardware parameters.

CS_NO_CARD
No PC card in socket.

CS_UNSUPPORTED_FUNCTION
No PCMCIA hardware installed.

csx_ReleaseConfiguration(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

RETURN VALUES

178 man pages section 9: DDI and DKI Kernel Functions • Last Revised 19 Jul 1996

This function may be called from user or kernel context.

csx_RegisterClient(9F), csx_RequestConfiguration(9F),
csx_RequestIO(9F), csx_RequestIRQ(9F), csx_RequestWindow(9F)

PC Card 95 Standard, PCMCIA/JEIDA

csx_ReleaseConfiguration(9F)

CONTEXT

SEE ALSO

Kernel Functions for Drivers 179

csx_RepGet8, csx_RepGet16, csx_RepGet32, csx_RepGet64 – read repetitively from the
device register

#include <sys/pccard.h>

void csx_RepGet8(acc_handle_t handle, uint8_t *hostaddr, uint32_t
offset, uint32_t repcount, uint32_t flags);

void csx_RepGet16(acc_handle_t handle, uint16_t *hostaddr, uint32_t
offset, uint32_t repcount, uint32_t flags);

void csx_RepGet32(acc_handle_t handle, uint32_t *hostaddr, uint32_t
offset, uint32_t repcount, uint32_t flags);

void csx_RepGet64(acc_handle_t handle, uint64_t *hostaddr, uint32_t
offset, uint32_t repcount, uint32_t flags);

Solaris DDI Specific (Solaris DDI)

handle The access handle returned from csx_RequestIO(9F),
csx_RequestWindow(9F), or csx_DupHandle(9F).

hostaddr Source host address.

offset The offset in bytes from the base of the mapped resource.

repcount Number of data accesses to perform.

flags Device address flags.

These functions generate multiple reads of various sizes from the mapped memory or
device register.

The csx_RepGet8(), csx_RepGet16(), csx_RepGet32(), and csx_RepGet64()
functions generate repcount reads of 8 bits, 16 bits, 32 bits, and 64 bits of data,
respectively, from the device address represented by the handle, handle, at an offset in
bytes represented by the offset, offset. The data read is stored consecutively into the
buffer pointed to by the host address pointer, hostaddr.

Data that consists of more than one byte will automatically be translated to maintain a
consistent view between the host and the device based on the encoded information in
the data access handle. The translation may involve byte swapping if the host and the
device have incompatible endian characteristics.

When the flags argument is set to CS_DEV_AUTOINCR, these functions increment the
device offset, offset, after each datum read operation. However, when the flags
argument is set to CS_DEV_NO_AUTOINCR, the same device offset will be used for
every datum access. For example, this flag may be useful when reading from a data
register.

These functions may be called from user, kernel, or interrupt context.

csx_RepGet8(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

180 man pages section 9: DDI and DKI Kernel Functions • Last Revised 19 Jul 1996

csx_DupHandle(9F), csx_Get8(9F), csx_GetMappedAddr(9F), csx_Put8(9F),
csx_RepPut8(9F), csx_RequestIO(9F), csx_RequestWindow(9F)

PC Card 95 Standard, PCMCIA/JEIDA

csx_RepGet8(9F)

SEE ALSO

Kernel Functions for Drivers 181

csx_RepPut8, csx_RepPut16, csx_RepPut32, csx_RepPut64 – write repetitively to the
device register

#include <sys/pccard.h>

void csx_RepPut8(acc_handle_t handle, uint8_t *hostaddr, uint32_t
offset, uint32_t repcount, uint32_t flags);

void csx_RepPut16(acc_handle_t handle, uint16_t *hostaddr, uint32_t
offset, uint32_t repcount, uint32_t flags);

void csx_RepPut32(acc_handle_t handle, uint32_t *hostaddr, uint32_t
offset, uint32_t repcount, uint32_t flags);

void csx_RepPut64(acc_handle_t handle, uint64_t *hostaddr, uint32_t
offset, uint32_t repcount, uint32_t flags);

Solaris DDI Specific (Solaris DDI)

handle The access handle returned from csx_RequestIO(9F),
csx_RequestWindow(9F), or csx_DupHandle(9F).

hostaddr Source host address.

offset The offset in bytes from the base of the mapped resource.

repcount Number of data accesses to perform.

flags Device address flags.

These functions generate multiple writes of various sizes to the mapped memory or
device register.

The csx_RepPut8(), csx_RepPut16(), csx_RepPut32(), and csx_RepPut64()
functions generate repcount writes of 8 bits, 16 bits, 32 bits, and 64 bits of data,
respectively, to the device address represented by the handle, handle, at an offset in
bytes represented by the offset, offset. The data written is read consecutively from the
buffer pointed to by the host address pointer, hostaddr.

Data that consists of more than one byte will automatically be translated to maintain a
consistent view between the host and the device based on the encoded information in
the data access handle. The translation may involve byte swapping if the host and the
device have incompatible endian characteristics.

When the flags argument is set to CS_DEV_AUTOINCR, these functions increment the
device offset, offset, after each datum write operation. However, when the flags
argument is set to CS_DEV_NO_AUTOINCR, the same device offset will be used for
every datum access. For example, this flag may be useful when writing to a data
register.

These functions may be called from user, kernel, or interrupt context.

csx_RepPut8(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

182 man pages section 9: DDI and DKI Kernel Functions • Last Revised 19 Jul 1996

csx_DupHandle(9F), csx_Get8(9F), csx_GetMappedAddr(9F), csx_Put8(9F),
csx_RepGet8(9F), csx_RequestIO(9F), csx_RequestWindow(9F)

PC Card 95 Standard, PCMCIA/JEIDA

csx_RepPut8(9F)

SEE ALSO

Kernel Functions for Drivers 183

csx_RequestConfiguration – configure the PC Card and socket

#include <sys/pccard.h>

int32_t csx_RequestConfiguration(client_handle_t ch, config_req_t
*cr);

Solaris DDI Specific (Solaris DDI)

ch Client handle returned from csx_RegisterClient(9F).

cr Pointer to a config_req_t structure.

This function configures the PC Card and socket. It must be used by clients that
require I/O or IRQ resources for their PC Card.

csx_RequestIO(9F) and csx_RequestIRQ(9F) must be used before calling this
function to specify the I/O and IRQ requirements for the PC Card and socket if
necessary. csx_RequestConfiguration() establishes the configuration in the
socket adapter and PC Card, and it programs the Base and Limit registers of
multi-function PC Cards if these registers exist. The values programmed into these
registers depend on the IO requirements of this configuration.

The structure members of config_req_t are:

uint32_t Socket; /* socket number */
uint32_t Attributes; /* configuration attributes */
uint32_t Vcc; /* Vcc value */
uint32_t Vpp1; /* Vpp1 value */
uint32_t Vpp2; /* Vpp2 value */
uint32_t IntType; /* socket interface type - mem or IO */
uint32_t ConfigBase; /* offset from start of AM space */
uint32_t Status; /* value to write to STATUS register */
uint32_t Pin; /* value to write to PRR */
uint32_t Copy; /* value to write to COPY register */
uint32_t ConfigIndex; /* value to write to COR */
uint32_t Present; /* which config registers present */
uint32_t ExtendedStatus; /* value to write to EXSTAT register */

The fields are defined as follows:

Socket
Not used in Solaris, but for portability with other Card Services implementations, it
should be set to the logical socket number.

Attributes
This field is bit-mapped. It indicates whether the client wishes the IRQ resources to
be enabled and whether Card Services should ignore the VS bits on the socket
interface. The following bits are defined:

CONF_ENABLE_IRQ_STEERING
Enable IRQ Steering. Set to connect the PC Card IREQ line to a system interrupt
previously selected by a call to csx_RequestIRQ(9F). If
CONF_ENABLE_IRQ_STEERING is set, once csx_RequestConfiguration()

csx_RequestConfiguration(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

184 man pages section 9: DDI and DKI Kernel Functions • Last Revised 19 Jul 1996

has successfully returned, the client may start receiving IRQ callbacks at the IRQ
callback handler established in the call to csx_RequestIRQ(9F).

CONF_VSOVERRIDE
Override VS pins. After card insertion and prior to the first successful
csx_RequestConfiguration(), the voltage levels applied to the card shall
be those indicated by the card’s physical key and/or the VS[2:1] voltage sense
pins. For Low Voltage capable host systems (hosts which are capable of VS pin
decoding), if a client desires to apply a voltage not indicated by the VS pin
decoding, then CONF_VSOVERRIDE must be set in the Attributes field;
otherwise, CS_BAD_VCC shall be returned.

Vcc, Vpp1, Vpp2
These fields all represent voltages expressed in tenths of a volt. Values from zero (0)
to 25.5 volts may be set. To be valid, the exact voltage must be available from the
system. PC Cards indicate multiple Vcc voltage capability in their CIS via the
CISTPL_CFTABLE_ENTRY tuple. After card insertion, Card Services processes the
CIS, and when multiple Vcc voltage capability is indicated, Card Services will
allow the client to apply Vcc voltage levels which are contrary to the VS pin
decoding without requiring the client to set CONF_VSOVERRIDE.

IntType
This field is bit-mapped. It indicates how the socket should be configured. The
following bits are defined:

SOCKET_INTERFACE_MEMORY
Memory only interface.

SOCKET_INTERFACE_MEMORY_AND_IO
Memory and I/O interface.

ConfigBase
This field is the offset in bytes from the beginning of attribute memory of the
configuration registers.

Present
This field identifies which of the configuration registers are present. If present, the
corresponding bit is set. This field is bit-mapped as follows:

CONFIG_OPTION_REG_PRESENT
Configuration Option Register (COR) present

CONFIG_STATUS_REG_PRESENT
Configuration Status Register (CCSR) present

CONFIG_PINREPL_REG_PRESENT
Pin Replacement Register (PRR) present

CONFIG_COPY_REG_PRESENT
Socket and Copy Register (SCR) present

CONFIG_ESR_REG_PRESENT
Extended Status Register (ESR) present

csx_RequestConfiguration(9F)

Kernel Functions for Drivers 185

Status, Pin, Copy, ExtendedStatus
These fields represent the initial values that should be written to those registers if
they are present, as indicated by the Present field.

The Pin field is also used to inform Card Services which pins in the PC Card’s PRR
(Pin Replacement Register) are valid. Only those bits which are set are considered
valid. This affects how status is returned by the csx_GetStatus(9F) function. If a
particular signal is valid in the PRR, both the mask (STATUS) bit and the change
(EVENT) bit must be set in the Pin field. The following PRR bit definitions are
provided for client use:

PRR_WP_STATUS WRITE PROTECT mask

PRR_READY_STATUS READY mask

PRR_BVD2_STATUS BVD2 mask

PRR_BVD1_STATUS BVD1 mask

PRR_WP_EVENT WRITE PROTECT changed

PRR_READY_EVENT READY changed

PRR_BVD2_EVENT BVD2 changed

PRR_BVD1_EVENT BVD1 changed

ConfigIndex
This field is the value written to the COR (Configuration Option Register) for the
configuration index required by the PC Card. Only the least significant six bits of
the ConfigIndex field are significant; the upper two (2) bits are ignored. The
interrupt type in the COR is always set to level mode by Card Services.

CS_SUCCESS
Successful operation.

CS_BAD_HANDLE
Client handle is invalid or csx_RequestConfiguration() not done.

CS_BAD_SOCKET
Error in getting or setting socket hardware parameters.

CS_BAD_VCC
Requested Vcc is not available on socket.

CS_BAD_VPP
Requested Vpp is not available on socket.

CS_NO_CARD
No PC Card in socket.

CS_BAD_TYPE
I/O and memory interface not supported on socket.

CS_CONFIGURATION_LOCKED
csx_RequestConfiguration() already done.

csx_RequestConfiguration(9F)

RETURN VALUES

186 man pages section 9: DDI and DKI Kernel Functions • Last Revised 19 Jul 1996

CS_UNSUPPORTED_FUNCTION
No PCMCIA hardware installed.

This function may be called from user or kernel context.

csx_AccessConfigurationRegister(9F), csx_GetStatus(9F),
csx_RegisterClient(9F), csx_ReleaseConfiguration(9F),
csx_RequestIO(9F), csx_RequestIRQ(9F)

PC Card 95 Standard, PCMCIA/JEIDA

csx_RequestConfiguration(9F)

CONTEXT

SEE ALSO

Kernel Functions for Drivers 187

csx_RequestIO, csx_ReleaseIO – request or release I/O resources for the client

#include <sys/pccard.h>

int32_t csx_RequestIO(client_handle_t ch, io_req_t *ir);

int32_t csx_ReleaseIO(client_handle_t ch, io_req_t *ir);

Solaris DDI Specific (Solaris DDI)

ch Client handle returned from csx_RegisterClient(9F).

ir Pointer to an io_req_t structure.

The functions csx_RequestIO() and csx_ReleaseIO() request or release,
respectively, I/O resources for the client.

If a client requires I/O resources, csx_RequestIO() must be called to request I/O
resources from Card Services; then csx_RequestConfiguration(9F) must be used
to establish the configuration. csx_RequestIO() can be called multiple times until a
successful set of I/O resources is found. csx_RequestConfiguration(9F) only uses
the last configuration specified.

csx_RequestIO() fails if it has already been called without a corresponding
csx_ReleaseIO().

csx_ReleaseIO() releases previously requested I/O resources. The Card Services
window resource list is adjusted by this function. Depending on the adapter
hardware, the I/O window might also be disabled.

The structure members of io_req_t are:

uint32_t Socket; /* socket number*/

uint32_t Baseport1.base; /* IO range base port address */
acc_handle_t Baseport1.handle; /* IO range base address

/* or port num */
uint32_t NumPorts1; /* first IO range number contiguous

/* ports */
uint32_t Attributes1; /* first IO range attributes */

uint32_t Baseport2.base; /* IO range base port address */
acc_handle_t Baseport2.handle; /* IO range base address or port num */
uint32_t NumPorts2; /* second IO range number contiguous

/* ports */
uint32_t Attributes2; /* second IO range attributes */

uint32_t IOAddrLines; /* number of IO address lines decoded */

The fields are defined as follows:

Socket
Not used in Solaris, but for portability with other Card Services implementations, it
should be set to the logical socket number.

csx_RequestIO(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

188 man pages section 9: DDI and DKI Kernel Functions • Last Revised 19 Jul 1996

BasePort1.base
BasePort1.handle
BasePort2.base
BasePort2.handle

Two I/O address ranges can be requested by csx_RequestIO(). Each I/O
address range is specified by the BasePort, NumPorts, and Attributes fields. If
only a single I/O range is being requested, the NumPorts2 field must be reset to 0.

When calling csx_RequestIO(), the BasePort.base field specifies the first port
address requested. Upon successful return from csx_RequestIO(), the
BasePort.handle field contains an access handle, corresponding to the first byte
of the allocated I/O window, which the client must use when accessing the PC
Card’s I/O space via the common access functions. A client must not make any
assumptions as to the format of the returned BasePort.handle field value.

If the BasePort.base field is set to 0, Card Services returns an I/O resource
based on the available I/O resources and the number of contiguous ports
requested. When BasePort.base is 0, Card Services aligns the returned resource
in the host system’s I/O address space on a boundary that is a multiple of the
number of contiguous ports requested, rounded up to the nearest power of two. For
example, if a client requests two I/O ports, the resource returned will be a multiple
of two. If a client requests five contiguous I/O ports, the resource returned will be a
multiple of eight.

If multiple ranges are being requested, at least one of the BasePort.base fields
must be non-zero.

NumPorts
This field is the number of contiguous ports being requested.

Attributes
This field is bit-mapped. The following bits are defined:

IO_DATA_WIDTH_8
I/O resource uses 8-bit data path.

IO_DATA_WIDTH_16
I/O resource uses 16-bit data path.

WIN_ACC_NEVER_SWAP
Host endian byte ordering.

WIN_ACC_BIG_ENDIAN
Big endian byte ordering

WIN_ACC_LITTLE_ENDIAN
Little endian byte ordering.

WIN_ACC_STRICT_ORDER
Program ordering references.

WIN_ACC_UNORDERED_OK
May re-order references.

csx_RequestIO(9F)

Kernel Functions for Drivers 189

WIN_ACC_MERGING_OK
Merge stores to consecutive locations.

WIN_ACC_LOADCACHING_OK
May cache load operations.

WIN_ACC_STORECACHING_OK
May cache store operations.

For some combinations of host system busses and adapter hardware, the width of an
I/O resource can not be set via RequestIO(); on those systems, the host bus cycle
access type determines the I/O resource data path width on a per-cycle basis.

WIN_ACC_BIG_ENDIAN and WIN_ACC_LITTLE ENDIAN describe the endian
characteristics of the device as big endian or little endian, respectively. Even though
most of the devices will have the same endian characteristics as their busses, there are
examples of devices with an I/O processor that has opposite endian characteristics of
the busses. When WIN_ACC_BIG_ENDIAN or WIN_ACC_LITTLE ENDIAN is set, byte
swapping will automatically be performed by the system if the host machine and the
device data formats have opposite endian characteristics. The implementation may
take advantage of hardware platform byte swapping capabilities.

When WIN_ACC_NEVER_SWAP is specified, byte swapping will not be invoked in the
data access functions. The ability to specify the order in which the CPU will reference
data is provided by the following Attributes bits. Only one of the following bits
may be specified:

WIN_ACC_STRICT_ORDER
The data references must be issued by a CPU in program order. Strict ordering is
the default behavior.

WIN_ACC_UNORDERED_OK
The CPU may re-order the data references. This includes all kinds of re-ordering
(that is, a load followed by a store may be replaced by a store followed by a load).

WIN_ACC_MERGING_OK
The CPU may merge individual stores to consecutive locations. For example, the
CPU may turn two consecutive byte stores into one halfword store. It may also
batch individual loads. For example, the CPU may turn two consecutive byte loads
into one halfword load. IO_MERGING_OK_ACC also implies re-ordering.

WIN_ACC_LOADCACHING_OK
The CPU may cache the data it fetches and reuse it until another store occurs. The
default behavior is to fetch new data on every load. WIN_ACC_LOADCACHING_OK
also implies merging and re-ordering.

WIN_ACC_STORECACHING_OK
The CPU may keep the data in the cache and push it to the device (perhaps with
other data) at a later time. The default behavior is to push the data right away.
WIN_ACC_STORECACHING_OK also implies load caching, merging, and re-ordering.

csx_RequestIO(9F)

190 man pages section 9: DDI and DKI Kernel Functions • Last Revised 19 Jul 1996

These values are advisory, not mandatory. For example, data can be ordered without
being merged or cached, even though a driver requests unordered, merged and
cached together. All other bits in the Attributes field must be set to 0.

IOAddrLines
This field is the number of I/O address lines decoded by the PC Card in the
specified socket.

On some systems, multiple calls to csx_RequestIO() with different BasePort,
NumPorts, and/or IOAddrLines values will have to be made to find an acceptable
combination of parameters that can be used by Card Services to allocate I/O resources
for the client. (See NOTES).

CS_SUCCESS
Successful operation.

CS_BAD_ATTRIBUTE
Invalid Attributes specified.

CS_BAD_BASE
BasePort value is invalid.

CS_BAD_HANDLE
Client handle is invalid.

CS_CONFIGURATION_LOCKED
csx_RequestConfiguration(9F) has already been done.

CS_IN_USE
csx_RequestIO() has already been done without a corresponding
csx_ReleaseIO().

CS_NO_CARD
No PC Card in socket.

CS_BAD_WINDOW
Unable to allocate I/O resources.

CS_OUT_OF_RESOURCE
Unable to allocate I/O resources.

CS_UNSUPPORTED_FUNCTION
No PCMCIA hardware installed.

These functions may be called from user or kernel context.

csx_RegisterClient(9F), csx_RequestConfiguration(9F)

PC Card 95 Standard, PCMCIA/JEIDA

It is important for clients to try to use the minimum amount of I/O resources
necessary. One way to do this is for the client to parse the CIS of the PC Card and call
csx_RequestIO() first with any IOAddrLines values that are 0 or that specify a

csx_RequestIO(9F)

RETURN VALUES

CONTEXT

SEE ALSO

NOTES

Kernel Functions for Drivers 191

minimum number of address lines necessary to decode the I/O space on the PC Card.
Also, if no convenient minimum number of address lines can be used to decode the
I/O space on the PC Card, it is important to try to avoid system conflicts with
well-known architectural hardware features.

csx_RequestIO(9F)

192 man pages section 9: DDI and DKI Kernel Functions • Last Revised 19 Jul 1996

csx_RequestIRQ, csx_ReleaseIRQ – request or release IRQ resource

#include <sys/pccard.h>

int32_t csx_RequestIRQ(client_handle_t ch, irq_req_t *ir);

int32_t csx_ReleaseIRQ(client_handle_t ch, irq_req_t *ir);

Solaris DDI Specific (Solaris DDI)

ch Client handle returned from csx_RegisterClient(9F).

ir Pointer to an irq_req_t structure.

The function csx_RequestIRQ() requests an IRQ resource and registers the client’s
IRQ handler with Card Services.

If a client requires an IRQ,csx_RequestIRQ() must be called to request an IRQ
resource as well as to register the client’s IRQ handler with Card Services. The client
will not receive callbacks at the IRQ callback handler until
csx_RequestConfiguration(9F) or csx_ModifyConfiguration(9F) has
successfully returned when either of these functions are called with the
CONF_ENABLE_IRQ_STEERING bit set.

The function csx_ReleaseIRQ() releases a previously requested IRQ resource.

The Card Services IRQ resource list is adjusted by csx_ReleaseIRQ(). Depending
on the adapter hardware, the host bus IRQ connection might also be disabled. Client
IRQ handlers always run above lock level and so should take care to perform only
Solaris operations that are appropriate for an above-lock-level IRQ handler.

csx_RequestIRQ() fails if it has already been called without a corresponding
csx_ReleaseIRQ().

The structure members of irq_req_t are:

uint32_t Socket; /* socket number */
uint32_t Attributes; /* IRQ attribute flags */
csfunction_t *irq_handler; /* IRQ handler */
void *irq_handler_arg; /* IRQ handler argument */
ddi_iblock_cookie_t *iblk_cookie; /* IRQ interrupt

/* block cookie */
ddi_idevice_cookie_t *idev_cookie; /* IRQ interrupt device

/* cookie */

The fields are defined as follows:

Socket
Not used in Solaris, but for portability with other Card Services implementations, it
should be set to the logical socket number.

Attributes
This field is bit-mapped. It specifies details about the type of IRQ desired by the
client. The following bits are defined:

csx_RequestIRQ(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

Kernel Functions for Drivers 193

IRQ_TYPE_EXCLUSIVE
IRQ is exclusive to this socket. This bit must be set. It indicates that the system
IRQ is dedicated to this PC Card.

irq_handler
The client IRQ callback handler entry point is passed in the irq_handler field.

irq_handler_arg
The client can use the irq_handler_arg field to pass client-specific data to the
client IRQ callback handler.

iblk_cookie
idev_cookie

These fields must be used by the client to set up mutexes that are used in the
client’s IRQ callback handler.

For a specific csx_ReleaseIRQ() call, the values in the irq_req_t structure must
be the same as those returned from the previous csx_RequestIRQ() call; otherwise,
CS_BAD_ARGS is returned and no changes are made to Card Services resources or the
socket and adapter hardware.

CS_SUCCESS
Successful operation.

CS_BAD_ARGS
IRQ description does not match allocation.

CS_BAD_ATTRIBUTE
IRQ_TYPE_EXCLUSIVE not set, or an unsupported or reserved bit is set.

CS_BAD_HANDLE
Client handle is invalid or csx_RequestConfiguration(9F) not done.

CS_BAD_IRQ
Unable to allocate IRQ resources.

CS_IN_USE
csx_RequestIRQ() already done or a previous csx_RequestIRQ() has not
been done for a corresponding csx_ReleaseIRQ().

CS_CONFIGURATION_LOCKED
csx_RequestConfiguration(9F) already done or
csx_ReleaseConfiguration(9F) has not been done.

CS_NO_CARD
No PC Card in socket.

CS_UNSUPPORTED_FUNCTION
No PCMCIA hardware installed.

These functions may be called from user or kernel context.

csx_ReleaseConfiguration(9F), csx_RequestConfiguration(9F)

csx_RequestIRQ(9F)

RETURN VALUES

CONTEXT

SEE ALSO

194 man pages section 9: DDI and DKI Kernel Functions • Last Revised 19 Jul 1996

PC Card Card 95 Standard, PCMCIA/JEIDA

csx_RequestIRQ(9F)

Kernel Functions for Drivers 195

csx_RequestSocketMask, csx_ReleaseSocketMask – set or clear the client’s client event
mask

#include <sys/pccard.h>

int32_t csx_RequestSocketMask(client_handle_t ch,
request_socket_mask_t *sm);

int32_t csx_ReleaseSocketMask(client_handle_t ch,
release_socket_mask_t *rm);

Solaris DDI Specific (Solaris DDI)

ch Client handle returned from csx_RegisterClient(9F).

sm Pointer to a request_socket_mask_t structure.

rm Pointer to a release_socket_mask_t structure.

The function csx_RequestSocketMask() sets the client’s client event mask and
enables the client to start receiving events at its event callback handler. Once this
function returns successfully, the client can start receiving events at its event callback
handler. Any pending events generated from the call to csx_RegisterClient(9F)
will be delivered to the client after this call as well. This allows the client to set up the
event handler mutexes before the event handler gets called.

csx_RequestSocketMask() must be used before calling csx_GetEventMask(9F)
or csx_SetEventMask(9F) for the client event mask for this socket.

The function csx_ReleaseSocketMask() clears the client’s client event mask.

The structure members of request_socket_mask_t are:

uint32_t Socket; /* socket number */

uint32_t EventMask; /* event mask to set or return */

The structure members of release_socket_mask_t are:

uint32_t Socket; /* socket number */

The fields are defined as follows:

Socket Not used in Solaris, but for portability with other Card Services
implementations, it should be set to the logical socket number.

EventMask This field is bit-mapped. Card Services performs event notification
based on this field. See csx_event_handler(9E) for valid event
definitions and for additional information about handling events.

CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_IN_USE csx_ReleaseSocketMask() has not been
done.

csx_RequestSocketMask(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

RETURN VALUES

196 man pages section 9: DDI and DKI Kernel Functions • Last Revised 19 Jul 1996

CS_BAD_SOCKET csx_RequestSocketMask() has not been
done.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

These functions may be called from user or kernel context.

csx_event_handler(9E), csx_GetEventMask(9F), csx_RegisterClient(9F),
csx_SetEventMask(9F)

PC Card 95 Standard, PCMCIA/JEIDA

csx_RequestSocketMask(9F)

CONTEXT

SEE ALSO

Kernel Functions for Drivers 197

csx_RequestWindow, csx_ReleaseWindow – request or release window resources

#include <sys/pccard.h>

int32_t csx_RequestWindow(client_handle_t ch, window_handle_t
*wh, win_req_t *wr);

int32_t csx_ReleaseWindow(window_handle_t wh);

Solaris DDI Specific (Solaris DDI)

ch Client handle returned from csx_RegisterClient(9F).

wh Pointer to a window_handle_t structure.

wr Pointer to a win_req_t structure.

The function csx_RequestWindow() requests a block of system address space be
assigned to a PC Card in a socket.

The function csx_ReleaseWindow() releases window resources which were
obtained by a call to csx_RequestWindow(). No adapter or socket hardware is
modified by this function.

The csx_MapMemPage(9F) and csx_ModifyWindow(9F) functions use the window
handle returned by csx_RequestWindow(). This window handle must be freed by
calling csx_ReleaseWindow() when the client is done using this window.

The PC Card Attribute or Common Memory offset for this window is set by
csx_MapMemPage(9F).

The structure members of win_req_t are:

uint32_t Socket; /* socket number */
uint32_t Attributes; /* window flags */
uint32_t Base.base; /* requested window */

/* base address */
acc_handle_t Base.handle; /* returned handle for

/* base of window */
uint32_t Size; /* window size requested */

/* or granted */
uint32_t win_params.AccessSpeed; /* window access speed */
uint32_t win_params.IOAddrLines; /* IO address lines decoded */

uint32_t ReqOffset; /* required window offest */

The fields are defined as follows:

Socket
Not used in Solaris, but for portability with other Card Services implementations, it
should be set to the logical socket number.

Attributes
This field is bit-mapped. It is defined as follows:

csx_RequestWindow(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

198 man pages section 9: DDI and DKI Kernel Functions • Last Revised 19 Jul 1996

WIN_MEMORY_TYPE_IO Window points to I/O space
WIN_MEMORY_TYPE_CM Window points to Common Memory space
WIN_MEMORY_TYPE_AM Window points to Attribute Memory space
WIN_ENABLE Enable window
WIN_DATA_WIDTH_8 Set window to 8-bit data path
WIN_DATA_WIDTH_16 Set window to 16-bit data path
WIN_ACC_NEVER_SWAP Host endian byte ordering
WIN_ACC_BIG_ENDIAN Big endian byte ordering
WIN_ACC_LITTLE_ENDIAN Little endian byte ordering
WIN_ACC_STRICT_ORDER Program ordering references
WIN_ACC_UNORDERED_OK May re-order references
WIN_ACC_MERGING_OK Merge stores to consecutive locations
WIN_ACC_LOADCACHING_OK May cache load operations
WIN_ACC_STORECACHING_OK May cache store operations

WIN_MEMORY_TYPE_IO

WIN_MEMORY_TYPE_CM

WIN_MEMORY_TYPE_AM These bits select which type of window is being
requested. One of these bits must be set.

WIN_ENABLE The client must set this bit to enable the window.

WIN_ACC_BIG_ENDIAN

WIN_ACC_LITTLE_ENDIAN These bits describe the endian characteristics of the
device as big endian or little endian, respectively.
Even though most of the devices will have the same
endian characteristics as their busses, there are
examples of devices with an I/O processor that has
opposite endian characteristics of the busses. When
either of these bits are set, byte swapping will
automatically be performed by the system if the host
machine and the device data formats have opposite
endian characteristics. The implementation may take
advantage of hardware platform byte swapping
capabilities.

WIN_ACC_NEVER_SWAP When this is specified, byte swapping will not be
invoked in the data access functions. The ability to

specify the order in which the CPU will reference data is provided by the following
Attributes bits, only one of which may be specified:

WIN_ACC_STRICT_ORDER The data references must be issued by a
CPU in program order. Strict ordering is the
default behavior.

WIN_ACC_UNORDERED_OK The CPU may re-order the data references.
This includes all kinds of re-ordering (that
is, a load followed by a store may be
replaced by a store followed by a load).

csx_RequestWindow(9F)

Kernel Functions for Drivers 199

WIN_ACC_MERGING_OK The CPU may merge individual stores to
consecutive locations. For example, the CPU
may turn two consecutive byte stores into
one halfword store. It may also batch
individual loads. For example, the CPU
may turn two consecutive byte loads into
one halfword load. This bit also implies
re-ordering.

WIN_ACC_LOADCACHING_OK The CPU may cache the data it fetches and
reuse it until another store occurs. The
default behavior is to fetch new data on
every load. This bit also implies merging
and re-ordering.

WIN_ACC_STORECACHING_OK The CPU may keep the data in the cache
and push it to the device (perhaps with
other data) at a later time. The default
behavior is to push the data right away.
This bit also implies load caching, merging,
and re-ordering.

These values are advisory, not mandatory. For example, data can be ordered without
being merged or cached, even though a driver requests unordered, merged and
cached together.

All other bits in the Attributes field must be set to 0.

On successful return from csx_RequestWindow(), WIN_OFFSET_SIZE is set in the
Attributes field when the client must specify card offsets to csx_MapMemPage(9F)
that are a multiple of the window size.

Base.base
This field must be set to 0 on calling csx_RequestWindow().

Base.handle
On successful return from csx_RequestWindow(), the Base.handle field
contains an access handle corresponding to the first byte of the allocated memory
window which the client must use when accessing the PC Card’s memory space via
the common access functions. A client must not make any assumptions as to the
format of the returned Base.handle field value.

Size
On calling csx_RequestWindow(), the Size field is the size in bytes of the
memory window requested. Size may be zero to indicate that Card Services
should provide the smallest sized window available. On successful return from
csx_RequestWindow(), the Size field contains the actual size of the window
allocated.

csx_RequestWindow(9F)

200 man pages section 9: DDI and DKI Kernel Functions • Last Revised 19 Jul 1996

win_params.AccessSpeed
This field specifies the access speed of the window if the client is requesting a
memory window. The AccessSpeed field bit definitions use the format of the
extended speed byte of the Device ID tuple. If the mantissa is 0 (noted as reserved
in the PC Card 95 Standard), the lower bits are a binary code representing a speed
from the following table:

Code Speed

0 (Reserved - do not use).

1 250 nsec

2 200 nsec

3 150 nsec

4 100 nse

5-7 (Reserved—do not use.)

To request a window that supports the WAIT signal, OR-in the WIN_USE_WAIT bit
to the AccessSpeed value before calling this function.

It is recommended that clients use the csx_ConvertSpeed(9F) function to
generate the appropriate AccessSpeed values rather than manually perturbing
the AccessSpeed field.

win_params.IOAddrLines
If the client is requesting an I/O window, the IOAddrLines field is the number of
I/O address lines decoded by the PC Card in the specified socket. Access to the I/O
window is not enabled until csx_RequestConfiguration(9F) has been invoked
successfully.

ReqOffset
This field is a Solaris-specific extension that can be used by clients to generate
optimum window offsets passed to csx_MapMemPage(9F).

CS_SUCCESS
Successful operation.

CS_BAD_ATTRIBUTE
Attributes are invalid.

CS_BAD_SPEED
Speed is invalid.

CS_BAD_HANDLE
Client handle is invalid.

CS_BAD_SIZE
Window size is invalid.

csx_RequestWindow(9F)

RETURN VALUES

Kernel Functions for Drivers 201

CS_NO_CARD
No PC Card in socket.

CS_OUT_OF_RESOURCE
Unable to allocate window.

CS_UNSUPPORTED_FUNCTION
No PCMCIA hardware installed.

These functions may be called from user or kernel context.

csx_ConvertSpeed(9F), csx_MapMemPage(9F), csx_ModifyWindow(9F),
csx_RegisterClient(9F), csx_RequestConfiguration(9F)

PC Card 95 Standard, PCMCIA/JEIDA

csx_RequestWindow(9F)

CONTEXT

SEE ALSO

202 man pages section 9: DDI and DKI Kernel Functions • Last Revised 19 Jul 1996

csx_ResetFunction – reset a function on a PC card

#include <sys/pccard.h>

int32_t csx_ResetFunction(client_handle_t ch, reset_function_t
*rf);

Solaris DDI Specific (Solaris DDI)

ch Client handle returned from csx_RegisterClient(9F).

rf Pointer to a reset_function_t structure.

csx_ResetFunction() requests that the specified function on the PC card initiate a
reset operation.

The structure members of reset_function_t are:

uint32_t Socket; /* socket number */

uint32_t Attributes; /* reset attributes */

The fields are defined as follows:

Socket Not used in Solaris, but for portability with other Card Services
implementations, it should be set to the logical socket number.

Attributes Must be 0.

CS_SUCCESS Card Services has noted the reset request.

CS_IN_USE This Card Services implementation does not
permit configured cards to be reset.

CS_BAD_HANDLE Client handle is invalid.

CS_NO_CARD No PC card in socket.

CS_BAD_SOCKET Specified socket or function number is
invalid.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

This function may be called from user or kernel context.

csx_event_handler(9E), csx_RegisterClient(9F)

PC Card 95 Standard, PCMCIA/JEIDA

csx_ResetFunction() has not been implemented in this release and always returns
CS_IN_USE.

csx_ResetFunction(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

RETURN VALUES

CONTEXT

SEE ALSO

NOTES

Kernel Functions for Drivers 203

csx_SetEventMask, csx_GetEventMask – set or return the client event mask for the
client

#include <sys/pccard.h>

int32_t csx_SetEventMask(client_handle_t ch, sockevent_t *se);

int32_t csx_GetEventMask(client_handle_t ch, sockevent_t *se);

Solaris DDI Specific (Solaris DDI)

ch Client handle returned from csx_RegisterClient(9F).

se Pointer to a sockevent_t structure

The function csx_SetEventMask() sets the client or global event mask for the
client.

The function csx_GetEventMask() returns the client or global event mask for the
client.

csx_RequestSocketMask(9F) must be called before calling csx_SetEventMask()
for the client event mask for this socket.

The structure members of sockevent_t are:

uint32_t uint32_t /* attribute flags for call */
uint32_t EventMask; /* event mask to set or return */
uint32_t Socket; /* socket number if necessary */

The fields are defined as follows:

Attributes
This is a bit-mapped field that identifies the type of event mask to be returned. The
field is defined as follows:

CONF_EVENT_MASK_GLOBAL
Client’s global event mask. If set, the client’s global event mask is returned.

CONF_EVENT_MASK_CLIENT
Client’s local event mask. If set, the client’s local event mask is returned.

EventMask
This field is bit-mapped. Card Services performs event notification based on this
field. See csx_event_handler(9E) for valid event definitions and for additional
information about handling events.

Socket
Not used in Solaris, but for portability with other Card Services implementations, it
should be set to the logical socket number.

CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

csx_SetEventMask(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

RETURN VALUES

204 man pages section 9: DDI and DKI Kernel Functions • Last Revised 19 Jul 1996

CS_BAD_SOCKET csx_RequestSocketMask(9F) not called
for CONF_EVENT_MASK_CLIENT.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

These functions may be called from user or kernel context.

csx_event_handler(9E), csx_RegisterClient(9F),
csx_ReleaseSocketMask(9F), csx_RequestSocketMask(9F)

PC Card 95 Standard, PCMCIA/JEIDA

csx_SetEventMask(9F)

CONTEXT

SEE ALSO

Kernel Functions for Drivers 205

csx_SetHandleOffset – set current access handle offset

#include <sys/pccard.h>

int32_t csx_SetHandleOffset(acc_handle_t handle, uint32_t offset);

Solaris DDI Specific (Solaris DDI)

handle Access handle returned by csx_RequestIRQ(9F) or
csx_RequestIO(9F).

offset New access handle offset.

This function sets the current offset for the access handle, handle, to offset.

CS_SUCCESS Successful operation.

This function may be called from user or kernel context.

csx_GetHandleOffset(9F), csx_RequestIO(9F), csx_RequestIRQ(9F)

PC Card 95 Standard, PCMCIA/JEIDA

csx_SetHandleOffset(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

206 man pages section 9: DDI and DKI Kernel Functions • Last Revised 16 May 1997

csx_ValidateCIS – validate the Card Information Structure (CIS)

#include <sys/pccard.h>

int32_t csx_ValidateCIS(client_handle_t ch, cisinfo_t *ci);

Solaris DDI Specific (Solaris DDI)

ch Client handle returned from csx_RegisterClient(9F).

ci Pointer to a cisinfo_t structure.

This function validates the Card Information Structure (CIS) on the PC Card in the
specified socket.

The structure members of cisinfo_t are:

uint32_t Socket; /* socket number to validate CIS on */
uint32_t Chains; /* number of tuple chains in CIS */

uint32_t Tuples; /* total number of tuples in CIS */

The fields are defined as follows:

Socket Not used in Solaris, but for portability with other Card Services
implementations, it should be set to the logical socket number.

Chains This field returns the number of valid tuple chains located in the
CIS. If 0 is returned, the CIS is not valid.

Tuples This field is a Solaris-specific extension and it returns the total
number of tuples on all the chains in the PC Card’s CIS.

CS_SUCCESS
Successful operation.

CS_NO_CIS
No CIS on PC Card or CIS is invalid.

CS_NO_CARD
No PC Card in socket.

CS_UNSUPPORTED_FUNCTION
No PCMCIA hardware installed.

This function may be called from user or kernel context.

csx_GetFirstTuple(9F), csx_GetTupleData(9F), csx_ParseTuple(9F),
csx_RegisterClient(9F)

PC Card 95 Standard, PCMCIA/JEIDA

csx_ValidateCIS(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 207

datamsg – test whether a message is a data message

#include <sys/stream.h>

#include <sys/ddi.h>

int datamsg(unsigned char type);

Architecture independent level 1 (DDI/DKI).

type The type of message to be tested. The db_type field of the datab(9S)
structure contains the message type. This field may be accessed through the
message block using mp->b_datap->db_type.

datamsg() tests the type of message to determine if it is a data message type
(M_DATA, M_DELAY, M_PROTO , or M_PCPROTO).

datamsg returns

1 if the message is a data message

0 otherwise.

datamsg() can be called from user or interrupt context.

EXAMPLE 1 The put(9E) routine enqueues all data messages for handling by the srv(9E)
(service) routine. All non-data messages are handled in the put(9E) routine.

1 xxxput(q, mp)
2 queue_t *q;
3 mblk_t *mp;
4 {
5 if (datamsg(mp->b_datap->db_type)) {
6 putq(q, mp);
7 return;
8 }
9 switch (mp->b_datap->db_type) {
10 case M_FLUSH:

...
11 }
12 }

put(9E), srv(9E), allocb(9F), datab(9S), msgb(9S)

Writing Device Drivers

STREAMS Programming Guide

datamsg(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

EXAMPLES

SEE ALSO

208 man pages section 9: DDI and DKI Kernel Functions • Last Revised 11 Apr 1991

ddi_add_intr, ddi_get_iblock_cookie, ddi_remove_intr – hardware interrupt handling
routines

#include <sys/types.h>
#include <sys/conf.h>
#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_get_iblock_cookie(dev_info_t *dip, uint_t inumber,
ddi_iblock_cookie_t *iblock_cookiep);

int ddi_add_intr(dev_info_t *dip, uint_t inumber,
ddi_iblock_cookie_t *iblock_cookiep, ddi_idevice_cookie_t
*idevice_cookiep, uint_t (*int_handler) (caddr_t), caddr_t
int_handler_arg);

void ddi_remove_intr(dev_info_t *dip, uint_t inumber,
ddi_iblock_cookie_t iblock_cookie);

Solaris DDI specific (Solaris DDI).

For ddi_get_iblock_cookie():

dip Pointer to dev_info structure.

inumber Interrupt number.

iblock_cookiep Pointer to an interrupt block cookie.

For ddi_add_intr():

dip Pointer to dev_info structure.

inumber Interrupt number.

iblock_cookiep Optional pointer to an interrupt block cookie where a returned
interrupt block cookie is stored.

idevice_cookiep Optional pointer to an interrupt device cookie where a returned
interrupt device cookie is stored.

int_handler Pointer to interrupt handler.

int_handler_arg Argument for interrupt handler.

For ddi_remove_intr():

dip Pointer to dev_info structure.

inumber Interrupt number.

iblock_cookie Block cookie which identifies the interrupt handler to be removed.

ddi_get_iblock_cookie() retrieves the interrupt block cookie associated with a
particular interrupt specification. This routine should be called before
ddi_add_intr() to retrieve the interrupt block cookie needed to initialize locks

ddi_add_intr(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

ddi_get_iblock_cookie()

Kernel Functions for Drivers 209

(mutex(9F), rwlock(9F)) used by the interrupt routine. The interrupt number inumber
determines for which interrupt specification to retrieve the cookie. inumber is
associated with information provided either by the device (see sbus(4)) or the
hardware configuration file (see sysbus(4), isa(4), eisa(4), and driver.conf(4)). If
only one interrupt is associated with the device, inumber should be 0.

On a successful return, *iblock_cookiep contains information needed for initializing
locks associated with the interrupt specification corresponding to inumber (see
mutex_init(9F) and rw_init(9F)). The driver can then initialize locks acquired by
the interrupt routine before calling ddi_add_intr() which prevents a possible race
condition where the driver’s interrupt handler is called immediately after the driver
has called ddi_add_intr() but before the driver has initialized the locks. This may
happen when an interrupt for a different device occurs on the same interrupt level. If
the interrupt routine acquires the lock before the lock has been initialized, undefined
behavior may result.

ddi_add_intr() adds an interrupt handler to the system. The interrupt number
inumber determines which interrupt the handler will be associated with. (Refer to
ddi_get_iblock_cookie() above.)

On a successful return, iblock_cookiep contains information used for initializing locks
associated with this interrupt specification (see mutex_init(9F) and rw_init(9F)).
Note that the interrupt block cookie is usually obtained using
ddi_get_iblock_cookie() to avoid the race conditions described above (refer to
ddi_get_iblock_cookie() above). For this reason, iblock_cookiep is no longer
useful and should be set to NULL.

On a successful return, idevice_cookiep contains a pointer to a
ddi_idevice_cookie_t structure (see ddi_idevice_cookie(9S)) containing
information useful for some devices that have programmable interrupts. If
idevice_cookiep is set to NULL, no value is returned.

The routine intr_handler, with its argument int_handler_arg, is called upon receipt of the
appropriate interrupt. The interrupt handler should return DDI_INTR_CLAIMED if the
interrupt was claimed, DDI_INTR_UNCLAIMED otherwise.

If successful, ddi_add_intr() will return DDI_SUCCESS. DDI_INTR_NOTFOUND is
returned on i86pc and sun4m architectures if the interrupt information cannot be
found. If the interrupt information cannot be found on the sun4u architecture, either
DDI_INTR_NOTFOUND or DDI_FAILURE can be returned.

ddi_remove_intr() removes an interrupt handler from the system. Unloadable
drivers should call this routine during their detach(9E) routine to remove their
interrupt handler from the system.

ddi_add_intr(9F)

ddi_add_intr()

ddi_remove_intr()

210 man pages section 9: DDI and DKI Kernel Functions • Last Revised 4 Jan 2002

The device interrupt routine for this instance of the device will not execute after
ddi_remove_intr() returns. ddi_remove_intr() may need to wait for the
device interrupt routine to complete before returning. Therefore, locks acquired by the
interrupt handler should not be held across the call to ddi_remove_intr() or
deadlock may result.

For certain bus types, you can call these DDI functions from a high-interrupt context.
These types include ISA, EISA, and SBus buses. See sysbus(4), isa(4), eisa(4), and
sbus(4) for details.

ddi_add_intr() and ddi_get_iblock_cookie() return:

DDI_SUCCESS On success.

DDI_INTR_NOTFOUND On failure to find the interrupt.

DDI_FAILURE On failure. DDI_FAILURE can also be returned on
failure to find interrupt (sun4u).

ddi_add_intr(), ddi_remove_intr(), and ddi_get_iblock_cookie() can be
called from user or kernel context.

driver.conf(4), eisa(4), isa(4), sbus(4), sysbus(4), attach(9E), detach(9E),
ddi_intr_hilevel(9F), mutex(9F), mutex_init(9F), rw_init(9F), rwlock(9F),
ddi_idevice_cookie(9S)

Writing Device Drivers

ddi_get_iblock_cookie() must not be called after the driver adds an interrupt
handler for the interrupt specification corresponding to inumber.

All consumers of these interfaces, checking return codes, should verify return_code
!= DDI_SUCCESS. Checking for specific failure codes can result in inconsistent
behaviors among platforms.

The idevice_cookiep should really point to a data structure that is specific to the bus
architecture that the device operates on. Currently the SBus and PCI buses are
supported and a single data structure is used to describe both.

ddi_add_intr(9F)

For All Three
Functions:

RETURN VALUES

CONTEXT

SEE ALSO

NOTES

BUGS

Kernel Functions for Drivers 211

ddi_add_softintr, ddi_get_soft_iblock_cookie, ddi_remove_softintr,
ddi_trigger_softintr – software interrupt handling routines

#include <sys/types.h>
#include <sys/conf.h>
#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_get_soft_iblock_cookie(dev_info_t *dip, int preference,
ddi_iblock_cookie_t *iblock_cookiep);

int ddi_add_softintr(dev_info_t *dip, int preference, ddi_softintr_t
*idp, ddi_iblock_cookie_t *iblock_cookiep, ddi_idevice_cookie_t
*idevice_cookiep, uint_t(*int_handler) (caddr_t int_handler_arg),
caddr_t int_handler_arg);

void ddi_remove_softintr(ddi_softintr_t id);

void ddi_trigger_softintr(ddi_softintr_t id);

Solaris DDI specific (Solaris DDI).

ddi_get_soft_iblock_cookie()

dip Pointer to a dev_info structure.

preference The type of soft interrupt to retrieve the cookie for.

iblock_cookiep Pointer to a location to store the interrupt block cookie.

ddi_add_softintr()

dip Pointer to dev_info structure.

preference A hint value describing the type of soft interrupt to generate.

idp Pointer to a soft interrupt identifier where a returned soft interrupt
identifier is stored.

iblock_cookiep Optional pointer to an interrupt block cookie where a returned
interrupt block cookie is stored.

idevice_cookiep Optional pointer to an interrupt device cookie where a returned
interrupt device cookie is stored (not used).

int_handler Pointer to interrupt handler.

int_handler_arg Argument for interrupt handler.

ddi_remove_softintr()

id The identifier specifying which soft interrupt handler to remove.

ddi_trigger_softintr()

id The identifier specifying which soft interrupt to trigger and which
soft interrupt handler will be called.

ddi_add_softintr(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

212 man pages section 9: DDI and DKI Kernel Functions • Last Revised 15 Oct 2001

For ddi_get_soft_iblock_cookie():

ddi_get_soft_iblock_cookie() retrieves the interrupt block cookie associated
with a particular soft interrupt preference level. This routine should be called before
ddi_add_softintr() to retrieve the interrupt block cookie needed to initialize
locks (mutex(9F), rwlock(9F)) used by the software interrupt routine. preference
determines which type of soft interrupt to retrieve the cookie for. The possible values
for preference are:

DDI_SOFTINT_LOW Low priority soft interrupt.

DDI_SOFTINT_MED Medium priority soft interrupt.

DDI_SOFTINT_HIGH High priority soft interrupt.

On a successful return, iblock_cookiep contains information needed for initializing locks
associated with this soft interrupt (see mutex_init(9F) and rw_init(9F)). The driver
can then initialize mutexes acquired by the interrupt routine before calling
ddi_add_softintr() which prevents a possible race condition where the driver’s
soft interrupt handler is called immediately after the driver has called
ddi_add_softintr() but before the driver has initialized the mutexes. This can
happen when a soft interrupt for a different device occurs on the same soft interrupt
priority level. If the soft interrupt routine acquires the mutex before it has been
initialized, undefined behavior may result.

For ddi_add_softintr():

ddi_add_softintr() adds a soft interrupt to the system. The user specified hint
preference identifies three suggested levels for the system to attempt to allocate the soft
interrupt priority at. The value for preference should be the same as that used in the
corresponding call to ddi_get_soft_iblock_cookie(). Refer to the description of
ddi_get_soft_iblock_cookie() above.

The value returned in the location pointed at by idp is the soft interrupt identifier. This
value is used in later calls to ddi_remove_softintr() and
ddi_trigger_softintr() to identify the soft interrupt and the soft interrupt
handler.

The value returned in the location pointed at by iblock_cookiep is an interrupt block
cookie which contains information used for initializing mutexes associated with this
soft interrupt (see mutex_init(9F) and rw_init(9F)). Note that the interrupt block
cookie is normally obtained using ddi_get_soft_iblock_cookie() to avoid the
race conditions described above (refer to the description of
ddi_get_soft_iblock_cookie() above). For this reason, iblock_cookiep is no
longer useful and should be set to NULL.

idevice_cookiep is not used and should be set to NULL.

ddi_add_softintr(9F)

DESCRIPTION

Kernel Functions for Drivers 213

The routine int_handler, with its argument int_handler_arg, is called upon receipt of a
software interrupt. Software interrupt handlers must not assume that they have work
to do when they run, since (like hardware interrupt handlers) they may run because a
soft interrupt occurred for some other reason. For example, another driver may have
triggered a soft interrupt at the same level. For this reason, before triggering the soft
interrupt, the driver must indicate to its soft interrupt handler that it should do work.
This is usually done by setting a flag in the state structure. The routine int_handler
checks this flag, reachable through int_handler_arg, to determine if it should claim the
interrupt and do its work.

The interrupt handler must return DDI_INTR_CLAIMED if the interrupt was claimed,
DDI_INTR_UNCLAIMED otherwise.

If successful, ddi_add_softintr() will return DDI_SUCCESS; if the interrupt
information cannot be found, it will return DDI_FAILURE.

For ddi_remove_softintr():

ddi_remove_softintr() removes a soft interrupt from the system. The soft
interrupt identifier id, which was returned from a call to ddi_add_softintr(), is
used to determine which soft interrupt and which soft interrupt handler to remove.
Drivers must remove any soft interrupt handlers before allowing the system to unload
the driver.

For ddi_trigger_softintr():

ddi_trigger_softintr() triggers a soft interrupt. The soft interrupt identifier id is
used to determine which soft interrupt to trigger. This function is used by device
drivers when they wish to trigger a soft interrupt which has been set up using
ddi_add_softintr().

ddi_add_softintr() and ddi_get_soft_iblock_cookie() return:

DDI_SUCCESS on success

DDI_FAILURE on failure

These functions can be called from user or kernel context.
ddi_trigger_softintr() may be called from high-level interrupt context as well.

EXAMPLE 1 device using high-level interrupts

In the following example, the device uses high-level interrupts. High-level interrupts
are those that interrupt at the level of the scheduler and above. High level interrupts
must be handled without using system services that manipulate thread or process
states, because these interrupts are not blocked by the scheduler. In addition, high
level interrupt handlers must take care to do a minimum of work because they are not
preemptable. See ddi_intr_hilevel(9F).

ddi_add_softintr(9F)

RETURN VALUES

CONTEXT

EXAMPLES

214 man pages section 9: DDI and DKI Kernel Functions • Last Revised 15 Oct 2001

EXAMPLE 1 device using high-level interrupts (Continued)

In the example, the high-level interrupt routine minimally services the device, and
enqueues the data for later processing by the soft interrupt handler. If the soft
interrupt handler is not currently running, the high-level interrupt routine triggers a
soft interrupt so the soft interrupt handler can process the data. Once running, the soft
interrupt handler processes all the enqueued data before returning.

The state structure contains two mutexes. The high-level mutex is used to protect data
shared between the high-level interrupt handler and the soft interrupt handler. The
low-level mutex is used to protect the rest of the driver from the soft interrupt handler.

struct xxstate {
. . .
ddi_softintr_t id;

ddi_iblock_cookie_t high_iblock_cookie;
kmutex_t high_mutex;
ddi_iblock_cookie_t low_iblock_cookie;
kmutex_t low_mutex;
int softint_running;

. . .
};
struct xxstate *xsp;
static uint_t xxsoftintr(caddr_t);
static uint_t xxhighintr(caddr_t);
. . .

EXAMPLE 2 sample attach() routine

The following code fragment would usually appear in the driver’s attach(9E)
routine. ddi_add_intr(9F) is used to add the high-level interrupt handler and
ddi_add_softintr() is used to add the low-level interrupt routine.

static uint_t
xxattach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{

struct xxstate *xsp;
. . .

/* get high-level iblock cookie */
if (ddi_get_iblock_cookie(dip, inumber,

&xsp->high_iblock_cookie) != DDI_SUCCESS) {
/* clean up */
return (DDI_FAILURE); /* fail attach */

}

/* initialize high-level mutex */
mutex_init(&xsp->high_mutex, "xx high mutex", MUTEX_DRIVER,

(void *)xsp->high_iblock_cookie);

/* add high-level routine - xxhighintr() */
if (ddi_add_intr(dip, inumber, NULL, NULL,

xxhighintr, (caddr_t) xsp) != DDI_SUCCESS) {
/* cleanup */
return (DDI_FAILURE); /* fail attach */

ddi_add_softintr(9F)

Kernel Functions for Drivers 215

EXAMPLE 2 sample attach() routine (Continued)

}

/* get soft iblock cookie */
if (ddi_get_soft_iblock_cookie(dip, DDI_SOFTINT_MED,

&xsp->low_iblock_cookie) != DDI_SUCCESS) {
/* clean up */
return (DDI_FAILURE); /* fail attach */

}

/* initialize low-level mutex */
mutex_init(&xsp->low_mutex, "xx low mutex", MUTEX_DRIVER,

(void *)xsp->low_iblock_cookie);

/* add low level routine - xxsoftintr() */
if (ddi_add_softintr(dip, DDI_SOFTINT_MED, &xsp->id,

NULL, NULL, xxsoftintr, (caddr_t) xsp) != DDI_SUCCESS) {
/* cleanup */
return (DDI_FAILURE); /* fail attach */

}

. . .
}

EXAMPLE 3 High-level interrupt routine

The next code fragment represents the high-level interrupt routine. The high-level
interrupt routine minimally services the device, and enqueues the data for later
processing by the soft interrupt routine. If the soft interrupt routine is not already
running, ddi_trigger_softintr() is called to start the routine. The soft interrupt
routine will run until there is no more data on the queue.

static uint_t
xxhighintr(caddr_t arg)
{

struct xxstate *xsp = (struct xxstate *) arg;
int need_softint;
. . .
mutex_enter(&xsp->high_mutex);
/*
* Verify this device generated the interrupt
* and disable the device interrupt.
* Enqueue data for xxsoftintr() processing.
*/

/* is xxsoftintr() already running ? */
if (xsp->softint_running)

need_softint = 0;
else

need_softint = 1;
mutex_exit(&xsp->high_mutex);

/* read-only access to xsp->id, no mutex needed */
if (need_softint)

ddi_add_softintr(9F)

216 man pages section 9: DDI and DKI Kernel Functions • Last Revised 15 Oct 2001

EXAMPLE 3 High-level interrupt routine (Continued)

ddi_trigger_softintr(xsp->id);
. . .
return (DDI_INTR_CLAIMED);

}

static uint_t
xxsoftintr(caddr_t arg)
{

struct xxstate *xsp = (struct xxstate *) arg;
. . .

mutex_enter(&xsp->low_mutex);
mutex_enter(&xsp->high_mutex);

/* verify there is work to do */
if (work queue empty || xsp->softint_running) {

mutex_exit(&xsp->high_mutex);
mutex_exit(&xsp->low_mutex);
return (DDI_INTR_UNCLAIMED);

}

xsp->softint_running = 1;

while (data on queue) {
ASSERT(mutex_owned(&xsp->high_mutex));

/* de-queue data */

mutex_exit(&xsp->high_mutex);

/* Process data on queue */

mutex_enter(&xsp->high_mutex);
}

xsp->softint_running = 0;
mutex_exit(&xsp->high_mutex);
mutex_exit(&xsp->low_mutex);

return (DDI_INTR_CLAIMED);
}

ddi_add_intr(9F), ddi_in_panic(9F), ddi_intr_hilevel(9F),
ddi_remove_intr(9F), mutex_init(9F)

Writing Device Drivers

ddi_add_softintr() may not be used to add the same software interrupt handler
more than once. This is true even if a different value is used for int_handler_arg in each
of the calls to ddi_add_softintr(). Instead, the argument passed to the interrupt
handler should indicate what service(s) the interrupt handler should perform. For

ddi_add_softintr(9F)

SEE ALSO

NOTES

Kernel Functions for Drivers 217

example, the argument could be a pointer to the device’s soft state structure, which
could contain a ’which_service’ field that the handler examines. The driver must set
this field to the appropriate value before calling ddi_trigger_softintr().

ddi_add_softintr(9F)

218 man pages section 9: DDI and DKI Kernel Functions • Last Revised 15 Oct 2001

ddi_binding_name, ddi_get_name – return driver binding name

#include <sys/ddi.h>

#include <sys/sunddi.h>

char *ddi_binding_name(dev_info_t *dip);

char *ddi_get_name(dev_info_t *dip);

Solaris DDI specific (Solaris DDI).

dip A pointer to the device’s dev_info structure.

ddi_binding_name() and ddi_get_name() return the driver binding name. This
is the name used to select a driver for the device. This name is typically derived from
the device name property or the device compatible property. The name returned
may be a driver alias or the driver name.

ddi_binding_name() and ddi_get_name() return the name used to bind a driver
to a device.

ddi_binding_name() and ddi_get_name() can be called from user, kernel, or
interrupt context.

ddi_node_name(9F)

Writing Device Drivers

The name returned by ddi_binding_name() and ddi_get_name() is read-only.

ddi_binding_name(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

WARNINGS

Kernel Functions for Drivers 219

ddi_btop, ddi_btopr, ddi_ptob – page size conversions

#include <sys/ddi.h>

#include <sys/sunddi.h>

unsigned long ddi_btop(dev_info_t *dip, unsigned long bytes);

unsigned long ddi_btopr(dev_info_t *dip, unsigned long bytes);

unsigned long ddi_ptob(dev_info_t *dip, unsigned long pages);

Solaris DDI specific (Solaris DDI).

This set of routines use the parent nexus driver to perform conversions in page size
units.

ddi_btop() converts the given number of bytes to the number of memory pages that
it corresponds to, rounding down in the case that the byte count is not a page
multiple.

ddi_btopr() converts the given number of bytes to the number of memory pages
that it corresponds to, rounding up in the case that the byte count is not a page
multiple.

ddi_ptob() converts the given number of pages to the number of bytes that it
corresponds to.

Because bus nexus may possess their own hardware address translation facilities,
these routines should be used in preference to the corresponding DDI/DKI routines
btop(9F), btopr(9F), and ptob(9F), which only deal in terms of the pagesize of the
main system MMU.

ddi_btop() and ddi_btopr() return the number of corresponding pages.
ddi_ptob() returns the corresponding number of bytes. There are no error return
values.

This function can be called from user or interrupt context.

EXAMPLE 1 Find the size (in bytes) of one page

pagesize = ddi_ptob(dip, 1L);

btop(9F), btopr(9F), ptob(9F)

Writing Device Drivers

ddi_btop(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

RETURN VALUES

CONTEXT

EXAMPLES

SEE ALSO

220 man pages section 9: DDI and DKI Kernel Functions • Last Revised 11 Sep 1991

ddi_check_acc_handle, ddi_check_dma_handle – Check data access and DMA handles

#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_check_acc_handle(ddi_acc_handle_t acc_handle);

int ddi_check_dma_handle(ddi_dma_handle_t dma_handle);

Solaris DDI specific (Solaris DDI)

acc_handle Data access handle obtained from a previous call to
ddi_regs_map_setup(9F), ddi_dma_mem_alloc(9F), or similar
function.

dma_handle DMA handle obtained from a previous call to
ddi_dma_setup(9F) or one of its derivatives.

The ddi_check_acc_handle() and ddi_check_dma_handle() functions check
for faults that can interfere with communication between a driver and the device it
controls. Each function checks a single handle of a specific type and returns a status
value indicating whether faults affecting the resource mapped by the supplied handle
have been detected.

If a fault is indicated when checking a data access handle, this implies that the driver
is no longer able to access the mapped registers or memory using programmed I/O
through that handle. Typically, this might occur after the device has failed to respond
to an I/O access (for example, has incurred a bus error or timed out). The effect of
programmed I/O accesses made after this happens is undefined; for example, read
accesses (for example, ddi_get8(9F)) may return random values, and write accesses
(for example, ddi_put8(9F)) may or may not have any effect. This type of fault is
normally fatal to the operation of the device, and the driver should report it via
ddi_dev_report_fault(9F) specifying DDI_SERVICE_LOST for the impact, and
DDI_DATAPATH_FAULT for the location.

If a fault is indicated when checking a DMA handle, it implies that a fault has been
detected that has (or will) affect DMA transactions between the device and the
memory currently bound to the handle (or most recently bound, if the handle is
currently unbound). Possible causes include the failure of a component in the DMA
data path, or an attempt by the device to make an invalid DMA access. The driver
may be able to continue by falling back to a non-DMA mode of operation, but in
general, DMA faults are non-recoverable. The contents of the memory currently (or
previously) bound to the handle should be regarded as indeterminate. The fault
indication associated with the current transaction is lost once the handle is (re-)bound,
but because the fault may persist, future DMA operations may not succeed.

Note – Some implementations cannot detect all types of failure. If a fault is not
indicated, this does not constitute a guarantee that communication is possible.
However, if a check fails, this is a positive indication that a problem does exist with
respect to communication using that handle.

ddi_check_acc_handle(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

Kernel Functions for Drivers 221

The ddi_check_acc_handle() and ddi_check_dma_handle() functions return
DDI_SUCCESS if no faults affecting the supplied handle are detected and
DDI_FAILURE if any fault affecting the supplied handle is detected.

static int
xxattach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{

\\&...
/* This driver uses only a single register-access handle */
status = ddi_regs_map_setup(dip, REGSET_ZERO, ®addr,

0, 0, , &acc_attrs, &acc_hdl);
if (status != DDI_SUCCESS)

return (DDI_FAILURE);
\\&...

}

static int
xxread(dev_t dev, struct uio *uio_p, cred_t *cred_p)
{

\\&...
if (ddi_check_acc_handle(acc_hdl) != DDI_SUCCESS) {

ddi_dev_report_fault(dip, DDI_SERVICE_LOST,
DDI_DATAPATH_FAULT, "register access fault during read");

return (EIO);
}

\\&...

The ddi_check_acc_handle() and ddi_check_dma_handle() functions may be
called from user, kernel, or interrupt context.

ddi_regs_map_setup(9F), ddi_dma_setup(9F), ddi_dev_report_fault(9F),
ddi_get8(9F), ddi_put8(9F)

ddi_check_acc_handle(9F)

RETURN VALUES

EXAMPLES

CONTEXT

SEE ALSO

222 man pages section 9: DDI and DKI Kernel Functions • Last Revised 13 August 1999

ddi_copyin – copy data to a driver buffer

#include <sys/types.h>
#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_copyin(const void *buf, void *driverbuf, size_t cn, int flags);

Solaris DDI specific (Solaris DDI).

buf Source address from which data is transferred.

driverbuf Driver destination address to which data is transferred.

cn Number of bytes transferred.

flags Set of flag bits that provide address space information about buf.

This routine is designed for use in driver ioctl(9E) routines for drivers that support
layered ioctls. ddi_copyin() copies data from a source address to a driver buffer.
The driver developer must ensure that adequate space is allocated for the destination
address.

The flags argument determines the address space information about buf. If the
FKIOCTL flag is set, this indicates that buf is a kernel address, and ddi_copyin()
behaves like bcopy(9F). Otherwise, buf is interpreted as a user buffer address, and
ddi_copyin() behaves like copyin(9F).

Addresses that are word-aligned are moved most efficiently. However, the driver
developer is not obliged to ensure alignment. This function automatically finds the
most efficient move according to address alignment.

ddi_copyin() returns 0, indicating a successful copy. It returns −1 if one of the
following occurs:

� Paging fault; the driver tried to access a page of memory for which it did not have
read or write access.

� Invalid user address, such as a user area or stack area.

� Invalid address that would have resulted in data being copied into the user block.

� Hardware fault; a hardware error prevented access to the specified user memory.
For example, an uncorrectable parity or ECC error occurred.

If −1 is returned to the caller, driver entry point routines should return EFAULT.

ddi_copyin() can be called from user or kernel context only.

ddi_copyin(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

Kernel Functions for Drivers 223

EXAMPLE 1 ddi_copyin() example

A driver ioctl(9E) routine (line 12) can be used to get or set device attributes or
registers. For the XX_SETREGS condition (line 25), the driver copies the user data in
arg to the device registers. If the specified argument contains an invalid address, an
error code is returned.

1 struct device { /* layout of physical device registers */
2 int control; /* physical device control word */
3 int status; /* physical device status word */
4 short recv_char; /* receive character from device */
5 short xmit_char; /* transmit character to device */
6 };
7 struct device_state {
8 volatile struct device *regsp; /* pointer to device registers */
9 kmutex_t reg_mutex; /* protect device registers */

. . .
10 };

11 static void *statep; /* for soft state routines */

12 xxioctl(dev_t dev, int cmd, int arg, int mode,
13 cred_t *cred_p, int *rval_p)
14 {
15 struct device_state *sp;
16 volatile struct device *rp;
17 struct device reg_buf; /* temporary buffer for registers */
18 int instance;

19 instance = getminor(dev);
20 sp = ddi_get_soft_state(statep, instance);
21 if (sp == NULL)
22 return (ENXIO);
23 rp = sp->regsp;

. . .
24 switch (cmd) {

25 case XX_GETREGS: /* copy data to temp. regs. buf */
26 if (ddi_copyin(arg, ®_buf,
27 sizeof (struct device), mode) != 0) {
28 return (EFAULT);
29 }

30 mutex_enter(&sp->reg_mutex);
31 /*
32 * Copy data from temporary device register
33 * buffer to device registers.
34 * e.g. rp->control = reg_buf.control;
35 */
36 mutex_exit(&sp->reg_mutex);

37 break;
38 }
39 }

ddi_copyin(9F)

EXAMPLES

224 man pages section 9: DDI and DKI Kernel Functions • Last Revised 19 Apr 2000

EXAMPLE 1 ddi_copyin() example (Continued)

ioctl(9E), bcopy(9F), copyin(9F), copyout(9F), ddi_copyout(9F), uiomove(9F)

Writing Device Drivers

The value of the flags argument to ddi_copyin() should be passed through directly
from the mode argument of ioctl() untranslated.

Driver defined locks should not be held across calls to this function.

ddi_copyin() should not be used from a streams driver. See M_COPYIN and
M_COPYOUT in STREAMS Programming Guide.

ddi_copyin(9F)

SEE ALSO

NOTES

Kernel Functions for Drivers 225

ddi_copyout – copy data from a driver

#include <sys/types.h>
#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_copyout(const void *driverbuf, void *buf, size_t cn, int
flags);

Solaris DDI specific (Solaris DDI).

driverbuf Source address in the driver from which the data is transferred.

buf Destination address to which the data is transferred.

cn Number of bytes to copy.

flags Set of flag bits that provide address space information about buf.

This routine is designed for use in driver ioctl(9E) routines for drivers that support
layered ioctls. ddi_copyout() copies data from a driver buffer to a destination
address, buf.

The flags argument determines the address space information about buf. If the
FKIOCTL flag is set, this indicates that buf is a kernel address, and ddi_copyout()
behaves like bcopy(9F). Otherwise, buf is interpreted as a user buffer address, and
ddi_copyout() behaves like copyout(9F).

Addresses that are word-aligned are moved most efficiently. However, the driver
developer is not obliged to ensure alignment. This function automatically finds the
most efficient move algorithm according to address alignment.

Under normal conditions, 0 is returned to indicate a successful copy. Otherwise, −1 is
returned if one of the following occurs:

� Paging fault; the driver tried to access a page of memory for which it did not have
read or write access.

� Invalid user address, such as a user area or stack area.

� Invalid address that would have resulted in data being copied into the user block.

� Hardware fault; a hardware error prevented access to the specified user memory.
For example, an uncorrectable parity or ECC error occurred.

If −1 is returned to the caller, driver entry point routines should return EFAULT.

ddi_copyout() can be called from user or kernel context only.

ddi_copyout(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

226 man pages section 9: DDI and DKI Kernel Functions • Last Revised 19 Apr 2000

EXAMPLE 1 ddi_copyout() example

A driver ioctl(9E) routine (line 12) can be used to get or set device attributes or
registers. In the XX_GETREGS condition (line 25), the driver copies the current device
register values to another data area. If the specified argument contains an invalid
address, an error code is returned.

1 struct device { /* layout of physical device registers */
2 int control; /* physical device control word */
3 int status; /* physical device status word */
4 short recv_char; /* receive character from device */
5 short xmit_char; /* transmit character to device */
6 };

7 struct device_state {
8 volatile struct device *regsp; /* pointer to device registers */
9 kmutex_t reg_mutex; /* protect device registers */

. . .
10 };

11 static void *statep; /* for soft state routines */

12 xxioctl(dev_t dev, int cmd, int arg, int mode,
13 cred_t *cred_p, int *rval_p)
14 {
15 struct device_state *sp;
16 volatile struct device *rp;
17 struct device reg_buf; /* temporary buffer for registers */
18 int instance;

19 instance = getminor(dev);
20 sp = ddi_get_soft_state(statep, instance);
21 if (sp == NULL)
22 return (ENXIO);
23 rp = sp->regsp;

. . .
24 switch (cmd) {

25 case XX_GETREGS: /* copy registers to arg */
26 mutex_enter(&sp->reg_mutex);
27 /*
28 * Copy data from device registers to
29 * temporary device register buffer
30 * e.g. reg_buf.control = rp->control;
31 */
32 mutex_exit(&sp->reg_mutex);
33 if (ddi_copyout(®_buf, arg,
34 sizeof (struct device), mode) != 0) {
35 return (EFAULT);
36 }

37 break;
38 }
39 }

ddi_copyout(9F)

EXAMPLES

Kernel Functions for Drivers 227

EXAMPLE 1 ddi_copyout() example (Continued)

ioctl(9E), bcopy(9F), copyin(9F), copyout(9F), ddi_copyin(9F), uiomove(9F)

Writing Device Drivers

The value of the flags argument to ddi_copyout() should be passed through directly
from the mode argument of ioctl() untranslated.

Driver defined locks should not be held across calls to this function.

ddi_copyout() should not be used from a streams driver. See M_COPYIN and
M_COPYOUT in STREAMS Programming Guide.

ddi_copyout(9F)

SEE ALSO

NOTES

228 man pages section 9: DDI and DKI Kernel Functions • Last Revised 19 Apr 2000

ddi_create_minor_node – create a minor node for this device

#include <sys/stat.h>

#include <sys/sunddi.h>

int ddi_create_minor_node(dev_info_t *dip, char *name, int spec_type,
minor_t minor_num, char *node_type, int flag);

Solaris DDI specific (Solaris DDI).

dip A pointer to the device’s dev_info structure.

name The name of this particular minor device.

spec_type S_IFCHR or S_IFBLK for character or block minor devices
respectively.

minor_num The minor number for this particular minor device.

node_type Any string that uniquely identifies the type of node. The following
predefined node types are provided with this release:

DDI_NT_SERIAL For serial ports

DDI_NT_SERIAL_MB For on board serial ports

DDI_NT_SERIAL_DO For dial out ports

DDI_NT_SERIAL_MB_DO For on board dial out ports

DDI_NT_BLOCK For hard disks

DDI_NT_BLOCK_CHAN For hard disks with channel or
target numbers

DDI_NT_CD For CDROM drives

DDI_NT_CD_CHAN For CDROM drives with channel or
target numbers

DDI_NT_FD For floppy disks

DDI_NT_TAPE For tape drives

DDI_NT_NET For DLPI style 1 or style 2 network
devices

DDI_NT_DISPLAY For display devices

DDI_PSEUDO For pseudo devices

flag If the device is a clone device then this flag is set to CLONE_DEV
else it is set to 0. The device node class can also be specified using
this flag. The device classes do not have an effect in the creation of
the device node in a non-clustered environment; but for device
drivers intended for use in a clustered environment, one of the
following needs to be specified. If the device class is not indicated

ddi_create_minor_node(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

Kernel Functions for Drivers 229

the default class for pseudo devices will be NODESPECIFIC_DEV
and for physical devices will be ENUMERATED_DEV.

GLOBAL_DEV The device is a node invariant device and can be
opened from any node in the cluster.

NODEBOUND_DEV The device is node invariant but it has
cluster wide state associated with it so that
all subsequent opens must be directed there.

NODESPECIFIC_DEV The device node provides node specific
information and must be opened
co-located with the process.

ENUMERATED_DEV Unique cluster wide device nodes. The i/o
must take place at the host where the
device node was created.

ddi_create_minor_node() provides the necessary information to enable the
system to create the /dev and /devices hierarchies. The name is used to create the
minor name of the block or character special file under the /devices hierarchy.
At-sign (@), slash (/), and space are not allowed. The spec_type specifies whether this is
a block or character device. The minor_num is the minor number for the device. The
node_type is used to create the names in the /dev hierarchy that refers to the names in
the /devices hierarchy. See disks(1M), ports(1M), tapes(1M), devlinks(1M).
Finally flag determines if this is a clone device or not, and what device class the node
belongs to.

ddi_create_minor_node() returns:

DDI_SUCCESS Was able to allocate memory, create the minor data structure, and
place it into the linked list of minor devices for this driver.

DDI_FAILURE Minor node creation failed.

EXAMPLE 1 Create Data Structure Describing Minor Device with Minor Number of 0

The following example creates a data structure describing a minor device called foo
which has a minor number of 0. It is of type DDI_NT_BLOCK (a block device) and it is
not a clone device.

ddi_create_minor_node(dip, "foo", S_IFBLK, 0, DDI_NT_BLOCK, 0);

add_drv(1M), devlinks(1M), disks(1M), drvconfig(1M), ports(1M),
tapes(1M), attach(9E), ddi_remove_minor_node(9F)

Writing Device Drivers

ddi_create_minor_node(9F)

DESCRIPTION

RETURN VALUES

EXAMPLES

SEE ALSO

230 man pages section 9: DDI and DKI Kernel Functions • Last Revised 7 Jun 2001

If the driver is for a network device (node_type DDI_NT_NET), note that the driver
name will undergo the driver name constraints identified in the NOTES section of
dlpi(7P). Additionally, the minor name must match the driver name for a DLPI style
2 provider. If the driver is a DLPI style 1 provider, the minor name must also match
the driver name with the exception that the ppa is appended to the minor name.

ddi_create_minor_node(9F)

NOTES

Kernel Functions for Drivers 231

ddi_device_copy – copy data from one device register to another device register

#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_device_copy(ddi_acc_handle_t src_handle, caddr_t src_addr,
ssize_t src_advcnt, ddi_acc_handle_t dest_handle, caddr_t dest_addr,
ssize_t dest_advcnt, size_t bytecount, uint_t dev_datasz);

Solaris DDI specific (Solaris DDI).

src_handle The data access handle of the source device.

src_addr Base data source address.

src_advcnt Number of dev_datasz units to advance on every access.

dest_handle The data access handle of the destination device.

dest_addr Base data destination address.

dest_advcnt Number of dev_datasz units to advance on every access.

bytecount Number of bytes to transfer.

dev_datasz The size of each data word. Possible values are defined as:

DDI_DATA_SZ01_ACC 1 byte data size

DDI_DATA_SZ02_ACC 2 bytes data size

DDI_DATA_SZ04_ACC 4 bytes data size

DDI_DATA_SZ08_ACC 8 bytes data size

ddi_device_copy() copies bytecount bytes from the source address, src_addr, to the
destination address, dest_addr. The attributes encoded in the access handles, src_handle
and dest_handle, govern how data is actually copied from the source to the destination.
Only matching data sizes between the source and destination are supported.

Data will automatically be translated to maintain a consistent view between the source
and the destination. The translation may involve byte-swapping if the source and the
destination devices have incompatible endian characteristics.

The src_advcnt and dest_advcnt arguments specifies the number of dev_datasz units to
advance with each access to the device addresses. A value of 0 will use the same
source and destination device address on every access. A positive value increments the
corresponding device address by certain number of data size units in the next access.
On the other hand, a negative value decrements the device address.

The dev_datasz argument determines the size of the data word on each access. The data
size must be the same between the source and destination.

ddi_device_copy() returns:

DDI_SUCCESS Successfully transferred the data.

ddi_device_copy(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

232 man pages section 9: DDI and DKI Kernel Functions • Last Revised 15 Nov 1996

DDI_FAILURE The byte count is not a multiple dev_datasz.

ddi_device_copy() can be called from user, kernel, or interrupt context.

ddi_regs_map_free(9F), ddi_regs_map_setup(9F)

Writing Device Drivers

ddi_device_copy(9F)

CONTEXT

SEE ALSO

Kernel Functions for Drivers 233

ddi_device_zero – zero fill the device

#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_device_zero(ddi_acc_handle_t handle, caddr_t dev_addr,
size_t bytecount, ssize_t dev_advcnt, uint_t dev_datasz);

Solaris DDI specific (Solaris DDI).

handle The data access handle returned from setup calls, such as
ddi_regs_map_setup(9F).

dev_addr Beginning of the device address.

bytecount Number of bytes to zero.

dev_advcnt Number of dev_datasz units to advance on every access.

dev_datasz The size of each data word. Possible values are defined as:

DDI_DATA_SZ01_ACC 1 byte data size

DDI_DATA_SZ02_ACC 2 bytes data size

DDI_DATA_SZ04_ACC 4 bytes data size

DDI_DATA_SZ08_ACC 8 bytes data size

ddi_device_zero() function fills the given, bytecount, number of byte of zeroes to
the device register or memory.

The dev_advcnt argument determines the value of the device address, dev_addr, on each
access. A value of 0 will use the same device address, dev_addr, on every access. A
positive value increments the device address in the next access while a negative value
decrements the address. The device address is incremented and decremented in
dev_datasz units.

The dev_datasz argument determines the size of data word on each access.

ddi_device_zero() returns:

DDI_SUCCESS Successfully zeroed the data.

DDI_FAILURE The byte count is not a multiple of dev_datasz.

ddi_device_zero() can be called from user, kernel, or interrupt context.

ddi_regs_map_free(9F), ddi_regs_map_setup(9F)

Writing Device Drivers

ddi_device_zero(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

234 man pages section 9: DDI and DKI Kernel Functions • Last Revised 25 Sep 1996

ddi_devid_compare, ddi_devid_free, ddi_devid_init, ddi_devid_register,
ddi_devid_sizeof, ddi_devid_str_decode, ddi_devid_str_encode, ddi_devid_str_free,
ddi_devid_unregister, ddi_devid_valid – kernel interfaces for device ids

int ddi_devid_compare(ddi_devid_t devid1, ddi_devid_t devid2);

size_t ddi_devid_sizeof(ddi_devid_t devid);

int ddi_devid_init(dev_info_t *dip, ushort_t devid_type, ushort_t
nbytes, void *id, ddi_devid_t *retdevid);

void ddi_devid_free(ddi_devid_t devid);

int ddi_devid_register(dev_info_t *dip, ddi_devid_t devid);

int ddi_devid_str_decode(char *devidstr, ddi_devid_t *retdevid, char
**retminor_name);

int ddi_devid_str_encode(ddi_devid_t devid, char *minor_name);

int ddi_devid_str_free(char *devidstr);

void ddi_devid_unregister(dev_info_t *dip);

int ddi_devid_valid(ddi_devid_t devid);

devid The device id address.

devidstr The devid and minor_name represented as a string.

devid1 The first of two device id addresses to be compared calling
ddi_devid_compare().

devid2 The second of two device id addresses to be compared calling
ddi_devid_compare().

dip A dev_info pointer, which identifies the device.

devid_type The following device id types may be accepted by the
ddi_devid_init() function:

DEVID_SCSI3_WWN World Wide Name associated with
SCSI-3 devices.

DEVID_SCSI_SERIAL Vendor IDand serial number
associated with a SCSI device.
Note: This may only be used if
known to be unique; otherwise a
fabricated device id must be used.

DEVID_ENCAP Device ID of another device. This is
for layered device driver usage.

DEVID_FAB Fabricated device ID.

minor_name The minor name to be encoded.

ddi_devid_compare(9F)

NAME

SYNOPSIS

PARAMETERS

Kernel Functions for Drivers 235

nbytes The length in bytes of device ID.

retdevid The return address of the device ID.

retminor_name The return address of a minor name. Free string with
ddi_devid_str_free().

Solaris DDI specific (Solaris DDI).

The following routines are used to provide unique identifiers, device IDs, for devices.
Specifically, kernel modules use these interfaces to identify and locate devices,
independent of the device’s physical connection or its logical device name or number.

ddi_devid_compare() compares two device IDs byte-by-byte and determines both
equality and sort order.

ddi_devid_sizeof() returns the number of bytes allocated for the passed in device
ID (devid).

ddi_devid_init() allocates memory and initializes the opaque device ID structure.
This function does not store the devid. If the device id is not derived from the device’s
firmware, it is the driver’s responsibility to store the devid on some reliable store.
When a devid_type of either DEVID_SCSI3_WWN, DEVID_SCSI_SERIAL, or
DEVID_ENCAP is accepted, an array of bytes (id) must be passed in (nbytes).

When the devid_type DEVID_FAB is used, the array of bytes (id) must be NULL and the
length (nbytes) must be zero. The fabricated device ids, DEVID_FAB will be initialized
with the machine’s host id and a timestamp.

Drivers must free the memory allocated by this function, using the
ddi_devid_free() function.

ddi_devid_free() frees the memory allocated for the returned devid by the
ddi_devid_init() and devid_str_decode() functions.

ddi_devid_register() registers the device ID address (devid) with the DDI
framework, associating it with the dev_info passed in (dip). The drivers must
register device IDs at attach time. See attach(9E).

ddi_devid_unregister() removes the device ID address from the dev_info
passed in (dip). Drivers must use this function to unregister the device ID when
devices are being detached. This function does not free the space allocated for the
device ID. The driver must free the space allocated for the device ID, using the
ddi_devid_free() function. See detach(9E).

ddi_devid_valid() validates the device ID (devid) passed in. The driver must use
this function to validate any fabricated device ID that has been stored on a device.

ddi_devid_compare(9F)

INTERFACE
LEVEL

DESCRIPTION

236 man pages section 9: DDI and DKI Kernel Functions • Last Revised 9 Nov 2000

The ddi_devid_str_encode() function encodes a devid and minor_name into a
null-terminated ASCII string, returning a pointer to that string. If both a devid and a
minor_name are non-null, then a slash (/) is used to separate the devid from the
minor_name in the encoded string. If minor_name is null, then only the devid is encoded.
If the devid is null, then the special string id0 is returned. Note that you cannot
compare the returned string against another string with strcmp() to determine devid
equality. The returned string must be freed by calling devid_str_free().

The ddi_devid_str_decode() function takes a string previously produced by the
devid_str_encode(3DEVID) or ddi_devid_str_encode() function and decodes
the contained device ID and minor_name, allocating and returning pointers to the
extracted parts through the retdevid and retminor_name arguments. If the special
devidstr id0 was specified then the returned device ID and minor name will both be
null. A non-null returned devid must be freed by the caller through the
ddi_devid_free() function. A non-null returned minor name must be freed by
calling ddi_devid_str_free().

The ddi_devid_str_free() function is used to free all strings returned by the
ddi_devid functions (the ddi_devid_str_encode() function return value and
the returned retminor_name argument).

ddi_devid_init() returns the following values:

DDI_SUCCESS Success.

DDI_FAILURE Out of memory. An invalid devid_type was passed in.

ddi_devid_valid() returns the following values:

DDI_SUCCESS Valid device ID.

DDI_FAILURE Invalid device ID.

ddi_devid_register() returns the following values:

DDI_SUCCESS Success.

DDI_FAILURE Failure. The device ID is already registered or the device ID is
invalid.

ddi_devid_valid() returns the following values:

DDI_SUCCESS Valid device ID.

DDI_FAILURE Invalid device ID.

ddi_devid_compare() returns the following values:

−1 The first device ID is less than the second device ID.

0 The first device ID is equal to the second device ID.

1 The first device ID is greater than the second device ID.

ddi_devid_compare(9F)

RETURN VALUES

Kernel Functions for Drivers 237

ddi_devid_sizeof() returns the size of the devid in bytes. If called with a null, then
the number of bytes that must be allocated and initialized to determine the size of a
complete device ID is returned.

ddi_devid_str_encode() returns a value of null to indicate failure. Failure can be
caused by attempting to encode an invalid devid. If the return value is non-null then
the caller must free the returned string by using the devid_str_free() function.

ddi_devid_str_decode() returns the following values:

DDI_SUCCESS Success.

