
Solaris Common Desktop
Environment: Motif Transition

Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 816–0278–10
May 2002

Copyright 2002 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, OpenWindows, ToolTalk, DeskSet, Rolodex and Solaris are
trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under
license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks
are based upon an architecture developed by Sun Microsystems, Inc. The code and documentation for the DtComboBox and DtSpinBox widgets were
contributed by Interleaf, Inc. Copyright 1993, Interleaf, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2002 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, ou
marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des
marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques
SPARC sont basés sur une architecture développée par Sun Microsystems, Inc. Le code et la documentation pour les produits DtComboBox et
DtSpinBox ont e’te’ fournis par Interleaf, Inc. Copyright 1993, Interleaf, Inc

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

020115@3062

Contents

Preface 7

1 Moving to Motif and CDE 11

Summary of Motif Toolkits 11

Moving to Motif 12

Running Existing Motif Applications on the OpenWindows Desktop 12

Developing Solaris Motif Applications for the OpenWindows Desktop 12

Moving to Solaris CDE 13

Running Existing Applications on the Solaris CDE Desktop 13

Porting OpenWindows Applications to the Solaris CDE Desktop 13

Porting Motif Applications to the Solaris CDE Desktop 13

Developing and Debuggging Applications for the Solaris CDE Desktop 14

2 Motif Environment 15

Motif Packaging in the Solaris Software 15

Compiling and Linking Motif Programs 15

Shared Library Policy 16

3 Solaris Motif Toolkits 17

Motif Toolkits in Solaris Software 17

Solaris 7 Motif 17

IXI Motif 1.2.2 Toolkit 18

Widgets Available for CDE Application Development 19

Solaris Motif Control Widgets 20

CDE Terminal Widget 23

3

Text Editor Widget 24

4 Development Environment Transition Issues 27

Features Exclusive to Solaris CDE 27
OpenWindows Versus Solaris CDE Development Environments 28

GUI Application Builders 28
Drag and Drop 28
ToolTalk Messaging 29
Typing 29
Help 30
Internationalization 31
Fonts 31
Motif Applications and Color 32

5 Toolkit Transition Issues 33

OPEN LOOK Versus Solaris Motif Toolkits 33
Features Only in the OPEN LOOK User Interface 34
Features Only in the Solaris Motif User Interface 34
Notable Implementation Differences Between Toolkits 34

XView Libraries Versus Solaris Motif Libraries 36
Terminology 36
OPEN LOOK Versus Motif Toolkit Architecture 37
Programming Model 38
Differences Between XView and Solaris Motif 39
X Resources 40
External Files 40

OLIT Libraries Versus Solaris Motif Libraries 40
Routines Only in OLIT Library 40
Routines Only in Solaris Motif Libraries 41
Widgets 41

6 Porting Issues and Ideas 45

Elements of Migrating 45
Do You Need to Port? 46

Basic Integration 46
If You Decide to Port 47

Benefits of Porting 47

4 Solaris Common Desktop Environment: Motif Transition Guide • May 2002

Integrating into the Solaris CDE Environment 47
Start Small 48

Convert and Clean Up 48
Use a Motif GUI Builder 49

Architectural Impact 49
GUI and Internals 49
Static Versus Dynamic Layout 50
Study the Target Environment 52
GUI Development Tools 53

Use Transition Tools 53
Tools to Transition to Motif 53
Tools to Transition to the Solaris CDE Desktop 54

Use Existing Code 54
GUI Builder Code 54
Demo Code 55

Tips 55
Floating Menus 55
Colormap Behavior 55

Summary: Things to Keep in Mind 56

7 Porting Example: OPEN LOOK to Solaris Motif 59

OpenWindows 3.4 Snapshot Application 59
Convert 60
Clean Up 61

Consider CDE Style Guidelines 61
Other Design Considerations 62

A User Interaction Changes 65

B Internationalization and CDE 73

Ensure Correct CDE NLS Environment 73
Message Catalog Functions 74
Locale Announcement 74
Character Strings and XmStrings 75

To Convert from Character String to XmString 75
To Convert from XmString to Character String 75

Include app-defaults File 75

Contents 5

Localize Motif Resources 75

Deliver Message Catalog 76

CDE and gencat 76

.msg Files 76

.cat Files 76

Fonts 77

Internationalizing Shell Scripts 77

C Recommended Reading 79

CDE Documentation 79

Development Environment 79

Run-time Environment 80

ToolTalk Documentation 80

Motif 2.1 Documentation 80

Graphical User Interfaces 81

Motif Programming 82

OPEN LOOK Programming 82

Xt/XLib Programming 83

Index 85

6 Solaris Common Desktop Environment: Motif Transition Guide • May 2002

Preface

Solaris Common Desktop Environment: Motif Transition Guide addresses:

� Issues of concern to Sun Motif developers
� How to run existing OPEN LOOK and Motif applications on the OpenWindows™

3.6 and Solaris Common Desktop Environment (CDE) desktops
� Porting OPEN LOOK and Motif applications to the Solaris CDE environment

This manual assumes you are familiar with OPEN LOOK or Motif programming. Use
it in conjunction with Motif and OPEN LOOK manuals to enable your application to
run on the latest Sun desktops.