DDI_FAILURE Failure; the devidstr string was not valid.

These functions can be called from a user or kernel context.

devid_get(3DEVID), , libdevid(3LIB), attributes(5), attach(9E), detach(9E),
kmem_free(9F)

Writing Device Drivers

ddi_devid_compare(9F)

CONTEXT

SEE ALSO

238 man pages section 9: DDI and DKI Kernel Functions • Last Revised 9 Nov 2000

ddi_dev_is_needed – inform the system that a device’s component is required

#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_dev_is_needed(dev_info_t *dip, int component, int level);

Solaris DDI specific (Solaris DDI)

dip Pointer to the device’s dev_info structure.

component Component of the driver which is needed.

level Power level at which the component is needed.

The ddi_dev_is_needed() function is obsolete and will be removed in a future
release. It is recommended that device drivers use pm_raise_power(9F) and
pm_lower_power(9F).

The ddi_dev_is_needed() function informs the system that a device component is
needed at the specified power level. The level argument must be non-zero.

This function sets a component to the required level and sets all devices which depend
on this to their normal power levels. If component 0 of a device using original Power
Management interfaces (calls pm_create_components(9F)) is at power level 0, the
ddi_dev_is_needed() call will result in component 0 being returned to normal
power and the device being resumed via attach(9E) before ddi_dev_is_needed()
returns.

The state of the device should be examined before each physical access. The
ddi_dev_is_needed() function should be called to set a component to the required
power level if the operation to be performed requires the component to be at a power
level other than its current level.

The ddi_dev_is_needed() function might cause re-entry of the driver. Deadlock
may result if driver locks are held across the call to ddi_dev_is_needed().

The ddi_dev_is_needed() function returns:

DDI_SUCCESS Power successfully set to the requested level.

DDI_FAILURE An error occurred.

EXAMPLE 1 disk driver code

A hypothetical disk driver might include this code:

static int
xxdisk_spun_down(struct xxstate *xsp)
{

return (xsp->power_level[DISK_COMPONENT] < POWER_SPUN_UP);
}
static int
xxdisk_strategy(struct buf *bp)

ddi_dev_is_needed(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

EXAMPLES

Kernel Functions for Drivers 239

EXAMPLE 1 disk driver code (Continued)

{

. . .

mutex_enter(&xxstate_lock);
/*
* Since we have to drop the mutex, we have to do this in a loop
* in case we get preempted and the device gets taken away from
* us again
*/
while (device_spun_down(sp)) {

mutex_exit(&xxstate_lock);
if (ddi_dev_is_needed(xsp->mydip,

XXDISK_COMPONENT, XXPOWER_SPUN_UP) != DDI_SUCCESS) {
bioerror(bp,EIO);
biodone(bp);
return (0);

}
mutex_enter(&xxstate_lock);

}
xsp->device_busy++;
mutex_exit(&xxstate_lock);

. . .

}

This function can be called from user or kernel context.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface stability Obsolete

pm(7D), pm-components(9P), attach(9E), detach(9E), power(9E),
pm_busy_components(9F), pm_create_components(9F),
pm_destroy_components(9F), pm_idle_component(9F)

Writing Device Drivers

ddi_dev_is_needed(9F)

CONTEXT

ATTRIBUTES

SEE ALSO

240 man pages section 9: DDI and DKI Kernel Functions • Last Revised 15 Oct 1999

ddi_dev_is_sid – tell whether a device is self-identifying

#include <sys/conf.h>
#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_dev_is_sid(dev_info_t *dip);

Solaris DDI specific (Solaris DDI).

dip A pointer to the device’s dev_info structure.

ddi_dev_is_sid() tells the caller whether the device described by dip is
self-identifying, that is, a device that can unequivocally tell the system that it exists.
This is useful for drivers that support both a self-identifying as well as a
non-self-identifying variants of a device (and therefore must be probed).

DDI_SUCCESS Device is self-identifying.

DDI_FAILURE Device is not self-identifying.

ddi_dev_is_sid() can be called from user or interrupt context.

EXAMPLE 1

1 ...
2 int
3 bz_probe(dev_info_t *dip)
4 {
5 ...
6 if (ddi_dev_is_sid(dip) == DDI_SUCCESS) {
7 /*
8 * This is the self-identifying version (OpenBoot).
9 * No need to probe for it because we know it is there.
10 * The existence of dip && ddi_dev_is_sid() proves this.
11 */
12 return (DDI_PROBE_DONTCARE);
13 }
14 /*
15 * Not a self-identifying variant of the device. Now we have to
16 * do some work to see whether it is really attached to the
17 * system.
18 */
19 ...

probe(9E) Writing Device Drivers

ddi_dev_is_sid(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

EXAMPLES

SEE ALSO

Kernel Functions for Drivers 241

ddi_dev_nintrs – return the number of interrupt specifications a device has

#include <sys/conf.h>
#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_dev_nintrs(dev_info_t *dip, int *resultp);

Solaris DDI specific (Solaris DDI).

ddi_dev_nintrs() returns the number of interrupt specifications a device has in
*resultp.

ddi_dev_nintrs() returns:

DDI_SUCCESS A successful return. The number of interrupt specifications that the
device has is set in resultp.

DDI_FAILURE The device has no interrupt specifications.

ddi_dev_nintrs() can be called from user or interrupt context.

isa(4), sbus(4), ddi_add_intr(9F), ddi_dev_nregs(9F), ddi_dev_regsize(9F)

Writing Device Drivers

ddi_dev_nintrs(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

242 man pages section 9: DDI and DKI Kernel Functions • Last Revised 2 Dec 1993

ddi_dev_nregs – return the number of register sets a device has

#include <sys/conf.h>
#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_dev_nregs(dev_info_t *dip, int *resultp);

Solaris DDI specific (Solaris DDI).

dip A pointer to the device’s dev_info structure.

resultp Pointer to an integer that holds the number of register sets on
return.

The function ddi_dev_nregs() returns the number of sets of registers the device
has.

ddi_dev_nregs() returns:

DDI_SUCCESS A successful return. The number of register sets is returned in
resultp.

DDI_FAILURE The device has no registers.

ddi_dev_nregs() can be called from user or interrupt context.

ddi_dev_nintrs(9F), ddi_dev_regsize(9F)

Writing Device Drivers

ddi_dev_nregs(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 243

ddi_dev_regsize – return the size of a device’s register

#include <sys/conf.h>
#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_dev_regsize(dev_info_t *dip, uint_t rnumber, off_t *resultp);

Solaris DDI specific (Solaris DDI).

dip A pointer to the device’s dev_info structure.

rnumber The ordinal register number. Device registers are associated with a
dev_info and are enumerated in arbitrary sets from 0 on up. The
number of registers a device has can be determined from a call to
ddi_dev_nregs(9F).

resultp Pointer to an integer that holds the size, in bytes, of the described
register (if it exists).

ddi_dev_regsize() returns the size, in bytes, of the device register specified by dip
and rnumber. This is useful when, for example, one of the registers is a frame buffer
with a varying size known only to its proms.

ddi_dev_regsize() returns:

DDI_SUCCESS A successful return. The size, in bytes, of the specified register, is
set in resultp.

DDI_FAILURE An invalid (nonexistent) register number was specified.

ddi_dev_regsize() can be called from user or interrupt context.

ddi_dev_nintrs(9F), ddi_dev_nregs(9F)

Writing Device Drivers

ddi_dev_regsize(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

244 man pages section 9: DDI and DKI Kernel Functions • Last Revised 24 Oct 1991

ddi_dev_report_fault – Report a hardware failure

#include <sys/ddi.h>

#include <sys/sunddi.h>

void ddi_dev_report_fault (dev_info_t *dip, ddi_fault_impact_t
impact, ddi_fault_location_t location, const char *message);

Solaris DDI specific (Solaris DDI)

dip Pointer to the driver’s dev_info structure to which the fault
report relates. (Normally the caller’s own dev_info pointer).

impact One of a set of enumerated values indicating the impact of the
fault on the device’s ability to provide normal service.

location One of a set of enumerated values indicating the location of the
fault, relative to the hardware controlled by the driver specified by
dip.

message Text of the message describing the fault being reported.

This function provides a standardized mechanism through which device drivers can
report hardware faults. Use of this reporting mechanism enables systems equipped
with a fault management system to respond to faults discovered by a driver. On a
suitably equipped system, this might include automatic failover to an alternative
device and/or scheduling replacement of the faulty hardware.

The driver must indicate the impact of the fault being reported on its ability to provide
service by passing one of the following values for the impact parameter:

DDI_SERVICE_LOST
Indicates a total loss of service. The driver is unable to implement the normal
functions of its hardware.

DDI_SERVICE_DEGRADED
The driver is unable to provide normal service, but can provide a partial or
degraded level of service. The driver may have to make repeated attempts to
perform an operation before it succeeds, or it may be running at less than its
configured speed. A driver may use this value to indicate that an alternative device
should be used if available, but that it can continue operation if no alternative
exists.

DDI_SERVICE_UNAFFECTED
The service provided by the device is currently unaffected by the reported fault.
This value may be used to report recovered errors for predictive failure analysis.

DDI_SERVICE_RESTORED
The driver has resumed normal service, following a previous report that service
was lost or degraded. This message implies that any previously reported fault
condition no longer exists.

The location parameter should be one of the following values:

ddi_dev_report_fault(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

Kernel Functions for Drivers 245

DDI_DATAPATH_FAULT
The fault lies in the datapath between the driver and the device. The device may be
unplugged, or a problem may exist in the bus on which the device resides. This
value is appropriate if the device is not responding to accesses, (for example, the
device may not be present) or if a call to ddi_check_acc_handle(9F) returns
DDI_FAILURE.

DDI_DEVICE_FAULT
The fault lies in the device controlled by the driver. This value is appropriate if the
device returns an error from a selftest function, or if the driver is able to determine
that device is present and accessible, but is not functioning correctly.

DDI_EXTERNAL_FAULT
The fault is external to the device. For example, an Ethernet driver would use this
value when reporting a cable fault.

If a device returns detectably bad data during normal operation (an "impossible"
value in a register or DMA status area, for example), the driver should check the
associated handle using ddi_check_acc_handle(9F) or
ddi_check_dma_handle(9F) before reporting the fault. If the fault is associated
with the handle, the driver should specify DDI_DATAPATH_FAULT rather than
DDI_DEVICE_FAULT. As a consequence of this call, the device’s state may be
updated to reflect the level of service currently available. See
ddi_get_devstate(9F).

Note that if a driver calls ddi_get_devstate(9F) and discovers that its device is
down, a fault should not be reported- the device is down as the result of a fault that
has already been reported. Additionally, a driver should avoid incurring or
reporting additional faults when the device is already known to be unusable. The
ddi_dev_report_fault() call should only be used to report hardware (device)
problems and should not be used to report purely software problems such as
memory (or other resource) exhaustion.

An Ethernet driver receives an error interrupt from its device if various fault
conditions occur. The driver must read an error status register to determine the nature
of the fault, and report it appropriately:

static int
xx_error_intr(xx_soft_state *ssp)
{

...
error_status = ddi_get32(ssp->handle, &ssp->regs->xx_err_status);
if (ddi_check_acc_handle(ssp->handle) != DDI_SUCCESS) {

ddi_dev_report_fault(ssp->dip, DDI_SERVICE_LOST,
DDI_DATAPATH_FAULT, "register access fault");

return DDI_INTR_UNCLAIMED;
}
if (ssp->error_status & XX_CABLE_FAULT) {

ddi_dev_report_fault(ssp->dip, DDI_SERVICE_LOST,
DDI_EXTERNAL_FAULT, "cable fault")

return DDI_INTR_CLAIMED;
}
if (ssp->error_status & XX_JABBER) {

ddi_dev_report_fault(9F)

EXAMPLES

246 man pages section 9: DDI and DKI Kernel Functions • Last Revised 13 August 1999

ddi_dev_report_fault(ssp->dip, DDI_SERVICE_DEGRADED,
DDI_EXTERNAL_FAULT, "jabbering detected")

return DDI_INTR_CLAIMED;
}
...

}

The ddi_dev_report_fault() function may be called from user, kernel, or
interrupt context.

ddi_check_acc_handle(9F), ddi_check_dma_handle(9F),
ddi_get_devstate(9F)

ddi_dev_report_fault(9F)

CONTEXT

SEE ALSO

Kernel Functions for Drivers 247

ddi_dma_addr_bind_handle – binds an address to a DMA handle

#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_dma_addr_bind_handle(ddi_dma_handle_t handle, struct as
*as, caddr_t addr, size_t len, uint_t flags, int (*callback)
(caddr_t) , caddr_t arg, ddi_dma_cookie_t *cookiep, uint_t
*ccountp);

Solaris DDI specific (Solaris DDI).

handle The DMA handle previously allocated by a call to
ddi_dma_alloc_handle(9F).

as A pointer to an address space structure. This parameter should be
set to NULL, which implies kernel address space.

addr Virtual address of the memory object.

len Length of the memory object in bytes.

flags Valid flags include:

DDI_DMA_WRITE Transfer direction is from memory
to I/O.

DDI_DMA_READ Transfer direction is from I/O to
memory.

DDI_DMA_RDWR Both read and write.

DDI_DMA_REDZONE Establish an MMU redzone at end
of the object.

DDI_DMA_PARTIAL Partial resource allocation.

DDI_DMA_CONSISTENT Nonsequential, random, and small
block transfers.

DDI_DMA_STREAMING Sequential, unidirectional,
block-sized, and block-aligned
transfers.

callback The address of a function to call back later if resources are not
currently available. The following special function addresses may
also be used.

DDI_DMA_SLEEP Wait until resources are available.

DDI_DMA_DONTWAIT Do not wait until resources are
available and do not schedule a
callback.

arg Argument to be passed to the callback function, callback, if such a
function is specified.

ddi_dma_addr_bind_handle(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

248 man pages section 9: DDI and DKI Kernel Functions • Last Revised 26 Jul 1996

cookiep A pointer to the first ddi_dma_cookie(9S) structure.

ccountp Upon a successful return, ccountp points to a value representing
the number of cookies for this DMA object.

ddi_dma_addr_bind_handle() allocates DMA resources for a memory object such
that a device can perform DMA to or from the object. DMA resources are allocated
considering the device’s DMA attributes as expressed by ddi_dma_attr(9S) (see
ddi_dma_alloc_handle(9F)).

ddi_dma_addr_bind_handle() fills in the first DMA cookie pointed to by cookiep
with the appropriate address, length, and bus type. *ccountp is set to the number of
DMA cookies representing this DMA object. Subsequent DMA cookies must be
retrieved by calling ddi_dma_nextcookie(9F) the number of times specified by
*countp-1.

When a DMA transfer completes, the driver frees up system DMA resources by calling
ddi_dma_unbind_handle(9F).

The flags argument contains information for mapping routines.

DDI_DMA_WRITE, DDI_DMA_READ, DDI_DMA_RDWR
These flags describe the intended direction of the DMA transfer.

DDI_DMA_STREAMING
This flag should be set if the device is doing sequential, unidirectional, block-sized,
and block-aligned transfers to or from memory. The alignment and padding
constraints specified by the minxfer and burstsizes fields in the DMA attribute
structure, ddi_dma_attr(9S) (see ddi_dma_alloc_handle(9F)) is used to
allocate the most effective hardware support for large transfers.

DDI_DMA_CONSISTENT
This flag should be set if the device accesses memory randomly, or if
synchronization steps using ddi_dma_sync(9F) need to be as efficient as possible.
I/O parameter blocks used for communication between a device and a driver
should be allocated using DDI_DMA_CONSISTENT.

DDI_DMA_REDZONE
If this flag is set, the system attempts to establish a protected red zone after the
object. The DMA resource allocation functions do not guarantee the success of this
request as some implementations may not have the hardware ability to support a
red zone.

DDI_DMA_PARTIAL
Setting this flag indicates the caller can accept resources for part of the object. That
is, if the size of the object exceeds the resources available, only resources for a
portion of the object are allocated. The system indicates this condition by returning
status DDI_DMA_PARTIAL_MAP. At a later point, the caller can use
ddi_dma_getwin(9F) to change the valid portion of the object for which resources
are allocated. If resources were allocated for only part of the object,
ddi_dma_addr_bind_handle() returns resources for the first DMAwindow.

ddi_dma_addr_bind_handle(9F)

DESCRIPTION

Kernel Functions for Drivers 249

Even when DDI_DMA_PARTIAL is set, the system may decide to allocate resources
for the entire object (less overhead) in which case DDI_DMA_MAPPED is returned.

The callback function callback indicates how a caller wants to handle the possibility of
resources not being available. If callback is set to DDI_DMA_DONTWAIT, the caller does
not care if the allocation fails, and can handle an allocation failure appropriately. If
callback is set to DDI_DMA_SLEEP, the caller wishes to have the allocation routines
wait for resources to become available. If any other value is set and a DMA resource
allocation fails, this value is assumed to be the address of a function to be called when
resources become available. When the specified function is called, arg is passed to it as
an argument. The specified callback function must return either
DDI_DMA_CALLBACK_RUNOUT or DDI_DMA_CALLBACK_DONE.
DDI_DMA_CALLBACK_RUNOUT indicates that the callback function attempted to
allocate DMA resources but failed. In this case, the callback function is put back on a
list to be called again later. DDI_DMA_CALLBACK_DONE indicates that either the
allocation of DMA resources was successful or the driver no longer wishes to retry.

The callback function is called in interrupt context. Therefore, only system functions
accessible from interrupt context are be available. The callback function must take
whatever steps are necessary to protect its critical resources, data structures, queues,
and so on.

ddi_dma_addr_bind_handle() returns:

DDI_DMA_MAPPED Successfully allocated resources for the entire object.

DDI_DMA_PARTIAL_MAP Successfully allocated resources for a part of the object.
This is acceptable when partial transfers are permitted
by setting the DDI_DMA_PARTIAL flag in flags.

DDI_DMA_INUSE Another I/O transaction is using the DMA handle.

DDI_DMA_NORESOURCES No resources are available at the present time.

DDI_DMA_NOMAPPING The object cannot be reached by the device requesting
the resources.

DDI_DMA_TOOBIG The object is too big. A request of this size can never be
satisfied on this particular system. The maximum size
varies depending on machine and configuration.

ddi_dma_addr_bind_handle() can be called from user, kernel, or interrupt
context, except when callback is set to DDI_DMA_SLEEP, in which case it can only be
called from user or kernel context.

ddi_dma_alloc_handle(9F), ddi_dma_free_handle(9F), ddi_dma_getwin(9F),
ddi_dma_mem_alloc(9F), ddi_dma_mem_free(9F), ddi_dma_nextcookie(9F),
ddi_dma_sync(9F), ddi_dma_unbind_handle(9F), ddi_dma_attr(9S),
ddi_dma_cookie(9S)

Writing Device Drivers

ddi_dma_addr_bind_handle(9F)

RETURN VALUES

CONTEXT

SEE ALSO

250 man pages section 9: DDI and DKI Kernel Functions • Last Revised 26 Jul 1996

If the driver permits partial mapping with the DDI_DMA_PARTIAL flag, the number of
cookies in each window may exceed the size of the device’s scatter/gather list as
specified in the dma_attr_sgllen field in the ddi_dma_attr(9S) structure. In this
case, each set of cookies comprising a DMA window will satisfy the DMA attributes as
described in the ddi_dma_attr(9S) structure in all aspects. The driver should set up
its DMA engine and perform one transfer for each set of cookies sufficient for its
scatter/gather list, up to the number of cookies for this window, before advancing to
the next window using ddi_dma_getwin(9F).

ddi_dma_addr_bind_handle(9F)

NOTES

Kernel Functions for Drivers 251

ddi_dma_addr_setup – easier DMA setup for use with virtual addresses

#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_dma_addr_setup(dev_info_t *dip, struct as *as, caddr_t addr,
size_t len, uint_t flags, int (*waitfp) (caddr_t),, caddr_t arg,
ddi_dma_lim_t * lim, ddi_dma_handle_t *handlep);

Solaris DDI specific (Solaris DDI).

dip A pointer to the device’s dev_info structure.

as A pointer to an address space structure. Should be set to NULL,
which implies kernel address space.

addr Virtual address of the memory object.

len Length of the memory object in bytes.

flags Flags that would go into the ddi_dma_req structure (see
ddi_dma_req(9S)).

waitfp The address of a function to call back later if resources aren’t
available now. The special function addresses DDI_DMA_SLEEP
and DDI_DMA_DONTWAIT (see ddi_dma_req(9S)) are taken to
mean, respectively, wait until resources are available or, do not
wait at all and do not schedule a callback.

arg Argument to be passed to a callback function, if such a function is
specified.

lim A pointer to a DMA limits structure for this device (see
ddi_dma_lim_sparc(9S) or ddi_dma_lim_x86(9S)). If this
pointer is NULL, a default set of DMA limits is assumed.

handlep Pointer to a DMA handle. See ddi_dma_setup(9F) for a
discussion of handle.

ddi_dma_addr_setup() is an interface to ddi_dma_setup(9F). It uses its
arguments to construct an appropriate ddi_dma_req structure and calls
ddi_dma_setup(9F) with it.

See ddi_dma_setup(9F) for the possible return values for this function.

ddi_dma_addr_setup() can be called from user or interrupt context, except when
waitfp is set to DDI_DMA_SLEEP, in which case it can be called from user context only.

ddi_dma_buf_setup(9F), ddi_dma_free(9F), ddi_dma_htoc(9F),
ddi_dma_setup(9F), ddi_dma_sync(9F), ddi_iopb_alloc(9F),
ddi_dma_lim_sparc(9S), ddi_dma_lim_IA(9S), ddi_dma_req(9S)

Writing Device Drivers

ddi_dma_addr_setup(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

252 man pages section 9: DDI and DKI Kernel Functions • Last Revised 15 Nov 1996

ddi_dma_alloc_handle – allocate DMA handle

#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_dma_alloc_handle(dev_info_t *dip, ddi_dma_attr_t *attr, int
(*callback) (caddr_t), caddr_t arg, ddi_dma_handle_t *handlep);

Solaris DDI specific (Solaris DDI).

dip Pointer to the device’s dev_info structure.

attr Pointer to a DMA attribute structure for this device (see
ddi_dma_attr(9S)).

callback The address of a function to call back later if resources aren’t
available now. The following special function addresses may also
be used.

DDI_DMA_SLEEP Wait until resources are available.

DDI_DMA_DONTWAIT Do not wait until resources are
available and do not schedule a
callback.

arg Argument to be passed to a callback function, if such a function is
specified.

handlep Pointer to the DMA handle to be initialized.

ddi_dma_alloc_handle() allocates a new DMA handle. A DMA handle is an
opaque object used as a reference to subsequently allocated DMA resources.
ddi_dma_alloc_handle() accepts as parameters the device information referred to
by dip and the device’s DMA attributes described by a ddi_dma_attr(9S) structure.
A successful call to ddi_dma_alloc_handle() fills in the value pointed to by
handlep. A DMA handle must only be used by the device for which it was allocated
and is only valid for one I/O transaction at a time.

The callback function, callback, indicates how a caller wants to handle the possibility of
resources not being available. If callback is set to DDI_DMA_DONTWAIT, then the caller
does not care if the allocation fails, and can handle an allocation failure appropriately.
If callback is set to DDI_DMA_SLEEP, then the caller wishes to have the the allocation
routines wait for resources to become available. If any other value is set, and a DMA
resource allocation fails, this value is assumed to be a function to call at a later time
when resources may become available. When the specified function is called, it is
passed arg as an argument. The specified callback function must return either
DDI_DMA_CALLBACK_RUNOUT or DDI_DMA_CALLBACK_DONE.
DDI_DMA_CALLBACK_RUNOUT indicates that the callback routine attempted to
allocate DMA resources but failed to do so, in which case the callback function is put
back on a list to be called again later. DDI_DMA_CALLBACK_DONE indicates either
success at allocating DMA resources or the driver no longer wishes to retry.

ddi_dma_alloc_handle(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

Kernel Functions for Drivers 253

The callback function is called in interrupt context. Therefore, only system functions
that are accessible from interrupt context is available. The callback function must take
whatever steps necessary to protect its critical resources, data structures, queues, and
so forth.

When a DMA handle is no longer needed, ddi_dma_free_handle(9F) must be
called to free the handle.

ddi_dma_alloc_handle() returns:

DDI_SUCCESS Successfully allocated a new DMA handle.

DDI_DMA_BADATTR The attributes specified in the ddi_dma_attr(9S)
structure make it impossible for the system to allocate
potential DMA resources.

DDI_DMA_NORESOURCES No resources are available.

ddi_dma_alloc_handle() can be called from user, kernel, or interrupt context,
except when callback is set to DDI_DMA_SLEEP, in which case it can be called from
user or kernel context only.

ddi_dma_addr_bind_handle(9F), ddi_dma_buf_bind_handle(9F),
ddi_dma_burstsizes(9F), ddi_dma_free_handle(9F),
ddi_dma_unbind_handle(9F), ddi_dma_attr(9S)

Writing Device Drivers

ddi_dma_alloc_handle(9F)

RETURN VALUES

CONTEXT

SEE ALSO

254 man pages section 9: DDI and DKI Kernel Functions • Last Revised 22 Sep 1996

ddi_dma_buf_bind_handle – binds a system buffer to a DMA handle

#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_dma_buf_bind_handle(ddi_dma_handle_t handle, struct buf
*bp, uint_t flags, int (*callback)(caddr_t), caddr_t arg,
ddi_dma_cookie_t *cookiep, uint_t *ccountp);

Solaris DDI specific (Solaris DDI).

handle The DMA handle previously allocated by a call to
ddi_dma_alloc_handle(9F).

bp A pointer to a system buffer structure (see buf(9S)).

flags Valid flags include:

DDI_DMA_WRITE Transfer direction is from memory
to I/O

DDI_DMA_READ Transfer direction is from I/O to
memory

DDI_DMA_RDWR Both read and write

DDI_DMA_REDZONE Establish an MMU redzone at end
of the object.

DDI_DMA_PARTIAL Partial resource allocation

DDI_DMA_CONSISTENT Nonsequential, random, and small
block transfers.

DDI_DMA_STREAMING Sequential, unidirectional,
block-sized, and block-aligned
transfers.

callback The address of a function to call back later if resources are not
available now. The following special function addresses may also
be used.

DDI_DMA_SLEEP Wait until resources are available.

DDI_DMA_DONTWAIT Do not wait until resources are
available and do not schedule a
callback.

arg Argument to be passed to the callback function, callback, if such a
function is specified.

cookiep A pointer to the first ddi_dma_cookie(9S) structure.

ccountp Upon a successful return, ccountp points to a value representing
the number of cookies for this DMA object.

ddi_dma_buf_bind_handle(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

Kernel Functions for Drivers 255

ddi_dma_buf_bind_handle() allocates DMA resources for a system buffer such
that a device can perform DMA to or from the buffer. DMA resources are allocated
considering the device’s DMA attributes as expressed by ddi_dma_attr(9S) (see
ddi_dma_alloc_handle(9F)).

ddi_dma_buf_bind_handle() fills in the first DMA tocookie pointed to by cookiep
with the appropriate address, length, and bus type. *ccountp is set to the number of
DMA cookies representing this DMA object. Subsequent DMA cookies must be
retrieved by calling ddi_dma_nextcookie(9F) *countp-1 times.

When a DMA transfer completes, the driver should free up system DMA resources by
calling ddi_dma_unbind_handle(9F).

The flags argument contains information for mapping routines.

DDI_DMA_WRITE, DDI_DMA_READ, DDI_DMA_RDWR
These flags describe the intended direction of the DMA transfer.

DDI_DMA_STREAMING
This flag should be set if the device is doing sequential, unidirectional, block-sized,
and block-aligned transfers to or from memory. The alignment and padding
constraints specified by the minxfer and burstsizes fields in the DMA attribute
structure, ddi_dma_attr(9S) (see ddi_dma_alloc_handle(9F)) is used to
allocate the most effective hardware support for large transfers.

DDI_DMA_CONSISTENT
This flag should be set if the device accesses memory randomly, or if
synchronization steps using ddi_dma_sync(9F) need to be as efficient as possible.
I/O parameter blocks used for communication between a device and a driver
should be allocated using DDI_DMA_CONSISTENT.

DDI_DMA_REDZONE
If this flag is set, the system attempts to establish a protected red zone after the
object. The DMA resource allocation functions do not guarantee the success of this
request as some implementations may not have the hardware ability to support a
red zone.

DDI_DMA_PARTIAL
Setting this flag indicates the caller can accept resources for part of the object. That
is, if the size of the object exceeds the resources available, only resources for a
portion of the object are allocated. The system indicates this condition returning
status DDI_DMA_PARTIAL_MAP. At a later point, the caller can use
ddi_dma_getwin(9F) to change the valid portion of the object for which resources
are allocated. If resources were allocated for only part of the object,
ddi_dma_addr_bind_handle() returns resources for the first DMA window.
Even when DDI_DMA_PARTIAL is set, the system may decide to allocate resources
for the entire object (less overhead) in which case DDI_DMA_MAPPED is returned.

The callback function, callback, indicates how a caller wants to handle the possibility of
resources not being available. If callback is set to DDI_DMA_DONTWAIT, the caller does
not care if the allocation fails, and can handle an allocation failure appropriately. If

ddi_dma_buf_bind_handle(9F)

DESCRIPTION

256 man pages section 9: DDI and DKI Kernel Functions • Last Revised 27 Jul 1996

callback is set to DDI_DMA_SLEEP, the caller wishes to have the allocation routines
wait for resources to become available. If any other value is set, and a DMA resource
allocation fails, this value is assumed to be the address of a function to call at a later
time when resources may become available. When the specified function is called, it is
passed arg as an argument. The specified callback function must return either
DDI_DMA_CALLBACK_RUNOUT or DDI_DMA_CALLBACK_DONE.
DDI_DMA_CALLBACK_RUNOUT indicates that the callback function attempted to
allocate DMA resources but failed to do so. In this case the callback function is put
back on a list to be called again later. DDI_DMA_CALLBACK_DONE indicates either a
successful allocation of DMA resources or that the driver no longer wishes to retry.

The callback function is called in interrupt context. Therefore, only system functions
accessible from interrupt context are be available. The callback function must take
whatever steps necessary to protect its critical resources, data structures, queues, etc.

ddi_dma_buf_bind_handle() returns:

DDI_DMA_MAPPED Successfully allocated resources for the
entire object.

DDI_DMA_PARTIAL_MAP Successfully allocated resources for a part of
the object. This is acceptable when partial
transfers are permitted by setting the
DDI_DMA_PARTIAL flag in flags.

DDI_DMA_INUSE Another I/O transaction is using the DMA
handle.

DDI_DMA_NORESOURCES No resources are available at the present
time.

DDI_DMA_NOMAPPING The object cannot be reached by the device
requesting the resources.

DDI_DMA_TOOBIG The object is too big. A request of this size
can never be satisfied on this particular
system. The maximum size varies
depending on machine and configuration.

ddi_dma_buf_bind_handle() can be called from user, kernel, or interrupt context,
except when callback is set to DDI_DMA_SLEEP, in which case it can be called from
user or kernel context only.

ddi_dma_addr_bind_handle(9F), ddi_dma_alloc_handle(9F),
ddi_dma_free_handle(9F), ddi_dma_getwin(9F), ddi_dma_nextcookie(9F),
ddi_dma_sync(9F), ddi_dma_unbind_handle(9F), buf(9S), ddi_dma_attr(9S),
ddi_dma_cookie(9S)

Writing Device Drivers

ddi_dma_buf_bind_handle(9F)

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 257

If the driver permits partial mapping with the DDI_DMA_PARTIAL flag, the number of
cookies in each window may exceed the size of the device’s scatter/gather list as
specified in the dma_attr_sgllen field in the ddi_dma_attr(9S) structure. In this
case, each set of cookies comprising a DMA window will satisfy the DMA attributes as
described in the ddi_dma_attr(9S) structure in all aspects. The driver should set up
its DMA engine and perform one transfer for each set of cookies sufficient for its
scatter/gather list, up to the number of cookies for this window, before advancing to
the next window using ddi_dma_getwin(9F).

ddi_dma_buf_bind_handle(9F)

NOTES

258 man pages section 9: DDI and DKI Kernel Functions • Last Revised 27 Jul 1996

ddi_dma_buf_setup – easier DMA setup for use with buffer structures

#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_dma_buf_setup(dev_info_t *dip, struct buf *bp, uint_t flags,
int (*waitfp) (caddr_t),, caddr_t arg, ddi_dma_lim_t *lim,
ddi_dma_handle_t *handlep);

Solaris DDI specific (Solaris DDI).

dip A pointer to the device’s dev_info structure.

bp A pointer to a system buffer structure (see buf(9S)).

flags Flags that go into a ddi_dma_req structure (see
ddi_dma_req(9S)).

waitfp The address of a function to call back later if resources aren’t
available now. The special function addresses DDI_DMA_SLEEP
and DDI_DMA_DONTWAIT (see ddi_dma_req(9S)) are taken to
mean, respectively, wait until resources are available, or do not
wait at all and do not schedule a callback.

arg Argument to be passed to a callback function, if such a function is
specified.

lim A pointer to a DMA limits structure for this device (see
ddi_dma_lim_sparc(9S) or ddi_dma_lim_x86(9S)). If this
pointer is NULL, a default set of DMA limits is assumed.

handlep Pointer to a DMA handle. See ddi_dma_setup(9F) for a
discussion of handle.

ddi_dma_buf_setup() is an interface to ddi_dma_setup(9F). It uses its arguments
to construct an appropriate ddi_dma_req structure and calls ddi_dma_setup()
with it.

See ddi_dma_setup(9F) for the possible return values for this function.

ddi_dma_buf_setup() can be called from user or interrupt context, except when
waitfp is set to DDI_DMA_SLEEP, in which case it can be called from user context only.

ddi_dma_addr_setup(9F), ddi_dma_free(9F), ddi_dma_htoc(9F),
ddi_dma_setup(9F), ddi_dma_sync(9F), physio(9F), buf(9S),
ddi_dma_lim_sparc(9S), ddi_dma_lim_x86(9S), ddi_dma_req(9S)

Writing Device Drivers

ddi_dma_buf_setup(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 259

ddi_dma_burstsizes – find out the allowed burst sizes for a DMA mapping

#include <sys/conf.h>
#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_dma_burstsizes(ddi_dma_handle_t handle);

Solaris DDI specific (Solaris DDI).

handle A DMA handle that was filled in by a successful call to
ddi_dma_setup(9F).

ddi_dma_burstsizes() returns the allowed burst sizes for a DMA mapping. This
value is derived from the dlim_burstsizes member of the
ddi_dma_lim_sparc(9S) structure, but it shows the allowable burstsizes after
imposing on it the limitations of other device layers in addition to device’s own
limitations.

ddi_dma_burstsizes() returns a binary encoded value of the allowable DMA
burst sizes. See ddi_dma_lim_sparc(9S) for a discussion of DMA burst sizes.

This function can be called from user or interrupt context.

ddi_dma_devalign(9F), ddi_dma_setup(9F), ddi_dma_lim_sparc(9S),
ddi_dma_req(9S)

Writing Device Drivers

ddi_dma_burstsizes(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

260 man pages section 9: DDI and DKI Kernel Functions • Last Revised 1 Feb 1994

ddi_dma_coff – convert a DMA cookie to an offset within a DMA handle

#include <sys/conf.h>
#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_dma_coff(ddi_dma_handle_t handle, ddi_dma_cookie_t *cookiep,
off_t *offp);

Solaris SPARC DDI (Solaris SPARC DDI).

handle The handle filled in by a call to ddi_dma_setup(9F).

cookiep A pointer to a DMA cookie (see ddi_dma_cookie(9S)) that
contains the appropriate address, length and bus type to be used
in programming the DMA engine.

offp A pointer to an offset to be filled in.

ddi_dma_coff() converts the values in DMA cookie pointed to by cookiep to an
offset (in bytes) from the beginning of the object that the DMA handle has mapped.

ddi_dma_coff() allows a driver to update a DMA cookie with values it reads from
its device’s DMA engine after a transfer completes and convert that value into an
offset into the object that is mapped for DMA.

ddi_dma_coff() returns:

DDI_SUCCESS Successfully filled in offp.

DDI_FAILURE Failed to successfully fill in offp.

ddi_dma_coff() can be called from user or interrupt context.

ddi_dma_setup(9F), ddi_dma_sync(9F), ddi_dma_cookie(9S)

Writing Device Drivers

ddi_dma_coff(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 261

ddi_dma_curwin – report current DMA window offset and size

#include <sys/conf.h>
#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_dma_curwin(ddi_dma_handle_t handle, off_t *offp, uint_t
*lenp);

Solaris SPARC DDI specific (Solaris SPARC DDI).

handle The DMA handle filled in by a call to ddi_dma_setup(9F).

offp A pointer to a value which will be filled in with the current offset
from the beginning of the object that is mapped for DMA.

lenp A pointer to a value which will be filled in with the size, in bytes,
of the current window onto the object that is mapped for DMA.

ddi_dma_curwin() reports the current DMA window offset and size. If a DMA
mapping allows partial mapping, that is if the DDI_DMA_PARTIAL flag in the
ddi_dma_req(9S) structure is set, its current (effective) DMA window offset and size
can be obtained by a call to ddi_dma_curwin().

ddi_dma_curwin() returns:

DDI_SUCCESS The current length and offset can be established.

DDI_FAILURE Otherwise.

ddi_dma_curwin() can be called from user or interrupt context.

ddi_dma_movwin(9F), ddi_dma_setup(9F), ddi_dma_req(9S)

Writing Device Drivers

ddi_dma_curwin(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

262 man pages section 9: DDI and DKI Kernel Functions • Last Revised 7 Nov 1991

ddi_dma_devalign – find DMA mapping alignment and minimum transfer size

#include <sys/conf.h>
#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_dma_devalign(ddi_dma_handle_t handle, uint_t *alignment,
uint_t *minxfr);

Solaris DDI specific (Solaris DDI).

handle The DMA handle filled in by a successful call to
ddi_dma_setup(9F).

alignment A pointer to an unsigned integer to be filled in with the minimum
required alignment for DMA. The alignment is guaranteed to be a
power of two.

minxfr A pointer to an unsigned integer to be filled in with the minimum
effective transfer size (see ddi_iomin(9F),
ddi_dma_lim_sparc(9S) and ddi_dma_lim_IA(9S)). This also
is guaranteed to be a power of two.

ddi_dma_devalign() determines after a successful DMA mapping (see
ddi_dma_setup(9F)) the minimum required data alignment and minimum DMA
transfer size.

ddi_dma_devalign() returns:

DDI_SUCCESS The alignment and minxfr values have been filled.

DDI_FAILURE The handle was illegal.

ddi_dma_devalign() can be called from user or interrupt context.

ddi_dma_setup(9F), ddi_iomin(9F), ddi_dma_lim_sparc(9S),
ddi_dma_lim_IA(9S), ddi_dma_req(9S)

Writing Device Drivers

ddi_dma_devalign(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 263

ddi_dmae, ddi_dmae_alloc, ddi_dmae_release, ddi_dmae_prog, ddi_dmae_disable,
ddi_dmae_enable, ddi_dmae_stop, ddi_dmae_getcnt, ddi_dmae_1stparty,
ddi_dmae_getlim, ddi_dmae_getattr – system DMA engine functions

int ddi_dmae_alloc(dev_info_t *dip, int chnl, int (*callback)
(caddr_t), caddr_t arg);

int ddi_dmae_release(dev_info_t *dip, int chnl);

int ddi_dmae_prog(dev_info_t *dip, struct ddi_dmae_req *dmaereqp,
ddi_dma_cookie_t *cookiep, int chnl);

int ddi_dmae_disable(dev_info_t *dip, int chnl);

int ddi_dmae_enable(dev_info_t *dip, int chnl);

int ddi_dmae_stop(dev_info_t *dip, int chnl);

int ddi_dmae_getcnt(dev_info_t *dip, int chnl, int *countp);

int ddi_dmae_1stparty(dev_info_t *dip, int chnl);

int ddi_dmae_getlim(dev_info_t *dip, ddi_dma_lim_t *limitsp);

int ddi_dmae_getattr(dev_info_t *dip, ddi_dma_attr_t *attrp);

Solaris DDI specific (Solaris DDI).

dip A dev_info pointer that identifies the device.

chnl A DMA channel number. On ISA or EISA buses this number must
be 0, 1, 2, 3, 5, 6, or 7.

callback The address of a function to call back later if resources are not
currently available. The following special function addresses may
also be used:

DDI_DMA_SLEEP Wait until resources are available.

DDI_DMA_DONTWAIT Do not wait until resources are
available and do not schedule a
callback.

arg Argument to be passed to the callback function, if specified.

dmaereqp A pointer to a DMA engine request structure. See
ddi_dmae_req(9S).

cookiep A pointer to a ddi_dma_cookie(9S) object, obtained from
ddi_dma_segtocookie(9F), which contains the address and
count.

countp A pointer to an integer that will receive the count of the number of
bytes not yet transferred upon completion of a DMA operation.

limitsp A pointer to a DMA limit structure. See ddi_dma_lim_IA(9S).

ddi_dmae(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

264 man pages section 9: DDI and DKI Kernel Functions • Last Revised 1 Jan 1997

attrp A pointer to a DMA attribute structure. See ddi_dma_attr(9S).

There are three possible ways that a device can perform DMA engine functions:

Bus master DMA
If the device is capable of acting as a true bus master, then the driver should
program the device’s DMA registers directly and not make use of the DMA engine
functions described here. The driver should obtain the DMA address and count
from ddi_dma_segtocookie(9F). See ddi_dma_cookie(9S) for a description of
a DMA cookie.

Third-party DMA
This method uses the system DMA engine that is resident on the main system
board. In this model, the device cooperates with the system’s DMA engine to effect
the data transfers between the device and memory. The driver uses the functions
documented here, except ddi_dmae_1stparty(), to initialize and program the
DMA engine. For each DMA data transfer, the driver programs the DMA engine
and then gives the device a command to initiate the transfer in cooperation with
that engine.

First-party DMA
Using this method, the device uses its own DMA bus cycles, but requires a channel
from the system’s DMA engine. After allocating the DMA channel, the
ddi_dmae_1stparty() function may be used to perform whatever configuration
is necessary to enable this mode.

The ddi_dmae_alloc() function is used to acquire a DMA channel of the system
DMA engine. ddi_dmae_alloc() allows only one device at a time to have a
particular DMA channel allocated. It must be called prior to any other system DMA
engine function on a channel. If the device allows the channel to be shared with other
devices, it must be freed using ddi_dmae_release() after completion of the DMA
operation. In any case, the channel must be released before the driver successfully
detaches. See detach(9E). No other driver may acquire the DMA channel until it is
released.

If the requested channel is not immediately available, the value of callback determines
what action will be taken. If the value of callback is DDI_DMA_DONTWAIT,
ddi_dmae_alloc() will return immediately. The value DDI_DMA_SLEEP will cause
the thread to sleep and not return until the channel has been acquired. Any other
value is assumed to be a callback function address. In that case, ddi_dmae_alloc()
returns immediately, and when resources might have become available, the callback
function is called (with the argument arg) from interrupt context. When the callback
function is called, it should attempt to allocate the DMA channel again. If it succeeds
or no longer needs the channel, it must return the value DDI_DMA_CALLBACK_DONE.
If it tries to allocate the channel but fails to do so, it must return the value
DDI_DMA_CALLBACK_RUNOUT. In this case, the callback funtion is put back on a list to
be called again later.

ddi_dmae(9F)

DESCRIPTION

ddi_dmae_alloc()

Kernel Functions for Drivers 265

The ddi_dmae_prog() function programs the DMA channel for a DMA transfer. The
ddi_dmae_req structure contains all the information necessary to set up the channel,
except for the memory address and count. Once the channel has been programmed,
subsequent calls to ddi_dmae_prog() may specify a value of NULL for dmaereqp if no
changes to the programming are required other than the address and count values. It
disables the channel prior to setup, and enables the channel before returning. The
DMA address and count are specified by passing ddi_dmae_prog() a cookie
obtained from ddi_dma_segtocookie(9F). Other DMA engine parameters are
specified by the DMA engine request structure passed in through dmaereqp. The fields
of that structure are documented in ddi_dmae_req(9S).

Before using ddi_dmae_prog(), you must allocate system DMA resources using
DMA setup functions such as ddi_dma_buf_setup(9F).
ddi_dma_segtocookie(9F) can then be used to retrieve a cookie which contains the
address and count. Then this cookie is passed to ddi_dmae_prog().

The ddi_dmae_disable() function disables the DMA channel so that it no longer
responds to a device’s DMA service requests.

The ddi_dmae_enable() function enables the DMA channel for operation. This may
be used to re-enable the channel after a call to ddi_dmae_disable(). The channel is
automatically enabled after successful programming by ddi_dmae_prog().

The ddi_dmae_stop() function disables the channel and terminates any active
operation.

The ddi_dmae_getcnt() function examines the count register of the DMA channel
and sets *countp to the number of bytes remaining to be transferred. The channel is
assumed to be stopped.

In the case of ISA and EISA buses, ddi_dmae_1stparty() configures a channel in
the system’s DMA engine to operate in a ‘‘slave’’ (‘‘cascade’’) mode.

When operating in ddi_dmae_1stparty() mode, the DMA channel must first be
allocated using ddi_dmae_alloc() and then configured using
ddi_dmae_1stparty(). The driver then programs the device to perform the I/O,
including the necessary DMA address and count values obtained from
ddi_dma_segtocookie(9F).

The ddi_dmae_getlim() function fills in the DMA limit structure, pointed to by
limitsp, with the DMA limits of the system DMA engine. Drivers for devices that
perform their own bus mastering or use first-party DMA must create and initialize
their own DMA limit structures; they should not use ddi_dmae_getlim(). The
DMA limit structure must be passed to the DMA setup routines so that they will know
how to break the DMA request into windows and segments (see
ddi_dma_nextseg(9F) and ddi_dma_nextwin(9F)). If the device has any particular
restrictions on transfer size or granularity (such as the size of disk sector), the driver
should further restrict the values in the structure members before passing them to the
DMA setup routines. The driver must not relax any of the restrictions embodied in the
structure after it is filled in by ddi_dmae_getlim(). After calling

ddi_dmae(9F)

ddi_dmae_prog()

ddi_dmae_disable()

ddi_dmae_enable()

ddi_dmae_stop()

ddi_dmae_getcnt()

ddi_dmae_1stparty()

ddi_dmae_getlim()

266 man pages section 9: DDI and DKI Kernel Functions • Last Revised 1 Jan 1997

ddi_dmae_getlim(), a driver must examine, and possibly set, the size of the DMA
engine’s scatter/gather list to determine whether DMA chaining will be used. See
ddi_dma_lim_IA(9S) and ddi_dmae_req(9S) for additional information on
scatter/gather DMA.

The ddi_dmae_getattr() function fills in the DMA attribute structure, pointed to
by attrp, with the DMA attributes of the system DMA engine. Drivers for devices that
perform their own bus mastering or use first-party DMA must create and initialize
their own DMA attribute structures; they should not use ddi_dmae_getattr(). The
DMA attribute structure must be passed to the DMA resource allocation functions to
provide the information necessary to break the DMA request into DMA windows and
DMA cookies. See ddi_dma_nextcookie(9F) and ddi_dma_getwin(9F).

DDI_SUCCESS Upon success, for all of these routines.

DDI_FAILURE May be returned due to invalid arguments.

DDI_DMA_NORESOURCES May be returned by ddi_dmae_alloc() if the
requested resources are not available and the value of
dmae_waitfp is not DDI_DMA_SLEEP.

If ddi_dmae_alloc() is called from interrupt context, then its dmae_waitfp argument
and the callback function must not have the value DDI_DMA_SLEEP. Otherwise, all
these routines may be called from user or interrupt context.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

eisa(4), isa(4), attributes(5), ddi_dma_buf_setup(9F), ddi_dma_getwin(9F),
ddi_dma_nextcookie(9F), ddi_dma_nextseg(9F), ddi_dma_nextwin(9F),
ddi_dma_segtocookie(9F), ddi_dma_setup(9F), ddi_dma_attr(9S),
ddi_dma_cookie(9S), ddi_dma_lim_x86(9S), ddi_dma_req(9S),
ddi_dmae_req(9S)

ddi_dmae(9F)

ddi_dmae_getattr

RETURN VALUES

CONTEXT

ATTRIBUTES

SEE ALSO

Kernel Functions for Drivers 267

ddi_dma_free – release system DMA resources

#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_dma_free(ddi_dma_handle_t handle);

Solaris DDI specific (Solaris DDI).

handle The handle filled in by a call to ddi_dma_setup(9F).

ddi_dma_free() releases system DMA resources set up by ddi_dma_setup(9F).
When a DMA transfer completes, the driver should free up system DMA resources
established by a call to ddi_dma_setup(9F). This is done by a call to
ddi_dma_free(). ddi_dma_free() does an implicit ddi_dma_sync(9F) for you
so any further synchronization steps are not necessary.

ddi_dma_free() returns:

DDI_SUCCESS Successfully released resources

DDI_FAILURE Failed to free resources

ddi_dma_free() can be called from user or interrupt context.

ddi_dma_addr_setup(9F), ddi_dma_buf_setup(9F), ddi_dma_htoc(9F),
ddi_dma_sync(9F), ddi_dma_req(9S)

Writing Device Drivers

ddi_dma_free(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

268 man pages section 9: DDI and DKI Kernel Functions • Last Revised 13 Sep 1992

ddi_dma_free_handle – free DMA handle

#include <sys/ddi.h>

#include <sys/sunddi.h>

void ddi_dma_free_handle(ddi_dma_handle_t *handle);

handle A pointer to the DMA handle previously allocated by a call to
ddi_dma_alloc_handle(9F).

Solaris DDI specific (Solaris DDI).

ddi_dma_free_handle() destroys the DMA handle pointed to by handle. Any
further references to the DMA handle will have undefined results. Note that
ddi_dma_unbind_handle(9F) must be called prior to ddi_dma_free_handle()
to free any resources the system may be caching on the handle.

ddi_dma_free_handle() can be called from user, kernel, or interrupt context.

ddi_dma_alloc_handle(9F), ddi_dma_unbind_handle(9F)

Writing Device Drivers

ddi_dma_free_handle(9F)

NAME

SYNOPSIS

PARAMETERS

INTERFACE
LEVEL

DESCRIPTION

CONTEXT

SEE ALSO

Kernel Functions for Drivers 269

ddi_dma_get_attr – get the device DMA attribute structure from a DMA handle

#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_dma_get_attr(ddi_dma_handle_t handle, ddi_dma_attr_t
*attrp);

Solaris DDI specific (Solaris DDI)

handle The handle filled in by a call to ddi_dma_alloc_handle(9F).

attrp Pointer to a buffer suitable for holding a DMA attribute structure. See
ddi_dma_attr(9S).

ddi_dma_get_attr() is used to get a ddi_dma_attr(9S) structure. This structure
describes the attributes of the DMA data path to which any memory object bound to
the given handle will be subject.

DDI_SUCCESS Successfully passed back attribute structure in buffer pointed
to by attrp.

DDI_DMA_BADATTR A valid attribute structure could not be passed back.

ddi_dma_get_attr() can be called from any context.

ddi_dma_alloc_handle(9F), ddi_dma_attr(9S)

ddi_dma_get_attr(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

270 man pages section 9: DDI and DKI Kernel Functions • Last Revised 29 August 2000

ddi_dma_getwin – activate a new DMA window

#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_dma_getwin(ddi_dma_handle_t handle, uint_t win, off_t *offp,
size_t *lenp, ddi_dma_cookie_t *cookiep, uint_t *ccountp);

Solaris DDI specific (Solaris DDI).

handle The DMA handle previously allocated by a call to
ddi_dma_alloc_handle(9F).

win Number of the window to activate.

offp Pointer to an offset. Upon a successful return, offp will contain the
new offset indicating the beginning of the window within the
object.

lenp Upon a successful return, lenp will contain the size, in bytes, of the
current window.

cookiep A pointer to the first ddi_dma_cookie(9S) structure.

ccountp Upon a successful return, ccountp will contain the number of
cookies for this DMA window.

ddi_dma_getwin() activates a new DMA window. If a DMA resource allocation
request returns DDI_DMA_PARTIAL_MAP indicating that resources for less than the
entire object were allocated, the current DMA window can be changed by a call to
ddi_dma_getwin().

The caller must first determine the number of DMA windows, N, using
ddi_dma_numwin(9F). ddi_dma_getwin() takes a DMA window number from the
range [0..N-1] as the parameter win and makes it the current DMA window.

ddi_dma_getwin() fills in the first DMA cookie pointed to by cookiep with the
appropriate address, length, and bus type. *ccountp is set to the number of DMA
cookies representing this DMA object. Subsequent DMA cookies must be retrieved
using ddi_dma_nextcookie(9F).

ddi_dma_getwin() takes care of underlying resource synchronizations required to
shift the window. However accessing the data prior to or after moving the window
requires further synchronization steps using ddi_dma_sync(9F).

ddi_dma_getwin() is normally called from an interrupt routine. The first invocation
of the DMA engine is done from the driver. All subsequent invocations of the DMA
engine are done from the interrupt routine. The interrupt routine checks to see if the
request has been completed. If it has, the interrupt routine returns without invoking
another DMA transfer. Otherwise, it calls ddi_dma_getwin() to shift the current
window and start another DMA transfer.

ddi_dma_getwin(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

Kernel Functions for Drivers 271

ddi_dma_getwin() returns:

DDI_SUCCESS Resources for the specified DMA window are allocated.

DDI_FAILURE win is not a valid window index.

ddi_dma_getwin() can be called from user, kernel, or interrupt context.

ddi_dma_addr_bind_handle(9F), ddi_dma_alloc_handle(9F),
ddi_dma_buf_bind_handle(9F), ddi_dma_nextcookie(9F),
ddi_dma_numwin(9F), ddi_dma_sync(9F), ddi_dma_unbind_handle(9F),
ddi_dma_cookie(9S)

Writing Device Drivers

ddi_dma_getwin(9F)

RETURN VALUES

CONTEXT

SEE ALSO

272 man pages section 9: DDI and DKI Kernel Functions • Last Revised 15 Nov 1996

ddi_dma_htoc – convert a DMA handle to a DMA address cookie

#include <sys/conf.h>
#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_dma_htoc(ddi_dma_handle_t handle, off_t off,
ddi_dma_cookie_t *cookiep);

Solaris SPARC DDI specific (Solaris SPARC DDI).

handle The handle filled in by a call to ddi_dma_setup(9F).

off An offset into the object that handle maps.

cookiep A pointer to a ddi_dma_cookie(9S) structure.

ddi_dma_htoc() takes a DMA handle (established by ddi_dma_setup(9F)), and
fills in the cookie pointed to by cookiep with the appropriate address, length, and bus
type to be used to program the DMA engine.

ddi_dma_htoc() returns:

DDI_SUCCESS Successfully filled in the cookie pointed to by cookiep.

DDI_FAILURE Failed to successfully fill in the cookie.

ddi_dma_htoc() can be called from user or interrupt context.

ddi_dma_addr_setup(9F), ddi_dma_buf_setup(9F), ddi_dma_setup(9F),
ddi_dma_sync(9F), ddi_dma_cookie(9S)

Writing Device Drivers

ddi_dma_htoc(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 273

ddi_dma_mem_alloc – allocate memory for DMA transfer

#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_dma_mem_alloc(ddi_dma_handle_t handle, size_t length,
ddi_device_acc_attr_t *accattrp, uint_t flags, int (*waitfp)
(caddr_t), caddr_t arg, caddr_t *kaddrp, size_t *real_length,
ddi_acc_handle_t *handlep);

Solaris DDI specific (Solaris DDI).

handle The DMA handle previously allocated by a call to
ddi_dma_alloc_handle(9F).

length The length in bytes of the desired allocation.

accattrp Pointer to a device access attribute structure of this device (see
ddi_device_acc_attr(9S)).

flags Data transfer mode flags. Possible values are:

DDI_DMA_STREAMING Sequential, unidirectional,
block-sized, and block-aligned
transfers.

DDI_DMA_CONSISTENT Nonsequential transfers of small
objects.

waitfp The address of a function to call back later if resources are not
available now. The callback function indicates how a caller wants
to handle the possibility of resources not being available. If
callback is set to DDI_DMA_DONTWAIT, the caller does not care if
the allocation fails, and can handle an allocation failure
appropriately. If callback is set to DDI_DMA_SLEEP, the caller
wishes to have the allocation routines wait for resources to become
available. If any other value is set and a DMA resource allocation
fails, this value is assumed to be the address of a function to be
called when resources become available. When the specified
function is called, arg is passed to it as an argument. The specified
callback function must return either
DDI_DMA_CALLBACK_RUNOUT or DDI_DMA_CALLBACK_DONE.
DDI_DMA_CALLBACK_RUNOUT indicates that the callback function
attempted to allocate DMA resources but failed. In this case, the
callback function is put back on a list to be called again later.
DDI_DMA_CALLBACK_DONE indicates that either the allocation of
DMA resources was successful or the driver no longer wishes to
retry. The callback function is called in interrupt context.
Therefore, only system functions accessible from interrupt context
are be available.

ddi_dma_mem_alloc(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

274 man pages section 9: DDI and DKI Kernel Functions • Last Revised 15 Nov 1996

The callback function must take whatever steps are necessary to
protect its critical resources, data structures, queues, and so on.

arg Argument to be passed to the callback function, if such a function
is specified.

kaddrp On successful return, kaddrp points to the allocated memory.

real_length The amount of memory, in bytes, allocated. Alignment and
padding requirements may require ddi_dma_mem_alloc() to
allocate more memory than requested in length.

handlep Pointer to a data access handle.

ddi_dma_mem_alloc() allocates memory for DMA transfers to or from a device.
The allocation will obey the alignment, padding constraints and device granularity as
specified by the DMA attributes (see ddi_dma_attr(9S)) passed to
ddi_dma_alloc_handle(9F) and the more restrictive attributes imposed by the
system.

flags should be set to DDI_DMA_STREAMING if the device is doing sequential,
unidirectional, block-sized, and block-aligned transfers to or from memory. The
alignment and padding constraints specified by the minxfer and burstsizes fields
in the DMA attribute structure, ddi_dma_attr(9S) (see
ddi_dma_alloc_handle(9F)) will be used to allocate the most effective hardware
support for large transfers. For example, if an I/O transfer can be sped up by using an
I/O cache, which has a minimum transfer of one cache line, ddi_dma_mem_alloc()
will align the memory at a cache line boundary and it will round up real_length to a
multiple of the cache line size.

flags should be set to DDI_DMA_CONSISTENT if the device accesses memory
randomly, or if synchronization steps using ddi_dma_sync(9F) need to be as efficient
as possible. I/O parameter blocks used for communication between a device and a
driver should be allocated using DDI_DMA_CONSISTENT.

The device access attributes are specified in the location pointed by the accattrp
argument (see ddi_device_acc_attr(9S)).

The data access handle is returned in handlep. handlep is opaque – drivers may not
attempt to interpret its value. To access the data content, the driver must invoke
ddi_get8(9F) or ddi_put8(9F) (depending on the data transfer direction) with the
data access handle.

DMA resources must be established before performing a DMA transfer by passing
kaddrp and real_length as returned from ddi_dma_mem_alloc() and the flag
DDI_DMA_STREAMING or DDI_DMA_CONSISTENT to
ddi_dma_addr_bind_handle(9F). In addition, to ensure the consistency of a
memory object shared between the CPU and the device after a DMA transfer, explicit
synchronization steps using ddi_dma_sync(9F) or ddi_dma_unbind_handle(9F)
are required.

ddi_dma_mem_alloc(9F)

DESCRIPTION

Kernel Functions for Drivers 275

ddi_dma_mem_alloc() returns:

DDI_SUCCESS Memory successfully allocated.

DDI_FAILURE Memory allocation failed.

ddi_dma_mem_alloc() can be called from user or interrupt context, except when
waitfp is set to DDI_DMA_SLEEP, in which case it can be called from user context only.

ddi_dma_addr_bind_handle(9F), ddi_dma_alloc_handle(9F),
ddi_dma_mem_free(9F), ddi_dma_sync(9F), ddi_dma_unbind_handle(9F),
ddi_get8(9F), ddi_put8(9F), ddi_device_acc_attr(9S), ddi_dma_attr(9S)

Writing Device Drivers

If DDI_NEVERSWAP_ACC is specified, memory can be used for any purpose; but if
either endian mode is specified, you must use ddi_get/put* and never anything
else.

ddi_dma_mem_alloc(9F)

RETURN VALUES

CONTEXT

SEE ALSO

WARNINGS

276 man pages section 9: DDI and DKI Kernel Functions • Last Revised 15 Nov 1996

ddi_dma_mem_free – free previously allocated memory

#include <sys/ddi.h>

#include <sys/sunddi.h>

void ddi_dma_mem_free(ddi_acc_handle_t *handlep);

handlep Pointer to the data access handle previously allocated by a call to
ddi_dma_mem_alloc(9F).

Solaris DDI specific (Solaris DDI).

ddi_dma_mem_free() deallocates the memory acquired by
ddi_dma_mem_alloc(9F). In addition, it destroys the data access handle handlep
associated with the memory.

ddi_dma_mem_free() can be called from user, kernel, or interrupt context.

ddi_dma_mem_alloc(9F)

Writing Device Drivers

ddi_dma_mem_free(9F)

NAME

SYNOPSIS

PARAMETERS

INTERFACE
LEVEL

DESCRIPTION

CONTEXT

SEE ALSO

Kernel Functions for Drivers 277

ddi_dma_movwin – shift current DMA window

#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_dma_movwin(ddi_dma_handle_t handle, off_t *offp, uint_t
*lenp, ddi_dma_cookie_t *cookiep);

Solaris SPARC DDI specific (Solaris SPARC DDI).

handle The DMA handle filled in by a call to ddi_dma_setup(9F).

offp A pointer to an offset to set the DMA window to. Upon a
successful return, it will be filled in with the new offset from the
beginning of the object resources are allocated for.

lenp A pointer to a value which must either be the current size of the
DMA window (as known from a call to ddi_dma_curwin(9F) or
from a previous call to ddi_dma_movwin()). Upon a successful
return, it will be filled in with the size, in bytes, of the current
window.

cookiep A pointer to a DMA cookie (see ddi_dma_cookie(9S)). Upon a
successful return, cookiep is filled in just as if an implicit
ddi_dma_htoc(9F) had been made.

ddi_dma_movwin() shifts the current DMA window. If a DMA request allows the
sytem to allocate resources for less than the entire object by setting the
DDI_DMA_PARTIAL flag in the ddi_dma_req(9S) structure, the current DMA
window can be shifted by a call to ddi_dma_movwin().

The caller must first determine the current DMA window size by a call to
ddi_dma_curwin(9F). Using the current offset and size of the window thus retrieved,
the caller of ddi_dma_movwin() may change the window onto the object by
changing the offset by a value which is some multiple of the size of the DMA window.

ddi_dma_movwin() takes care of underlying resource synchronizations required to
shift the window. However, if you want to access the data prior to or after moving
the window, further synchronizations using ddi_dma_sync(9F) are required.

This function is normally called from an interrupt routine. The first invocation of the
DMA engine is done from the driver. All subsequent invocations of the DMA engine
are done from the interrupt routine. The interrupt routine checks to see if the request
has been completed. If it has, it returns without invoking another DMA transfer.
Otherwise it calls ddi_dma_movwin() to shift the current window and starts another
DMA transfer.

ddi_dma_movwin() returns:

DDI_SUCCESS The current length and offset are legal and have been set.

DDI_FAILURE Otherwise.

ddi_dma_movwin(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

278 man pages section 9: DDI and DKI Kernel Functions • Last Revised 13 Sep 1992

ddi_dma_movwin() can be called from user or interrupt context.

ddi_dma_curwin(9F), ddi_dma_htoc(9F), ddi_dma_setup(9F),
ddi_dma_sync(9F), ddi_dma_cookie(9S), ddi_dma_req(9S)

Writing Device Drivers

The caller must guarantee that the resources used by the object are inactive prior to
calling this function.

ddi_dma_movwin(9F)

CONTEXT

SEE ALSO

WARNINGS

Kernel Functions for Drivers 279

ddi_dma_nextcookie – retrieve subsequent DMA cookie

#include <sys/ddi.h>

#include <sys/sunddi.h>

void ddi_dma_nextcookie(ddi_dma_handle_t handle, ddi_dma_cookie_t
*cookiep);

handle The handle previously allocated by a call to
ddi_dma_alloc_handle(9F).

cookiep A pointer to a ddi_dma_cookie(9S) structure.

Solaris DDI specific (Solaris DDI).

ddi_dma_nextcookie() retrieves subsequent DMA cookies for a DMA object.
ddi_dma_nextcookie() fills in the ddi_dma_cookie(9S) structure pointed to by
cookiep. The ddi_dma_cookie(9S) structure must be allocated prior to calling
ddi_dma_nextcookie().

The DMA cookie count returned by ddi_dma_buf_bind_handle(9F),
ddi_dma_addr_bind_handle(9F), or ddi_dma_getwin(9F) indicates the number
of DMA cookies a DMA object consists of. If the resulting cookie count, N, is larger
than 1, ddi_dma_nextcookie() must be called N-1 times to retrieve all DMA
cookies.

ddi_dma_nextcookie() can be called from user, kernel, or interrupt context.

EXAMPLE 1 process a scatter-gather list of I/O requests

This example demonstrates the use of ddi_dma_nextcookie() to process a
scatter-gather list of I/O requests.

/* setup scatter-gather list with multiple DMA cookies */
ddi_dma_cookie_t dmacookie;
uint_t ccount;
. . .

status = ddi_dma_buf_bind_handle(handle, bp, DDI_DMA_READ,
NULL, NULL, &dmacookie, &ccount);

if (status == DDI_DMA_MAPPED) {

/* program DMA engine with first cookie */

while (--ccount > 0) {
ddi_dma_nextcookie(handle, &dmacookie);
/* program DMA engine with next cookie */

}
}
. . .

ddi_dma_nextcookie(9F)

NAME

SYNOPSIS

PARAMETERS

INTERFACE
LEVEL

DESCRIPTION

CONTEXT

EXAMPLES

280 man pages section 9: DDI and DKI Kernel Functions • Last Revised 26 Sep 1994

EXAMPLE 1 process a scatter-gather list of I/O requests (Continued)

ddi_dma_addr_bind_handle(9F), ddi_dma_alloc_handle(9F),
ddi_dma_buf_bind_handle(9F), ddi_dma_unbind_handle(9F),
ddi_dma_cookie(9S)

Writing Device Drivers

ddi_dma_nextcookie(9F)

SEE ALSO

Kernel Functions for Drivers 281

ddi_dma_nextseg – get next DMA segment

#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_dma_nextseg(ddi_dma_win_t win, ddi_dma_seg_t seg,
ddi_dma_seg_t *nseg);

Solaris DDI specific (Solaris DDI).

win A DMA window.

seg The current DMA segment or NULL.

nseg A pointer to the next DMA segment to be filled in. If seg is NULL, a
pointer to the first segment within the specified window is
returned.

ddi_dma_nextseg() gets the next DMA segment within the specified window win.
If the current segment is NULL, the first DMA segment within the window is returned.

A DMA segment is always required for a DMA window. A DMA segment is a
contiguous portion of a DMA window (see ddi_dma_nextwin(9F)) which is entirely
addressable by the device for a data transfer operation.

An example where multiple DMA segments are allocated is where the system does not
contain DVMA capabilities and the object may be non-contiguous. In this example the
object will be broken into smaller contiguous DMA segments. Another example is
where the device has an upper limit on its transfer size (for example an 8-bit address
register) and has expressed this in the DMA limit structure (see
ddi_dma_lim_sparc(9S) or ddi_dma_lim_x86(9S)). In this example the object will
be broken into smaller addressable DMA segments.

ddi_dma_nextseg() returns:

DDI_SUCCESS Successfully filled in the next segment pointer.

DDI_DMA_DONE There is no next segment. The current segment is the
final segment within the specified window.

DDI_DMA_STALE win does not refer to the currently active window.

ddi_dma_nextseg() can be called from user or interrupt context.

For an example, see ddi_dma_segtocookie(9F).

ddi_dma_addr_setup(9F), ddi_dma_buf_setup(9F), ddi_dma_nextwin(9F),
ddi_dma_segtocookie(9F), ddi_dma_sync(9F), ddi_dma_lim_sparc(9S),
ddi_dma_lim_IA(9S), ddi_dma_req(9S)

Writing Device Drivers

ddi_dma_nextseg(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

EXAMPLES

SEE ALSO

282 man pages section 9: DDI and DKI Kernel Functions • Last Revised 1 Feb 1994

ddi_dma_nextwin – get next DMA window

#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_dma_nextwin(ddi_dma_handle_t handle, ddi_dma_win_t win,
ddi_dma_win_t *nwin);

Solaris DDI specific (Solaris DDI).

handle A DMA handle.

win The current DMA window or NULL.

nwin A pointer to the next DMA window to be filled in. If win is NULL, a
pointer to the first window within the object is returned.

ddi_dma_nextwin() shifts the current DMA window win within the object referred
to by handle to the next DMA window nwin. If the current window is NULL, the first
window within the object is returned. A DMA window is a portion of a DMA object or
might be the entire object. A DMA window has system resources allocated to it and is
prepared to accept data transfers. Examples of system resources are DVMA mapping
resources and intermediate transfer buffer resources.

All DMA objects require a window. If the DMA window represents the whole DMA
object it has system resources allocated for the entire data transfer. However, if the
system is unable to setup the entire DMA object due to system resource limitations,
the driver writer may allow the system to allocate system resources for less than the
entire DMA object. This can be accomplished by specifying the DDI_DMA_PARTIAL
flag as a parameter to ddi_dma_buf_setup(9F) or ddi_dma_addr_setup(9F) or as
part of a ddi_dma_req(9S) structure in a call to ddi_dma_setup(9F).

Only the window that has resources allocated is valid per object at any one time. The
currently valid window is the one that was most recently returned from
ddi_dma_nextwin(). Furthermore, because a call to ddi_dma_nextwin() will
reallocate system resources to the new window, the previous window will become
invalid. It is a severe error to call ddi_dma_nextwin() before any transfers into the
current window are complete.

ddi_dma_nextwin() takes care of underlying memory synchronizations required to
shift the window. However, if you want to access the data before or after moving the
window, further synchronizations using ddi_dma_sync(9F) are required.

ddi_dma_nextwin() returns:

DDI_SUCCESS Successfully filled in the next window pointer.

DDI_DMA_DONE There is no next window. The current window is the final window
within the specified object.

DDI_DMA_STALE win does not refer to the currently active window.

ddi_dma_nextwin(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

Kernel Functions for Drivers 283

ddi_dma_nextwin() can be called from user or interrupt context.

For an example see ddi_dma_segtocookie(9F).

ddi_dma_addr_setup(9F), ddi_dma_buf_setup(9F), ddi_dma_nextseg(9F),
ddi_dma_segtocookie(9F), ddi_dma_sync(9F), ddi_dma_req(9S)

Writing Device Drivers

ddi_dma_nextwin(9F)

CONTEXT

EXAMPLES

SEE ALSO

284 man pages section 9: DDI and DKI Kernel Functions • Last Revised 12 Oct 1992

ddi_dma_numwin – retrieve number of DMA windows

#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_dma_numwin(ddi_dma_handle_t handle, uint_t *nwinp);

handle The DMA handle previously allocated by a call to
ddi_dma_alloc_handle(9F).

nwinp Upon a successful return, nwinp will contain the number of DMA
windows for this object.

Solaris DDI specific (Solaris DDI).

ddi_dma_numwin() returns the number of DMA windows for a DMA object if
partial resource allocation was permitted.

ddi_dma_numwin() returns:

DDI_SUCCESS Successfully filled in the number of DMA windows.

DDI_FAILURE DMA windows are not activated.

ddi_dma_numwin() can be called from user, kernel, or interrupt context.

ddi_dma_addr_bind_handle(9F), ddi_dma_alloc_handle(9F),
ddi_dma_buf_bind_handle(9F), ddi_dma_unbind_handle(9F)

Writing Device Drivers

ddi_dma_numwin(9F)

NAME

SYNOPSIS

PARAMETERS

INTERFACE
LEVEL

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 285

ddi_dma_segtocookie – convert a DMA segment to a DMA address cookie

#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_dma_segtocookie(ddi_dma_seg_t seg, off_t *offp, off_t *lenp,
ddi_dma_cookie_t *cookiep);

seg A DMA segment.

offp A pointer to an off_t. Upon a successful return, it is filled in with
the offset. This segment is addressing within the object.

lenp The byte length. This segment is addressing within the object.

cookiep A pointer to a DMA cookie (see ddi_dma_cookie(9S)).

Solaris DDI specific (Solaris DDI).

ddi_dma_segtocookie() takes a DMA segment and fills in the cookie pointed to
by cookiep with the appropriate address, length, and bus type to be used to program
the DMA engine. ddi_dma_segtocookie() also fills in *offp and *lenp, which
specify the range within the object.

ddi_dma_segtocookie() returns:

DDI_SUCCESS Successfully filled in all values.

DDI_FAILURE Failed to successfully fill in all values.

ddi_dma_segtocookie() can be called from user or interrupt context.

EXAMPLE 1 ddi_dma_segtocookie() example

for (win = NULL; (retw = ddi_dma_nextwin(handle, win, &nwin)) !=
DDI_DMA_DONE; win = nwin) {
if (retw != DDI_SUCCESS) {

/* do error handling */
} else {

for (seg = NULL; (rets = ddi_dma_nextseg(nwin, seg, &nseg)) !=
DDI_DMA_DONE; seg = nseg) {
if (rets != DDI_SUCCESS) {

/* do error handling */
} else {

ddi_dma_segtocookie(nseg, &off, &len, &cookie);

/* program DMA engine */
}

}
}

}

ddi_dma_nextseg(9F), ddi_dma_nextwin(9F), ddi_dma_sync(9F),
ddi_dma_cookie(9S)

ddi_dma_segtocookie(9F)

NAME

SYNOPSIS

PARAMETERS

INTERFACE
LEVEL

DESCRIPTION

RETURN VALUES

CONTEXT

EXAMPLES

SEE ALSO

286 man pages section 9: DDI and DKI Kernel Functions • Last Revised 12 Oct 1992

Writing Device Drivers

ddi_dma_segtocookie(9F)

Kernel Functions for Drivers 287

ddi_dma_set_sbus64 – allow 64–bit transfers on SBus

#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_dma_set_sbus64(ddi_dma_handle_t handle, uint_t burstsizes);

Solaris DDI specific (Solaris DDI).

handle The handle filled in by a call to ddi_dma_alloc_handle(9F).

burstsizes The possible burst sizes the device’s DMA engine can accept in
64–bit mode.

ddi_dma_set_sbus64() informs the system that the device wishes to perform
64–bit data transfers on the SBus. The driver must first allocate a DMA handle using
ddi_dma_alloc_handle(9F) with a ddi_dma_attr(9S) structure describing the
DMA attributes for a 32–bit transfer mode.

burstsizes describes the possible burst sizes the device’s DMA engine can accept in
64–bit mode. It may be distinct from the burst sizes for 32–bit mode set in the
ddi_dma_attr(9S) structure. The system will activate 64–bit SBus transfers if the
SBus supports them. Otherwise, the SBus will operate in 32–bit mode.

After DMA resources have been allocated (see ddi_dma_addr_bind_handle(9F) or
ddi_dma_buf_bind_handle(9F)), the driver should retrieve the available burst
sizes by calling ddi_dma_burstsizes(9F). This function will return the burst sizes
in 64–bit mode if the system was able to activate 64–bit transfers. Otherwise burst
sizes will be returned in 32–bit mode.

ddi_dma_set_sbus64() returns:

DDI_SUCCESS Successfully set the SBus to 64–bit mode.

DDI_FAILURE 64–bit mode could not be set.

ddi_dma_set_sbus64() can be called from user, kernel, or interrupt context.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SBus

attributes(5), ddi_dma_addr_bind_handle(9F), ddi_dma_alloc_handle(9F),
ddi_dma_buf_bind_handle(9F), ddi_dma_burstsizes(9F), ddi_dma_attr(9S)

64–bit SBus mode is activated on a per SBus slot basis. If there are multiple SBus cards
in one slot, they all must operate in 64–bit mode or they all must operate in 32–bit
mode.

ddi_dma_set_sbus64(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

ATTRIBUTES

SEE ALSO

NOTES

288 man pages section 9: DDI and DKI Kernel Functions • Last Revised 1 Jan 1997

ddi_dma_setup – setup DMA resources

#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_dma_setup(dev_info_t *dip, ddi_dma_req_t *dmareqp,
ddi_dma_handle_t *handlep);

Solaris DDI specific (Solaris DDI).

dip A pointer to the device’s dev_info structure.

dmareqp A pointer to a DMA request structure (see ddi_dma_req(9S)).

handlep A pointer to a DMA handle to be filled in. See below for a
discussion of a handle. If handlep is NULL, the call to
ddi_dma_setup() is considered an advisory call, in which case
no resources are allocated, but a value indicating the legality and
the feasibility of the request is returned.

ddi_dma_setup() allocates resources for a memory object such that a device can
perform DMA to or from that object.

A call to ddi_dma_setup() informs the system that device referred to by dip wishes
to perform DMA to or from a memory object. The memory object, the device’s DMA
capabilities, the device driver’s policy on whether to wait for resources, are all
specified in the ddi_dma_req structure pointed to by dmareqp.

A successful call to ddi_dma_setup() fills in the value pointed to by handlep. This is
an opaque object called a DMA handle. This handle is then used in subsequent DMA
calls, until ddi_dma_free(9F) is called.

Again a DMA handle is opaque—drivers may not attempt to interpret its value. When
a driver wants to enable its DMA engine, it must retrieve the appropriate address to
supply to its DMA engine using a call to ddi_dma_htoc(9F), which takes a pointer to
a DMA handle and returns the appropriate DMA address.

When DMA transfer completes, the driver should free up the the allocated DMA
resources by calling ddi_dma_free().

ddi_dma_setup() returns:

DDI_DMA_MAPPED Successfully allocated resources for the object. In the
case of an advisory call, this indicates that the request is
legal.

DDI_DMA_PARTIAL_MAP Successfully allocated resources for a part of the object.
This is acceptable when partial transfers are allowed
using a flag setting in the ddi_dma_req structure (see
ddi_dma_req(9S) and ddi_dma_movwin(9F)).

DDI_DMA_NORESOURCES When no resources are available.

ddi_dma_setup(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

Kernel Functions for Drivers 289

DDI_DMA_NOMAPPING The object cannot be reached by the device requesting
the resources.

DDI_DMA_TOOBIG The object is too big and exceeds the available
resources. The maximum size varies depending on
machine and configuration.

ddi_dma_setup() can be called from user or interrupt context, except when the
dmar_fp member of the ddi_dma_req structure pointed to by dmareqp is set to
DDI_DMA_SLEEP, in which case it can be called from user context only.

ddi_dma_addr_setup(9F), ddi_dma_buf_setup(9F), ddi_dma_free(9F),
ddi_dma_htoc(9F), ddi_dma_movwin(9F), ddi_dma_sync(9F), ddi_dma_req(9S)

Writing Device Drivers

The construction of the ddi_dma_req structure is complicated. Use of the provided
interface functions such as ddi_dma_buf_setup(9F) simplifies this task.

ddi_dma_setup(9F)

CONTEXT

SEE ALSO

NOTES

290 man pages section 9: DDI and DKI Kernel Functions • Last Revised 7 Jun 1993

ddi_dma_sync – synchronize CPU and I/O views of memory

#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_dma_sync(ddi_dma_handle_t handle, off_t offset, size_t length,
uint_t type);

Solaris DDI specific (Solaris DDI).

handle The handle filled in by a call to ddi_dma_alloc_handle(9F).

offset The offset into the object described by the handle.

length The length, in bytes, of the area to synchronize. When length is
zero, the entire range starting from offset to the end of the object
has the requested operation applied to it.

type Indicates the caller’s desire about what view of the memory object
to synchronize. The possible values are DDI_DMA_SYNC_FORDEV,
DDI_DMA_SYNC_FORCPU and DDI_DMA_SYNC_FORKERNEL.

ddi_dma_sync() is used to selectively synchronize either a DMA device’s or a
CPU’s view of a memory object that has DMA resources allocated for I/O . This may
involve operations such as flushes of CPU or I/O caches, as well as other more
complex operations such as stalling until hardware write buffers have drained.

This function need only be called under certain circumstances. When resources are
allocated for DMA using ddi_dma_addr_bind_handle() or
ddi_dma_buf_bind_handle(), an implicit ddi_dma_sync() is done. When DMA
resources are deallocated using ddi_dma_unbind_handle(9F), an implicit
ddi_dma_sync() is done. However, at any time between DMA resource allocation
and deallocation, if the memory object has been modified by either the DMA device or
a CPU and you wish to ensure that the change is noticed by the party that didnot do
the modifying, a call to ddi_dma_sync() is required. This is true independent of any
attributes of the memory object including, but not limited to, whether or not the
memory was allocated for consistent mode I/O (see ddi_dma_mem_alloc(9F)) or
whether or not DMA resources have been allocated for consistent mode I/O (see
ddi_dma_addr_bind_handle(9F) or ddi_dma_buf_bind_handle(9F)).

This cannot be stated too strongly. If a consistent view of the memory object must be
ensured between the time DMA resources are allocated for the object and the time
they are deallocated, you must call ddi_dma_sync() to ensure that either a CPU or a
DMA device has such a consistent view.

What to set type to depends on the view you are trying to ensure consistency for. If
the memory object is modified by a CPU, and the object is going to be read by the
DMA engine of the device, use DDI_DMA_SYNC_FORDEV. This ensures that the
device’s DMA engine sees any changes that a CPU has made to the memory object. If
the DMA engine for the device has written to the memory object, and you are going to
read (with a CPU) the object (using an extant virtual address mapping that you have to

ddi_dma_sync(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

Kernel Functions for Drivers 291

the memory object), use DDI_DMA_SYNC_FORCPU. This ensures that a CPU’s view of
the memory object includes any changes made to the object by the device’s DMA
engine. If you are only interested in the kernel’s view (kernel-space part of the CPU’s
view) you may use DDI_DMA_SYNC_FORKERNEL. This gives a hint to the
system—that is, if it is more economical to synchronize the kernel’s view only, then do
so; otherwise, synchronize for CPU.

ddi_dma_sync() returns:

DDI_SUCCESS Caches are successfully flushed.

DDI_FAILURE The address range to be flushed is out of the address range
established by ddi_dma_addr_bind_handle(9F) or
ddi_dma_buf_bind_handle(9F).

ddi_dma_sync() can be called from user or interrupt context.

ddi_dma_addr_bind_handle(9F), ddi_dma_alloc_handle(9F),
ddi_dma_buf_bind_handle(9F), ddi_dma_mem_alloc(9F),
ddi_dma_unbind_handle(9F)

Writing Device Drivers

ddi_dma_sync(9F)

RETURN VALUES

CONTEXT

SEE ALSO

292 man pages section 9: DDI and DKI Kernel Functions • Last Revised 20 Nov 1996

ddi_dma_unbind_handle – unbinds the address in a DMA handle

#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_dma_unbind_handle(ddi_dma_handle_t handle);

handle The DMA handle previously allocated by a call to
ddi_dma_alloc_handle(9F).

Solaris DDI specific (Solaris DDI).

ddi_dma_unbind_handle() frees all DMA resources associated with an existing
DMA handle. When a DMA transfer completes, the driver should call
ddi_dma_unbind_handle() to free system DMA resources established by a call to
ddi_dma_buf_bind_handle(9F) or ddi_dma_addr_bind_handle(9F).
ddi_dma_unbind_handle() does an implicit ddi_dma_sync(9F) making further
synchronization steps unnecessary.

DDI_SUCCESS on success

DDI_FAILURE on failure

ddi_dma_unbind_handle() can be called from user, kernel, or interrupt context.

ddi_dma_addr_bind_handle(9F), ddi_dma_alloc_handle(9F),
ddi_dma_buf_bind_handle(9F), ddi_dma_free_handle(9F),
ddi_dma_sync(9F)

Writing Device Drivers

ddi_dma_unbind_handle(9F)

NAME

SYNOPSIS

PARAMETERS

INTERFACE
LEVEL

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 293

ddi_driver_major – return driver’s major device number

#include <sys/ddi.h>

#include <sys/sunddi.h>

major_t ddi_driver_major(dev_info_t *dip);

Solaris DDI specific (Solaris DDI)

ddi_driver_major() returns the major device number for the driver associated
with the supplied dev_info node. This value can then be used as an argument to
makedevice(9F) to construct a complete dev_t.

dip A pointer to the device’s dev_info structure.

ddi_driver_major() returns the major number of the driver bound to a device, if
any, or DDI_MAJOR_T_NONE otherwise.

ddi_driver_major() can be called from kernel or interrupt context.

ddi_driver_name(9F)

Writing Device Drivers

ddi_driver_major(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

PARAMETERS

RETURN VALUES

CONTEXT

SEE ALSO

294 man pages section 9: DDI and DKI Kernel Functions • Last Revised 18 Jun 2001

ddi_driver_name – return normalized driver name

#include <sys/ddi.h>

#include <sys/sunddi.h>

const char *ddi_driver_name(dev_info_t *devi);

Solaris DDI specific (Solaris DDI).

dip A pointer to the device’s dev_info structure.

ddi_driver_name() returns the normalized driver name. This name is typically
derived from the device name property or the device compatible property. If this name
is a driver alias, the corresponding driver name is returned.

ddi_driver_name() returns the actual name of the driver bound to a device.

ddi_driver_name() can be called from kernel, or interrupt context.

ddi_get_name(9F)

Writing Device Drivers

The name returned by ddi_driver_name() is read-only.

ddi_driver_name(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

WARNINGS

Kernel Functions for Drivers 295

ddi_enter_critical, ddi_exit_critical – enter and exit a critical region of control

#include <sys/conf.h>
#include <sys/ddi.h>

#include <sys/sunddi.h>

unsigned int ddi_enter_critical(void);

void ddi_exit_critical(unsignedint ddic);

Solaris DDI specific (Solaris DDI).

ddic The returned value from the call to ddi_enter_critical()
must be passed to ddi_exit_critical().

Nearly all driver operations can be done without any special synchronization and
protection mechanisms beyond those provided by, for example, mutexes (see
mutex(9F)). However, for certain devices there can exist a very short critical region of
code which must be allowed to run uninterrupted. The function
ddi_enter_critical() provides a mechanism by which a driver can ask the
system to guarantee to the best of its ability that the current thread of execution will
neither be preempted nor interrupted. This stays in effect until a bracketing call to
ddi_exit_critical() is made (with an argument which was the returned value
from ddi_enter_critical()).

The driver may not call any functions external to itself in between the time it calls
ddi_enter_critical() and the time it calls ddi_exit_critical().

ddi_enter_critical() returns an opaque unsigned integer which must be used in
the subsequent call to ddi_exit_critical().

This function can be called from user or interrupt context.

Driver writers should note that in a multiple processor system this function does not
temporarily suspend other processors from executing. This function also cannot
guarantee to actually block the hardware from doing such things as interrupt
acknowledge cycles. What it can do is guarantee that the currently executing thread
will not be preempted.

Do not write code bracketed by ddi_enter_critical() and
ddi_exit_critical() that can get caught in an infinite loop, as the machine may
crash if you do.

mutex(9F)

Writing Device Drivers

ddi_enter_critical(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

WARNINGS

SEE ALSO

296 man pages section 9: DDI and DKI Kernel Functions • Last Revised 4 Nov 1991

ddi_ffs, ddi_fls – find first (last) bit set in a long integer

#include <sys/conf.h>
#include <sys/ddi.h>

#include <sys/sunddi.h>

intddi_ffs(long mask);

int ddi_fls(long mask);

Solaris DDI specific (Solaris DDI).

mask A 32-bit argument value to search through.

The function ddi_ffs() takes its argument and returns the shift count that the first
(least significant) bit set in the argument corresponds to. The function ddi_fls()
does the same, only it returns the shift count for the last (most significant) bit set in the
argument.

0 No bits are set in mask.

N Bit N is the least significant (ddi_ffs) or most significant (ddi_fls) bit
set in mask. Bits are numbered from 1 to 32, with bit 1 being the least
significant bit position and bit 32 the most significant position.

This function can be called from user or interrupt context.

Writing Device Drivers

ddi_ffs(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 297

ddi_get8, ddi_get16, ddi_get32, ddi_get64, ddi_getb, ddi_getw, ddi_getl, ddi_getll –
read data from the mapped memory address, device register or allocated DMA
memory address

#include <sys/ddi.h>

#include <sys/sunddi.h>

uint8_t ddi_get8(ddi_acc_handle_t handle, uint8_t *dev_addr);

uint16_t ddi_get16(ddi_acc_handle_t handle, uint16_t *dev_addr);

uint32_t ddi_get32(ddi_acc_handle_t handle, uint32_t *dev_addr);

uint64_t ddi_get64(ddi_acc_handle_t handle, uint64_t *dev_addr);

Solaris DDI specific (Solaris DDI).

handle The data access handle returned from setup calls, such as
ddi_regs_map_setup(9F).

dev_addr Base device address.

The ddi_get8(), ddi_get16(), ddi_get32(), and ddi_get64() functions read
8 bits, 16 bits, 32 bits and 64 bits of data, respectively, from the device address,
dev_addr.

Each individual datum will automatically be translated to maintain a consistent view
between the host and the device based on the encoded information in the data access
handle. The translation may involve byte-swapping if the host and the device have
incompatible endian characteristics.

For certain bus types, you can call these DDI functions from a high-interrupt context.
These types include ISA, EISA, and SBus buses. See sysbus(4), isa(4), eisa(4), and
sbus(4) for details. For the PCI bus, you can, under certain conditions, call these DDI
functions from a high-interrupt context. See pci(4).

These functions return the value read from the mapped address.

These functions can be called from user, kernel, or interrupt context.

ddi_put8(9F), ddi_regs_map_free(9F), ddi_regs_map_setup(9F),
ddi_rep_get8(9F), ddi_rep_put8(9F)

The functions described in this manual page previously used symbolic names which
specified their data access size; the function names have been changed so they now
specify a fixed-width data size. See the following table for the new name equivalents:

Previous Name New Name

ddi_getb ddi_get8

ddi_getw ddi_get16

ddi_get8(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

NOTES

298 man pages section 9: DDI and DKI Kernel Functions • Last Revised 22 Nov 1996

Previous Name New Name

ddi_getl ddi_get32

ddi_getll ddi_get64

ddi_get8(9F)

Kernel Functions for Drivers 299

ddi_get_cred – returns a pointer to the credential structure of the caller

#include <sys/types.h>
#include <sys/ddi.h>

#include <sys/sunddi.h>

cred_t *ddi_get_cred(void);

Solaris DDI specific (Solaris DDI).

ddi_get_cred() returns a pointer to the user credential structure of the caller.

ddi_get_cred() returns a pointer to the caller’s credential structure.

ddi_get_cred() can be called from user context only.

Writing Device Drivers

ddi_get_cred(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

300 man pages section 9: DDI and DKI Kernel Functions • Last Revised 11 Apr 1991

ddi_get_devstate – Check device state

#include <sys/ddi.h>

#include <sys/sunddi.h>

ddi_devstate_t ddi_get_devstate(dev_info_t *dip);

Solaris DDI specific (Solaris DDI)

dip Pointer to the device’s dev_info structure

The ddi_get_devstate() function returns a value indicating the state of the device
specified by dip, as derived from the configuration operations that have been
performed on it (or on the bus on which it resides) and any fault reports relating to it.

DDI_DEVSTATE_OFFLINE
The device is offline. In this state, the device driver is not attached, nor will it be
attached automatically. The device cannot be used until it is brought online.

DDI_DEVSTATE_DOWN
The device is online but unusable due to a fault.

DDI_DEVSTATE_QUIESCED
The bus on which the device resides has been quiesced. This is not a fault, but no
operations on the device should be performed while the bus remains quiesced.

DDI_DEVSTATE_DEGRADED
The device is online but only able to provide a partial or degraded service, due to a
fault.

DDI_DEVSTATE_UP
The device is online and fully operational.

The ddi_get_devstate() function may be called from user, kernel, or interrupt
context.

A device driver should call this function to check its own state at each major entry
point, and before committing resources to a requested operation. If a driver discovers
that its device is already down, it should perform required cleanup actions and return
as soon as possible. If appropriate, it should return an error to its caller, indicating that
the device has failed (for example, a driver’s read(9E) routine would return EIO).

Depending on the driver, some non-I/O operations (for example, calls to the driver’s
ioctl(9E) routine) may still succeed; only functions which would require fully
accessible and operational hardware will necessarily fail. If the bus on which the
device resides is quiesced, the driver may return a value indicating the operation
should be retried later (for example, EAGAIN). Alternatively, for some classes of
device, it may be appropriate for the driver to enqueue the operation and service it
once the bus has been unquiesced. Note that not all busses support the
quiesce/unquiesce operations, so this value may never be seen by some drivers.

attach(9E), ioctl(9E), open(9E), read(9E), strategy(9E), write(9E),
ddi_dev_report_fault(9F)

ddi_get_devstate(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

NOTES

SEE ALSO

Kernel Functions for Drivers 301

ddi_get_driver_private, ddi_set_driver_private – get or set the address of the device’s
private data area

#include <sys/conf.h>
#include <sys/ddi.h>

#include <sys/sunddi.h>

void ddi_set_driver_private(dev_info_t *dip, caddr_t data);

caddr_t ddi_get_driver_private(dev_info_t *dip);

Solaris DDI specific (Solaris DDI).

ddi_get_driver_private()

dip Pointer to device information structure to get from.

ddi_set_driver_private()

dip Pointer to device information structure to set.

data Data area address to set.

ddi_get_driver_private() returns the address of the device’s private data area
from the device information structure pointed to by dip.

ddi_set_driver_private() sets the address of the device’s private data area in
the device information structure pointed to by dip with the value of data.

ddi_get_driver_private() returns the contents of devi_driver_data. If
ddi_set_driver_private() has not been previously called with dip, an
unpredictable value is returned.

These functions can be called from user or interrupt context.

Writing Device Drivers

ddi_get_driver_private(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

302 man pages section 9: DDI and DKI Kernel Functions • Last Revised 6 Feb 1995

ddi_getiminor – get kernel internal minor number from an external dev_t

#include <sys/types.h>
#include <sys/mkdev.h>

#include <sys/ddi.h>

minor_t ddi_getiminor(dev_t dev);

Solaris DDI specific (Solaris DDI).

The following parameters are supported:

dev Device number.

ddi_getiminor() extracts the minor number from a device number. This call
should be used only for device numbers that have been passed to the kernel from the
user space through opaque interfaces such as the contents of ioctl(9E) and
putmsg(2). The device numbers passed in using standard device entry points must
continue to be interpreted using the getminor(9F) interface. This new interface is
used to translate between user visible device numbers and in kernel device numbers.
The two numbers may differ in a clustered system.

For certain bus types, you can call this DDI function from a high-interrupt context.
These types include ISA, EISA, and SBus buses. See sysbus(4), isa(4), eisa(4), and
sbus(4) for details.

ddi_getiminor() can be called from user context only.

The minor number or EMINOR_UNKNOWN if the minor number of the device is invalid.

getmajor(9F), getminor(9F), makedevice(9F)

Writing Device Drivers

Validity checking is performed. If dev is invalid, EMINOR_UNKNOWN is returned. This
behavior differs from getminor(9F).

ddi_getiminor(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

RETURN VALUES

SEE ALSO

WARNINGS

Kernel Functions for Drivers 303

ddi_get_instance – get device instance number

#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_get_instance(dev_info_t *dip);

Solaris DDI specific (Solaris DDI).

dip Pointer to dev_info structure.

ddi_get_instance() returns the instance number of the device corresponding to
dip.

The system assigns an instance number to every device. Instance numbers for devices
attached to the same driver are unique. This provides a way for the system and the
driver to uniquely identify one or more devices of the same type. The instance number
is derived by the system from different properties for different device types in an
implementation specific manner.

Once an instance number has been assigned to a device, it will remain the same even
across reconfigurations and reboots. Therefore, instance numbers seen by a driver may
not appear to be in consecutive order. For example, if device foo0 has been assigned
an instance number of 0 and device foo1 has been assigned an instance number of 1,
if foo0 is removed, foo1 will continue to be associated with instance number 1 (even
though foo1 is now the only device of its type on the system).

ddi_get_instance() returns the instance number of the device corresponding to
dip.

ddi_get_instance()can be called from user or interrupt context.

path_to_inst(4)

Writing Device Drivers

ddi_get_instance(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

304 man pages section 9: DDI and DKI Kernel Functions • Last Revised 20 Jul 1994

ddi_get_kt_did – get identifier of current thread

#include <sys/types.h>
#include <sys/ddi.h>

#include <sys/sunddi.h>

kt_did_t ddi_get_kt_did(void);

Solaris DDI specific (Solaris DDI)

The ddi_get_kt_did() function returns a unique 64-bit identifier for the currently
running thread.

This routine can be called from user, kernel, or interrupt context. This routine cannot
be called from a high-level interrupt context.

ddi_get_kt_did() always returns the identifier for the current thread. There are no
error conditions.

Writing Device Drivers

The value returned by this function can also be seen in adb or mdb as the did field
displayed when using the thread macro.

This interface is intended for tracing and debugging purposes.

ddi_get_kt_did(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

CONTEXT

RETURN VALUES

SEE ALSO

NOTES

Kernel Functions for Drivers 305

ddi_get_lbolt – returns the value of lbolt

#include <sys/types.h>
#include <sys/ddi.h>

#include <sys/sunddi.h>

clock_t ddi_get_lbolt(void);

Solaris DDI specific (Solaris DDI).

ddi_get_lbolt() returns the value of lbolt where lbolt is an integer that
represents the number of clock ticks since the last system reboot. This value is used as
a counter or timer inside the system kernel. The tick frequency can be determined by
using drv_usectohz(9F) which converts microseconds into clock ticks.

ddi_get_lbolt() returns the value of lbolt.

This routine can be called from any context.

ddi_get_time(9F), drv_getparm(9F), drv_usectohz(9F)

Writing Device Drivers

STREAMS Programming Guide

ddi_get_lbolt(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

306 man pages section 9: DDI and DKI Kernel Functions • Last Revised 18 Feb 1998

ddi_get_parent – find the parent of a device information structure

#include <sys/ddi.h>

#include <sys/sunddi.h>

dev_info_t *ddi_get_parent(dev_info_t *dip);

Solaris DDI specific (Solaris DDI).

dip Pointer to a device information structure.

ddi_get_parent() returns a pointer to the device information structure which is
the parent of the one pointed to by dip.

ddi_get_parent() returns a pointer to a device information structure.

ddi_get_parent() can be called from user or interrupt context.

Writing Device Drivers

ddi_get_parent(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 307

ddi_get_pid – returns the process ID

#include <sys/types.h>
#include <sys/ddi.h>

#include <sys/sunddi.h>

pid_t ddi_get_pid(void);

Solaris DDI specific (Solaris DDI).

ddi_get_pid() obtains the process ID of the current process. This value can be used
to allow only a select process to perform a certain operation. It can also be used to
determine whether a device context belongs to the current process.

ddi_get_pid() returns the process ID.

This routine can be called from user context only.

drv_getparm(9F)

Writing Device Drivers

STREAMS Programming Guide

ddi_get_pid(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

308 man pages section 9: DDI and DKI Kernel Functions • Last Revised 18 Feb 1998

ddi_get_time – returns the current time in seconds

#include <sys/types.h>
#include <sys/ddi.h>

#include <sys/sunddi.h>

time_t ddi_get_time(void);

Solaris DDI specific (Solaris DDI).

ddi_get_time() returns the current time in seconds since 00:00:00 UTC, January 1,
1970. This value can be used to set of wait or expiration intervals.

ddi_get_time() returns the time in seconds.

This routine can be called from any context.

ddi_get_lbolt(9F), drv_getparm(9F), drv_usectohz(9F)

Writing Device Drivers

STREAMS Programming Guide

ddi_get_time(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 309

ddi_in_panic – determine if system is in panic state

#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_in_panic(void);

Solaris DDI specific (Solaris DDI).

Drivers controlling devices on which the system may write a kernel crash dump in the
event of a panic can call ddi_in_panic() to determine if the system is panicking.

When the system is panicking, the calls of functions scheduled by timeout(9F) and
ddi_trigger_softintr(9F) will never occur. Neither can delay(9F) be relied
upon, since it is implemented via timeout(9F).

Drivers that need to enforce a time delay such as SCSI bus reset delay time must
busy-wait when the system is panicking.

ddi_in_panic() returns 1 if the system is in panic, or 0 otherwise.

ddi_in_panic() may be called from any context.

dump(9E), delay(9F), ddi_trigger_softintr(9F), timeout(9F)

Writing Device Drivers

ddi_in_panic(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

310 man pages section 9: DDI and DKI Kernel Functions • Last Revised 23 Jun 1997

ddi_intr_hilevel – indicate interrupt handler type

#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_intr_hilevel(dev_info_t *dip, uint_t inumber);

Solaris DDI specific (Solaris DDI).

dip Pointer to dev_info structure.

inumber Interrupt number.

ddi_intr_hilevel() returns non-zero if the specified interrupt is a "high level"
interrupt.

High level interrupts must be handled without using system services that manipulate
thread or process states, because these interrupts are not blocked by the scheduler.

In addition, high level interrupt handlers must take care to do a minimum of work
because they are not preemptable.

A typical high level interrupt handler would put data into a circular buffer and
schedule a soft interrupt by calling ddi_trigger_softintr(). The circular buffer
could be protected by using a mutex that was properly initialized for the interrupt
handler.

ddi_intr_hilevel() can be used before calling ddi_add_intr() to decide which
type of interrupt handler should be used. Most device drivers are designed with the
knowledge that the devices they support will always generate low level interrupts,
however some devices, for example those using SBus or VME bus level 6 or 7
interrupts must use this test because on some machines those interrupts are high level
(above the scheduler level) and on other machines they are not.

non-zero indicates a high-level interrupt.

These functions can be called from user or interrupt context.

ddi_add_intr(9F), mutex(9F)

Writing Device Drivers

ddi_intr_hilevel(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 311

ddi_io_get8, ddi_io_get16, ddi_io_get32, ddi_io_getb, ddi_io_getw, ddi_io_getl – read
data from the mapped device register in I/O space

#include <sys/ddi.h>

#include <sys/sunddi.h>

uint8_t ddi_io_get8(ddi_acc_handle_t handle, uint8_t *dev_addr);

uint16_t ddi_io_get16(ddi_acc_handle_t handle, uint16_t *dev_addr);

uint32_t ddi_io_get32(ddi_acc_handle_t handle, uint32_t *dev_addr);

Solaris DDI specific (Solaris DDI).

handle Data access handle returned from setup calls, such as
ddi_regs_map_setup(9F).

dev_addr Device address.

These routines generate a read of various sizes from the device address, dev_addr, in
I/O space. The ddi_io_get8(), ddi_io_get16(), and ddi_io_get32()
functions read 8 bits, 16 bits, and 32 bits of data, respectively, from the device address,
dev_addr.

Each individual datum will automatically be translated to maintain a consistent view
between the host and the device based on the encoded information in the data access
handle. The translation may involve byte-swapping if the host and the device have
incompatible endian characteristics.

These functions can be called from user, kernel, or interrupt context.

isa(4), ddi_io_put8(9F), ddi_io_rep_get8(9F), ddi_io_rep_put8(9F),
ddi_regs_map_free(9F), ddi_regs_map_setup(9F),
ddi_device_acc_attr(9S)

For drivers using these functions, it may not be easy to maintain a single source to
support devices with multiple bus versions. For example, devices may offer I/O space
in ISA bus (see isa(4)) but memory space only in PCI local bus. This is especially true
in instruction set architectures such as IA where accesses to the memory and I/O
space are different.

The functions described in this manual page previously used symbolic names which
specified their data access size; the function names have been changed so they now
specify a fixed-width data size. See the following table for the new name equivalents:

Previous Name New Name

ddi_io_getb ddi_io_get8

ddi_io_getw ddi_io_get16

ddi_io_get8(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

SEE ALSO

NOTES

312 man pages section 9: DDI and DKI Kernel Functions • Last Revised 29 June 1999

Previous Name New Name

ddi_io_getl ddi_io_get32

ddi_io_get8(9F)

Kernel Functions for Drivers 313

ddi_iomin – find minimum alignment and transfer size for DMA

#include <sys/conf.h>
#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_iomin(dev_info_t *dip, int initial, int streaming);

Solaris DDI specific (Solaris DDI).

dip A pointer to the device’s dev_info structure.

initial The initial minimum DMA transfer size in bytes. This may be zero
or an appropriate dlim_minxfer value for device’s
ddi_dma_lim structure (see ddi_dma_lim_sparc(9S) or
ddi_dma_lim_IA(9S)). This value must be a power of two.

streaming This argument, if non-zero, indicates that the returned value
should be modified to account for streaming mode accesses (see
ddi_dma_req(9S) for a discussion of streaming versus
non-streaming access mode).

ddi_iomin(), finds out the minimum DMA transfer size for the device pointed to by
dip. This provides a mechanism by which a driver can determine the effects of
underlying caches as well as intervening bus adapters on the granularity of a DMA
transfer.

ddi_iomin() returns the minimum DMA transfer size for the calling device, or it
returns zero, which means that you cannot get there from here.

This function can be called from user or interrupt context.

ddi_dma_devalign(9F), ddi_dma_setup(9F), ddi_dma_sync(9F),
ddi_dma_lim_sparc(9S), ddi_dma_lim_IA(9S), ddi_dma_req(9S)

Writing Device Drivers

ddi_iomin(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

314 man pages section 9: DDI and DKI Kernel Functions • Last Revised 1 Feb 1994

ddi_iopb_alloc, ddi_iopb_free – allocate and free non-sequentially accessed memory

#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_iopb_alloc(dev_info_t *dip, ddi_dma_lim_t *limits, uint_t
length, caddr_t *iopbp);

void ddi_iopb_free(caddr_t iopb);

Solaris DDI specific (Solaris DDI).

dip A pointer to the device’s dev_info structure.

limits A pointer to a DMA limits structure for this device (see
ddi_dma_lim_sparc(9S) or ddi_dma_lim_IA(9S)). If this
pointer is NULL, a default set of DMA limits is assumed.

length The length in bytes of the desired allocation.

iopbp A pointer to a caddr_t. On a successful return, *iopbp points to
the allocated storage.

iopb The iopb returned from a successful call to ddi_iopb_alloc().

ddi_iopb_alloc() allocates memory for DMA transfers and should be used if the
device accesses memory in a non-sequential fashion, or if synchronization steps using
ddi_dma_sync(9F) should be as lightweight as possible, due to frequent use on small
objects. This type of access is commonly known as consistent access. The allocation will
obey the alignment and padding constraints as specified in the limits argument and
other limits imposed by the system.

Note that you still must use DMA resource allocation functions (see
ddi_dma_setup(9F)) to establish DMA resources for the memory allocated using
ddi_iopb_alloc().

In order to make the view of a memory object shared between a CPU and a DMA
device consistent, explicit synchronization steps using ddi_dma_sync(9F) or
ddi_dma_free(9F) are still required. The DMA resources will be allocated so that
these synchronization steps are as efficient as possible.

ddi_iopb_free() frees up memory allocated by ddi_iopb_alloc().

ddi_iopb_alloc() returns:

DDI_SUCCESS Memory successfully allocated.

DDI_FAILURE Allocation failed.

These functions can be called from user or interrupt context.

ddi_dma_free(9F), ddi_dma_setup(9F), ddi_dma_sync(9F),
ddi_mem_alloc(9F), ddi_dma_lim_sparc(9S), ddi_dma_lim_x86(9S),
ddi_dma_req(9S)

ddi_iopb_alloc(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

ddi_iopb_alloc()

ddi_iopb_free()

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 315

Writing Device Drivers

This function uses scarce system resources. Use it selectively.

ddi_iopb_alloc(9F)

NOTES

316 man pages section 9: DDI and DKI Kernel Functions • Last Revised 17 May 1994

ddi_io_put8, ddi_io_put16, ddi_io_put32, ddi_io_putw, ddi_io_putl, ddi_io_putb –
write data to the mapped device register in I/O space

#include <sys/ddi.h>

#include <sys/sunddi.h>

void ddi_io_put8(ddi_acc_handle_t handle, uint8_t *dev_addr, uint8_t
value);

void ddi_io_put16(ddi_acc_handle_t handle, uint16_t *dev_addr,
uint16_t value);

void ddi_io_put32(ddi_acc_handle_t handle, uint32_t *dev_addr,
uint32_t value);

Solaris DDI specific (Solaris DDI).

handle Data access handle returned from setup calls, such as
ddi_regs_map_setup(9F).

dev_addr Base device address.

value Data to be written to the device.

These routines generate a write of various sizes to the device address, dev_addr, in I/O
space. The ddi_io_put8(), ddi_io_put16(), and ddi_io_put32() functions
write 8 bits, 16 bits, and 32 bits of data, respectively, to the device address, dev_addr.

Each individual datum will automatically be translated to maintain a consistent view
between the host and the device based on the encoded information in the data access
handle. The translation may involve byte-swapping if the host and the device have
incompatible endian characteristics.

These functions can be called from user, kernel, or interrupt context.

isa(4), ddi_io_get8(9F), ddi_io_rep_get8(9F), ddi_io_rep_put8(9F),
ddi_regs_map_setup(9F), ddi_device_acc_attr(9S)

For drivers using these functions, it may not be easy to maintain a single source to
support devices with multiple bus versions. For example, devices may offer I/O space
in ISA bus (see isa(4)) but memory space only in PCI local bus. This is especially true
in instruction set architectures such as IA where accesses to the memory and I/O
space are different.

The functions described in this manual page previously used symbolic names which
specified their data access size; the function names have been changed so they now
specify a fixed-width data size. See the following table for the new name equivalents:

Previous Name New Name

ddi_io_putb ddi_io_put8

ddi_io_put8(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

SEE ALSO

NOTES

Kernel Functions for Drivers 317

Previous Name New Name

ddi_io_putw ddi_io_put16

ddi_io_putl ddi_io_put32

ddi_io_put8(9F)

318 man pages section 9: DDI and DKI Kernel Functions • Last Revised 29 June 1999

ddi_io_rep_get8, ddi_io_rep_get16, ddi_io_rep_get32, ddi_io_rep_getw,
ddi_io_rep_getb, ddi_io_rep_getl – read multiple data from the mapped device
register in I/O space

#include <sys/ddi.h>

#include <sys/sunddi.h>

void ddi_io_rep_get8(ddi_acc_handle_t handle, uint8_t *host_addr,
uint8_t *dev_addr,, size_t repcount);

void ddi_io_rep_get16(ddi_acc_handle_t handle, uint16_t *host_addr,
uint16_t *dev_addr,, size_t repcount);

void ddi_io_rep_get32(ddi_acc_handle_t handle, uint32_t *host_addr,
uint32_t *dev_addr,, size_t repcount);

Solaris DDI specific (Solaris DDI).

handle The data access handle returned from setup calls, such as
ddi_regs_map_setup(9F).

host_addr Base host address.

dev_addr Base device address.

repcount Number of data accesses to perform.

These routines generate multiple reads from the device address, dev_addr, in I/O
space. repcount data is copied from the device address, dev_addr, to the host address,
host_addr. For each input datum, the ddi_io_rep_get8(), ddi_io_rep_get16(),
and ddi_io_rep_get32() functions read 8 bits, 16 bits, and 32 bits of data,
respectively, from the device address. host_addr must be aligned to the datum
boundary described by the function.

Each individual datum will automatically be translated to maintain a consistent view
between the host and the device based on the encoded information in the data access
handle. The translation may involve byte-swapping if the host and the device have
incompatible endian characteristics.

These functions can be called from user, kernel, or interrupt context.

isa(4), ddi_io_get8(9F), ddi_io_put8(9F), ddi_io_rep_put8(9F),
ddi_regs_map_free(9F), ddi_regs_map_setup(9F),
ddi_device_acc_attr(9S)

For drivers using these functions, it may not be easy to maintain a single source to
support devices with multiple bus versions. For example, devices may offer I/O space
in ISA bus (see isa(4)) but memory space only in PCI local bus. This is especially true
in instruction set architectures such as IA where accesses to the memory and I/O
space are different.

ddi_io_rep_get8(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

SEE ALSO

NOTES

Kernel Functions for Drivers 319

The functions described in this manual page previously used symbolic names which
specified their data access size; the function names have been changed so they now
specify a fixed-width data size. See the following table for the new name equivalents:

Previous Name New Name

ddi_io_rep_getb ddi_io_rep_get8

ddi_io_rep_getw ddi_io_rep_get16

ddi_io_rep_getl ddi_io_rep_get32

ddi_io_rep_get8(9F)

320 man pages section 9: DDI and DKI Kernel Functions • Last Revised 29 June 1999

ddi_io_rep_put8, ddi_io_rep_put16, ddi_io_rep_put32, ddi_io_rep_putw,
ddi_io_rep_putl, ddi_io_rep_putb – write multiple data to the mapped device register
in I/O space

#include <sys/ddi.h>

#include <sys/sunddi.h>

void ddi_io_rep_put8(ddi_acc_handle_t handle, uint8_t *host_addr,
uin8_t *dev_addr, size_t repcount);

void ddi_io_rep_put16(ddi_acc_handle_t handle, uint16_t *host_addr,
uin16_t *dev_addr, size_t repcount);

void ddi_io_rep_put32(ddi_acc_handle_t handle, uint32_t *host_addr,
uin32_t *dev_addr, size_t repcount);

Solaris DDI specific (Solaris DDI).

handle Data access handle returned from setup calls, such as
ddi_regs_map_setup(9F).

host_addr Base host address.

dev_addr Base device address.

repcount Number of data accesses to perform.

These routines generate multiple writes to the device address, dev_address, in I/O
space. repcount data is copied from the host address, host_addr, to the device address,
dev_addr. For each input datum, the ddi_io_rep_put8(), ddi_io_rep_put16(),
and ddi_io_rep_put32() functions write 8 bits, 16 bits, and 32 bits of data,
respectively, to the device address. host_addr must be aligned to the datum boundary
described by the function.

Each individual datum will automatically be translated to maintain a consistent view
between the host and the device based on the encoded information in the data access
handle. The translation may involve byte-swapping if the host and the device have
incompatible endian characteristics.

These functions can be called from user, kernel, or interrupt context.

isa(4), ddi_io_get8(9F), ddi_io_put8(9F), ddi_io_rep_get8(9F),
ddi_regs_map_setup(9F), ddi_device_acc_attr(9S)

For drivers using these functions, it may not be easy to maintain a single source to
support devices with multiple bus versions. For example, devices may offer I/O space
in ISA bus (see isa(4)) but memory space only in PCI local bus. This is especially true
in instruction set architectures such as IA where accesses to the memory and I/O
space are different.

The functions described in this manual page previously used symbolic names which
specified their data access size; the function names have been changed so they now
specify a fixed-width data size. See the following table for the new name equivalents:

ddi_io_rep_put8(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

SEE ALSO

NOTES

Kernel Functions for Drivers 321

Previous Name New Name

ddi_io_rep_putb ddi_io_rep_put8

ddi_io_rep_putw ddi_io_rep_put16

ddi_io_rep_putl ddi_io_rep_put32

ddi_io_rep_put8(9F)

322 man pages section 9: DDI and DKI Kernel Functions • Last Revised 30 Sep 1996

ddi_log_sysevent – log system event for drivers

#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_log_sysevent(dev_info_t *dip, char *vendor, char *class, char
*subclass, nvlist_t *attr_list, sysevent_id_t *eidp, int sleep_flag);

Solaris DDI specific (Solaris DDI).

dip A pointer to the dev_info node for this driver.

vendor A pointer to a string defining the vendor. Third-party drivers
should use their company’s stock symbol (or similarly enduring
identifier). Sun-supplied drivers should use DDI_VENDOR_SUNW.

class A pointer to a string defining the event class.

subclass A pointer to a string defining the event subclass.

attr_list A pointer to an nvlist_t, listing the name-value attributes
associated with the event or NULL if there are no such attributes
for this event.

eidp The address of a sysevent_id_t structure in which the event’s
sequence number and timestamp are returned if the event is
successfully queued. May be NULL if this information is not of
interest. See below for the definition of sysevent_id_t.

sleep_flag Indicates how a caller wants to handle the possibility of resources
not being available. If sleep_flag is DDI_NOSLEEP, the caller does
not care if the allocation fails or the queue is full and can handle a
failure appropriately. If sleep_flag is DDI_SLEEP, the caller
wishes to have the allocation and queuing routines wait for
resources to become available.

ddi_log_sysevent() causes a system event, of the specified class and subclass, to
be generated on behalf of the driver and queued for delivery to syseventd, the
user-land sysevent daemon.

The publisher string for the event is constructed using the vendor name and driver
name, with the format:

"<vendor>:kern:<driver-name>"

The two fields of eidp, eid_seq and eid_ts, are sufficient to uniquely identify an
event.

The structure members of sysevent_id_t are:

uint64_t eid_seq; /* sysevent sequence number */
hrtime_t eid_ts; /* sysevent timestamp */

ddi_log_sysevent() returns:

ddi_log_sysevent(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

STRUCTURE
MEMBERS

RETURN VALUES

Kernel Functions for Drivers 323

DDI_SUCCESS The event has been queued for delivery successfully.

DDI_ENOMEM There is not enough memory to queue the system event at this
time. DDI_ENOMEM cannot be returned when sleep_flag is
DDI_SLEEP.

DDI_EBUSY The system event queue is full at this time. DDI_EBUSY cannot
be returned when sleep_flag is DDI_SLEEP.

DDI_ETRANSPORT The syseventd daemon is not responding and events cannot
be queued or delivered at this time. DDI_ETRANSPORT can be
returned even when sleep_flag is DDI_SLEEP.

DDI_ECONTEXT sleep_flag is DDI_SLEEP and the driver is running in interrupt
context.

ddi_log_sysevent() can be called from user or interrupt context, except when
sleep_flag is DDI_SLEEP, in which case it can be called from user context only.

EXAMPLE 1 Logging System Event with No Attributes

if (ddi_log_sysevent(dip, DDI_VENDOR_SUNW, "class", "subclass",
NULL, NULL, DDI_SLEEP) != DDI_SUCCESS) {
cmn_err(CE_WARN, "error logging system event\n");

}

EXAMPLE 2 Logging System Event with Two Name/Value Attributes, an Integer and a String

nvlist_t *attr_list;
sysevent_id_t eid;

if (nvlist_alloc(&attr_list, NV_UNIQUE_NAME_TYPE, NV_FLAG_KMSLEEP) == 0)
{

err = nvlist_add_uint32(attr_list, int_name, int_value);
if (err == 0)

err = nvlist_add_string(attr_list, str_name, str_value);
if (err == 0)

err = ddi_log_sysevent(dip, DDI_VENDOR_SUNW,
"class", "subclass", attr_list, &eid, DDI_SLEEP);

if (err != DDI_SUCCESS)
cmn_err(CE_WARN, "error logging system event\n");

nvlist_free(attr_list);
}

EXAMPLE 3 Use Timeout to Handle nvlist and System Event Resource Allocation Failures

Since no blocking calls are made, this example would be useable from a driver
needing to generate an event from interrupt context.

static int
xx_se_timeout_handler(xx_state_t *xx)
{

xx->xx_timeoutid = (xx_generate_event(xx) ?
timeout(xx_se_timeout_handler, xx, 4) : 0);

}

ddi_log_sysevent(9F)

CONTEXT

EXAMPLES

324 man pages section 9: DDI and DKI Kernel Functions • Last Revised 13 Mar 2001

EXAMPLE 3 Use Timeout to Handle nvlist and System Event Resource Allocation
Failures (Continued)

static int
xx_generate_event(xx_state_t *xx)
{

int err;

err = nvlist_alloc(&xx->xx_ev_attrlist, NV_UNIQUE_NAME_TYPE, 0);
if (err != 0)

return (1);
err = nvlist_add_uint32(&xx->xx_ev_attrlist,

xx->xx_ev_name, xx->xx_ev_value);
if (err != 0) {

nvlist_free(xx->xx_ev_attrlist);
return(1);

}

err = ddi_log_sysevent(xx->xx_dip, DDI_VENDOR_SUNW,
xx->xx_ev_class, xx->xx_ev_sbclass,
xx->xx_ev_attrlist, NULL, DDI_NOSLEEP);

nvlist_free(xx->xx_ev_attrlist);
if (err == DDI_SUCCESS || err == DDI_ETRANSPORT) {

if (err == DDI_ETRANSPORT)
cmn_err(CE_WARN, "cannot log system event\n");

return (0);
}
return (1);

}

syseventd(1M), attributes(5), nvlist_add_boolean(9F), nvlist_alloc(9F)

Writing Device Drivers

ddi_log_sysevent(9F)

SEE ALSO

Kernel Functions for Drivers 325

ddi_mapdev – create driver-controlled mapping of device

#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_mapdev(dev_t dev, off_t offset, struct as *asp, caddr_t *addrp,
off_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cred,
struct ddi_mapdev_ctl *ctl, ddi_mapdev_handle_t *handlep, void
*devprivate);

Solaris DDI specific (Solaris DDI).

dev The device whose memory is to be mapped.

offset The offset within device memory at which the mapping begins.

as An opaque pointer to the user address space into which the device
memory should be mapped.

addrp Pointer to the starting address within the user address space to
which the device memory should be mapped.

len Length (in bytes) of the memory to be mapped.

prot A bit field that specifies the protections.

maxprot Maximum protection flag possible for attempted mapping.

flags Flags indicating type of mapping.

cred Pointer to the user credentials structure.

ctl A pointer to a ddi_mapdev_ctl(9S) structure. The structure
contains pointers to device driver-supplied functions that manage
events on the device mapping.

handlep An opaque pointer to a device mapping handle. A handle to the
new device mapping is generated and placed into the location
pointed to by *handlep. If the call fails, the value of *handlep is
undefined.

devprivate Driver private mapping data. This value is passed into each
mapping call back routine.

Future releases of Solaris will provide this function for binary and source
compatibility. However, for increased functionality, use devmap_setup(9F) instead.
See devmap_setup(9F) for deatils.

ddi_mapdev() sets up user mappings to device space. The driver is notified of user
events on the mappings via the entry points defined by ctl.

The user events that the driver is notified of are:

access User has accessed an address in the mapping that has no
translations.

ddi_mapdev(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

326 man pages section 9: DDI and DKI Kernel Functions • Last Revised 17 Jan 1997

duplication User has duplicated the mapping. Mappings are duplicated when
the process calls fork(2).

unmapping User has called munmap(2) on the mapping or is exiting.

See mapdev_access(9E), mapdev_dup(9E), and mapdev_free(9E) for details on
these entry points.

The range to be mapped, defined by offset and len must be valid.

The arguments dev, asp, addrp, len, prot, maxprot, flags, and cred are provided by the
segmap(9E) entry point and should not be modified. See segmap(9E) for a description
of these arguments. Unlike ddi_segmap(9F), the drivers mmap(9E) entry point is not
called to verify the range to be mapped.

With the handle, device drivers can use ddi_mapdev_intercept(9F) and
ddi_mapdev_nointercept(9F) to inform the system of whether or not they are
interested in being notified when the user process accesses the mapping. By default,
user accesses to newly created mappings will generate a call to the
mapdev_access() entry point. The driver is always notified of duplications and
unmaps.

The device may also use the handle to assign certain characteristics to the mapping.
See ddi_mapdev_set_device_acc_attr(9F) for details.

The device driver can use these interfaces to implement a device context and control
user accesses to the device space. ddi_mapdev()is typically called from the
segmap(9E) entry point.

ddi_mapdev() returns zero on success and non-zero on failure. The return value
from ddi_mapdev() should be used as the return value for the drivers segmap()
entry point.

This routine can be called from user or kernel context only.

fork(2), mmap(2), munmap(2), mapdev_access(9E), mapdev_dup(9E),
mapdev_free(9E), mmap(9E), segmap(9E), ddi_mapdev_intercept(9F),
ddi_mapdev_nointercept(9F), ddi_mapdev_set_device_acc_attr(9F),
ddi_segmap(9F), ddi_mapdev_ctl(9S)

Writing Device Drivers

Only mappings of type MAP_PRIVATE should be used with ddi_mapdev().

ddi_mapdev(9F)

RETURN VALUES

CONTEXT

SEE ALSO

NOTES

Kernel Functions for Drivers 327

ddi_mapdev_intercept, ddi_mapdev_nointercept – control driver notification of user
accesses

#include <sys/sunddi.h>

int ddi_mapdev_intercept(ddi_mapdev_handle_t handle, off_t offset,
off_t len);

int ddi_mapdev_nointercept(ddi_mapdev_handle_t handle, off_t offset,
off_t len);

Solaris DDI specific (Solaris DDI).

handle An opaque pointer to a device mapping handle.

offset An offset in bytes within device memory.

len Length in bytes.

Future releases of Solaris will provide these functions for binary and source
compatibility. However, for increased functionality, use devmap_load(9F) or
devmap_unload(9F) instead. See devmap_load(9F) and devmap_unload(9F) for
details.

The ddi_mapdev_intercept() and ddi_mapdev_nointercept() functions
control whether or not user accesses to device mappings created by ddi_mapdev(9F)
in the specified range will generate calls to the mapdev_access(9E) entry point.
ddi_mapdev_intercept() tells the system to intercept the user access and notify
the driver to invalidate the mapping translations. ddi_mapdev_nointercept()
tells the system to not intercept the user access and allow it to proceed by validating
the mapping translations.

For both routines, the range to be affected is defined by the offset and len arguments.
Requests affect the entire page containing the offset and all pages up to and including
the page containing the last byte as indicated by offset + len.

Supplying a value of 0 for the len argument affects all addresses from the offset to the
end of the mapping. Supplying a value of 0 for the offset argument and a value of 0 for
len argument affect all addresses in the mapping.

To manage a device context, a device driver would call ddi_mapdev_intercept()
on the context about to be switched out, switch contexts, and then call
ddi_mapdev_nointercept() on the context switched in.

ddi_mapdev_intercept() and ddi_mapdev_nointercept() return the
following values:

0 Successful completion.

Non-zero An error occurred.

ddi_mapdev_intercept(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

328 man pages section 9: DDI and DKI Kernel Functions • Last Revised 21 Jan 1997

EXAMPLE 1 managing a device context that is one page in length

The following shows an example of managing a device context that is one page in
length.

ddi_mapdev_handle_t cur_hdl;
static int
xxmapdev_access(ddi_mapdev_handle_t handle, void *devprivate,

off_t offset)
{

int err;
/* enable access callbacks for the current mapping */
if (cur_hdl != NULL) {

if ((err = ddi_mapdev_intercept(cur_hdl, offset, 0)) != 0)
return (err);

}
/* Switch device context - device dependent*/
...
/* Make handle the new current mapping */
cur_hdl = handle;
/*
* Disable callbacks and complete the access for the
* mapping that generated this callback.
*/
return (ddi_mapdev_nointercept(handle, offset, 0));

}

These routines can be called from user or kernel context only.

mapdev_access(9E), ddi_mapdev(9F)

Writing Device Drivers

ddi_mapdev_intercept(9F)

EXAMPLES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 329

ddi_mapdev_set_device_acc_attr – set the device attributes for the mapping

#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_mapdev_set_device_acc_attr(ddi_mapdev_handle_t
mapping_handle, off_t offset, off_t len, ddi_device_acc_attr_t
*accattrp, uint_t rnumber);

Solaris DDI specific (Solaris DDI).

mapping_handle A pointer to a device mapping handle.

offset The offset within device memory to which the device access
attributes structure applies.

len Length (in bytes) of the memory to which the device access
attributes structure applies.

*accattrp Pointer to a ddi_device_acc_attr(9S) structure. Contains the
device access attributes to be applied to this range of memory.

rnumber Index number to the register address space set.

Future releases of Solaris will provide this function for binary and source
compatibility. However, for increased functionality, use devmap(9E) instead. See
devmap(9E) for details.

The ddi_mapdev_set_device_acc_attr() function assigns device access
attributes to a range of device memory in the register set given by rnumber.

*accattrp defines the device access attributes. See ddi_device_acc_attr(9S) for
more details.

mapping_handle is a mapping handle returned from a call to ddi_mapdev(9F).

The range to be affected is defined by the offset and len arguments. Requests affect the
entire page containing the offset and all pages up to and including the page containing
the last byte as indicated by offset+len. Supplying a value of 0 for the len argument
affects all addresses from the offset to the end of the mapping. Supplying a value of 0
for the offset argument and a value of 0 for the len argument affect all addresses in the
mapping.

The ddi_mapdev_set_device_acc_attr() function returns the following values:

DDI_SUCCESS The attributes were successfully set.

DDI_FAILURE It is not possible to set these attributes for this mapping
handle.

This routine can be called from user or kernel context only.

ddi_mapdev_set_device_acc_attr(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

330 man pages section 9: DDI and DKI Kernel Functions • Last Revised 13 Jan 1997

segmap(9E), ddi_mapdev(9F), ddi_segmap_setup(9F),
ddi_device_acc_attr(9S)

Writing Device Drivers

ddi_mapdev_set_device_acc_attr(9F)

SEE ALSO

Kernel Functions for Drivers 331

ddi_map_regs, ddi_unmap_regs – map or unmap registers

#include <sys/conf.h>
#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_map_regs(dev_info_t *dip, uint_t rnumber, caddr_t *kaddrp,
off_t offset, off_t len);

void ddi_unmap_regs(dev_info_t *dip, uint_t rnumber, caddr_t
*kaddrp, off_t offset, off_t len);

dip Pointer to the device’s dev_info structure.

rnumber Register set number.

kaddrp Pointer to the base kernel address of the mapped region (set on
return).

offset Offset into register space.

len Length to be mapped.

dip Pointer to the device’s dev_info structure.

rnumber Register set number.

kaddrp Pointer to the base kernel address of the region to be unmapped.

offset Offset into register space.

len Length to be unmapped.

Solaris DDI specific (Solaris DDI).

ddi_map_regs() maps in the register set given by rnumber. The register number
determines which register set will be mapped if more than one exists. The base kernel
virtual address of the mapped register set is returned in kaddrp. offset specifies an offset
into the register space to start from and len indicates the size of the area to be mapped.
If len is non-zero, it overrides the length given in the register set description. See the
discussion of the reg property in sbus(4) and for more information on register set
descriptions. If len and offset are 0, the entire space is mapped.

ddi_unmap_regs() undoes mappings set up by ddi_map_regs(). This is
provided for drivers preparing to detach themselves from the system, allowing them
to release allocated mappings. Mappings must be released in the same way they were
mapped (a call to ddi_unmap_regs() must correspond to a previous call to
ddi_map_regs()). Releasing portions of previous mappings is not allowed. rnumber
determines which register set will be unmapped if more than one exists. The kaddrp,
offset and len specify the area to be unmapped. kaddrp is a pointer to the address
returned from ddi_map_regs(); offset and len should match what ddi_map_regs()
was called with.

ddi_map_regs() returns:

ddi_map_regs(9F)

NAME

SYNOPSIS

ddi_map_regs()

ddi_unmap_regs()

INTERFACE
LEVEL

DESCRIPTION

RETURN VALUES

332 man pages section 9: DDI and DKI Kernel Functions • Last Revised 27 Jan 1993

DDI_SUCCESS on success.

These functions can be called from user or interrupt context.

sbus(4)

Writing Device Drivers

ddi_map_regs(9F)

CONTEXT

SEE ALSO

Kernel Functions for Drivers 333

ddi_mem_alloc, ddi_mem_free – allocate and free sequentially accessed memory

#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_mem_alloc(dev_info_t *dip, ddi_dma_lim_t *limits, uint_t
length, uint_t flags, caddr_t *kaddrp, uint_t *real_length);

void ddi_mem_free(caddr_t kaddr);

Solaris DDI specific (Solaris DDI).

dip A pointer to the device’s dev_info structure.

limits A pointer to a DMA limits structure for this device (see
ddi_dma_lim_sparc(9S) or ddi_dma_lim_IA(9S)). If this
pointer is NULL, a default set of DMA limits is assumed.

length The length in bytes of the desired allocation.

flags The possible flags 1 and 0 are taken to mean, respectively, wait
until memory is available, or do not wait.

kaddrp On a successful return, *kaddrp points to the allocated memory.

real_length The length in bytes that was allocated. Alignment and padding
requirements may cause ddi_mem_alloc() to allocate more
memory than requested in length.

kaddr The memory returned from a successful call to
ddi_mem_alloc().

ddi_mem_alloc() allocates memory for DMA transfers and should be used if the
device is performing sequential, unidirectional, block-sized and block-aligned
transfers to or from memory. This type of access is commonly known as streaming
access. The allocation will obey the alignment and padding constraints as specified by
the limits argument and other limits imposed by the system.

Note that you must still use DMA resource allocation functions (see
ddi_dma_setup(9F)) to establish DMA resources for the memory allocated using
ddi_mem_alloc(). ddi_mem_alloc() returns the actual size of the allocated
memory object. Because of padding and alignment requirements, the actual size might
be larger than the requested size. ddi_dma_setup(9F) requires the actual length.

In order to make the view of a memory object shared between a CPU and a DMA
device consistent, explicit synchronization steps using ddi_dma_sync(9F) or
ddi_dma_free(9F) are required.

ddi_mem_free() frees up memory allocated by ddi_mem_alloc().

ddi_mem_alloc() returns:

DDI_SUCCESS Memory successfully allocated.

ddi_mem_alloc(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

ddi_mem_alloc()

ddi_mem_free()

DESCRIPTION

RETURN VALUES

334 man pages section 9: DDI and DKI Kernel Functions • Last Revised 4 Apr 1996

DDI_FAILURE Allocation failed.

ddi_mem_alloc() can be called from user or interrupt context, except when flags is
set to 1, in which case it can be called from user context only.

ddi_dma_free(9F), ddi_dma_setup(9F), ddi_dma_sync(9F),
ddi_iopb_alloc(9F), ddi_dma_lim_sparc(9S), ddi_dma_lim_x86(9S),
ddi_dma_req(9S)

Writing Device Drivers

ddi_mem_alloc(9F)

CONTEXT

SEE ALSO

Kernel Functions for Drivers 335

ddi_mem_get8, ddi_mem_get16, ddi_mem_get32, ddi_mem_get64, ddi_mem_getw,
ddi_mem_getl, ddi_mem_getll, ddi_mem_getb – read data from mapped device in the
memory space or allocated DMA memory

#include <sys/ddi.h>

#include <sys/sunddi.h>

uint8_t ddi_mem_get8(ddi_acc_handle_t handle, uint8_t *dev_addr);

uint16_t ddi_mem_get16(ddi_acc_handle_t handle, uint16_t *
dev_addr);

uint32_t ddi_mem_get32(ddi_acc_handle_t handle, uint32_t *dev_addr);

uint64_t ddi_mem_get64(ddi_acc_handle_t handle, uint64_t *dev_addr);

Solaris DDI specific (Solaris DDI).

handle The data access handle returned from setup calls, such as
ddi_regs_map_setup(9F).

dev_addr Base device address.

These routines generate a read of various sizes from memory space or allocated DMA
memory. The ddi_mem_get8(), ddi_mem_get16(), ddi_mem_get32(), and
ddi_mem_get64() functions read 8 bits, 16 bits, 32 bits and 64 bits of data,
respectively, from the device address, dev_addr, in memory space.

Each individual datum will automatically be translated to maintain a consistent view
between the host and the device based on the encoded information in the data access
handle. The translation may involve byte-swapping if the host and the device have
incompatible endian characteristics.

These functions can be called from user, kernel, or interrupt context.

ddi_mem_put8(9F), ddi_mem_rep_get8(9F), ddi_mem_rep_put8(9F),
ddi_regs_map_setup(9F), ddi_device_acc_attr(9S)

The functions described in this manual page previously used symbolic names which
specified their data access size; the function names have been changed so they now
specify a fixed-width data size. See the following table for the new name equivalents:

Previous Name New Name

ddi_mem_getb ddi_mem_get8

ddi_mem_getw ddi_mem_get16

ddi_mem_getl ddi_mem_get32

ddi_mem_getll ddi_mem_get64

ddi_mem_get8(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

SEE ALSO

NOTES

336 man pages section 9: DDI and DKI Kernel Functions • Last Revised 30 Sep 1996

ddi_mem_put8, ddi_mem_put16, ddi_mem_put32, ddi_mem_put64, ddi_mem_putb,
ddi_mem_putw, ddi_mem_putl, ddi_mem_putll – write data to mapped device in the
memory space or allocated DMA memory

#include <sys/ddi.h>

#include <sys/sunddi.h>

void ddi_mem_put8(ddi_acc_handle_t handle, uint8_t *dev_addr,
uint8_t value);

void ddi_mem_put16(ddi_acc_handle_t handle, uint16_t *dev_addr,
uint16_t value);

void ddi_mem_put32(ddi_acc_handle_t handle, uint32_t *dev_addr,
uint32_t value);

void ddi_mem_put64(ddi_acc_handle_t handle, uint64_t *dev_addr,
uint64_t value);

handle The data access handle returned from setup calls, such as
ddi_regs_map_setup(9F).

dev_addr Base device address.

value The data to be written to the device.

Solaris DDI specific (Solaris DDI).

These routines generate a write of various sizes to memory space or allocated DMA
memory. The ddi_mem_put8(), ddi_mem_put16(), ddi_mem_put32(), and
ddi_mem_put64() functions write 8 bits, 16 bits, 32 bits and 64 bits of data,
respectively, to the device address, dev_addr, in memory space.

Each individual datum will automatically be translated to maintain a consistent view
between the host and the device based on the encoded information in the data access
handle. The translation may involve byte-swapping if the host and the device have
incompatible endian characteristics.

These functions can be called from user, kernel, or interrupt context.

ddi_mem_get8(9F), ddi_mem_rep_get8(9F), ddi_regs_map_setup(9F),
ddi_device_acc_attr(9S)

The functions described in this manual page previously used symbolic names which
specified their data access size; the function names have been changed so they now
specify a fixed-width data size. See the following table for the new name equivalents:

Previous Name New Name

ddi_mem_putb ddi_mem_put8

ddi_mem_putw ddi_mem_put16

ddi_mem_put8(9F)

NAME

SYNOPSIS

PARAMETERS

INTERFACE
LEVEL

DESCRIPTION

CONTEXT

SEE ALSO

NOTES

Kernel Functions for Drivers 337

Previous Name New Name

ddi_mem_putl ddi_mem_put32

ddi_mem_putll ddi_mem_put64

ddi_mem_put8(9F)

338 man pages section 9: DDI and DKI Kernel Functions • Last Revised 28 Sep 1996

ddi_mem_rep_get8, ddi_mem_rep_get16, ddi_mem_rep_get32, ddi_mem_rep_get64,
ddi_mem_rep_getw, ddi_mem_rep_getl, ddi_mem_rep_getll, ddi_mem_rep_getb –
read multiple data from mapped device in the memory space or allocated DMA
memory

#include <sys/ddi.h>

#include <sys/sunddi.h>

void ddi_mem_rep_get8(ddi_acc_handle_t handle, uint8_t *host_addr,
uint8_t *dev_addr, size_t repcount, uint_t flags);

void ddi_mem_rep_get16(ddi_acc_handle_t handle, uint16_t *host_addr,
uint16_t *dev_addr, size_t repcount, uint_t flags);

void ddi_mem_rep_get32(ddi_acc_handle_t handle, uint32_t *host_addr,
uint32_t *dev_addr, size_t repcount, uint_t flags);

void ddi_mem_rep_get64(ddi_acc_handle_t handle, uint64_t *host_addr,
uint64_t *dev_addr, size_t repcount, uint_t flags);

Solaris DDI specific (Solaris DDI).

handle The data access handle returned from setup calls, such as
ddi_regs_map_setup(9F).

host_addr Base host address.

dev_addr Base device address.

repcount Number of data accesses to perform.

flags Device address flags:

DDI_DEV_AUTOINCR Automatically increment the device
address, dev_addr, during data
accesses.

DDI_DEV_NO_AUTOINCR Do not advance the device address,
dev_addr, during data accesses.

These routines generate multiple reads from memory space or allocated DMA
memory. repcount data is copied from the device address, dev_addr, in memory space to
the host address, host_addr. For each input datum, the ddi_mem_rep_get8(),
ddi_mem_rep_get16(), ddi_mem_rep_get32(), and ddi_mem_rep_get64()
functions read 8 bits, 16 bits, 32 bits and 64 bits of data, respectively, from the device
address, dev_addr. dev_addr and host_addr must be aligned to the datum boundary
described by the function.

Each individual datum will automatically be translated to maintain a consistent view
between the host and the device based on the encoded information in the data access
handle. The translation may involve byte-swapping if the host and the device have
incompatible endian characteristics.

ddi_mem_rep_get8(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

Kernel Functions for Drivers 339

When the flags argument is set to DDI_DEV_AUTOINCR, these functions will treat the
device address, dev_addr, as a memory buffer location on the device and increments its
address on the next input datum. However, when the flags argument is set to
DDI_DEV_NO_AUTOINCR, the same device address will be used for every datum
access. For example, this flag may be useful when reading from a data register.

These functions can be called from user, kernel, or interrupt context.

ddi_mem_get8(9F), ddi_mem_put8(9F), ddi_mem_rep_put8(9F),
ddi_regs_map_setup(9F), ddi_device_acc_attr(9S)

The functions described in this manual page previously used symbolic names which
specified their data access size; the function names have been changed so they now
specify a fixed-width data size. See the following table for the new name equivalents:

Previous Name New Name

ddi_mem_rep_getb ddi_mem_rep_get8

ddi_mem_rep_getw ddi_mem_rep_get16

ddi_mem_rep_getl ddi_mem_rep_get32

ddi_mem_rep_getll ddi_mem_rep_get64

ddi_mem_rep_get8(9F)

CONTEXT

SEE ALSO

NOTES

340 man pages section 9: DDI and DKI Kernel Functions • Last Revised 28 Aug 1996

ddi_mem_rep_put8, ddi_mem_rep_put16, ddi_mem_rep_put32, ddi_mem_rep_put64,
ddi_mem_rep_putw, ddi_mem_rep_putl, ddi_mem_rep_putll, ddi_mem_rep_putb –
write multiple data to mapped device in the memory space or allocated DMA memory

#include <sys/ddi.h>

#include <sys/sunddi.h>

void ddi_mem_rep_put8(ddi_acc_handle_t handle, uint8_t *host_addr,
uint8_t *dev_addr, size_t repcount, uint_t flags);

void ddi_mem_rep_put16(ddi_acc_handle_t handle, uint16_t *host_addr,
uint16_t *dev_addr, size_t repcount, uint_t flags);

void ddi_mem_rep_put32(ddi_acc_handle_t handle, uint32_t *host_addr,
uint32_t *dev_addr, size_t repcount, uint_t flags);

void ddi_mem_rep_put64(ddi_acc_handle_t handle, uint64_t *host_addr,
uint64_t *dev_addr, size_t repcount, uint_t flags);

Solaris DDI specific (Solaris DDI).

handle The data access handle returned from setup calls, such as
ddi_regs_map_setup(9F).

host_addr Base host address.

dev_addr Base device address.

repcount Number of data accesses to perform.

flags Device address flags:

DDI_DEV_AUTOINCR
Automatically increment the device address, dev_addr, during
data accesses.

DDI_DEV_NO_AUTOINCR
Do not advance the device address, dev_addr, during data
accesses.

These routines generate multiple writes to memory space or allocated DMA memory.
repcount data is copied from the host address, host_addr, to the device address,
dev_addr, in memory space. For each input datum, the ddi_mem_rep_put8(),
ddi_mem_rep_put16(), ddi_mem_rep_put32(), and ddi_mem_rep_put64()
functions write 8 bits, 16 bits, 32 bits and 64 bits of data, respectively, to the device
address. dev_addr and host_addr must be aligned to the datum boundary described by
the function.

Each individual datum will automatically be translated to maintain a consistent view
between the host and the device based on the encoded information in the data access
handle. The translation may involve byte-swapping if the host and the device have
incompatible endian characteristics.

ddi_mem_rep_put8(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

Kernel Functions for Drivers 341

When the flags argument is set to DDI_DEV_AUTOINCR, these functions will treat the
device address, dev_addr, as a memory buffer location on the device and increments its
address on the next input datum. However, when the flags argument is set to
DDI_DEV_NO_AUTOINCR, the same device address will be used for every datum
access. For example, this flag may be useful when writing from a data register.

These functions can be called from user, kernel, or interrupt context.

ddi_mem_get8(9F), ddi_mem_put8(9F), ddi_mem_rep_get8(9F),
ddi_regs_map_setup(9F), ddi_device_acc_attr(9S)

The functions described in this manual page previously used symbolic names which
specified their data access size; the function names have been changed so they now
specify a fixed-width data size. See the following table for the new name equivalents:

Previous Name New Name

ddi_mem_rep_putb ddi_mem_rep_put8

ddi_mem_rep_putw ddi_mem_rep_put16

ddi_mem_rep_putl ddi_mem_rep_put32

ddi_mem_rep_putll ddi_mem_rep_put64

ddi_mem_rep_put8(9F)

CONTEXT

SEE ALSO

NOTES

342 man pages section 9: DDI and DKI Kernel Functions • Last Revised 28 Oct 1996

ddi_mmap_get_model – return data model type of current thread

#include <sys/ddi.h>

#include <sys/sunddi.h>

uint_t ddi_mmap_get_model(void);

Solaris DDI specific (Solaris DDI).

ddi_mmap_get_model() returns the C Language Type Model which the current
thread expects. ddi_mmap_get_model() is used in combination with
ddi_model_convert_from(9F) in the mmap(9E) driver entry point to determine
whether there is a data model mismatch between the current thread and the device
driver. The device driver might have to adjust the shape of data structures before
exporting them to a user thread which supports a different data model.

DDI_MODEL_ILP32 Current thread expects 32-bit (ILP32) semantics.

DDI_MODEL_LP64 Current thread expects 64-bit (LP64) semantics.

DDI_FAILURE The ddi_mmap_get_model() function was not called
from the mmap(9E) entry point.

The ddi_mmap_get_model() function can only be called from the mmap(9E) driver
entry point.

EXAMPLE 1 : Using ddi_mmap_get_model()

The following is an example of the mmap(9E) entry point and how to support 32-bit
and 64-bit applications with the same device driver.

struct data32 {
int len;
caddr32_t addr;

};

struct data {
int len;
caddr_t addr;

};
xxmmap(dev_t dev, off_t off, int prot) {

struct data dtc; /* a local copy for clash resolution */
struct data *dp = (struct data *)shared_area;

switch (ddi_model_convert_from(ddi_mmap_get_model())) {
case DDI_MODEL_ILP32:
{

struct data32 *da32p;

da32p = (struct data32 *)shared_area;
dp = &dtc;
dp->len = da32p->len;
dp->address = da32->address;
break;

}

ddi_mmap_get_model(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

RETURN VALUES

CONTEXT

EXAMPLES

Kernel Functions for Drivers 343

EXAMPLE 1 : Using ddi_mmap_get_model() (Continued)

case DDI_MODEL_NONE:
break;

}
/* continues along using dp */
...

}

mmap(9E), ddi_model_convert_from(9F)

Writing Device Drivers

ddi_mmap_get_model(9F)

SEE ALSO

344 man pages section 9: DDI and DKI Kernel Functions • Last Revised 8 Feb 2001

ddi_model_convert_from – determine data model type mismatch

#include <sys/ddi.h>

#include <sys/sunddi.h>

uint_tddi_model_convert_from(uint_t model);

Solaris DDI specific (Solaris DDI).

model The data model type of the current thread.

ddi_model_convert_from() is used to determine if the current thread uses a
different C Language Type Model than the device driver. The 64-bit version of Solaris
will require a 64-bit kernel to support both 64-bit and 32-bit user mode programs. The
difference between a 32-bit program and a 64-bit program is in its C Language Type
Model: a 32-bit program is ILP32 (integer, longs, and pointers are 32-bit) and a 64-bit
program is LP64 (longs and pointers are 64-bit). There are a number of driver entry
points such as ioctl(9E) and mmap(9E) where it is necessary to identify the C
Language Type Model of the user-mode originator of an kernel event. For example
any data which flows between programs and the device driver or vice versa need to
be identical in format. A 64-bit device driver may need to modify the format of the
data before sending it to a 32-bit application. ddi_model_convert_from() is used
to determine if data that is passed between the device driver and the application
requires reformatting to any non-native data model.

DDI_MODEL_ILP32 A conversion to/from ILP32 is necessary.

DDI_MODEL_NONE No conversion is necessary. Current thread
and driver use the same data model.

ddi_model_convert_from() can be called from any context.

EXAMPLE 1 : Using ddi_model_convert_from() in the ioctl() entry point to support
both 32-bit and 64-bit applications.

The following is an example how to use ddi_model_convert_from() in the
ioctl() entry point to support both 32-bit and 64-bit applications.

struct passargs32 {
int len;
caddr32_t addr;

};

struct passargs {
int len;
caddr_t addr;

};
xxioctl(dev_t dev, int cmd, intptr_t arg, int mode,

cred_t *credp, int *rvalp) {
struct passargs pa;

switch (ddi_model_convert_from(mode & FMODELS)) {
case DDI_MODEL_ILP32:
{

ddi_model_convert_from(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

EXAMPLES

Kernel Functions for Drivers 345

EXAMPLE 1 : Using ddi_model_convert_from() in the ioctl() entry point to support
both 32-bit and 64-bit applications. (Continued)

struct passargs32 pa32;

ddi_copyin(arg, &pa32, sizeof (struct passargs32), mode);
pa.len = pa32.len;
pa.address = pa32.address;
break;

}
case DDI_MODEL_NONE:

ddi_copyin(arg, &pa, sizeof (struct passargs), mode);
break;

}

do_ioctl(&pa);
. . . .

}

ioctl(9E), mmap(9E), ddi_mmap_get_model(9F)

Writing Device Drivers

ddi_model_convert_from(9F)

SEE ALSO

346 man pages section 9: DDI and DKI Kernel Functions • Last Revised 8 Feb 2001

ddi_node_name – return the devinfo node name

#include <sys/ddi.h>

#include <sys/sunddi.h>

char *ddi_node_name(dev_info_t *dip);

Solaris DDI specific (Solaris DDI).

dip A pointer the device’s dev_info structure.

ddi_node_name() returns the device node name contained in the dev_info node
pointed to by dip.

ddi_node_name() returns the device node name contained in the dev_info
structure.

ddi_node_name() can be called from user or interrupt context.

ddi_binding_name(9F)

Writing Device Drivers

ddi_node_name(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 347

ddi_peek, ddi_peek8, ddi_peek16, ddi_peek32, ddi_peek64, ddi_peekc, ddi_peeks,
ddi_peekl, ddi_peekd – read a value from a location

#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_peek8(dev_info_t *dip, int8_t *addr, int8_t *valuep);

int ddi_peek16(dev_info_t *dip, int16_t *addr, int16_t *valuep);

int ddi_peek32(dev_info_t *dip, int32_t *addr, int32_t *valuep);

int ddi_peek64(dev_info_t *dip, int64_t *addr, int64_t *valuep);

Solaris DDI specific (Solaris DDI).

dip A pointer to the device’s dev_info structure.

addr Virtual address of the location to be examined.

valuep Pointer to a location to hold the result. If a null pointer is specified, then the
value read from the location will simply be discarded.

These routines cautiously attempt to read a value from a specified virtual address, and
return the value to the caller, using the parent nexus driver to assist in the process
where necessary.

If the address is not valid, or the value cannot be read without an error occurring, an
error code is returned.

The routines are most useful when first trying to establish the presence of a device on
the system in a driver’s probe(9E) or attach(9E) routines.

DDI_SUCCESS The value at the given virtual address was successfully read, and if
valuep is non-null, *valuep will have been updated.

DDI_FAILURE An error occurred while trying to read the location. *valuep is
unchanged.

These functions can be called from user or interrupt context.

EXAMPLE 1 Checking to see that the status register of a device is mapped into the kernel
address space:

if (ddi_peek8(dip, csr, (int8_t *)0) != DDI_SUCCESS) {
cmn_err(CE_WARN, "Status register not mapped");
return (DDI_FAILURE);

}

EXAMPLE 2 Reading and logging the device type of a particular device:

int
xx_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{

ddi_peek(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

EXAMPLES

348 man pages section 9: DDI and DKI Kernel Functions • Last Revised 20 Nov 1996

EXAMPLE 2 Reading and logging the device type of a particular device: (Continued)

...
/* map device registers */
...

if (ddi_peek32(dip, id_addr, &id_value) != DDI_SUCCESS) {
cmn_err(CE_WARN, "%s%d: cannot read device identifier",

ddi_get_name(dip), ddi_get_instance(dip));
goto failure;

} else
cmn_err(CE_CONT, "!%s%d: device type 0x%x\n",

ddi_get_name(dip), ddi_get_instance(dip), id_value);
...
...

ddi_report_dev(dip);
return (DDI_SUCCESS);

failure:
/* free any resources allocated */
...
return (DDI_FAILURE);

}

attach(9E), probe(9E), ddi_poke(9F)

Writing Device Drivers

The functions described in this manual page previously used symbolic names which
specified their data access size; the function names have been changed so they now
specify a fixed-width data size. See the following table for the new name equivalents:

Previous Name New Name

ddi_peekc ddi_peek8

ddi_peeks ddi_peek16

ddi_peekl ddi_peek32

ddi_peekd ddi_peek64

ddi_peek(9F)

SEE ALSO

NOTES

Kernel Functions for Drivers 349

ddi_poke, ddi_poke8, ddi_poke16, ddi_poke32, ddi_poke64, ddi_pokec, ddi_pokes,
ddi_pokel, ddi_poked – write a value to a location

#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_poke8(dev_info_t *dip, int8_t *addr, int8_t value);

int ddi_poke16(dev_info_t *dip, int16_t *addr, int16_t value);

int ddi_poke32(dev_info_t *dip, int32_t *addr, int32_t value);

int ddi_poke64(dev_info_t *dip, int64_t *addr, int64_t value);

Solaris DDI specific (Solaris DDI).

dip A pointer to the device’s dev_info structure.

addr Virtual address of the location to be written to.

value Value to be written to the location.

These routines cautiously attempt to write a value to a specified virtual address, using
the parent nexus driver to assist in the process where necessary.

If the address is not valid, or the value cannot be written without an error occurring,
an error code is returned.

These routines are most useful when first trying to establish the presence of a given
device on the system in a driver’s probe(9E) or attach(9E) routines.

On multiprocessing machines these routines can be extremely heavy-weight, so use
the ddi_peek(9F) routines instead if possible.

DDI_SUCCESS The value was successfully written to the given virtual address.

DDI_FAILURE An error occurred while trying to write to the location.

These functions can be called from user or interrupt context.

attach(9E), probe(9E), ddi_peek(9F)

Writing Device Drivers

The functions described in this manual page previously used symbolic names which
specified their data access size; the function names have been changed so they now
specify a fixed-width data size. See the following table for the new name equivalents:

Previous Name New Name

ddi_pokec ddi_poke8

ddi_pokes ddi_poke16

ddi_poke(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

NOTES

350 man pages section 9: DDI and DKI Kernel Functions • Last Revised 20 Nov 1996

ddi_pokel ddi_poke32

ddi_poked ddi_poke64

ddi_poke(9F)

Kernel Functions for Drivers 351

ddi_prop_create, ddi_prop_modify, ddi_prop_remove, ddi_prop_remove_all,
ddi_prop_undefine – create, remove, or modify properties for leaf device drivers

#include <sys/conf.h>
#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_prop_create(dev_t dev, dev_info_t *dip, int flags, char
*name, caddr_t valuep, int length);

int ddi_prop_undefine(dev_t dev, dev_info_t *dip, int flags, char
*name);

int ddi_prop_modify(dev_t dev, dev_info_t *dip, int flags, char
*name, caddr_t valuep, int length);

int ddi_prop_remove(dev_t dev, dev_info_t *dip, char *name);

void ddi_prop_remove_all(dev_info_t *dip);

Solaris DDI specific (Solaris DDI).

ddi_prop_create()

dev dev_t of the device.

dip dev_info_t pointer of the device.

flags flag modifiers. The only possible flag value is
DDI_PROP_CANSLEEP: Memory allocation may sleep.

name name of property.

valuep pointer to property value.

length property length.

ddi_prop_undefine()

dev dev_t of the device.

dip dev_info_t pointer of the device.

flags flag modifiers. The only possible flag value is
DDI_PROP_CANSLEEP: Memory allocation may sleep.

name name of property.

ddi_prop_modify()

dev dev_t of the device.

dip dev_info_t pointer of the device.

flags flag modifiers. The only possible flag value is
DDI_PROP_CANSLEEP: Memory allocation may sleep.

name name of property.

ddi_prop_create(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

352 man pages section 9: DDI and DKI Kernel Functions • Last Revised 10 Oct 2001

valuep pointer to property value.

length property length.

ddi_prop_remove()

dev dev_t of the device.

dip dev_info_t pointer of the device.

name name of property.

ddi_prop_remove_all()

dip dev_info_t pointer of the device.

Device drivers have the ability to create and manage their own properties as well as
gain access to properties that the system creates on behalf of the driver. A driver uses
ddi_getproplen(9F) to query whether or not a specific property exists.

Property creation is done by creating a new property definition in the driver’s
property list associated with dip.

Property definitions are stacked; they are added to the beginning of the driver’s
property list when created. Thus, when searched for, the most recent matching
property definition will be found and its value will be return to the caller.

The individual functions are described as follows:

ddi_prop_create()
ddi_prop_create() adds a property to the device’s property list. If the property
is not associated with any particular dev but is associated with the physical device
itself, then the argument dev should be the special device DDI_DEV_T_NONE. If
you do not have a dev for your device (for example during attach(9E) time), you
can create one using makedevice(9F) with a major number of
DDI_MAJOR_T_UNKNOWN. ddi_prop_create() will then make the correct dev
for your device.

For boolean properties, you must set length to 0. For all other properties, the length
argument must be set to the number of bytes used by the data structure
representing the property being created.

Note that creating a property involves allocating memory for the property list, the
property name and the property value. If flags does not contain
DDI_PROP_CANSLEEP, ddi_prop_create() returns DDI_PROP_NO_MEMORY on
memory allocation failure or DDI_PROP_SUCCESS if the allocation succeeded. If
DDI_PROP_CANSLEEP was set, the caller may sleep until memory becomes
available.

ddi_prop_undefine()
ddi_prop_undefine() is a special case of property creation where the value of
the property is set to undefined. This property has the effect of terminating a

ddi_prop_create(9F)

DESCRIPTION

Kernel Functions for Drivers 353

property search at the current devinfo node, rather than allowing the search to
proceed up to ancestor devinfo nodes. However, ddi_prop_undefine() will not
terminate a search when the ddi_prop_get_int64(9F) or
ddi_prop_lookup_int64_array(9F) routines are used for lookup of 64-bit
property value. See ddi_prop_op(9F).

Note that undefining properties does involve memory allocation, and therefore, is
subject to the same memory allocation constraints as ddi_prop_create().

ddi_prop_modify()
ddi_prop_modify() modifies the length and the value of a property. If
ddi_prop_modify() finds the property in the driver’s property list, allocates
memory for the property value and returns DDI_PROP_SUCCESS. If the property
was not found, the function returns DDI_PROP_NOT_FOUND.

Note that modifying properties does involve memory allocation, and therefore, is
subject to the same memory allocation constraints as ddi_prop_create().

ddi_prop_remove()
ddi_prop_remove() unlinks a property from the device’s property list. If
ddi_prop_remove() finds the property (an exact match of both nameand dev), it
unlinks the property, frees its memory, and returns DDI_PROP_SUCCESS,
otherwise, it returns DDI_PROP_NOT_FOUND.

ddi_prop_remove_all()
ddi_prop_remove_all() removes the properties of all the dev_t’s associated
with the dip. It is called before unloading a driver.

DDI_PROP_SUCCESS On success.

DDI_PROP_NO_MEMORY On memory allocation failure.

DDI_PROP_INVAL_ARG If an attempt is made to create a property
with dev equal to DDI_DEV_T_ANY or if
name is NULL or name is the NULL string.

DDI_PROP_SUCCESS On success.

DDI_PROP_NO_MEMORY On memory allocation failure.

DDI_PROP_INVAL_ARG If an attempt is made to create a property
with dev DDI_DEV_T_ANY or if name is
NULL or name is the NULL string.

DDI_PROP_SUCCESS On success.

DDI_PROP_NO_MEMORY On memory allocation failure.

DDI_PROP_INVAL_ARG If an attempt is made to create a property
with dev equal to DDI_DEV_T_ANY or if
name is NULL or name is the NULL string.

DDI_PROP_NOT_FOUND On property search failure.

DDI_PROP_SUCCESS On success.

ddi_prop_create(9F)

ddi_prop_create()

ddi_prop_undefine()

ddi_prop_modify()

ddi_prop_remove()

354 man pages section 9: DDI and DKI Kernel Functions • Last Revised 10 Oct 2001

DDI_PROP_INVAL_ARG If an attempt is made to create a property
with dev equal to DDI_DEV_T_ANY or if
name is NULL or name is the NULL string.

DDI_PROP_NOT_FOUND On property search failure.

If DDI_PROP_CANSLEEP is set, these functions can only be called from user context;
otherwise, they can be called from interrupt or user context.

EXAMPLE 1 Creating a Property

The following example creates a property called nblocks for each partition on a disk.

for (minor = 0; minor < 8; minor ++) {
(void) ddi_prop_create(makedevice(DDI_MAJOR_T_UNKNOWN, minor),

dev, DDI_PROP_CANSLEEP, "nblocks", 8192, sizeof (int));
...

}

driver.conf(4), attach(9E), ddi_getproplen(9F), ddi_prop_op(9F),
makedevice(9F)

Writing Device Drivers

ddi_prop_create(9F)

CONTEXT

EXAMPLES

SEE ALSO

Kernel Functions for Drivers 355

ddi_prop_exists – check for the existence of a property

#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_prop_exists(dev_t match_dev, dev_info_t *dip, uint_t flags,
char *name);

Solaris DDI specific (Solaris DDI).

match_dev Device number associated with property or DDI_DEV_T_ANY.

dip Pointer to the device info node of device whose property list
should be searched.

flags Possible flag values are some combination of:

DDI_PROP_DONTPASS
Do not pass request to parent device information node if the
property is not found.

DDI_PROP_NOTPROM
Do not look at PROM properties (ignored on platforms that do
not support PROM properties).

name String containing the name of the property.

ddi_prop_exists() checks for the existence of a property regardless of the
property value data type.

Properties are searched for based on the dip, name, and match_dev. The property search
order is as follows:

1. Search software properties created by the driver.

2. Search the software properties created by the system (or nexus nodes in the device
info tree).

3. Search the driver global properties list.

4. If DDI_PROP_NOTPROM is not set, search the PROM properties (if they exist).

5. If DDI_PROP_DONTPASS is not set, pass this request to the parent device
information node.

6. Return 0 if not found and 1 if found.

Usually, the match_dev argument should be set to the actual device number that this
property is associated with. However, if the match_dev argument is DDI_DEV_T_ANY,
then ddi_prop_exists() will match the request regardless of the match_dev the
property was created with. That is the first property whose name matches name will be
returned. If a property was created with match_dev set to DDI_DEV_T_NONE then the
only way to look up this property is with a match_dev set to DDI_DEV_T_ANY. PROM
properties are always created with match_dev set to DDI_DEV_T_NONE.

name must always be set to the name of the property being looked up.

ddi_prop_exists(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

356 man pages section 9: DDI and DKI Kernel Functions • Last Revised 22 May 1995

ddi_prop_exists() returns 1 if the property exists and 0 otherwise.

These functions can be called from user or kernel context.

EXAMPLE 1 : Using ddi_prop_exists()

The following example demonstrates the use of ddi_prop_exists().

/*
* Enable "whizzy" mode if the "whizzy-mode" property exists
*/
if (ddi_prop_exists(xx_dev, xx_dip, DDI_PROP_NOTPROM,

"whizzy-mode") == 1) {
xx_enable_whizzy_mode(xx_dip);

} else {
xx_disable_whizzy_mode(xx_dip);

}

ddi_prop_get_int(9F), ddi_prop_lookup(9F), ddi_prop_remove(9F),
ddi_prop_update(9F)

Writing Device Drivers

ddi_prop_exists(9F)

RETURN VALUES

CONTEXT

EXAMPLES

SEE ALSO

Kernel Functions for Drivers 357

ddi_prop_get_int, ddi_prop_get_int64 – lookup integer property

#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_prop_get_int(dev_t match_dev, dev_info_t *dip, uint_t flags,
char *name, int defvalue);

int64_t ddi_prop_get_int64(dev_t match_dev, dev_info_t *dip, uint_t
flags, char *name, int64_t defvalue);

match_dev Device number associated with property or DDI_DEV_T_ANY.

dip Pointer to the device info node of device whose property list
should be searched.

flags Possible flag values are some combination of:

DDI_PROP_DONTPASS
Do not pass request to parent device information node if
property not found.

DDI_PROP_NOTPROM
Do not look at PROM properties (ignored on platforms that do
not support PROM properties).

name String containing the name of the property.

defvalue An integer value that is returned if the property cannot be found.

Solaris DDI specific (Solaris DDI).

The ddi_prop_get_int() and ddi_prop_get_int64() functions search for an
integer property and, if found, returns the value of the property.

Properties are searched for based on the dip, name, match_dev, and the type of the data
(integer). The property search order is as follows:

1. Search software properties created by the driver.

2. Search the software properties created by the system (or nexus nodes in the device
info tree).

3. Search the driver global properties list.

4. If DDI_PROP_NOTPROM is not set, search the PROM properties (if they exist).

5. If DDI_PROP_DONTPASS is not set, pass this request to the parent device
information node.

6. Return defvalue.

Usually, the match_dev argument should be set to the actual device number that this
property is associated with. However, if the match_dev argument is DDI_DEV_T_ANY,
then ddi_prop_get_int() and ddi_prop_get_int() will match the request

ddi_prop_get_int(9F)

NAME

SYNOPSIS

PARAMETERS

INTERFACE
LEVEL

DESCRIPTION

358 man pages section 9: DDI and DKI Kernel Functions • Last Revised 25 Aug 2001

regardless of the match_dev the property was created with. If a property was created
with match_dev set to DDI_DEV_T_NONE, then the only way to look up this property
is with a match_dev set to DDI_DEV_T_ANY. PROM properties are always created with
match_dev set to DDI_DEV_T_NONE.

name must always be set to the name of the property being looked up.

The return value of the routine is the value of the property. If the property is not
found, the argument defvalue is returned as the value of the property.

ddi_prop_get_int64() will not search the PROM for 64-bit property values.

ddi_prop_get_int() and ddi_prop_get_int64() return the value of the
property. If the property is not found, the argument defvalue is returned. If the
property is found, but cannot be decoded into an int or an int64, then
DDI_PROP_NOT_FOUND is returned.

ddi_prop_get_int() and ddi_prop_get_int64() can be called from user or
kernel context.

EXAMPLE 1 Using ddi_prop_get_int()

The following example demonstrates the use of ddi_prop_get_int().

/*
* Get the value of the integer "width" property, using
* our own default if no such property exists
*/
width = ddi_prop_get_int(xx_dev, xx_dip, 0, "width",

XX_DEFAULT_WIDTH);

ddi_prop_exists(9F), ddi_prop_lookup(9F), ddi_prop_remove(9F),
ddi_prop_update(9F)

Writing Device Drivers

ddi_prop_get_int(9F)

RETURN VALUES

CONTEXT

EXAMPLES

SEE ALSO

Kernel Functions for Drivers 359

ddi_prop_lookup, ddi_prop_lookup_int_array, ddi_prop_lookup_int64_array,
ddi_prop_lookup_string_array, ddi_prop_lookup_string,
ddi_prop_lookup_byte_array, ddi_prop_free – look up property information

#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_prop_lookup_int_array(dev_t match_dev, dev_info_t *dip,
uint_t flags, char *name, int **datap, uint_t *nelementsp);

int ddi_prop_lookup_int64_array(dev_t match_dev, dev_info_t *dip,
uint_t flags, char *name, int64_t **datap, uint_t *nelementsp);

int ddi_prop_lookup_string_array(dev_t match_dev, dev_info_t *dip,
uint_t flags, char *name, char ***datap, uint_t *nelementsp);

int ddi_prop_lookup_string(dev_t match_dev, dev_info_t *dip, uint_t
flags, char *name, char **datap);

int ddi_prop_lookup_byte_array(dev_t match_dev, dev_info_t *dip,
uint_t flags, char *name, uchar_t **datap, uint_t *nelementsp);

void ddi_prop_free(void *data);

match_dev Device number associated with property or DDI_DEV_T_ANY.

dip Pointer to the device info node of device whose property list
should be searched.

flags Possible flag values are some combination of:

DDI_PROP_DONTPASS
Do not pass request to parent device information node if the
property is not found.

DDI_PROP_NOTPROM
Do not look at PROM properties (ignored on platforms that do
not support PROM properties).

name String containing the name of the property.

nelementsp The address of an unsigned integer which, upon successful return,
will contain the number of elements accounted for in the memory
pointed at by datap. The elements are either integers, strings or
bytes depending on the interface used.

datap

ddi_prop_lookup_int_array()
The address of a pointer to an array of integers which, upon
successful return, will point to memory containing the integer
array property value.

ddi_prop_lookup(9F)

NAME

SYNOPSIS

PARAMETERS

360 man pages section 9: DDI and DKI Kernel Functions • Last Revised 11 Apr 2001

ddi_prop_lookup_int64_array()
The address of a pointer to an array of 64-bit integers which,
upon successful return, will point to memory containing the
integer array property value.

ddi_prop_lookup_string_array()
The address of a pointer to an array of strings which, upon
successful return, will point to memory containing the array of
strings. The array of strings is formatted as an array of pointers
to NULL terminated strings, much like the argv argument to
execve(2).

ddi_prop_lookup_string()
The address of a pointer to a string which, upon successful
return, will point to memory containing the NULL terminated
string value of the property.

ddi_prop_lookup_byte_array()
The address of pointer to an array of bytes which, upon
successful return, will point to memory containing the byte
array value of the property.

Solaris DDI specific (Solaris DDI).

The property look up routines search for and, if found, return the value of a given
property. Properties are searched for based on the dip, name, match_dev, and the type of
the data (integer, string, or byte). The property search order is as follows:

1. Search software properties created by the driver.

2. Search the software properties created by the system (or nexus nodes in the device
info tree).

3. Search the driver global properties list.

4. If DDI_PROP_NOTPROM is not set, search the PROM properties (if they exist).

5. If DDI_PROP_DONTPASS is not set, pass this request to the parent device
information node.

6. Return DDI_PROP_NOT_FOUND.

Usually, the match_dev argument should be set to the actual device number that this
property is associated with. However, if the match_dev argument is DDI_DEV_T_ANY,
the property look up routines will match the request regardless of the actual match_dev
the property was created with. If a property was created with match_dev set to
DDI_DEV_T_NONE, then the only way to look up this property is with a match_dev set
to DDI_DEV_T_ANY. PROM properties are always created with match_dev set to
DDI_DEV_T_NONE.

name must always be set to the name of the property being looked up.

ddi_prop_lookup(9F)

INTERFACE
LEVEL

DESCRIPTION

Kernel Functions for Drivers 361

For the routines ddi_prop_lookup_int_array(),
ddi_prop_lookup_int64_array(), ddi_prop_lookup_string_array(),
ddi_prop_lookup_string(), and ddi_prop_lookup_byte_array(), datap is
the address of a pointer which, upon successful return, will point to memory
containing the value of the property. In each case *datap points to a different type of
property value. See the individual descriptions of the routines below for details on the
different return values. nelementsp is the address of an unsigned integer which, upon
successful return, will contain the number of integer, string or byte elements
accounted for in the memory pointed at by *datap.

All of the property look up routines may block to allocate memory needed to hold the
value of the property.

When a driver has obtained a property with any look up routine and is finished with
that property, it must be freed by calling ddi_prop_free(). ddi_prop_free()
must be called with the address of the allocated property. For instance, if one called
ddi_prop_lookup_int_array() with datap set to the address of a pointer to an
integer, &my_int_ptr, then the companion free call would be
ddi_prop_free(my_int_ptr).

ddi_prop_lookup_int_array()
This routine searches for and returns an array of integer property values. An array
of integers is defined to *nelementsp number of 4 byte long integer elements. datap
should be set to the address of a pointer to an array of integers which, upon
successful return, will point to memory containing the integer array value of the
property.

ddi_prop_lookup_int64_array()
This routine searches for and returns an array of 64-bit integer property values. The
array is defined to be *nelementsp number of int64_t elements. datap should be set
to the address of a pointer to an array of int64_t’s which, upon successful return,
will point to memory containing the integer array value of the property. This
routine will not search the PROM for 64-bit property values.

ddi_prop_lookup_string_array()
This routine searches for and returns a property that is an array of strings. datap
should be set to address of a pointer to an array of strings which, upon successful
return, will point to memory containing the array of strings. The array of strings is
formatted as an array of pointers to null-terminated strings, much like the argv
argument to execve(2).

ddi_prop_lookup_string()
This routine searches for and returns a property that is a null-terminated string.
datap should be set to the address of a pointer to string which, upon successful
return, will point to memory containing the string value of the property.

ddi_prop_lookup_byte_array()
This routine searches for and returns a property that is an array of bytes. datap
should be set to the address of a pointer to an array of bytes which, upon successful
return, will point to memory containing the byte array value of the property.

ddi_prop_lookup(9F)

362 man pages section 9: DDI and DKI Kernel Functions • Last Revised 11 Apr 2001

ddi_prop_free()
Frees the resources associated with a property previously allocated using
ddi_prop_lookup_int_array(), ddi_prop_lookup_int64_array(),
ddi_prop_lookup_string_array(), ddi_prop_lookup_string(), or
ddi_prop_lookup_byte_array().