Note – This book generically uses the terminology Solaris Motif for the Motif toolkit
that is included with either the Solaris CDE unbundled software or the Solaris
software.

Who Should Use This Book
Read Solaris Common Desktop Environment: Motif Transition Guide if you are:

� A Motif programmer interested in developing Solaris Motif applications for the
OpenWindows 3.6 or Solaris CDE desktop

� An OPEN LOOK or Motif programmer, and you want your existing applications to
run on the OpenWindows 3.6 or Solaris CDE desktop with little or no code
modification

� Interested in porting your OPEN LOOK or Motif application to the Solaris CDE
desktop

7

This manual assumes that you are proficient in OPEN LOOK (XView™ or OLIT) or
Motif application development on UNIX® platforms. If you are an OPEN LOOK
developer, it assumes you are familiar with Motif, as well.

Before You Read This Book
If you are considering porting your application to the Solaris CDE desktop, and you
are not familiar with CDE, you should first read:

� Common Desktop Environment: Programmer’s Overview

Common Desktop Environment: Programmer’s Overview provides a high level view of
the CDE development environment components. It also includes an architectural
overview of the entire CDE system, including both the runtime (end user) and
development environments.

� Solaris Common Desktop Environment: User’s Guide

Solaris Common Desktop Environment: User’s Guide provides an in-depth description
of the CDE runtime environment.

See Appendix C for a listing of all the CDE documentation.

How This Book Is Organized
This manual consists of these chapters and appendixes:

Chapter 1 provides a road map to using this manual, depending on what types of
tasks you want to perform on your application.

Chapter 2 contains information for developers writing Solaris Motif applications for
either the OpenWindows or CDE environment.

Chapter 3 describes the Solaris Motif toolkit and identifies the non-standard parts of
the Solaris 2.3 (IXI) Motif toolkit.

Chapter 4 compares and contrasts the OpenWindows and CDE development
environments.

Chapter 5 discusses transitioning your application from an OPEN LOOK graphical
user interface (GUI) to Solaris Motif.

Chapter 6 provides information to consider for porting your OPEN LOOK application
to CDE.

8 Solaris Common Desktop Environment: Motif Transition Guide • May 2002

Chapter 7 presents a simple porting example.

Appendix A describes the user interaction changes from the OPEN LOOK to the CDE
user model.

Appendix B describes the things you must do differently from the OpenWindows
environment to internationalize an application for the CDE desktop.

Appendix C lists books and articles on issues related to OPEN LOOK, Motif, and CDE
application development.

Related Books
For a list of the CDE documentation and reading material of interest to OPEN LOOK
and Motif developers, see Appendix C.

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com.

Typographic Conventions
The following table describes the typographic changes used in this book.

Preface 9

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; on-screen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace with
a real name or value

To delete a file, type rm
filename.

AaBbCc123 Book titles, new words, or terms, or
words to be emphasized.

Read Chapter 6 in User’s Guide.

These are called class options.

You must be root to do this.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

10 Solaris Common Desktop Environment: Motif Transition Guide • May 2002

CHAPTER 1

Moving to Motif and CDE

This chapter discusses the different types of Motif available to Solaris CDE developers,
and provides the paths through this manual for the different tasks you may want to
perform in relation to them.

� “Summary of Motif Toolkits” on page 11
� “Moving to Motif” on page 12
� “Moving to Solaris CDE” on page 13

Summary of Motif Toolkits
This section summarizes the differences between the Motif toolkits supported by the
Solaris environment. Any Solaris Motif application that is compiled on the Solaris 2.4,
2.5, 2.5.1, or 2.6 operating environment is binary compatible with Solaris 7 CDE.

� Solaris 7 Motif: Based on The Open Group’s Motif 2.1 with additional bug fixes and
enhancements. The Solaris 7 software always includes the Motif toolkit.

� Solaris 2.6 Motif: Based on OSF/Motif 1.2.5 with additional bug fixes and
enhancements. The Solaris 2.6 software always includes the Motif toolkit.

� Solaris 2.5.1 Motif: Based on OSF/Motif 1.2.3 with additional bug fixes and
enhancements. The Solaris 2.5.1 software always includes the Motif toolkit.

� Solaris 2.5 Motif: Based on OSF/Motif 1.2.3 with additional bug fixes and
enhancements. The Solaris 2.5 software always includes the Motif toolkit.