The functions ddi_prop_lookup_int_array(),
ddi_prop_lookup_int64_array(), ddi_prop_lookup_string_array(),
ddi_prop_lookup_string(), and ddi_prop_lookup_byte_array() return the
following values:

DDI_PROP_SUCCESS Upon success.

DDI_PROP_INVAL_ARG If an attempt is made to look up a property
with match_dev equal to DDI_DEV_T_NONE,
name is NULL or name is the null string.

DDI_PROP_NOT_FOUND Property not found.

DDI_PROP_UNDEFINED Property explicitly not defined (see
ddi_prop_undefine(9F)).

DDI_PROP_CANNOT_DECODE The value of the property cannot be
decoded.

These functions can be called from user or kernel context.

EXAMPLE 1 Using ddi_prop_lookup_int_array()

The following example demonstrates the use of ddi_prop_lookup_int_array().

int *options;
int noptions;

/*
* Get the data associated with the integer "options" property
* array, along with the number of option integers
*/

if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, xx_dip, 0,
"options", &options, &noptions) == DDI_PROP_SUCCESS) {
/*
* Do "our thing" with the options data from the property
*/
xx_process_options(options, noptions);

/*
* Free the memory allocated for the property data
*/
ddi_prop_free(options);

}

execve(2), ddi_prop_exists(9F), ddi_prop_get_int(9F),
ddi_prop_remove(9F), ddi_prop_undefine(9F), ddi_prop_update(9F)

ddi_prop_lookup(9F)

RETURN VALUES

CONTEXT

EXAMPLES

SEE ALSO

Kernel Functions for Drivers 363

Writing Device Drivers

ddi_prop_lookup(9F)

364 man pages section 9: DDI and DKI Kernel Functions • Last Revised 11 Apr 2001

ddi_prop_op, ddi_getprop, ddi_getlongprop, ddi_getlongprop_buf, ddi_getproplen –
get property information for leaf device drivers

#include <sys/types.h>
#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
int flags, char *name, caddr_t valuep, int *lengthp);

int ddi_getprop(dev_t dev, dev_info_t *dip, int flags, char *name,
int defvalue);

int ddi_getlongprop(dev_t dev, dev_info_t *dip, int flags, char
*name, caddr_t valuep, int *lengthp);

int ddi_getlongprop_buf(dev_t dev, dev_info_t *dip, int flags, char
*name, caddr_t valuep, int *lengthp);

int ddi_getproplen(dev_t dev, dev_info_t *dip, int flags, char *name,
int *lengthp);

Solaris DDI specific (Solaris DDI).

dev Device number associated with property or DDI_DEV_T_ANY as the
wildcard device number.

dip Pointer to a device info node.

prop_op Property operator.

flags Possible flag values are some combination of:

DDI_PROP_DONTPASS
do not pass request to parent device information node if property not
found

DDI_PROP_CANSLEEP
the routine may sleep while allocating memory

DDI_PROP_NOTPROM
do not look at PROM properties (ignored on architectures that do not
support PROM properties)

name String containing the name of the property.

valuep If prop_op is PROP_LEN_AND_VAL_BUF, this should be a pointer to the
users buffer. If prop_op is PROP_LEN_AND_VAL_ALLOC, this should be the
address of a pointer.

lengthp On exit, *lengthp will contain the property length. If prop_op is
PROP_LEN_AND_VAL_BUF then before calling ddi_prop_op(), lengthp
should point to an int that contains the length of callers buffer.

defvalue The value that ddi_getprop() returns if the property is not found.

ddi_prop_op(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

Kernel Functions for Drivers 365

ddi_prop_op() gets arbitrary-size properties for leaf devices. The routine searches
the device’s property list. If it does not find the property at the device level, it
examines the flags argument, and if DDI_PROP_DONTPASS is set, then
ddi_prop_op() returns DDI_PROP_NOT_FOUND. Otherwise, it passes the request to
the next level of the device info tree. If it does find the property, but the property has
been explicitly undefined, it returns DDI_PROP_UNDEFINED. Otherwise it returns
either the property length, or both the length and value of the property to the caller
via the valuep and lengthp pointers, depending on the value of prop_op, as described
below, and returns DDI_PROP_SUCCESS. If a property cannot be found at all,
DDI_PROP_NOT_FOUND is returned.

Usually, the dev argument should be set to the actual device number that this property
applies to. However, if the dev argument is DDI_DEV_T_ANY, the wildcard dev, then
ddi_prop_op() will match the request based on name only (regardless of the actual
dev the property was created with). This property/dev match is done according to the
property search order which is to first search software properties created by the driver
in last-in, first-out (LIFO) order, next search software properties created by the system in
LIFO order, then search PROM properties if they exist in the system architecture.

Property operations are specified by the prop_op argument. If prop_op is PROP_LEN,
then ddi_prop_op() just sets the callers length, *lengthp, to the property length and
returns the value DDI_PROP_SUCCESS to the caller. The valuep argument is not used
in this case. Property lengths are 0 for boolean properties, sizeof (int) for integer
properties, and size in bytes for long (variable size) properties.

If prop_op is PROP_LEN_AND_VAL_BUF, then valuep should be a pointer to a
user-supplied buffer whose length should be given in *lengthp by the caller. If the
requested property exists, ddi_prop_op() first sets *lengthp to the property length. It
then examines the size of the buffer supplied by the caller, and if it is large enough,
copies the property value into that buffer, and returns DDI_PROP_SUCCESS. If the
named property exists but the buffer supplied is too small to hold it, it returns
DDI_PROP_BUF_TOO_SMALL.

If prop_op is PROP_LEN_AND_VAL_ALLOC, and the property is found,
ddi_prop_op() sets *lengthp to the property length. It then attempts to allocate a
buffer to return to the caller using the kmem_alloc(9F) routine, so that memory can
be later recycled using kmem_free(9F). The driver is expected to call kmem_free()
with the returned address and size when it is done using the allocated buffer. If the
allocation is successful, it sets *valuep to point to the allocated buffer, copies the
property value into the buffer and returns DDI_PROP_SUCCESS. Otherwise, it returns
DDI_PROP_NO_MEMORY. Note that the flags argument may affect the behavior of
memory allocation in ddi_prop_op(). In particular, if DDI_PROP_CANSLEEP is set,
then the routine will wait until memory is available to copy the requested property.

ddi_getprop() returns boolean and integer-size properties. It is a convenience
wrapper for ddi_prop_op() with prop_op set to PROP_LEN_AND_VAL_BUF, and the
buffer is provided by the wrapper. By convention, this function returns a 1 for boolean
(zero-length) properties.

ddi_prop_op(9F)

DESCRIPTION

366 man pages section 9: DDI and DKI Kernel Functions • Last Revised 7 Jun 1993

ddi_getlongprop() returns arbitrary-size properties. It is a convenience wrapper
for ddi_prop_op() with prop_op set to PROP_LEN_AND_VAL_ALLOC, so that the
routine will allocate space to hold the buffer that will be returned to the caller via
*valuep.

ddi_getlongprop_buf() returns arbitrary-size properties. It is a convenience
wrapper for ddi_prop_op() with prop_op set to PROP_LEN_AND_VAL_BUF so the
user must supply a buffer.

ddi_getproplen() returns the length of a given property. It is a convenience
wrapper for ddi_prop_op() with prop_op set to PROP_LEN.

ddi_prop_op() ddi_getlongprop() ddi_getlongprop_buf()
ddi_getproplen() return:

DDI_PROP_SUCCESS Property found and returned.

DDI_PROP_NOT_FOUND Property not found.

DDI_PROP_UNDEFINED Property already explicitly undefined.

DDI_PROP_NO_MEMORY Property found, but unable to allocate
memory. lengthp points to the correct
property length.

DDI_PROP_BUF_TOO_SMALL Property found, but the supplied buffer is
too small. lengthp points to the correct
property length.

ddi_getprop() returns:

The value of the property or the value passed into the routine as defvalue if the
property is not found. By convention, the value of zero length properties (boolean
properties) are returned as the integer value 1.

These functions can be called from user or interrupt context, provided
DDI_PROP_CANSLEEP is not set; if it is set, they can be called from user context only.

ddi_prop_create(9F), kmem_alloc(9F), kmem_free(9F)

Writing Device Drivers

ddi_prop_op(9F)

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 367

ddi_prop_update, ddi_prop_update_int_array, ddi_prop_update_int,
ddi_prop_update_string_array, ddi_prop_update_int64, ddi_prop_update_int64_array,
ddi_prop_update_string, ddi_prop_update_byte_array – update properties

#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_prop_update_int_array(dev_t dev, dev_info_t *dip, char
*name, int *data, uint_t nelements);

int ddi_prop_update_int(dev_t dev, dev_info_t *dip, char *name, int
data);

int ddi_prop_update_int64_array(dev_t dev, dev_info_t *dip, char
*name, int64_t *data, uint_t nelements);

int ddi_prop_update_int64(dev_t dev, dev_info_t *dip, char *name,
int64_t data);

int ddi_prop_update_string_array(dev_t dev, dev_info_t *dip, char
*name, char **data, uint_t nelements);

int ddi_prop_update_string(dev_t dev, dev_info_t *dip, char *name,
char *data);

int ddi_prop_update_byte_array(dev_t dev, dev_info_t *dip, char
*name, uchar_t *data, uint_t nelements);

dev Device number associated with the device.

dip Pointer to the device info node of device whose property list
should be updated.

name String containing the name of the property to be updated.

nelements The number of elements contained in the memory pointed at by
data.

ddi_prop_update_int_array()

data A pointer an integer array with which to update the property.

ddi_prop_update_int()

data An integer value with which to update the property.

ddi_prop_update_int64_array()

data An pointer to a 64-bit integer array with which to update the
property.

ddi_prop_update_int64()

data A 64-bit integer value with which to update the property.

ddi_prop_update_string_array()

ddi_prop_update(9F)

NAME

SYNOPSIS

PARAMETERS

368 man pages section 9: DDI and DKI Kernel Functions • Last Revised 28 Aug 2001

data A pointer to a string array with which to update the property. The
array of strings is formatted as an array of pointers to NULL
terminated strings, much like the argv argument to execve(2).

ddi_prop_update_string()

data A pointer to a string value with which to update the property.

ddi_prop_update_byte_array()

data A pointer to a byte array with which to update the property.

Solaris DDI specific (Solaris DDI).

The property update routines search for and, if found, modify the value of a given
property. Properties are searched for based on the dip, name, dev, and the type of the
data (integer, string, or byte). The driver software properties list is searched. If the
property is found, it is updated with the supplied value. If the property is not found
on this list, a new property is created with the value supplied. For example, if a driver
attempts to update the "foo" property, a property named "foo" is searched for on the
driver’s software property list. If "foo" is found, the value is updated. If "foo" is not
found, a new property named "foo" is created on the driver’s software property list
with the supplied value even if a "foo" property exists on another property list (such
as a PROM property list).

Every property value has a data type associated with it: byte, integer, or string. A
property should be updated using a function with the same corresponding data type
as the property value. For example, an integer property must be updated using either
ddi_prop_update_int_array() or ddi_prop_update_int(). For a 64-bit
integer, you must use ddi_prop_update_int64_array() or
ddi_prop_update_int64(). Attempts to update a property with a function that
does not correspond to the property data type that was used to create it results in an
undefined state.

Usually, the dev argument should be set to the actual device number that this property
is associated with. If the property is not associated with any particular dev, then the
argument dev should be set to DDI_DEV_T_NONE. This property will then match a
look up request (see ddi_prop_lookup(9F)) with the match_dev argument set to
DDI_DEV_T_ANY. If no dev is available for the device (for example during
attach(9E) time), one can be created using makedevice(9F) with a major number of
DDI_MAJOR_T_UNKNOWN. The update routines will then generate the correct dev
when creating or updating the property.

name must always be set to the name of the property being updated.

For the routines ddi_prop_update_int_array(),
ddi_prop_lookup_int64_array(), ddi_prop_update_string_array(),
ddi_prop_update_string(), and ddi_prop_update_byte_array(), data is a
pointer which points to memory containing the value of the property. In each case

ddi_prop_update(9F)

INTERFACE
LEVEL

DESCRIPTION

Kernel Functions for Drivers 369

*data points to a different type of property value. See the individual descriptions of the
routines below for details concerning the different values. nelements is an unsigned
integer which contains the number of integer, string, or byte elements accounted for in
the memory pointed at by *data.

For the routines ddi_prop_update_int() and ddi_prop_update_int64(), data
is the new value of the property.

ddi_prop_update_int_array()

Updates or creates an array of integer property values. An array of integers is defined
to be nelements of 4 byte long integer elements. data must be a pointer to an integer
array with which to update the property.

ddi_prop_update_int()

Update or creates a single integer value of a property. data must be an integer value
with which to update the property.

ddi_prop_update_int64_array()

Updates or creates an array of 64-bit integer property values. An array of integers is
defined to be nelements of int64_t integer elements. data must be a pointer to a
64-bit integer array with which to update the property.

ddi_prop_update_int64()

Updates or creates a single 64-bit integer value of a property. data must be an int64_t
value with which to update the property.

ddi_prop_update_string_array()

Updates or creates a property that is an array of strings. data must be a pointer to a
string array with which to update the property. The array of strings is formatted as an
array of pointers to NULLterminated strings, much like the argv argument to
execve(2).

ddi_prop_update_string()

Updates or creates a property that is a single string value. data must be a pointer to a
string with which to update the property.

ddi_prop_update_byte_array()

Updates or creates a property that is an array of bytes. data should be a pointer to a
byte array with which to update the property.

The property update routines may block to allocate memory needed to hold the value
of the property.

All of the property update routines return:

ddi_prop_update(9F)

RETURN VALUES

370 man pages section 9: DDI and DKI Kernel Functions • Last Revised 28 Aug 2001

DDI_PROP_SUCCESS On success.

DDI_PROP_INVAL_ARG If an attempt is made to update a property
with name set to NULL or name set to the
null string.

DDI_PROP_CANNOT_ENCODE If the bytes of the property cannot be
encoded.

These functions can only be called from user or kernel context.

EXAMPLE 1 Updating Properties

The following example demonstrates the use of ddi_prop_update_int_array().

int options[4];

/*
* Create the "options" integer array with
* our default values for these parameters
*/
options[0] = XX_OPTIONS0;
options[1] = XX_OPTIONS1;
options[2] = XX_OPTIONS2;
options[3] = XX_OPTIONS3;
i = ddi_prop_update_int_array(xx_dev, xx_dip, "options",

&options, sizeof (options) / sizeof (int));

execve(2), attach(9E), ddi_prop_lookup(9F), ddi_prop_remove(9F),
makedevice(9F)

Writing Device Drivers

ddi_prop_update(9F)

CONTEXT

EXAMPLES

SEE ALSO

Kernel Functions for Drivers 371

ddi_put8, ddi_put16, ddi_put32, ddi_put64, ddi_putb, ddi_putl, ddi_putll, ddi_putw –
write data to the mapped memory address, device register or allocated DMA memory
address

#include <sys/ddi.h>

#include <sys/sunddi.h>

void ddi_put8(ddi_acc_handle_t handle, uint8_t *dev_addr, uint8_t
value);

void ddi_put16(ddi_acc_handle_t handle, uint16_t *dev_addr, uint16_t
value);

void ddi_put32(ddi_acc_handle_t handle, uint32_t *dev_addr, uint32_t
value);

void ddi_put64(ddi_acc_handle_t handle, uint64_t *dev_addr, uint64_t
value);

Solaris DDI specific (Solaris DDI).

handle The data access handle returned from setup calls, such as
ddi_regs_map_setup(9F).

value The data to be written to the device.

dev_addr Base device address.

These routines generate a write of various sizes to the mapped memory or device
register. The ddi_put8(), ddi_put16(), ddi_put32(), and ddi_put64()
functions write 8 bits, 16 bits, 32 bits and 64 bits of data, respectively, to the device
address, dev_addr.

Each individual datum will automatically be translated to maintain a consistent view
between the host and the device based on the encoded information in the data access
handle. The translation may involve byte-swapping if the host and the device have
incompatible endian characteristics.

For certain bus types, you can call these DDI functions from a high-interrupt context.
These types include ISA, EISA, and SBus buses. See sysbus(4), isa(4), eisa(4), and
sbus(4) for details. For the PCI bus, you can, under certain conditions, call these DDI
functions from a high-interrupt context. See pci(4).

These functions can be called from user, kernel, or interrupt context.

ddi_get8(9F), ddi_regs_map_free(9F), ddi_regs_map_setup(9F),
ddi_rep_get8(9F), ddi_rep_put8(9F), ddi_device_acc_attr(9S)

The functions described in this manual page previously used symbolic names which
specified their data access size; the function names have been changed so they now
specify a fixed-width data size. See the following table for the new name equivalents:

ddi_put8(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

SEE ALSO

NOTES

372 man pages section 9: DDI and DKI Kernel Functions • Last Revised 30 Sep 1996

Previous Name New Name

ddi_putb ddi_put8

ddi_putw ddi_put16

ddi_putl ddi_put32

ddi_putll ddi_put64

ddi_put8(9F)

Kernel Functions for Drivers 373

ddi_regs_map_free – free a previously mapped register address space

#include <sys/ddi.h>

#include <sys/sunddi.h>

void ddi_regs_map_free(ddi_acc_handle_t *handle);

Solaris DDI specific (Solaris DDI).

handle Pointer to a data access handle previously allocated by a call to a
setup routine such as ddi_regs_map_setup(9F).

ddi_regs_map_free() frees the mapping represented by the data access handle
handle. This function is provided for drivers preparing to detach themselves from the
system, allowing them to release allocated system resources represented in the handle.

ddi_regs_map_free() must be called from user or kernel context.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture PCI Local Bus, SBus, ISA, EISA

attributes(5), ddi_regs_map_setup(9F)

Writing Device Drivers

ddi_regs_map_free(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

ATTRIBUTES

SEE ALSO

374 man pages section 9: DDI and DKI Kernel Functions • Last Revised 1 Jan 1997

ddi_regs_map_setup – set up a mapping for a register address space

#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_regs_map_setup(dev_info_t *dip, uint_t rnumber, caddr_t
*addrp, offset_t offset, offset_t len, ddi_device_acc_attr_t
*accattrp, ddi_acc_handle_t *handlep);

Solaris DDI specific (Solaris DDI).

dip Pointer to the device’s dev_info structure.

rnumber Index number to the register address space set.

addrp A platform-dependent value that, when added to an offset that is
less than or equal to the len parameter (see below), is used for the
dev_addr argument to the ddi_get, ddi_mem_get, and
ddi_io_get/put routines.

offset Offset into the register address space.

len Length to be mapped.

accattrp Pointer to a device access attribute structure of this mapping (see
ddi_device_acc_attr(9S)).

handlep Pointer to a data access handle.

ddi_regs_map_setup() maps in the register set given by rnumber. The register
number determines which register set is mapped if more than one exists.

offset specifies the starting location within the register space and len indicates the size
of the area to be mapped. If len is non-zero, it overrides the length given in the register
set description. If both len and offset are 0, the entire space is mapped. The base of the
mapped register space is returned in addrp.

The device access attributes are specified in the location pointed by the accattrp
argument (see ddi_device_acc_attr(9S) for details).

The data access handle is returned in handlep. handlep is opaque; drivers should not
attempt to interpret its value. The handle is used by the system to encode information
for subsequent data access function calls to maintain a consistent view between the
host and the device.

ddi_regs_map_setup() returns:

DDI_SUCCESS Successfully set up the mapping for data
access.

DDI_FAILURE Invalid register number rnumber, offset
offset, or length len.

ddi_regs_map_setup(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

Kernel Functions for Drivers 375

DDI_ME_RNUMBER_RANGE Invalid register number rnumber or unable
to find reg property.

DDI_REGS_ACC_CONFLICT Cannot enable the register mapping due to
access conflicts with other enabled
mappings.

Note that the return value DDI_ME_RNUMBER_RANGE is not supported on all
platforms. Also, there is potential overlap between DDI_ME_RNUMBER_RANGE and
DDI_FAILURE. Drivers should check for !=DDI_SUCCESS rather than checking for a
specific failure value.

ddi_regs_map_setup() must be called from user or kernel context.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture PCI Local Bus, SBus, ISA, EISA

attributes(5), ddi_regs_map_free(9F), ddi_device_acc_attr(9S)

Writing Device Drivers

ddi_regs_map_setup(9F)

CONTEXT

ATTRIBUTES

SEE ALSO

376 man pages section 9: DDI and DKI Kernel Functions • Last Revised 20 Nov 2001

ddi_remove_minor_node – remove a minor node for this dev_info

void ddi_remove_minor_node(dev_info_t *dip, char *name);

Solaris DDI specific (Solaris DDI).

dip A pointer to the device’s dev_info structure.

name The name of this minor device. If name is NULL, then remove all minor data
structures from this dev_info.

ddi_remove_minor_node() removes a data structure from the linked list of minor
data structures that is pointed to by the dev_info structure for this driver.

EXAMPLE 1 Removing a minor node

This will remove a data structure describing a minor device called dev1 which is
linked into the dev_info structure pointed to by dip:

ddi_remove_minor_node(dip, "dev1");

attach(9E), detach(9E), ddi_create_minor_node(9F)

Writing Device Drivers

ddi_remove_minor_node(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

EXAMPLES

SEE ALSO

Kernel Functions for Drivers 377

ddi_removing_power – check whether DDI_SUSPEND might result in power being
removed from a device

#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_removing_power(dev_info_t *dip);

Solaris DDI specific (Solaris DDI)

The ddi_removing_power() function indicates whether a currently pending call
into a driver’s detach(9E) entry point with a command of DDI_SUSPEND is likely to
result in power being removed from the device.

ddi_removing_power() can return true and power still not be removed from the
device due to a failure to suspend and power off the system.

The ddi_removing_power() function supports the following parameter:

dip pointer to the device’s dev_info structure

The ddi_removing_power() function returns:

1 Power might be removed by the framework as a result of the pending
DDI_SUSPEND call.

0 Power will not be removed by the framework as a result of the pending
DDI_SUSPEND call.

EXAMPLE 1 Protecting a Tape from Abrupt Power Removal

A tape driver that has hardware that would damage the tape if power is removed
might include this code in its detach(9E) code:

int
xxdetach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{

...
case DDI_SUSPEND:
/*
* We do not allow DDI_SUSPEND if power will be removed and
* we have a device that damages tape when power is removed
* We do support DDI_SUSPEND for Device Reconfiguration, however.
*/

if (ddi_removing_power(dip) && xxdamages_tape(dip))
return (DDI_FAILURE);

...

See attributes(5) for descriptions of the following attributes:

ddi_removing_power(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

PARAMETERS

RETURN VALUES

EXAMPLES

ATTRIBUTES

378 man pages section 9: DDI and DKI Kernel Functions • Last Revised 14 March 2001

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

attributes(5), cpr(7), attach(9E), detach(9E)

Writing Device Drivers

ddi_removing_power(9F)

SEE ALSO

Kernel Functions for Drivers 379

ddi_rep_get8, ddi_rep_get16, ddi_rep_get32, ddi_rep_get64, ddi_rep_getw,
ddi_rep_getl, ddi_rep_getll, ddi_rep_getb – read data from the mapped memory
address, device register or allocated DMA memory address

#include <sys/ddi.h>

#include <sys/sunddi.h>

void ddi_rep_get8(ddi_acc_handle_t handle, uint8_t *host_addr,
uint8_t *dev_addr, size_t repcount, uint_t flags);

void ddi_rep_get16(ddi_acc_handle_t handle, uint16_t *host_addr,
uint16_t *dev_addr, size_t repcount, uint_t flags);

void ddi_rep_get32(ddi_acc_handle_t handle, uint32_t *host_addr,
uint32_t *dev_addr, size_t repcount, uint_t flags);

void ddi_rep_get64(ddi_acc_handle_t handle, uint64_t *host_addr,
uint64_t *dev_addr, size_t repcount, uint_t flags);

Solaris DDI specific (Solaris DDI).

handle The data access handle returned from setup calls, such as
ddi_regs_map_setup(9F).

host_addr Base host address.

dev_addr Base device address.

repcount Number of data accesses to perform.

flags Device address flags:

DDI_DEV_AUTOINCR
Automatically increment the device address, dev_addr, during
data accesses.

DDI_DEV_NO_AUTOINCR
Do not advance the device address, dev_addr, during data
accesses.

These routines generate multiple reads from the mapped memory or device register.
repcount data is copied from the device address, dev_addr, to the host address,
host_addr. For each input datum, the ddi_rep_get8(), ddi_rep_get16(),
ddi_rep_get32(), and ddi_rep_get64() functions read 8 bits, 16 bits, 32 bits,
and 64 bits of data, respectively, from the device address, dev_addr. dev_addr and
host_addr must be aligned to the datum boundary described by the function.

Each individual datum will automatically be translated to maintain a consistent view
between the host and the device based on the encoded information in the data access
handle. The translation may involve byte-swapping if the host and the device have
incompatible endian characteristics.

ddi_rep_get8(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

380 man pages section 9: DDI and DKI Kernel Functions • Last Revised 10 Aug 1996

When the flags argument is set to DDI_DEV_AUTOINCR, these functions treat the
device address, dev_addr, as a memory buffer location on the device and increment its
address on the next input datum. However, when the flags argument is to
DDI_DEV_NO_AUTOINCR, the same device address will be used for every datum
access. For example, this flag may be useful when reading from a data register.

These functions return the value read from the mapped address.

These functions can be called from user, kernel, or interrupt context.

ddi_get8(9F), ddi_put8(9F), ddi_regs_map_free(9F),
ddi_regs_map_setup(9F), ddi_rep_put8(9F)

The functions described in this manual page previously used symbolic names which
specified their data access size; the function names have been changed so they now
specify a fixed-width data size. See the following table for the new name equivalents:

Previous Name New Name

ddi_rep_getb ddi_rep_get8

ddi_rep_getw ddi_rep_get16

ddi_rep_getl ddi_rep_get32

ddi_rep_getll ddi_rep_get64

ddi_rep_get8(9F)

RETURN VALUES

CONTEXT

SEE ALSO

NOTES

Kernel Functions for Drivers 381

ddi_report_dev – announce a device

#include <sys/conf.h>
#include <sys/ddi.h>

#include <sys/sunddi.h>

void ddi_report_dev(dev_info_t *dip);

Solaris DDI specific (Solaris DDI).

dip a pointer the device’s dev_info structure.

ddi_report_dev() prints a banner at boot time, announcing the device pointed to
by dip. The banner is always placed in the system logfile (displayed by dmesg(1M)),
but is only displayed on the console if the system was booted with the verbose (-v)
argument.

ddi_report_dev() can be called from user context.

dmesg(1M), kernel(1M)

Writing Device Drivers

ddi_report_dev(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

SEE ALSO

382 man pages section 9: DDI and DKI Kernel Functions • Last Revised 7 Jun 1993

ddi_rep_put8, ddi_rep_put16, ddi_rep_put32, ddi_rep_put64, ddi_rep_putb,
ddi_rep_putw, ddi_rep_putl, ddi_rep_putll – write data to the mapped memory
address, device register or allocated DMA memory address

#include <sys/ddi.h>

#include <sys/sunddi.h>

void ddi_rep_put8(ddi_acc_handle_t handle, uint8_t *host_addr,
uint8_t *dev_addr, size_t repcount, uint_t flags);

void ddi_rep_put16(ddi_acc_handle_t handle, uint16_t *host_addr,
uint16_t *dev_addr, size_t repcount, uint_t flags);

void ddi_rep_put32(ddi_acc_handle_t handle, uint32_t *host_addr,
uint32_t *dev_addr, size_t repcount, uint_t flags);

void ddi_rep_put64(ddi_acc_handle_t handle, uint64_t *host_addr,
uint64_t *dev_addr, size_t repcount, uint_t flags);

Solaris DDI specific (Solaris DDI).

handle The data access handle returned from setup calls, such as
ddi_regs_map_setup(9F).

host_addr Base host address.

dev_addr Base device address.

repcount Number of data accesses to perform.

flags Device address flags:

DDI_DEV_AUTOINCR
Automatically increment the device address, dev_addr, during
data accesses.

DDI_DEV_NO_AUTOINCR
Do not advance the device address, dev_addr, during data
accesses.

These routines generate multiple writes to the mapped memory or device register.
repcount data is copied from the host address, host_addr, to the device address,
dev_addr. For each input datum, the ddi_rep_put8(), ddi_rep_put16(),
ddi_rep_put32(), and ddi_rep_put64() functions write 8 bits, 16 bits, 32 bits,
and 64 bits of data, respectively, to the device address, dev_addr. dev_addr and host_addr
must be aligned to the datum boundary described by the function.

Each individual datum will automatically be translated to maintain a consistent view
between the host and the device based on the encoded information in the data access
handle. The translation may involve byte-swapping if the host and the device have
incompatible endian characteristics.

ddi_rep_put8(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

Kernel Functions for Drivers 383

When the flags argument is set to DDI_DEV_AUTOINCR, these functions treat the
device address, dev_addr, as a memory buffer location on the device and increment its
address on the next input datum. However, when the flags argument is set to
DDI_DEV_NO_AUTOINCR, the same device address will be used for every datum
access. For example, this flag may be useful when writing to a data register.

These functions can be called from user, kernel, or interrupt context.

ddi_get8(9F), ddi_put8(9F), ddi_regs_map_free(9F),
ddi_regs_map_setup(9F), ddi_rep_get8(9F), ddi_device_acc_attr(9S)

The functions described in this manual page previously used symbolic names which
specified their data access size; the function names have been changed so they now
specify a fixed-width data size. See the following table for the new name equivalents:

Previous Name New Name

ddi_rep_putb ddi_rep_put8

ddi_rep_putw ddi_rep_put16

ddi_rep_putl ddi_rep_put32

ddi_rep_putll ddi_rep_put64

ddi_rep_put8(9F)

CONTEXT

SEE ALSO

NOTES

384 man pages section 9: DDI and DKI Kernel Functions • Last Revised 10 Sep 1996

ddi_root_node – get the root of the dev_info tree

#include <sys/conf.h>
#include <sys/ddi.h>

#include <sys/sunddi.h>

dev_info_t *ddi_root_node(void);

Solaris DDI specific (Solaris DDI).

ddi_root_node() returns a pointer to the root node of the device information tree.

ddi_root_node() returns a pointer to a device information structure.

ddi_root_node() can be called from user or interrupt context.

Writing Device Drivers

ddi_root_node(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 385

ddi_segmap, ddi_segmap_setup – set up a user mapping using seg_dev

#include <sys/conf.h>
#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_segmap(dev_t dev, off_t offset, struct as *asp, caddr_t *addrp,
off_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *credp);

int ddi_segmap_setup(dev_t dev, off_t offset, struct as *asp, caddr_t
*addrp, off_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t
*credp, ddi_device_acc_attr_t *accattrp, uint_t rnumber);

Solaris DDI specific (Solaris DDI).

dev The device whose memory is to be mapped.

offset The offset within device memory at which the mapping begins.

asp An opaque pointer to the user address space into which the device memory
should be mapped.

addrp Pointer to the starting address within the user address space to which the
device memory should be mapped.

len Length (in bytes) of the memory to be mapped.

prot A bit field that specifies the protections. Some combinations of possible
settings are:

PROT_READ
Read access is desired.

PROT_WRITE
Write access is desired.

PROT_EXEC
Execute access is desired.

PROT_USER
User-level access is desired (the mapping is being done as a result of a
mmap(2) system call).

PROT_ALL
All access is desired.

maxprot Maximum protection flag possible for attempted mapping (the
PROT_WRITE bit may be masked out if the user opened the special file
read-only). If (maxprot & prot) != prot then there is an access
violation.

flags Flags indicating type of mapping. Possible values are (other bits may be
set):

MAP_PRIVATE
Changes are private.

ddi_segmap(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

386 man pages section 9: DDI and DKI Kernel Functions • Last Revised 14 Jan 1997

MAP_SHARED
Changes should be shared.

MAP_FIXED
The user specified an address in *addrp rather than letting the system
pick and address.

credp Pointer to user credential structure.

dev_acc_attr Pointer to a ddi_device_acc_attr(9S) structure which contains
the device access attributes to apply to this mapping.

rnumber Index number to the register address space set.

Future releases of Solaris will provide this function for binary and source
compatibility. However, for increased functionality, use ddi_devmap_segmap(9F)
instead. See ddi_devmap_segmap(9F) for details.

ddi_segmap() and ddi_segmap_setup() set up user mappings to device space.
When setting up the mapping, the ddi_segmap() and ddi_segmap_setup()
routines call the mmap(9E) entry point to validate the range to be mapped. When a
user process accesses the mapping, the drivers mmap(9E) entry point is again called to
retrieve the page frame number that needs to be loaded. The mapping translations for
that page are then loaded on behalf of the driver by the DDI framework.

ddi_segmap() is typically used as the segmap(9E) entry in the cb_ops(9S) structure
for those devices that do not choose to provide their own segmap(9E) entry point.
However, some drivers may have their own segmap(9E) entry point to do some initial
processing on the parameters and then call ddi_segmap() to establish the default
memory mapping.

ddi_segmap_setup() is used in the drivers segmap(9E) entry point to set up the
mapping and assign device access attributes to that mapping. rnumber specifies the
register set representing the range of device memory being mapped. See
ddi_device_acc_attr(9S) for details regarding what device access attributes are
available.

ddi_segmap_setup() cannot be used directly in the cb_ops(9S) structure and
requires a driver to have a segmap(9E) entry point.

ddi_segmap() and ddi_segmap_setup() return the following values:

0 Successful completion.

Non-zero An error occurred. In particular, they return ENXIO if the range to
be mapped is invalid.

ddi_segmap() and ddi_segmap_setup() can be called from user or kernel context
only.

mmap(2), mmap(9E), segmap(9E), ddi_mapdev(9F), cb_ops(9S),
ddi_device_acc_attr(9S)

ddi_segmap(9F)

ddi_segmap_setup()

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 387

Writing Device Drivers

If driver notification of user accesses to the mappings is required, the driver should
use ddi_mapdev(9F) instead.

ddi_segmap(9F)

NOTES

388 man pages section 9: DDI and DKI Kernel Functions • Last Revised 14 Jan 1997

ddi_slaveonly – tell if a device is installed in a slave access only location

#include <sys/conf.h>
#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_slaveonly(dev_info_t *dip);

Solaris DDI specific (Solaris DDI).

dip A pointer to the device’s dev_info structure.

ddi_slaveonly() tells the caller if the bus, or part of the bus that the device is
installed on, does not permit the device to become a DMA master, that is, whether the
device has been installed in a slave access only slot.

DDI_SUCCESS The device has been installed in a slave access only location.

DDI_FAILURE The device has not been installed in a slave access only location.

ddi_slaveonly() can be called from user or interrupt context.

Writing Device Drivers

ddi_slaveonly(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 389

ddi_soft_state, ddi_get_soft_state, ddi_soft_state_fini, ddi_soft_state_free,
ddi_soft_state_init, ddi_soft_state_zalloc – driver soft state utility routines

#include <sys/ddi.h>

#include <sys/sunddi.h>

void *ddi_get_soft_state(void *state, int item);

void ddi_soft_state_fini(void **state_p);

void ddi_soft_state_free(void *state, int item);

int ddi_soft_state_init(void **state_p, size_t size, size_t n_items);

int ddi_soft_state_zalloc(void *state, int item);

Solaris DDI specific (Solaris DDI).

state_p Address of the opaque state pointer which will be initialized by
ddi_soft_state_init() to point to implementation dependent data.

size Size of the item which will be allocated by subsequent calls to
ddi_soft_state_zalloc().

n_items A hint of the number of items which will be preallocated; zero is allowed.

state An opaque pointer to implementation-dependent data that describes the
soft state.

item The item number for the state structure; usually the instance number of the
associated devinfo node.

Most device drivers maintain state information with each instance of the device they
control; for example, a soft copy of a device control register, a mutex that must be held
while accessing a piece of hardware, a partition table, or a unit structure. These utility
routines are intended to help device drivers manage the space used by the driver to
hold such state information.

For example, if the driver holds the state of each instance in a single state structure,
these routines can be used to dynamically allocate and deallocate a separate structure
for each instance of the driver as the instance is attached and detached.

To use the routines, the driver writer needs to declare a state pointer, state_p, which the
implementation uses as a place to hang a set of per-driver structures; everything else is
managed by these routines.

The routine ddi_soft_state_init() is usually called in the driver’s _init(9E)
routine to initialize the state pointer, set the size of the soft state structure, and to allow
the driver to pre-allocate a given number of such structures if required.

The routine ddi_soft_state_zalloc() is usually called in the driver’s
attach(9E) routine. The routine is passed an item number which is used to refer to
the structure in subsequent calls to ddi_get_soft_state() and
ddi_soft_state_free(). The item number is usually just the instance number of

ddi_soft_state(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

390 man pages section 9: DDI and DKI Kernel Functions • Last Revised 7 Jun 1993

the devinfo node, obtained with ddi_get_instance(9F). The routine attempts to
allocate space for the new structure, and if the space allocation was successful,
DDI_SUCCESS is returned to the caller. Returned memory is zeroed.

A pointer to the space previously allocated for a soft state structure can be obtained by
calling ddi_get_soft_state() with the appropriate item number.

The space used by a given soft state structure can be returned to the system using
ddi_soft_state_free(). This routine is usually called from the driver’s
detach(9E) entry point.

The space used by all the soft state structures allocated on a given state pointer,
together with the housekeeping information used by the implementation can be
returned to the system using ddi_soft_state_fini(). This routine can be called
from the driver’s _fini(9E) routine.

The ddi_soft_state_zalloc(), ddi_soft_state_free() and
ddi_get_soft_state() routines coordinate access to the underlying data
structures in an MT-safe fashion, thus no additional locks should be necessary.

ddi_get_soft_state()

NULL The requested state structure was not allocated at the time of the
call.

pointer The pointer to the state structure.

ddi_soft_state_init()

0 The allocation was successful.

EINVAL Either the size parameter was zero, or the state_p parameter was
invalid.

ddi_soft_state_zalloc()

DDI_SUCCESS The allocation was successful.

DDI_FAILURE The routine failed to allocate the storage required; either the state
parameter was invalid, the item number was negative, or an
attempt was made to allocate an item number that was already
allocated.

ddi_soft_state_init(), and ddi_soft_state_alloc() can be called from
user context only, since they may internally call kmem_zalloc(9F) with the
KM_SLEEP flag.

The ddi_soft_state_fini(), ddi_soft_state_free() and
ddi_get_soft_state() routines can be called from any driver context.

ddi_soft_state(9F)

RETURN VALUES

CONTEXT

Kernel Functions for Drivers 391

EXAMPLE 1 Creating and Removing Data Structures

The following example shows how the routines described above can be used in terms
of the driver entry points of a character-only driver. The example concentrates on the
portions of the code that deal with creating and removing the driver’s data structures.

typedef struct {
volatile caddr_t *csr; /* device registers */
kmutex_t csr_mutex; /* protects ’csr’ field */
unsigned int state;
dev_info_t *dip; /* back pointer to devinfo */

} devstate_t;
static void *statep;

int
_init(void)
{

int error;

error = ddi_soft_state_init(&statep, sizeof (devstate_t), 0);
if (error != 0)

return (error);
if ((error = mod_install(&modlinkage)) != 0)

ddi_soft_state_fini(&statep);
return (error);

}

int
_fini(void)
{

int error;

if ((error = mod_remove(&modlinkage)) != 0)
return (error);

ddi_soft_state_fini(&statep);
return (0);

}

static int
xxattach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{

int instance;
devstate_t *softc;

switch (cmd) {
case DDI_ATTACH:

instance = ddi_get_instance(dip);
if (ddi_soft_state_zalloc(statep, instance) != DDI_SUCCESS)

return (DDI_FAILURE);
softc = ddi_get_soft_state(statep, instance);
softc->dip = dip;
...
return (DDI_SUCCESS);

default:
return (DDI_FAILURE);

}
}

ddi_soft_state(9F)

EXAMPLES

392 man pages section 9: DDI and DKI Kernel Functions • Last Revised 7 Jun 1993

EXAMPLE 1 Creating and Removing Data Structures (Continued)

static int
xxdetach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{

int instance;

switch (cmd) {

case DDI_DETACH:
instance = ddi_get_instance(dip);
...

ddi_soft_state_free(statep, instance);
return (DDI_SUCCESS);

default:
return (DDI_FAILURE);

}
}

static int
xxopen(dev_t *devp, int flag, int otyp, cred_t *cred_p)
{

devstate_t *softc;
int instance;

instance = getminor(*devp);
if ((softc = ddi_get_soft_state(statep, instance)) == NULL)

return (ENXIO);
...
softc->state |= XX_IN_USE;
...
return (0);

}

_fini(9E), _init(9E), attach(9E), detach(9E), ddi_get_instance(9F),
getminor(9F), kmem_zalloc(9F)

Writing Device Drivers

There is no attempt to validate the item parameter given to
ddi_soft_state_zalloc() other than it must be a positive signed integer.
Therefore very large item numbers may cause the driver to hang forever waiting for
virtual memory resources that can never be satisfied.

If necessary, a hierarchy of state structures can be constructed by embedding state
pointers in higher order state structures.

All of the messages described below usually indicate bugs in the driver and should
not appear in normal operation of the system.

ddi_soft_state(9F)

SEE ALSO

WARNINGS

NOTES

DIAGNOSTICS

Kernel Functions for Drivers 393

WARNING: ddi_soft_state_zalloc: bad handle
WARNING: ddi_soft_state_free: bad handle
WARNING: ddi_soft_state_fini: bad handle

The implementation-dependent information kept in the state variable is corrupt.

WARNING: ddi_soft_state_free: null handle
WARNING: ddi_soft_state_fini: null handle

The routine has been passed a null or corrupt state pointer. Check that
ddi_soft_state_init() has been called.

WARNING: ddi_soft_state_free: item %d not in range [0..%d]

The routine has been asked to free an item which was never allocated. The message
prints out the invalid item number and the acceptable range.

ddi_soft_state(9F)

394 man pages section 9: DDI and DKI Kernel Functions • Last Revised 7 Jun 1993

ddi_umem_alloc, ddi_umem_free – allocate and free page-aligned kernel memory

#include <sys/types.h>

#include <sys/sunddi.h>

void *ddi_umem_alloc(size_t size, int flag, ddi_umem_cookie_t
*cookiep);

void ddi_umem_free(ddi_umem_cookie_t cookie);

Solaris DDI specific (Solaris DDI).

size Number of bytes to allocate.

flag Used to determine the sleep and pageable conditions.

Possible sleep flags are DDI_UMEM_SLEEP, which allows sleeping until
memory is available, and DDI_UMEM_NOSLEEP, which returns NULL
immediately if memory is not available.

The default condition is to allocate locked memory; this can be changed to
allocate pageable memory using the DDI_UMEM_PAGEABLE flag.

cookiep Pointer to a kernel memory cookie.

cookie A kernel memory cookie allocated in ddi_umem_alloc().

ddi_umem_alloc() allocates page-aligned kernel memory and returns a pointer to
the allocated memory. The number of bytes allocated is a multiple of the system page
size (roundup of size). The allocated memory can be used in the kernel and can be
exported to user space. See devmap(9E) and devmap_umem_setup(9F) for further
information.

flag determines whether the caller can sleep for memory and whether the allocated
memory is locked or not. DDI_UMEM_SLEEP allocations may sleep but are guaranteed
to succeed. DDI_UMEM_NOSLEEP allocations do not sleep but may fail (return NULL) if
memory is currently unavailable. If DDI_UMEM_PAGEABLE is set, pageable memory
will be allocated. These pages can be swapped out to secondary memory devices. The
initial contents of memory allocated using ddi_umem_alloc() is zero-filled.

*cookiep is a pointer to the kernel memory cookie that describes the kernel memory
being allocated. A typical use of cookiep is in devmap_umem_setup(9F) when the
drivers want to export the kernel memory to a user application.

To free the allocated memory, a driver calls ddi_umem_free() with the cookie
obtained from ddi_umem_alloc(). ddi_umem_free() releases the entire buffer.

Non-null Successful completion.ddi_umem_alloc() returns a pointer to
the allocated memory.

NULL Memory cannot be allocated by ddi_umem_alloc() because
DDI_UMEM_NOSLEEP is set and the system is out of resources.

ddi_umem_alloc(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

ddi_umem_alloc()

ddi_umem_free()

DESCRIPTION

RETURN VALUES

Kernel Functions for Drivers 395

ddi_umem_alloc() can be called from any context if flag is set to
DDI_UMEM_NOSLEEP. If DDI_UMEM_SLEEP is set, ddi_umem_alloc() can be called
from user and kernel context only. ddi_umem_free() can be called from any context.

devmap(9E), condvar(9F), devmap_umem_setup(9F), kmem_alloc(9F), mutex(9F),
rwlock(9F), semaphore(9F)

Writing Device Drivers

Setting the DDI_UMEM_PAGEABLE flag in ddi_umem_alloc() will result in an
allocation of pageable memory. Because these pages can be swapped out to secondary
memory devices, drivers should use this flag with care. This memory should not be
used for synchronization objects such as locks and condition variables. See mutex(9F),
semaphore(9F), rwlock(9F), and condvar(9F). This memory also should not be
accessed in the driver interrupt routines.

Memory allocated using ddi_umem_alloc() without setting DDI_UMEM_PAGEABLE
flag cannot be paged. Available memory is therefore limited by the total physical
memory on the system. It is also limited by the available kernel virtual address space,
which is often the more restrictive constraint on large-memory configurations.

Excessive use of kernel memory is likely to effect overall system performance.
Over-commitment of kernel memory may cause unpredictable consequences.

Misuse of the kernel memory allocator, such as writing past the end of a buffer, using a
buffer after freeing it, freeing a buffer twice, or freeing an invalid pointer, will cause
the system to corrupt data or panic.

ddi_umem_alloc(0, flag, cookiep) always returns NULL. ddi_umem_free(NULL)
has no effects on system.

ddi_umem_alloc(9F)

CONTEXT

SEE ALSO

WARNINGS

NOTES

396 man pages section 9: DDI and DKI Kernel Functions • Last Revised 14 Jan 1997

ddi_umem_iosetup – Setup I/O requests to application memory

#include <sys/ddi.h>

#include <sys/sunddi.h>

struct buf *ddi_umem_iosetup(ddi_umem_cookie_t cookie,off_t off,
size_t len, int direction, dev_t dev, daddr_t blkno, int (*iodone)
(struct buf *), int sleepflag);

Solaris DDI specific (Solaris DDI)

cookie The kernel memory cookie allocated by ddi_umem_lock(9F).

off Offset from the start of the cookie.

len Length of the I/O request in bytes.

direction Must be set to B_READ for reads from the device or B_WRITE for
writes to the device.

dev Device number

blkno Block number on device.

iodone Specific biodone(9F) routine.

sleepflag Determines whether caller can sleep for memory. Possible flags are
DDI_UMEM_SLEEP to allow sleeping until memory is available, or
DDI_UMEM_NOSLEEP to return NULL immediately if memory is
not available.

The ddi_umem_iosetup(9F) function is used by drivers to setup I/O requests to
application memory which has been locked down using ddi_umem_lock(9F).

The ddi_umem_iosetup(9F) function returns a pointer to a buf(9S) structure
corresponding to the memory cookie cookie. Drivers can setup multiple buffer
structures simultaneously active using the same memory cookie. The buf(9S)
structures can span all or part of the region represented by the cookie and can overlap
each other. The buf(9S) structure can be passed to ddi_dma_buf_bind_handle(9F)
to initiate DMA transfers to or from the locked down memory.

The off parameter specifies the offset from the start of the cookie. The len parameter
represents the length of region to be mapped by the buffer. The direction parameter can
be set to B_READ or B_WRITE to indicate the action that will be performed by the
device. (Note that this direction is in the opposite sense of the VM system’s direction
of DDI_UMEMLOCK_READ and DDI_UMEMLOCK_WRITE.) The direction must be
compatible with the flags used to create the memory cookie in ddi_umem_lock(9F).

The dev parameter specifies the device to which the buffer is to perform I/O.The blkno
parameter represents the block number on the device. It will be assigned to the
b_blkno field of the returned buffer structure. The iodone parameter enables the
driver to identify a specific biodone(9F) routine to be called by the driver when the

ddi_umem_iosetup(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

Kernel Functions for Drivers 397

I/O is complete. The sleepflag parameter determines if the caller can sleep for memory.
DDI_UMEM_SLEEP allocations may sleep but are guaranteed to succeed.
DDI_UMEM_NOSLEEP allocations do not sleep but may fail (return NULL) if memory is
currently not available.

After the I/O has completed and the buffer structure is no longer needed, the driver
calls freerbuf(9F) to free the buffer structure.

The ddi_umem_iosetup(9F) function returns a pointer to the initialized buffer
header, or NULL if no space is available.

The ddi_umem_iosetup(9F) function can be called from any context only if flag is
set to DDI_UMEM_NOSLEEP. If DDI_UMEM_SLEEP is set, ddi_umem_iosetup(9F) can
be called from user and kernel context only.

ddi_umem_lock(9F), ddi_dma_buf_bind_handle(9F), ddi_umem_unlock(9F),
freerbuf(9F), physio(9F), buf(9S)

ddi_umem_iosetup(9F)

RETURN VALUES

CONTEXT

SEE ALSO

398 man pages section 9: DDI and DKI Kernel Functions • Last Revised 17 August 1999

ddi_umem_lock, ddi_umem_unlock – lock and unlock memory pages

#include <sys/ddi.h>

#include <sys/sunddi.h>

int ddi_umem_lock(caddr_t addr, size_t len, int flags,
ddi_umem_cookie_t *cookiep);

void ddi_umem_unlock(ddi_umem_cookie_t cookie);

Solaris DDI specific (Solaris DDI)

addr Virtual address of memory object

len Length of memory object in bytes

flags Valid flags include:

DDI_UMEMLOCK_READ Memory pages are locked to be
read from. (Disk write or a network
send.)

DDI_UMEMLOCK_WRITE Memory pages are locked to be
written to. (Disk read or a network
receive.)

cookiep Pointer to a kernel memory cookie.

cookie Kernel memory cookie allocated by
ddi_umem_lock().

The ddi_umem_lock(9F) function locks down the physical pages (including I/O
pages) that correspond to the current process’ virtual address range [addr, addr + size)
and fills in a cookie representing the locked pages. This cookie can be used to create a
buf(9S) structure that can be used to perform I/O (see ddi_umem_iosetup(9F) and
ddi_dma_buf_bind_handle(9F)), or it can be used with devmap_umem_setup(9F)
to export the memory to an application.

The flags argument indicates the intended use of the locked memory. Set flags to
DDI_UMEMLOCK_READ if the memory pages will be read (for example, in a disk write
or a network send.) Set flags to DDI_UMEMLOCK_WRITE if the memory pages will be
written (for example, in a disk read or a network receive).

To unlock the locked pages, the drivers call ddi_umem_unlock(9F) with the cookie
obtained from ddi_umem_lock(9F).

The process is not allowed to exec(2) or fork(2) while its physical pages are locked
down by the device driver.

The device driver must ensure that the physical pages have been unlocked after the
application has called close(2).

On success, a 0 is returned. Otherwise, one of the following errno values is returned.

ddi_umem_lock(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

ddi_umem_lock

ddi_umem_unlock

DESCRIPTION

RETURN VALUES

Kernel Functions for Drivers 399

EFAULT User process has no mapping at that address range or
does not support locking

EACCES User process does not have the required permission.

ENOMEM The system does not have sufficient resources to lock
memory.

EAGAIN Could not allocate system resources required to lock
the pages. The ddi_umem_lock() could succeed at a
later time.

The ddi_umem_lock() function can only be called from user context;
ddi_umem_unlock() from user, kernel, and interrupt contexts.

ddi_umem_iosetup(9F), ddi_dma_buf_bind_handle(9F),
devmap_umem_setup(9F), ddi_umem_alloc(9F)

The ddi_umem_lock(9F) function consumes physical memory. The driver is
responsible for a speedy unlock to free up the resources.

ddi_umem_unlock() can defer unlocking of the pages to a later time depending on
the implementation.

ddi_umem_lock(9F)

CONTEXT

SEE ALSO

NOTES

400 man pages section 9: DDI and DKI Kernel Functions • Last Revised 25 Sep 2001

delay – delay execution for a specified number of clock ticks

#include <sys/ddi.h>

void delay(clock_t ticks);

Architecture independent level 1 (DDI/DKI).

ticks The number of clock cycles to delay.

delay() provides a mechanism for a driver to delay its execution for a given period
of time. Since the speed of the clock varies among systems, drivers should base their
time values on microseconds and use drv_usectohz(9F) to convert microseconds
into clock ticks.

delay() uses timeout(9F) to schedule an internal function to be called after the
specified amount of time has elapsed. delay() then waits until the function is called.
Because timeout() is subject to priority inversion, drivers waiting on behalf of
processes with real-time constraints should use cv_timedwait(9F) rather than
delay().

delay() does not busy-wait. If busy-waiting is required, use drv_usecwait(9F).

delay() can be called from user and kernel contexts.

EXAMPLE 1 delay() Example

Before a driver I/O routine allocates buffers and stores any user data in them, it checks
the status of the device (line 12). If the device needs manual intervention (such as,
needing to be refilled with paper), a message is displayed on the system console (line
14). The driver waits an allotted time (line 17) before repeating the procedure.

1 struct device { /* layout of physical device registers */
2 int control; /* physical device control word */
3 int status; /* physical device status word */
4 short xmit_char; /* transmit character to device */
5 };
6
7

. . .
9 /* get device registers */
10 register struct device *rp = ...
11
12 while (rp->status & NOPAPER) { /* while printer is out of paper */
13 /* display message and ring bell */

/* on system console */
14 cmn_err(CE_WARN, "^\007",
15 (getminor(dev) & 0xf));
16 /* wait one minute and try again */
17 delay(60 * drv_usectohz(1000000));
18 }

delay(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

EXAMPLES

Kernel Functions for Drivers 401

EXAMPLE 1 delay() Example (Continued)

biodone(9F), biowait(9F), cv_timedwait(9F), ddi_in_panic(9F),
drv_hztousec(9F), drv_usectohz(9F), drv_usecwait(9F), timeout(9F),
untimeout(9F)

Writing Device Drivers

delay(9F)

SEE ALSO

402 man pages section 9: DDI and DKI Kernel Functions • Last Revised 15 Oct 2001

devmap_default_access – default driver memory access function

#include <sys/ddi.h>
#include <sys/sunddi.h>

int devmap_default_access(devmap_cookie_t dhp, void *pvtp,
offset_t off, size_t len, uint_t type, uint_t rw);

Solaris DDI specific (Solaris DDI).

dhp An opaque mapping handle that the system uses to describe the mapping.

pvtp Driver private mapping data.

off User offset within the logical device memory at which the access begins.

len Length (in bytes) of the memory being accessed.

type Type of access operation.

rw Type of access.

devmap_default_access() is a function providing the semantics of
devmap_access(9E). The drivers call devmap_default_access() to handle the
mappings that do not support context switching. The drivers should call
devmap_do_ctxmgt(9F) for the mappings that support context management.

devmap_default_access() can either be called from devmap_access(9E) or be
used as the devmap_access(9E) entry point. The arguments dhp, pvtp, off, len, type,
and rw are provided by the devmap_access(9E) entry point and must not be
modified.

0 Successful completion.

Non-zero An error occurred.

devmap_default_access() must be called from the driver’s devmap_access(9E)
entry point.

EXAMPLE 1 Using devmap_default_access in devmap_access.

The following shows an example of using devmap_default_access() in the
devmap_access(9E) entry point.

. . .
#define OFF_DO_CTXMGT 0x40000000
#define OFF_NORMAL 0x40100000
#define CTXMGT_SIZE 0x100000
#define NORMAL_SIZE 0x100000

/*
* Driver devmap_contextmgt(9E) callback function.
*/
static int
xx_context_mgt(devmap_cookie_t dhp, void *pvtp, offset_t offset,

devmap_default_access(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

EXAMPLES

Kernel Functions for Drivers 403

EXAMPLE 1 Using devmap_default_access in devmap_access. (Continued)

size_t length, uint_t type, uint_t rw)
{

......
/*
* see devmap_contextmgt(9E) for an example
*/

}

/*
* Driver devmap_access(9E) entry point
*/
static int
xxdevmap_access(devmap_cookie_t dhp, void *pvtp, offset_t off,

size_t len, uint_t type, uint_t rw)
{

offset_t diff;
int err;

/*
* check if off is within the range that supports
* context management.
*/
if ((diff = off - OFF_DO_CTXMG) >= 0 && diff < CTXMGT_SIZE) {

/*
* calculates the length for context switching
*/
if ((len + off) > (OFF_DO_CTXMGT + CTXMGT_SIZE))

return (-1);
/*
* perform context switching
*/
err = devmap_do_ctxmgt(dhp, pvtp, off, len, type,

rw, xx_context_mgt);
/*
* check if off is within the range that does normal
* memory mapping.
*/
} else if ((diff = off - OFF_NORMAL) >= 0 && diff < NORMAL_SIZE) {

if ((len + off) > (OFF_NORMAL + NORMAL_SIZE))
return (-1);

err = devmap_default_access(dhp, pvtp, off, len, type, rw);
} else

return (-1);

return (err);
}

devmap_access(9E), devmap_do_ctxmgt(9F), devmap_callback_ctl(9S)

Writing Device Drivers

devmap_default_access(9F)

SEE ALSO

404 man pages section 9: DDI and DKI Kernel Functions • Last Revised 14 Jan 1997

devmap_devmem_setup, devmap_umem_setup – set driver memory mapping
parameters

#include <sys/ddi.h>

#include <sys/sunddi.h>

int devmap_devmem_setup(devmap_cookie_t dhp, dev_info_t *dip,
struct devmap_callback_ctl *callbackops, uint_t rnumber, offset_t
roff, size_t len, uint_t maxprot, uint_t flags,
ddi_device_acc_attr_t *accattrp);

intdevmap_umem_setup(devmap_cookie_t dhp, dev_info_t *dip, struct
devmap_callback_ctl * callbackops, ddi_umem_cookie_t cookie,
offset_t koff, size_t len, uint_t maxprot, uint_t flags,
ddi_device_acc_attr_t *accattrp);

Solaris DDI specific (Solaris DDI).

devmap_devmem_setup() parameters:

dhp An opaque mapping handle that the system uses to describe the
mapping.

dip Pointer to the device’s dev_info structure.

callbackops Pointer to a devmap_callback_ctl(9S) structure. The structure
contains pointers to device driver-supplied functions that manage
events on the device mapping. The framework will copy the
structure to the system private memory.

rnumber Index number to the register address space set.

roff Offset into the register address space.

len Length (in bytes) of the mapping to be mapped.

maxprot Maximum protection flag possible for attempted mapping. Some
combinations of possible settings are:

PROT_READ Read access is allowed.

PROT_WRITE Write access is allowed.

PROT_EXEC Execute access is allowed.

PROT_USER User-level access is allowed (the mapping is
being done as a result of a mmap(2) system
call).

PROT_ALL All access is allowed.

flags Must be set to 0.

accattrp Pointer to a ddi_device_acc_attr(9S) structure. The structure
contains the device access attributes to be applied to this range of
memory.

devmap_devmem_setup(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

Kernel Functions for Drivers 405

devmap_umem_setup() parameters:

dhp An opaque data structure that the system uses to describe the
mapping.

dip Pointer to the device’s dev_info structure.

callbackops Pointer to a devmap_callback_ctl(9S) structure. The structure
contains pointers to device driver-supplied functions that manage
events on the device mapping.

cookie A kernel memory cookie (see ddi_umem_alloc(9F)).

koff Offset into the kernel memory defined by cookie.

len Length (in bytes) of the mapping to be mapped.

maxprot Maximum protection flag possible for attempted mapping. Some
combinations of possible settings are:

PROT_READ Read access is allowed.

PROT_WRITE Write access is allowed.

PROT_EXEC Execute access is allowed.

PROT_USER User-level access is allowed (the mapping is
being done as a result of a mmap(2) system
call).

PROT_ALL All access is allowed.

flags Must be set to 0.

accattrp Pointer to a ddi_device_acc_attr(9S) structure. Ignored in the
current release. Reserved for future use.

devmap_devmem_setup() and devmap_umem_setup() are used in the
devmap(9E) entry point to pass mapping parameters from the driver to the system.

dhp is a device mapping handle that the system uses to store all mapping parameters
of a physical contiguous memory. The system copies the data pointed to by callbackops
to a system private memory. This allows the driver to free the data after returning
from either devmap_devmem_setup() or devmap_umem_setup(). The driver is
notified of user events on the mappings via the entry points defined by
devmap_callback_ctl(9S). The driver is notified of the following user events:

Mapping Setup User has called mmap(2) to create a mapping to the device memory.

Access User has accessed an address in the mapping that has no
translations.

Duplication User has duplicated the mapping. Mappings are duplicated when
the process calls fork(2).

Unmapping User has called munmap(2) on the mapping or is exiting, exit(2).

devmap_devmem_setup(9F)

DESCRIPTION

406 man pages section 9: DDI and DKI Kernel Functions • Last Revised 4 Jan 2002

See devmap_map(9E), devmap_access(9E), devmap_dup(9E), and
devmap_unmap(9E) for details on these entry points.

By specifying a valid callbackops to the system, device drivers can manage events on a
device mapping. For example, the devmap_access(9E) entry point allows the drivers
to perform context switching by unloading the mappings of other processes and to
load the mapping of the calling process. Device drivers may specify NULL to
callbackops which means the drivers do not want to be notified by the system.

The maximum protection allowed for the mapping is specified in maxprot. accattrp
defines the device access attributes. See ddi_device_acc_attr(9S) for more details.

devmap_devmem_setup() is used for device memory to map in the register set
given by rnumber and the offset into the register address space given by roff. The
system uses rnumber and roff to go up the device tree to get the physical address that
corresponds to roff. The range to be affected is defined by len and roff. The range from
roff to roff + len must be a physical contiguous memory and page aligned.

Drivers use devmap_umem_setup() for kernel memory to map in the kernel
memory described by cookie and the offset into the kernel memory space given by koff.
cookie is a kernel memory pointer obtained from ddi_umem_alloc(9F). If cookie is
NULL, devmap_umem_setup() returns -1. The range to be affected is defined by len
and koff. The range from koff to koff + len must be within the limits of the kernel
memory described by koff + len and must be page aligned.

Drivers use devmap_umem_setup() to export the kernel memory allocated by
ddi_umem_alloc(9F) to user space. The system selects a user virtual address that is
aligned with the kernel virtual address being mapped to avoid cache incoherence if
the mapping is not MAP_FIXED.

0 Successful completion.

-1 An error occurred.

devmap_devmem_setup() and devmap_umem_setup() can be called from user,
kernel, and interrupt context.

exit(2), fork(2), mmap(2), munmap(2), devmap(9E), ddi_umem_alloc(9F),
ddi_device_acc_attr(9S), devmap_callback_ctl(9S)

Writing Device Drivers

devmap_devmem_setup(9F)

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 407

devmap_do_ctxmgt – perform device context switching on a mapping

#include <sys/ddi.h>

#include <sys/sunddi.h>

int devmap_do_ctxmgt(devmap_cookie_t dhp, void *pvtp, offset_t off,
size_t len, uint_t type, uint_t rw, int
(*devmap_contextmgt)devmap_cookie_t, void *, offset_t, size_t,
uint_t, uint_t);

Solaris DDI specific (Solaris DDI).

dhp An opaque mapping handle that the system uses to
describe the mapping.

pvtp Driver private mapping data.

off User offset within the logical device memory at which
the access begins.

len Length (in bytes) of the memory being accessed.

devmap_contextmgt The address of driver function that the system will call
to perform context switching on a mapping. See
devmap_contextmgt(9E) for details.

type Type of access operation. Provided by
devmap_access(9E). Should not be modified.

rw Direction of access. Provided by devmap_access(9E).
Should not be modified.

Device drivers call devmap_do_ctxmgt() in the devmap_access(9E) entry point to
perform device context switching on a mapping. devmap_do_ctxmgt() passes a
pointer to a driver supplied callback function, devmap_contextmgt(9E), to the
system that will perform the actual device context switching. If
devmap_contextmgt(9E) is not a valid driver callback function, the system will fail
the memory access operation which will result in a SIGSEGV or SIGBUS signal being
delivered to the process.

devmap_do_ctxmgt() performs context switching on the mapping object identified
by dhp and pvtp in the range specified by off and len. The arguments dhp, pvtp, type, and
rw are provided by the devmap_access(9E) entry point and must not be modified.
The range from off to off+len must support context switching.

The system will pass through dhp, pvtp, off, len, type, and rw to
devmap_contextmgt(9E) in order to perform the actual device context switching.
The return value from devmap_contextmgt(9E) will be returned directly to
devmap_do_ctxmgt().

0 Successful completion.

Non-zero An error occurred.

devmap_do_ctxmgt(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

408 man pages section 9: DDI and DKI Kernel Functions • Last Revised 22 Jan 1997

devmap_do_ctxmgt() must be called from the driver’s devmap_access(9E) entry
point.

EXAMPLE 1 Using devmap_do_ctxmgt in the devmap_access entry point.

The following shows an example of using devmap_do_ctxmgt() in the
devmap_access(9E) entry point.

. . .
#define OFF_DO_CTXMGT 0x40000000
#define OFF_NORMAL 0x40100000
#define CTXMGT_SIZE 0x100000
#define NORMAL_SIZE 0x100000

/*
* Driver devmap_contextmgt(9E) callback function.
*/
static int
xx_context_mgt(devmap_cookie_t dhp, void *pvtp, offset_t offset,

size_t length, uint_t type, uint_t rw)
{

......
/*
* see devmap_contextmgt(9E) for an example
*/

}

/*
* Driver devmap_access(9E) entry point
*/
static int
xxdevmap_access(devmap_cookie_t dhp, void *pvtp, offset_t off,

size_t len, uint_t type, uint_t rw)
{

offset_t diff;
int err;

/*
* check if off is within the range that supports
* context management.
*/
if ((diff = off - OFF_DO_CTXMG) >= 0 && diff < CTXMGT_SIZE) {

/*
* calculates the length for context switching
*/
if ((len + off) > (OFF_DO_CTXMGT + CTXMGT_SIZE))

return (-1);
/*
* perform context switching
*/
err = devmap_do_ctxmgt(dhp, pvtp, off, len, type,

rw, xx_context_mgt);
/*
* check if off is within the range that does normal
* memory mapping.
*/

devmap_do_ctxmgt(9F)

CONTEXT

EXAMPLES

Kernel Functions for Drivers 409

EXAMPLE 1 Using devmap_do_ctxmgt in the devmap_access entry point. (Continued)

} else if ((diff = off - OFF_NORMAL) >= 0 && diff < NORMAL_SIZE) {
if ((len + off) > (OFF_NORMAL + NORMAL_SIZE))

return (-1);
err = devmap_default_access(dhp, pvtp, off, len, type, rw);

} else
return (-1);

return (err);
}

devmap_access(9E), devmap_contextmgt(9E), devmap_default_access(9F)

Writing Device Drivers

devmap_do_ctxmgt(9F)

SEE ALSO

410 man pages section 9: DDI and DKI Kernel Functions • Last Revised 22 Jan 1997

devmap_set_ctx_timeout – set the timeout value for the context management callback

#include <sys/ddi.h>

#include <sys/sunddi.h>

void devmap_set_ctx_timeout(devmap_cookie_t dhp, clock_t ticks);

Solaris DDI specific (Solaris DDI).

dhp An opaque mapping handle that the system uses to describe the mapping.

ticks Number of clock ticks to wait between successive calls to the context
management callback function.

devmap_set_ctx_timeout() specifies the time interval for the system to wait
between successive calls to the driver’s context management callback function,
devmap_contextmgt(9E).

Device drivers typically call devmap_set_ctx_timeout() in the devmap_map(9E)
routine. If the drivers do not call devmap_set_ctx_timeout() to set the timeout
value, the default timeout value of 0 will result in no delay between successive calls to
the driver’s devmap_contextmgt(9E) callback function.

devmap_set_ctx_timeout() can be called from user or interrupt context.

devmap_contextmgt(9E), devmap_map(9E), timeout(9F)

devmap_set_ctx_timeout(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

SEE ALSO

Kernel Functions for Drivers 411

devmap_setup, ddi_devmap_segmap – set up a user mapping to device memory
using the devmap framework

#include <sys/ddi.h>

#include <sys/sunddi.h>

int devmap_setup(dev_t dev, offset_t off, ddi_as_handle_t as,
caddr_t *addrp, size_tlen, uint_t prot, uint_t maxprot, uint_t
flags, cred_t *cred);

int ddi_devmap_segmap(dev_t dev, off_t off, ddi_as_handle_t as,
caddr_t *addrp, off_tlen, uint_t prot, uint_t maxprot, uint_t flags,
cred_t *cred);

Solaris DDI specific (Solaris DDI).

dev Device whose memory is to be mapped.

off User offset within the logical device memory at which the mapping begins.

as An opaque data structure that describes the address space into which the
device memory should be mapped.

addrp Pointer to the starting address in the address space into which the device
memory should be mapped.

len Length (in bytes) of the memory to be mapped.

prot A bit field that specifies the protections. Some possible settings
combinations are:

PROT_READ Read access is desired.

PROT_WRITE Write access is desired.

PROT_EXEC Execute access is desired.

PROT_USER User-level access is desired (the mapping is being done
as a result of a mmap(2) system call).

PROT_ALL All access is desired.

maxprot Maximum protection flag possible for attempted mapping; the
PROT_WRITE bit may be masked out if the user opened the special file
read-only.

flags Flags indicating type of mapping. The following flags can be specified:

MAP_PRIVATE Changes are private.

MAP_SHARED Changes should be shared.

MAP_FIXED The user specified an address in *addrp rather than
letting the system choose an address.

cred Pointer to the user credential structure.

devmap_setup(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

412 man pages section 9: DDI and DKI Kernel Functions • Last Revised 22 Jan 1997

devmap_setup() and ddi_devmap_segmap() allow device drivers to use the
devmap framework to set up user mappings to device memory. The devmap
framework provides several advantages over the default device mapping framework
that is used by ddi_segmap(9F) or ddi_segmap_setup(9F). Device drivers should
use the devmap framework, if the driver wants to:

� use an optimal MMU pagesize to minimize address translations,

� conserve kernel resources,

� receive callbacks to manage events on the mapping,

� export kernel memory to applications,

� set up device contexts for the user mapping if the device requires context
switching,

� assign device access attributes to the user mapping, or

� change the maximum protection for the mapping.

devmap_setup() must be called in the segmap(9E) entry point to establish the
mapping for the application. ddi_devmap_segmap() can be called in, or be used as,
the segmap(9E) entry point. The differences between devmap_setup() and
ddi_devmap_segmap() are in the data type used for off and len.

When setting up the mapping, devmap_setup() and ddi_devmap_segmap() call
the devmap(9E) entry point to validate the range to be mapped. The devmap(9E) entry
point also translates the logical offset (as seen by the application) to the corresponding
physical offset within the device address space. If the driver does not provide its own
devmap(9E) entry point, EINVAL will be returned to the mmap(2) system call.

0 Successful completion.

Non-zero An error occurred. The return value of devmap_setup() and
ddi_devmap_segmap() should be used directly in the
segmap(9E) entry point.

devmap_setup() and ddi_devmap_segmap() can be called from user or kernel
context only.

mmap(2), devmap(9E), segmap(9E), ddi_segmap(9F), ddi_segmap_setup(9F),
cb_ops(9S)

Writing Device Drivers

devmap_setup(9F)

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 413

devmap_unload, devmap_load – control validation of memory address translations

#include <sys/ddi.h>

#include <sys/sunddi.h>

int devmap_load(devmap_cookie_t dhp, offset_t off, size_t len,
uint_t type, uint_t rw);

int devmap_unload(devmap_cookie_t dhp, offset_t off, size_t len);

Solaris DDI specific (Solaris DDI).

dhp An opaque mapping handle that the system uses to describe the mapping.

off User offset within the logical device memory at which the loading or
unloading of the address translations begins.

len Length (in bytes) of the range being affected.

type Type of access operation.

rw Direction of access.

devmap_unload() and devmap_load() are used to control the validation of the
memory mapping described by dhp in the specified range. devmap_unload()
invalidates the mapping translations and will generate calls to the
devmap_access(9E) entry point next time the mapping is accessed. The drivers use
devmap_load() to validate the mapping translations during memory access.

A typical use of devmap_unload() and devmap_load() is in the driver’s context
management callback function, devmap_contextmgt(9E). To manage a device
context, a device driver calls devmap_unload() on the context about to be switched
out. It switches contexts, and then calls devmap_load() on the context switched in.
devmap_unload() can be used to unload the mappings of other processes as well as
the mappings of the calling process, but devmap_load() can only be used to load the
mappings of the calling process. Attempting to load another process’s mappings with
devmap_load() will result in a system panic.

For both routines, the range to be affected is defined by the off and len arguments.
Requests affect the entire page containing the off and all pages up to and including the
page containing the last byte as indicated by off + len. The arguments type and rw are
provided by the system to the calling function (for example,
devmap_contextmgt(9E)) and should not be modified.

Supplying a value of 0 for the len argument affects all addresses from the off to the end
of the mapping. Supplying a value of 0 for the off argument and a value of 0 for len
argument affect all addresses in the mapping.

A non-zero return value from either devmap_unload() or devmap_load() will
cause the corresponding operation to fail. The failure may result in a SIGSEGV or
SIGBUS signal being delivered to the process.

0 Successful completion.

devmap_unload(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

devmap_load()
only

DESCRIPTION

RETURN VALUES

414 man pages section 9: DDI and DKI Kernel Functions • Last Revised 22 Jan 1997

Non-zero An error occurred.

These routines can be called from user or kernel context only.

EXAMPLE 1 Managing a One-Page Device Context

The following shows an example of managing a device context that is one page in
length.

struct xx_context cur_ctx;

static int
xxdevmap_contextmgt(devmap_cookie_t dhp, void *pvtp, offset_t off,

size_t len, uint_t type, uint_t rw)
{

int err;
devmap_cookie_t cur_dhp;
struct xx_pvt *p;
struct xx_pvt *pvp = (struct xx_pvt *)pvtp;
/* enable access callbacks for the current mapping */
if (cur_ctx != NULL && cur_ctx != pvp->ctx) {

p = cur_ctx->pvt;
/*
* unload the region from off to the end of the mapping.
*/
cur_dhp = p->dhp;
if ((err = devmap_unload(cur_dhp, off, len)) != 0)

return (err);
}
/* Switch device context - device dependent*/
...
/* Make handle the new current mapping */
cur_ctx = pvp->ctx;
/*
* Disable callbacks and complete the access for the
* mapping that generated this callback.
*/
return (devmap_load(pvp->dhp, off, len, type, rw));

}

devmap_access(9E), devmap_contextmgt(9E)

Writing Device Drivers

devmap_unload(9F)

CONTEXT

EXAMPLES

SEE ALSO

Kernel Functions for Drivers 415

disksort – single direction elevator seek sort for buffers

#include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

void

disksort(struct diskhd *dp, struct buf *bp);

Solaris DDI specific (Solaris DDI).

dp A pointer to a diskhd structure. A diskhd structure is essentially identical
to head of a buffer structure (see buf(9S)). The only defined items of
interest for this structure are the av_forw and av_back structure elements
which are used to maintain the front and tail pointers of the forward linked
I/O request queue.

bp A pointer to a buffer structure. Typically this is the I/O request that the
driver receives in its strategy routine (see strategy(9E)). The driver is
responsible for initializing the b_resid structure element to a meaningful
sort key value prior to calling disksort().

The function disksort() sorts a pointer to a buffer into a single forward linked list
headed by the av_forw element of the argument *dp.

It uses a one-way elevator algorithm that sorts buffers into the queue in ascending
order based upon a key value held in the argument buffer structure element b_resid.

This value can either be the driver calculated cylinder number for the I/O request
described by the buffer argument, or simply the absolute logical block for the I/O
request, depending on how fine grained the sort is desired to be or how applicable
either quantity is to the device in question.

The head of the linked list is found by use of the av_forw structure element of the
argument *dp. The tail of the linked list is found by use of the av_back structure
element of the argument *dp. The av_forw element of the *bp argument is used by
disksort() to maintain the forward linkage. The value at the head of the list
presumably indicates the currently active disk area.

This function can be called from user or interrupt context.

strategy(9E), buf(9S)

Writing Device Drivers

disksort() does no locking. Therefore, any locking is completely the responsibility
of the caller.

disksort(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

SEE ALSO

WARNINGS

416 man pages section 9: DDI and DKI Kernel Functions • Last Revised 30 Jul 1993

drv_getparm – retrieve kernel state information

#include <sys/ddi.h>

int drv_getparm(unsigned int parm, void *value_p);

Architecture independent level 1 (DDI/DKI).

parm The kernel parameter to be obtained. Possible values are:

LBOLT Read the value of lbolt. lbolt is a clock_t that is
unconditionally incremented by one at each clock tick. No special
treatment is applied when this value overflows the maximum
value of the signed integral type clock_t. When this occurs, its
value will be negative, and its magnitude will be decreasing until
it again passes zero. It can therefore not be relied upon to provide
an indication of the amount of time that passes since the last
system reboot, nor should it be used to mark an absolute time in
the system. Only the difference between two measurements of
lbolt is significant. It is used in this way inside the system kernel
for timing purposes.

PPGRP Read the process group identification number. This number
determines which processes should receive a HANGUP or BREAK
signal when detected by a driver.

UPROCP Read the process table token value.

PPID Read process identification number.

PSID Read process session identification number.

TIME Read time in seconds.

UCRED Return a pointer to the caller’s credential structure.

value_p A pointer to the data space in which the value of the parameter is
to be copied.

Since the release of the Solaris 2.6 operating environment, the drv_getparm()
function has been replaced by ddi_get_lbolt(9F), ddi_get_time(9F), and
ddi_get_pid(9F).

drv_getparm() function verifies that parm corresponds to a kernel parameter that
may be read. If the value of parm does not correspond to a parameter or corresponds
to a parameter that may not be read, -1 is returned. Otherwise, the value of the
parameter is stored in the data space pointed to by value_p.

drv_getparm() does not explicitly check to see whether the device has the
appropriate context when the function is called and the function does not check for
correct alignment in the data space pointed to by value_p. It is the responsibility of the
driver writer to use this function only when it is appropriate to do so and to correctly
declare the data space needed by the driver.

drv_getparm(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

Kernel Functions for Drivers 417

drv_getparm() returns 0 to indicate success, –1 to indicate failure. The value stored
in the space pointed to by value_p is the value of the parameter if 0 is returned, or
undefined if –1 is returned. –1 is returned if you specify a value other than LBOLT,
PPGRP, PPID, PSID, TIME, UCRED, or UPROCP. Always check the return code when
using this function.

drv_getparm() can be called from user context only when using PPGRP, PPID,
PSID, UCRED, or UPROCP. It can be called from user or interrupt context when using
the LBOLT or TIME argument.

ddi_get_lbolt(9F), ddi_get_pid(9F), ddi_get_time(9F), buf(9S)

Writing Device Drivers

drv_getparm(9F)

RETURN VALUES

CONTEXT

SEE ALSO

418 man pages section 9: DDI and DKI Kernel Functions • Last Revised 24 Jun 1997

drv_hztousec – convert clock ticks to microseconds

#include <sys/types.h>

#include <sys/ddi.h>

clock_t drv_hztousec(clock_t hertz);

Architecture independent level 1 (DDI/DKI).

hertz The number of clock ticks to convert.

drv_hztousec() converts into microseconds the time expressed by hertz, which is in
system clock ticks.

The kernel variable lbolt, whose value should be retrieved by calling
ddi_get_lbolt(9F), is the length of time the system has been up since boot and is
expressed in clock ticks. Drivers often use the value of lbolt before and after an I/O
request to measure the amount of time it took the device to process the request.
drv_hztousec() can be used by the driver to convert the reading from clock ticks to
a known unit of time.

The number of microseconds equivalent to the hertz parameter. No error value is
returned. If the microsecond equivalent to hertz is too large to be represented as a
clock_t , then the maximum clock_t value will be returned.

drv_hztousec() can be called from user or interrupt context.

ddi_get_lbolt(9F), drv_usectohz(9F), drv_usecwait(9F)

Writing Device Drivers

drv_hztousec(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 419

drv_priv – determine driver privilege

#include <sys/types.h>
#include <sys/cred.h>

#include <sys/ddi.h>

int drv_priv(cred_t *cr);

Architecture independent level 1 (DDI/DKI).

cr Pointer to the user credential structure.

drv_priv() provides a general interface to the system privilege policy. It determines
whether the credentials supplied by the user credential structure pointed to by cr
identify a privileged process. This function should only be used when file access
modes and special minor device numbers are insufficient to provide protection for the
requested driver function. It is intended to replace all calls to suser() and any
explicit checks for effective user ID = 0 in driver code.

This routine returns 0 if it succeeds, EPERM if it fails.

drv_priv() can be called from user or interrupt context.

Writing Device Drivers

drv_priv(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

420 man pages section 9: DDI and DKI Kernel Functions • Last Revised 11 Apr 1991

drv_usectohz – convert microseconds to clock ticks

#include <sys/types.h>

#include <sys/ddi.h>

clock_t drv_usectohz(clock_t microsecs);

Architecture independent level 1 (DDI/DKI).

microsecs The number of microseconds to convert.

drv_usectohz() converts a length of time expressed in microseconds to a number
of system clock ticks. The time arguments to timeout(9F) and delay(9F) are
expressed in clock ticks.

drv_usectohz() is a portable interface for drivers to make calls to timeout(9F) and
delay(9F) and remain binary compatible should the driver object file be used on a
system with a different clock speed (a different number of ticks in a second).

The value returned is the number of system clock ticks equivalent to the microsecs
argument. No error value is returned. If the clock tick equivalent to microsecs is too
large to be represented as a clock_t, then the maximum clock_t value will be
returned.

drv_usectohz() can be called from user or interrupt context.

delay(9F), drv_hztousec(9F), timeout(9F)

Writing Device Drivers

drv_usectohz(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 421

drv_usecwait – busy-wait for specified interval

#include <sys/types.h>

#include <sys/ddi.h>

void drv_usecwait(clock_t microsecs);

Architecture independent level 1 (DDI/DKI).

microsecs The number of microseconds to busy-wait.

drv_usecwait() gives drivers a means of busy-waiting for a specified microsecond
count. The amount of time spent busy-waiting may be greater than the microsecond
count but will minimally be the number of microseconds specified.

delay(9F) can be used by a driver to delay for a specified number of system ticks, but
it has two limitations. First, the granularity of the wait time is limited to one clock tick,
which may be more time than is needed for the delay. Second, delay(9F) may only be
invoked from user context and hence cannot be used at interrupt time or system
initialization.

Often, drivers need to delay for only a few microseconds, waiting for a write to a
device register to be picked up by the device. In this case, even in user context,
delay(9F) produces too long a wait period.

drv_usecwait() can be called from user or interrupt context.

delay(9F), timeout(9F), untimeout(9F)

Writing Device Drivers

The driver wastes processor time by making this call since drv_usecwait() does
not block but simply busy-waits. The driver should only make calls to
drv_usecwait() as needed, and only for as much time as needed.
drv_usecwait() does not mask out interrupts.

drv_usecwait(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

SEE ALSO

NOTES

422 man pages section 9: DDI and DKI Kernel Functions • Last Revised 12 Nov 1992

dupb – duplicate a message block descriptor

#include <sys/stream.h>

mblk_t *dupb(mblk_t *bp);

Architecture independent level 1 (DDI/DKI).

.bp Pointer to the message block to be duplicated. mblk_t is an instance of the
msgb(9S) structure.

dupb() creates a new mblk_t structure (see msgb(9S)) to reference the message block
pointed to by bp.

Unlike copyb(9F), dupb() does not copy the information in the dblk_t structure (see
datab(9S)), but creates a new mblk_t structure to point to it. The reference count in
the dblk_t structure (db_ref) is incremented. The new mblk_t structure contains
the same information as the original. Note that b_rptr and b_wptr are copied from
the bp.

If successful, dupb() returns a pointer to the new message block. A NULL pointer is
returned if dupb() cannot allocate a new message block descriptor or if the db_ref
field of the data block structure (see datab(9S)) has reached a maximum value (255).

dupb() can be called from user, kernel, or interrupt context.

dupb(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

Kernel Functions for Drivers 423

EXAMPLE 1 Using dupb()

This srv(9E) (service) routine adds a header to all M_DATA messages before passing
them along. dupb is used instead of copyb(9F) because the contents of the header
block are not changed.

For each message on the queue, if it is a priority message, pass it along immediately
(lines 10–11). Otherwise, if it is anything other than an M_DATA message (line 12), and
if it can be sent along (line 13), then do so (line 14). Otherwise, put the message back
on the queue and return (lines 16–17). For all M_DATA messages, first check to see if
the stream is flow-controlled (line 20). If it is, put the message back on the queue and
return (lines 37–38). If it is not, the header block is duplicated (line 21).

dupb() can fail either due to lack of resources or because the message block has
already been duplicated 255 times. In order to handle the latter case, the example calls
copyb(9F) (line 22). If copyb(9F) fails, it is due to buffer allocation failure. In this case,
qbufcall(9F) is used to initiate a callback (lines 30-31) if one is not already pending
(lines 26-27).

The callback function, xxxcallback(), clears the recorded qbufcall(9F) callback id
and schedules the service procedure (lines 49-50). Note that the close routine,
xxxclose(), must cancel any outstanding qbufcall(9F) callback requests (lines
58-59).

If dupb() or copyb(9F) succeed, link the M_DATA message to the new message block
(line 34) and pass it along (line 35).

1 xxxsrv(q)
2 queue_t *q;
3 {
4 struct xx *xx = (struct xx *)q->q_ptr;
5 mblk_t *mp;
6 mblk_t *bp;
7 extern mblk_t *hdr;
8
9 while ((mp = getq(q)) != NULL) {
10 if (mp->b_datap->db_type >= QPCTL) {
11 putnext(q, mp);
12 } else if (mp->b_datap->db_type != M_DATA) {
13 if (canputnext(q))
14 putnext(q, mp);
15 else {
16 putbq(q, mp);
17 return;
18 }
19 } else { /* M_DATA */
20 if (canputnext(q)) {
21 if ((bp = dupb(hdr)) == NULL)
22 bp = copyb(hdr);
23 if (bp == NULL) {
24 size_t size = msgdsize(mp);
25 putbq(q, mp);
26 if (xx->xx_qbufcall_id) {

dupb(9F)

EXAMPLES

424 man pages section 9: DDI and DKI Kernel Functions • Last Revised 07 Nov 1996

EXAMPLE 1 Using dupb() (Continued)

27 /* qbufcall pending */
28 return;
29 }
30 xx->xx_qbufcall_id = qbufcall(q, size,
31 BPRI_MED, xxxcallback, (intptr_t)q);
32 return;
33 }
34 linkb(bp, mp);
35 putnext(q, bp);
36 } else {
37 putbq(q, mp);
38 return;
39 }
40 }
41 }
42 }
43 void
44 xxxcallback(q)
45 queue_t *q;
46 {
47 struct xx *xx = (struct xx *)q->q_ptr;
48
49 xx->xx_qbufcall_id = 0;
50 qenable(q);
51 }

52 xxxclose(q, cflag, crp)
53 queue_t *q;
54 int cflag;
55 cred_t *crp;
56 {
57 struct xx *xx = (struct xx *)q->q_ptr;

...
58 if (xx->xx_qbufcall_id)
59 qunbufcall(q, xx->xx_qbufcall_id);

...
60 }

srv(9E), copyb(9F), qbufcall(9F), datab(9S), msgb(9S)

Writing Device Drivers STREAMS Programming Guide

dupb(9F)

SEE ALSO

Kernel Functions for Drivers 425

dupmsg – duplicate a message

#include <sys/stream.h>

mblk_t *dupmsg(mblk_t *mp);

Architecture independent level 1 (DDI/DKI).

mp Pointer to the message.

dupmsg() forms a new message by copying the message block descriptors pointed to
by mp and linking them. dupb(9F) is called for each message block. The data blocks
themselves are not duplicated.

If successful, dupmsg() returns a pointer to the new message block. Otherwise, it
returns a NULL pointer. A return value of NULL indicates either memory depletion or
the data block reference count, db_ref (see datab(9S)), has reached a limit (255). See
dupb(9F).

dupmsg() can be called from user, kernel, or interrupt context.

EXAMPLE 1 Using dupmsg()

See copyb(9F) for an example using dupmsg().

copyb(9F), copymsg(9F), dupb(9F), datab(9S)

Writing Device Drivers

STREAMS Programming Guide

dupmsg(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

EXAMPLES

SEE ALSO

426 man pages section 9: DDI and DKI Kernel Functions • Last Revised 11 Apr 1991

enableok – reschedule a queue for service

#include <sys/stream.h>

#include <sys/ddi.h>

void enableok(queue_t *q);

Architecture independent level 1 (DDI/DKI).

q A pointer to the queue to be rescheduled.

enableok() enables queue q to be rescheduled for service. It reverses the effect of a
previous call to noenable(9F) on q by turning off the QNOENB flag in the queue.

enableok() can be called from user or interrupt context.

EXAMPLE 1 Using emableok()

The qrestart() routine uses two STREAMS functions to restart a queue that has
been disabled. The enableok() function turns off the QNOENB flag, allowing the
qenable(9F) to schedule the queue for immediate processing.

1 void
2 qrestart(rdwr_q)
3 register queue_t *rdwr_q;
4 {
5 enableok(rdwr_q);
6 /* re-enable a queue that has been disabled */
7 (void) qenable(rdwr_q);
8 }

noenable(9F), qenable(9F)

Writing Device Drivers STREAMS Programming Guide

enableok(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

EXAMPLES

SEE ALSO

Kernel Functions for Drivers 427

esballoc – allocate a message block using a caller-supplied buffer

#include <sys/stream.h>

mblk_t *esballoc(uchar *base, size_t size, uint_t pri, frtn_t
*fr_rtnp);

Architecture independent level 1 (DDI/DKI).

base Address of user supplied data buffer.

size Number of bytes in data buffer.

pri Priority of allocation request (to be used by allocb(9F) function,
called by esballoc()).

fr_rtnp Free routine data structure.

esballoc() creates a STREAMS message and attaches a user-supplied data buffer in
place of a STREAMS data buffer. It calls allocb(9F) to get a message and data block
header only. The newly allocated message will have both the b_wptr and b_rptr set
to the base of the buffer. As when using allocb(9F), the newly allocated message will
have both b_wptr and b_rptr set to the base of the data buffer. The user-supplied
data buffer, pointed to by base, is used as the data buffer for the message.

When freeb(9F) is called to free the message, the driver’s message freeing routine
(referenced through the free_rtn structure) is called, with appropriate arguments, to
free the data buffer.

The free_rtn structure includes the following members:

void (*free_func)(); /* user’s freeing routine */
char *free_arg; /* arguments to free_func() */

Instead of requiring a specific number of arguments, the free_arg field is defined of
type char *. This way, the driver can pass a pointer to a structure if more than one
argument is needed.

The method by which free_func is called is implementation-specific. The module
writer must not assume that free_func will or will not be called directly from
STREAMS utility routines like freeb(9F) which free a message block.

free_func must not call another modules put procedure nor attempt to acquire a
private module lock which may be held by another thread across a call to a STREAMS
utility routine which could free a message block. Otherwise, the possibility for lock
recursion and/or deadlock exists.

free_func must not access any dynamically allocated data structure that might no
longer exist when it runs.

On success, a pointer to the newly allocated message block is returned. On failure,
NULL is returned.

esballoc(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

428 man pages section 9: DDI and DKI Kernel Functions • Last Revised 23 Jun 1997

esballoc() can be called from user or interrupt context.

allocb(9F), freeb(9F), datab(9S), free_rtn(9S)

Writing Device Drivers STREAMS Programming Guide

The free_func must be defined in kernel space, should be declared void and accept
one argument. It has no user context and must not sleep.

esballoc(9F)

CONTEXT

SEE ALSO

WARNINGS

Kernel Functions for Drivers 429

esbbcall – call function when buffer is available

#include <sys/stream.h>

bufcall_id_t esbbcall(uint_t pri, void *funcvoid *arg, void arg);

Architecture independent level 1 (DDI/DKI).

pri Priority of allocation request (to be used by allocb(9F) function, called by
esbbcall())

func Function to be called when buffer becomes available.

arg Argument to func.

esbbcall(), like bufcall(9F), serves as a timeout(9F) call of indeterminate length.
If esballoc(9F) is unable to allocate a message and data block header to go with its
externally supplied data buffer, esbbcall() can be used to schedule the routine func,
to be called with the argument arg when a buffer becomes available. func may be a
routine that calls esballoc(9F) or it may be another kernel function.

On success, a bufcall IDis returned. On failure, 0 is returned. The value returned
from a successful call should be saved for possible future use with unbufcall()
should it become necessary to cancel the esbbcall() request (as at driver close
time).

esbbcall() can be called from user or interrupt context.

allocb(9F), bufcall(9F), esballoc(9F), timeout(9F), datab(9S), unbufcall(9F)

Writing Device Drivers STREAMS Programming Guide

esbbcall(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

430 man pages section 9: DDI and DKI Kernel Functions • Last Revised 18 Feb 98

flushband – flush messages for a specified priority band

#include <sys/stream.h>

void flushband(queue_t *q, unsigned char pri, int flag);

Architecture independent level 1 (DDI/DKI).

q Pointer to the queue.

pri Priority of messages to be flushed.

flag Valid flag values are:

FLUSHDATA Flush only data messages (types M_DATA, M_DELAY, M_PROTO,
and M_PCPROTO).

FLUSHALL Flush all messages.

flushband() flushes messages associated with the priority band specified by pri. If
pri is 0, only normal and high priority messages are flushed. Otherwise, messages are
flushed from the band pri according to the value of flag.

flushband() can be called from user or interrupt context.

flushq(9F)

Writing Device Drivers STREAMS Programming Guide

flushband(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

SEE ALSO

Kernel Functions for Drivers 431

flushq – remove messages from a queue

#include <sys/stream.h>

void flushq(queue_t *q, int flag);

Architecture independent level 1 (DDI/DKI).

q Pointer to the queue to be flushed.

flag Valid flag values are:

FLUSHDATA Flush only data messages (types M_DATA M_DELAY M_PROTO and
M_PCPROTO).

FLUSHALL Flush all messages.

flushq() frees messages and their associated data structures by calling
freemsg(9F). If the queue’s count falls below the low water mark and the queue was
blocking an upstream service procedure, the nearest upstream service procedure is
enabled.

flushq() can be called from user or interrupt context.

EXAMPLE 1 Using flushq()

This example depicts the canonical flushing code for STREAMS modules. The module
has a write service procedure and potentially has messages on the queue. If it receives
an M_FLUSH message, and if the FLUSHR bit is on in the first byte of the message (line
10), then the read queue is flushed (line 11). If the FLUSHW bit is on (line 12), then the
write queue is flushed (line 13). Then the message is passed along to the next entity in
the stream (line 14). See the example for qreply(9F) for the canonical flushing code
for drivers.

1 /*
2 * Module write-side put procedure.
3 */
4 xxxwput(q, mp)
5 queue_t *q;
6 mblk_t *mp;
7 {
8 switch(mp->b_datap->db_type) {
9 case M_FLUSH:
10 if (*mp->b_rptr & FLUSHR)
11 flushq(RD(q), FLUSHALL);
12 if (*mp->b_rptr & FLUSHW)
13 flushq(q, FLUSHALL);
14 putnext(q, mp);
15 break;

. . .
16 }

17 }

flushband(9F), freemsg(9F), putq(9F), qreply(9F)

flushq(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

EXAMPLES

SEE ALSO

432 man pages section 9: DDI and DKI Kernel Functions • Last Revised 11 Apr 1991

Writing Device Drivers STREAMS Programming Guide

flushq(9F)

Kernel Functions for Drivers 433

freeb – free a message block

#include <sys/stream.h>

void freeb(mblk_t *bp);

bp Pointer to the message block to be deallocated. mblk_t is an instance of
the msgb(9S) structure.

Architecture independent level 1 (DDI/DKI).

freeb() deallocates a message block. If the reference count of the db_ref member of
the datab(9S) structure is greater than 1, freeb() decrements the count. If db_ref
equals 1, it deallocates the message block and the corresponding data block and
buffer.

If the data buffer to be freed was allocated with the esballoc(9F), the buffer may be a
non-STREAMS resource. In that case, the driver must be notified that the attached
data buffer needs to be freed, and run its own freeing routine. To make this process
independent of the driver used in the stream, freeb() finds the free_rtn(9S)
structure associated with the buffer. The free_rtn structure contains a pointer to the
driver-dependent routine, which releases the buffer. Once this is accomplished,
freeb() releases the STREAMS resources associated with the buffer.

freeb() can be called from user or interrupt context.

EXAMPLE 1 Using freeb()

See copyb(9F) for an example of using freeb().

allocb(9F), copyb(9F), dupb(9F), esballoc(9F), free_rtn(9S)

Writing Device Drivers

STREAMS Programming Guide

freeb(9F)

NAME

SYNOPSIS

PARAMETERS

INTERFACE
LEVEL

DESCRIPTION

CONTEXT

EXAMPLES

SEE ALSO

434 man pages section 9: DDI and DKI Kernel Functions • Last Revised 13 Nov 2000

freemsg – free all message blocks in a message

#include <sys/stream.h>

void freemsg(mblk_t *mp);

Architecture independent level 1 (DDI/DKI).

mp Pointer to the message blocks to be deallocated. mblk_t is an instance of
the msgb(9S) structure. If mp is NULL, freemsg() immediately returns.

freemsg() calls freeb(9F) to free all message and data blocks associated with the
message pointed to by mp.

freemsg() can be called from user or interrupt context.

EXAMPLE 1 Using freemsg()

See copymsg(9F).

copymsg(9F), freeb(9F), msgb(9S)

Writing Device Drivers

STREAMS Programming Guide

The behavior of freemsg() when passed a NULL pointer is Solaris-specific.

freemsg(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

EXAMPLES

SEE ALSO

NOTES

Kernel Functions for Drivers 435

freerbuf – free a raw buffer header

#include <sys/buf.h>

#include <sys/ddi.h>

void freerbuf(struct buf *bp);

Architecture independent level 1 (DDI/DKI).

bp Pointer to a previously allocated buffer header structure.

freerbuf() frees a raw buffer header previously allocated by getrbuf(9F). This
function does not sleep and so may be called from an interrupt routine.

freerbuf() can be called from user or interrupt context.

getrbuf(9F), kmem_alloc(9F), kmem_free(9F), kmem_zalloc(9F)

freerbuf(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

SEE ALSO

436 man pages section 9: DDI and DKI Kernel Functions • Last Revised 11 Apr 1991

freezestr, unfreezestr – freeze, thaw the state of a stream

#include <sys/stream.h>

#include <sys/ddi.h>

void freezestr(queue_t *q);

void unfreezestr(queue_t *q);

Architecture independent level 1 (DDI/DKI).

q Pointer to the message queue to freeze/unfreeze.

freezestr() freezes the state of the entire stream containing the queue pair q. A
frozen stream blocks any thread attempting to enter any open, close, put or service
routine belonging to any queue instance in the stream, and blocks any thread currently
within the stream if it attempts to put messages onto or take messages off of any
queue within the stream (with the sole exception of the caller). Threads blocked by this
mechanism remain so until the stream is thawed by a call to unfreezestr().

Drivers and modules must freeze the stream before manipulating the queues directly
(as opposed to manipulating them through programmatic interfaces such as getq(9F),
putq(9F), putbq(9F), etc.)

These routines may be called from any stream open, close, put or service routine as
well as interrupt handlers, callouts and call-backs.

Writing Device Drivers

STREAMS Programming Guide

The freezestr() and unfreezestr() functions can have a serious impact on
system performance. Their use should be very limited. In most cases, there is no need
to use freezestr() and there are usually better ways to accomplish what you need
to do than by freezing the stream.

Calling freezestr() to freeze a stream that is already frozen by the caller will result
in a single-party deadlock.

The caller of unfreezestr() must be the thread who called freezestr().

STREAMS utility functions such as getq(9F), putq(9F), putbq(9F), and so forth,
should not be called by the caller of freezestr() while the stream is still frozen, as
they indirectly freeze the stream to ensure atomicity of queue manipulation.

freezestr(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

SEE ALSO

NOTES

Kernel Functions for Drivers 437

geterror – return I/O error

#include <sys/types.h>
#include <sys/buf.h>

#include <sys/ddi.h>

int geterror(struct buf *bp);

Architecture independent level 1 (DDI/DKI).

bp Pointer to a buf(9S) structure.

geterror() returns the error number from the error field of the buffer header
structure.

An error number indicating the error condition of the I/O request is returned. If the
I/O request completes successfully, 0 is returned.

geterror() can be called from user or interrupt context.

buf(9S)

Writing Device Drivers

geterror(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

438 man pages section 9: DDI and DKI Kernel Functions • Last Revised 11 Apr 1991

gethrtime – get high resolution time

#include <sys/time.h>

hrtime_t gethrtime(void);

The gethrtime() function returns the current high-resolution real time. Time is
expressed as nanoseconds since some arbitrary time in the past; it is not correlated in
any way to the time of day, and thus is not subject to resetting or drifting by way of
adjtime(2) or settimeofday(3C). The hi-res timer is ideally suited to performance
measurement tasks, where cheap, accurate interval timing is required.

gethrtime() always returns the current high-resolution real time. There are no error
conditions.

There are no restrictions on the context from which gethrtime() can be called.

proc(1), gettimeofday(3C), settimeofday(3C), attributes(5)

Although the units of hi-res time are always the same (nanoseconds), the actual
resolution is hardware dependent. Hi-res time is guaranteed to be monotonic (it does
not go backward, it does not periodically wrap) and linear (it does not occasionally
speed up or slow down for adjustment, as the time of day can), but not necessarily
unique: two sufficiently proximate calls might return the same value.

The time base used for this function is the same as that for gethrtime(3C). Values
returned by both of these functions can be interleaved for comparison purposes.

gethrtime(9F)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

NOTES

Kernel Functions for Drivers 439

getmajor – get major device number

#include <sys/types.h>
#include <sys/mkdev.h>

#include <sys/ddi.h>

major_t getmajor(dev_t dev);

Architecture independent level 1 (DDI/DKI).

dev Device number.

getmajor() extracts the major number from a device number.

The major number.

getmajor() can be called from user or interrupt context.

EXAMPLE 1 Using getmajor()

The following example shows both the getmajor() and getminor(9F) functions
used in a debug cmn_err(9F) statement to return the major and minor numbers for
the device supported by the driver.

dev_t dev;

#ifdef DEBUG
cmn_err(CE_NOTE,"Driver Started. Major# = %d,

Minor# = %d", getmajor(dev), getminor(dev));
#endif

cmn_err(9F), getminor(9F), makedevice(9F)

Writing Device Drivers

No validity checking is performed. If dev is invalid, an invalid number is returned.

getmajor(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

EXAMPLES

SEE ALSO

WARNINGS

440 man pages section 9: DDI and DKI Kernel Functions • Last Revised 11 Apr 1991

getminor – get minor device number

#include <sys/types.h>
#include <sys/mkdev.h>

#include <sys/ddi.h>

minor_t getminor(dev_t dev);

Architecture independent level 1 (DDI/DKI).

dev Device number.

getminor() extracts the minor number from a device number.

The minor number.

getminor() can be called from user or interrupt context.

See the getmajor(9F) manual page for an example of how to use getminor().

getmajor(9F), makedevice(9F)

Writing Device Drivers

No validity checking is performed. If dev is invalid, an invalid number is returned.

getminor(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

EXAMPLES

SEE ALSO

WARNINGS

Kernel Functions for Drivers 441

get_pktiopb, free_pktiopb – allocate/free a SCSI packet in the iopb map

#include <sys/scsi/scsi.h>

struct scsi_pkt *get_pktiopb(struct scsi_address *ap, caddr_t
*datap, int cdblen, int statuslen, int datalen, int readflag, int
(*callback);

void free_pktiopb(struct scsi_pkt *pkt, caddr_t datap, int datalen);

Solaris DDI specific (Solaris DDI).

ap Pointer to the target’s scsi_address structure.

datap Pointer to the address of the packet, set by this function.

cdblen Number of bytes required for the SCSI command descriptor block
(CDB).

statuslen Number of bytes required for the SCSI status area.

datalen Number of bytes required for the data area of the SCSI command.

readflag If non-zero, data will be transferred from the SCSI target.

callback Pointer to a callback function, or NULL_FUNC or SLEEP_FUNC

pkt Pointer to a scsi_pkt(9S) structure.

get_pktiopb() allocates a scsi_pkt structure that has a small data area allocated.
It is used by some SCSI commands such as REQUEST_SENSE, which involve a small
amount of data and require cache-consistent memory for proper operation. It uses
ddi_iopb_alloc(9F) for allocating the data area and scsi_resalloc(9F) to
allocate the packet and DMA resources.

callback indicates what get_pktiopb() should do when resources are not available:

NULL_FUNC Do not wait for resources. Return a NULL pointer.

SLEEP_FUNC Wait indefinitely for resources.

Other Values callback points to a function which is called when resources may
have become available. callback must return either 0 (indicating
that it attempted to allocate resources but failed to do so again), in
which case it is put back on a list to be called again later, or 1
indicating either success in allocating resources or indicating that it
no longer cares for a retry.

free_pktiopb() is used for freeing the packet and its associated resources.

get_pktiopb() returns a pointer to the newly allocated scsi_pkt or a NULL
pointer.

get_pktiopb(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

442 man pages section 9: DDI and DKI Kernel Functions • Last Revised 21 Dec 1992

If callback is SLEEP_FUNC, then this routine may only be called from user-level code.
Otherwise, it may be called from either user or interrupt level. The callback function
may not block or call routines that block.

free_pktiopb() can be called from user or interrupt context.

ddi_iopb_alloc(9F), scsi_alloc_consistent_buf(9F),
scsi_free_consistent_buf(9F), scsi_pktalloc(9F), scsi_resalloc(9F),
scsi_pkt(9S)

Writing Device Drivers

get_pktiopb() and free_pktiopb() are old functions and should be replaced
with scsi_alloc_consistent_buf(9F) and scsi_free_consistent_buf(9F).
get_pktiopb() uses scarce resources. Use it selectively.

get_pktiopb(9F)

CONTEXT

SEE ALSO

NOTES

Kernel Functions for Drivers 443

getq – get the next message from a queue

#include <sys/stream.h>

mblk_t *getq(queue_t *q);

Architecture independent level 1 (DDI/DKI).

q Pointer to the queue from which the message is to be retrieved.

getq() is used by a service (srv(9E)) routine to retrieve its enqueued messages.

A module or driver may include a service routine to process enqueued messages.
Once the STREAMS scheduler calls srv() it must process all enqueued messages,
unless prevented by flow control. getq() obtains the next available message from the
top of the queue pointed to by q. It should be called in a while loop that is exited only
when there are no more messages or flow control prevents further processing.

If an attempt was made to write to the queue while it was blocked by flow control,
getq() back-enables (restarts) the service routine once it falls below the low water
mark.

If there is a message to retrieve, getq() returns a pointer to it. If no message is
queued, getq() returns a NULL pointer.

getq() can be called from user or interrupt context.

See dupb(9F).

srv(9E), bcanput(9F), canput(9F), dupb(9F), putbq(9F), putq(9F), qenable(9F)

Writing Device Drivers

STREAMS Programming Guide

getq(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

EXAMPLES

SEE ALSO

444 man pages section 9: DDI and DKI Kernel Functions • Last Revised 12 Nov 1992

getrbuf – get a raw buffer header

#include <sys/buf.h>
#include <sys/kmem.h>

#include <sys/ddi.h>

struct buf *getrbuf(int sleepflag);

Architecture independent level 1 (DDI/DKI).

sleepflag Indicates whether driver should sleep for free space.

getrbuf() allocates the space for a buffer header to the caller. It is used in cases
where a block driver is performing raw (character interface) I/O and needs to set up a
buffer header that is not associated with the buffer cache.

getrbuf() calls kmem_alloc(9F) to perform the memory allocation.
kmem_alloc()requires the information included in the sleepflag argument. If sleepflag
is set to KM_SLEEP, the driver may sleep until the space is freed up. If sleepflag is set to
KM_NOSLEEP, the driver will not sleep. In either case, a pointer to the allocated space
is returned or NULL to indicate that no space was available.

getrbuf() returns a pointer to the allocated buffer header, or NULL if no space is
available.

getrbuf() can be called from user or interrupt context. (Drivers must not allow
getrbuf() to sleep if called from an interrupt routine.)

bioinit(9F), freerbuf(9F), kmem_alloc(9F), kmem_free(9F)

Writing Device Drivers

getrbuf(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 445

gld, gld_mac_alloc, gld_mac_free, gld_register, gld_unregister, gld_recv, gld_sched,
gld_intr – Generic LAN Driver service routines

#include <sys/gld.h>

gld_mac_info_t *gld_mac_alloc(dev_info_t *dip);

void gld_mac_free(gld_mac_info_t *macinfo);

int gld_register(dev_info_t *dip, char *name, gld_mac_info_t
*macinfo);

int gld_unregister(gld_mac_info_t *macinfo);

void gld_recv(gld_mac_info_t *macinfo, mblk_t *mp);

void gld_sched(gld_mac_info_t *macinfo);

uint_t gld_intr(caddr_t);

Solaris architecture specific (Solaris DDI).

macinfo Pointer to a gld_mac_info(9S) structure.

dip Pointer to dev_info structure.

name Device interface name.

mp Pointer to a message block containing a received packet.

gld_mac_alloc() allocates a new gld_mac_info(9S) structure and returns a
pointer to it. Some of the GLD-private elements of the structure may be initialized
before gld_mac_alloc() returns; all other elements are initialized to zero. The
device driver must initialize some structure members, as described in
gld_mac_info(9S), before passing the mac_info pointer to gld_register().

gld_mac_free() frees a gld_mac_info(9S) structure previously allocated by
gld_mac_alloc().

gld_register() is called from the device driver’s attach(9E) routine, and is used
to link the GLD-based device driver with the GLD framework. Before calling
gld_register() the device driver’s attach(9E) routine must first use
gld_mac_alloc() to allocate a gld_mac_info(9S) structure, and initialize several of
its structure elements. See gld_mac_info(9S) for more information. A successful call
to gld_register() performs the following actions:

� links the device-specific driver with the GLD system;

� sets the device-specific driver’s private data pointer (using
ddi_set_driver_private(9F)) to point to the macinfo structure;

� creates the minor device node.

The device interface name passed to gld_register() must exactly match the name
of the driver module as it exists in the filesystem.

gld(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

446 man pages section 9: DDI and DKI Kernel Functions • Last Revised 18 Jan 2000

The driver’s attach(9E) routine should return DDI_SUCCESS if gld_register()
succeeds. If gld_register() returns DDI_FAILURE, the attach(9E) routine should
deallocate any resources it allocated before calling gld_register() and then also
return DDI_FAILURE.

gld_unregister() is called by the device driver’s detach(9E) function, and if
successful, performs the following tasks:

� ensures the device’s interrupts are stopped, calling the driver’s gldm_stop()
routine if necessary;

� removes the minor device node;

� unlinks the device-specific driver from the GLD system.

If gld_unregister() returns DDI_SUCCESS, the detach(9E) routine should
deallocate any data structures allocated in the attach(9E) routine, using
gld_mac_free() to deallocate the macinfo structure, and return DDI_SUCCESS. If
gld_unregister() returns DDI_FAILURE, the driver’s detach(9E) routine must
leave the device operational and return DDI_FAILURE.

gld_recv() is called by the driver’s interrupt handler to pass a received packet
upstream. The driver must construct and pass a STREAMS M_DATA message
containing the raw packet. gld_recv() determines which STREAMS queues, if any,
should receive a copy of the packet, duplicating it if necessary. It then formats a
DL_UNITDATA_IND message, if required, and passes the data up all appropriate
streams.

The driver should avoid holding mutex or other locks during the call to gld_recv().
In particular, locks that could be taken by a transmit thread may not be held during a
call to gld_recv(): the interrupt thread that calls gld_recv() may in some cases
carry out processing that includes sending an outgoing packet, resulting in a call to the
driver’s gldm_send() routine. If the gldm_send() routine were to try to acquire a
mutex being held by the gldm_intr() routine at the time it calls gld_recv(), this
could result in a panic due to recursive mutex entry.

gld_sched() is called by the device driver to reschedule stalled outbound packets.
Whenever the driver’s gldm_send() routine has returned GLD_NORESOURCES, the
driver must later call gld_sched() to inform the GLD framework that it should retry
the packets that previously could not be sent. gld_sched() should be called as soon
as possible after resources are again available, to ensure that GLD resumes passing
outbound packets to the driver’s gldm_send() routine in a timely way. (If the driver’s
gldm_stop() routine is called, the driver is absolved from this obligation until it later
again returns GLD_NORESOURCES from its gldm_send() routine; however, extra calls
to gld_sched() will not cause incorrect operation.)

gld_intr() is GLD’s main interrupt handler. Normally it is specified as the interrupt
routine in the device driver’s call to ddi_add_intr(9F). The argument to the
interrupt handler (specified as int_handler_arg in the call to ddi_add_intr(9F)) must
be a pointer to the gld_mac_info(9S) structure. gld_intr() will, when appropriate,

gld(9F)

Kernel Functions for Drivers 447

call the device driver’s gldm_intr() function, passing that pointer to the
gld_mac_info(9S) structure. However, if the driver uses a high-level interrupt, it
must provide its own high-level interrupt handler, and trigger a soft interrupt from
within that. In this case, gld_intr() may be specified as the soft interrupt handler in
the call to ddi_add_softintr().

gld_mac_alloc() returns a pointer to a new gld_mac_info(9S) structure.

gld_register() and gld_unregister() return:

DDI_SUCCESS on success.

DDI_FAILURE on failure.

gld_intr() returns a value appropriate for an interrupt handler.

gld(7D), gld(9E), gld_mac_info(9S), gld_stats(9S), dlpi(7P), attach(9E),
ddi_add_intr(9F).

Writing Device Drivers

gld(9F)

RETURN VALUES

SEE ALSO

448 man pages section 9: DDI and DKI Kernel Functions • Last Revised 18 Jan 2000

hat_getkpfnum – get page frame number for kernel address

#include <sys/types.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

uint_t hat_getkpfnum(caddr_t addr);

Architecture independent level 2 (DKI only).

addr The kernel virtual address for which the page frame number is to be
returned.

hat_getkpfnum() returns the page frame number corresponding to the kernel
virtual address, addr.

addr must be a kernel virtual address which maps to device memory.
ddi_map_regs(9F) can be used to obtain this address. For example,
ddi_map_regs(9F) can be called in the driver’s attach(9E) routine. The resulting
kernel virtual address can be saved by the driver (see ddi_soft_state(9F)) and
used in mmap(9E). The corresponding ddi_unmap_regs(9F) call can be made in the
driver’s detach(9E) routine. Refer to mmap(9E) for more information.

The page frame number corresponding to the valid virtual address addr. Otherwise the
return value is undefined.

hat_getkpfnum() can be called only from user or kernel context.

attach(9E), detach(9E), mmap(9E), ddi_map_regs(9F), ddi_soft_state(9F),
ddi_unmap_regs(9F)

Writing Device Drivers

For some devices, mapping device memory in the driver’s attach(9E) routine and
unmapping device memory in the driver’s detach(9E) routine is a sizeable drain on
system resources. This is especially true for devices with a large amount of physical
address space. Refer to mmap(9E) for alternative methods.

hat_getkpfnum(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

NOTES

Kernel Functions for Drivers 449

id32_alloc, id32_free, id32_lookup – 32-bit driver ID management routines

#include <sys/ddi.h>

#include <sys/id32.h>

uint32_t id32_alloc(void *ptr, int flag);

void id32_free(uint32_t token);

void *id32_lookup(uint32_t token);

Solaris architecture specific (Solaris DDI).

ptr any valid 32- or 64-bit pointer

flag determines whether caller can sleep for memory (see
kmem_alloc(9F) for a description)

These routines were originally developed so that device drivers could manage 64-bit
pointers on devices that save space only for 32-bit pointers.

Many device drivers need to pass a 32-bit value to the hardware when attempting
I/O. Later, when that I/O completes, the only way the driver has to identify the
request that generated that I/O is via a "token". When the I/O is initiated, the driver
passes this token to the hardware. When the I/O completes the hardware passes back
this 32-bit token.

Before Solaris supported 64-bit pointers, device drivers just passed a raw 32-bit
pointer to the hardware. When pointers grew to be 64 bits this was no longer possible.
The id32_*() routines were created to help drivers translate between 64-bit pointers
and a 32-bit token.

Given a 32- or 64-bit pointer, the routine id32_alloc() allocates a 32-bit token,
returning 0 if KM_NOSLEEP was specified and memory could not be allocated. The
allocated token is passed back to id32_lookup() to obtain the original 32- or 64-bit
pointer.

The routine id32_free() is used to free an allocated token. Once id32_free() is
called, the supplied token is no longer valid.

Note that these routines have some degree of error checking. This is done so that an
invalid token passed to id32_lookup() will not be accepted as valid. When
id32_lookup() detects an invalid token it returns NULL. Calling routines should
check for this return value so that they do not try to dereference a NULL pointer.

These functions can be called from user or interrupt context. The routine
id32_alloc() should not be called from interrupt context when the KM_SLEEP flag
is passed in. All other routines can be called from interrupt or kernel context.

kmem_alloc(9F)

Writing Device Drivers

id32_alloc(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

SEE ALSO

450 man pages section 9: DDI and DKI Kernel Functions • Last Revised 12 Dec 2001

inb, inw, inl, repinsb, repinsw, repinsd – read from an I/O port

#include <sys/ddi.h>

#include <sys/sunddi.h>

unsigned char inb(int port);

unsigned short inw(int port);

unsigned long inl(int port);

void repinsb(int port, unsigned char *addr, int count);

void repinsw(int port, unsigned short *addr, int count);

void repinsd(int port, unsigned long *addr, int count);

Solaris IA DDI specific (Solaris IA DDI).

port A valid I/O port address.

addr The address of a buffer where the values will be stored.

count The number of values to be read from the I/O port.

These routines read data of various sizes from the I/O port with the address specified
by port.

The inb(), inw(), and inl() functions read 8 bits, 16 bits, and 32 bits of data
respectively, returning the resulting values.

The repinsb(), repinsw(), and repinsd() functions read multiple 8-bit, 16-bit,
and 32-bit values, respectively. count specifies the number of values to be read. A
pointer to a buffer will receive the input data; the buffer must be long enough to hold
count values of the requested size.

inb(), inw(), and inl() return the value that was read from the I/O port.

These functions may be called from user or interrupt context.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

eisa(4), isa(4), attributes(5), outb(9F)

Writing Device Drivers

inb(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

ATTRIBUTES

SEE ALSO

Kernel Functions for Drivers 451

insq – insert a message into a queue

#include <sys/stream.h>

int insq(queue_t *q, mblk_t *emp, mblk_t *nmp);

Architecture independent level 1 (DDI/DKI).

q Pointer to the queue containing message emp.

emp Enqueued message before which the new message is to be inserted.
mblk_t is an instance of the msgb(9S) structure.

nmp Message to be inserted.

insq() inserts a message into a queue. The message to be inserted, nmp, is placed in q
immediately before the message emp. If emp is NULL, the new message is placed at the
end of the queue. The queue class of the new message is ignored. All flow control
parameters are updated. The service procedure is enabled unless QNOENB is set.

insq() returns 1 on success, and 0 on failure.

insq() can be called from user or interrupt context.

This routine illustrates the steps a transport provider may take to place expedited data
ahead of normal data on a queue (assume all M_DATA messages are converted into
M_PROTO T_DATA_REQ messages). Normal T_DATA_REQ messages are just placed on
the end of the queue (line 16). However, expedited T_EXDATA_REQ messages are
inserted before any normal messages already on the queue (line 25). If there are no
normal messages on the queue, bp will be NULL and we fall out of the for loop (line
21). insq acts like putq(9F) in this case.

1 #include
2 #include
3
4 static int
5 xxxwput(queue_t *q, mblk_t *mp)
6 {
7 union T_primitives *tp;
8 mblk_t *bp;
9 union T_primitives *ntp;
10
11 switch (mp->b_datap->db_type) {
12 case M_PROTO:
13 tp = (union T_primitives *)mp->b_rptr;
14 switch (tp->type) {
15 case T_DATA_REQ:
16 putq(q, mp);
17 break;
18
19 case T_EXDATA_REQ:
20 /* Insert code here to protect queue and message block */
21 for (bp = q->q_first; bp; bp = bp->b_next) {
22 if (bp->b_datap->db_type == M_PROTO) {
23 ntp = (union T_primitives *)bp->b_rptr;

insq(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

EXAMPLES

452 man pages section 9: DDI and DKI Kernel Functions • Last Revised 9 Jul 2001

24 if (ntp->type != T_EXDATA_REQ)
25 break;
26 }
27 }
28 (void)insq(q, bp, mp);
29 /* End of region that must be protected */
30 break;

. . .
31 }
32 }
33 }

When using insq(), you must ensure that the queue and the message block is not
modified by another thread at the same time. You can achieve this either by using
STREAMS functions or by implementing your own locking.

putq(9F), rmvq(9F), msgb(9S)

Writing Device Drivers

STREAMS Programming Guide

If emp is non-NULL, it must point to a message on q or a system panic could result.

insq(9F)

SEE ALSO

WARNINGS

Kernel Functions for Drivers 453

IOC_CONVERT_FROM – determine if there is a need to translate M_IOCTL contents.

#include <sys/stream.h>

uint_t IOC_CONVERT_FROM(struct iocblk *iocp);

Solaris DDI Specific (Solaris DDI)

iocp A pointer to the M_IOCTL control structure.

The IOC_CONVERT_FROM macro is used to see if the contents of the current M_IOCTL
message had its origin in a different C Language Type Model.

IOC_CONVERT_FROM() returns the following values:

IOC_ILP32 This is an LP64 kernel and the M_IOCTL originated in an ILP32
user process.

IOC_NONE The M_IOCTL message uses the same C Language Type Model as
this calling module or driver.

IOC_CONVERT_FROM() can be called from user or interrupt context.

ddi_model_convert_from(9F)

Writing Device Drivers

STREAMS Programming Guide

IOC_CONVERT_FROM(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

454 man pages section 9: DDI and DKI Kernel Functions • Last Revised 11 Nov 1996

kmem_alloc, kmem_zalloc, kmem_free – allocate kernel memory

#include <sys/types.h>

#include <sys/kmem.h>

void *kmem_alloc(size_t size, int flag);

void *kmem_zalloc(size_t size, int flag);

void kmem_free(void*buf, size_t size);

Architecture independent level 1 (DDI/DKI).

size Number of bytes to allocate.

flag Determines whether caller can sleep for memory. Possible flags are
KM_SLEEP to allow sleeping until memory is available, or
KM_NOSLEEP to return NULL immediately if memory is not
available.

buf Pointer to allocated memory.

kmem_alloc() allocates size bytes of kernel memory and returns a pointer to the
allocated memory. The allocated memory is at least double-word aligned, so it can
hold any C data structure. No greater alignment can be assumed. flag determines
whether the caller can sleep for memory. KM_SLEEP allocations may sleep but are
guaranteed to succeed. KM_NOSLEEP allocations are guaranteed not to sleep but may
fail (return NULL) if no memory is currently available. The initial contents of memory
allocated using kmem_alloc() are random garbage.

kmem_zalloc() is like kmem_alloc() but returns zero-filled memory.

kmem_free() frees previously allocated kernel memory. The buffer address and size
must exactly match the original allocation. Memory cannot be returned piecemeal.

If successful, kmem_alloc() and kmem_zalloc() return a pointer to the allocated
memory. If KM_NOSLEEP is set and memory cannot be allocated without sleeping,
kmem_alloc() and kmem_zalloc() return NULL.

kmem_alloc() and kmem_zalloc() can be called from interrupt context only if the
KM_NOSLEEP flag is set. They can be called from user context with any valid flag.
kmem_free() can be called from user or interrupt context.

copyout(9F), freerbuf(9F), getrbuf(9F)

Writing Device Drivers

Memory allocated using kmem_alloc() is not paged. Available memory is therefore
limited by the total physical memory on the system. It is also limited by the available
kernel virtual address space, which is often the more restrictive constraint on
large-memory configurations.

kmem_alloc(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

WARNINGS

Kernel Functions for Drivers 455

Excessive use of kernel memory is likely to affect overall system performance.
Overcommitment of kernel memory will cause the system to hang or panic.

Misuse of the kernel memory allocator, such as writing past the end of a buffer, using a
buffer after freeing it, freeing a buffer twice, or freeing a null or invalid pointer, will
corrupt the kernel heap and may cause the system to corrupt data or panic.

The initial contents of memory allocated using kmem_alloc() are random garbage.
This random garbage may include secure kernel data. Therefore, uninitialized kernel
memory should be handled carefully. For example, never copyout(9F) a potentially
uninitialized buffer.

kmem_alloc(0, flag) always returns NULL. kmem_free(NULL, 0) is legal.

kmem_alloc(9F)

NOTES

456 man pages section 9: DDI and DKI Kernel Functions • Last Revised 20 Jul 1994

kstat_create – create and initialize a new kstat

#include <sys/types.h>

#include <sys/kstat.h>

kstat_t *kstat_create(char *module, int instance, char *name, char
*class, uchar_t type, ulong_t ndata, uchar_t ks_flag);

Solaris DDI specific (Solaris DDI)

module The name of the provider’s module (such as "sd", "esp", ...). The
"core" kernel uses the name "unix".

instance The provider’s instance number, as from ddi_get_instance(9F).
Modules which do not have a meaningful instance number should
use 0.

name A pointer to a string that uniquely identifies this structure. Only
KSTAT_STRLEN − 1 characters are significant.

class The general class that this kstat belongs to. The following classes
are currently in use: disk, tape, net, controller, vm, kvm,
hat, streams, kstat, and misc.

type The type of kstat to allocate. Valid types are:

KSTAT_TYPE_NAMED
Allows more than one data record per kstat.

KSTAT_TYPE_INTR
Interrupt; only one data record per kstat.

KSTAT_TYPE_IO
I/O; only one data record per kstat

ndata The number of type-specific data records to allocate.

flag A bit-field of various flags for this kstat. flag is some combination
of:

KSTAT_FLAG_VIRTUAL
Tells kstat_create() not to allocate memory for the kstat
data section; instead, the driver will set the ks_data field to
point to the data it wishes to export. This provides a convenient
way to export existing data structures.

KSTAT_FLAG_WRITABLE
Makes the kstat data section writable by root.

KSTAT_FLAG_PERSISTENT
Indicates that this kstat is to be persistent over time. For
persistent kstats, kstat_delete(9F) simply marks the
kstat as dormant; a subsequent kstat_create() reactivates
the kstat. This feature is provided so that statistics are not lost
across driver close/open (such as raw disk I/O on a disk with

kstat_create(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

Kernel Functions for Drivers 457

no mounted partitions.) Note: Persistent kstats cannot be
virtual, since ks_data points to garbage as soon as the driver
goes away.

kstat_create() is used in conjunction with kstat_install(9F) to allocate and
initialize a kstat(9S) structure. The method is generally as follows:

kstat_create() allocates and performs necessary system initialization of a
kstat(9S) structure. kstat_create() allocates memory for the entire kstat
(header plus data), initializes all header fields, initializes the data section to all zeroes,
assigns a unique kstat ID (KID), and puts the kstat onto the system’s kstat chain. The
returned kstat is marked invalid because the provider (caller) has not yet had a chance
to initialize the data section.

After a successful call to kstat_create() the driver must perform any necessary
initialization of the data section (such as setting the name fields in a kstat of type
KSTAT_TYPE_NAMED). Virtual kstats must have the ks_data field set at this time.
The provider may also set the ks_update, ks_private, and ks_lock fields if
necessary.

Once the kstat is completely initialized, kstat_install(9F) is used to make the
kstat accessible to the outside world.

If successful, kstat_create() returns a pointer to the allocated kstat. NULL is
returned upon failure.

kstat_create() can be called from user or kernel context.

EXAMPLE 1 Allocating and Initializing a kstat Structure

pkstat_t *ksp;
ksp = kstat_create(module, instance, name, class, type, ndata, flags);
if (ksp) {

/* ... provider initialization, if necessary */
kstat_install(ksp);

}

kstat(3KSTAT), ddi_get_instance(9F), kstat_delete(9F),
kstat_install(9F), kstat_named_init(9F), kstat(9S), kstat_named(9S)

Writing Device Drivers

kstat_create(9F)

DESCRIPTION

RETURN VALUES

CONTEXT

EXAMPLES

SEE ALSO

458 man pages section 9: DDI and DKI Kernel Functions • Last Revised 10 Sep 1994

kstat_delete – remove a kstat from the system

#include <sys/types.h>

#include <sys/kstat.h>

void kstat_delete(kstat_t *ksp);

Solaris DDI specific (Solaris DDI)

ksp Pointer to a currently installed kstat(9S) structure.

kstat_delete() removes ksp from the kstat chain and frees all associated system
resources.

None.

kstat_delete() can be called from any context.

kstat_create(9F), kstat_install(9F), kstat_named_init(9F), kstat(9S)

Writing Device Drivers

When calling kstat_delete(), the driver must not be holding that kstat’s
ks_lock. Otherwise, it may deadlock with a kstat reader.

kstat_delete(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

NOTES

Kernel Functions for Drivers 459

kstat_install – add a fully initialized kstat to the system

#include <sys/types.h>

#include <sys/kstat.h>

void kstat_install(kstat_t *ksp);

Solaris DDI specific (Solaris DDI)

ksp Pointer to a fully initialized kstat(9S) structure.

kstat_install() is used in conjunction with kstat_create(9F) to allocate and
initialize a kstat(9S) structure.

After a successful call to kstat_create() the driver must perform any necessary
initialization of the data section (such as setting the name fields in a kstat of type
KSTAT_TYPE_NAMED). Virtual kstats must have the ks_data field set at this time. The
provider may also set the ks_update, ks_private, and ks_lock fields if necessary.

Once the kstat is completely initialized, kstat_install is used to make the kstat
accessible to the outside world.

None.

kstat_install() can be called from user or kernel context.

EXAMPLE 1 Allocating and Initializing a kstat Structure

The method for allocating and initializing a kstat structure is generally as follows:

kstat_t *ksp;
ksp = kstat_create(module, instance, name, class, type, ndata, flags);
if (ksp) {

/* ... provider initialization, if necessary */
kstat_install(ksp);

}

kstat_create(9F), kstat_delete(9F), kstat_named_init(9F), kstat(9S)

Writing Device Drivers

kstat_install(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

EXAMPLES

SEE ALSO

460 man pages section 9: DDI and DKI Kernel Functions • Last Revised 26 May 1994

kstat_named_init, kstat_named_setstr – initialize a named kstat

#include <sys/types.h>

#include <sys/kstat.h>

void kstat_named_init(kstat_named_t *knp, char *name, uchar_t
data_type);

void kstat_named_setstr(kstat_named_t *knp, const char *str);

Solaris DDI specific (Solaris DDI)

knp Pointer to a kstat_named(9S) structure.

name The name of the statistic.

data_type The type of value. This indicates which field of the
kstat_named(9S) structure should be used. Valid values are:

KSTAT_DATA_CHAR
The "char" field.

KSTAT_DATA_LONG
The "long" field.

KSTAT_DATA_ULONG
The "unsigned long" field.

KSTAT_DATA_LONGLONG
The "long long" field.

KSTAT_DATA_ULONGLONG
The "unsigned long long" field.

KSTAT_DATA_STRING
Arbitrary length "long string" field.

str Pointer to a NULL-terminated string.

kstat_named_init() associates a name and a type with a kstat_named(9S)
structure.

kstat_named_setstr() associates str with the named kstat knp. It is an error for
knp to be of type other than KSTAT_DATA_STRING. This is the only supported
method of changing the value of long strings.

None.

kstat_named_init() and kstat_named_setstr() can be called from user or
kernel context.

kstat_create(9F), kstat_install(9F), kstat(9S), kstat_named(9S)

Writing Device Drivers

kstat_named_init(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 461

kstat_queue, kstat_waitq_enter, kstat_waitq_exit, kstat_runq_enter, kstat_runq_exit,
kstat_waitq_to_runq, kstat_runq_back_to_waitq – update I/O kstat statistics

#include <sys/types.h>

#include <sys/kstat.h>

void kstat_waitq_enter(kstat_io_t *kiop);

void kstat_waitq_exit(kstat_io_t *kiop);

void kstat_runq_enter(kstat_io_t *kiop);

void kstat_runq_exit(kstat_io_t *kiop);

void kstat_waitq_to_runq(kstat_io_t *kiop);

void kstat_runq_back_to_waitq(kstat_io_t *kiop);

Solaris DDI specific (Solaris DDI)

kiop Pointer to a kstat_io(9S) structure.

A large number of I/O subsystems have at least two basic "lists" (or queues) of
transactions they manage: one for transactions that have been accepted for processing
but for which processing has yet to begin, and one for transactions which are actively
being processed (but not done). For this reason, two cumulative time statistics are
kept: wait (pre-service) time, and run (service) time.

The kstat_queue() family of functions manage these times based on the transitions
between the driver wait queue and run queue.

kstat_waitq_enter()
kstat_waitq_enter() should be called when a request arrives and is placed
into a pre-service state (such as just prior to calling disksort(9F)).

kstat_waitq_exit()
kstat_waitq_exit() should be used when a request is removed from its
pre-service state. (such as just prior to calling the driver’s start routine).

kstat_runq_enter()
kstat_runq_enter() is also called when a request is placed in its service state
(just prior to calling the driver’s start routine, but after kstat_waitq_exit()).

kstat_runq_exit()
kstat_runq_exit() is used when a request is removed from its service state
(just prior to calling biodone(9F)).

kstat_waitq_to_runq()
kstat_waitq_to_runq() transitions a request from the wait queue to the run
queue. This is useful wherever the driver would have normally done a
kstat_waitq_exit() followed by a call to kstat_runq_enter().

kstat_runq_back_to_waitq()
kstat_runq_back_to_waitq() transitions a request from the run queue back to
the wait queue. This may be necessary in some cases (write throttling is an

kstat_queue(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

462 man pages section 9: DDI and DKI Kernel Functions • Last Revised 4 Apr 1994

example).

None.

kstat_create() can be called from user or kernel context.

These transitions must be protected by holding the kstat’s ks_lock, and must be
completely accurate (all transitions are recorded). Forgetting a transition may, for
example, make an idle disk appear 100% busy.

biodone(9F), disksort(9F), kstat_create(9F), kstat_delete(9F),
kstat_named_init(9F), kstat(9S), kstat_io(9S)

Writing Device Drivers

kstat_queue(9F)

RETURN VALUES

CONTEXT

WARNINGS

SEE ALSO

Kernel Functions for Drivers 463

linkb – concatenate two message blocks

#include <sys/stream.h>

void linkb(mblk_t *mp1, mblk_t *mp2);

Architecture independent level 1 (DDI/DKI).

mp1 The message to which mp2 is to be added. mblk_t is an instance of the
msgb(9S) structure.

mp2 The message to be added.

linkb() creates a new message by adding mp2 to the tail of mp1. The continuation
pointer, b_cont, of mp1 is set to point to mp2.

linkb(mp1, mp2);

linkb() can be called from user or interrupt context.

See dupb(9F) for an example of using linkb().

dupb(9F), unlinkb(9F), msgb(9S)

Writing Device Drivers

STREAMS Programming Guide

linkb(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

EXAMPLES

SEE ALSO

464 man pages section 9: DDI and DKI Kernel Functions • Last Revised 20 Jul 1994

makecom, makecom_g0, makecom_g0_s, makecom_g1, makecom_g5 – make a packet
for SCSI commands

#include <sys/scsi/scsi.h>

void makecom_g0(struct scsi_pkt *pkt, struct scsi_device *devp, int
flag, int cmd, int addr, int cnt);

void makecom_g0_s(struct scsi_pkt *pkt, struct scsi_device *devp,
int flag, int cmd, int cnt, int fixbit);

void makecom_g1(struct scsi_pkt *pkt, struct scsi_device *devp, int
flag, int cmd, int addr, int cnt);

void makecom_g5(struct scsi_pkt *pkt, struct scsi_device *devp, int
flag, int cmd, int addr, int cnt);

Solaris DDI specific (Solaris DDI).

pkt Pointer to an allocated scsi_pkt(9S) structure.

devp Pointer to the target’s scsi_device(9S) structure.

flag Flags for the pkt_flags member.

cmd First byte of a group 0 or 1 or 5 SCSI CDB.

addr Pointer to the location of the data.

cnt Data transfer length in units defined by the SCSI device type. For
sequential devices cnt is the number of bytes. For block devices,
cnt is the number of blocks.

fixbit Fixed bit in sequential access device commands.

makecom functions initialize a packet with the specified command descriptor block,
devp and transport flags. The pkt_address, pkt_flags, and the command
descriptor block pointed to by pkt_cdbp are initialized using the remaining
arguments. Target drivers may use makecom_g0() for Group 0 commands (except for
sequential access devices), or makecom_g0_s() for Group 0 commands for sequential
access devices, or makecom_g1() for Group 1 commands, or makecom_g5() for
Group 5 commands. fixbit is used by sequential access devices for accessing fixed
block sizes and sets the the tag portion of the SCSI CDB.

These functions can be called from user or interrupt context.

EXAMPLE 1 Using makecom Functions

if (blkno >= (1<<20)) {
makecom_g1(pkt, SD_SCSI_DEVP, pflag, SCMD_WRITE_G1,

(int) blkno, nblk);
} else {

makecom_g0(pkt, SD_SCSI_DEVP, pflag, SCMD_WRITE,
(int) blkno, nblk);

}

makecom(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

EXAMPLES

Kernel Functions for Drivers 465

EXAMPLE 1 Using makecom Functions (Continued)

scsi_device(9S), scsi_pkt(9S)

ANSI Small Computer System Interface-2 (SCSI-2)

Writing Device Drivers

makecom(9F)

SEE ALSO

466 man pages section 9: DDI and DKI Kernel Functions • Last Revised 30 Aug 1995

makedevice – make device number from major and minor numbers

#include <sys/types.h>
#include <sys/mkdev.h>

#include <sys/ddi.h>

dev_t makedevice(major_t majnum, minor_t minnum);

Architecture independent level 1 (DDI/DKI).

majnum Major device number.

minnum Minor device number.

makedevice() creates a device number from a major and minor device number.
makedevice() should be used to create device numbers so the driver will port easily
to releases that treat device numbers differently.

The device number, containing both the major number and the minor number, is
returned. No validation of the major or minor numbers is performed.

makedevice() can be called from user or interrupt context.

getmajor(9F), getminor(9F)

makedevice(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 467

max – return the larger of two integers

#include <sys/ddi.h>

int max(int int1, int int2);

Architecture independent level 1 (DDI/DKI).

int1 The first integer.

int2 The second integer.

max() compares two signed integers and returns the larger of the two.

The larger of the two numbers.

max() can be called from user or interrupt context.

min(9F)

Writing Device Drivers

max(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

468 man pages section 9: DDI and DKI Kernel Functions • Last Revised 11 Apr 1991

min – return the lesser of two integers

#include <sys/ddi.h>

int min(int int1, int int2);

Architecture independent level 1 (DDI/DKI).

int1 The first integer.

int2 The second integer.

min() compares two signed integers and returns the lesser of the two.

The lesser of the two integers.

min() can be called from user or interrupt context.

max(9F)

Writing Device Drivers

min(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 469

mkiocb – allocates a STREAMS ioctl block for M_IOCTL messages in the kernel.

#include <sys/stream.h>

mblk_t *mkiocb(uint_t command);

Solaris DDI specific (Solaris DDI).

command The ioctl command for the ioc_cmd field.

STREAMS modules or drivers might need to issue an ioctl to a lower module or
driver.The mkiocb() function tries to allocate (using allocb(9F)) a STREAMS
M_IOCTL message block (iocblk(9S)). Buffer allocation fails only when the system is
out of memory. If no buffer is available, the qbufcall(9F) function can help a module
recover from an allocation failure.

The mkiocb function returns a mblk_t structure which is large enough to hold any of
the ioctl messages (iocblk(9S), copyreq(9S) or copyresp(9S)), and has the
following special properties:

b_wptr Set to b_rptr + sizeof(struct iocblk) .

b_cont Set to NULL.

b_datap->db_type Set to M_IOCTL.

The fields in the iocblk structure are initialized as follows:

ioc_cmd Set to the command value passed in.

ioc_id Set to a unique identifier.

ioc_cr Set to point to a credential structure encoding the
maximum system privilege and which does not need to
be freed in any fashion.

ioc_count Set to 0.

ioc_rval Set to 0.

ioc_error Set to 0.

ioc_flags Set to IOC_NATIVE to reflect that this is native to the
running kernel.

Upon success, the mkiocb() function returns a pointer to the allocated mblk_t of
type M_IOCTL .

On failure, it returns a null pointer.

The mkiocb() function can be called from user or interrupt context.

mkiocb(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

470 man pages section 9: DDI and DKI Kernel Functions • Last Revised 13 Nov 1996

EXAMPLE 1 M_IOCTL Allocation

The first example shows an M_IOCTL allocation with the ioctl command TEST_CMD. If
the iocblk(9S) cannot be allocated, NULL is returned, indicating an allocation failure
(line 5). In line 11, the putnext(9F) function is used to send the message downstream.

1 test_function(queue_t *q, test_info_t *testinfo)
2 {
3 mblk_t *mp;
4
5 if ((mp = mkiocb(TEST_CMD)) == NULL)
6 return (0);
7
8 /* save off ioctl ID value */
9 testinfo->xx_iocid = ((struct iocblk *)mp->b_rptr)->ioc_id;
10
11 putnext(q, mp); /* send message downstream */
12 return (1);
13 }

EXAMPLE 2 The ioctl ID Value

During the read service routine, the ioctl ID value for M_IOCACK or M_IOCNACK
should equal the ioctl that was previously sent by this module before processing.

1 test_lrsrv(queue_t *q)
2 {
3 ...
4
5 switch (DB_TYPE(mp)) {
6 case M_IOCACK:
7 case M_IOCNACK:
8 /* Does this match the ioctl that this module sent */
9 ioc = (struct iocblk*)mp->b_rptr;
10 if (ioc->ioc_id == testinfo->xx_iocid) {
11 /* matches, so process the message */
12 ...
13 freemsg(mp);
14 }
15 break;
16 }
17 ...
18 }

EXAMPLE 3 An iocblk Allocation Which Fails

The next example shows an iocblk allocation which fails. Since the open routine is in
user context, the caller may block using qbufcall(9F) until memory is available.

1 test_open(queue_t *q, dev_t devp, int oflag, int sflag, cred_t *credp)
2 {
3 while ((mp = mkiocb(TEST_IOCTL)) == NULL) {
4 int id;
5

mkiocb(9F)

EXAMPLES

Kernel Functions for Drivers 471

EXAMPLE 3 An iocblk Allocation Which Fails (Continued)

6 id = qbufcall(q, sizeof (union ioctypes), BPRI_HI,
7 dummy_callback, 0);
8 /* Handle interrupts */
9 if (!qwait_sig(q)) {
10 qunbufcall(q, id);
11 return (EINTR);
12 }
13 }
14 putnext(q, mp);
15 }

allocb(9F), putnext(9F), qbufcall(9F), qwait_sig(9F), copyreq(9S),
copyresp(9S), iocblk(9S)

Writing Device Drivers

STREAMS Programming Guide

It is the module’s responsibility to remember the ID value of the M_IOCTL that was
allocated. This will ensure proper cleanup and ID matching when the M_IOCACK or
M_IOCNACK is received.

mkiocb(9F)

SEE ALSO

WARNINGS

472 man pages section 9: DDI and DKI Kernel Functions • Last Revised 13 Nov 1996

mod_install, mod_remove, mod_info – add, remove or query a loadable module

#include <sys/modctl.h>

int mod_install(struct modlinkage *modlinkage);

int mod_remove(struct modlinkage *modlinkage);

int mod_info(struct modlinkage *modlinkage, struct modinfo *modinfo);

Solaris DDI specific (Solaris DDI).

modlinkage Pointer to the loadable module’s modlinkage structure which
describes what type(s) of module elements are included in this
loadable module.

modinfo Pointer to the modinfo structure passed to _info(9E).

mod_install() must be called from a module’s _init(9E) routine.

mod_remove() must be called from a module’s _fini(9E) routine.

mod_info() must be called from a module’s _info(9E) routine.

mod_install() and mod_remove() return 0 upon success and non-zero on failure.
mod_info() returns a non-zero value on success and 0 upon failure.

See _init(9E) for an example that uses these functions.

_fini(9E), _info(9E), _init(9E), modldrv(9S), modlinkage(9S), modlstrmod(9S)

Writing Device Drivers

mod_install(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

EXAMPLES

SEE ALSO

Kernel Functions for Drivers 473

msgdsize – return the number of bytes in a message

#include <sys/stream.h>

size_t msgdsize(mblk_t *mp);

Architecture independent level 1 (DDI/DKI).

mp Message to be evaluated.

msgdsize() counts the number of bytes in a data message. Only bytes included in
the data blocks of type M_DATA are included in the count.

The number of data bytes in a message, expressed as an integer.

msgdsize() can be called from user or interrupt context.

See bufcall(9F) for an example that uses msgdsize().

bufcall(9F)

Writing Device Drivers

STREAMS Programming Guide

msgdsize(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

EXAMPLES

SEE ALSO

474 man pages section 9: DDI and DKI Kernel Functions • Last Revised 11 Nov 1996

msgpullup – concatenate bytes in a message

#include <sys/stream.h>

mblk_t *msgpullup(mblk_t *mp, ssize_t len);

Architecture independent level 1 (DDI/DKI).

mp Pointer to the message whose blocks are to be concatenated.

len Number of bytes to concatenate.

msgpullup() concatenates and aligns the first len data bytes of the message pointed
to by mp, copying the data into a new message. Any remaining bytes in the remaining
message blocks will be copied and linked onto the new message. The original message
is unaltered. If len equals −1, all data are concatenated. If len bytes of the same
message type cannot be found, msgpullup() fails and returns NULL.

msgpullup returns the following values:

Non-null Successful completion. A pointer to the new message is returned.

NULL An error occurred.

msgpullup() can be called from user or interrupt context.

srv(9E), allocb(9F), pullupmsg(9F), msgb(9S)

Writing Device Drivers

STREAMS Programming Guide

msgpullup() is a DKI-compliant replacement for the older pullupmsg(9F) routine.
Users are strongly encouraged to use msgpullup() instead of pullupmsg(9F).

msgpullup(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

NOTES

Kernel Functions for Drivers 475

mt-streams – STREAMS multithreading

#include <sys/conf.h>

Solaris DDI specific (Solaris DDI).

STREAMS drivers configures the degree of concurrency using the cb_flag field in
the cb_ops structure (see cb_ops(9S)). The corresponding field for STREAMS
modules is the f_flag in the fmodsw structure.

For the purpose of restricting and controlling the concurrency in drivers/modules, we
define the concepts of inner and outer perimeters. A driver/module can be configured
either to have no perimeters, to have only an inner or an outer perimeter, or to have
both an inner and an outer perimeter. Each perimeter acts as a readers-writers lock,
that is, there can be multiple concurrent readers or a single writer. Thus, each
perimeter can be entered in two modes: shared (reader) or exclusive (writer). The
mode depends on the perimeter configuration and can be different for the different
STREAMS entry points (open(9E), close(9E), put(9E), or srv(9E)).

The concurrency for the different entry points is (unless specified otherwise) to enter
with exclusive access at the inner perimeter (if present) and shared access at the outer
perimeter (if present).

The perimeter configuration consists of flags that define the presence and scope of the
inner perimeter, the presence of the outer perimeter (which can only have one scope),
and flags that modify the default concurrency for the different entry points.

All MT safe modules/drivers specify the D_MP flag.

The inner perimeter presence and scope are controlled by the mutually exclusive flags:

D_MTPERQ The module/driver has an inner perimeter around
each queue.

D_MTQPAIR The module/driver has an inner perimeter around
each read/write pair of queues.

D_MTPERMOD The module/driver has an inner perimeter that
encloses all the module’s/driver’s queues.

None of the above The module/driver has no inner perimeter.

The outer perimeter presence is configured using:

D_MTOUTPERIM In addition to any inner perimeter, the module/driver
has an outer perimeter that encloses all the
module’s/driver’s queues. This can be combined with
all the inner perimeter options except D_MTPERMOD.

The default concurrency can be modified using:

mt-streams(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

Inner Perimeter
Flags

Outer Perimeter
Flags

476 man pages section 9: DDI and DKI Kernel Functions • Last Revised 2 Mar 1993

D_MTPUTSHARED This flag modifies the default behavior when put(9E)
procedure are invoked so that the inner perimeter is
entered shared instead of exclusively.

D_MTOCEXCL This flag modifies the default behavior when open(9E)
and close(9E) procedures are invoked so the the outer
perimeter is entered exclusively instead of shared.

The module/driver can use qwait(9F) or qwait_sig() in the open(9E) and
close(9E) procedures if it needs to wait "outside" the perimeters.

The module/driver can use qwriter(9F) to upgrade the access at the inner or outer
perimeter from shared to exclusive.

The use and semantics of qprocson() and qprocsoff(9F) is independent of the
inner and outer perimeters.

close(9E), open(9E), put(9E), srv(9E), qprocsoff(9F), qprocson(9F), qwait(9F),
qwriter(9F), cb_ops(9S)

STREAMS Programming Guide

Writing Device Drivers

mt-streams(9F)

SEE ALSO

Kernel Functions for Drivers 477

mutex, mutex_enter, mutex_exit, mutex_init, mutex_destroy, mutex_owned,
mutex_tryenter – mutual exclusion lock routines

#include <sys/ksynch.h>

void mutex_init(kmutex_t *mp, char *name, kmutex_type_t type, void
*arg);

void mutex_destroy(kmutex_t *mp);

void mutex_enter(kmutex_t *mp);

void mutex_exit(kmutex_t *mp);

int mutex_owned(kmutex_t *mp);

int mutex_tryenter(kmutex_t *mp);

Solaris DDI specific (Solaris DDI).

mp Pointer to a kernel mutex lock (kmutex_t).

name Descriptive string. This is obsolete and should be NULL.
(Non-NULL strings are legal, but they are a waste of kernel
memory.)

type Type of mutex lock.

arg Type-specific argument for initialization routine.

A mutex enforces a policy of mutual exclusion. Only one thread at a time may hold a
particular mutex. Threads trying to lock a held mutex will block until the mutex is
unlocked.

Mutexes are strictly bracketing and may not be recursively locked. That is to say,
mutexes should be exited in the opposite order they were entered, and cannot be
reentered before exiting.

mutex_init() initializes a mutex. It is an error to initialize a mutex more than once.
The type argument should be set to MUTEX_DRIVER.

arg provides type-specific information for a given variant type of mutex. When
mutex_init() is called for driver mutexes, if the mutex is used by the interrupt
handler, the arg should be the ddi_iblock_cookie returned from
ddi_get_iblock_cookie(9F) or ddi_get_soft_iblock_cookie(9F). Note that
arg should be the value of the iblock cookie casted to (void *), not the address of
the cookie. The arguments passed to ddi_get_iblock_cookie(9F) and
ddi_get_soft_iblock_cookie(9F), on the other hand, are the addresses of the
cookie. If the mutex is never used inside an interrupt handler, the argument should be
NULL.

mutex(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

478 man pages section 9: DDI and DKI Kernel Functions • Last Revised 27 Oct 2000

mutex_enter() is used to acquire a mutex. If the mutex is already held, then the
caller blocks. After returning, the calling thread is the owner of the mutex. If the mutex
is already held by the calling thread, a panic will ensue.

mutex_owned() should only be used in ASSERT() and may be enforced by not
being defined unless the preprocessor symbol DEBUG is defined. Its return value is
non-zero if the current thread (or, if that cannot be determined, at least some thread)
holds the mutex pointed to by mp.

mutex_tryenter() is very similar to mutex_enter() except that it doesn’t block
when the mutex is already held. mutex_tryenter() returns non-zero when it
acquired the mutex and 0 when the mutex is already held.

mutex_exit() releases a mutex and will unblock another thread if any are blocked
on the mutex.

mutex_destroy() releases any resources that might have been allocated by
mutex_init(). mutex_destroy() must be called before freeing the memory
containing the mutex, and should be called with the mutex unheld (not owned by any
thread). The caller must somehow be sure that no other thread will attempt to use the
mutex.

mutex_tryenter() returns non-zero on success and zero of failure.

mutex_owned() returns non-zero if the calling thread currently holds the mutex
pointed to by mp, or when that cannot be determined, if any thread holds the mutex.
mutex_owned() returns zero otherwise.

These functions can be called from user, kernel, or high-level interrupt context, except
for mutex_init() and mutex_destroy(), which can be called from user or kernel
context only.

EXAMPLE 1 Initializing a Mutex

A driver might do this to initialize a mutex that is part of its unit structure and used in
its interrupt routine:

ddi_get_iblock_cookie(dip, 0, &iblock);
mutex_init(&un->un_lock, NULL, MUTEX_DRIVER,

(void *)iblock);
ddi_add_intr(dip, 0, NULL, &dev_cookie, xxintr,

(caddr_t)un);

EXAMPLE 2 Calling a Routine with a Lock

A routine that expects to be called with a certain lock held might have the following
ASSERT:

xxstart(struct xxunit *un)
{

mutex(9F)

RETURN VALUES

CONTEXT

EXAMPLES

Kernel Functions for Drivers 479

EXAMPLE 2 Calling a Routine with a Lock (Continued)

ASSERT(mutex_owned(&un->un_lock));
...

lockstat(1M), condvar(9F), ddi_add_intr(9F), ddi_get_iblock_cookie(9F),
ddi_get_soft_iblock_cookie(9F), rwlock(9F), semaphore(9F)

Writing Device Drivers

Compiling with _LOCKTEST or _MPSTATS defined no longer has any effect. To gather
lock statistics, see lockstat(1M).

mutex(9F)

SEE ALSO

NOTES

480 man pages section 9: DDI and DKI Kernel Functions • Last Revised 27 Oct 2000

nochpoll – error return function for non-pollable devices

#include <sys/ddi.h>

#include <sys/sunddi.h>

int nochpoll(dev_t dev, short events, int anyyet, short *reventsp,
struct pollhead **pollhdrp);

Solaris DDI specific (Solaris DDI).

dev Device number.

events Event flags.

anyyet Check current events only.

reventsp Event flag pointer.

pollhdrp Poll head pointer.

nochpoll() is a routine that simply returns the value ENXIO. It is intended to be
used in the cb_ops(9S) structure of a device driver for devices that do not support the
poll(2) system call.

nochpoll() returns ENXIO.

nochpoll() can be called from user or interrupt context.

poll(2), chpoll(9E), cb_ops(9S)

Writing Device Drivers

nochpoll(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 481

nodev – error return function

#include <sys/conf.h>

#include <sys/ddi.h>

int nodev();

Architecture independent level 1 (DDI/DKI).

nodev() returns ENXIO. It is intended to be used in the cb_ops(9S) data structure of
a device driver for device entry points which are not supported by the driver. That is,
it is an error to attempt to call such an entry point.

nodev() returns ENXIO.

nodev() can be only called from user context.

nulldev(9F), cb_ops(9S)

Writing Device Drivers

nodev(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

482 man pages section 9: DDI and DKI Kernel Functions • Last Revised 27 Jan 1993

noenable – prevent a queue from being scheduled

#include <sys/stream.h>

#include <sys/ddi.h>

void noenable(queue_t *q);

Architecture independent level 1 (DDI/DKI).

q Pointer to the queue.

noenable() prevents the queue q from being scheduled for service by insq(9F),
putq(9F) or putbq(9F) when enqueuing an ordinary priority message. The queue can
be re-enabled with the enableok(9F) function.

noenable() can be called from user or interrupt context.

enableok(9F), insq(9F), putbq(9F), putq(9F), qenable(9F)

Writing Device Drivers

STREAMS Programming Guide

noenable(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

SEE ALSO

Kernel Functions for Drivers 483

nulldev – zero return function

#include <sys/conf.h>

#include <sys/ddi.h>

int nulldev();

Architecture independent level 1 (DDI/DKI).

nulldev() returns 0. It is intended to be used in the cb_ops(9S) data structure of a
device driver for device entry points that do nothing.

nulldev() returns a 0.

nulldev() can be called from any context.

nodev(9F), cb_ops(9S)

Writing Device Drivers

nulldev(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

484 man pages section 9: DDI and DKI Kernel Functions • Last Revised 11 Apr 1991

nvlist_add_boolean, nvlist_add_byte, nvlist_add_int16, nvlist_add_uint16,
nvlist_add_int32, nvlist_add_uint32, nvlist_add_int64, nvlist_add_uint64,
nvlist_add_string, nvlist_add_byte_array, nvlist_add_int16_array,
nvlist_add_uint16_array, nvlist_add_int32_array, nvlist_add_uint32_array,
nvlist_add_int64_array, nvlist_add_uint64_array, nvlist_add_string_array – add new
name-value pair to nvlist_t

#include <sys/nvpair.h>

int nvlist_add_boolean(nvlist_t *nvl, char *name);

int nvlist_add_byte(nvlist_t *nvl, char *name, uchar_t val);

int nvlist_add_int16(nvlist_t *nvl, char *name, int16_t val);

int nvlist_add_uint16(nvlist_t *nvl, char *name, uint16_t val);

int nvlist_add_int32(nvlist_t *nvl, char *name, int32_t val);

int nvlist_add_uint32(nvlist_t *nvl, char *name, uint32_t val);

int nvlist_add_int64(nvlist_t *nvl, char *name, int64_t val);

int nvlist_add_uint64(nvlist_t *nvl, char *name, uint64_t val);

int nvlist_add_string(nvlist_t *nvl, char *name, char *val);

int nvlist_add_byte_array(nvlist_t *nvl, char *name, uchar_t *val,
uint_t nelem);

int nvlist_add_int16_array(nvlist_t *nvl, char *name, int16_t *val,
uint_t nelem);

int nvlist_add_uint16_array(nvlist_t *nvl, char *name, uint16_t
*val, uint_t nelem);

int nvlist_add_int32_array(nvlist_t *nvl, char *name, int32_t *val,
uint_t nelem);

int nvlist_add_uint32_array(nvlist_t *nvl, char *name, uint32_t
*val, uint_t nelem);

int nvlist_add_int64_array(nvlist_t *nvl, char *name, int64_t *val,
uint_t nelem);

int nvlist_add_uint64_array(nvlist_t *nvl, char *name, uint64_t
*val, uint_t nelem);

int nvlist_add_string_array(nvlist_t *nvl, char *name, char **val,
uint_t nelem);

Solaris DDI specific (Solaris DDI)

nvl The nvlist_t to be processed.

name Name of the name-value pair (nvpair).

nvlist_add_boolean(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

Kernel Functions for Drivers 485

nelem Number of elements in value (that is, array size).

val Value or starting address of the array value.

These functions adds a new name-value pair to nvlist_t. The memory allocation
policy follows that specified in nvlist_alloc(), nvlist_unpack(), or
nvlist_dup(). See nvlist_alloc(9F). The uniqueness of nvpair name and data
types follow the nvflag argument specified in nvlist_alloc().

If NV_UNIQUE_NAME was specified for nvflag, existing nvpairs with matching names
are removed before the new nvpair is added.

If NV_UNIQUE_NAME_TYPE was specified for nvflag, existing nvpairs with matching
names and data types are removed before the new nvpair is added.

If neither was specified for nvflag, the new nvpair is unconditionally added at the
end of the list. The library preserves the order of the name-value pairs across packing,
unpacking, and duplication.

0 success

EINVAL invalid argument

ENOMEM insufficient memory

These functions can be called from interrupt context only if the nvlist_t was
allocated with the KM_NOSLEEP flag set. See nvlist_alloc(9F) for a description of
KM_NOSLEEP. These functions can be called from user context in all cases.

nvlist_add_boolean(9F)

DESCRIPTION

RETURN VALUES

CONTEXT

486 man pages section 9: DDI and DKI Kernel Functions • Last Revised 27 September 2000

nvlist_alloc, nvlist_free, nvlist_size, nvlist_pack, nvlist_unpack, nvlist_dup – manage a
name-value pair list

#include <sys/nvpair.h>

int nvlist_alloc(nvlist_t **nvlp, uint_t nvflag, int kmflag);

void nvlist_free(nvlist_t *nvl);

int nvlist_size(nvlist_t *nvl, size_t *size, int encoding);

int nvlist_pack(nvlist_t *nvl, char **bufp, size_t *buflen, int
encoding, int kmflag);

int nvlist_unpack(char *buf, size_t buflen, nvlist_t **nvlp, int
kmflag);

int nvlist_dup(nvlist_t *nvl, nvlist_t **nvlp, int kmflag);

Solaris DDI specific (Solaris DDI)

nvlp Address of a pointer to list of name-value pairs (nvlist_t).

nvflag Specify bit fields defining nvlist_t properties:

NV_UNIQUE_NAME The nvpair names are unique.

NV_UNIQUE_NAME_TYPE Name-data type combination is
unique

kmflag Kernel memory allocation policy, either KM_SLEEP or
KM_NOSLEEP.

nvl The nvlist_t to be processed.

size Pointer to buffer to contain the encoded size.

bufp Address of buffer to pack nvlist into. Must be 8-byte aligned. If
NULL, library will allocate memory.

buf Buffer containing packed nvlist_t.

buflen Size of buffer bufp or buf points to.

encoding Encoding method for packing.

The nvlist_alloc() function allocates a new name-value pair list and updates nvlp
to point to the handle. The argument nvflag specifies nvlist_t properties to remain
persistent across packing, unpacking, and duplication.

The nvlist_free() function frees a name-value pair list.

The nvlist_size() function returns the minimum size of a contiguous buffer large
enough to pack nvl. The encoding parameter specifies the method of encoding when
packing nvl. Supported encoding methods are:

NV_ENCODE_NATIVE Straight bcopy() as described in bcopy(9F).

nvlist_alloc(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

Kernel Functions for Drivers 487

NV_ENCODE_XDR Use XDR encoding, suitable for sending to another
host.

The nvlist_pack() function packs nvl into contiguous memory starting at *bufp.
The encoding parameter specifies the method of encoding (see above).

� If *bufp is not NULL, *bufp is expected to be a caller-allocated buffer of size *buflen.
The kmflag argument is ignored.

� If *bufp is NULL, the library will allocate memory and update *bufp to point to the
memory and update *buflen to contain the size of the allocated memory. The value
of kmflag indicates the memory allocation policy

The nvlist_unpack() function takes a buffer with a packed nvlist_t and
unpacks it into a searchable nvlist_t. The library allocates memory for nvlist_t.
The caller is responsible for freeing the memory by calling nvlist_free().

The nvlist_dup() function makes a copy of nvl and updates nvlp to point to the
copy.

For nvlist_alloc(), nvlist_dup():

0 success

EINVAL invalid argument

ENOMEM insufficient memory

For nvlist_pack(), nvlist_unpack():

0 success

EINVAL invalid argument

ENOMEM insufficient memory

EFAULT encode/decode error

ENOTSUP encode/decode method not supported

For nvlist_size():

0 success

EINVAL invalid argument

The nvlist_alloc(), nvlist_pack(), nvlist_unpack(), and nvlist_dup()
functions can be called from interrupt context only if the KM_NOSLEEP flag is set. They
can be called from user context with any valid flag.

nvlist_alloc(9F)

RETURN VALUES

CONTEXT

488 man pages section 9: DDI and DKI Kernel Functions • Last Revised 21 Aug 2001

nvlist_lookup_boolean, nvlist_lookup_byte, nvlist_lookup_int16,
nvlist_lookup_uint16, nvlist_lookup_int32, nvlist_lookup_uint32, nvlist_lookup_int64,
nvlist_lookup_uint64, nvlist_lookup_string, nvlist_lookup_byte_array,
nvlist_lookup_int16_array, nvlist_lookup_uint16_array, nvlist_lookup_int32_array,
nvlist_lookup_uint32_array, nvlist_lookup_int64_array, nvlist_lookup_uint64_array,
nvlist_lookup_string_array – match name and type indicated by the interface name
and retrieve data value

#include <sys/nvpair.h>

int nvlist_lookup_boolean(nvlist_t *nvl, char *name);

int nvlist_lookup_byte(nvlist_t *nvl, char *name, uchar_t *val);

int nvlist_lookup_int16(nvlist_t *nvl, char *name, int16_t *val);

int nvlist_lookup_uint16(nvlist_t *nvl, char *name, uint16_t *val);

int nvlist_lookup_int32(nvlist_t *nvl, char *name, int32_t *val);

int nvlist_lookup_uint32(nvlist_t *nvl, char *name, uint32_t *val);

int nvlist_lookup_int64(nvlist_t *nvl, char *name, int64_t *val);

int nvlist_lookup_uint64(nvlist_t *nvl, char *name, uint64_t *val);

int nvlist_lookup_string(nvlist_t *nvl, char *name, char **val);

int nvlist_lookup_byte_array(nvlist_t *nvl, char *name, uchar_t
**val, uint_t *nelem);

int nvlist_lookup_int16_array(nvlist_t *nvl, char *name, int16_t
**val, uint_t *nelem);

int nvlist_lookup_uint16_array(nvlist_t *nvl, char *name, uint16_t
**val, uint_t *nelem);

int nvlist_lookup_int32_array(nvlist_t *nvl, char *name, int32_t
**val, uint_t *nelem);

int nvlist_lookup_uint32_array(nvlist_t *nvl, char *name, uint32_t
**val, uint_t *nelem);

int nvlist_lookup_int64_array(nvlist_t *nvl, char *name, int64_t
**val, uint_t *nelem);

int nvlist_lookup_uint64_array(nvlist_t *nvl, char *name, uint64_t
**val, uint_t *nelem);

int nvlist_lookup_string_array(nvlist_t *nvl, char *name, char
***val, uint_t *nelem);

Solaris DDI specific (Solaris DDI)

nvl The list of name-value pairs (nvlist_t) to be processed.

name Name of the name-value pair (nvpair) to search.

nvlist_lookup_boolean(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

Kernel Functions for Drivers 489

nelem Address to store the number of elements in value.

val Address to store the value or starting address of the array value.

These functions find the nvpair that matches the name and type as indicated by the
interface name. If one is found, nelem and val are modified to contain the number of
elements in value and the starting address of data, respectively.

These interfaces work for nvlist_ts allocated with NV_UNIQUE_NAME or
NV_UNIQUE_NAME_TYPE specified in nvlist_alloc(). (See nvlist_alloc(9F).) If
this is not the case, the interface will return ENOTSUP because the list potentially
contains multiple nvpairs with the same name and type.

All memory required for storing the array elements, including string values, are
managed by the library. References to such data remain valid until nvlist_free() is
called on nvl.

0 success

EINVAL invalid argument

ENOENT no matching name-value pair found

ENOTSUP encode/decode method not supported

These functions can be called from user or interrupt contexts.

nvlist_lookup_boolean(9F)

DESCRIPTION

RETURN VALUES

CONTEXT

490 man pages section 9: DDI and DKI Kernel Functions • Last Revised 26 September 2000

nvlist_next_nvpair, nvpair_name, nvpair_type – return data regarding name-value
pairs

#include <sys/nvpair.h>

nvpair_t *nvlist_next_nvpair(nvlist_t *nvl, nvpair_t *nvpair);

char *nvpair_name(nvpair_t *nvpair);

data_type_t nvpair_type(nvpair_t *nvpair);

Solaris DDI specific (Solaris DDI)

nvl The list of name-value pairs (nvlist_t) to be processed.

nvpair Handle to a name-value pair.

The nvlist_next_nvpair() function returns a handle to the next name-value pair
(nvpair) in the list following nvpair. If nvpair is NULL, the first pair is returned. If
nvpair is the last pair in the nvlist_t, NULL is returned.

The nvpair_name() function returns a string containing the name of nvpair.

The nvpair_type() function retrieves the value of the nvpair in the form of
enumerated type data_type_t. This is used to determine the appropriate
nvpair_*() function to call for retrieving the value.

For nvpair_name(), a string containing the name.

For nvpair_type(), an enumerated data type data_type_t. Possible values for
data_type_t are as follows:

DATA_TYPE_BOOLEAN
DATA_TYPE_BYTE
DATA_TYPE_INT16
DATA_TYPE_UINT16
DATA_TYPE_INT32
DATA_TYPE_UINT32
DATA_TYPE_INT64
DATA_TYPE_UINT64
DATA_TYPE_STRING
DATA_TYPE_BYTE_ARRAY
DATA_TYPE_INT16_ARRAY
DATA_TYPE_UINT16_ARRAY
DATA_TYPE_INT32_ARRAY
DATA_TYPE_UINT32_ARRAY
DATA_TYPE_INT64_ARRAY
DATA_TYPE_UINT64_ARRAY
DATA_TYPE_STRING_ARRAY

For nvlist_next_pair():

NULL Reached end of list.

otherwise: Handle to next nvpair in the list.

nvlist_next_nvpair(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

Kernel Functions for Drivers 491

The functions described here can be called from user or interrupt context.

nvlist_next_nvpair(9F)

CONTEXT

492 man pages section 9: DDI and DKI Kernel Functions • Last Revised 16 Aug 2001

nvlist_remove, nvlist_remove_all – remove name-value pairs

#include <sys/nvpair.h>

void nvlist_remove(nvlist_t *nvl, char *name, data_type_t type);

void nvlist_remove_all(nvlist_t *nvl, char *name);

Solaris DDI specific (Solaris DDI)

nvl The list of name-value pairs (nvlist_t) to be processed.

name Name of the name-value pair (nvpair) to be removed.

type Data type of the nvpair to be removed.

The nvlist_remove() function removes the first occurrence of nvpair that matches
the name and the type.

The nvlist_remove_all() function removes all occurrences of nvpair that match
the name, regardless of type.

None

The nvlist_remove() and nvlist_remove_all() functions can be called from
user or interrupt context.

nvlist_remove(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

Kernel Functions for Drivers 493

nvpair_value_byte, nvpair_value_int16, nvpair_value_uint16, nvpair_value_int32,
nvpair_value_uint32, nvpair_value_int64, nvpair_value_uint64, nvpair_value_string,
nvpair_value_byte_array, nvpair_value_int16_array, nvpair_value_uint16_array,
nvpair_value_int32_array, nvpair_value_uint32_array, nvpair_value_int64_array,
nvpair_value_uint64_array, nvpair_value_string_array – retrieve value from a
name-value pair

#include <sys/nvpair.h>

int nvpair_value_byte(nvpair_t *nvpair, uchar_t *val);

int nvpair_value_int16(nvpair_t *nvpair, int16_t *val);

int nvpair_value_uint16(nvpair_t *nvpair, uint16_t *val);

int nvpair_value_int32(nvpair_t *nvpair, int32_t *val);

int nvpair_value_uint32(nvpair_t *nvpair, uint32_t *val);

int nvpair_value_int64(nvpair_t *nvpair, int64_t *val);

int nvpair_value_uint64(nvpair_t *nvpair, uint64_t *val);

int nvpair_value_string(nvpair_t *nvpair, char **val);

int nvpair_value_byte_array(nvpair_t *nvpair, uchar_t **val, uint_t
*nelem);

int nvpair_value_int16_array(nvpair_t *nvpair, int16_t **val,
uint_t *nelem);

int nvpair_value_uint16_array(nvpair_t *nvpair, uint16_t **val,
uint_t *nelem);

int nvpair_value_int32_array(nvpair_t *nvpair, int32_t **val,
uint_t *nelem);

int nvpair_value_uint32_array(nvpair_t *nvpair, uint32_t **val,
uint_t *nelem);

int nvpair_value_int64_array(nvpair_t *nvpair, int64_t **val,
uint_t *nelem);

int nvpair_value_uint64_array(nvpair_t *nvpair, uint64_t **val,
uint_t *nelem);

int nvpair_value_string_array(nvpair_t *nvpair, char ***val, uint_t
*nelem);

Solaris DDI specific (Solaris DDI)

nvpair Name-value pair (nvpair) to be processed.

nelem Address to store the number of elements in value.

val Address to store the value or starting address of array value.

nvpair_value_byte(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

494 man pages section 9: DDI and DKI Kernel Functions • Last Revised 27 September 2000

These functions retrieve the value of nvpair. The data type of nvpair must match the
function name for the call to be successful.

There is no nvpair_value_boolean(); the existence of the name implies the value
is true.

For array data types, including string, the memory containing the data is managed by
the library and references to the value remains valid until nvlist_free() is called
on the nvlist_t from which nvpair is obtained. See nvlist_free(9F)

0 Success

EINVAL Either one of the arguments is NULL or type of nvpair does not
match the interface name.

These functions can be called from user or interrupt context.

nvpair_value_byte(9F)

DESCRIPTION

RETURN VALUES

CONTEXT

Kernel Functions for Drivers 495

OTHERQ, otherq – get pointer to queue’s partner queue

#include <sys/stream.h>

#include <sys/ddi.h>

queue_t *OTHERQ(queue_t *q);

Architecture independent level 1 (DDI/DKI).

q Pointer to the queue.

The OTHERQ() function returns a pointer to the other of the two queue structures that
make up a STREAMS module or driver. If q points to the read queue the write queue
will be returned, and vice versa.

OTHERQ() returns a pointer to a queue’s partner.

OTHERQ() can be called from user or interrupt context.

EXAMPLE 1 Setting Queues

This routine sets the minimum packet size, the maximum packet size, the high water
mark, and the low water mark for the read and write queues of a given module or
driver. It is passed either one of the queues. This could be used if a module or driver
wished to update its queue parameters dynamically.

1 void
2 set_q_params(q, min, max, hi, lo)
3 queue_t *q;
4 short min;
5 short max;
6 ushort_t hi;
7 ushort_t lo;
8 {
9 q->q_minpsz = min;
10 q->q_maxpsz = max;
11 q->q_hiwat = hi;
12 q->q_lowat = lo;
13 OTHERQ(q)->q_minpsz = min;
14 OTHERQ(q)->q_maxpsz = max;
15 OTHERQ(q)->q_hiwat = hi;
16 OTHERQ(q)->q_lowat = lo;
17 }

Writing Device Drivers

STREAMS Programming Guide

OTHERQ(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

EXAMPLES

SEE ALSO

496 man pages section 9: DDI and DKI Kernel Functions • Last Revised 11 Apr 1991

outb, outw, outl, repoutsb, repoutsw, repoutsd – write to an I/O port

#include <sys/ddi.h>

#include <sys/sunddi.h>

void outb(int port, unsigned char value);

void outw(int port, unsigned short value);

void outl(int port, unsigned long value);

void repoutsb(int port, unsigned char *addr, int count);

void repoutsw(int port, unsigned short *addr, int count);

void repoutsd(int port, unsigned long *addr, int count);

Solaris IA DDI specific (Solaris IA DDI).

port A valid I/O port address.

value The data to be written to the I/O port.

addr The address of a buffer from which the values will be fetched.

count The number of values to be written to the I/O port.

These routines write data of various sizes to the I/O port with the address specified by
port.

The outb(), outw(), and outl() functions write 8 bits, 16 bits, and 32 bits of data
respectively, writing the data specified by value.

The repoutsb(), repoutsw(), and repoutsd() functions write multiple 8-bit,
16-bit, and 32-bit values, respectively. count specifies the number of values to be
written. addr is a pointer to a buffer from which the output values are fetched.

These functions may be called from user or interrupt context.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

eisa(4), isa(4), attributes(5), inb(9F)

Writing Device Drivers

outb(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

ATTRIBUTES

SEE ALSO

Kernel Functions for Drivers 497

pci_config_get8, pci_config_get16, pci_config_get32, pci_config_get64,
pci_config_put8, pci_config_put16, pci_config_put32, pci_config_put64,
pci_config_getb, pci_config_getl, pci_config_getll, pci_config_getw, pci_config_putb,
pci_config_putl, pci_config_putll, pci_config_putw – read or write single datum of
various sizes to the PCI Local Bus Configuration space

#include <sys/ddi.h>

#include <sys/sunddi.h>

uint8_t pci_config_get8(ddi_acc_handle_t handle, off_t offset);

uint16_t pci_config_get16(ddi_acc_handle_t handle, off_t offset);

uint32_t pci_config_get32(ddi_acc_handle_t handle, off_t offset);

uint64_t pci_config_get64(ddi_acc_handle_t handle, off_t offset);

void pci_config_put8(ddi_acc_handle_t handle, off_t offset, uint8_t
value);

void pci_config_put16(ddi_acc_handle_t handle, off_t offset, uint16_t
value);

void pci_config_put32(ddi_acc_handle_t handle, off_t offset, uint32_t
value);

void pci_config_put64(ddi_acc_handle_t handle, off_t offset, uint64_t
value);

Solaris DDI specific (Solaris DDI).

handle The data access handle returned from pci_config_setup(9F).

offset Byte offset from the beginning of the PCI Configuration space.

value Output data.

These routines read or write a single datum of various sizes from or to the PCI Local
Bus Configuration space. The pci_config_get8(), pci_config_get16(),
pci_config_get32(), and pci_config_get64() functions read 8 bits, 16 bits, 32
bits, and 64 bits of data, respectively. The pci_config_put8(),
pci_config_put16(), pci_config_put32(), and pci_config_put64()
functions write 8 bits, 16 bits, 32 bits, and 64 bits of data, respectively. The offset
argument must be a multiple of the datum size.

Since the PCI Local Bus Configuration space is represented in little endian data
format, these functions translate the data from or to native host format to or from little
endian format.

pci_config_setup(9F) must be called before invoking these functions.

pci_config_get8(), pci_config_get16(), pci_config_get32(), and
pci_config_get64() return the value read from the PCI Local Bus Configuration
space.

pci_config_get8(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

498 man pages section 9: DDI and DKI Kernel Functions • Last Revised 1 Jan 1997

These routines can be called from user, kernel, or interrupt context.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture PCI Local Bus

attributes(5), pci_config_setup(9F), pci_config_teardown(9F)

These functions are specific to PCI bus device drivers. For drivers using these
functions, a single source to support devices with multiple bus versions may not be
easy to maintain.

The functions described in this manual page previously used symbolic names which
specified their data access size; the function names have been changed so they now
specify a fixed-width data size. See the following table for the new name equivalents:

Previous Name New Name

pci_config_getb pci_config_get8

pci_config_getw pci_config_get16

pci_config_getl pci_config_get32

pci_config_getll pci_config_get64

pci_config_putb pci_config_put8

pci_config_putw pci_config_put16

pci_config_putl pci_config_put32

pci_config_putll pci_config_put64

pci_config_get8(9F)

CONTEXT

ATTRIBUTES

SEE ALSO

NOTES

Kernel Functions for Drivers 499

pci_config_setup, pci_config_teardown – setup or tear down the resources for enabling
accesses to the PCI Local Bus Configuration space

#include <sys/ddi.h>

#include <sys/sunddi.h>

int pci_config_setup(dev_info_t *dip, ddi_acc_handle_t *handle);

void pci_config_teardown(ddi_acc_handle_t *handle);

Solaris DDI specific (Solaris DDI).

dip Pointer to the device’s dev_info structure.

handle Pointer to a data access handle.

pci_config_setup() sets up the necessary resources for enabling subsequent data
accesses to the PCI Local Bus Configuration space. pci_config_teardown()
reclaims and removes those resources represented by the data access handle returned
from pci_config_setup().

pci_config_setup() returns:

DDI_SUCCESS Successfully setup the resources.

DDI_FAILURE Unable to allocate resources for setup.

pci_config_setup() must be called from user or kernel context.
pci_config_teardown() can be called from any context.

These functions are specific to PCI bus device drivers. For drivers using these
functions, a single source to support devices with multiple bus versions may not be
easy to maintain.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture PCI Local Bus

attributes(5)

IEEE 1275 PCI Bus Binding

pci_config_setup(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

NOTES

ATTRIBUTES

SEE ALSO

500 man pages section 9: DDI and DKI Kernel Functions • Last Revised 1 Jan 1997

pci_report_pmcap – Report Power Management capability of a PCI device

#include <sys/ddi.h>

#include <sys/sunddi.h>

int pci_report_pmcap(dev_info_t *dip, int cap, void *arg);

Solaris DDI specific (Solaris DDI)

dip Pointer to the device’s dev_info structure

cap Power management capability

arg Argument for the capability

Some PCI devices provide power management capabilities in addition to those
provided by the PCI Power Management Specification. The pci_report_pmcap(9F)
function reports those Power Management capabilities of the PCI device to the
framework. Framework supports dynamic changing of the capability by allowing
pci_report_pmcap(9F) to be called multiple times. Following are the supported
capabilities as indicated by the cap:

PCI_PM_IDLESPEED — The PCI_PM_IDLESPEED value indicates the lowest PCI
clock speed that a device can tolerate when idle, and is applicable only to 33 MHz PCI
bus. arg represents the lowest possible idle speed in KHz (1 KHz is 1000 Hz). The
integer value representing the speed should be cast to (void *) before passing as
arg to pci_report_pmcap(9F).

The special values of arg are:

PCI_PM_IDLESPEED_ANY The device can tolerate any idle clock speed.

PCI_PM_IDLESPEED_NONE The device cannot tolerate slowing down of PCI clock
even when idle.

If the driver doesn’t make this call, PCI_PM_IDLESPEED_NONE is assumed. In this
case, one offending device can keep the entire bus from being power managed.

The pci_report_pmcap(9F) function returns:

DDI_SUCCESS Successful reporting of the capability

DDI_FAILURE Failure to report capability because of invalid argument(s)

The pci_report_pmcap(9F) function can be called from user, kernel and interrupt
context.

1. A device driver knows that the device it controls works with any clock between DC
and 33 MHz as specified in Section 4.2.3.1: Clock Specification of the PCI Bus Specification
Revision 2.1. The device driver makes the following call from its attach(9E):

if (pci_report_pmcap(dip, PCI_PM_IDLESPEED, PCI_PM_IDLESPEED_ANY) !=
DDI_SUCCESS)

cmn_err(CE_WARN, "%s%d: pci_report_pmcap failed\n",

pci_report_pmcap(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

EXAMPLES

Kernel Functions for Drivers 501

ddi_driver_name(dip), ddi_get_instance(dip));

2. A device driver controls a 10/100 Mb Ethernet device which runs the device state
machine on the chip from the PCI clock. For the device state machine to receive
packets at 100 Mb, the PCI clock cannot drop below 4 MHz. The driver makes the
following call whenever it negotiates a 100 Mb Ethernet connection:

if (pci_report_pmcap(dip, PCI_PM_IDLESPEED, (void *)4000) !=
DDI_SUCCESS)
cmn_err(CE_WARN, "%s%d: pci_report_pmcap failed\n",

ddi_driver_name(dip), ddi_get_instance(dip));

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Writing Device Drivers

PCI Bus Power Management Interface Specification Version 1.1

PCI Bus Specification Revision 2.1

pci_report_pmcap(9F)

ATTRIBUTES

SEE ALSO

502 man pages section 9: DDI and DKI Kernel Functions • Last Revised 13 August 1999

pci_save_config_regs, pci_restore_config_regs – save and restore the PCI configuration
registers

#include <sys/ddi.h>

#include <sys/sunddi.h>

int pci_save_config_regs(dev_info_t *dip);

int pci_restore_config_regs(dev_info_t *dip);

Solaris DDI-specific (Solaris DDI).

dip Pointer to the device’s dev_info structure.

pci_save_config_regs() saves the current configuration registers on persistent
system memory. pci_restore_config_regs() restores configuration registers
previously saved by pci_save_config_regs().

pci_save_config_regs() should be called by the driver’s power() entry point
before powering a device off (to PCI state D3). Likewise,
pci_restore_config_regs() should be called after powering a device on (from
PCI state D3), but before accessing the device. See power(9E).

pci_save_config_regs() and pci_restore_config_regs() return:

DDI_SUCCESS Operation completed successfully.

DDI_FAILURE Operation failed to complete successfully.

Both these functions can be called from user or kernel context.

EXAMPLE 1 Invoking the save and restore functions

static int
xx_power(dev_info_t *dip, int component, int level) {

struct xx *xx;
int rval = DDI_SUCCESS;

xx = ddi_get_soft_state(xx_softstate, ddi_get_instance(dip));
if (xx == NULL) {

return (DDI_FAILURE);
}

mutex_enter(&xx−>x_mutex);

switch (level) {
case PM_LEVEL_D0:

XX_POWER_ON(xx);
if (pci_restore_config_regs(dip) == DDI_FAILURE) {

/*
* appropriate error path handling here
*/
...
rval = DDI_FAILURE;
}

break;

pci_save_config_regs(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

ARGUMENTS

DESCRIPTION

RETURN VALUES

CONTEXT

EXAMPLES

Kernel Functions for Drivers 503

EXAMPLE 1 Invoking the save and restore functions (Continued)

case PM_LEVEL_D3:
if (pci_save_config_regs(dip) == DDI_FAILURE) {

/*
* appropriate error path handling here
*/
...
rval = DDI_FAILURE;
}

else {
XX_POWER_OFF(xx);

}
break;

default:
rval = DDI_FAILURE;
break;

}

mutex_exit(&xx−>x_mutex);
return (rval);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

attributes(5), power(9E)

Writing Device Drivers

PCI Bus Power Management Interface Specification Version 1.1

PCI Bus Specification Revision 2.1

pci_save_config_regs(9F)

ATTRIBUTES

SEE ALSO

504 man pages section 9: DDI and DKI Kernel Functions • Last Revised 02 June 2000

physio, minphys – perform physical I/O

#include <sys/types.h>
#include <sys/buf.h>

#include <sys/uio.h>

int physio(int(*strat)(struct buf *), struct buf *bp, dev_t dev, int
rw, void (*mincnt)(struct buf *), struct uio *uio);

void minphys(struct buf *bp);

Solaris DDI specific (Solaris DDI).

strat Pointer to device strategy routine.

bp Pointer to a buf(9S) structure describing the transfer. If bp is set to
NULL then physio() allocates one which is automatically
released upon completion.

dev The device number.

rw Read/write flag. This is either B_READ when reading from the
device, or B_WRITE when writing to the device.

mincnt Routine which bounds the maximum transfer unit size.

uio Pointer to the uio structure which describes the user I/O request.

bp Pointer to a buf structure.

physio() performs unbuffered I/O operations between the device dev and the
address space described in the uio structure.

Prior to the start of the transfer physio() verifies the requested operation is valid by
checking the protection of the address space specified in the uio structure. It then
locks the pages involved in the I/O transfer so they can not be paged out. The device
strategy routine, strat(), is then called one or more times to perform the physical
I/O operations. physio() uses biowait(9F) to block until strat() has completed
each transfer. Upon completion, or detection of an error, physio() unlocks the pages
and returns the error status.

physio() uses mincnt() to bound the maximum transfer unit size to the system, or
device, maximum length. minphys() is the system mincnt() routine for use with
physio() operations. Drivers which do not provide their own local mincnt()
routines should call physio() with minphys().

minphys() limits the value of bp->b_bcount to a sensible default for the capabilities
of the system. Drivers that provide their own mincnt() routine should also call
minphys() to make sure they do not exceed the system limit.

physio() returns:

0 Upon success.

physio(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

physio()

minphys()

DESCRIPTION

RETURN VALUES

Kernel Functions for Drivers 505

non-zero Upon failure.

physio() can be called from user context only.

strategy(9E), biodone(9F), biowait(9F), buf(9S), uio(9S)

Writing Device Drivers

Since physio() calls biowait() to block until each buf transfer is complete, it is the
drivers responsibility to call biodone(9F) when the transfer is complete, or physio()
will block forever.

physio(9F)

CONTEXT

SEE ALSO

WARNINGS

506 man pages section 9: DDI and DKI Kernel Functions • Last Revised 2 Apr 1993

pm_busy_component, pm_idle_component – Control device component availability
for Power Management

#include <sys/ddi.h>

#include <sys/sunddi.h>

int pm_busy_component(dev_info_t *dip, int component);

int pm_idle_component(dev_info_t *dip, int component);

Solaris DDI specific (Solaris DDI)

dip Pointer to the device’s dev_info structure.

component The number of the component to be power-managed.

dip Pointer to the device’s dev_info structure.

component The number of the component to be power-managed.

The pm_busy_component() function sets component of dip to be busy. Calls to
pm_busy_component() are stacked, requiring a corresponding number of calls to
pm_idle_component() to make the component idle again. When a device is busy it
will not be power-managed by the system.

The pm_idle_component() function marks component idle, recording the time that
component went idle. This function must be called once for each call to
pm_busy_component(). A component which is idle is available to be
power-managed by the system. The pm_idle_component() function has no effect if
the component is already idle, except to update the system’s notion of when the
device went idle.

The pm_busy_component() and pm_idle_component() functions return:

DDI_SUCCESS Successfully set the indicated component busy or idle.

DDI_FAILURE Invalid component number component or the device has no
components.

These functions can be called from user or kernel context. These functions may also be
called from interrupt context, providing they are not the first Power Managment
function called by the driver.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface stability Evolving

power.conf(4), pm(7D), pm_create_components(9F),
pm_destroy_components(9F), pm_raise_power(9F), pm(9P), pm-components(9P)

pm_busy_component(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

pm_busy_component()

pm_idle_component()

DESCRIPTION

RETURN VALUES

CONTEXT

ATTRIBUTES

SEE ALSO

Kernel Functions for Drivers 507

Writing Device Drivers

pm_busy_component(9F)

508 man pages section 9: DDI and DKI Kernel Functions • Last Revised 14 Oct 1999

pm_create_components, pm_destroy_components – Create or destroy
power-manageable components

#include <sys/ddi.h>

#include <sys/sunddi.h>

int pm_create_components(dev_info_t *dip, int components);

void pm_destroy_components(dev_info_t *dip);

Solaris DDI specific (Solaris DDI).

dip Pointer to the device’s dev_info structure

components Number of components to create

The pm_create_components() and pm_destroy_components() functions are
now obsolete and will be removed in a future release. It is recommended that the
driver use pm-components(9) instead.

The pm_create_components() function creates power-manageable components for
a device. It should be called from the driver’s attach(9E) entry point if the device has
power-manageable components.

The correspondence of components to parts of the physical device controlled by the
driver are the responsibility of the driver.

The pm_destroy_components() function removes all components from the device.
It should be called from the driver’s detach(9E) entry point.

The pm_create_components() function returns:

DDI_SUCCESS Components are successfully created.

DDI_FAILURE The device already has components.

These functions may be called from user or kernel context.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface stability Obsolete

power.conf(4), pm(7D), attach(9E), detach(9E), pm_busy_component(9F),
pm_idle_component(9F), pm(9P), pm-components(9P)

Writing Device Drivers

pm_create_components(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

ATTRIBUTES

SEE ALSO

Kernel Functions for Drivers 509

pm_get_normal_power, pm_set_normal_power – get or set a device component’s
normal power level

#include <sys/ddi.h>

#include <sys/sunddi.h>

int pm_get_normal_power(dev_info_t *dip, int component);

void pm_set_normal_power(dev_info_t *dip, int component, int level);

Solaris DDI specific (Solaris DDI)

pm_get_normal_power() parameters:

dip Pointer to the device’s dev_info structure

component Number of component from which to get normal power level

pm_set_normal_power() parameters:

dip Pointer to the device’s dev_info structure

component Number of component for which to set normal power level

level Component’s new normal power level

The pm_get_normal_power() and pm_set_normal_power() functions are now
obsolete and will be removed in a future release. It is recommended that device
drivers use new automatic device Power Management interfaces.

The pm_get_normal_power() function returns the normal power level of component
of the device dip.

The pm_set_normal_power() function sets the normal power level of component of
the device dip to level.

When a device has been power managed and is being returned to a state to be used by
the system, it will be brought to its normal power level. Except for a power level of 0,
which is defined by the system to mean "powered off," the interpretation of the
meaning of the power level is entirely up to the driver.

The pm_get_normal_power() function returns:

level The normal power level of the specified component (a positive
integer).

DDI_FAILURE Invalid component number component or the device has no
components.

These functions can be called from user or kernel context.

See attributes(5) for descriptions of the following attributes:

pm_get_normal_power(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

ATTRIBUTES

510 man pages section 9: DDI and DKI Kernel Functions • Last Revised 14 Oct 1999

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface stability Obsolete

power.conf(4), pm(7D), pm(9P), power(9E), pm_busy_component(9F),
pm_create_components(9F), pm_destroy_components(9F),
pm_idle_component(9F)

Writing Device Drivers

pm_get_normal_power(9F)

SEE ALSO

Kernel Functions for Drivers 511

pm_power_has_changed – Notify Power Management framework of autonomous
power level change

#include <sys/ddi.h>

#include <sys/sunddi.h>

int pm_power_has_changed(dev_info_t *dip, int component, int level);

Solaris DDI specific (Solaris DDI)

dip Pointer to the device dev_info structure

component Number of the component that has changed power level

level Power level to which the indicated component has changed

The pm_power_has_changed(9) function notifies the Power Management
framework that the power level of component of dip has changed to level.

Normally power level changes are initiated by the Power Management framework
due to device idleness, or through a request to the framework from the driver via
pm_raise_power(9F) or pm_lower_power(9F), but some devices may change
power levels on their own. For the framework to track the power level of the device
under these circumstances, the framework must be notified of autonomous power
level changes by a call to pm_power_has_changed().

Because of the asynchronous nature of these events, the Power Management
framework might have called power(9E) between the device’s autonomous power
level change and the driver calling pm_power_has_changed(), or the framework
may be in the process of changing the power level when pm_power_has_changed()
is called. To handle these situations correctly, the driver should verify that the device is
indeed at the level or set the device to the level if it doesn’t support inquirying of
power levels, before calling pm_power_has_changed(). In addition, the driver
should prevent a power(9E) entry point from running in parallel with
pm_power_has_changed().

The pm_power_has_changed() function returns:

DDI_SUCCESS The power level of component was successfully updated to level.

DDI_FAILURE Invalid component component or power level level

This function can be called from user or kernel context. This function can also be
called from interrupt context, providing that it is not the first Power Management
function called by the driver.

A hypothetical driver might include this code to handle pm_power_has_changed(9):

static int
xxusb_intr(struct buf *bp)
{

...

pm_power_has_changed(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

EXAMPLES

512 man pages section 9: DDI and DKI Kernel Functions • Last Revised 15 Sep 1999

/*
* At this point the device has informed us that it has
* changed power level on its own. Inform this to framework.
* We need to take care of the case when framework has
* already called power() entry point and changed power level
* before we were able to inform framework of this change.

* Handle this by comparing the informed power level with
* the actual power level and only doing the call if they
* are same. In addition, make sure that power() doesn’t get
* run in parallel with this code by holding the mutex.
*/

ASSERT(mutex_owned(&xsp->lock));
if (level_informed == *(xsp->level_reg_addr)) {

if (pm_power_has_changed(xsp->dip, XXUSB_COMPONENT,
level_informed) != DDI_SUCCESS) {
mutex_exit(&xsp->lock);
return(DDI_INTR_UNCLAIMED);

}
}

....

}

xxdisk_power(dev_info *dip, int comp, int level)
{

mutex_enter(xsp->lock);

...

...

}

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Stability level Evolving

power.conf(4), pm(7D), power(9E), pm_busy_components(9F),
pm_idle_components(9F), pm_raise_power(9F), pm_lower_power(9F), pm(9P),
pm-components(9P)

Writing Device Drivers

pm_power_has_changed(9F)

ATTRIBUTES

SEE ALSO

Kernel Functions for Drivers 513

pm_raise_power, pm_lower_power – Raise or lower power of components

#include <sys/ddi.h>

#include <sys/sunddi.h>

int pm_raise_power(dev_info_t *dip, int component, int level);

int pm_lower_power(dev_info_t *dip, int component, int level);

Solaris DDI specific (Solaris DDI)

dip Pointer to the device’s dev_info structure

component The number of the component for which a power level change is
desired

level The power level to which the indicated component will be raised

dip Pointer to the device’s dev_info structure

component The number of the component for which a power level change is
desired

level The power level to which the indicated component will be lowered

The pm_raise_power(9F) function requests the Power Management framework to
raise the power level of component of dip to at least level.

The state of the device should be examined before each physical access. The
pm_raise_power(9F) function should be called to set a component to the required
power level if the operation to be performed requires the component to be at a power
level higher than its current power level.

When pm_raise_power(9F) returns with success, the component is guaranteed to be
at least at the requested power level. All devices that depend on this will be at their
full power level. Since the actual device power level may be higher than requested by
the driver, the driver should not make any assumption about the absolute power level
on successful return from pm_raise_power(9F).

The pm_raise_power(9F) function may cause re-entry of the driver power(9E) to
raise the power level. Deadlock may result if the driver locks are held across the call to
pm_raise_power(9F).

The pm_lower_power(9F) function requests the Power Management framework to
lower the power level of component of dip to at most level.

Normally, transitions to lower power levels are initiated by the Power Management
framework based on component idleness. However, when detaching, the driver should
also initiate reduced power levels by setting the power level of all device components
to their lowest levels. The pm_lower_power(9F) function is intended for this use only,
and will return DDI_FAILURE if the driver is not detaching at the time of the call.

pm_raise_power(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

pm_raise_power

pm_lower_power

DESCRIPTION

514 man pages section 9: DDI and DKI Kernel Functions • Last Revised 16 Sep1999

If automatic Power Management is disabled (see dtpower(1M) and power.conf(4))
, pm_lower_power(9F) returns DDI_SUCCESS without changing the power level of
the component. Otherwise, when pm_lower_power(9F) returns with success, the
component is guaranteed to be at most at the requested power level. Since the actual
device power level may be lower than requested by the driver, the driver should not
make any assumption about the absolute power level on successful return from
pm_lower_power(9F).

The pm_lower_power(9F) may cause re-entry of the driver power(9E) to lower the
power level. Deadlock may result if the driver locks are held across the call to
pm_raise_power(9F).

The pm_raise_power(9F) function returns:

DDI_SUCCESS Component is now at the requested power level or higher.

DDI_FAILURE Component or level is out of range, or the framework was unable to
raise the power level of the component to the requested level.

The pm_lower_power(9F) function returns:

DDI_SUCCESS Component is now at the requested power level or lower, or
automatic Power Management is disabled.

DDI_FAILURE Component or level is out of range, or the framework was unable to
lower the power level of the component to the requested level, or
the device is not detaching.

A hypothetical disk driver might include this code to handle pm_raise_power(9F):

static int
xxdisk_strategy(struct buf *bp)
{

...

/*
* At this point we have determined that we need to raise the
* power level of the device. Since we have to drop the
* mutex, we need to take care of case where framework is
* lowering power at the same time we are raising power.
* We resolve this by marking the device busy and failing
* lower power in power() entry point when device is busy.
*/

ASSERT(mutex_owned(xsp->lock));
if (xsp->pm_busycnt < 1) {

/*
* Component is not already marked busy
*/

if (pm_busy_component(xsp->dip,
XXDISK_COMPONENT) != DDI_SUCCESS) {

bioerror(bp,EIO);
biodone(bp);
return (0);

pm_raise_power(9F)

RETURN VALUES

EXAMPLES

Kernel Functions for Drivers 515

}
xsp->pm_busycnt++;

}
mutex_exit(xsp->lock);
if (pm_raise_power(xsp->dip,

XXDISK_COMPONENT, XXPOWER_SPUN_UP) != DDI_SUCCESS) {
bioerror(bp,EIO);
biodone(bp);
return (0);

}
mutex_enter(xsp->lock);

....

}

xxdisk_power(dev_info *dip, int comp, int level)
{

...

/*
* We fail the power() entry point if the device is busy and
* request is to lower the power level.
*/

ASSERT(mutex_owned(xsp->lock));
if (xsp->pm_busycnt >= 1) {

(level < xsp->cur_level) {
mutex_exit(xsp->lock);
return (DDI_FAILURE);

}
}

...

}

These functions can be called from user or kernel context.

See attributes(5) for a description of the following attribute:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface stability Evolving

power.conf(4), pm(7D), power(9E), pm_busy_component(9F),
pm_idle_component(9F), pm(9P), pm-components(9P)

Writing Device Drivers

pm_raise_power(9F)

CONTEXT

ATTRIBUTES

SEE ALSO

516 man pages section 9: DDI and DKI Kernel Functions • Last Revised 16 Sep1999

pm_trans_check – Device power cycle advisory check

#include <sys/sunddi.h>

int pm_trans_check(struct pm_trans_data *datap, time_t *intervalp);

Solaris DDI specific (Solaris DDI)

datap Pointer to a pm_trans_data structure

intervalp Pointer to time difference when next power cycle will be advised

The pm_trans_check(9F) function checks if a power-cycle is currently advised based
on data in the pm_trans_data structure. This function is provided to prevent
damage to devices from excess power cycles; drivers for devices that are sensitive to
the number of power cycles should call pm_trans_check(9F) from their power(9E)
function before powering-off a device. If pm_trans_check(9F) indicates that the
device should not be power cycled, the driver should not attempt to power cycle the
device and should fail the call to power(9E) entry point.

If pm_trans_check(9F) returns that it is not advised to power cycle the device, it
attempts to calculate when the next power cycle is advised, based on the supplied
parameters. In such case, intervalp returns the time difference (in seconds) from the
current time to when the next power cycle is advised. If the time for the next power
cycle cannot be determined, intervalp indicates 0.

To avoid excessive calls to the power(9E) entry point during a period when power
cycling is not advised, the driver should mark the corresponding device component
busy for the intervalp time period (if interval is not 0). Conveniently, the driver can
utilize the fact that calls to pm_busy_component(9F) are stacked. If power cycling is
not advised, the driver can call pm_busy_component(9F) and issue a timeout(9F)
for the intervalp time. The timeout() handler can issue the corresponding
pm_idle_component(9F) call.

When the format field of pm_trans_data is set to DC_SCSI_FORMAT, the caller must
provide valid data in svc_date[], lifemax, and ncycles. Currently, flag must be
set to 0.

struct pm_scsi_cycles {
int lifemax; /* lifetime max power cycles */
int ncycles; /* number of cycles so far */
char svc_date[DC_SCSI_MFR_LEN]; /* service date YYYYWW */
int flag; /* reserved for future */

};

struct pm_trans_data {
int format; /* data format */
union {

struct pm_scsi_cycles scsi_cycles;
} un;

};

1 Power cycle is advised

pm_trans_check(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

Kernel Functions for Drivers 517

0 Power cycle is not advised

-1 Error due to invalid argument.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

power.conf(4), attributes(5), power(9E)

Writing Device Drivers

Using Power Management

pm_trans_check(9F)

ATTRIBUTES

SEE ALSO

518 man pages section 9: DDI and DKI Kernel Functions • Last Revised 16 Oct 1999

pollwakeup – inform a process that an event has occurred

#include <sys/poll.h>

void pollwakeup(struct pollhead *php, short event);

Architecture independent level 1 (DDI/DKI).

php Pointer to a pollhead structure.

event Event to notify the process about.

pollwakeup() wakes a process waiting on the occurrence of an event. It should be
called from a driver for each occurrence of an event. The pollhead structure will
usually be associated with the driver’s private data structure associated with the
particular minor device where the event has occurred. See chpoll(9E) and poll(2)
for more detail.

pollwakeup() can be called from user or interrupt context.

poll(2), chpoll(9E)

Writing Device Drivers

Driver defined locks should not be held across calls to this function.

pollwakeup(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

SEE ALSO

NOTES

Kernel Functions for Drivers 519

proc_signal, proc_ref, proc_unref – send a signal to a process

#include <sys/ddi.h>
#include <sys/sunddi.h>

#include <sys/signal.h>

void *proc_ref(void);

voidproc_unref(void *pref);

int proc_signal(void *pref, int sig);

Solaris DDI specific (Solaris DDI).

pref A handle for the process to be signalled.

sig Signal number to be sent to the process.

This set of routines allows a driver to send a signal to a process. The routine
proc_ref() is used to retrieve an unambiguous reference to the process for
signalling purposes. The return value can be used as a unique handle on the process,
even if the process dies. Because system resources are committed to a process
reference, proc_unref() should be used to remove it as soon as it is no longer
needed.proc_signal() is used to send signal sig to the referenced process. The
following set of signals may be sent to a process from a driver:

SIGHUP The device has been disconnected.

SIGINT The interrupt character has been received.

SIGQUIT The quit character has been received.

SIGPOLL A pollable event has occurred.

SIGKILL Kill the process (cannot be caught or ignored).

SIGWINCH Window size change.

SIGURG Urgent data are available.

See signal(3HEAD) for more details on the meaning of these signals.

If the process has exited at the time the signal was sent, proc_signal() returns an
error code; the caller should remove the reference on the process by calling
proc_unref().

The driver writer must ensure that for each call made to proc_ref(), there is exactly
one corresponding call to proc_unref().

proc_ref() returns the following:

pref An opaque handle used to refer to the current process.

proc_signal() returns the following:

0 The process existed before the signal was sent.

proc_signal(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

520 man pages section 9: DDI and DKI Kernel Functions • Last Revised 7 Feb 1994

-1 The process no longer exists; no signal was sent.

proc_unref() and proc_signal() can be called from user or interrupt context.
proc_ref() should only be called from user context.

signal(3HEAD), putnextctl1(9F)

Writing Device Drivers

proc_signal(9F)

CONTEXT

SEE ALSO

Kernel Functions for Drivers 521

ptob – convert size in pages to size in bytes

#include <sys/ddi.h>

unsigned long ptob(unsigned long numpages);

Architecture independent level 1 (DDI/DKI).

numpages Size in number of pages to convert to size in bytes.

This function returns the number of bytes that are contained in the specified number
of pages. For example, if the page size is 2048, then ptob(2) returns 4096. ptob(0)
returns 0.

The return value is always the number of bytes in the specified number of pages.
There are no invalid input values, and no checking will be performed for overflow in
the case of a page count whose corresponding byte count cannot be represented by an
unsigned long. Rather, the higher order bits will be ignored.

ptob() can be called from user or interrupt context.

btop(9F), btopr(9F), ddi_ptob(9F)

Writing Device Drivers

ptob(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

522 man pages section 9: DDI and DKI Kernel Functions • Last Revised 11 Apr 1991

pullupmsg – concatenate bytes in a message

#include <sys/stream.h>

int pullupmsg(mblk_t *mp, ssize_t len);

Architecture independent level 1 (DDI/DKI).

mp Pointer to the message whose blocks are to be concatenated. mblk_t is an
instance of the msgb(9S) structure.

len Number of bytes to concatenate.

pullupmsg() tries to combine multiple data blocks into a single block.
pullupmsg() concatenates and aligns the first len data bytes of the message pointed
to by mp. If len equals -1, all data are concatenated. If len bytes of the same message
type cannot be found, pullupmsg() fails and returns 0.

On success, 1 is returned; on failure, 0 is returned.

pullupmsg() can be called from user or interrupt context.

EXAMPLE 1 Using pullupmsg()

This is a driver write srv(9E) (service) routine for a device that does not support
scatter/gather DMA. For all M_DATA messages, the data will be transferred to the
device with DMA. First, try to pull up the message into one message block with the
pullupmsg() function (line 12). If successful, the transfer can be accomplished in one
DMA job. Otherwise, it must be done one message block at a time (lines 19–22). After
the data has been transferred to the device, free the message and continue processing
messages on the queue.

1 xxxwsrv(q)
2 queue_t *q;
3 {
4 mblk_t *mp;
5 mblk_t *tmp;
6 caddr_t dma_addr;
7 ssize_t dma_len;
8
9 while ((mp = getq(q)) != NULL) {
10 switch (mp->b_datap->db_type) {
11 case M_DATA:
12 if (pullupmsg(mp, -1)) {
13 dma_addr = vtop(mp->b_rptr);
14 dma_len = mp->b_wptr - mp->b_rptr;
15 xxx_do_dma(dma_addr, dma_len);
16 freemsg(mp);
17 break;
18 }
19 for (tmp = mp; tmp; tmp = tmp->b_cont) {
20 dma_addr = vtop(tmp->b_rptr);
21 dma_len = tmp->b_wptr - tmp->b_rptr;
22 xxx_do_dma(dma_addr, dma_len);

pullupmsg(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

EXAMPLES

Kernel Functions for Drivers 523

EXAMPLE 1 Using pullupmsg() (Continued)

23 }
24 freemsg(mp);
25 break;

. . .
26 }
27 }
28 }

srv(9E), allocb(9F), msgpullup(9F), msgb(9S)

Writing Device Drivers

STREAMS Programming Guide

pullupmsg() is not included in the DKI and will be removed from the system in a
future release. Device driver writers are strongly encouraged to use msgpullup(9F)
instead of pullupmsg().

pullupmsg(9F)

SEE ALSO

NOTES

524 man pages section 9: DDI and DKI Kernel Functions • Last Revised 11 Nov 1996

put – call a STREAMS put procedure

#include <sys/stream.h>

#include <sys/ddi.h>

void put(queue_t *q, mblk_t *mp);

Architecture independent level 1 (DDI/DKI).

q Pointer to a STREAMS queue.

mp Pointer to message block being passed into queue.

put() calls the put procedure (put(9E) entry point) for the STREAMS queue
specified by q, passing it the message block referred to by mp. It is typically used by a
driver or module to call its own put procedure.

put() can be called from a STREAMS module or driver put or service routine, or
from an associated interrupt handler, timeout, bufcall, or esballoc call-back. In the
latter cases, the calling code must guarantee the validity of the q argument.

Since put() may cause re-entry of the module (as it is intended to do), mutexes or
other locks should not be held across calls to it, due to the risk of single-party
deadlock (put(9E), putnext(9F), putctl(9F), qreply(9F)). This function is provided
as a DDI/DKI conforming replacement for a direct call to a put procedure.

put(9E), freezestr(9F), putctl(9F), putctl1(9F), putnext(9F), putnextctl(9F),
putnextctl1(9F), qprocson(9F), qreply(9F)

Writing Device Drivers

STREAMS Programming Guide

The caller cannot have the stream frozen when calling this function. See
freezestr(9F).

DDI/DKI conforming modules and drivers are no longer permitted to call put
procedures directly, but must call through the appropriate STREAMS utility function,
for example, put(9E), putnext(9F), putctl(9F), and qreply(9F). This function is
provided as a DDI/DKI conforming replacement for a direct call to a put procedure.

The put() and putnext() functions should be called only after qprocson() is
finished.

put(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

SEE ALSO

NOTES

Kernel Functions for Drivers 525

putbq – place a message at the head of a queue

#include <sys/stream.h>

int putbq(queue_t *q, mblk_t *bp);

Architecture independent level 1 (DDI/DKI).

q Pointer to the queue.

bp Pointer to the message block.

putbq() places a message at the beginning of the appropriate section of the message
queue. There are always sections for high priority and ordinary messages. If other
priority bands are used, each will have its own section of the queue, in priority band
order, after high priority messages and before ordinary messages. putbq() can be
used for ordinary, priority band, and high priority messages. However, unless
precautions are taken, using putbq() with a high priority message is likely to lead to
an infinite loop of putting the message back on the queue, being rescheduled, pulling
it off, and putting it back on.

This function is usually called when bcanput(9F) or canput(9F) determines that the
message cannot be passed on to the next stream component. The flow control
parameters are updated to reflect the change in the queue’s status. If QNOENB is not
set, the service routine is enabled.

putbq() returns 1 upon success and 0 upon failure.

Note – Upon failure, the caller should call freemsg(9F) to free the pointer to the
message block.

putbq() can be called from user or interrupt context.

See the bufcall(9F) function page for an example of putbq().

bcanput(9F), bufcall(9F), canput(9F), getq(9F), putq(9F)

Writing Device Drivers

STREAMS Programming Guide

putbq(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

EXAMPLES

SEE ALSO

526 man pages section 9: DDI and DKI Kernel Functions • Last Revised 28 Aug 2001

putctl1 – send a control message with a one-byte parameter to a queue

#include <sys/stream.h>

int putctl1(queue_t *q, int type, int p);

Architecture independent level 1 (DDI/DKI).

q Queue to which the message is to be sent.

type Type of message.

p One-byte parameter.

putctl1(), like putctl(9F), tests the type argument to make sure a data type has not
been specified, and attempts to allocate a message block. The p parameter can be used,
for example, to specify how long the delay will be when an M_DELAY message is being
sent. putctl1() fails if type is M_DATA, M_PROTO, or M_PCPROTO, or if a mesage
block cannot be allocated. If successful, putctl1() calls the put(9E) routine of the
queue pointed to by q with the newly allocated and initialized message.

On success, 1 is returned. 0 is returned if type is a data type, or if a message block
cannot be allocated.

putctl1() can be called from user or interrupt context.

See the putctl(9F) function page for an example of putctl1().

put(9E), allocb(9F), datamsg(9F), putctl(9F), putnextctl1(9F)

Writing Device Drivers

STREAMS Programming Guide

putctl1(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

EXAMPLES

SEE ALSO

Kernel Functions for Drivers 527

putctl – send a control message to a queue

#include <sys/stream.h>

int putctl(queue_t *q, int type);

Architecture independent level 1 (DDI/DKI).

q Queue to which the message is to be sent.

type Message type (must be control, not data type).

putctl() tests the type argument to make sure a data type has not been specified,
and then attempts to allocate a message block. putctl() fails if type is M_DATA,
M_PROTO, or M_PCPROTO, or if a message block cannot be allocated. If successful,
putctl() calls the put(9E) routine of the queue pointed to by q with the newly
allocated and initialized messages.

On success, 1 is returned. If type is a data type, or if a message block cannot be
allocated, 0 is returned.

putctl() can be called from user or interrupt context.

EXAMPLE 1 Using putctl()

The send_ctl() routine is used to pass control messages downstream. M_BREAK
messages are handled with putctl() (line 11). putctl1(9F) (line 16) is used for
M_DELAY messages, so that parm can be used to specify the length of the delay. In
either case, if a message block cannot be allocated a variable recording the number of
allocation failures is incremented (lines 12, 17). If an invalid message type is detected,
cmn_err(9F) panics the system (line 21).

1 void
2 send_ctl(wrq, type, parm)
3 queue_t *wrq;
4 uchar_t type;
5 uchar_t parm;
6 {
7 extern int num_alloc_fail;
8
9 switch (type) {
10 case M_BREAK:
11 if (!putctl(wrq->q_next, M_BREAK))
12 num_alloc_fail++;
13 break;
14
15 case M_DELAY:
16 if (!putctl1(wrq->q_next, M_DELAY, parm))
17 num_alloc_fail++;
18 break;
19
20 default:
21 cmn_err(CE_PANIC, "send_ctl: bad message type passed");
22 break;

putctl(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

EXAMPLES

528 man pages section 9: DDI and DKI Kernel Functions • Last Revised 11 Apr 1991

EXAMPLE 1 Using putctl() (Continued)

23 }
24 }

put(9E), cmn_err(9F), datamsg(9F), putctl1(9F), putnextctl(9F)

Writing Device Drivers

STREAMS Programming Guide

putctl(9F)

SEE ALSO

Kernel Functions for Drivers 529

putnext – send a message to the next queue

#include <sys/stream.h>

#include <sys/ddi.h>

void putnext(queue_t *q, mblk_t *mp);

Architecture independent level 1 (DDI/DKI).

q Pointer to the queue from which the message mp will be sent.

mp Message to be passed.

putnext() is used to pass a message to the put(9E) routine of the next queue in the
stream.

None.

putnext() can be called from user or interrupt context.

See allocb(9F) for an example of using putnext().

put(9E), allocb(9F), put(9F), qprocson(9F)

Writing Device Drivers

STREAMS Programming Guide

The put() and putnext() functions should be called only after qprocson() is
finished.

putnext(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

EXAMPLES

SEE ALSO

NOTES

530 man pages section 9: DDI and DKI Kernel Functions • Last Revised 18 Feb 1998

putnextctl1 – send a control message with a one-byte parameter to a queue

#include <sys/stream.h>

int putnextctl1(queue_t *q, int type, int p);

Architecture independent level 1 (DDI/DKI).

q Queue to which the message is to be sent.

type Type of message.

p One-byte parameter.

putnextctl1(), like putctl1(9F), tests the type argument to make sure a data type
has not been specified, and attempts to allocate a message block. The p parameter can
be used, for example, to specify how long the delay will be when an M_DELAY
message is being sent. putnextctl1() fails if type is M_DATA, M_PROTO, or
M_PCPROTO, or if a message block cannot be allocated. If successful, putnextctl1()
calls the put(9E) routine of the queue pointed to by q with the newly allocated and
initialized message.

A call to putnextctl1(q,type, p) is an atomic equivalent of putctl1(q->q_next,
type, p). The STREAMS framework provides whatever mutual exclusion is necessary
to insure that dereferencing q through its q_next field and then invoking
putctl1(9F) proceeds without interference from other threads.

putnextctl1() should always be used in preference to putctl1(9F)

On success, 1 is returned. 0 is returned if type is a data type, or if a message block
cannot be allocated.

putnextctl1() can be called from user or interrupt context.

See the putnextctl(9F) function page for an example of putnextctl1().

put(9E), allocb(9F), datamsg(9F), putctl1(9F), putnextctl(9F)

Writing Device Drivers

STREAMS Programming Guide

putnextctl1(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

EXAMPLES

SEE ALSO

Kernel Functions for Drivers 531

putnextctl – send a control message to a queue

#include <sys/stream.h>

int putnextctl(queue_t *q, int type);

Architecture independent level 1 (DDI/DKI).

q Queue to which the message is to be sent.

type Message type (must be control, not data type).

putnextctl() tests the type argument to make sure a data type has not been
specified, and then attempts to allocate a message block. putnextctl() fails if type is
M_DATA, M_PROTO, or M_PCPROTO, or if a message block cannot be allocated. If
successful, putnextctl() calls the put(9E) routine of the queue pointed to by q with
the newly allocated and initialized messages.

A call to putnextctl(q,type) is an atomic equivalent of putctl(q->q_next,type).
The STREAMS framework provides whatever mutual exclusion is necessary to insure
that dereferencing q through its q_next field and then invoking putctl(9F) proceeds
without interference from other threads.

putnextctl() should always be used in preference to putctl(9F)

On success, 1 is returned. If type is a data type, or if a message block cannot be
allocated, 0 is returned.

putnextctl() can be called from user or interrupt context.

EXAMPLE 1

The send_ctl routine is used to pass control messages downstream. M_BREAK
messages are handled with putnextctl() (line 8). putnextctl1(9F) (line 13) is
used for M_DELAY messages, so that parm can be used to specify the length of the
delay. In either case, if a message block cannot be allocated a variable recording the
number of allocation failures is incremented (lines 9, 14). If an invalid message type is
detected, cmn_err(9F) panics the system (line 18).

1 void
2 send_ctl(queue_t *wrq, uchar_t type, uchar_t parm)
3 {
4 extern int num_alloc_fail;
5
6 switch (type) {
7 case M_BREAK:
8 if (!putnextctl(wrq, M_BREAK))
9 num_alloc_fail++;
10 break;
11
12 case M_DELAY:
13 if (!putnextctl1(wrq, M_DELAY, parm))
14 num_alloc_fail++;
15 break;

putnextctl(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

EXAMPLES

532 man pages section 9: DDI and DKI Kernel Functions • Last Revised 29 Mar 1993

EXAMPLE 1 (Continued)

16
17 default:
18 cmn_err(CE_PANIC, "send_ctl: bad message type passed");
19 break;
20 }
21 }

put(9E), cmn_err(9F), datamsg(9F), putctl(9F), putnextctl1(9F)

Writing Device Drivers

STREAMS Programming Guide

putnextctl(9F)

SEE ALSO

Kernel Functions for Drivers 533

putq – put a message on a queue

#include <sys/stream.h>

int putq(queue_t *q, mblk_t *bp);

Architecture independent level 1 (DDI/DKI).

q Pointer to the queue to which the message is to be added.

bp Message to be put on the queue.

putq() is used to put messages on a driver’s queue after the module’s put routine
has finished processing the message. The message is placed after any other messages
of the same priority, and flow control parameters are updated. If QNOENB is not set, the
service routine is enabled. If no other processing is done, putq() can be used as the
module’s put routine.

putq() returns 1 on success and 0 on failure.

Note – Upon failure, the caller should call freemsg(9F) to free the pointer to the
message block.

putq() can be called from user or interrupt context.

See the datamsg(9F) function page for an example of putq().

datamsg(9F), putbq(9F), qenable(9F), rmvq(9F)

Writing Device Drivers

STREAMS Programming Guide

putq(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

EXAMPLES

SEE ALSO

534 man pages section 9: DDI and DKI Kernel Functions • Last Revised 28 Aug 2001

qbufcall – call a function when a buffer becomes available

#include <sys/stream.h>

#include <sys/ddi.h>

bufcall_id_t qbufcall(queue_t *q, size_t size, uint_t pri,
void*funcvoid *arg, void *arg);

Solaris DDI specific (Solaris DDI).

q Pointer to STREAMS queue structure.

size Number of bytes required for the buffer.

pri Priority of the allocb(9F) allocation request (not used).

func Function or driver routine to be called when a buffer becomes
available.

arg Argument to the function to be called when a buffer becomes
available.

qbufcall() serves as a qtimeout(9F) call of indeterminate length. When a buffer
allocation request fails, qbufcall() can be used to schedule the routine func to be
called with the argument arg when a buffer becomes available. func may call
allocb() or it may do something else.

The qbufcall() function is tailored to be used with the enhanced STREAMS
framework interface, which is based on the concept of perimeters. (See
mt-streams(9F).) qbufcall() schedules the specified function to execute after
entering the perimeters associated with the queue passed in as the first parameter to
qbufcall(). All outstanding bufcalls should be cancelled before the close of a driver
or module returns.

qprocson(9F) must be called before calling either qbufcall() or qtimeout(9F).

If successful, qbufcall() returns a qbufcall ID that can be used in a call to
qunbufcall(9F) to cancel the request. If the qbufcall() scheduling fails, func is
never called and 0 is returned.

qbufcall() can be called from user or interrupt context.

allocb(9F), mt-streams(9F), qprocson(9F), qtimeout(9F), qunbufcall(9F),
quntimeout(9F)

Writing Device Drivers

STREAMS Programming Guide

Even when func is called by qbufcall(), allocb(9F) can fail if another module or
driver had allocated the memory before func was able to call allocb(9F).

qbufcall(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

WARNINGS

Kernel Functions for Drivers 535

qenable – enable a queue

#include <sys/stream.h>

#include <sys/ddi.h>

void qenable(queue_t *q);

Architecture independent level 1 (DDI/DKI).

q Pointer to the queue to be enabled.

qenable() adds the queue pointed to by q to the list of queues whose service
routines are ready to be called by the STREAMS scheduler.

qenable() can be called from user or interrupt context.

See the dupb(9F) function page for an example of the qenable().

dupb(9F)

Writing Device Drivers

STREAMS Programming Guide

qenable(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

EXAMPLES

SEE ALSO

536 man pages section 9: DDI and DKI Kernel Functions • Last Revised 11 Apr 1991

qprocson, qprocsoff – enable, disable put and service routines

#include <sys/stream.h>

#include <sys/ddi.h>

void qprocson(queue_t *q);

void qprocsoff(queue_t *q);

Architecture independent level 1 (DDI/DKI).

q Pointer to the RD side of a STREAMS queue pair.

qprocson() enables the put and service routines of the driver or module whose read
queue is pointed to by q. Threads cannot enter the module instance through the put
and service routines while they are disabled.

qprocson() must be called by the open routine of a driver or module before
returning, and after any initialization necessary for the proper functioning of the put
and service routines.

qprocson() must be called before calling put(9F), putnext(9F), qbufcall(9F),
qtimeout(9F), qwait(9F), or qwait_sig(9F),

qprocsoff() must be called by the close routine of a driver or module before
returning, and before deallocating any resources necessary for the proper functioning
of the put and service routines. It also removes the queue’s service routines from the
service queue, and blocks until any pending service processing completes.

The module or driver instance is guaranteed to be single-threaded before
qprocson() is called and after qprocsoff() is called, except for threads executing
asynchronous events such as interrupt handlers and callbacks, which must be handled
separately.

These routines can be called from user or interrupt context.

close(9E), open(9E), put(9E), srv(9E), put(9F), putnext(9F), qbufcall(9F),
qtimeout(9F), qwait(9F), qwait_sig(9F)

Writing Device Drivers

STREAMS Programming Guide

The caller may not have the STREAM frozen during either of these calls.

qprocson(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

SEE ALSO

NOTES

Kernel Functions for Drivers 537

qreply – send a message on a stream in the reverse direction

#include <sys/stream.h>

void qreply(queue_t *q, mblk_t *mp);

Architecture independent level 1 (DDI/DKI).

q Pointer to the queue.

mp Pointer to the message to be sent in the opposite direction.

qreply() sends messages in the reverse direction of normal flow. That is,
qreply(q, mp) is equivalent to putnext(OTHERQ(q), mp).

qreply() can be called from user or interrupt context.

EXAMPLE 1 Canonical Flushing Code for STREAMS Drivers.

This example depicts the canonical flushing code for STREAMS drivers. Assume that
the driver has service procedures so that there may be messages on its queues. See
srv(9E). Its write-side put procedure handles M_FLUSH messages by first checking the
FLUSHW bit in the first byte of the message, then the write queue is flushed (line 8) and
the FLUSHW bit is turned off (line 9). See put(9E). If the FLUSHR bit is on, then the read
queue is flushed (line 12) and the message is sent back up the read side of the stream
with the qreply(9F) function (line 13). If the FLUSHR bit is off, then the message is
freed (line 15). See the example for flushq(9F) for the canonical flushing code for
modules.

1 xxxwput(q, mp)
2 queue_t *q;
3 mblk_t *mp;
4 {
5 switch(mp->b_datap->db_type) {
6 case M_FLUSH:
7 if (*mp->b_rptr & FLUSHW) {
8 flushq(q, FLUSHALL);
9 *mp->b_rptr &= ~FLUSHW;
10 }
11 if (*mp->b_rptr & FLUSHR) {
12 flushq(RD(q), FLUSHALL);
13 qreply(q, mp);
14 } else {
15 freemsg(mp);
16 }
17 break;

. . .
18 }
19 }

put(9E), srv(9E), flushq(9F), OTHERQ(9F), putnext(9F)

Writing Device Drivers

qreply(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

EXAMPLES

SEE ALSO

538 man pages section 9: DDI and DKI Kernel Functions • Last Revised 11 Apr 1991

STREAMS Programming Guide

qreply(9F)

Kernel Functions for Drivers 539

qsize – find the number of messages on a queue

#include <sys/stream.h>

int qsize(queue_t *q);

Architecture independent level 1 (DDI/DKI).

q Queue to be evaluated.

qsize() evaluates the queue q and returns the number of messages it contains.

If there are no message on the queue, qsize() returns 0. Otherwise, it returns the
integer representing the number of messages on the queue.

qsize() can be called from user or interrupt context.

Writing Device Drivers

STREAMS Programming Guide

qsize(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

540 man pages section 9: DDI and DKI Kernel Functions • Last Revised 11 Apr 1991

qtimeout – execute a function after a specified length of time

#include <sys/stream.h>

#include <sys/ddi.h>

timeout_id_t qtimeout(queue_t *q, void *funcvoid *, void *arg,
clock_t ticks);

Solaris DDI specific (Solaris DDI).

q Pointer to STREAMS queue structure.

func Kernel function to invoke when the time increment expires.

arg Argument to the function.

ticks Number of clock ticks to wait before the function is called. Use
drv_usectohz(9F) to convert microseconds to clock ticks.

The qtimeout() function schedules the specified function func to be called after a
specified time interval. func is called with arg as a parameter. Control is immediately
returned to the caller. This is useful when an event is known to occur within a specific
time frame, or when you want to wait for I/O processes when an interrupt is not
available or might cause problems. The exact time interval over which the timeout
takes effect cannot be guaranteed, but the value given is a close approximation.

The qtimeout() function is tailored to be used with the enhanced STREAMS
framework interface which is based on the concept of perimeters. (See
mt-streams(9F).) qtimeout() schedules the specified function to execute after
entering the perimeters associated with the queue passed in as the first parameter to
qtimeout(). All outstanding timeouts should be cancelled before a driver closes or
module returns.

qprocson(9F) must be called before calling qtimeout().

qtimeout() returns an opaque non-zero timeout identifier that can be passed to
quntimeout(9F) to cancel the request. Note: No value is returned from the called
function.

qtimeout() can be called from user or interrupt context.

drv_usectohz(9F), mt-streams(9F), qbufcall(9F), qprocson(9F),
qunbufcall(9F), quntimeout(9F)

Writing Device Drivers

STREAMS Programming Guide

qtimeout(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 541

qunbufcall – cancel a pending qbufcall request

#include <sys/stream.h>
#include <sys/ddi.h>

void qunbufcall(queue_t *q, bufcall_id_t id);

Solaris DDI specific (Solaris DDI).

q Pointer to STREAMS queue_t structure.

id Identifier returned from qbufcall(9F)

qunbufcall() cancels a pending qbufcall() request. The argument id is a
non-zero identifier of the request to be cancelled. id is returned from the qbufcall()
function used to issue the cancel request.

The qunbufcall() function is tailored to be used with the enhanced STREAMS
framework interface which is based on the concept of perimeters. (See
mt-streams(9F).) qunbufcall() returns when the bufcall has been cancelled or
finished executing. The bufcall will be cancelled even if it is blocked at the perimeters
associated with the queue. All outstanding bufcalls should be cancelled before the
driver closes or module returns.

qunbufcall() can be called from user or interrupt context.

mt-streams(9F), qbufcall(9F), qtimeout(9F), quntimeout(9F)

Writing Device Drivers

STREAMS Programming Guide

qunbufcall(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

SEE ALSO

542 man pages section 9: DDI and DKI Kernel Functions • Last Revised 18 Feb 1998

quntimeout – cancel previous qtimeout function call

#include <sys/stream.h>

#include <sys/ddi.h>

clock_t quntimeout(queue_t *q, timeout_id_t id);

Solaris DDI specific (Solaris DDI).

q Pointer to a STREAMS queue structure.

id Opaque timeout ID a previous qtimeout(9F) call.

quntimeout() cancels a pending qtimeout(9F) request. The quntimeout()
function is tailored to be used with the enhanced STREAMS framework interface,
which is based on the concept of perimeters. (See mt-streams(9F).) quntimeout()
returns when the timeout has been cancelled or finished executing. The timeout will
be cancelled even if it is blocked at the perimeters associated with the queue.
quntimeout() should be executed for all outstanding timeouts before a driver or
module close returns.

quntimeout() returns -1 if the id is not found. Otherwise, quntimeout() returns
a 0 or positive value.

quntimeout() can be called from user or interrupt context.

mt-streams(9F), qbufcall(9F), qtimeout(9F), qunbufcall(9F)

Writing Device Drivers

STREAMS Programming Guide

quntimeout(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 543

qwait, qwait_sig – STREAMS wait routines

#include <sys/stream.h>

#include <sys/ddi.h>

void qwait(queue_t *q);

int qwait_sig(queue_t *q);

Solaris DDI specific (Solaris DDI).

qp Pointer to the queue that is being opened or closed.

qwait() and qwait_sig() are used to wait for a message to arrive to the put(9E)
or srv(9E) procedures. qwait() and qwait_sig() can also be used to wait for
qbufcall(9F) or qtimeout(9F) callback procedures to execute. These routines can be
used in the open(9E) and close(9E) procedures in a STREAMS driver or module.
qwait() and qwait_sig() atomically exit the inner and outer perimeters associated
with the queue, and wait for a thread to leave the module’s put(9E), srv(9E), or
qbufcall(9F) / qtimeout(9F) callback procedures. Upon return they re-enter the
inner and outer perimeters.

This can be viewed as there being an implicit wakeup when a thread leaves a put(9E)
or srv(9E) procedure or after a qtimeout(9F) or qbufcall(9F) callback procedure
has been run in the same perimeter.

qprocson(9F) must be called before calling qwait() or qwait_sig().

qwait() is not interrupted by a signal, whereas qwait_sig() is interrupted by a
signal. qwait_sig() normally returns non-zero, and returns zero when the waiting
was interrupted by a signal.

qwait() and qwait_sig() are similar to cv_wait() and cv_wait_sig() except
that the mutex is replaced by the inner and outer perimeters and the signalling is
implicit when a thread leaves the inner perimeter. See condvar(9F).

0 For qwait_sig(), indicates that the condition was not necessarily
signaled, and the function returned because a signal was pending.

These functions can only be called from an open(9E) or close(9E) routine.

EXAMPLE 1 Using qwait()

The open routine sends down a T_INFO_REQ message and waits for the
T_INFO_ACK. The arrival of the T_INFO_ACK is recorded by resetting a flag in the
unit structure (WAIT_INFO_ACK). The example assumes that the module is
D_MTQPAIR or D_MTPERMOD.

xxopen(qp, . . .)
queue_t *qp;

{
struct xxdata *xx;
/* Allocate xxdata structure */

qwait(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

EXAMPLES

544 man pages section 9: DDI and DKI Kernel Functions • Last Revised 23 Jan 2002

EXAMPLE 1 Using qwait() (Continued)

qprocson(qp);
/* Format T_INFO_ACK in mp */
putnext(qp, mp);
xx->xx_flags |= WAIT_INFO_ACK;
while (xx->xx_flags & WAIT_INFO_ACK)

qwait(qp);
return (0);

}
xxrput(qp, mp)

queue_t *qp;
mblk_t *mp;

{
struct xxdata *xx = (struct xxdata *)q->q_ptr;

...

case T_INFO_ACK:
if (xx->xx_flags & WAIT_INFO_ACK) {

/* Record information from info ack */
xx->xx_flags &= ~WAIT_INFO_ACK;
freemsg(mp);
return;

}

...
}

close(9E), open(9E), put(9E), srv(9E), condvar(9F), mt-streams(9F),
qbufcall(9F), qprocson(9F), qtimeout(9F)

STREAMS Programming Guide

Writing Device Drivers

qwait(9F)

SEE ALSO

Kernel Functions for Drivers 545

qwriter – asynchronous STREAMS perimeter upgrade

#include <sys/stream.h>

#include <sys/ddi.h>

void qwriter(queue_t *qp, mblk_t *mp, void (*func)(), int perimeter);

Solaris DDI specific (Solaris DDI).

qp Pointer to the queue.

mp Pointer to a message that will be passed in to the callback function.

func A function that will be called when exclusive (writer) access has
been acquired at the specified perimeter.

perimeter Either PERIM_INNER or PERIM_OUTER.

qwriter() is used to upgrade the access at either the inner or the outer perimeter
from shared to exclusive and call the specified callback function when the upgrade has
succeeded. See mt-streams(9F). The callback function is called as:

(*func)(queue_t *qp, mblk_t *mp);

qwriter() will acquire exclusive access immediately if possible, in which case the
specified callback function will be executed before qwriter() returns. If this is not
possible, qwriter() will defer the upgrade until later and return before the callback
function has been executed. Modules should not assume that the callback function has
been executed when qwriter() returns. One way to avoid dependencies on the
execution of the callback function is to immediately return after calling qwriter()
and let the callback function finish the processing of the message.

When qwriter() defers calling the callback function, the STREAMS framework will
prevent other messages from entering the inner perimeter associated with the queue
until the upgrade has completed and the callback function has finished executing.

qwriter() can only be called from an put(9E) or srv(9E) routine, or from a
qwriter(), qtimeout(9F), or qbufcall(9F) callback function.

put(9E), srv(9E), mt-streams(9F), qbufcall(9F), qtimeout(9F)

STREAMS Programming Guide

Writing Device Drivers

qwriter(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

SEE ALSO

546 man pages section 9: DDI and DKI Kernel Functions • Last Revised 1 Mar 1993

RD, rd – get pointer to the read queue

#include <sys/stream.h>

#include <sys/ddi.h>

queue_t *RD(queue_t *q);

Architecture independent level 1 (DDI/DKI).

q Pointer to the write queue whose read queue is to be returned.

The RD() function accepts a write queue pointer as an argument and returns a
pointer to the read queue of the same module.

CAUTION: Make sure the argument to this function is a pointer to a write queue.
RD() will not check for queue type, and a system panic could result if it is not the
right type.

The pointer to the read queue.

RD() can be called from user or interrupt context.

EXAMPLE 1 Function page reference

See the qreply(9F) function page for an example of RD().

qreply(9F), WR(9F)

Writing Device Drivers

STREAMS Programming Guide

RD(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

EXAMPLES

SEE ALSO

Kernel Functions for Drivers 547

rmalloc – allocate space from a resource map

#include <sys/map.h>

#include <sys/ddi.h>

unsigned long rmalloc(struct map *mp, size_t size);

Architecture independent level 1 (DDI/DKI).

mp Resource map from where the resource is drawn.

size Number of units of the resource.

rmalloc() is used by a driver to allocate space from a previously defined and
initialized resource map. The map itself is allocated by calling the function
rmallocmap(9F). rmalloc() is one of five functions used for resource map
management. The other functions include:

rmalloc_wait(9F) Allocate space from a resource map, wait if necessary.

rmfree(9F) Return previously allocated space to a map.

rmallocmap(9F) Allocate a resource map and initialize it.

rmfreemap(9F) Deallocate a resource map.

rmalloc() allocates space from a resource map in terms of arbitrary units. The
system maintains the resource map by size and index, computed in units appropriate
for the resource. For example, units may be byte addresses, pages of memory, or
blocks. The normal return value is an unsigned long set to the value of the index
where sufficient free space in the resource was found.

Under normal conditions, rmalloc() returns the base index of the allocated space.
Otherwise, rmalloc() returns a 0 if all resource map entries are already allocated.

rmalloc() can be called from user or interrupt context.

EXAMPLE 1 Illustrating the principles of map management

The following example is a simple memory map, but it illustrates the principles of
map management. A driver allocates and initializes the map by calling both the
rmallocmap(9F) and rmfree(9F) functions. rmallocmap(9F) is called to establish
the number of slots or entries in the map, and rmfree(9F) to initialize the resource
area the map is to manage. The following example is a fragment from a hypothetical
start routine and illustrates the following procedures:

� Panics the system if the required amount of memory can not be allocated (lines
11–15).

� Uses rmallocmap(9F) to configure the total number of entries in the map, and
rmfree(9F) to initialize the total resource area.

1 #define XX_MAPSIZE 12
2 #define XX_BUFSIZE 2560

rmalloc(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

EXAMPLES

548 man pages section 9: DDI and DKI Kernel Functions • Last Revised 19 Nov 1992

EXAMPLE 1 Illustrating the principles of map management (Continued)

3 static struct map *xx_mp; /* Private buffer space map */
. . .

4 xxstart()
5 /*
6 * Allocate private buffer. If insufficient memory,
7 * display message and halt system.
8 */
9 {
10 register caddr_t bp;

. . .
11 if ((bp = kmem_alloc(XX_BUFSIZE, KM_NOSLEEP) == 0) {
12
13 cmn_err(CE_PANIC, "xxstart: kmem_alloc failed before %d buffer"
14 "allocation", XX_BUFSIZE);
15 }
16
17 /*
18 * Initialize the resource map with number
19 * of slots in map.
20 */
21 xx_mp = rmallocmap(XX_MAPSIZE);
22
24 /*
25 * Initialize space management map with total
26 * buffer area it is to manage.
27 */
28 rmfree(xx_mp, XX_BUFSIZE, bp);

. . .

EXAMPLE 2 Allocating buffers

The rmalloc() function is then used by the driver’s read or write routine to
allocate buffers for specific data transfers. The uiomove(9F) function is used to move
the data between user space and local driver memory. The device then moves data
between itself and local driver memory through DMA.

The next example illustrates the following procedures:

� The size of the I/O request is calculated and stored in the size variable (line 10).

� Buffers are allocated through the rmalloc() function using the size value (line 15).
If the allocation fails the system will panic.

� The uiomove(9F) function is used to move data to the allocated buffer (line 23).

� If the address passed to uiomove(9F) is invalid, rmfree(9F) is called to release the
previously allocated buffer, and an EFAULT error is returned.

1 #define XX_BUFSIZE 2560
2 #define XX_MAXSIZE (XX_BUFSIZE / 4)
3
4 static struct map *xx_mp; /* Private buffer space map */

...
5 xxread(dev_t dev, uio_t *uiop, cred_t *credp)

rmalloc(9F)

Kernel Functions for Drivers 549

EXAMPLE 2 Allocating buffers (Continued)

6 {
7
8 register caddr_t addr;
9 register int size;
10 size = min(COUNT, XX_MAXSIZE); /* Break large I/O request */
11 /* into small ones */
12 /*
13 * Get buffer.
14 */
15 if ((addr = (caddr_t)rmalloc(xx_mp, size)) == 0)
16 cmn_err(CE_PANIC, "read: rmalloc failed allocation of size %d",
17 size);
18
19 /*
20 * Move data to buffer. If invalid address is found,
21 * return buffer to map and return error code.
22 */
23 if (uiomove(addr, size, UIO_READ, uiop) == –1) {
24 rmfree(xx_mp, size, addr);
25 return(EFAULT);
26 }
27 }

kmem_alloc(9F), rmalloc_wait(9F), rmallocmap(9F), rmfree(9F),
rmfreemap(9F), uiomove(9F)

Writing Device Drivers

rmalloc(9F)

SEE ALSO

550 man pages section 9: DDI and DKI Kernel Functions • Last Revised 19 Nov 1992

rmallocmap, rmallocmap_wait, rmfreemap – allocate and free resource maps

#include <sys/ddi.h>

#include <sys/sunddi.h>

struct map *rmallocmap(size_t mapsize);

struct map *rmallocmap_wait(size_t mapsize);

void rmfreemap(struct map *mp);

Architecture independent level 1 (DDI/DKI).

mapsize Number of entries for the map.

mp A pointer to the map structure to be deallocated.

rmallocmap() dynamically allocates a resource map structure. The argument mapsize
defines the total number of entries in the map. In particular, it is the total number of
allocations that can be outstanding at any one time.

rmallocmap() initializes the map but does not associate it with the actual resource.
In order to associate the map with the actual resource, a call to rmfree(9F) is used to
make the entirety of the actual resource available for allocation, starting from the first
index into the resource. Typically, the call to rmallocmap() is followed by a call to
rmfree(9F), passing the address of the map returned from rmallocmap(), the total
size of the resource, and the first index into the actual resource.

The resource map allocated by rmallocmap() can be used to describe an arbitrary
resource in whatever allocation units are appropriate, such as blocks, pages, or data
structures. This resource can then be managed by the system by subsequent calls to
rmalloc(9F), rmalloc_wait(9F), and rmfree(9F).

rmallocmap_wait() is similar to rmallocmap(), with the exception that it will
wait for space to become available if necessary.

rmfreemap() deallocates a resource map structure previously allocated by
rmallocmap() or rmallocmap_wait(). The argument mp is a pointer to the map
structure to be deallocated.

Upon successful completion, rmallocmap() and rmallocmap_wait() return a
pointer to the newly allocated map structure. Upon failure, rmallocmap() returns a
NULL pointer.

rmallocmap() and rmfreemap() can be called from user, kernel, or interrupt
context.

rmallocmap_wait() can only be called from user or kernel context.

rmalloc(9F), rmalloc_wait(9F), rmfree(9F)

Writing Device Drivers

rmallocmap(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 551

rmalloc_wait – allocate space from a resource map, wait if necessary

#include <sys/map.h>

#include <sys/ddi.h>

unsigned long rmalloc_wait(struct map *mp, size_t size);

Architecture independent level 1 (DDI/DKI).

mp Pointer to the resource map from which space is to be allocated.

size Number of units of space to allocate.

rmalloc_wait() requests an allocation of space from a resource map.
rmalloc_wait() is similar to the rmalloc(9F) function with the exception that it
will wait for space to become available if necessary.

rmalloc_wait() returns the base of the allocated space.

This function can be called from user or interrupt context. However, in most cases
rmalloc_wait() should be called from user context only.

rmalloc(9F), rmallocmap(9F), rmfree(9F), rmfreemap(9F)

Writing Device Drivers

rmalloc_wait(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

552 man pages section 9: DDI and DKI Kernel Functions • Last Revised 28 Apr 1992

rmfree – free space back into a resource map

#include <sys/map.h>

#include <sys/ddi.h>

void rmfree(struct map *mp, size_t size, ulong_t index);

Architecture independent level 1 (DDI/DKI).

mp Pointer to the map structure.

size Number of units being freed.

index Index of the first unit of the allocated resource.

rmfree() releases space back into a resource map. It is the opposite of rmalloc(9F),
which allocates space that is controlled by a resource map structure.

When releasing resources using rmfree() the size and index passed to rmfree()
must exactly match the size and index values passed to and returned from a previous
call to rmalloc(). Resources cannot be returned piecemeal.

Drivers may define resource maps for resource allocation, in terms of arbitrary units,
using the rmallocmap(9F) function. The system maintains the resource map structure
by size and index, computed in units appropriate for the resource. For example, units
may be byte addresses, pages of memory, or blocks. rmfree() frees up unallocated
space for re-use.

rmfree() can also be used to initialize a resouce map, in which case the size and
index should cover the entire resource area.

rmfree() can be called from user or interrupt context.

rmalloc(9F), rmalloc_wait(9F), rmallocmap(9F), rmfreemap(9F)

Writing Device Drivers

rmfree(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

SEE ALSO

Kernel Functions for Drivers 553

rmvb – remove a message block from a message

#include <sys/stream.h>

mblk_t *rmvb(mblk_t *mp, mblk_t *bp);

Architecture independent level 1 (DDI/DKI).

mp Message from which a block is to be removed. mblk_t is an instance of the
msgb(9S) structure.

bp Message block to be removed.

rmvb() removes a message block (bp) from a message (mp), and returns a pointer to
the altered message. The message block is not freed, merely removed from the
message. It is the module or driver’s responsibility to free the message block.

If successful, a pointer to the message (minus the removed block) is returned. The
pointer is NULL if bp was the only block of the message before rmvb() was called. If
the designated message block (bp) does not exist, -1 is returned.

rmvb() can be called from user or interrupt context.

This routine removes all zero-length M_DATA message blocks from the given message.
For each message block in the message, save the next message block (line 10). If the
current message block is of type M_DATA and has no data in its buffer (line 11), then
remove it from the message (line 12) and free it (line 13). In either case, continue with
the next message block in the message (line 16).

1 void
2 xxclean(mp)
3 mblk_t *mp;
4 {
5 mblk_t *tmp;
6 mblk_t *nmp;
7
8 tmp = mp;
9 while (tmp) {
10 nmp = tmp->b_cont;
11 if ((tmp->b_datap->db_type == M_DATA) &&

(tmp->b_rptr == tmp->b_wptr)) {
12 (void) rmvb(mp, tmp);
13 freeb(tmp);
14 }
15 tmp = nmp;
16 }
17 }

freeb(9F), msgb(9S)

Writing Device Drivers

STREAMS Programming Guide

rmvb(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

EXAMPLES

SEE ALSO

554 man pages section 9: DDI and DKI Kernel Functions • Last Revised 11 Apr 1991

rmvq – remove a message from a queue

#include <sys/stream.h>

void rmvq(queue_t *q, mblk_t *mp);

Architecture independent level 1 (DDI/DKI).

q Queue containing the message to be removed.

mp Message to remove.

rmvq() removes a message from a queue. A message can be removed from anywhere
on a queue. To prevent modules and drivers from having to deal with the internals of
message linkage on a queue, either rmvq() or getq(9F) should be used to remove a
message from a queue.

rmvq() can be called from user or interrupt context.

This code fragment illustrates how one may flush one type of message from a queue.
In this case, only M_PROTO T_DATA_IND messages are flushed. For each message on
the queue, if it is an M_PROTO message (line 8) of type T_DATA_IND (line 10), save a
pointer to the next message (line 11), remove the T_DATA_IND message (line 12) and
free it (line 13). Continue with the next message in the list (line 19).

1 mblk_t *mp, *nmp;
2 queue_t *q;
3 union T_primitives *tp;
4
5 /* Insert code here to protect queue and message block */
6 mp = q->q_first;
7 while (mp) {
8 if (mp->b_datap->db_type == M_PROTO) {
9 tp = (union T_primitives *)mp->b_rptr;
10 if (tp->type == T_DATA_IND) {
11 nmp = mp->b_next;
12 rmvq(q, mp);
13 freemsg(mp);
14 mp = nmp;
15 } else {
16 mp = mp->b_next;
17 }
18 } else {
19 mp = mp->b_next;
20 }
21 }
22 /* End of region that must be protected */

When using rmvq(), you must ensure that the queue and the message block is not
modified by another thread at the same time. You can achieve this either by using
STREAMS functions or by implementing your own locking.

freemsg(9F), getq(9F), insq(9F)

Writing Device Drivers

rmvq(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

EXAMPLES

SEE ALSO

Kernel Functions for Drivers 555

STREAMS Programming Guide

Make sure that the message mp is linked onto q to avoid a possible system panic.

rmvq(9F)

WARNINGS

556 man pages section 9: DDI and DKI Kernel Functions • Last Revised 9 Jul 2001

rwlock, rw_init, rw_destroy, rw_enter, rw_exit, rw_tryenter, rw_downgrade,
rw_tryupgrade, rw_read_locked – readers/writer lock functions

#include <sys/ksynch.h>

void rw_init(krwlock_t *rwlp, char *name, krw_type_t type, void
*arg);

void rw_destroy(krwlock_t *rwlp);

void rw_enter(krwlock_t *rwlp, krw_t enter_type);

void rw_exit(krwlock_t *rwlp);

int rw_tryenter(krwlock_t *rwlp, krw_t enter_type);

void rw_downgrade(krwlock_t *rwlp);

int rw_tryupgrade(krwlock_t *rwlp);

int rw_read_locked(krwlock_t *rwlp);

Solaris DDI specific (Solaris DDI).

rwlp Pointer to a krwlock_t readers/writer lock.

name Descriptive string. This is obsolete and should be NULL. (Non-null
strings are legal, but they’re a waste of kernel memory.)

type Type of readers/writer lock.

arg Type-specific argument for initialization function.

enter_type Indication of whether the lock is to be acquired non-exclusively or
exclusively RW_READER or RW_WRITER.

A multiple-readers, single-writer lock is represented by the krwlock_t data type.
This type of lock will allow many threads to have simultaneous read-only access to an
object. Only one thread may have write access at any one time. An object which is
searched more frequently than it is changed is a good candidate for a readers/writer
lock.

Readers/writer locks are slightly more expensive than mutex locks, and the advantage
of multiple read access may not occur if the lock will only be held for a short time.

rw_init() initializes a readers/writer lock. It is an error to initialize a lock more
than once. The type argument should be set to RW_DRIVER. If the lock is used by the
interrupt handler, the type-specific argument, arg, should be the
ddi_iblock_cookie returned from ddi_get_iblock_cookie(9F) or
ddi_get_soft_iblock_cookie(9F). If the lock is not used by any interrupt
handler, the argument should be NULL.

rw_destroy() releases any resources that might have been allocated by rw_init().
It should be called before freeing the memory containing the lock.

rwlock(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

Kernel Functions for Drivers 557

rw_enter() acquires the lock, and blocks if necessary. If enter_type is RW_READER,
the caller blocks if there is a writer or a thread attempting to enter for writing. If
enter_type is RW_WRITER, the caller blocks if any thread holds the lock.

NOTE: It is a programming error for any thread to acquire an rwlock it already holds,
even as a reader. Doing so can deadlock the system: if thread R acquires the lock as a
reader, then thread W tries to acquire the lock as a writer, W will set write-wanted and
block. When R tries to get its second read hold on the lock, it will honor the
write-wanted bit and block waiting for W; but W cannot run until R drops the lock.
Thus threads R and W deadlock.

rw_exit() releases the lock and may wake up one or more threads waiting on the
lock.

rw_tryenter() attempts to enter the lock, like rw_enter(), but never blocks. It
returns a non-zero value if the lock was successfully entered, and zero otherwise.

A thread which holds the lock exclusively (entered with RW_WRITER), may call
rw_downgrade() to convert to holding the lock non-exclusively (as if entered with
RW_READER). One or more waiting readers may be unblocked.

rw_tryupgrade() can be called by a thread which holds the lock for reading to
attempt to convert to holding it for writing. This upgrade can only succeed if no other
thread is holding the lock and no other thread is blocked waiting to acquire the lock
for writing.

rw_read_locked() returns non-zero if the calling thread holds the lock for read,
and zero if the caller holds the lock for write. The caller must hold the lock. The
system may panic if rw_read_locked() is called for a lock that isn’t held by the
caller.

0 rw_tryenter() could not obtain the lock without blocking.

0 rw_tryupgrade() was unable to perform the upgrade because
of other threads holding or waiting to hold the lock.

0 rw_read_locked() returns 0 if the lock is held by the caller for
write.

non-zero from rw_read_locked() if the lock is held by the caller for read.

non-zero successful return from rw_tryenter() or rw_tryupgrade().

These functions can be called from user or interrupt context, except for rw_init()
and rw_destroy(), which can be called from user context only.

condvar(9F), ddi_add_intr(9F), ddi_get_iblock_cookie(9F),
ddi_get_soft_iblock_cookie(9F), mutex(9F), semaphore(9F)

Writing Device Drivers

rwlock(9F)

RETURN VALUES

CONTEXT

SEE ALSO

558 man pages section 9: DDI and DKI Kernel Functions • Last Revised 14 Jan 2002

Compiling with _LOCKTEST or _MPSTATS defined no longer has any effect. To gather
lock statistics, see lockstat(1M).

rwlock(9F)

NOTES

Kernel Functions for Drivers 559

SAMESTR, samestr – test if next queue is in the same stream

#include <sys/stream.h>

int SAMESTR(queue_t *q);

Architecture independent level 1 (DDI/DKI).

q Pointer to the queue.

The SAMESTR() function is used to see if the next queue in a stream (if it exists) is the
same type as the current queue (that is, both are read queues or both are write
queues). This function accounts for the twisted queue connections that occur in a
STREAMS pipe and should be used in preference to direct examination of the q_next
field of queue(9S) to see if the stream continues beyond q.

SAMESTR() returns 1 if the next queue is the same type as the current queue. It
returns 0 if the next queue does not exist or if it is not the same type.

SAMESTR() can be called from user or interrupt context.

OTHERQ(9F)

Writing Device Drivers

STREAMS Programming Guide

SAMESTR(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

560 man pages section 9: DDI and DKI Kernel Functions • Last Revised 11 Apr 1991

scsi_abort – abort a SCSI command

#include <sys/scsi/scsi.h>

intscsi_abort(struct scsi_address *ap, struct scsi_pkt *pkt);

Solaris DDI specific (Solaris DDI).

ap Pointer to a scsi_address structure.

pkt Pointer to a scsi_pkt(9S) structure.

scsi_abort() terminates a command that has been transported to the host adapter
driver. A NULL pkt causes all outstanding packets to be aborted. On a successful abort,
the pkt_reason is set to CMD_ABORTED and pkt_statistics is OR’ed with
STAT_ABORTED.

scsi_abort() returns:

1 on success.

0 on failure.

scsi_abort() can be called from user or interrupt context.

EXAMPLE 1 Terminating a command.

if (scsi_abort(&devp->sd_address, pkt) == 0) {
(void) scsi_reset(&devp->sd_address, RESET_ALL);

}

tran_abort(9E), scsi_reset(9F), scsi_pkt(9S)

Writing Device Drivers

scsi_abort(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

EXAMPLES

SEE ALSO

Kernel Functions for Drivers 561

scsi_alloc_consistent_buf – allocate an I/O buffer for SCSI DMA

#include <sys/scsi/scsi.h>

struct buf *scsi_alloc_consistent_buf(structscsi_address*ap,
struct buf *bp, size_t datalen, uint_t bflags, int (*callback,
caddr_t),caddr_t arg);

Solaris DDI specific (Solaris DDI).

ap Pointer to the scsi_address(9S) structure.

bp Pointer to the buf(9S) structure.

datalen Number of bytes for the data buffer.

bflags Flags setting for the allocated buffer header. This should either be
B_READ or B_WRITE.

callback A pointer to a callback function, NULL_FUNC or SLEEP_FUNC.

arg The callback function argument.

scsi_alloc_consistent_buf() allocates a buffer header and the associated data
buffer for direct memory access (DMA) transfer. This buffer is allocated from the iobp
space, which is considered consistent memory. For more details, see
ddi_dma_mem_alloc(9F) and ddi_dma_sync(9F).

For buffers allocated via scsi_alloc_consistent_buf(), and marked with the
PKT_CONSISTENT flag via scsi_init_pkt(9F), the HBA driver must ensure that the
data transfer for the command is correctly synchronized before the target driver’s
command completion callback is performed.

If bp is NULL, a new buffer header will be allocated using getrbuf(9F). In addition, if
datalen is non-zero, a new buffer will be allocated using ddi_dma_mem_alloc(9F).

callback indicates what the allocator routines should do when direct memory access
(DMA) resources are not available; the valid values are:

NULL_FUNC Do not wait for resources. Return a NULL pointer.

SLEEP_FUNC Wait indefinitely for resources.

Other Values callback points to a function that is called when resources may
become available. callback must return either 0 (indicating that it
attempted to allocate resources but failed to do so), in which case it
is put back on a list to be called again later, or 1 indicating either
success in allocating resources or indicating that it no longer cares
for a retry. The last argument arg is supplied to the callback
function when it is invoked.

scsi_alloc_consistent_buf(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

562 man pages section 9: DDI and DKI Kernel Functions • Last Revised 18 Apr 2001

scsi_alloc_consistent_buf() returns a pointer to a buf(9S) structure on
success. It returns NULL if resources are not available even if waitfunc was not
SLEEP_FUNC.

If callback is SLEEP_FUNC, then this routine may be called only from user-level code.
Otherwise, it may be called from either user or interrupt level. The callback function
may not block or call routines that block.

EXAMPLE 1 Allocate a request sense packet with consistent DMA resources attached.

bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);

rqpkt = scsi_init_pkt(&devp->sd_address,
NULL, bp, CDB_GROUP0, 1, 0,
PKT_CONSISTENT, SLEEP_FUNC, NULL);

EXAMPLE 2 Allocate an inquiry packet with consistent DMA resources attached.

bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
SUN_INQSIZE, B_READ, canwait, NULL);

if (bp) {
pkt = scsi_init_pkt(&devp->sd_address, NULL, bp,

CDB_GROUP0, 1, PP_LEN, PKT_CONSISTENT,
canwait, NULL);

}

ddi_dma_mem_alloc(9F), ddi_dma_sync(9F), getrbuf(9F),
scsi_destroy_pkt(9F), scsi_init_pkt(9F), scsi_free_consistent_buf(9F),
buf(9S), scsi_address(9S)

Writing Device Drivers

scsi_alloc_consistent_buf(9F)

RETURN VALUES

CONTEXT

EXAMPLES

SEE ALSO

Kernel Functions for Drivers 563

scsi_cname, scsi_dname, scsi_mname, scsi_rname, scsi_sname – decode a SCSI name

#include <sys/scsi/scsi.h>

char *scsi_cname(uchar_t cmd, char **cmdvec);

char *scsi_dname(int dtype);

char *scsi_mname(uchar_t msg);

char *scsi_rname(uchar_t reason);

char *scsi_sname(uchar_t sense_key);

Solaris DDI specific (Solaris DDI).

cmd A SCSI command value.

cmdvec Pointer to an array of command strings.

dtype Device type.

msg A message value.

reason A packet reason value.

sense_key A SCSI sense key value.

scsi_cname() decodes SCSI commands. cmdvec is a pointer to an array of strings.
The first byte of the string is the command value, and the remainder is the name of the
command.

scsi_dname() decodes the peripheral device type (for example, direct access or
sequential access) in the inquiry data.

scsi_mname() decodes SCSI messages.

scsi_rname() decodes packet completion reasons.

scsi_sname() decodes SCSI sense keys.

These functions return a pointer to a string. If an argument is invalid, they return a
string to that effect.

These functions can be called from user or interrupt context.

EXAMPLE 1 Decoding SCSI tape commands.

scsi_cname() decodes SCSI tape commands as follows:

static char *st_cmds[] = {
"\000test unit ready",
"\001rewind",
"\003request sense",
"\010read",
"\012write",

scsi_cname(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

EXAMPLES

564 man pages section 9: DDI and DKI Kernel Functions • Last Revised 21 Dec 1992

EXAMPLE 1 Decoding SCSI tape commands. (Continued)

"\020write file mark",
"\021space",
"\022inquiry",
"\025mode select",
"\031erase tape",
"\032mode sense",
"\033load tape",
NULL

};
..
cmn_err(CE_CONT, "st: cmd=%s", scsi_cname(cmd, st_cmds));
..

Writing Device Drivers

scsi_cname(9F)

SEE ALSO

Kernel Functions for Drivers 565

scsi_destroy_pkt – free an allocated SCSI packet and its DMA resource

#include <sys/scsi/scsi.h>

void scsi_destroy_pkt(struct scsi_pkt *pktp);

Solaris DDI specific (Solaris DDI).

pktp Pointer to a scsi_pkt(9S) structure.

scsi_destroy_pkt() releases all necessary resources, typically at the end of an I/O
transfer. The data is synchronized to memory, then the DMA resources are deallocated
and pktp is freed.

scsi_destroy_pkt() may be called from user or interrupt context.

EXAMPLE 1 Releasing resources.

scsi_destroy_pkt(un->un_rqs);

tran_destroy_pkt(9E), scsi_init_pkt(9F), scsi_pkt(9S)

Writing Device Drivers

scsi_destroy_pkt(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

EXAMPLES

SEE ALSO

566 man pages section 9: DDI and DKI Kernel Functions • Last Revised 30 Aug 1995

scsi_dmaget, scsi_dmafree – SCSI dma utility routines

#include <sys/scsi/scsi.h>

struct scsi_pkt *scsi_dmaget(struct scsi_pkt *pkt, opaque_t
dmatoken, int(*callback)(void));

void scsi_dmafree(struct scsi_pkt *pkt);

Solaris DDI specific (Solaris DDI).

pkt A pointer to a scsi_pkt(9S) structure.

dmatoken Pointer to an implementation dependent object

callback Pointer to a callback function, or NULL_FUNC or SLEEP_FUNC.

scsi_dmaget() allocates DMA resources for an already allocated SCSI packet. pkt is
a pointer to the previously allocated SCSI packet (see scsi_pktalloc(9F)).

dmatoken is a pointer to an implementation dependent object which defines the length,
direction, and address of the data transfer associated with this SCSI packet
(command). The dmatoken must be a pointer to a buf(9S) structure. If dmatoken is
NULL, no resources are allocated.

callback indicates what scsi_dmaget() should do when resources are not available:

NULL_FUNC Do not wait for resources. Return a NULL pointer.

SLEEP_FUNC Wait indefinitely for resources.

Other Values callback points to a function which is called when resources may
have become available. callback must return either 0 (indicating
that it attempted to allocate resouces but failed to do so again), in
which case it is put back on a list to be called again later, or 1
indicating either success in allocating resources or indicating that it
no longer cares for a retry.

scsi_dmafree() frees the DMA resources associated with the SCSI packet. The
packet itself remains allocated.

scsi_dmaget() returns a pointer to a scsi_pkt on success. It returns NULL if
resources are not available.

If callback is SLEEP_FUNC, then this routine may only be called from user-level code.
Otherwise, it may be called from either user or interrupt level. The callback function
may not block or call routines that block.

scsi_dmafree() can be called from user or interrupt context.

scsi_pktalloc(9F), scsi_pktfree(9F), scsi_resalloc(9F),
scsi_resfree(9F), buf(9S), scsi_pkt(9S)

scsi_dmaget(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 567

Writing Device Drivers

scsi_dmaget(9F)

568 man pages section 9: DDI and DKI Kernel Functions • Last Revised 21 Dec 1992

scsi_errmsg – display a SCSI request sense message

#include <sys/scsi/scsi.h>

void scsi_errmsg(struct scsi_device *devp, struct scsi_pkt *pktp,
char *drv_name, int severity, daddr_t blkno, daddr_t err_blkno,
struct scsi_key_strings *cmdlist, struct scsi_extended_sense
*sensep);

Solaris DDI specific (Solaris DDI).

devp Pointer to the scsi_device(9S) structure.

pktp Pointer to a scsi_pkt(9S) structure.

drv_name String used by scsi_log(9F).

severity Error severity level, maps to severity strings below.

blkno Requested block number.

err_blkno Error block number.

cmdlist An array of SCSI command description strings.

sensep A pointer to a scsi_extended_sense(9S) structure.

scsi_errmsg() interprets the request sense information in the sensep pointer and
generates a standard message that is displayed using scsi_log(9F). The first line of
the message is always a CE_WARN, with the continuation lines being CE_CONT. sensep
may be NULL, in which case no sense key or vendor information is displayed.

The driver should make the determination as to when to call this function based on
the severity of the failure and the severity level that the driver wants to report.

The scsi_device(9S) structure denoted by devp supplies the identification of the
device that requested the display. severity selects which string is used in the "Error
Level:" reporting, according to the following table:

Severity Value: String:

SCSI_ERR_ALL All

SCSI_ERR_UNKNOWN Unknown

SCSI_ERR_INFO Informational

SCSI_ERR_RECOVERE Recovered

SCSI_ERR_RETRYABL Retryable

SCSI_ERR_FATAL Fatal

scsi_errmsg(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

Kernel Functions for Drivers 569

blkno is the block number of the original request that generated the error. err_blkno is
the block number where the error occurred. cmdlist is a mapping table for translating
the SCSI command code in pktp to the actual command string.

The cmdlist is described in the structure below:

struct scsi_key_strings {
int key;
char *message;

};

For a basic SCSI disk, the following list is appropriate:

static struct scsi_key_strings scsi_cmds[] = {
0x00, "test unit ready",
0x01, "rezero/rewind",
0x03, "request sense",
0x04, "format",
0x07, "reassign",
0x08, "read",
0x0a, "write",
0x0b, "seek",
0x12, "inquiry",
0x15, "mode select",
0x16, "reserve",
0x17, "release",
0x18, "copy",
0x1a, "mode sense",
0x1b, "start/stop",
0x1e, "door lock",
0x28, "read(10)",
0x2a, "write(10)",
0x2f, "verify",
0x37, "read defect data",
0x3b, "write buffer",
–1, NULL

};

scsi_errmsg() may be called from user or interrupt context.

EXAMPLE 1 Generating error information.

This entry:

scsi_errmsg(devp, pkt, "sd", SCSI_ERR_INFO, bp->b_blkno,
err_blkno, sd_cmds, rqsense);

Generates:

WARNING: /sbus@1,f8000000/esp@0,800000/sd@1,0 (sd1):
Error for Command: read Error Level: Informational
Requested Block: 23936 Error Block: 23936
Vendor: QUANTUM Serial Number: 123456
Sense Key: Unit Attention

ASC: 0x29 (reset), ASCQ: 0x0, FRU: 0x0

scsi_errmsg(9F)

CONTEXT

EXAMPLES

570 man pages section 9: DDI and DKI Kernel Functions • Last Revised 8 Oct 1997

cmn_err(9F), scsi_log(9F), scsi_device(9S), scsi_extended_sense(9S),
scsi_pkt(9S)

Writing Device Drivers

scsi_errmsg(9F)

SEE ALSO

Kernel Functions for Drivers 571

scsi_free_consistent_buf – free a previously allocated SCSI DMA I/O buffer

#include <sys/scsi/scsi.h>

void scsi_free_consistent_buf(struct buf *bp);

Solaris DDI specific (Solaris DDI).

bp Pointer to the buf(9S) structure.

scsi_free_consistent_buf() frees a buffer header and consistent data buffer
that was previously allocated using scsi_alloc_consistent_buf(9F).

scsi_free_consistent_buf() may be called from either the user or the interrupt
levels.

freerbuf(9F), scsi_alloc_consistent_buf(9F), buf(9S)

Writing Device Drivers

scsi_free_consistent_buf() will call freerbuf(9F) to free the buf(9S) that
was allocated before or during the call to scsi_alloc_consistent_buf(9F).

If consistent memory is bound to a scsi_pkt(9S), the pkt should be destroyed before
freeing the consistent memory.

scsi_free_consistent_buf(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

SEE ALSO

WARNING

572 man pages section 9: DDI and DKI Kernel Functions • Last Revised 20 Jul 1998

scsi_get_device_type_scsi_options – look up per-device-type scsi-options property

#include <sys/scsi/scsi.h>

int scsi_get_device_type_scsi_options(dev_info_t *dip, struct
scsi_device *devp, int default_scsi_options);

Solaris DDI specific (Solaris DDI).

dip
Pointer to the device info node for this HBA driver.

devp
Pointer to a scsi_device(9S) structure of the target.

default_scsi_options
Value returned if no match is found.

The scsi_get_device_type_scsi_options() function looks up the property
device-type-scsi-options-list, which can be specified in the HBA’s
driver.conf(4) file. This property allows specification of scsi-options on a
per-device-type basis.

The formal syntax is:

device-type-scsi-options-list = <duplet> [, <duplet> *];

where:

<duplet> := <vid+pid>, <scsi-options-property-name>

and:

<scsi-options-property-name> = <value>;

The string <vid+pid> is returned by the device on a SCSI inquiry command. This string
can contain any character in the range 0x20-0x7e. Characters such as double quote (")
or single quote (’), which are not permitted in property value strings, are represented
by their octal equivalent (for example, \042 and \047). Trailing spaces can be
truncated.

For example:

device-type-scsi-options-list=
"SEAGATE ST32550W", "seagate-options",
"EXABYTE EXB-2501". "exabyte-options",
"IBM OEM DFHSS4S", "ibm-options";

seagate-options = 0x78;
exabyte-options = 0x58;
ibm-options = 0x378;

The scsi_get_device_type_scsi_options() function searches the list of
duplets for a matching INQUIRY string. If a match is found,
scsi_get_device_type_scsi_options() returns the corresponding value.

scsi_get_device_type_scsi_options(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

Kernel Functions for Drivers 573

scsi_get_device_type_scsi_options() returns the scsi-options value
found, or if no match is found the default_scsi_options value passed in.

This function can be called from kernel or interrupt context.

Writing Device Drivers

scsi_get_device_type_scsi_options(9F)

RETURN VALUES

CONTEXT

SEE ALSO

574 man pages section 9: DDI and DKI Kernel Functions • Last Revised 19 Nov 2001

scsi_hba_attach_setup, scsi_hba_attach, scsi_hba_detach – SCSI HBA attach and
detach routines

#include <sys/scsi/scsi.h>

int scsi_hba_attach_setup(dev_info_t *dip, ddi_dma_attr_t
*hba_dma_attr, scsi_hba_tran_t *hba_tran, int hba_flags);

int scsi_hba_attach(dev_info_t *dip, ddi_dma_lim_t *hba_lim,
scsi_hba_tran_t *hba_tran, int hba_flags, void *hba_options);

int scsi_hba_detach(dev_info_t *dip);

Solaris architecture specific (Solaris DDI).

dip A pointer to the dev_info_t structure, referring to the instance of
the HBA device.

hba_lim A pointer to a ddi_dma_lim(9S) structure.

hba_tran A pointer to a scsi_hba_tran(9S) structure.

hba_flags Flag modifiers. The only defined flag value is
SCSI_HBA_TRAN_CLONE.

hba_options Optional features provided by the HBA driver for future
extensions; must be NULL.

hba_dma_attr A pointer to a ddi_dma_attr(9S) structure.

scsi_hba_attach_setup() is the recommended interface over
scsi_hba_attach().

For scsi_hba_attach_setup() and scsi_hba_attach():

scsi_hba_attach() registers the DMA limits hba_lim and the transport vectors
hba_tran of each instance of the HBA device defined by dip.
scsi_hba_attach_setup() registers the DMA attributes hba_dma_attr and the
transport vectors hba_tran of each instance of the HBA device defined by dip. The HBA
driver can pass different DMA limits or DMA attributes, and transport vectors for each
instance of the device, as necessary, to support any constraints imposed by the HBA
itself.

scsi_hba_attach() and scsi_hba_attach_setup() use the dev_bus_ops
field in the dev_ops(9S) structure. The HBA driver should initialize this field to NULL
before calling scsi_hba_attach() or scsi_hba_attach_setup().

If SCSI_HBA_TRAN_CLONE is requested in hba_flags, the hba_tran structure will be
cloned once for each target attached to the HBA. The cloning of the structure will
occur before the tran_tgt_init(9E) entry point is called to initialize a target. At all
subsequent HBA entry points, including tran_tgt_init(9E), the
scsi_hba_tran_t structure passed as an argument or found in a scsi_address
structure will be the ’cloned’ scsi_hba_tran_t structure, thus allowing the HBA to

scsi_hba_attach_setup(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

Kernel Functions for Drivers 575

use the tran_tgt_private field in the scsi_hba_tran_t structure to point to
per-target data. The HBA must take care to free only the same scsi_hba_tran_t
structure it allocated when detaching; all ’cloned’ scsi_hba_tran_t structures
allocated by the system will be freed by the system.

scsi_hba_attach() and scsi_hba_attach_setup() attach a number of
integer-valued properties to dip, unless properties of the same name are already
attached to the node. An HBA driver should retrieve these configuration parameters
via ddi_prop_get_int(9F), and respect any settings for features provided the HBA.

scsi-options Optional SCSI configuration bits

SCSI_OPTIONS_DR
If not set, the HBA should not grant
Disconnect privileges to target devices.

SCSI_OPTIONS_LINK
If not set, the HBA should not enable
Linked Commands.

SCSI_OPTIONS_TAG
If not set, the HBA should not operate in
Command Tagged Queueing mode.

SCSI_OPTIONS_FAST
If not set, the HBA should not operate
the bus in FAST SCSImode.

SCSI_OPTIONS_FAST20
If not set, the HBA should not operate
the bus in FAST20 SCSI mode.

SCSI_OPTIONS_WIDE
If not set, the HBA should not operate
the bus in WIDE SCSI mode.

SCSI_OPTIONS_SYNC
If not set, the HBA should not operate
the bus in synchronous transfer mode.

scsi-reset-delay SCSI bus or device reset recovery time, in
milliseconds.

scsi-selection-timeout Default SCSI selection phase timeout value,
in milliseconds. Please refer to individual
HBA man pages for any HBA-specific
information

For scsi_hba_detach():

scsi_hba_detach() removes the reference to the DMA limits or attributes structure
and the transport vector for the given instance of an HBAdriver.

scsi_hba_attach_setup(9F)

576 man pages section 9: DDI and DKI Kernel Functions • Last Revised 30 Aug 1995

scsi_hba_attach(), scsi_hba_attach_setup(), and scsi_hba_detach()
return DDI_SUCCESS if the function call succeeds, and return DDI_FAILURE on
failure.

scsi_hba_attach() and scsi_hba_attach_setup() should be called from
attach(9E). scsi_hba_detach() should be called from detach(9E).

attach(9E), detach(9E), tran_tgt_init(9E), ddi_prop_get_int(9F),
ddi_dma_attr(9S), ddi_dma_lim(9S), dev_ops(9S), scsi_address(9S),
scsi_hba_tran(9S)

Writing Device Drivers

It is the HBA driver’s responsibility to ensure that no more transport requests will be
taken on behalf of any SCSI target device driver after scsi_hba_detach() is called.

scsi_hba_attach_setup(9F)

RETURN VALUES

CONTEXT

SEE ALSO

NOTES

Kernel Functions for Drivers 577

scsi_hba_init, scsi_hba_fini – SCSI Host Bus Adapter system initialization and
completion routines

#include <sys/scsi/scsi.h>

int scsi_hba_init(struct modlinkage *modlp);

void scsi_hba_fini(struct modlinkage *modlp);

Solaris architecture specific (Solaris DDI).

modlp Pointer to the Host Bus Adapters module linkage structure.

scsi_hba_init() is the system-provided initialization routine for SCSI HBA
drivers. The scsi_hba_init() function registers the HBA in the system and allows
the driver to accept configuration requests on behalf of SCSI target drivers. The
scsi_hba_init() routine must be called in the HBA’s _init(9E) routine before
mod_install(9F) is called. If mod_install(9F) fails, the HBA’s _init(9E) should
call scsi_hba_fini() before returning failure.

scsi_hba_fini() is the system provided completion routine for SCSI HBA drivers.
scsi_hba_fini() removes all of the system references for the HBA that were
created in scsi_hba_init(). The scsi_hba_fini() routine should be called in
the HBA’s _fini(9E) routine if mod_remove(9F) is successful.

scsi_hba_init() returns 0 if successful, and a non-zero value otherwise. If
scsi_hba_init() fails, the HBA’s _init() entry point should return the value
returned by scsi_hba_init().

scsi_hba_init() and scsi_hba_fini() should be called from _init(9E) or
_fini(9E), respectively.

_fini(9E), _init(9E), mod_install(9F), mod_remove(9F), scsi_pktalloc(9F),
scsi_pktfree(9F), scsi_hba_tran(9S)

Writing Device Drivers

The HBA is responsible for ensuring that no DDI request routines are called on behalf
of its SCSI target drivers once scsi_hba_fini() is called.

scsi_hba_init(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

scsi_hba_init()

scsi_hba_fini()

RETURN VALUES

CONTEXT

SEE ALSO

NOTES

578 man pages section 9: DDI and DKI Kernel Functions • Last Revised 1 Nov 1993

scsi_hba_lookup_capstr – return index matching capability string

#include <sys/scsi/scsi.h>

int scsi_hba_lookup_capstr(char *capstr);

Solaris architecture specific (Solaris DDI).

capstr Pointer to a string.

scsi_hba_lookup_capstr() attempts to match capstr against a known set of
capability strings, and returns the defined index for the matched capability, if found.

The set of indices and capability strings is:

SCSI_CAP_DMA_MAX
"dma-max" or "dma_max"

SCSI_CAP_MSG_OUT
"msg-out" or "msg_out"

SCSI_CAP_DISCONNECT
"disconnect"

SCSI_CAP_SYNCHRONOUS
"synchronous"

SCSI_CAP_WIDE_XFER
"wide-xfer" or "wide_xfer"

SCSI_CAP_PARITY
"parity"

SCSI_CAP_INITIATOR_ID
"initiator-id"

SCSI_CAP_UNTAGGED_QING
"untagged-qing"

SCSI_CAP_TAGGED_QING
"tagged-qing"

SCSI_CAP_ARQ
"auto-rqsense"

SCSI_CAP_LINKED_CMDS
"linked-cmds"

SCSI_CAP_SECTOR_SIZE
"sector-size"

SCSI_CAP_TOTAL_SECTORS
"total-sectors"

SCSI_CAP_GEOMETRY
"geometry"

scsi_hba_lookup_capstr(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

Kernel Functions for Drivers 579

SCSI_CAP_RESET_NOTIFICATION
"reset-notification"

SCSI_CAP_QFULL_RETRIES
"qfull-retries"

SCSI_CAP_QFULL_RETRY_INTERVAL
"qfull-retry-interval"

scsi_hba_lookup_capstr() returns a non-negative index value corresponding to
the capability string, or –1 if the string does not match any known capability.

scsi_hba_lookup_capstr() can be called from user or interrupt context.

tran_getcap(9E), tran_setcap(9E), scsi_ifgetcap(9F), scsi_ifsetcap(9F),
scsi_reset_notify(9F)

Writing Device Drivers

scsi_hba_lookup_capstr(9F)

RETURN VALUES

CONTEXT

SEE ALSO

580 man pages section 9: DDI and DKI Kernel Functions • Last Revised 30 Aug 1995

scsi_hba_pkt_alloc, scsi_hba_pkt_free – allocate and free a scsi_pkt structure

#include <sys/scsi/scsi.h>

struct scsi_pkt *scsi_hba_pkt_alloc(dev_info_t *dip, struct
scsi_address *ap, int cmdlen, int statuslen, int tgtlen, int hbalen,
int (*callback, caddr_t arg, caddr_t arg);

void scsi_hba_pkt_free(struct scsi_address *ap, struct scsi_pkt
*pkt);

Solaris architecture specific (Solaris DDI).

dip Pointer to a dev_info_t structure, defining the HBA driver
instance.

ap Pointer to a scsi_address(9S) structure, defining the target
instance.

cmdlen Length in bytes to be allocated for the SCSI command descriptor
block (CDB).

statuslen Length in bytes to be allocated for the SCSI status completion
block (SCB).

tgtlen Length in bytes to be allocated for a private data area for the target
driver’s exclusive use.

hbalen Length in bytes to be allocated for a private data area for the HBA
driver’s exclusive use.

callback Indicates what scsi_hba_pkt_alloc() should do when
resources are not available:

NULL_FUNC
Do not wait for resources. Return a NULL pointer.

SLEEP_FUNC
Wait indefinitely for resources.

arg Must be NULL.

pkt A pointer to a scsi_pkt(9S) structure.

For scsi_hba_pkt_alloc():

scsi_hba_pkt_alloc() allocates space for a scsi_pkt structure. HBA drivers
should use this interface when allocating a scsi_pkt from their
tran_init_pkt(9E) entry point.

If callback is NULL_FUNC, scsi_hba_pkt_alloc() may not sleep when allocating
resources, and callers should be prepared to deal with allocation failures.

scsi_hba_pkt_alloc() copies the scsi_address(9S) structure pointed to by ap
to the pkt_address field in the scsi_pkt(9S).

scsi_hba_pkt_alloc(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

Kernel Functions for Drivers 581

scsi_hba_pkt_alloc() also allocates memory for these scsi_pkt(9S) data areas,
and sets these fields to point to the allocated memory:

pkt_ha_private HBA private data area.

pkt_private Target driver private data area.

pkt_scbp SCSI status completion block.

pkt_cdbp SCSI command descriptor block.

For scsi_hba_pkt_free():

scsi_hba_pkt_free() frees the space allocated for the scsi_pkt(9S) structure.

scsi_hba_pkt_alloc() returns a pointer to the scsi_pkt structure, or NULL if no
space is available.

scsi_hba_pkt_alloc() can be called from user or interrupt context. Drivers must
not allow scsi_hba_pkt_alloc() to sleep if called from an interrupt routine.

scsi_hba_pkt_free() can be called from user or interrupt context.

tran_init_pkt(9E), scsi_address(9S), scsi_pkt(9S)

Writing Device Drivers

scsi_hba_pkt_alloc(9F)

RETURN VALUES

CONTEXT

SEE ALSO

582 man pages section 9: DDI and DKI Kernel Functions • Last Revised 1 Nov 1993

scsi_hba_probe – default SCSI HBA probe function

#include <sys/scsi/scsi.h>

int scsi_hba_probe(struct scsi_device *sd, int(*waitfunc)(void));

Solaris architecture specific (Solaris DDI).

sd Pointer to a scsi_device(9S) structure describing the target.

waitfunc NULL_FUNC or SLEEP_FUNC.

scsi_hba_probe() is a function providing the semantics of scsi_probe(9F). An
HBA driver may call scsi_hba_probe() from its tran_tgt_probe(9E) entry
point, to probe for the existence of a target on the SCSI bus, or the HBA may set
tran_tgt_probe(9E) to point to scsi_hba_probe directly.

See scsi_probe(9F) for the return values from scsi_hba_probe().

scsi_hba_probe() should only be called from the HBA’s tran_tgt_probe(9E)
entry point.

tran_tgt_probe(9E), scsi_probe(9F), scsi_device(9S)

Writing Device Drivers

scsi_hba_probe(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 583

scsi_hba_tran_alloc, scsi_hba_tran_free – allocate and free transport structures

#include <sys/scsi/scsi.h>

scsi_hba_tran_t *scsi_hba_tran_alloc(dev_info_t *dip, int flags);

void scsi_hba_tran_free(scsi_hba_tran_t *hba_tran);

Solaris architecture specific (Solaris DDI).

dip Pointer to a dev_info structure, defining the HBA driver
instance.

flag Flag modifiers. The only possible flag value is
SCSI_HBA_CANSLEEP (memory allocation may sleep).

hba_tran Pointer to a scsi_hba_tran(9S) structure.

For scsi_hba_tran_alloc():

scsi_hba_tran_alloc() allocates a scsi_hba_tran(9S) structure for a HBA
driver. The HBA must use this structure to register its transport vectors with the
system by using scsi_hba_attach_setup(9F).

If the flag SCSI_HBA_CANSLEEP is set in flags, scsi_hba_tran_alloc() may sleep
when allocating resources; otherwise it may not sleep, and callers should be prepared
to deal with allocation failures.

For scsi_hba_tran_free():

scsi_hba_tran_free() is used to free the scsi_hba_tran(9S) structure allocated
by scsi_hba_tran_alloc().

scsi_hba_tran_alloc() returns a pointer to the allocated transport structure, or
NULL if no space is available.

scsi_hba_tran_alloc() can be called from user or interrupt context. Drivers must
not allow scsi_hba_tran_alloc() to sleep if called from an interrupt routine.

scsi_hba_tran_free() can be called from user or interrupt context.

scsi_hba_attach_setup(9F), scsi_hba_tran(9S)

Writing Device Drivers

scsi_hba_tran_alloc(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

584 man pages section 9: DDI and DKI Kernel Functions • Last Revised 30 Aug 1995

scsi_ifgetcap, scsi_ifsetcap – get/set SCSI transport capability

#include <sys/scsi/scsi.h>

int scsi_ifgetcap(struct scsi_address *ap, char *cap, int whom);

int scsi_ifsetcap(struct scsi_address *ap, char *cap, int value, int
whom);

Solaris DDI specific (Solaris DDI).

ap Pointer to the scsi_address structure.

cap Pointer to the string capability identifier.

value Defines the new state of the capability.

whom Determines if all targets or only the specified target is affected.

The target drivers use scsi_ifsetcap() to set the capabilities of the host adapter
driver. A cap is a name-value pair whose name is a null terminated character string
and whose value is an integer. The current value of a capability can be retrieved using
scsi_ifgetcap(). If whom is 0 all targets are affected, else the target specified by
the scsi_address structure pointed to by ap is affected.

A device may support only a subset of the capabilities listed below. It is the
responsibility of the driver to make sure that these functions are called with a cap
supported by the device.

The following capabilities have been defined:

dma-max Maximum dma transfer size supported by host adapter.

msg-out Message out capability supported by host adapter: 0
disables, 1 enables.

disconnect Disconnect capability supported by host adapter: 0
disables, 1 enables.

synchronous Synchronous data transfer capability supported by host
adapter: 0 disables, 1 enables.

wide-xfer Wide transfer capability supported by host adapter: 0
disables, 1 enables.

parity Parity checking by host adapter: 0 disables, 1 enables.

initiator-id The host’s bus address is returned.

untagged-qing The host adapter’s capability to support internal
queueing of commands without tagged queueing: 0
disables, 1 enables.

tagged-qing The host adapter’s capability to support tagged
queuing: 0 disables, 1 enables.

scsi_ifgetcap(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

Kernel Functions for Drivers 585

auto-rqsense The host adapter’s capability to support auto request
sense on check conditions: 0 disables, 1 enables.

sector-size The target driver sets this capability to inform the HBA
of the granularity, in bytes, of DMA breakup; the
HBA’s DMA limit structure will be set to reflect this
limit (see ddi_dma_lim_sparc(9S) or
ddi_dma_lim_x86(9S)). It should be set to the
physical disk sector size. This capability defaults to
512.

total-sectors The target driver sets this capability to inform the HBA
of the total number of sectors on the device, as returned
from the SCSI get capacity command. This
capability must be set before the target driver ‘‘gets’’
the geometry capability.

geometry This capability returns the HBA geometry of a target
disk. The target driver must set the total-sectors
capability before ‘‘getting’’ the geometry capability.
The geometry is returned as a 32-bit value: the upper
16 bits represent the number of heads per cylinder; the
lower 16 bits represent the number of sectors per track.
The geometry capability cannot be ‘‘set.’’

If geometry is not relevant or appropriate for this target
disk, because (for example) the HBA BIOS supports
Logical Block Addressing for this drive, it is acceptable
for scsi_ifgetcap() to return -1, indicating that
the geometry is not defined. This will cause failure of
attempts to retreive the "virtual geometry" from the
target driver (the DKIOCG_VIRTGEOM ioctl will fail).
See dkio(7I) for more information about
DKIOCG_VIRTGEOM.

reset-notification The host adapter’s capability to support bus reset
notification: 0 disables, 1 enables. Refer to
scsi_reset_notify(9F).

linked -cmds The host adapter’s capability to support linked
commands: 0 disables, 1 enables.

qfull-retries This capability enables/disables QUEUE FULL handling.
If 0, the HBA will not retry a command when a QUEUE
FULL status is returned. If greater than 0, then the HBA
driver will retry the command at specified number of
times at an interval determined by the
"qfull-retry-interval". The range for
qfull-retries is 0-255.

scsi_ifgetcap(9F)

586 man pages section 9: DDI and DKI Kernel Functions • Last Revised 19 July 2000

qfull-retry-interval This capability sets the retry interval (in ms) for
commands that were completed with a QUEUE FULL
status. The range for qfull-retry-intervals is
0-1000 ms.

scsi_ifsetcap() returns:

1 If the capability was successfully set to the new value.

0 If the capability is not variable.

−1 If the capability was not defined, or setting the capability to a new value
failed.

scsi_ifgetcap() returns the current value of a capability, or:

−1 If the capability was not defined.

These functions can be called from user or interrupt context.

EXAMPLE 1 Using scsi_ifgetcap()

if (scsi_ifgetcap(&sd->sd_address, "auto-rqsense", 1) == 1) {
un->un_arq_enabled = 1;

} else {
un->un_arq_enabled =

((scsi_ifsetcap(&sd->sd_address, "auto-rqsense", 1, 1) == 1) ?
1 : 0);

}

if (scsi_ifsetcap(&devp->sd_address, "tagged-qing", 1, 1) == 1) {
un->un_dp->options |= SD_QUEUEING;
un->un_throttle = MAX_THROTTLE;

} else if (scsi_ifgetcap(&devp->sd_address, "untagged-qing", 0) == 1) {
un->un_dp->options |= SD_QUEUEING;
un->un_throttle = 3;

} else {
un->un_dp->options &= ~SD_QUEUEING;
un->un_throttle = 1;

}

scsi_reset_notify(9F), ddi_dma_lim_sparc(9S), ddi_dma_lim_x86(9S),
scsi_address(9S), scsi_arq_status(9S)

Writing Device Drivers

scsi_ifgetcap(9F)

RETURN VALUES

CONTEXT

EXAMPLES

SEE ALSO

Kernel Functions for Drivers 587

scsi_init_pkt – prepare a complete SCSI packet

#include <sys/scsi/scsi.h>

struct scsi_pkt *scsi_init_pkt(struct scsi_address *ap, struct
scsi_pkt *pktp, struct buf *bp, int cmdlen, int statuslen, int
privatelen, int flags, int (*callback)(caddr_t), caddr_t arg);

Solaris DDI specific (Solaris DDI).

ap Pointer to a scsi_address(9S) structure.

pktp A pointer to a scsi_pkt(9S) structure.

bp Pointer to a buf(9S) structure.

cmdlen The required length for the SCSI command descriptor block (CDB)
in bytes.

statuslen The required length for the SCSI status completion block (SCB) in
bytes. Valid values are:

0
No status back.

1
Return SCSI status byte.

sizeof(scsi_arq_status)
Return status information in a scsi_arq_status structure.
This will include up to 20 bytes of sense data. Please refer to
scsi_arq_status(9S) for more information.

EXTCMDS_STATUS_SIZE
Same as preceding.

privatelen The required length for the pkt_private area.

flags Flags modifier.

callback A pointer to a callback function, NULL_FUNC, or SLEEP_FUNC.

arg The callback function argument.

Target drivers use scsi_init_pkt() to request the transport layer to allocate and
initialize a packet for a SCSI command which possibly includes a data transfer. If pktp
is NULL, a new scsi_pkt(9S) is allocated using the HBA driver’s packet allocator.
The bp is a pointer to a buf(9S) structure. If bp is non-NULL and contains a valid byte
count, the buf(9S) structure is also set up for DMA transfer using the HBA driver
DMA resources allocator. When bp is allocated by
scsi_alloc_consistent_buf(9F), the PKT_CONSISTENT bit must be set in the
flags argument to ensure proper operation. If privatelen is non-zero then additional

scsi_init_pkt(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

588 man pages section 9: DDI and DKI Kernel Functions • Last Revised 15 Nov 2000

space is allocated for the pkt_private area of the scsi_pkt(9S). On return pkt_private
points to this additional space. Otherwise pkt_private is a pointer that is typically used
to store the bp during execution of the command. In this case pkt_private is NULL on
return.

The flags argument is a set of bit flags. Possible bits include:

PKT_CONSISTENT
This must be set if the DMA buffer was allocated using
scsi_alloc_consistent_buf(9F). In this case, the HBA driver will guarantee
that the data transfer is properly synchronized before performing the target driver’s
command completion callback.

PKT_DMA_PARTIAL
This may be set if the driver can accept a partial DMA mapping. If set,
scsi_init_pkt() will allocate DMA resources with the DDI_DMA_PARTIAL bit
set in the dmar_flag element of the ddi_dma_req(9S) structure. The pkt_resid
field of the scsi_pkt(9S) structure may be returned with a non-zero value, which
indicates the number of bytes for which scsi_init_pkt() was unable to allocate
DMA resources. In this case, a subsequent call to scsi_init_pkt() may be made
for the same pktp and bp to adjust the DMA resources to the next portion of the
transfer. This sequence should be repeated until the pkt_resid field is returned
with a zero value, which indicates that with transport of this final portion the entire
original request will have been satisfied.

When calling scsi_init_pkt() to move already-allocated DMA resources, the
cmdlen, statuslen, and privatelen fields are ignored.

The last argument arg is supplied to the callback function when it is invoked.

callback indicates what the allocator routines should do when resources are not
available:

NULL_FUNC Do not wait for resources. Return a NULL pointer.

SLEEP_FUNC Wait indefinitely for resources.

Other Values callback points to a function which is called when resources may
have become available. callback must return either 0 (indicating
that it attempted to allocate resources but again failed to do so), in
which case it is put back on a list to be called again later, or 1
indicating either success in allocating resources or indicating that it
no longer cares for a retry.

When allocating DMA resources, scsi_init_pkt() returns the scsi_pkt field
pkt_resid as the number of residual bytes for which the system was unable to
allocate DMA resources. A pkt_resid of 0 means that all necessary DMA resources
were allocated.

scsi_init_pkt(9F)

Kernel Functions for Drivers 589

scsi_init_pkt() returns NULL if the packet or DMA resources could not be
allocated. Otherwise, it returns a pointer to an initialized scsi_pkt(9S). If pktp was
not NULL the return value will be pktp on successful initialization of the packet.

If callback is SLEEP_FUNC, then this routine may only be called from user-level code.
Otherwise, it may be called from either user or interrupt level. The callback function
may not block or call routines that block.

EXAMPLE 1 Allocating a Packet Without DMA Resources Attached

To allocate a packet without DMA resources attached, use:

pkt = scsi_init_pkt(&devp->sd_address, NULL, NULL, CDB_GROUP1,
1, sizeof (struct my_pkt_private *), 0,
sd_runout, sd_unit);

EXAMPLE 2 Allocating a Packet With DMA Resources Attached

To allocate a packet with DMA resources attached use:

pkt = scsi_init_pkt(&devp->sd_address, NULL, bp, CDB_GROUP1,
sizeof(struct scsi_arq_status), 0, 0, NULL_FUNC, NULL);

EXAMPLE 3 Attaching DMA Resources to a Preallocated Packet

To attach DMA resources to a preallocated packet, use:

pkt = scsi_init_pkt(&devp->sd_address, old_pkt, bp, 0,
0, 0, 0, sd_runout, (caddr_t) sd_unit);

EXAMPLE 4 Allocating a Packet with Consistent DMA Resources Attached

Since the packet is already allocated, the cmdlen, statuslen and privatelen are 0. To
allocate a packet with consistent DMA resources attached, use:

bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);

pkt = scsi_init_pkt(&devp->sd_address, NULL, bp, CDB_GROUP0,
sizeof(struct scsi_arq_status), sizeof (struct my_pkt_private *),
PKT_CONSISTENT, SLEEP_FUNC, NULL);

EXAMPLE 5 Allocating a Packet with Partial DMA Resources Attached

To allocate a packet with partial DMA resources attached, use:

my_pkt = scsi_init_pkt(&devp->sd_address, NULL, bp, CDB_GROUP0,
1, sizeof (struct buf *), PKT_DMA_PARTIAL,
SLEEP_FUNC, NULL);

scsi_init_pkt(9F)

RETURN VALUES

CONTEXT

EXAMPLES

590 man pages section 9: DDI and DKI Kernel Functions • Last Revised 15 Nov 2000

EXAMPLE 5 Allocating a Packet with Partial DMA Resources Attached (Continued)

scsi_alloc_consistent_buf(9F), scsi_destroy_pkt(9F), scsi_dmaget(9F),
scsi_pktalloc(9F), buf(9S), ddi_dma_req(9S), scsi_address(9S),
scsi_pkt(9S)

Writing Device Drivers

If a DMA allocation request fails with DDI_DMA_NOMAPPING, the B_ERROR flag will
be set in bp, and the b_error field will be set to EFAULT.

If a DMA allocation request fails with DDI_DMA_TOOBIG, the B_ERROR flag will be set
in bp, and the b_error field will be set to EINVAL.

scsi_init_pkt(9F)

SEE ALSO

NOTES

Kernel Functions for Drivers 591

scsi_log – display a SCSI-device-related message

#include <sys/scsi/scsi.h>

#include <sys/cmn_err.h>

void scsi_log(dev_info_t *dip, char *drv_name, uint_t level, const
char *fmt, ...);

Solaris DDI specific (Solaris DDI).

dip Pointer to the dev_info structure.

drv_name String naming the device.

level Error level.

fmt Display format.

scsi_log() is a utility function that displays a message via the cmn_err(9F)
routine. The error levels that can be passed in to this function are CE_PANIC,
CE_WARN, CE_NOTE, CE_CONT, and SCSI_DEBUG. The last level is used to assist in
displaying debug messages to the console only. drv_name is the short name by which
this device is known; example disk driver names are sd and cmdk. If the dev_info_t
pointer is NULL, then the drv_name will be used with no unit or long name.

If the first character in format is:

� An exclamation mark (!), the message goes only to the system buffer.

� A caret (^), the message goes only to the console.

� A question mark (?) and level is CE_CONT, the message is always sent to the system
buffer, but is written to the console only when the system has been booted in
verbose mode. See kernel(1M). If neither condition is met, the ? character has no
effect and is simply ignored.

All formatting conversions in use by cmn_err() also work with scsi_log().

scsi_log() may be called from user or interrupt context.

EXAMPLE 1

scsi_log(dev, "Disk Unit ", CE_PANIC, "Bad Value %d\n", foo);

generates:

PANIC: /eisa/aha@330,0/cmdk@0,0 (Disk Unit 0): Bad Value 5

This is followed by a PANIC.

EXAMPLE 2

scsi_log(dev, "sd", CE_WARN, "Label Bad\n");

generates:

WARNING: /sbus@1,f8000000/esp@0,8000000/sd@1,0 (sd1): Label Bad

scsi_log(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

EXAMPLES

592 man pages section 9: DDI and DKI Kernel Functions • Last Revised 7 Jun 1993

EXAMPLE 2 (Continued)

EXAMPLE 3

scsi_log((dev_info_t *) NULL, "Disk Unit ", CE_NOTE, "Disk Ejected\n");

generates:

Disk Unit: Disk Ejected

EXAMPLE 4

scsi_log(cmdk_unit, "Disk Unit ", CE_CONT, "Disk Inserted\n");

generates:

Disk Inserted

EXAMPLE 5

scsi_log(sd_unit, "sd", SCSI_DEBUG, "We really got here\n");

generates (only to the console):

DEBUG: sd1: We really got here

kernel(1M), sd(7D), cmn_err(9F), scsi_errmsg(9F)

Writing Device Drivers

scsi_log(9F)

SEE ALSO

Kernel Functions for Drivers 593

scsi_pktalloc, scsi_resalloc, scsi_pktfree, scsi_resfree – SCSI packet utility routines

#include <sys/scsi/scsi.h>

struct scsi_pkt *scsi_pktalloc(struct scsi_address*ap, intcmdlen,
intstatuslen, int(*callback)(void));

struct scsi_pkt *scsi_resalloc(struct scsi_address*ap, intcmdlen,
intstatuslen, opaque_tdmatoken, int(*callback)(void));

voidscsi_pktfree(struct scsi_pkt*pkt);

voidscsi_resfree(struct scsi_pkt*pkt);

Solaris DDI specific (Solaris DDI).

ap Pointer to a scsi_address structure.

cmdlen The required length for the SCSI command descriptor block (CDB)
in bytes.

statuslen The required length for the SCSI status completion block (SCB) in
bytes.

dmatoken Pointer to an implementation-dependent object.

callback A pointer to a callback function, or NULL_FUNC or SLEEP_FUNC.

pkt Pointer to a scsi_pkt(9S) structure.

scsi_pktalloc() requests the host adapter driver to allocate a command packet.
For commands that have a data transfer associated with them, scsi_resalloc()
should be used.

ap is a pointer to a scsi_address structure. Allocator routines use it to determine the
associated host adapter.

cmdlen is the required length for the SCSI command descriptor block. This block is
allocated such that a kernel virtual address is established in the pkt_cdbp field of the
allocated scsi_pkt structure.

statuslen is the required length for the SCSI status completion block. The address of the
allocated block is placed into the pkt_scbp field of the scsi_pkt structure.

dmatoken is a pointer to an implementation dependent object which defines the length,
direction, and address of the data transfer associated with this SCSI packet
(command). The dmatoken must be a pointer to a buf(9S) structure. If dmatoken is
NULL, no DMA resources are required by this SCSI command, so none are allocated.
Only one transfer direction is allowed per command. If there is an unexpected data
transfer phase (either no data transfer phase expected, or the wrong direction
encountered), the command is terminated with the pkt_reason set to
CMD_DMA_DERR. dmatoken provides the information to determine if the transfer count
is correct.

scsi_pktalloc(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

594 man pages section 9: DDI and DKI Kernel Functions • Last Revised 21 Dec 1992

callback indicates what the allocator routines should do when resources are not
available:

NULL_FUNC Do not wait for resources. Return a NULL pointer.

SLEEP_FUNC Wait indefinitely for resources.

Other Values callback points to a function which is called when resources may
have become available. callback must return either 0 (indicating
that it attempted to allocate resources but again failed to do so), in
which case it is put back on a list to be called again later, or 1
indicating either success in allocating resources or indicating that it
no longer cares for a retry.

scsi_pktfree() frees the packet.

scsi_resfree() free all resources held by the packet and the packet itself.

Both allocation routines return a pointer to a scsi_pkt structure on success, or NULL
on failure.

If callback is SLEEP_FUNC, then this routine may only be called from user-level code.
Otherwise, it may be called from either user or interrupt level. The callback function
may not block or call routines that block. Both deallocation routines can be called from
user or interrupt context.

scsi_dmafree(9F), scsi_dmaget(9F), buf(9S), scsi_pkt(9S)

Writing Device Drivers

scsi_pktalloc(9F)

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 595

scsi_poll – run a polled SCSI command on behalf of a target driver

#include <sys/scsi/scsi.h>

int scsi_poll(struct scsi_pkt *pkt);

Solaris DDI specific (Solaris DDI).

pkt Pointer to the scsi_pkt(9S) structure.

scsi_poll() requests the host adapter driver to run a polled command. Unlike
scsi_transport(9F) which runs commands asynchronously, scsi_poll() runs
commands to completion before returning. If the pkt_time member of pkt is 0, the
value of pkt_time is defaulted to SCSI_POLL_TIMEOUT to prevent an indefinite
hang of the system.

scsi_poll() returns:

0 command completed successfully.

–1 command failed.

scsi_poll() can be called from user or interrupt level. This function should not be
called when the caller is executing timeout(9F) in the context of a thread.

makecom(9F), scsi_transport(9F), scsi_pkt(9S)

Writing Device Drivers

Since scsi_poll() runs commands to completion before returning, it may require
more time than is desirable when called from interrupt context. Therefore, calling
scsi_poll from interrupt context is not recommended.

scsi_poll(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

WARNINGS

596 man pages section 9: DDI and DKI Kernel Functions • Last Revised 30 Aug 1995

scsi_probe – utility for probing a scsi device

#include <sys/scsi/scsi.h>

int scsi_probe(struct scsi_device *devp, int (*waitfunc);

Solaris DDI specific (Solaris DDI).

devp Pointer to a scsi_device(9S) structure

waitfunc NULL_FUNC or SLEEP_FUNC

scsi_probe() determines whether a target/lun is present and sets up the
scsi_device structure with inquiry data.

scsi_probe() uses the SCSI Inquiry command to test if the device exists. It may
retry the Inquiry command as appropriate. If scsi_probe() is successful, it will
allocate space for the scsi_inquiry structure and assign the address to the sd_inq
member of the scsi_device(9S) structure. scsi_probe() will then fill in this
scsi_inquiry(9S) structure and return SCSIPROBE_EXISTS. If scsi_probe() is
unsuccessful, it returns SCSIPROBE_NOMEM in spite of callback set to SLEEP_FUNC.

scsi_unprobe(9F) is used to undo the effect of scsi_probe().

If the target is a non-CCS device, SCSIPROBE_NONCCS will be returned.

waitfunc indicates what the allocator routines should do when resources are not
available; the valid values are:

NULL_FUNC Do not wait for resources. Return SCSIPROBE_NOMEM or
SCSIPROBE_FAILURE

SLEEP_FUNC Wait indefinitely for resources.

scsi_probe() returns:

SCSIPROBE_BUSY Device exists but is currently busy.

SCSIPROBE_EXISTS Device exists and inquiry data is valid.

SCSIPROBE_FAILURE Polled command failure.

SCSIPROBE_NOMEM No space available for structures.

SCSIPROBE_NOMEM_CB No space available for structures but callback request
has been queued.

SCSIPROBE_NONCCS Device exists but inquiry data is not valid.

SCSIPROBE_NORESP Device does not respond to an INQUIRY.

scsi_probe() is normally called from the target driver’s probe(9E) or attach(9E)
routine. If waitfunc is SLEEP_FUNC, then this routine may only be called from
user-level code. Otherwise, it may be called from either user or interrupt level.

scsi_probe(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

Kernel Functions for Drivers 597

EXAMPLE 1 Using scsi_probe()

switch (scsi_probe(devp, NULL_FUNC)) {
default:
case SCSIPROBE_NORESP:
case SCSIPROBE_NONCCS:
case SCSIPROBE_NOMEM:
case SCSIPROBE_FAILURE:
case SCSIPROBE_BUSY:

break;
case SCSIPROBE_EXISTS:

switch (devp->sd_inq->inq_dtype) {
case DTYPE_DIRECT:

rval = DDI_PROBE_SUCCESS;
break;

case DTYPE_RODIRECT:
rval = DDI_PROBE_SUCCESS;
break;

case DTYPE_NOTPRESENT:
default:

break;
}

}
scsi_unprobe(devp);

attach(9E), probe(9E), scsi_slave(9F), scsi_unprobe(9F), scsi_unslave(9F),
scsi_device(9S), scsi_inquiry(9S)

ANSI Small Computer System Interface-2 (SCSI-2)

Writing Device Drivers

A waitfunc function other than NULL_FUNC or SLEEP_FUNC is not supported and may
have unexpected results.

scsi_probe(9F)

EXAMPLES

SEE ALSO

NOTES

598 man pages section 9: DDI and DKI Kernel Functions • Last Revised 24 Feb 1994

scsi_reset – reset a SCSI bus or target

#include <sys/scsi/scsi.h>

int scsi_reset(struct scsi_address *ap, int level);

Solaris DDI specific (Solaris DDI).

ap Pointer to the scsi_address structure.

level The level of reset required.

scsi_reset() asks the host adapter driver to reset the SCSI bus or a SCSI target as
specified by level. If level equals RESET_ALL, the SCSI bus is reset. If it equals
RESET_TARGET, ap is used to determine the target to be reset.

scsi_reset() asks the host adapter driver to reset the SCSI bus or a SCSI target as
specified by level. If level equals RESET_ALL, the SCSI bus is reset. If it equals
RESET_TARGET, ap is used to determine the target to be reset.

Note that, at the point when scsi_reset() resets the target (case RESET_TARGET)
or the bus (case RESET_ALL), there might be one or more command packets
outstanding. That is, packets have been passed to scsi_transport(), and queued
or possibly transported, but the commands have not been completed and the target
completion routine has not been called for those packets.

The successful call to scsi_reset() has the side effect that any such commands
currently outstanding are aborted, at which point the packets are marked with
pkt_reason set to CMD_RESET, and the appropriate bit -- either STAT_BUS_RESET
or STAT_DEV_RESET -- is set in pkt_statistics. Once thus appropriately marked,
the aborted command packets are passed to the target driver command completion
routine.

Also note that, at the moment that a thread executing scsi_reset() actually resets
the target or the bus, it is possible that a second thread may have already called
scsi_transport(), but not yet queued or transported its command. In this case the
HBA will not yet have received the second thread’s packet and this packet will not be
aborted.

scsi_reset() returns:

1 Upon success.

0 Upon failure.

scsi_reset() can be called from user or interrupt context.

tran_reset(9E), tran_reset_notify(9E), scsi_abort(9F)

Writing Device Drivers

scsi_reset(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 599

scsi_reset_notify – notify target driver of bus resets

#include <sys/scsi/scsi.h>

void scsi_reset_notify(struct scsi_address *ap, int flag, void
(*callback)(caddr_t), caddr_t arg);

Solaris DDI specific (Solaris DDI).

ap Pointer to the scsi_address structure.

flag A flag indicating registration or cancellation of the notification
request.

callback A pointer to the target driver’s reset notification function.

arg The callback function argument.

scsi_reset_notify() is used by a target driver when it needs to be notified of a
bus reset. The bus reset could be issued by the transport layer (e.g. the host bus
adapter (HBA) driver or controller) or by another initiator.

The argument flag is used to register or cancel the notification. The supported values
for flag are as follows:

SCSI_RESET_NOTIFY Register callback as the reset notification function for the
target driver.

SCSI_RESET_CANCEL Cancel the reset notification request.

Target drivers can find out whether the HBA driver and controller support reset
notification by checking the reset-notification capability using the
scsi_ifgetcap(9F) function.

If flag is SCSI_RESET_NOTIFY, scsi_reset_notify() returns:

DDI_SUCCESS The notification request has been accepted.

DDI_FAILURE The transport layer does not support reset notification
or could not accept this request.

If flag is SCSI_RESET_CANCEL, scsi_reset_notify() returns:

DDI_SUCCESS The notification request has been canceled.

DDI_FAILURE No notification request was registered.

scsi_reset_notify() can be called from user or interrupt context.

scsi_address(9S), scsi_ifgetcap(9F)

Writing Device Drivers

scsi_reset_notify(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

600 man pages section 9: DDI and DKI Kernel Functions • Last Revised 8 Sep 1994

scsi_setup_cdb – setup SCSI command descriptor block (CDB)

int scsi_setup_cdb(union scsi_cdb *cdbp, uchar_t cmd, uint_t addr,
uint_t cnt, uint_t othr_cdb_data);

Solaris DDI specific (Solaris DDI).

cdbp Pointer to command descriptor block.

cmd The first byte of the SCSI group 0, 1, 2, 4, or 5 CDB.

addr Pointer to the location of the data.

cnt Data transfer length in units defined by the SCSI device type. For
sequential devices cnt is the number of bytes. For block devices,
cnt is the number of blocks.

othr_cdb_data Additional CDB data.

scsi_setup_cdb() function initializes a group 0, 1, 2, 4, or 5 type of command
descriptor block pointed to by cdbp using cmd, addr, cnt, othr_cdb_data.

addr should be set to 0 for commands having no addressing information (for example,
group 0 READ command for sequential access devices). othr_cdb_data should be
additional CDB data for Group 4 commands; otherwise, it should be set to 0.

scsi_setup_cdb() function does not set the LUN bits in CDB[1] as the
makecom(9F) functions do. Also, the fixed bit for sequential access device commands
is not set.

scsi_setup_cdb() returns:

1 Upon success.

0 Upon failure.

These functions can be called from a user or interrupt context.

makecom(9F), scsi_pkt(9S)

Writing Device Drivers

American National Standard Small Computer System Interface-2 (SCSI-2)

American National Standard SCSI-3 Primary Commands (SPC)

scsi_setup_cdb(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 601

scsi_slave – utility for SCSI target drivers to establish the presence of a target

#include <sys/scsi/scsi.h>

int scsi_slave(struct scsi_device *devp, int (*callback)(void));

Solaris DDI specific (Solaris DDI).

devp Pointer to a scsi_device(9S) structure.

callback Pointer to a callback function, NULL_FUNC or SLEEP_FUNC.

scsi_slave() checks for the presence of a SCSI device. Target drivers may use this
function in their probe(9E) routines. scsi_slave() determines if the device is
present by using a Test Unit Ready command followed by an Inquiry command. If
scsi_slave() is successful, it will fill in the scsi_inquiry structure, which is the
sd_inq member of the scsi_device(9S) structure, and return
SCSI_PROBE_EXISTS. This information can be used to determine if the target driver
has probed the correct SCSI device type. callback indicates what the allocator routines
should do when DMA resources are not available:

NULL_FUNC Do not wait for resources. Return a NULL pointer.

SLEEP_FUNC Wait indefinitely for resources.

Other Values callback points to a function which is called when resources may
have become available. callback must return either 0 (indicating
that it attempted to allocate resources but again failed to do so), in
which case it is put back on a list to be called again later, or 1
indicating either success in allocating resources or indicating that it
no longer cares for a retry.

scsi_slave() returns:

SCSIPROBE_NOMEM No space available for structures.

SCSIPROBE_EXISTS Device exists and inquiry data is valid.

SCSIPROBE_NONCCS Device exists but inquiry data is not valid.

SCSIPROBE_FAILURE Polled command failure.

SCSIPROBE_NORESP No response to TEST UNIT READY.

scsi_slave() is normally called from the target driver’s probe(9E) or attach(9E)
routine. If callback is SLEEP_FUNC, then this routine may only be called from user-level
code. Otherwise, it may be called from either user or interrupt level. The callback
function may not block or call routines that block.

attach(9E), probe(9E), ddi_iopb_alloc(9F), makecom(9F), scsi_dmaget(9F),
scsi_ifgetcap(9F), scsi_pktalloc(9F), scsi_poll(9F), scsi_probe(9F),
scsi_device(9S)

ANSI Small Computer System Interface-2 (SCSI-2)

scsi_slave(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

602 man pages section 9: DDI and DKI Kernel Functions • Last Revised 21 Dec 1992

Writing Device Drivers

scsi_slave(9F)

Kernel Functions for Drivers 603

scsi_sync_pkt – synchronize CPU and I/O views of memory

#include <sys/scsi/scsi.h>

void scsi_sync_pkt(struct scsi_pkt *pktp);

Solaris DDI specific (Solaris DDI).

pktp Pointer to a scsi_pkt(9S) structure.

scsi_sync_pkt() is used to selectively synchronize a CPU’s or device’s view of the
data associated with the SCSI packet that has been mapped for I/O. This may involve
operations such as flushes of CPU or I/O caches, as well as other more complex
operations such as stalling until hardware write buffers have drained.

This function need only be called under certain circumstances. When a SCSI packet is
mapped for I/O using scsi_init_pkt(9F) and destroyed using
scsi_destroy_pkt(9F), then an implicit scsi_sync_pkt() will be performed.
However, if the memory object has been modified by either the device or a CPU after
the mapping by scsi_init_pkt(9F), then a call to scsi_sync_pkt() is required.

If the same scsi_pkt is reused for a data transfer from memory to a device, then
scsi_sync_pkt() must be called before calling scsi_transport(9F). If the same
packet is reused for a data transfer from a device to memory scsi_sync_pkt()
must be called after the completion of the packet but before accessing the data in
memory.

scsi_sync_pkt() may be called from user or interrupt context.

tran_sync_pkt(9E), ddi_dma_sync(9F), scsi_destroy_pkt(9F),
scsi_init_pkt(9F), scsi_transport(9F), scsi_pkt(9S)

Writing Device Drivers

scsi_sync_pkt(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

SEE ALSO

604 man pages section 9: DDI and DKI Kernel Functions • Last Revised 25 Feb 1994

scsi_transport – request by a SCSI target driver to start a command

#include <sys/scsi/scsi.h>

int scsi_transport(struct scsi_pkt *pkt);

Solaris DDI specific (Solaris DDI).

pkt Pointer to a scsi_pkt(9S) structure.

Target drivers use scsi_transport() to request the host adapter driver to transport
a command to the SCSI target device specified by pkt. The target driver must obtain
resources for the packet using scsi_init_pkt(9F) prior to calling this function. The
packet may be initialized using one of the makecom(9F) functions.
scsi_transport() does not wait for the SCSI command to complete. See
scsi_poll(9F) for a description of polled SCSI commands. Upon completion of the
SCSI command the host adapter calls the completion routine provided by the target
driver in the pkt_comp member of the scsi_pkt pointed to by pkt.

scsi_transport() returns:

TRAN_ACCEPT The packet was accepted by the transport layer.

TRAN_BUSY The packet could not be accepted because there was
already a packet in progress for this target/lun, the
host adapter queue was full, or the target device queue
was full.

TRAN_BADPKT The DMA count in the packet exceeded the DMA
engine’s maximum DMA size.

TRAN_FATAL_ERROR A fatal error has occurred in the transport layer.

scsi_transport() can be called from user or interrupt context.

EXAMPLE 1 Using scsi_transport()

if ((status = scsi_transport(rqpkt)) != TRAN_ACCEPT) {
scsi_log(devp, sd_label, CE_WARN,

"transport of request sense pkt fails (0x%x)\n", status);
}

tran_start(9E), makecom(9F), scsi_init_pkt(9F), scsi_pktalloc(9F),
scsi_poll(9F), scsi_pkt(9S)

Writing Device Drivers

scsi_transport(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

EXAMPLES

SEE ALSO

Kernel Functions for Drivers 605

scsi_unprobe, scsi_unslave – free resources allocated during initial probing

#include <sys/scsi/scsi.h>

void scsi_unslave(struct scsi_device *devp);

void scsi_unprobe(struct scsi_device *devp);

Solaris DDI specific (Solaris DDI).

devp Pointer to a scsi_device(9S) structure.

scsi_unprobe() and scsi_unslave() are used to free any resources that were
allocated on the driver’s behalf during scsi_slave(9F) and scsi_probe(9F)
activity.

scsi_unprobe() and scsi_unslave() may be called from either the user or the
interrupt levels.

scsi_probe(9F), scsi_slave(9F), scsi_device(9S)

Writing Device Drivers

scsi_unprobe(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

SEE ALSO

606 man pages section 9: DDI and DKI Kernel Functions • Last Revised 21 Dec 1992

scsi_vu_errmsg – display a SCSI request sense message

#include <sys/scsi/scsi.h>

void scsi_vu_errmsg(struct scsi_pkt *pktp, char *drv_name, int
severity, int err_blkno, struct scsi_key_strings *cmdlist,
struct scsi_extended_sense *sensep, struct
scsi_asq_key_strings *asc_list, char **decode_frustruct
scsi_device*, char *, int, char);

Solaris DDI specific (Solaris DDI).

The following parameters are supported:

devp Pointer to the scsi_device(9S) structure.

pktp Pointer to a scsi_pkt(9S) structure.

drv_name String used by scsi_log(9F).

severity Error severity level, maps to severity strings below.

blkno Requested block number.

err_blkno Error block number.

cmdlist An array of SCSI command description strings.

sensep A pointer to a scsi_extended_sense(9S) structure.

asc_list A pointer to a array of asc and ascq message list.The list must be
terminated with -1 asc value.

decode_fru This is a function pointer that will be called after the entire sense
information has been decoded. The parameters will be the scsi_device
structure to identify the device. Second argument will be a pointer to a
buffer of length specified by third argument. The fourth argument will
be the FRU byte. decode_fru may be NULL if no special decoding is
required. decode_fru is expected to return pointer to a char string if
decoding possible and NULL if no decoding is possible.

This function is very similar to scsi_errmsg(9F) but allows decoding of
vendor-unique ASC/ASCQ and FRU information.

scsi_vu_errmsg() interprets the request sense information in the sensep pointer
and generates a standard message that is displayed using scsi_log(9F). It first
searches the list array for a matching vendor unique code if supplied. If it does not
find one in the list then the standard list is searched. The first line of the message is
always a CE_WARN, with the continuation lines being CE_CONT. sensep may be NULL,
in which case no sense key or vendor information is displayed.

The driver should make the determination as to when to call this function based on
the severity of the failure and the severity level that the driver wants to report.

scsi_vu_errmsg(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

Kernel Functions for Drivers 607

The scsi_device(9S) structure denoted by devp supplies the identification of the
device that requested the display. severity selects which string is used in the “Error
Level:” reporting, according to the table below:

Severity Value: String:
SCSI_ERR_ALL All
SCSI_ERR_UNKNOWN Unknown
SCSI_ERR_INFO Information
SCSI_ERR_RECOVERED Recovered
SCSI_ERR_RETRYABLE Retryable

SCSI_ERR_FATAL Fatal

blkno is the block number of the original request that generated the error. err_blkno is
the block number where the error occurred. cmdlist is a mapping table for translating
the SCSI command code in pktp to the actual command string.

The cmdlist is described in the structure below:

struct scsi_key_strings {
int key;
char *message;

};

For a basic SCSI disk, the following list is appropriate:

static struct scsi_key_strings scsi_cmds[] = {
0x00, "test unit ready",
0x01, "rezero/rewind",
0x03, "request sense",
0x04, "format",
0x07, "reassign",
0x08, "read",
0x0a, "write",
0x0b, "seek",
0x12, "inquiry",
0x15, "mode select",
0x16, "reserve",
0x17, "release",
0x18, "copy",
0x1a, "mode sense",
0x1b, "start/stop",
0x1e, "door lock",
0x28, "read(10)",
0x2a, "write(10)",
0x2f, "verify",
0x37, "read defect data",
0x3b, "write buffer",
-1, NULL

};

scsi_vu_errmsg() may be called from user or interrupt context.

EXAMPLE 1 Using scsi_vu_errmsg()

struct scsi_asq_key_strings cd_slist[] = {
0x81, 0, "Logical Unit is inaccessable",

scsi_vu_errmsg(9F)

CONTEXT

EXAMPLES

608 man pages section 9: DDI and DKI Kernel Functions • Last Revised 2 Feb 1998

EXAMPLE 1 Using scsi_vu_errmsg() (Continued)

-1, 0, NULL,
};

scsi_vu_errmsg(devp, pkt, "sd",
SCSI_ERR_INFO, bp->b_blkno, err_blkno,
sd_cmds, rqsense, cd_list,

my_decode_fru);

This generates the following console warning:

WARNING: /sbus@1,f8000000/esp@0,800000/sd@1,0 (sd1):
Error for Command: read Error Level: Informational
Requested Block: 23936 Error Block: 23936
Vendor: XYZ Serial Number: 123456
Sense Key: Unit Attention
ASC: 0x81 (Logical Unit is inaccessable), ASCQ: 0x0

FRU: 0x11 (replace LUN 1, located in slot 1)

cmn_err(9F), scsi_errmsg(9F), scsi_log(9F), scsi_errmsg(9F),
scsi_asc_key_strings(9S), scsi_device(9S), scsi_extended_sense(9S),
scsi_pkt(9S)

Writing Device Drivers

STREAMS Programming Guide

scsi_vu_errmsg(9F)

SEE ALSO

Kernel Functions for Drivers 609

semaphore, sema_init, sema_destroy, sema_p, sema_p_sig, sema_v, sema_tryp –
semaphore functions

#include <sys/ksynch.h>

void sema_init(ksema_t *sp, uint_t val, char *name, ksema_type_t
type, void *arg);

void sema_destroy(ksema_t *sp);

void sema_p(ksema_t *sp);

void sema_v(ksema_t *sp);

int sema_p_sig(ksema_t *sp);

int sema_tryp(ksema_t *sp);

Solaris DDI specific (Solaris DDI).

sp A pointer to a semaphore, type ksema_t.

val Initial value for semaphore.

name Descriptive string. This is obsolete and should be NULL.
(Non-NULL strings are legal, but they are a waste of kernel
memory.)

type Variant type of the semaphore. Currently, only SEMA_DRIVER is
supported.

arg Type-specific argument; should be NULL.

These functions implement counting semaphores as described by Dijkstra. A
semaphore has a value which is atomically decremented by sema_p() and atomically
incremented by sema_v(). The value must always be greater than or equal to zero. If
sema_p() is called and the value is zero, the calling thread is blocked until another
thread performs a sema_v() operation on the semaphore.

Semaphores are initialized by calling sema_init(). The argument, val, gives the
initial value for the semaphore. The semaphore storage is provided by the caller but
more may be dynamically allocated, if necessary, by sema_init(). For this reason,
sema_destroy() should be called before deallocating the storage containing the
semaphore.

sema_p_sig() decrements the semaphore, as does sema_p(). However, if the
semaphore value is zero, sema_p_sig() will return without decrementing the value
if a signal (that is, from kill(2)) is pending for the thread.

sema_tryp() will decrement the semaphore value only if it is greater than zero, and
will not block.

0 sema_tryp() could not decrement the semaphore value because it was
zero.

semaphore(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

610 man pages section 9: DDI and DKI Kernel Functions • Last Revised 7 May 1997

1 sema_p_sig() was not able to decrement the semaphore value and
detected a pending signal.

These functions can be called from user or interrupt context, except for sema_init()
and sema_destroy(), which can be called from user context only. None of these
functions can be called from a high-level interrupt context. In most cases, sema_v()
and sema_p() should not be called from any interrupt context.

If sema_p() is used from interrupt context, lower-priority interrupts will not be
serviced during the wait. This means that if the thread that will eventually perform
the sema_v() becomes blocked on anything that requires the lower-priority interrupt,
the system will hang.

For example, the thread that will perform the sema_v() may need to first allocate
memory. This memory allocation may require waiting for paging I/O to complete,
which may require a lower-priority disk or network interrupt to be serviced. In
general, situations like this are hard to predict, so it is advisable to avoid waiting on
semaphores or condition variables in an interrupt context.

kill(2), condvar(9F), mutex(9F)

Writing Device Drivers

semaphore(9F)

CONTEXT

SEE ALSO

Kernel Functions for Drivers 611

sprintf, snprintf – format characters in memory

#include <sys/ddi.h>

char *sprintf(char *buf, const char *fmt, ...);

size_t snprintf(char *buf, size_t n, const char *fmt, ...);

Solaris DDI specific (Solaris DDI).

buf Pointer to a character string.

fmt Pointer to a character string.

sprintf() builds a string in buf under the control of the format fmt. The format is a
character string with either plain characters, which are simply copied into buf, or
conversion specifications, each of which converts zero or more arguments, again
copied into buf. The results are unpredictable if there are insufficient arguments for the
format; excess arguments are simply ignored. It is the user’s responsibility to ensure
that enough storage is available for buf.

The snprintf() function is identical to sprintf() with the addition of the
argument n, which specifies the size of the buffer referred to by buf. The buffer is
always terminated with the null byte.

Each conversion specification is introduced by the % character, after which the
following appear in sequence:

An optional value specifying a minimum field width for numeric conversion. The
converted value will be right-justified and, if it has fewer characters than the
minimum, is padded with leading spaces unless the field width is an octal value, then
it is padded with leading zeroes.

An optional l (ll) specifying that a following d, D, o, O, x, X, or u conversion
character applies to a long (long long) integer argument. An l (ll) before any
other conversion character is ignored.

A character indicating the type of conversion to be applied:

d,D,o,O,x,X,u
The integer argument is converted to signed decimal (d, D), unsigned octal (o, O),
unsigned hexadecimal (x, X) or unsigned decimal (u), respectively, and copied. The
letters abcdef are used for x conversion. The letters ABCDEF are used for X
conversion.

c
The character value of argument is copied.

b
This conversion uses two additional arguments. The first is an integer, and is
converted according to the base specified in the second argument. The second
argument is a character string in the form <base>[<arg> . . .]. The base
supplies the conversion base for the first argument as a binary value; \10 gives

sprintf(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

Conversion
Specifications

612 man pages section 9: DDI and DKI Kernel Functions • Last Revised 27 Sep 1991

octal, \20 gives hexadecimal. Each subsequent <arg> is a sequence of characters, the
first of which is the bit number to be tested, and subsequent characters, up to the
next bit number or terminating null, supply the name of the bit.

A bit number is a binary-valued character in the range 1-32. For each bit set in the
first argument, and named in the second argument, the bit names are copied,
separated by commas, and bracketed by < and >. Thus, the following function call
would generate reg=3<BitTwo,BitOne>\n in buf.

sprintf(buf, "reg=%b\n", 3, "\10\2BitTwo\1BitOne")

p
The argument is taken to be a pointer; the value of the pointer is displayed in
unsigned hexadecimal. The display format is equivalent to %lx. To avoid lint
warnings, cast pointers to type void * when using the %p format specifier.

s
The argument is taken to be a string (character pointer), and characters from the
string are copied until a null character is encountered. If the character pointer is
NULL, the string <null string> is used in its place.

%
Copy a %; no argument is converted.

sprintf() returns its first argument, buf.

snprintf() returns the number of characters formatted, that is, the number of
characters that would have been written to the buffer if it were large enough. If the
value of n is less than or equal to 0 on a call to snprintf(), the function simply
returns the number of characters formatted.

sprintf() and snprintf() can be called from user or interrupt context.

Writing Device Drivers

sprintf(9F)

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 613

stoi, numtos – convert between an integer and a decimal string

#include <sys/ddi.h>

int stoi(char **str);

void numtos(unsigned long num, char *s);

Solaris DDI specific (Solaris DDI).

str Pointer to a character string to be converted.

num Decimal number to be converted to a character string.

s Character buffer to hold converted decimal number.

stoi() returns the integer value of a string of decimal numeric characters beginning
at **str. No overflow checking is done. *str is updated to point at the last character
examined.

numtos() converts a long into a null-terminated character string. No bounds
checking is done. The caller must ensure there is enough space to hold the result.

stoi() returns the integer value of the string str.

stoi() can be called from user or interrupt context.

Writing Device Drivers

stoi() handles only positive integers; it does not handle leading minus signs.

stoi(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

stoi()

numtos()

RETURN VALUES

CONTEXT

SEE ALSO

NOTES

614 man pages section 9: DDI and DKI Kernel Functions • Last Revised 3 Mar 1994

strchr – find a character in a string

#include <sys/ddi.h>

#include <sys/sunddi.h>

char *strchr(const char *str, int chr);

Solaris DDI specific (Solaris DDI).

str Pointer to a string to be searched.

chr The character to search for.

strchr() returns a pointer to the first occurrence of chr in the string pointed to by
str.

strchr() returns a pointer to a character, or NULL, if the search fails.

This function can be called from user or interrupt context.

strcmp(9F)

Writing Device Drivers

strchr(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 615

strcmp, strcasecmp, strncasecmp, strncmp – compare two null-terminated strings.

#include <sys/ddi.h>

int strcmp(const char *s1, const char *s2);

int strcasecmp(const char *s1, const char *s2);

int strncasecmp(const char *s1, const char *s2, size_t n);

int strncmp(const char *s1, const char *s2, size_t n);

Solaris DDI specific (Solaris DDI).

s1, s2 Pointers to character strings.

n Count of characters to be compared.

strcmp() returns 0 if the strings are the same, or the integer value of the expression
(*s1 - *s2) for the last characters compared if they differ.

The strcasecmp() and strncasecmp() functions are case-insensitive versions of
strcmp() and strncmp(), respectively, described in this section. They assume the
ASCII character set and ignore differences in case when comparing lowercase and
uppercase characters.

strncmp() returns 0 if the first n characters of s1 and s2 are the same, or (*s1 - *s2) for
the last characters compared if they differ.

strcmp() returns 0 if the strings are the same, or (*s1 - *s2) for the last characters
compared if they differ.

strcasecmp() and strncasecmp() return values in the same fashion as strcmp()
and strncmp(), respectively.

strncmp() returns 0 if the first n characters of strings are the same, or (*s1 - *s2) for
the last characters compared if they differ.

These functions can be called from user or interrupt context.

Writing Device Drivers

strcmp(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

strcmp()

strcasecmp(),
strncasecmp()

strncmp()

RETURN VALUES

CONTEXT

SEE ALSO

616 man pages section 9: DDI and DKI Kernel Functions • Last Revised 1 Apr 1994

strcpy, strncpy – copy a string from one location to another.

#include <sys/ddi.h>

char *strcpy(char *dst, char *srs);

char *strncpy(char *dst, char *srs, size_t n);

Solaris DDI specific (Solaris DDI).

dst , srs Pointers to character strings.

n Count of characters to be copied.

strcpy() copies characters in the string srs to dst, terminating at the first null
character in srs, and returns dst to the caller. No bounds checking is done.

strncpy() copies srs to dst, null-padding or truncating at n bytes, and returns dst. No
bounds checking is done.

strcpy() and strncpy() return dst.

strcpy() can be called from user or interrupt context.

Writing Device Drivers

strcpy(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

strcpy()

strncpy()

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 617

strlen – determine the number of non-null bytes in a string

#include <sys/ddi.h>

size_tstrlen(const char *s);

Solaris DDI specific (Solaris DDI).

s Pointer to a character string.

strlen() returns the number of non-null bytes in the string argument s.

strlen() returns the number of non-null bytes in s.

strlen() can be called from user or interrupt context.

Writing Device Drivers

strlen(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

618 man pages section 9: DDI and DKI Kernel Functions • Last Revised 11 Apr 1991

strlog – submit messages to the log driver

#include <sys/stream.h>
#include <sys/strlog.h>

#include <sys/log.h>

int strlog(short mid, short sid, char level, unsigned short flags, char
*fmt, ...););

Architecture independent level 1 (DDI/DKI).

mid Identification number of the module or driver submitting the
message (in the case of a module, its mi_idnum value from
module_info(9S)).

sid Identification number for a particular minor device.

level Tracing level for selective screening of low priority messages.
Larger values imply less important information.

flags Valid flag values are:

SL_ERROR Message is for error logger.

SL_TRACE Message is for trace.

SL_NOTIFY Mail copy of message to system administrator.

SL_CONSOLE Log message to console.

SL_FATAL Error is fatal.

SL_WARN Error is a warning.

SL_NOTE Error is a notice.

fmt printf(3C) style format string. %e, %g, and %G formats are not
allowed but %s is supported.

strlog() expands the printf(3C) style format string passed to it, that is, the
conversion specifiers are replaced by the actual argument values in the format string.
The 32–bit representations of the arguments (up to NLORGARGS) follow the string
starting at the next 32–bit boundary following the string. Note that the 64–bit
argument will be truncated to 32–bits here but will be fully represented in the string.

The messages can be retrieved with the getmsg(2) system call. The flags argument
specifies the type of the message and where it is to be sent. strace(1M) receives
messages from the log driver and sends them to the standard output. strerr(1M)
receives error messages from the log driver and appends them to a file called
/var/adm/streams/error.mm-dd, where mm-dd identifies the date of the error
message.

strlog() returns 0 if it fails to submit the message to the log(7D) driver and 1
otherwise.

strlog(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

Kernel Functions for Drivers 619

strlog() can be called from user or interrupt context.

/var/adm/streams/error.mm-dd
Error messages dated mm-dd appended by strerr(1M) from the log driver

strace(1M), strerr(1M), getmsg(2), log(7D), module_info(9S)

Writing Device Drivers

STREAMS Programming Guide

strlog(9F)

CONTEXT

FILES

SEE ALSO

620 man pages section 9: DDI and DKI Kernel Functions • Last Revised 11 Apr 1991

strqget – get information about a queue or band of the queue

#include <sys/stream.h>

int strqget(queue_t *q, qfields_t what, unsigned char pri, void
*valp);

Architecture independent level 1 (DDI/DKI).

q Pointer to the queue.

what Field of the queue structure for (or the specified priority band) to return
information about. Valid values are one of:

QHIWAT High water mark.

QLOWAT Low water mark.

QMAXPSZ Largest packet accepted.

QMINPSZ Smallest packet accepted.

QCOUNT Approximate size (in bytes) of data.

QFIRST First message.

QLAST Last message.

QFLAG Status.

pri Priority band of interest.

valp The address of where to store the value of the requested field.

strqget() gives drivers and modules a way to get information about a queue or a
particular band of a queue without directly accessing STREAMS data structures, thus
insulating them from changes in the implementation of these data structures from
release to release.

On success, 0 is returned and the value of the requested field is stored in the location
pointed to by valp. An error number is returned on failure.

strqget() can be called from user or interrupt context.

strqset(9F), queue(9S)

Writing Device Drivers

STREAMS Programming Guide

strqget(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 621

strqset – change information about a queue or band of the queue

#include <sys/stream.h>

int strqset(queue_t *q, qfields_t what, unsigned char pri, intptr_t
val);

Architecture independent level 1 (DDI/DKI).

q Pointer to the queue.

what Field of the queue structure (or the specified priority band) to return
information about. Valid values are one of:

QHIWAT High water mark.

QLOWAT Low water mark.

QMAXPSZ Largest packet accepted.

QMINPSZ Smallest packet accepted.

pri Priority band of interest.

val The value for the field to be changed.

strqset() gives drivers and modules a way to change information about a queue or
a particular band of a queue without directly accessing STREAMS data structures.

On success, 0 is returned. EINVAL is returned if an undefined attribute is specified.

strqset() can be called from user or interrupt context.

strqget(9F), queue(9S)

Writing Device Drivers

STREAMS Programming Guide

When lowering existing values, set QMINPSZ before setting QMAXPSZ; when raising
existing values, set QMAXPSZ before setting QMINPSZ.

strqset(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

NOTES

622 man pages section 9: DDI and DKI Kernel Functions • Last Revised 17 Oct 2000

STRUCT_DECL, SIZEOF_PTR, SIZEOF_STRUCT, STRUCT_BUF, STRUCT_FADDR,
STRUCT_FGET, STRUCT_FGETP, STRUCT_FSET, STRUCT_FSETP,
STRUCT_HANDLE, STRUCT_INIT, STRUCT_SIZE, STRUCT_SET_HANDLE – 32–bit
application data access macros

#include <sys/ddi.h>

#include <sys/sunddi.h>

STRUCT_DECL(structname, handle);

STRUCT_HANDLE(structname, handle);

void STRUCT_INIT(handle, model_t umodel);

void STRUCT_SET_HANDLE(handle, model_t umodel, void *addr);

STRUCT_FGET(handle, field);

STRUCT_FGETP(handle, field);

STRUCT_FSET(handle, field, val);

STRUCT_FSETP(handle, field, val);

<typeof field> *STRUCT_FADDR(handle, field);

struct structname *STRUCT_BUF(handle);

size_t SIZEOF_STRUCT(structname, umodel);

size_t SIZEOF_PTR(umodel);

size_t STRUCT_SIZE(handle);

Solaris DDI specific (Solaris DDI).

The macros take the following parameters:

structname The structure name (as would appear after the C
keyword “struct”) of the native form.

umodel A bit field containing either ILP32 model bit
(DATAMODEL_ILP32), or the LP64 model get
(DATAMODEL_ILP64). In an ioctl(9E), these bits will
be present in the flag parameter; in a devmap(9E), they
will be present in the model parameter mmap(9E) and
can call ddi_mmap_get_model(9F) to get the data
model of the current thread.

handle The variable name used to refer to a particular instance
of a structure which is handled by these macros.

field The field name within the structure contain
substructures. If the structures contain substructures,
unions, or arrays, then field can be whether complex
expression could occur after the first “.” or “->”.

STRUCT_DECL(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

Kernel Functions for Drivers 623

The above macros allow a device driver to access data consumed from a 32-bit
application regardless whether the driver was compiled to the ILP32 or LP64 data
model. These macros effectively hide the difference between the data model of the user
application and the driver.

The macros can be broken up into two main categories, the macros that declare and
initialize structure handles and the macros that operate on these structures using the
structure handles.

The macros STRUCT_DECL() and STRUCT_HANDLE() declare structure handles on
the stack, whereas the macros STRUCT_INIT() and STRUCT_SET_HANDLE()
initialize the structure handles to point to an instance of the native form structure.

The macros STRUCT_HANDLE() and STRUCT_SET_HANDLE() are used to declare
and initialize a structure handle to an existing data structure, for example, ioctls
within a STREAMS module.

The macros STRUCT_DECL() and STRUCT_INIT(), on the other hand, are used in
modules which declare and initialize a structure handle to a data structure allocated
by STRUCT_DECL(), that is, any standard character or block device driver ioctl(9E)
routine that needs to copy in data from a user-mode program.

STRUCT_DECL(structname, handle)
Declares a “structure handle” for a “struct” and allocates an instance of its native
form on the stack. It is assumed that the native form is larger than or equal to the
ILP32 form. handle is a variable name and is declared as a variable by this macro.

void STRUCT_INIT(handle, model_t umodel)
Initializes handle to point to the instance allocated by STRUCT_DECL(), it also sets
data model for handle to umodel, and must be called before any access is made
through the macros that operate on these structures. When used in an ioctl(9E)
routine umodel is the flag parameter; in adevmap(9E) routine umodel is the model
parameter and in a mmap(9E) routine, is the return value of
ddi_mmap_get_model(9F). This macro is intended for handles created with
STRUCT_DECL() only.

STRUCT_HANDLE(structname, handle)
Declares a “structure handle” handle but unlike STRUCT_DECL() does not allocate
an instance of "struct ".

void STRUCT_SET_HANDLE(handle, model_t umodel, void *addr)
Initializes to point to the native form instance at addr, it also sets the data model for
handle to umodel. This is intended for handles created with STRUCT_HANDLE().
Fields cannot be referenced via the handle until this macro has been invoked.
Typically, addr is the address of the native form structure containing the user-mode
programs data. When used in an ioctl(9E) umodel is the flag parameter, in a
devmap(9E) routine is the model parameter and in a mmap(9E) routine, umodel is the
return value of ddi_mmap_get_model(9F).

STRUCT_DECL(9F)

DESCRIPTION

Declaration and
Initialization

Macros

624 man pages section 9: DDI and DKI Kernel Functions • Last Revised 23 Feb 1998

size_t STRUCT_SIZE(handle)
Returns size of the structure referred to by handle. It will return the size depending
upon the data model associated with handle. If the data model stored by
STRUCT_INIT() or STRUCT_SET_HANDLE() was DATAMODEL_ILP32, it will
return the size of the ILP32 form, else it will return the size of the native form.

STRUCT_FGET(handle, field)
Returns the contents of field in the structure described by handle according to the
data model associated with handle.

STRUCT_FGETP(handle, field)
This is the same as STRUCT_FGET() except that the field in question is a pointer of
some kind. This macro will cast caddr32_t to a (void *) when it is accessed. Failure
to use this macro for a pointer will lead to compiler warnings or failures.

STRUCT_FSET(handle, field, val)
Assigns val to the (non pointer) in the structure handle described by . It should not
be used within any other expression, but rather only as a statement.

STRUCT_FSETP(handle, field, val)
Returns a pointer to the in the structure described by handle.

struct structname *STRUCT_BUF(handle)
Returns a pointer to the native mode instance of the structure described by handle.

size_t SIZEOF_STRUCT(structname, umodel)
Returns size of structname based on umodel.

size_t SIZEOF_PTR(umodel)
Returns the size of a pointer based on umodel.

EXAMPLE 1 Copying a Structure

The following example uses an ioctl(9E) on a regular character device that copies a
data structure that looks like this into the kernel:

struct opdata {
size_t size;
uint_t flag;

};

EXAMPLE 2 Defining a Structure

This data structure definition describes what the ioctl(9E) would look like in a 32-bit
application using fixed width types.

#if defined(_MULTI_DATAMODEL)
struct opdata32 {

size32_t size;
uint32_t flag;

};

#endif

STRUCT_DECL(9F)

Operation Macros

Macros Not Using
Handles

EXAMPLES

Kernel Functions for Drivers 625

EXAMPLE 3 Using STRUCT_DECL() and STRUCT_INIT()

Note: This example uses the STRUCT_DECL() and STRUCT_INIT() macros to
declare and initialize the structure handle.

int
xxioctl(dev_t dev, int cmd, intptr_t arg, int mode,

cred_t *cr, int *rval_p);
{

STRUCT_DECL(opdata, op);

if (cmd != OPONE)
return (ENOTTY);

STRUCT_INIT(op, mode);

if (copyin((void *)data,
STRUCT_BUF(op), STRUCT_SIZE(op)))
return (EFAULT);

if (STRUCT_FGET(op, flag) != FACTIVE ||
STRUCT_FGET(op, size) > sizeof (device_state))
return (EINVAL);

xxdowork(device_state, STRUCT_FGET(op, size));
return (0);

}

This piece of code is an excerpt from a STREAMS module that handles ioctl(9E)
data (M_IOCDATA) messages and uses the data structure defined above. This code
has been written to run in the ILP32 environment only.

EXAMPLE 4 Using STRUCT_HANDLE() and STRUCT_SET_HANDLE()

The next example illustrates the use of the STRUCT_HANDLE() and
STRUCT_SET_HANDLE() macros which declare and initialize the structure handle to
point to an already existing instance of the structure.

The above code example can be converted to run in the LP64 environment using the
STRUCT_HANDLE() and STRUCT_SET_HANDLE() as follows:

struct strbuf {
int maxlen; /* no. of bytes in buffer */
int len; /* no. of bytes returned */
caddr_t buf; /* pointer to data */

};

static void
wput_iocdata(queue_t *q, mblk_t *msgp)
{

mblk_t *data; /* message block descriptor */
STRUCT_HANDLE(strbuf, sb);

/* copyin the data */
if (mi_copy_state(q, mp, &data) == -1) {

return;
}

STRUCT_DECL(9F)

626 man pages section 9: DDI and DKI Kernel Functions • Last Revised 23 Feb 1998

EXAMPLE 4 Using STRUCT_HANDLE() and STRUCT_SET_HANDLE() (Continued)

STRUCT_SET_HANDLE(sb,((struct iocblk *)msgp->b_rptr)->ioc_flag,
(void *)data->b_rptr);

if (STRUCT_FGET(sb, maxlen) < (int)sizeof (ipa_t)) {
mi_copy_done(q, msgp, EINVAL);

return;
}

}

devmap(9E), ioctl(9E), mmap(9E),ddi_mmap_get_model(9F)

Writing Device Drivers

STREAMS Programming Guide

STRUCT_DECL(9F)

SEE ALSO

Kernel Functions for Drivers 627

swab – swap bytes in 16-bit halfwords

#include <sys/sunddi.h>

void swab(void *src, void *dst, size_t nbytes);

Architecture independent level 1 (DDI/DKI).

src A pointer to the buffer containing the bytes to be swapped.

dst A pointer to the destination buffer where the swapped bytes will be
written. If dst is the same as src the buffer will be swapped in place.

nbytes Number of bytes to be swapped, rounded down to the nearest half-word.

swab() copies the bytes in the buffer pointed to by src to the buffer pointer to by dst,
swapping the order of adjacent bytes in half-word pairs as the copy proceeds. A total
of nbytes bytes are copied, rounded down to the nearest half-word.

swab() can be called from user or interrupt context.

Writing Device Drivers

Since swab() operates byte-by-byte, it can be used on non-aligned buffers.

swab(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

CONTEXT

SEE ALSO

NOTES

628 man pages section 9: DDI and DKI Kernel Functions • Last Revised 1 Feb 1991

testb – check for an available buffer

#include <sys/stream.h>

int testb(size_t size, uint_t pri);

Architecture independent level 1 (DDI/DKI).

size Size of the requested buffer.

pri Priority of the allocb request.

testb() checks to see if an allocb(9F) call is likely to succeed if a buffer of size
bytes at priority pri is requested. Even if testb() returns successfully, the call to
allocb(9F) can fail. The pri argument is no longer used, but is retained for
compatibility.

Returns 1 if a buffer of the requested size is available, and 0 if one is not.

testb() can be called from user or interrupt context.

EXAMPLE 1 testb() example

In a service routine, if copymsg(9F) fails (line 6), the message is put back on the queue
(line 7) and a routine, tryagain, is scheduled to be run in one tenth of a second. Then
the service routine returns.

When the timeout(9F) function runs, if there is no message on the front of the queue,
it just returns. Otherwise, for each message block in the first message, check to see if
an allocation would succeed. If the number of message blocks equals the number we
can allocate, then enable the service procedure. Otherwise, reschedule tryagain to
run again in another tenth of a second. Note that tryagain is merely an
approximation. Its accounting may be faulty. Consider the case of a message
comprised of two 1024-byte message blocks. If there is only one free 1024-byte
message block and no free 2048-byte message blocks, then testb() will still succeed
twice. If no message blocks are freed of these sizes before the service procedure runs
again, then the copymsg(9F) will still fail. The reason testb() is used here is because
it is significantly faster than calling copymsg. We must minimize the amount of time
spent in a timeout() routine.

1 xxxsrv(q)
2 queue_t *q;
3 {
4 mblk_t *mp;
5 mblk_t *nmp;

. . .
6 if ((nmp = copymsg(mp)) == NULL) {
7 putbq(q, mp);
8 timeout(tryagain, (intptr_t)q, drv_usectohz(100000));
9 return;
10 }

. . .
11 }

testb(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

EXAMPLES

Kernel Functions for Drivers 629

EXAMPLE 1 testb() example (Continued)

12
13 tryagain(q)
14 queue_t *q;
15 {
16 register int can_alloc = 0;
17 register int num_blks = 0;
18 register mblk_t *mp;
19
20 if (!q->q_first)
21 return;
22 for (mp = q->q_first; mp; mp = mp->b_cont) {
23 num_blks++;
24 can_alloc += testb((mp->b_datap->db_lim -
25 mp->b_datap->db_base), BPRI_MED);
26 }
27 if (num_blks == can_alloc)
28 qenable(q);
29 else
30 timeout(tryagain, (intptr_t)q, drv_usectohz(100000));
31 }

allocb(9F), bufcall(9F), copymsg(9F), timeout(9F)

Writing Device Drivers

STREAMS Programming Guide

The pri argument is provided for compatibility only. Its value is ignored.

testb(9F)

SEE ALSO

NOTES

630 man pages section 9: DDI and DKI Kernel Functions • Last Revised 11 Nov 1996

timeout – execute a function after a specified length of time

#include <sys/types.h>

#include <sys/conf.h>

timeout_id_t timeout(void (* func)(void *), void *arg, clock_t ticks);

Architecture independent level 1 (DDI/DKI).

func Kernel function to invoke when the time increment expires.

arg Argument to the function.

ticks Number of clock ticks to wait before the function is called. Use
drv_usectohz(9F) to convert microseconds to clock ticks.

The timeout() function schedules the specified function to be called after a specified
time interval. The exact time interval over which the timeout takes effect cannot be
guaranteed, but the value given is a close approximation.

The function called by timeout() must adhere to the same restrictions as a driver
soft interrupt handler.

The function called by timeout() is run in interrupt context and must not sleep or
call other functions that might sleep.

The delay(9F) function calls timeout(). Because timeout() is subject to priority
inversion, drivers waiting on behalf of processes with real-time constraints should use
cv_timedwait(9F) rather than delay().

timeout() returns an opaque non-zero timeout identifier that can be passed to
untimeout(9F) to cancel the request.

timeout() can be called from user or interrupt context.

EXAMPLE 1 Using timeout()

In the following example, the device driver has issued an IO request and is waiting for
the device to respond. If the device does not respond within 5 seconds, the device
driver will print out an error message to the console.

static void
xxtimeout_handler(void *arg)
{

struct xxstate *xsp = (struct xxstate *)arg;
mutex_enter(&xsp->lock);
cv_signal(&xsp->cv);
xsp->flags |= TIMED_OUT;
mutex_exit(&xsp->lock);
xsp->timeout_id = 0;

}
static uint_t
xxintr(caddr_t arg)
{

timeout(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

EXAMPLES

Kernel Functions for Drivers 631

EXAMPLE 1 Using timeout() (Continued)

struct xxstate *xsp = (struct xxstate *)arg;
.
.
.
mutex_enter(&xsp->lock);
/* Service interrupt */
cv_signal(&xsp->cv);
mutex_exit(&xsp->lock);
if (xsp->timeout_id != 0) {

(void) untimeout(xsp->timeout_id);
xsp->timeout_id = 0;

}
return(DDI_INTR_CLAIMED);

}
static void
xxcheckcond(struct xxstate *xsp)
{

.

.

.
xsp->timeout_id = timeout(xxtimeout_handler,

xsp, (5 * drv_usectohz(1000000)));
mutex_enter(&xsp->lock);
while (/* Waiting for interrupt or timeout*/)

cv_wait(&xsp->cv, &xsp->lock);
if (xsp->flags & TIMED_OUT)

cmn_err(CE_WARN, "Device not responding");
.
.
.
mutex_exit(&xsp->lock);
.
.
.

}

bufcall(9F), cv_timedwait(9F), ddi_in_panic(9F), delay(9F),
drv_usectohz(9F), untimeout(9F)

Writing Device Drivers

timeout(9F)

SEE ALSO

632 man pages section 9: DDI and DKI Kernel Functions • Last Revised 15 Oct 2001

uiomove – copy kernel data using uio structure

#include <sys/types.h>

#include <sys/uio.h>

int uiomove(caddr_t address, size_t nbytes, enum uio_rw rwflag, uio_t
*uio_p);

Architecture independent level 1 (DDI/DKI).

address Source/destination kernel address of the copy.

nbytes Number of bytes to copy.

rwflag Flag indicating read or write operation. Possible values are
UIO_READ and UIO_WRITE.

uio_p Pointer to the uio structure for the copy.

The uiomove() function copies nbytes of data to or from the space defined by the uio
structure (described in uio(9S)) and the driver.

The uio_segflg member of the uio(9S) structure determines the type of space to or
from which the transfer is being made. If it is set to UIO_SYSSPACE, the data transfer
is between addresses in the kernel. If it is set to UIO_USERSPACE, the transfer is
between a user program and kernel space.

rwflag indicates the direction of the transfer. If UIO_READ is set, the data will be
transferred from address to the buffer(s) described by uio_p. If UIO_WRITE is set, the
data will be transferred from the buffer(s) described by uio_p to address.

In addition to moving the data, uiomove() adds the number of bytes moved to the
iov_base member of the iovec(9S) structure, decreases the iov_len member,
increases the uio_offset member of the uio(9S) structure, and decreases the
uio_resid member.

This function automatically handles page faults. nbytes does not have to be
word-aligned.

uiomove() returns 0 upon success or EFAULT on failure.

User context only, if uio_segflg is set to UIO_USERSPACE. User or interrupt
context, if uio_segflg is set to UIO_SYSSPACE.

ureadc(9F), uwritec(9F), iovec(9S), uio(9S)

Writing Device Drivers

If uio_segflg is set to UIO_SYSSPACE and address is selected from user space, the
system may panic.

uiomove(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

WARNINGS

Kernel Functions for Drivers 633

unbufcall – cancel a pending bufcall request

#include <sys/stream.h>

void unbufcall(bufcall_id_t id);

Architecture independent level 1 (DDI/DKI).

id Identifier returned from bufcall(9F) or esbbcall(9F) .

unbufcall cancels a pending bufcall() or esbbcall() request. The argument id
is a non-zero identifier for the request to be cancelled. id is returned from the
bufcall() or esbbcall() function used to issue the request. unbufcall() will
not return until the pending callback is cancelled or has run. Because of this, locks
acquired by the callback routine should not be held across the call to unbufcall() or
deadlock may result.

None.

unbufcall() can be called from user or interrupt context.

bufcall(9F), esbbcall(9F)

Writing Device Drivers

STREAMS Programming Guide

unbufcall(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

634 man pages section 9: DDI and DKI Kernel Functions • Last Revised 18 Feb 1998

unlinkb – remove a message block from the head of a message

#include <sys/stream.h>

mblk_t *unlinkb(mblk_t *mp);

Architecture independent level 1 (DDI/DKI).

mp Pointer to the message.

unlinkb() removes the first message block from the message pointed to by mp. A
new message, minus the removed message block, is returned.

If successful, unlinkb() returns a pointer to the message with the first message block
removed. If there is only one message block in the message, NULL is returned.

unlinkb() can be called from user or interrupt context.

EXAMPLE 1 unlinkb() example

The routine expects to get passed an M_PROTO T_DATA_IND message. It will remove
and free the M_PROTO header and return the remaining M_DATA portion of the
message.

1 mblk_t *
2 makedata(mp)
3 mblk_t *mp;
4 {
5 mblk_t *nmp;
6
7 nmp = unlinkb(mp);
8 freeb(mp);
9 return(nmp);
10 }

linkb(9F)

Writing Device Drivers

STREAMS Programming Guide

unlinkb(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

EXAMPLES

SEE ALSO

Kernel Functions for Drivers 635

untimeout – cancel previous timeout function call

#include <sys/types.h>

#include <sys/conf.h>

clock_t untimeout(timeout_id_t id);

Architecture independent level 1 (DDI/DKI).

id Opaque timeout ID from a previous timeout(9F) call.

untimeout() cancels a pending timeout(9F) request. untimeout() will not return
until the pending callback is cancelled or has run. Because of this, locks acquired by
the callback routine should not be held across the call to untimeout() or a deadlock
may result.

Since no mutex should be held across the call to untimeout(), there is a race
condition between the occurrence of an expected event and the execution of the
timeout handler. In particular, it should be noted that no problems will result from
calling untimeout() for a timeout which is either running on another CPU, or has
already completed. Drivers should be structured with the understanding that the
arrival of both an interrupt and a timeout for that interrupt can occasionally occur, in
either order.

untimeout() returns -1 if the id is not found. Otherwise, it returns an integer value
greater than or equal to 0.

untimeout() can be called from user or interrupt context.

EXAMPLE 1

In the following example, the device driver has issued an IO request and is waiting for
the device to respond. If the device does not respond within 5 seconds, the device
driver will print out an error message to the console.

static void
xxtimeout_handler(void *arg)
{

struct xxstate *xsp = (struct xxstate *)arg;
mutex_enter(&xsp->lock);
cv_signal(&xsp->cv);
xsp->flags |= TIMED_OUT;
mutex_exit(&xsp->lock);
xsp->timeout_id = 0;

}
static uint_t
xxintr(caddr_t arg)
{

struct xxstate *xsp = (struct xxstate *)arg;
.
.
.
mutex_enter(&xsp->lock);
/* Service interrupt */

untimeout(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

EXAMPLES

636 man pages section 9: DDI and DKI Kernel Functions • Last Revised 18 Feb 1998

EXAMPLE 1 (Continued)

cv_signal(&xsp->cv);
mutex_exit(&xsp->lock);
if (xsp->timeout_id != 0) {

(void) untimeout(xsp->timeout_id);
xsp->timeout_id = 0;

}
return(DDI_INTR_CLAIMED);

}
static void
xxcheckcond(struct xxstate *xsp)
{

.

.

.
xsp->timeout_id = timeout(xxtimeout_handler,

xsp, (5 * drv_usectohz(1000000)));
mutex_enter(&xsp->lock);
while (/* Waiting for interrupt or timeout*/)

cv_wait(&xsp->cv, &xsp->lock);
if (xsp->flags & TIMED_OUT)

cmn_err(CE_WARN, "Device not responding");
.
.
.
mutex_exit(&xsp->lock);
.
.
.

}

open(9E), cv_signal(9F), cv_wait_sig(9F), delay(9F), timeout(9F)

Writing Device Drivers

untimeout(9F)

SEE ALSO

Kernel Functions for Drivers 637

ureadc – add character to a uio structure

#include <sys/uio.h>

#include <sys/types.h>

int ureadc(int c, uio_t *uio_p);

Architecture independent level 1 (DDI/DKI).

c The character added to the uio(9S) structure.

uio_p Pointer to the uio(9S) structure.

ureadc() transfers the character c into the address space of the uio(9S) structure
pointed to by uio_p, and updates the uio structure as for uiomove(9F).

0 is returned on success and EFAULT on failure.

ureadc() can be called from user or interrupt context.

uiomove(9F), uwritec(9F), iovec(9S), uio(9S)

Writing Device Drivers

ureadc(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

638 man pages section 9: DDI and DKI Kernel Functions • Last Revised 11 Apr 1991

uwritec – remove a character from a uio structure

#include <sys/uio.h>

int uwritec(uio_t *uio_p);

Architecture independent level 1 (DDI/DKI)

uio_p Pointer to the uio(9S) structure

uwritec() returns a character from the uio structure pointed to by uio_p and
updates the uio structure. See uiomove(9F).

The next character for processing is returned on success, and -1 is returned if uio is
empty or if there is an error.

uwritec() can be called from user or interrupt context.

uiomove(9F), ureadc(9F), iovec(9S), uio(9S)

Writing Device Drivers

uwritec(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

SEE ALSO

Kernel Functions for Drivers 639

va_arg, va_start, va_copy, va_end – handle variable argument list

#include <sys/varargs.h>

void va_start(va_list pvar, void parmN);

(type *)

va_arg(va_list pvar, type);

void va_copy(va_list dest, va_list src);

void va_end(va_list pvar);

Solaris DDI specific (Solaris DDI).

pvar Pointer to variable argument list.

name Identifier of rightmost parameter in the function definition.

pvar Pointer to variable argument list.

type Type name of the next argument to be returned.

dest Destination variable argument list.

src Source variable argument list.

pvar Pointer to variable argument list.

This set of macros allows portable procedures that accept variable argument lists to be
written. Routines that have variable argument lists but do not use the varargs()
macros are inherently non-portable, as different machines use different
argument-passing conventions. Routines that accept a variable argument list can use
these macros to traverse the list.

va_list is the type defined for the variable used to traverse the list of arguments.

va_start() is called to initialize pvar to the beginning of the variable argument list.
va_start() must be invoked before any access to the unnamed arguments. The
parameter name is the identifier of the rightmost parameter in the variable parameter
list in the function definition (the one just before the “, . . . ”). If this parameter is
declared with the register storage class or with a function or array type, or with a
type that is not compatible with the type that results after application of the default
argument promotions, the behavior is undefined.

va_arg() expands to an expression that has the type and value of the next argument
in the call. The parameter pvar must be initialized by va_start(). Each invocation of
va_arg() modifies pvar so that the values of successive arguments are returned in
turn. The parameter type is the type name of the next argument to be returned. The
type name must be specified in such a way that the type of pointer to an object that

va_arg(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

va_start()

va_arg()

va_copy()

va_end()

DESCRIPTION

640 man pages section 9: DDI and DKI Kernel Functions • Last Revised 21 Feb 1996

has the specified type can be obtained by postfixing a * to type. If there is no actual
next argument, or iftype is not compatible with the type of the actual next argument
(as promoted according to the default argument promotions), the behavior is
undefined.

The va_copy() macro saves the state represented by the va_list src in the
va_list dest. The va_list passed as dest should not be initialized by a previous call
to va_start() It then must be passed to va_end() before being reused as a
parameter to va_start() or as the dest parameter of a subsequent call to
va_copy(). The behavior is undefined if any of these restrictions are not met.

The va_end() macro is used to clean up. It invalidates pvar for use (unless
va_start() is invoked again).

Multiple traversals, each bracketed by a call to va_start() and va_end(), are
possible.

EXAMPLE 1 Creating a Variable Length Command

The following example uses these routines to create a variable length command. This
might be useful for a device that provides for a variable-length command set.
ncmdbytes is the number of bytes in the command. The new command is written to
cmdp.

static void
xx_write_cmd(uchar_t *cmdp, int ncmdbytes, ...)
{

va_list ap;
int i;

/*
* Write variable-length command to destination

*/
va_start(ap, ncmdbytes);
for (i = 0; i < ncmdbytes; i++) {

*cmdp++ = va_arg(ap, uchar_t);
}

va_end(ap);
}

vcmn_err(9F), vsprintf(9F)

It is up to the calling routine to specify in some manner how many arguments there
are, since it is not always possible to determine the number of arguments from the
stack frame.

Specifying a second argument of char or short to va_arg makes your code
non-portable, because arguments seen by the called function are not char or short.
C converts char and short arguments to int before passing them to a function.

va_arg(9F)

EXAMPLES

SEE ALSO

NOTES

Kernel Functions for Drivers 641

vsprintf – format characters in memory

#include <sys/varargs.h>
#include <sys/ddi.h>

#include <sys/sunddi.h>

char *vsprintf(char *buf, const char *fmt, va_list ap);

Solaris DDI specific (Solaris DDI).

buf Pointer to a character string.

fmt Pointer to a character string.

ap Pointer to a variable argument list.

vsprintf() builds a string in buf under the control of the format fmt. The format is a
character string with either plain characters, which are simply copied into buf, or
conversion specifications, each of which converts zero or more arguments, again
copied into buf. The results are unpredictable if there are insufficient arguments for the
format; excess arguments are simply ignored. It is the user’s responsibility to ensure
that enough storage is available for buf.

ap contains the list of arguments used by the conversion specifications in fmt. ap is a
variable argument list and must be initialized by calling va_start(9F). va_end(9F) is
used to clean up and must be called after each traversal of the list. Multiple traversals
of the argument list, each bracketed by va_start(9F) and va_end(9F), are possible.

Each conversion specification is introduced by the % character, after which the
following appear in sequence:

An optional decimal digit specifying a minimum field width for numeric conversion.
The converted value will be right-justified and padded with leading zeroes if it has
fewer characters than the minimum.

An optional l (ll) specifying that a following d, D, o, O, x, X, or u conversion
character applies to a long (long long) integer argument. An l (ll) before any
other conversion character is ignored.

A character indicating the type of conversion to be applied:

d,D,o,O,x,X,u
The integer argument is converted to signed decimal (d, D), unsigned octal (o, O),
unsigned hexadecimal (x, X) or unsigned decimal (u), respectively, and copied. The
letters abcdef are used for x conversion. The letters ABCDEF are used for X
conversion.

c
The character value of the argument is copied.

b
This conversion uses two additional arguments. The first is an integer, and is
converted according to the base specified in the second argument. The second

vsprintf(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

642 man pages section 9: DDI and DKI Kernel Functions • Last Revised 6 May 1996

argument is a character string in the form <base>[<arg> . . .]. The base
supplies the conversion base for the first argument as a binary value; \10 gives
octal, \20 gives hexadecimal. Each subsequent <arg> is a sequence of characters,
the first of which is the bit number to be tested, and subsequent characters, up to
the next bit number or terminating null, supply the name of the bit.

A bit number is a binary-valued character in the range 1-32. For each bit set in the
first argument, and named in the second argument, the bit names are copied,
separated by commas, and bracketed by < and >. Thus, the following function call
would generate reg=3<BitTwo,BitOne>\n in buf.

vsprintf(buf, "reg=%b\n", 3, "\10\2BitTwo\1BitOne")

s
The argument is taken to be a string (character pointer), and characters from the
string are copied until a null character is encountered. If the character pointer is
NULL on SPARC, the string <nullstring> is used in its place; on IA, it is
undefined.

%
Copy a %; no argument is converted.

vsprintf() returns its first parameter, buf.

vsprintf() can be called from user, kernel, or interrupt context.

EXAMPLE 1 Using vsprintf()

In this example, xxerror() accepts a pointer to a dev_info_t structure dip, an
error level level, a format fmt, and a variable number of arguments. The routine
uses vsprintf() to format the error message in buf. Note that va_start(9F) and
va_end(9F) bracket the call to vsprintf(). instance, level, name, and buf are
then passed to cmn_err(9F).

#include <sys/varargs.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#define MAX_MSG 256

void
xxerror(dev_info_t *dip, int level, const char *fmt, . . .)
{

va_list ap;
int instance;
char buf[MAX_MSG],

*name;

instance = ddi_get_instance(dip);
name = ddi_binding_name(dip);

/* format buf using fmt and arguments contained in ap */
va_start(ap, fmt);
vsprintf(buf, fmt, ap);
va_end(ap);

vsprintf(9F)

RETURN VALUES

CONTEXT

EXAMPLES

Kernel Functions for Drivers 643

EXAMPLE 1 Using vsprintf() (Continued)

/* pass formatted string to cmn_err(9F) */
cmn_err(level, "%s%d: %s", name, instance, buf);

}

cmn_err(9F), ddi_binding_name(9F), ddi_get_instance(9F), va_arg(9F)

Writing Device Drivers

vsprintf(9F)

SEE ALSO

644 man pages section 9: DDI and DKI Kernel Functions • Last Revised 6 May 1996

WR, wr – get pointer to the write queue for this module or driver

#include <sys/stream.h>

#include <sys/ddi.h>

queue_t *WR(queue_t *q);

Architecture independent level 1 (DDI/DKI).

q Pointer to the read queue whose write queue is to be returned.

The WR() function accepts a read queue pointer as an argument and returns a pointer
to the write queue of the same module.

CAUTION: Make sure the argument to this function is a pointer to a read queue. WR()
will not check for queue type, and a system panic could result if the pointer is not to a
read queue.

The pointer to the write queue.

WR() can be called from user or interrupt context.

EXAMPLE 1 Using WR()

In a STREAMS close(9E) routine, the driver or module is passed a pointer to the read
queue. These usually are set to the address of the module-specific data structure for
the minor device.

1 xxxclose(q, flag)
2 queue_t *q;
3 int flag;
4 {
5 q->q_ptr = NULL;
6 WR(q)->q_ptr = NULL;

. . .
7 }

close(9E), OTHERQ(9F), RD(9F)

Writing Device Drivers

STREAMS Programming Guide

WR(9F)

NAME

SYNOPSIS

INTERFACE
LEVEL

PARAMETERS

DESCRIPTION

RETURN VALUES

CONTEXT

EXAMPLES

SEE ALSO

Kernel Functions for Drivers 645

WR(9F)

646 man pages section 9: DDI and DKI Kernel Functions • Last Revised 15 Nov 1991

Index

Numbers and Symbols
32-bit driver ID management routines —

id32_alloc, 450
32-bit driver ID management routines —

id32_free, 450
32-bit driver ID management routines —

id32_lookup, 450

A
activate a new DMA window —

ddi_dma_getwin, 271
add a fully initialized kstat to the system —

kstat_install, 460
add a soft interrupt

— ddi_add_softintr, 213
add an interrupt handler

— ddi_add_intr, 209
address

return mapped virtual address —
csx_GetMappedAddr, 110

adjmsg — trim bytes from a message, 40
Device power cycle advisory check –

pm_trans_check, 517
allocate and free a scsi_pkt structure —

scsi_hba_pkt_alloc, 581
allocate and free transport structures —

scsi_hba_tran_alloc, 584
allocate and free a scsi_pkt structure —

scsi_hba_pkt_alloc
scsi_hba_pkt_free, 581

allocate and free transport structures —
scsi_hba_tran_alloc
scsi_hba_tran_free, 584

allocate and free non-sequentially accessed
memory
— ddi_iopb_alloc, 315
— ddi_iopb_free, 315

allocate DMA handle —
ddi_dma_alloc_handle, 253

allocate kernel memory
— ddi_umem_alloc, 395
— ddi_umem_free, 395
— ddi_umem_zalloc, 395
— kmem_alloc, 455
— kmem_free, 455
— kmem_zalloc, 455

allocate memory for DMA transfer —
ddi_dma_mem_alloc, 275

allocate space — rmalloc, 548
allocate space from a resource map —

rmalloc_wait, 552
allow 64 bit transfers on SBus —

ddi_dma_set_sbus64, 288
anocancel — prevent cancellation of

asynchronous I/O request, 44
aphysio — perform asynchronous physical

I/O, 45
assert — expression verification, 47
asynchronous physical I/O — aphysio, 45
asynchronous STREAMS perimeter upgrade —

qwriter, 546

647

B
bcopy — copy data between address locations

in kernel, 51
binds a system buffer to a DMA handle —

ddi_dma_buf_bind_handle, 256
binds an address to a DMA handle —

ddi_dma_addr_bind_handle, 249
bioclone — clone another buffer, 53
bioerror — indicate error in buffer header, 58
biofini — uninitialize a buffer structure, 59
bioinit — initialize a buffer structure, 60
biomodified — check if a buffer is modified, 61
bioreset — reuse a private buffer header after

I/O is complete, 62
biosize — returns size of a buffer structure, 63
bufcall — call a function when a buffer becomes

available, 69, 634
bufcall

call a function when a buffer becomes
available, 69

buffer header
indicate error — bioerror, 58
reuse a private buffer header after I/O is

complete — bioreset, 62
busy-wait for specified interval —

drv_usecwait, 422
byte streams

compare two — bcmp, 50
bytes, size

convert size in pages — ptob, 522
convert to size in memory pages (round

down) — btop, 67
convert to size in memory pages (round up)

— btopr, 68

C
call a function when a buffer becomes available

— qbufcall, 535
call a function when a buffer becomes available

bufcall, 69
call a STREAMS put procedure — put, 525
cancel a pending qbufcall request —

qunbufcall, 542
cancel previous timeout function call —

quntimeout, 543

cancellation of asynchronous I/O —
anocancel, 44

character strings
compare two null terminated strings —

strcmp, strncmp, 616
convert between an integer and a decimal

string — stoi, numtos, 614
copy a string from one location to another —

strcpy, strncpy, 617
determine the number of non-null bytes in a

string — strlen, 618
find a character in a string — strchr, 615
format in memory — sprintf, 612

check data access and DMA handles, 221
check device state, 301
check for an available buffer — testb, 629
check for the existence of a property —

ddi_prop_exists, 356
check if a buffer is modified — biomodified, 61
CIS tuple

first tuple — csx_GetFirstTuple, 107
next tuple — csx_GetNextTuple, 107

clear client event mask —
csx_ReleaseSocketMask, 196

client
register client — csx_RegisterClient, 175

client event mask
return client event mask —

csx_GetEventMask, 204
set client event mask —

csx_SetEventMask, 204
client return

— csx_GetFirstClient, 105
— csx_GetNextClient, 105

clone another buffer — bioclone, 53
condition variable routines, driver

— condvar, 81
— cv_broadcast, 81
— cv_init, 81
— cv_signal, 81
— cv_timedwait, 81
— cv_timedwait_sig, 81
— cv_wait, 81
— cv_wait_sig, 81

configure PC Card and socket —
csx_RequestConfiguration, 184

control driver notification of user accesses —
ddi_mapdev_intercept, 328

648 man pages section 9: DDI and DKI Kernel Functions • May 2002

condition variable routines, driver (continued)
ddi_mapdev_nointercept, 328

control device components’ availability for
Power Management
— pm_busy_component, 507
— pm_idle_component, 507

control the validation of memory address
translations
— devmap_load, 414
— devmap_unload, 414

convert a DMA segment to a DMA address
cookie — ddi_dma_segtocookie, 286

convert clock ticks to microseconds —
drv_hztousec, 419

convert device sizes — csx_ConvertSize, 94
convert device speeds —

csx_ConvertSpeed, 95
convert error return codes to text strings —

csx_Error2Text, 101
convert events to text strings —

csx_Event2Text, 102
convert microseconds to clock ticks —

drv_usectohz, 421
copy data from one device register to another

device register — ddi_device_copy, 232
create minor nodes for client —

csx_MakeDeviceNode, 117
create a minor node for this device —

ddi_create_minor_node, 230
create and initialize a new kstat —

kstat_create, 458
create driver-controlled mapping of device —

ddi_mapdev, 326
csx_AccessConfigurationRegister — read or

write a PC Card Configuration Register, 92
csx_ConvertSize — convert device sizes, 94
csx_ConvertSpeed — convert device

speeds, 95
csx_CS_DDI_Info — obtain DDI

information, 96
csx_DeregisterClient — remove client from

Card Services list, 98
csx_DupHandle — duplicate access handle, 99
csx_Error2Text — convert error return codes to

text strings, 101
csx_Event2Text — convert events to text

strings, 102
csx_FreeHandle — free access handle, 103

csx_Get16 — read from device register, 104
csx_Get32 — read from device register, 104
csx_Get64 — read from device register, 104
csx_Get8 — read from device register, 104
csx_GetEventMask — return client event

mask, 204
csx_GetFirstClient — return first client, 105
csx_GetFirstTuple — return first CIS tuple, 107
csx_GetHandleOffset — return current access

handle offset, 109
csx_GetMappedAddr — return mapped virtual

address, 110
csx_GetNextClient — return next client, 105
csx_GetNextTuple — return next CIS

tuple, 107
csx_GetStatus — return status of PC Card and

socket, 111
csx_GetTupleData — return data portion of

tuple, 115
csx_MakeDeviceNode — create minor nodes for

client, 117
csx_MapLogSocket — return physical socket

number, 119
csx_MapMemPage — map memory area on PC

Card, 120
csx_ModifyConfiguration — modify PC Card

configuration, 121
csx_ModifyWindow — modify window

attributes, 123
csx_Parse_CISTPL_BATTERY — parse Battery

Replacement Date tuple, 125
csx_Parse_CISTPL_BYTEORDER — parse Byte

Order tuple, 126
csx_Parse_CISTPL_CFTABLE_ENTRY — parse

Card Configuration Table tuple, 128
csx_Parse_CISTPL_CONFIG — parse

Configuration tuple, 134
csx_Parse_CISTPL_DATE — parse Card

Initialization Date tuple, 137
csx_Parse_CISTPL_DEVICE — parse Device

Information tuple for Common
Memory, 138

csx_Parse_CISTPL_DEVICE_A — parse Device
Information tuple for Attribute
Memory, 138

csx_Parse_CISTPL_DEVICE_OA — parse Other
Condition Device Information tuple for
Attribute Memory, 138

Index 649

csx_Parse_CISTPL_DEVICE_OC — parse Other
Condition Device Information tuple for
Common Memory, 138

csx_Parse_CISTPL_DEVICEGEO — parse
Device Geo tuple, 141

csx_Parse_CISTPL_DEVICEGEO_A — parse
Device Geo A tuple, 143

csx_Parse_CISTPL_FORMAT — parse Data
Recording Format tuple, 145

csx_Parse_CISTPL_FUNCE — parse Function
Extension tuple, 147

csx_Parse_CISTPL_FUNCID — parse Function
Identification tuple, 155

csx_Parse_CISTPL_GEOMETRY — parse
Geometry tuple, 157

csx_Parse_CISTPL_JEDEC_A — parse JEDEC
Identifier tuple for Attribute Memory, 158

csx_Parse_CISTPL_JEDEC_C — parse JEDEC
Identifier tuple for Common Memory, 158

csx_Parse_CISTPL_LINKTARGET — parse Link
Target tuple, 160

csx_Parse_CISTPL_LONGLINK_A — parse
Long Link A tuple, 161

csx_Parse_CISTPL_LONGLINK_C — parse
Long Link C tuple, 161

csx_Parse_CISTPL_LONGLINK_MFC — parse
Multi-Function tuple, 163

csx_Parse_CISTPL_MANFID — parse
Manufacturer Identification tuple, 165

csx_Parse_CISTPL_ORG — parse Data
Organization tuple, 166

csx_Parse_CISTPL_SPCL — parse Special
Purpose tuple, 167

csx_Parse_CISTPL_SWIL — parse Software
Interleaving tuple, 169

csx_Parse_CISTPL_VERS_1 — parse Level-1
Version/Product Information tuple, 170

csx_Parse_CISTPL_VERS_2 — parse Level-2
Version and Information tuple, 171

csx_ParseTuple — generic tuple parser, 172
csx_Put16 — write to device register, 174
csx_Put32 — write to device register, 174
csx_Put64 — write to device register, 174
csx_Put8 — write to device register, 174
csx_RegisterClient — register client, 175
csx_ReleaseConfiguration — release

configuration on PC Card, 178
csx_ReleaseIO — release I/O resources, 188

csx_ReleaseIRQ — release IRQ resource, 193
csx_ReleaseSocketMask — clear client event

mask, 196
csx_ReleaseWindow — release window

resources, 198
csx_RepGet16 — read repetitively from device

register, 180
csx_RepGet32 — read repetitively from device

register, 180
csx_RepGet64 — read repetitively from device

register, 180
csx_RepGet8 — read repetitively from device

register, 180
csx_RepPut16 — write repetitively to device

register, 182
csx_RepPut32 — write repetitively to device

register, 182
csx_RepPut64 — write repetitively to device

register, 182
csx_RepPut8 — write repetitively to device

register, 182
csx_RequestConfiguration — configure PC Card

and socket, 184
csx_RequestIO — request I/O resources, 188
csx_RequestIRQ — request IRQ resource, 193
csx_RequestSocketMask — request client event

mask, 196
csx_RequestWindow — request window

resources, 198
csx_ResetFunction — reset a function on a PC

card, 203
csx_SetEventMask — set client event

mask, 204
csx_SetHandleOffset — set current access

handle offset, 206
csx_ValidateCIS — validate Card Information

Structure (CIS), 207
current thread, get id of, 305

D
datamsg — test whether a message is a data

message, 208
DDI access credential structure

— ddi_get_cred, 300
ddi_add_intr — add an interrupt handler, 209
ddi_add_softintr — add a soft interrupt, 213

650 man pages section 9: DDI and DKI Kernel Functions • May 2002

DDI announce a device
— ddi_report_dev, 382

ddi_binding_name — return driver binding
name, 219

ddi_check_acc_handle, 221, 301
ddi_check_dma_handle, 221
ddi_create_minor_node — create a minor node

for this device, 230
ddi_dev_is_needed — inform the system that a

device’s component is required, 239
ddi_dev_report_fault, 245
DDI device access

slave access only — ddi_slaveonly, 389
ddi_device_copy — copy data from one device

register to another device register, 232
DDI device critical region of control

enter — ddi_enter_critical, 296
exit — ddi_exit_critical, 296

DDI device information structure
find parent — ddi_get_parent, 307
get the root of the dev_info tree —

ddi_root_node, 385
remove a minor node for this devinfo —

ddi_remove_minor_node, 377
DDI device instance number

get — ddi_get_instance, 304
DDI device mapping

ddi_mapdev — create driver-controlled
mapping of device, 326

ddi_mapdev_intercept — control driver
notification of user accesses, 328

ddi_mapdev_nointercept — control driver
notification of user accesses, 328

devmap_default_access — device mapping
access entry point, 403

DDI device registers
map — ddi_map_regs, 332
return the number of register sets —

ddi_dev_nregs, 243
return the size — ddi_dev_regsize, 244
unmap — ddi_unmap_regs, 332

DDI device’s private data area
get the address —

ddi_get_driver_private, 302
set the address —

ddi_set_driver_private, 302
DDI device virtual address

read 16 bit — ddi_peek16, 348

DDI device virtual address (continued)
read 32 bit — ddi_peek32, 348
read 64 bit— ddi_peek64, 348
read 8 bit — ddi_peek8, 348
read a value — ddi_peek, 348
write 16 bit — ddi_poke16, 350
write 32 bit — ddi_poke32, 350
write 64 bit — ddi_poke64, 350
write 8 bit — ddi_poke8, 350
write a value — ddi_poke, 350

ddi_device_zero — zero fill the device
register, 234

ddi_devid_compare — Kernel interfaces for
device ids, 236

ddi_devid_free — Kernel interfaces for device
ids, 236

ddi_devid_init — Kernel interfaces for device
ids, 236

ddi_devid_register — Kernel interfaces for
device ids, 236

ddi_devid_sizeof — Kernel interfaces for device
ids, 236

ddi_devid_unregister — Kernel interfaces for
device ids, 236

ddi_devid_valid — Kernel interfaces for device
ids, 236

DDI devinfo node name
return — ddi_binding_name, 219
return — ddi_get_name, 219
return — ddi_node_name, 347

DDI direct memory access
convert DMA handle to DMA addressing

cookie — ddi_dma_htoc, 273
DDI direct memory access services

allocate consistent memory—
ddi_iopb_alloc, 334

convert a DMA cookie —
ddi_dma_coff, 261

easier DMA setup —
ddi_dma_addr_setup, 252

easier DMA setup —
ddi_dma_buf_setup, 259

find minimum alignment and transfer size
for device — ddi_iomin, 314

find post DMA mapping alignment and
minimum effect properties —
ddi_dma_devalign, 263

Index 651

DDI direct memory access services (continued)
free consistent memory —
ddi_iopb_free, 334
report current DMA window offset and size

— ddi_dma_curwin, 262
setup DMA mapping —

ddi_dma_setup, 282, 286
setup DMA resources —

ddi_dma_setup, 289
shift current DMA window —

ddi_dma_movwin, 278
tear down DMA mapping —

ddi_dma_free, 268
ddi_dma_addr_bind_handle — binds an

address to a DMA handle, 249
ddi_dma_alloc_handle — allocate DMA

handle, 253
ddi_dma_buf_bind_handle — binds a system

buffer to a DMA handle, 256
ddi_dma_burstsizes — find out the allowed

burst sizes for a DMA mapping, 260
ddi_dma_free_handle — free DMA

handle, 269
ddi_dma_get_attr, 270
ddi_dma_getwin — activate a new DMA

window, 271
ddi_dma_mem_alloc — allocate memory for

DMA transfer, 275
ddi_dma_mem_free — free previously allocated

memory, 277
ddi_dma_nextcookie — retrieve subsequent

DMA cookie, 280
ddi_dma_nextseg — get next DMA

segment, 282
ddi_dma_nextwin — get next DMA

window, 283
ddi_dma_numwin — retrieve number of DMA

windows, 285
ddi_dma_segtocookie — convert a DMA

segment to a DMA address cookie, 286
ddi_dma_set_sbus64 — allow 64 bit transfers on

SBus, 288
ddi_dma_sync — synchronize CPU and I/O

views of memory, 291
ddi_dma_unbind_handle — unbinds the

address in a DMA handle, 293
ddi_dmae — system DMA engine

functions, 265

ddi_dmae_1stparty — system DMA engine
functions, 265

ddi_dmae_alloc — system DMA engine
functions, 265

ddi_dmae_disable — system DMA engine
functions, 265

ddi_dmae_enable — system DMA engine
functions, 265

ddi_dmae_getattr — system DMA engine
functions, 265

ddi_dmae_getcnt — system DMA engine
functions, 265

ddi_dmae_getlim — system DMA engine
functions, 265

ddi_dmae_prog — system DMA engine
functions, 265

ddi_dmae_release — system DMA engine
functions, 265

ddi_dmae_stop — system DMA engine
functions, 265

ddi_driver_major, 294
ddi_driver_name — return normalized driver

name, 295
ddi_ffs — find first (last) bit set in a long

integer, 297
ddi_fls — find first (last) bit set in a long

integer, 297
ddi_get_iblock_cookie — get interrupt block

cookie, 209
ddi_get_kt_did, 305
ddi_get_lbolt

returns the value of lbolt, 306
ddi_get_name — return driver binding

name, 219
ddi_get_pid

returns the process ID, 308
ddi_get_soft_iblock_cookie — get soft interrupt

block cookie, 213
ddi_get_time

returns the current time in seconds, 309
ddi_get16 — read data from the device, 298
ddi_get32 — read data from the device, 298
ddi_get64 — read data from the device, 298
ddi_get8 — read data from the device, 298
ddi_getiminor

display a SCSI request sense message, 303
ddi_in_panic — determine if system is in panic

state, 310

652 man pages section 9: DDI and DKI Kernel Functions • May 2002

DDI information — csx_CS_DDI_Info, 96
DDI interrupt handling

add an interrupt — ddi_add_intr, 209
get interrupt block cookie —

ddi_get_iblock_cookie, 209
indicate interrupt handler type —

ddi_intr_hilevel, 311
remove an interrupt —

ddi_remove_intr, 209
return the number of interrupt specifications

— ddi_dev_nintrs, 242
ddi_io_get16 — read data from the mapped

device register in I/O space, 312
ddi_io_get32 — read data from the mapped

device register in I/O space, 312
ddi_io_get8 — read data from the mapped

device register in I/O space, 312
ddi_io_getb — read data from the mapped

device register in I/O space, 312
ddi_io_getl — read data from the mapped

device register in I/O space, 312
ddi_io_getw — read data from the mapped

device register in I/O space, 312
ddi_io_put16 — write data to the mapped

device register in I/O space, 317
ddi_io_put32 — write data to the mapped

device register in I/O space, 317
ddi_io_put8 — write data to the mapped device

register in I/O space, 317
ddi_io_putb — write data to the mapped device

register in I/O space, 317
ddi_io_putl — write data to the mapped device

register in I/O space, 317
ddi_io_putw — write data to the mapped

device register in I/O space, 317
ddi_io_rep_get16 — read multiple data from the

mapped device register in I/O space, 319
ddi_io_rep_get32 — read multiple data from the

mapped device register in I/O space, 319
ddi_io_rep_get8 — read multiple data from the

mapped device register in I/O space, 319
ddi_io_rep_getb — read multiple data from the

mapped device register in I/O space, 319
ddi_io_rep_getl — read multiple data from the

mapped device register in I/O space, 319
ddi_io_rep_getw — read multiple data from the

mapped device register in I/O space, 319

ddi_io_rep_put16 — write multiple data to the
mapped device register in I/O space, 321

ddi_io_rep_put32 — write multiple data to the
mapped device register in I/O space, 321

ddi_io_rep_put8 — write multiple data to the
mapped device register in I/O space, 321

ddi_io_rep_putb — write multiple data to the
mapped device register in I/O space, 321

ddi_io_rep_putl — write multiple data to the
mapped device register in I/O space, 321

ddi_io_rep_putw — write multiple data to the
mapped device register in I/O space, 321

ddi_iopb_alloc — allocate and free
non-sequentially accessed memory, 315

ddi_iopb_free — allocate and free
non-sequentially accessed memory, 315

ddi_log_sysevent, 323
ddi_mapdev — create driver-controlled

mapping of device, 326
ddi_mapdev_intercept — control driver

notification of user accesses, 328
ddi_mapdev_set_device_acc_attr — Set the

device attributes for the mapping, 330
ddi_mem_get16 — read data from mapped

device in the memory space or allocated
DMA memory, 336

ddi_mem_get32 — read data from mapped
device in the memory space or allocated
DMA memory, 336

ddi_mem_get64 — read data from mapped
device in the memory space or allocated
DMA memory, 336

ddi_mem_put16 — write data to mapped
device in the memory space or allocated
DMA memory, 337

ddi_mem_put32 — write data to mapped
device in the memory space or allocated
DMA memory, 337

ddi_mem_put64 — write data to mapped
device in the memory space or allocated
DMA memory, 337

ddi_mem_rep_get16 — read data from mapped
device in the memory space or allocated
DMA memory, 339

ddi_mem_rep_get32 — read data from mapped
device in the memory space or allocated
DMA memory, 339

Index 653

ddi_mem_rep_get64 — read data from mapped
device in the memory space or allocated
DMA memory, 339

ddi_mem_rep_get8 — read data from mapped
device in the memory space or allocated
DMA memory, 339

ddi_mem_rep_put16 — write data to mapped
device in the memory space or allocated
DMA memory, 341

ddi_mem_rep_put32 — write data to mapped
device in the memory space or allocated
DMA memory, 341

ddi_mem_rep_put64 — write data to mapped
device in the memory space or allocated
DMA memory, 341

ddi_mem_rep_put8 — write data to mapped
device in the memory space or allocated
DMA memory, 341

DDI memory mapping
map a segment — ddi_segmap, 387
map a segment — devmap_setup, 413

ddi_mmap_get_model — return data model
type of current thread, 343

ddi_model_convert_from — determine data
model type mismatch, 345

ddi_model_convert_from — Determine if there
is a need to translate shared data structure
contents, 345

ddi_node_name — return the devinfo node
name, 347

DDI page size conversions
— ddi_btop, 220
— ddi_btopr, 220
— ddi_ptob, 220

ddi_prop_exists — check for the existence of a
property, 356

ddi_prop_get_int — look up integer
property, 358

ddi_prop_lookup — lookup property
information, 361

ddi_prop_lookup_byte_array — lookup
property information, 361

ddi_prop_lookup_int_array — lookup property
information, 361

ddi_prop_lookup_string — lookup property
information, 361

ddi_prop_lookup_string_array — lookup
property information, 361

ddi_prop_update — update property
information., 369

ddi_prop_update_byte_array — update
property information., 369

ddi_prop_update_int — update property
information., 369

ddi_prop_update_int_array — update property
information., 369

ddi_prop_update_string — update property
information., 369

ddi_prop_update_string_array — update
property information., 369

DDI property management
create properties for leaf device drivers —

ddi_prop_create, 353
— ddi_getlongprop, 366
— ddi_getlongprop_buf, 366
— ddi_getprop, 366
— ddi_getproplen, 366
— ddi_prop_op, 366
modify properties for leaf device drivers —

ddi_prop_modify, 353
remove all properties for leaf device drivers

— ddi_prop_remove_all, 353
remove properties for leaf device drivers —

ddi_prop_remove, 353
remove properties for leaf device drivers —

ddi_prop_undefine, 353
ddi_put16 — write data to the device, 372
ddi_put32 — write data to the device, 372
ddi_put64 — write data to the device, 372
ddi_put8 — write data to the device, 372
ddi_regs_map_free — free mapped register

address space, 374
ddi_regs_map_setup — set up a mapping for a

register address space, 375
ddi_remove_intr — remove an interrupt

handler, 209
ddi_remove_softintr — remove a soft

interrupt, 213
ddi_removing_power, 378
ddi_rep_get16 — read data from the mapped

memory address, device register or allocated
DMA memory address, 380

ddi_rep_get32 — read data from the mapped
memory address, device register or allocated
DMA memory address, 380

654 man pages section 9: DDI and DKI Kernel Functions • May 2002

ddi_rep_get64 — read data from the mapped
memory address, device register or allocated
DMA memory address, 380

ddi_rep_get8 — read data from the mapped
memory address, device register or allocated
DMA memory address, 380

ddi_rep_getb — read data from the mapped
memory address, device register or allocated
DMA memory address, 380

ddi_rep_getl — read data from the mapped
memory address, device register or allocated
DMA memory address, 380

ddi_rep_getll — read data from the mapped
memory address, device register or allocated
DMA memory address, 380

ddi_rep_getw — read data from the mapped
memory address, device register or allocated
DMA memory address, 380

ddi_rep_put16 — write data to the mapped
memory address, device register or allocated
DMA memory address, 383

ddi_rep_put32 — write data to the mapped
memory address, device register or allocated
DMA memory address, 383

ddi_rep_put64 — write data to the mapped
memory address, device register or allocated
DMA memory address, 383

ddi_rep_put8 — write data to the mapped
memory address, device register or allocated
DMA memory address, 383

ddi_rep_putb — write data to the mapped
memory address, device register or allocated
DMA memory address, 383

ddi_rep_putl — write data to the mapped
memory address, device register or allocated
DMA memory address, 383

ddi_rep_putll — write data to the mapped
memory address, device register or allocated
DMA memory address, 383

ddi_rep_putw — write data to the mapped
memory address, device register or allocated
DMA memory address, 383

DDI self identifying devices
tell whether a device is self-identifying —

ddi_dev_is_sid, 241
DDI soft interrupt handling

add a soft interrupt —
ddi_add_softintr, 213

DDI soft interrupt handling (continued)
get soft interrupt block cookie —
ddi_get_soft_iblock_cookie, 213
remove a soft interrupt —

ddi_remove_softintr, 213
DDI soft state utility routines

allocate state structure —
ddi_soft_state_zalloc, 390

free soft state entry —
ddi_soft_state_free, 390

get pointer to soft state —
ddi_get_soft_state, 390

initialize state — ddi_soft_state_init, 390
remove all state info —

ddi_soft_state_fini, 390
DDI_SUSPEND, 378
ddi_trigger_softintr — trigger a soft

interrupt, 213
ddi_umem_alloc — allocate kernel

memory, 395
ddi_umem_free — allocate kernel

memory, 395
ddi_umem_lock — Locks and unlocks memory

pages, 399
ddi_umem_zalloc — allocate kernel

memory, 395
default SCSI HBA probe function —

scsi_hba_probe, 583
delay — delay process execution for a specified

number of clock ticks, 401
deregister client from Card Services list —

csx_DeregisterClient, 98
determine data model type mismatch —

ddi_model_convert_from, 345
Device Driver Interface, See DDI
device mapping access entry point —

devmap_default_access, 403
device switch tables

return function for insignificant entries —
nulldev, 484

devices
get major device number — getmajor, 440
get minor device number — getminor, 441
make device number from major and minor

numbers — makedevice, 467
devices, non-pollable

error return function — nochpoll, 481

Index 655

devmap_default_access — device mapping
access entry point, 403

devmap_devmem_setup — Set driver memory
mapping parameters, 406
devmap_devmem_setup(), 405
devmap_umem_setup(), 406

devmap_do_ctxmgt — perform device context
switching on a mapping, 408

devmap_load — control the validation of
memory address translations, 414

devmap_set_ctx_timeout — set context
management timeout value, 411

devmap_umem_setup — Set driver memory
mapping parameters, 406

devmap_unload — control the validation of
memory address translations, 414

disksort — single direction elevator seek sort
for buffers, 416

display a SCSI request sense message
scsi_vu_errmsg, 607

DMA attribute structure, 270
DMA mapping, the allowed burst sizes for —

ddi_dma_burstsizes, 260
driver buffers

copy data— ddi_copyin, 223
copy data from driver — ddi_copyout, 226
copy data from driver to user program —

copyout, 90
copy data from user program — copyin, 86

driver error messages
display an error message or panic the system

— cmn_err, 76
driver privilege — drv_priv, 420
drv_getparm — retrieve kernel state

information, 417
drv_hztousec — convert clock ticks to

microseconds, 419
drv_priv — determine driver privilege, 420
drv_usectohz — convert microseconds to clock

ticks, 421
drv_usecwait — busy-wait for specified

interval, 422
dupb — duplicate a message block

descriptor, 423
duplicate a message — dupmsg, 426
duplicate a message block descriptor —

dupb, 423
duplicate access handle — csx_DupHandle, 99

dupmsg — duplicate a message, 426

E
enable/disable accesses to the PCI Local Bus

Configuration space.
— pci_config_setup, 500
— pci_config_teardown, 500

error return codes converted to text strings —
csx_Error2Text, 101

error return function for illegal entries —
nodev, 482

event mask
return client event mask —

csx_GetEventMask, 204
set client event mask —

csx_SetEventMask, 204
events converted to text strings —

csx_Event2Text, 102
expression verification

— assert, 47

F
find first (last) bit set in a long integer —

ddi_ffs, 297
ddi_fls, 297

first CIS tuple — csx_GetFirstTuple, 107
flushband — flush messages for specified

priority band, 431
free access handle — csx_FreeHandle, 103
free DMA handle

— ddi_dma_free_handle, 269
free mapped register address space —

ddi_regs_map_free, 374
free previously allocated memory —

ddi_dma_mem_free, 277
free space — rmfree, 553
freerbuf — free a raw buffer header, 436
freeze, thaw the state of a stream —

freezestr, 437
unfreezestr, 437

freezestr — freeze, thaw the state of a
stream, 437

656 man pages section 9: DDI and DKI Kernel Functions • May 2002

G
generic tuple parser — csx_ParseTuple, 172
get interrupt block cookie

— ddi_get_iblock_cookie, 209
get kernel internal minor number from an

external dev_t
scsi_vu_errmsg, 303

get next DMA segment —
ddi_dma_nextseg, 282

get next DMA window —
ddi_dma_nextwin, 283

get soft interrupt block cookie
— ddi_get_soft_iblock_cookie, 213

gethrtime, 439
getmajor — get major device number, 440
getminor — get minor device number, 441
getrbuf — get a raw buffer header, 445
gld_mac_alloc — allocate a GLD mac_info

structure, 446
gld_mac_free — free a GLD mac_info

structure, 446
gld_recv — pass the inbound packet

upstream, 447
gld_register — link the driver with the GLD

framework, 446
gld_sched — reschedule stalled outbound

packets, 447
gld_unregister — unlink the driver from the

GLD framework, 447

H
handle variable argument list

— va_arg, 640
— va_copy, 640
— va_end, 640
— va_start, 640

high resolution time, 439

I
I/O, block

suspend processes pending completion —
biowait, 64

I/O, buffer
release buffer and notify processes —

biodone, 56
I/O, paged request

allocate virtual address space —
bp_mapin, 65

deallocate virtual address space —
bp_mapout, 66

I/O, physical
— minphys, 505
— physio, 505

I/O error
return — geterror, 438

I/O resources
release I/O resources — csx_ReleaseIO, 188
request I/O resources —

csx_RequestIO, 188
id32_alloc — 32-bit driver ID management

routines, 450
id32_free — 32-bit driver ID management

routines, 450
id32_lookup — 32-bit driver ID management

routines, 450
inb — read from an I/O port, 451
inform the system that a device’s component is

required. — ddi_dev_is_needed, 239
initialize a named kstat —

kstat_named_init, 461
initialize a buffer structure — bioinit, 60
inl — read from an I/O port, 451
interrupt handling

add an interrupt — ddi_add_intr, 209
get interrupt block cookie —

ddi_get_iblock_cookie, 209
remove an interrupt —

ddi_remove_intr, 209
inw — read from an I/O port, 451
IOC_CONVERT_FROM — Determine if there is

a need to translate M_IOCTL contents, 454
IRQ resource

release IRQ resource —
csx_ReleaseIRQ, 193

request IRQ resource —
csx_RequestIRQ, 193

Index 657

K
kernel address locations

between locations — bcopy, 51
kernel addresses

get page frame number —
hat_getkpfnum, 449

Kernel interfaces for device ids
— ddi_devid_compare, 236
— ddi_devid_free, 236
— ddi_devid_init, 236
— ddi_devid_register, 236
— ddi_devid_sizeof, 236
— ddi_devid_unregister, 236
— ddi_devid_valid, 236

kernel modules, dynamic loading
add loadable module — mod_install, 473
query loadable module — mod_info, 473
remove loadable module —

mod_remove, 473
kernel state information — drv_getparm, 417
kmem_alloc — allocate kernel memory, 455
kmem_free — allocate kernel memory, 455
kmem_zalloc — allocate kernel memory, 455
kstat_create — create and initialize a new

kstat, 458
kstat_delete — remove a kstat from the

system, 459
kstat_install — add a fully initialized kstat to

the system, 460
kstat_named_init — initialize a named

kstat, 461
kstat_queue — update I/O kstat statistics, 462
kstat_runq_back_to_waitq — update I/O kstat

statistics, 462
kstat_runq_enter — update I/O kstat

statistics, 462
kstat_runq_exit — update I/O kstat

statistics, 462
kstat_waitq_enter — update I/O kstat

statistics, 462
kstat_waitq_exit — update I/O kstat

statistics, 462
kstat_waitq_to_runq — update I/O kstat

statistics, 462

L
Locks and unlocks memory pages –

ddi_umem_lock, 399
look up integer property —

ddi_prop_get_int, 358
look up per-device-type scsi-options property

— scsi_get_device_type_scsi_options, 573
lookup property information

— ddi_prop_lookup, 361
— ddi_prop_lookup_byte_array, 361
— ddi_prop_lookup_int_array, 361
— ddi_prop_lookup_string, 361
— ddi_prop_lookup_string_array, 361

M
major device number, 294
makedevice — make device number from major

and minor numbers, 467
map memory area on PC Card —

csx_MapMemPage, 120
match name and type indicated by the interface

name and retrieve data value —
nvlist_lookup_boolean, 489

match name and type indicated by the interface
name and retrieve data value —
nvlist_lookup_byte_array, 489

match name and type indicated by the interface
name and retrieve data value —
nvlist_lookup_byte, 489

match name and type indicated by the interface
name and retrieve data value —
nvlist_lookup_int16_array, 489

match name and type indicated by the interface
name and retrieve data value —
nvlist_lookup_int16, 489

match name and type indicated by the interface
name and retrieve data value —
nvlist_lookup_int32_array, 489

match name and type indicated by the interface
name and retrieve data value —
nvlist_lookup_int32, 489

match name and type indicated by the interface
name and retrieve data value —
nvlist_lookup_int64_array, 489

658 man pages section 9: DDI and DKI Kernel Functions • May 2002

match name and type indicated by the interface
name and retrieve data value —
nvlist_lookup_int64, 489

match name and type indicated by the interface
name and retrieve data value —
nvlist_lookup_string_array, 489

match name and type indicated by the interface
name and retrieve data value —
nvlist_lookup_string, 489

match name and type indicated by the interface
name and retrieve data value —
nvlist_lookup_uint16_array, 489

match name and type indicated by the interface
name and retrieve data value —
nvlist_lookup_uint16, 489

match name and type indicated by the interface
name and retrieve data value —
nvlist_lookup_uint32_array, 489

match name and type indicated by the interface
name and retrieve data value —
nvlist_lookup_uint32, 489

match name and type indicated by the interface
name and retrieve data value —
nvlist_lookup_uint64_array, 489

match name and type indicated by the interface
name and retrieve data value —
nvlist_lookup_uint64, 489

max — return the larger of two integers, 468
memory

clear for a given number of bytes —
bzero, 72

min — return the lesser of two integers, 469
minor node for device

create — ddi_create_minor_node, 230
modify PC Card configuration —

csx_ModifyConfiguration, 121
modify window attributes —

csx_ModifyWindow, 123
mt-streams — STREAMS multithreading, 476
mutex routines

— mutex, 478
— mutex_destroy, 478
— mutex_enter, 478
— mutex_exit, 478
— mutex_init, 478
— mutex_owned, 478
— mutex_tryenter, 478

mutual exclusion lock, See mutex

N
next CIS tuple — csx_GetNextTuple, 107
nodes

create minor nodes for client —
csx_MakeDeviceNode, 117

Notify pm framework of autonomous power
level change –
pm_power_has_changed, 512

notify target driver of bus resets —
scsi_reset_notify, 600

nvlist_lookup_boolean — match name and type
indicated by the interface name and retrieve
data value, 489

nvlist_lookup_byte — match name and type
indicated by the interface name and retrieve
data value, 489

nvlist_lookup_byte_array — match name and
type indicated by the interface name and
retrieve data value, 489

nvlist_lookup_int16 — match name and type
indicated by the interface name and retrieve
data value, 489

nvlist_lookup_int16_array — match name and
type indicated by the interface name and
retrieve data value, 489

nvlist_lookup_int32 — match name and type
indicated by the interface name and retrieve
data value, 489

nvlist_lookup_int32_array — match name and
type indicated by the interface name and
retrieve data value, 489

nvlist_lookup_int64 — match name and type
indicated by the interface name and retrieve
data value, 489

nvlist_lookup_int64_array — match name and
type indicated by the interface name and
retrieve data value, 489

nvlist_lookup_string — match name and type
indicated by the interface name and retrieve
data value, 489

nvlist_lookup_string_array — match name and
type indicated by the interface name and
retrieve data value, 489

Index 659

nvlist_lookup_uint16 — match name and type
indicated by the interface name and retrieve
data value, 489

nvlist_lookup_uint16_array — match name and
type indicated by the interface name and
retrieve data value, 489

nvlist_lookup_uint32 — match name and type
indicated by the interface name and retrieve
data value, 489

nvlist_lookup_uint32_array — match name and
type indicated by the interface name and
retrieve data value, 489

nvlist_lookup_uint64 — match name and type
indicated by the interface name and retrieve
data value, 489

nvlist_lookup_uint64_array — match name and
type indicated by the interface name and
retrieve data value, 489

nvlist_remove — remove name-value
pairs, 493

nvlist_remove_all — remove name-value
pairs, 493

O
obtain DDI information —

csx_CS_DDI_Info, 96
OTHERQ — get pointer to queue’s partner

queue, 496
outb — write to an I/O port, 497
outl — write to an I/O port, 497
outw — write to an I/O port, 497

P
panic state — ddi_in_panic, 310
parse Battery Replacement Date tuple —

csx_Parse_CISTPL_BATTERY, 125
parse Byte Order tuple —

csx_Parse_CISTPL_BYTEORDER, 126
parse Card Configuration Table tuple —

csx_Parse_CISTPL_CFTABLE_ENTRY, 128
parse Card Initialization Date tuple —

csx_Parse_CISTPL_DATE, 137
parse Configuration tuple —

csx_Parse_CISTPL_CONFIG, 134

parse Data Organization tuple —
csx_Parse_CISTPL_ORG, 166

parse Data Recording Format tuple —
csx_Parse_CISTPL_FORMAT, 145

parse Device Geo A tuple —
csx_Parse_CISTPL_DEVICEGEO_A, 143

parse Device Geo tuple —
csx_Parse_CISTPL_DEVICEGEO, 141

parse Device Information tuple
for Attribute Memory —

csx_Parse_CISTPL_DEVICE_A, 138
for Common Memory —

csx_Parse_CISTPL_DEVICE, 138
parse Function Extension tuple —

csx_Parse_CISTPL_FUNCE, 147
parse Function Identification tuple —

csx_Parse_CISTPL_FUNCID, 155
parse Geometry tuple —

csx_Parse_CISTPL_GEOMETRY, 157
parse JEDEC Identifier tuple

for Attribute Memory —
csx_Parse_CISTPL_JEDEC_A, 158

for Common Memory —
csx_Parse_CISTPL_JEDEC_C, 158

parse Level-1 Version/Product Information
tuple — csx_Parse_CISTPL_VERS_1, 170

parse Level-2 Version and Information tuple —
csx_Parse_CISTPL_VERS_2, 171

parse Link Target tuple —
csx_Parse_CISTPL_LINKTARGET, 160

parse Long Link A tuple
— csx_Parse_CISTPL_LONGLINK_A, 161

parse Long Link C tuple
— csx_Parse_CISTPL_LONGLINK_C, 161

parse Manufacturer Identification tuple —
csx_Parse_CISTPL_MANFID, 165

parse Multi-Function tuple —
csx_Parse_CISTPL_LONGLINK_MFC, 163

parse Other Condition Device Information tuple
for Attribute Memory —

csx_Parse_CISTPL_DEVICE_OA, 138
for Common Memory —

csx_Parse_CISTPL_DEVICE_OC, 138
parse Software Interleaving tuple —

csx_Parse_CISTPL_SWIL, 169
parse Special Purpose tuple —

csx_Parse_CISTPL_SPCL, 167

660 man pages section 9: DDI and DKI Kernel Functions • May 2002

parser, for tuples (generic) —
csx_ParseTuple, 172

pci_config_get16 — read or write single datum
of various sizes to the PCI Local Bus
Configuration space, 498

pci_config_get32 — read or write single datum
of various sizes to the PCI Local Bus
Configuration space, 498

pci_config_get64 — read or write single datum
of various sizes to the PCI Local Bus
Configuration space, 498

pci_config_get8 — read or write single datum of
various sizes to the PCI Local Bus
Configuration space, 498

pci_config_getb — read or write single datum
of various sizes to the PCI Local Bus
Configuration space, 498

pci_config_getl — read or write single datum of
various sizes to the PCI Local Bus
Configuration space, 498

pci_config_getll — read or write single datum
of various sizes to the PCI Local Bus
Configuration space, 498

pci_config_getw — read or write single datum
of various sizes to the PCI Local Bus
Configuration space, 498

pci_config_put16 — read or write single datum
of various sizes to the PCI Local Bus
Configuration space, 498

pci_config_put32 — read or write single datum
of various sizes to the PCI Local Bus
Configuration space, 498

pci_config_put64 — read or write single datum
of various sizes to the PCI Local Bus
Configuration space, 498

pci_config_put8 — read or write single datum
of various sizes to the PCI Local Bus
Configuration space, 498

pci_config_putb — read or write single datum
of various sizes to the PCI Local Bus
Configuration space, 498

pci_config_putl — read or write single datum of
various sizes to the PCI Local Bus
Configuration space, 498

pci_config_putll — read or write single datum
of various sizes to the PCI Local Bus
Configuration space, 498

pci_config_putw — read or write single datum
of various sizes to the PCI Local Bus
Configuration space, 498

pci_config_setup — enable/disable accesses to
the PCI Local Bus Configuration space., 500

pci_config_teardown — enable/disable accesses
to the PCI Local Bus Configuration
space., 500

pci_report_pmcap-Report power management
capability of a PCI device, 501

perform device context switching on a mapping
— devmap_do_ctxmgt, 408

pm_busy_component — control device
components’ availability for Power
Management, 507

pm_idle_component — control device
components’ availability for Power
Management, 507

pm_power_has_changed – Notify pm
framework of autonomous power level
change, 512

pm_raise_power – Raise or lower power of
components, 514

pm_trans_check – advisory check for device
power cycles, 517

pollwakeup — inform a process that an event
has occurred, 519

proc_ref — send a signal to a process, 520
proc_signal — send a signal to a process, 520
proc_unref — send a signal to a process, 520
put — call a STREAMS put procedure, 525

Q
qbufcall — call a function when a buffer

becomes available, 535
qtimeout — execute a function after a specified

length of time, 541
qunbufcall — cancel a pending qbufcall

request, 542
quntimeout — cancel previous timeout function

call, 543
qwait — STREAMS wait routines, 544
qwait_sig — STREAMS wait routines, 544
qwriter — asynchronous STREAMS perimeter

upgrade, 546

Index 661

R
Raise or lower power of components –

pm_raise_power, 514
raw buffer

free a raw buffer header — freerbuf, 436
get a raw buffer header — getrbuf, 445

RD — get pointer to the read queue, 547
read from an I/O port — inb, 451
read from an I/O port — inl

inl, 451
read from an I/O port — inw

inw, 451
read from an I/O port — repinsb

repinsb, 451
read from an I/O port — repinsd

repinsd, 451
read from an I/O port — repinsw

repinsw, 451
read data from mapped device in the memory

space or allocated DMA memory
— ddi_mem_get16, 336
— ddi_mem_get32, 336
— ddi_mem_get64, 336
— ddi_mem_get8, 336
— ddi_mem_rep_get16, 339
— ddi_mem_rep_get32, 339
— ddi_mem_rep_get64, 339
— ddi_mem_rep_get8, 339

read data from the device
— ddi_get16, 298
— ddi_get32, 298
— ddi_get64, 298
— ddi_get8, 298

read data from the mapped device register in
I/O space
— ddi_io_get16, 312
— ddi_io_get32, 312
— ddi_io_get8, 312
— ddi_io_getb, 312
— ddi_io_getl, 312
— ddi_io_getw, 312

read data from the mapped memory address,
device register or allocated DMA memory
address
— ddi_rep_get16, 380
— ddi_rep_get32, 380
— ddi_rep_get64, 380
— ddi_rep_get8, 380

read data from the mapped memory address,
device register or allocated DMA memory
address (continued)

— ddi_rep_getb, 380
— ddi_rep_getl, 380
— ddi_rep_getll, 380
— ddi_rep_getw, 380

read from device register
— csx_Get16, 104
— csx_Get32, 104
— csx_Get64, 104
— csx_Get8, 104

read multiple data from the mapped device
register in I/O space
— ddi_io_rep_get16, 319
— ddi_io_rep_get32, 319
— ddi_io_rep_get8, 319
— ddi_io_rep_getb, 319
— ddi_io_rep_getl, 319
— ddi_io_rep_getw, 319

read or write a PC Card Configuration Register
— csx_AccessConfigurationRegister, 92

read or write single datum of various sizes to
the PCI Local Bus Configuration space
— pci_config_get16, 498
— pci_config_get32, 498
— pci_config_get64, 498
— pci_config_get8, 498
— pci_config_getb, 498
— pci_config_getl, 498
— pci_config_getll, 498
— pci_config_getw, 498
— pci_config_put16, 498
— pci_config_put32, 498
— pci_config_put64, 498
— pci_config_put8, 498
— pci_config_putb, 498
— pci_config_putl, 498
— pci_config_putll, 498
— pci_config_putw, 498

read repetitively from device register
— csx_RepGet16, 180
— csx_RepGet32, 180
— csx_RepGet64, 180
— csx_RepGet8, 180

readers/writer lock functions
— rw_destroy, 557
— rw_downgrade, 557

662 man pages section 9: DDI and DKI Kernel Functions • May 2002

readers/writer lock functions (continued)
— rw_enter, 557
— rw_exit, 557
— rw_init, 557
— rw_read_locked, 557
— rw_tryenter, 557
— rw_tryupgrade, 557
— rwlock, 557

register client — csx_RegisterClient, 175
release client event mask —

csx_ReleaseSocketMask, 196
release I/O resources — csx_ReleaseIO, 188
release IRQ resource — csx_ReleaseIRQ, 193
release window resources —

csx_ReleaseWindow, 198
release configuration on PC Card —

csx_ReleaseConfiguration, 178
remove name-value pairs —

nvlist_remove_all, 493
remove name-value pairs —

nvlist_remove, 493
remove a kstat from the system —

kstat_delete, 459
remove a soft interrupt

— ddi_remove_softintr, 213
remove an interrupt handler

— ddi_remove_intr, 209
remove client from Card Services list —

csx_DeregisterClient, 98
repinsb — read from an I/O port, 451
repinsd — read from an I/O port, 451
repinsw — read from an I/O port, 451
Report a hardware failure, 245
Report power management capability of a PCI

device-pci_report_pmcap, 501
repoutsb — write to an I/O port, 497
repoutsd — write to an I/O port, 497
repoutsw — write to an I/O port, 497
request client event mask —

csx_RequestSocketMask, 196
request I/O resources — csx_RequestIO, 188
request IRQ resource — csx_RequestIRQ, 193
request window resources —

csx_RequestWindow, 198
reset a function on a PC card —

csx_ResetFunction, 203
resource map

allocate resource maps — rmallocmap, 551

resource map (continued)
free resource maps — rmallocmap, 551

retrieve number of DMA windows —
ddi_dma_numwin, 285

retrieve subsequent DMA cookie —
ddi_dma_nextcookie, 280

return client event mask —
csx_GetEventMask, 204

return client
— csx_GetFirstClient, 105
— csx_GetNextClient, 105

return current access handle offset —
csx_GetHandleOffset, 109

return data model type of current thread —
ddi_mmap_get_model, 343

return data portion of tuple —
csx_GetTupleData, 115

return driver binding name
— ddi_binding_name, 219
— ddi_get_name, 219

return index matching capability string —
scsi_hba_lookup_capstr, 579

return normalized driver name —
ddi_driver_name, 295

return physical socket number —
csx_MapLogSocket, 119

return status of PC Card and socket —
csx_GetStatus, 111

return the devinfo node name —
ddi_node_name, 347

return the larger of two integers — max, 468
return the lesser of two integers — min, 469
return tuple

first CIS tuple — csx_GetFirstTuple, 107
next CIS tuple — csx_GetNextTuple, 107

returns size of a buffer structure — biosize, 63
returns the current time in seconds

ddi_get_time, 309
returns the process ID

ddi_get_pid, 308
returns the value of lbolt

returns the value of lbolt, 306
rmalloc — allocate space from a resource

map, 548
rmalloc_wait — allocate space from a resource

map, 552
rmfree — free space back into a resource

map, 553

Index 663

S
SAMESTR — test if next queue is in the same

stream, 560
SCSI Host Bus Adapter system initialization

and completion routines
— scsi_hba_init, 578

scsi_abort — abort a SCSI command, 561
scsi_alloc_consistent_buf — scsi dma utility for

allocating an I/O buffer for SCSI DMA, 562
scsi_cname — decode SCSI commands, 564
SCSI commands, make packet

— makecom, 465
— makecom_g0, 465
— makecom_g0_s, 465
— makecom_g1, 465
— makecom_g5, 465

scsi_destroy_pkt — free an allocated SCSI
packet and its DMA resource, 566

SCSI dma utility routines
— scsi_dmafree, 567
— scsi_dmaget, 567

scsi_dname — decode SCSI peripheral device
type, 564

scsi_errmsg — display a SCSI request sense
message, 569

scsi_free_consistent_buf — free a previously
allocated SCSI DMA I/O buffer, 572

scsi_get_device_type_scsi_options — look up
per-device-type scsi-options property, 573

scsi_hba_attach — SCSI HBA attach and detach
routines, 575

SCSI HBA attach and detach routines
— scsi_hba_attach, 575
— scsi_hba_attach_setup, 575
— scsi_hba_detach, 575

scsi_hba_attach_setup — SCSI HBA attach and
detach routines, 575

scsi_hba_detach — SCSI HBA attach and detach
routines, 575

scsi_hba_fini — SCSI Host Bus Adapter system
completion routines, 578

scsi_hba_init — SCSI Host Bus Adapter system
initialization routines, 578

scsi_hba_lookup_capstr — return index
matching capability string, 579

scsi_hba_pkt_alloc — allocate and free a
scsi_pkt structure, 581

scsi_hba_pkt_free — allocate and free a scsi_pkt
structure, 581

scsi_hba_probe — default SCSI HBA probe
function, 583

scsi_hba_tran_alloc — allocate and free
transport structures, 584

scsi_hba_tran_free — allocate and free transport
structures, 584

scsi_ifgetcap — get SCSI transport
capability, 585

scsi_ifsetcap — set SCSI transport
capability, 585

scsi_init_pkt — prepare a complete SCSI
packet, 588

scsi_log — display a SCSI-device-related
message, 592

scsi_mname — decode SCSI messages, 564
SCSI packet

allocate a SCSI packet in iopb map —
get_pktiopb, 442

free a packet in iopb map —
free_pktiopb, 442

free an allocated SCSI packet and its DMA
resource — scsi_destroy_pkt, 566

SCSI packet utility routines
— scsi_pktalloc, 594
— scsi_pktfree, 594
— scsi_resalloc, 594
— scsi_resfree, 594

scsi_poll — run a polled SCSI command on
behalf of a target driver, 596

scsi_probe — utility for probing a scsi
device, 597

scsi_reset — reset a SCSI bus or target, 599
scsi_reset_notify — notify target driver of bus

resets, 600
scsi_rname — decode SCSI packet completion

reasons, 564
scsi_setup_cdb — setup SCSI command

descriptor block (CDB), 601
scsi_slave — utility for SCSI target drivers to

establish the presence of a target, 602
scsi_sname — decode SCSI sense keys, 564
scsi_sync_pkt — synchronize CPU and I/O

views of memory, 604
scsi_transport — request by a target driver to

start a SCSI command, 605

664 man pages section 9: DDI and DKI Kernel Functions • May 2002

scsi_unprobe — free resources allocated during
initial probing, 606

scsi_unslave — free resources allocated during
initial probing, 606

scsi_vu_errmsg
display a SCSI request sense message, 607

semaphore functions
— sema_destroy, 610
— sema_init, 610
— sema_p, 610
— sema_p_sig, 610
— sema_tryp, 610
— sema_v, 610
— semaphore, 610

send a signal to a process
— proc_ref, 520
— proc_signal, 520
— proc_unref, 520

set client event mask —
csx_RequestSocketMask, 196

set client event mask —
csx_SetEventMask, 204

set current access handle offset —
csx_SetHandleOffset, 206

Set driver memory mapping parameters
— devmap_devmem_setup, 406
— devmap_umem_setup, 406

Set the device attributes for the mapping —
ddi_mapdev_set_device_acc_attr, 330

set up a mapping for a register address space —
ddi_regs_map_setup, 375

setup SCSI command descriptor block (CDB) —
scsi_setup_cdb, 601

single direction elevator seek sort for buffers —
disksort, 416

size in bytes
convert size in pages — ptob, 522
convert to size in memory pages (round

down) — btop, 67
convert to size in memory pages (round up)

— btopr, 68
socket number

return physical socket number —
csx_MapLogSocket, 119

soft interrupt handling
add a soft interrupt —

ddi_add_softintr, 213

soft interrupt handling (continued)
get soft interrupt block cookie —
ddi_get_soft_iblock_cookie, 213
remove a soft interrupt —

ddi_remove_softintr, 213
trigger a soft interrupt —

ddi_trigger_softintr, 213
sprintf — format characters in memory, 612
status of PC Card and socket —

csx_GetStatus, 111
STREAMS wait routines — qwait,

qwait_sig, 544
STREAMS ioctl blocks

allocate — mkiocb, 470
STREAMS message blocks

allocate — allocb, 41
attach a user-supplied data buffer in place —

esballoc, 428
call a function when a buffer becomes

available — bufcall, 69, 634
call a function when a buffer becomes

available — qbufcall, 535, 542
call function when buffer is available —

esbbcall, 430
concatenate bytes in a message —

msgpullup, 475
concatenate bytes in a message —

pullupmsg, 523
concatenate two — linkb, 464
copy — copyb, 84
erase the contents of a buffer — clrbuf, 75
free all message blocks in a message —

freemsg, 435
free one — freeb, 434
remove from head of message —

unlinkb, 635
remove one form a message — rmvb, 554

STREAMS message queue
insert a message into a queue — insq, 452

STREAMS message queues, 48
STREAMS Message queues

get next message — getq, 444
STREAMS message queues

reschedule a queue for service —
enableok, 427

test for room — canputnext, 74
test for room — canput, 73

Index 665

STREAMS messages
copy a message — copymsg, 88
flush for specified priority band —

flushband, 431
remove form queue — flushq, 432
remove form queue — rmvq, 555
return the number of bytes in a message —

msgdsize, 474
submit messages to the log driver —

strlog, 619
test whether a message is a data message —

datamsg, 208
trim bytes — adjmsg, 40

STREAMS multithreading
— mt-streams, 476
qbufcall — call a function when a buffer

becomes available, 535
qtimeout — execute a function after a

specified length of time, 541
qunbufcall — cancel a pending qbufcall

request, 542
quntimeout — cancel previous timeout

function call, 543
qwait, qwait_sig — STREAMS wait

routines, 544
qwriter — asynchronous STREAMS

perimeter upgrade, 546
STREAMS put and service procedures

disable — qprocsoff, 537
enable — qprocson, 537

STREAMS queues
change information about a queue or band of

the queue — strqset, 622
enable a queue — qenable, 536
get pointer to queue’s partner queue —

OTHERQ, 496
get pointer to the read queue — RD, 547
get information about a queue or band of the

queue — strqget, 621
number of messages on a queue —

qsize, 540
place a message at the head of a queue —

putbq, 526
prevent a queue from being scheduled —

noenable, 483
put a message on a queue — putq, 534
send a control message to a queue —

putctl, 528

STREAMS queues (continued)
send a control message to a queue —
putnextctl, 532
send a control message with a one-byte

parameter to a queue — putctl1, 527
send a control message with a one-byte

parameter to a queue — putnextctl1, 531
send a message on a stream in the reverse

direction — qreply, 538
send a message to the next queue —

putnext, 530
test if next queue is in the same stream —

SAMESTR, 560
test for flow control in specified priority

band — bcanput, 49
STREAMS write queues

get pointer for this module or driver —
WR, 645

STRUCT_DECL
32–bit application data access macros, 623

swab — swap bytes in 16-bit halfwords, 628
synchronize CPU and I/O views of memory —

ddi_dma_sync, 291
synchronize CPU and I/O views of memory —

scsi_sync_pkt, 604
system DMA engine functions

— ddi_dmae, 265
— ddi_dmae_1stparty, 265
— ddi_dmae_alloc, 265
— ddi_dmae_disable, 265
— ddi_dmae_enable, 265
— ddi_dmae_getattr, 265
— ddi_dmae_getcnt, 265
— ddi_dmae_getlim, 265
— ddi_dmae_prog, 265
— ddi_dmae_release, 265
— ddi_dmae_stop, 265

system event, logging of, 323

T
testb — check for an available buffer, 629
timeout — execute a function after a specified

length of time, 631
timeout

cancel previous timeout function call —
untimeout, 636

666 man pages section 9: DDI and DKI Kernel Functions • May 2002

trigger a soft interrupt
— ddi_trigger_softintr, 213

tuple
first CIS tuple — csx_GetFirstTuple, 107
next CIS tuple — csx_GetNextTuple, 107
return data portion of tuple —

csx_GetTupleData, 115
tuple entry

generic tuple parser — csx_ParseTuple, 172
parse Device Information tuple for Attribute

Memory —
csx_Parse_CISTPL_DEVICE_A, 138

parse Device Information tuple for Common
Memory —
csx_Parse_CISTPL_DEVICE, 138

parse JEDEC Identifier tuple for Attribute
Memory —
csx_Parse_CISTPL_JEDEC_A, 158

parse JEDEC Identifier tuple for Common
Memory —
csx_Parse_CISTPL_JEDEC_C, 158

parse Long Link A tuple —
csx_Parse_CISTPL_LONGLINK_A, 161

parse Long Link C tuple —
csx_Parse_CISTPL_LONGLINK_C, 161

parse Other Condition Device Information
tuple for Attribute Memory —
csx_Parse_CISTPL_DEVICE_OA, 138

parse Other Condition Device Information
tuple for Common Memory —
csx_Parse_CISTPL_DEVICE_OC, 138

parse Battery Replacement Date tuple —
csx_Parse_CISTPL_BATTERY, 125

parse Byte Order tuple —
csx_Parse_CISTPL_BYTEORDER, 126

parse Card Configuration Table tuple —
csx_Parse_CISTPL_CFTABLE_ENTRY, 128

parse Card Initialization Date tuple —
csx_Parse_CISTPL_DATE, 137

parse Configuration tuple —
csx_Parse_CISTPL_CONFIG, 134

parse Data Organization tuple —
csx_Parse_CISTPL_ORG, 166

parse Data Recording Format tuple —
csx_Parse_CISTPL_FORMAT, 145

parse Device Geo A tuple —
csx_Parse_CISTPL_DEVICE_A, 143

tuple entry (continued)
parse Device Geo tuple —
csx_Parse_CISTPL_DEVICEGEO, 141
parse Function Extension tuple —

csx_Parse_CISTPL_FUNCE, 147
parse Function Identification tuple —

csx_Parse_CISTPL_FUNCID, 155
parse Geometry tuple —

csx_Parse_CISTPL_GEOMETRY, 157
parse Level-1 Version/Product Information

tuple — csx_Parse_CISTPL_VERS_1, 170
parse Level-2 Version and Information tuple

— csx_Parse_CISTPL_VERS_2, 171
parse Link Target tuple —

csx_Parse_CISTPL_LINKTARGET, 160
parse Manufacturer Identification tuple —

csx_Parse_CISTPL_MANFID, 165
parse Multi-Function tuple —

csx_Parse_CISTPL_LONGLINK_MFC, 163
parse Software Interleaving tuple —

csx_Parse_CISTPL_SWIL, 169
parse Special Purpose tuple —

csx_Parse_CISTPL_SPCL, 167

U
uio structure

add character — ureadc, 638
remove a character — uwritec, 639

uiomove — copy kernel data using uio
structure, 633

unbinds the address in a DMA handle —
ddi_dma_unbind_handle, 293

unfreezestr — freeze, thaw the state of a
stream, 437

uninitialize a buffer structure — biofini, 59
update I/O kstat statistics

— kstat_queue, 462
— kstat_runq_back_to_waitq, 462
— kstat_runq_enter, 462
— kstat_runq_exit, 462
— kstat_waitq_enter, 462
— kstat_waitq_exit, 462
— kstat_waitq_to_runq, 462

update property information.
— ddi_prop_update, 369
— ddi_prop_update_byte_array, 369

Index 667

update property information. (continued)
— ddi_prop_update_int, 369
— ddi_prop_update_int_array, 369
— ddi_prop_update_string, 369
— ddi_prop_update_string_array, 369

V
va_arg — handle variable argument list, 640
va_copy — handle variable argument list, 640
va_end — handle variable argument list, 640
va_start — handle variable argument list, 640
validate Card Information Structure (CIS) —

csx_ValidateCIS, 207
virtual address

return mapped virtual address —
csx_GetMappedAddr, 110

vsprintf — format characters in memory, 642

W
window resources

release window resources —
csx_ReleaseWindow, 198

request window resources —
csx_RequestWindow, 198

write data to mapped device in the memory
space or allocated DMA memory
— ddi_mem_put16, 337
— ddi_mem_put32, 337
— ddi_mem_put64, 337
— ddi_mem_put8, 337
— ddi_mem_rep_put16, 341
— ddi_mem_rep_put32, 341
— ddi_mem_rep_put64, 341
— ddi_mem_rep_put8, 341

write data to the device
— ddi_put16, 372
— ddi_put32, 372
— ddi_put64, 372
— ddi_put8, 372

write data to the mapped device register in I/O
space
— ddi_io_put16, 317
— ddi_io_put32, 317
— ddi_io_put8, 317

write data to the mapped device register in I/O
space (continued)

— ddi_io_putb, 317
— ddi_io_putl, 317
— ddi_io_putw, 317

write data to the mapped memory address,
device register or allocated DMA memory
address
— ddi_rep_put16, 383
— ddi_rep_put32, 383
— ddi_rep_put64, 383
— ddi_rep_put8, 383
— ddi_rep_putb, 383
— ddi_rep_putl, 383
— ddi_rep_putll, 383
— ddi_rep_putw, 383

write multiple data to the mapped device
register in I/O space
— ddi_io_rep_put16, 321
— ddi_io_rep_put32, 321
— ddi_io_rep_put8, 321
— ddi_io_rep_putb, 321
— ddi_io_rep_putl, 321
— ddi_io_rep_putw, 321

write or read a PC Card Configuration Register
— csx_AccessConfigurationRegister, 92

write repetitively to device register
— csx_RepPut16, 182
— csx_RepPut32, 182
— csx_RepPut64, 182
— csx_RepPut8, 182

write to an I/O port
— outb, 497
— outl, 497
— outw, 497
— repoutsb, 497
— repoutsd, 497
— repoutsw, 497

write to device register
— csx_Put16, 174
— csx_Put32, 174
— csx_Put64, 174
— csx_Put8, 174

668 man pages section 9: DDI and DKI Kernel Functions • May 2002

Z
zero fill the device register —

ddi_device_zero, 234

Index 669

670 man pages section 9: DDI and DKI Kernel Functions • May 2002