� Solaris 2.4 Motif: Based on OSF/Motif 1.2.3 with additional bug fixes and
enhancements. The exact release of Motif depends on what version of CDE has
been installed on that system. The Solaris 2.4 software does not always include the
Motif toolkit.

� Motif available for Solaris 2.3: A version of IXI Motif based on OSF/Motif 1.2.2. An
application compiled with this Motif library may not run on later versions of
Solaris. However any Solaris 2.3 Motif application that is currently running on

11

Solaris 2.4, 2.5, or 2.5.1 will run on Solaris 2.6 in the same way. The Solaris 2.3
software does not always include the Motif toolkit.

Note – In the Solaris CDE environment, you gain access to additional widgets (such as
a menu button widget and a terminal emulator widget and library) through the
libDtWidget library. See Chapter 3 for more details.

Moving to Motif
Programming or porting tasks you probably want to perform in relation to Motif are:

� Running existing Motif applications on the OpenWindows 3.6 desktop
� Developing Solaris Motif applications for the OpenWindows 3.6 desktop

Running Existing Motif Applications on the
OpenWindows Desktop
Any standard Motif 1.2 or Solaris Motif application will run on the OpenWindows 3.6
desktop.

Developing Solaris Motif Applications for the
OpenWindows Desktop
If you are familiar with Motif and want to develop a Solaris Motif application for the
OpenWindows 3.6 desktop, read Chapter 2.

You might also want to read Chapter 3, which compares the Motif toolkits that the
Solaris environment supports.

If you are an OPEN LOOK developer and want to develop a Solaris Motif application
for the OpenWindows 3.6 desktop, you should read the chapters and appendixes just
mentioned in this section. In addition, read:

� Chapter 5, for a comparison of the OPEN LOOK and Motif graphical user interface
(GUI) and widgets.

� Chapter 6, particularly those parts pertaining to GUI transitions.
� “Motif 2.1 Documentation” on page 80 and “Motif Programming” on page 82 for

lists of books that will familiarize you with Motif programming.

12 Solaris Common Desktop Environment: Motif Transition Guide • May 2002

Moving to Solaris CDE
You do not need to port your OPEN LOOK or Motif application to the Solaris CDE
environment for it to run on the Solaris CDE desktop. However, if you decide to port,
refer to the CDE documentation and read the chapters mentioned below. See “CDE
Documentation” on page 79 for a list of the available CDE documentation.

The main programming or porting tasks you probably want to perform in relation to
Solaris CDE are:

� Running existing OLIT, XView, or Motif applications on the Solaris CDE desktop
� Porting OpenWindows applications to the Solaris CDE desktop
� Porting Motif applications to the Solaris CDE desktop
� Developing Solaris Motif applications for the Solaris CDE desktop

Running Existing Applications on the Solaris CDE
Desktop
Existing OLIT, XView, or Motif applications will run on the Solaris CDE desktop.

If you want your application to appear integrated with the Solaris CDE desktop but
do not want to modify your application code, you can perform basic integration. This
first level of Solaris CDE integration is described in “Basic Integration” on page 46.

Porting OpenWindows Applications to the Solaris
CDE Desktop
Existing OpenWindows applications can run unmodified on the Solaris CDE desktop.
If you want to move your applications to the Solaris CDE environment and to begin
using its broader set of standard services, read this book to help you understand the
differences between the OPEN LOOK and Motif toolkits, and the OpenWindows and
Solaris CDE desktops.

Porting Motif Applications to the Solaris CDE
Desktop
If your application is Motif 2.1 style guide-compliant, you are well on your way to it
being CDE style guide-compliant. Solaris Motif is based on the Motif 2.1 toolkit and
the CDE style guide is based on the Motif 2.1 style guide. Still, you may have to make
some GUI changes to port your application to Solaris Motif.

Chapter 1 • Moving to Motif and CDE 13

To help port your Motif application to the Solaris CDE desktop, read:

� Chapter 3, to find out about the enhancements in Solaris Motif and the CDE
widgets available to you

� Chapter 4, which compares and contrasts the OpenWindows and Solaris CDE
development environments

Refer to the checklist in the Common Desktop Environment: Style Guide and Certification
Checklist to see how the CDE style guidelines are similar to and differ from those for
Motif 1.2.

Developing and Debuggging Applications for the
Solaris CDE Desktop
Solaris CDE shared libraries are built with the latest Solaris loader technology to
optimize their interfaces and performance. This technology conflicts with debuggers
that were released prior to SPARCworks version 3.0.1. Therefore, use SPARCworks
version 3.0.1 or later when developing and debugging applications in CDE.

Developing Solaris Motif Applications
If you are familiar with Motif and want to develop a Solaris Motif application for the
Solaris CDE desktop, refer to the CDE documentation.

If you are an OPEN LOOK developer and want to develop a Solaris Motif application
for the Solaris CDE desktop, read this book and refer to the CDE documentation.

In either case, see Appendix C for a list of the CDE documentation as well as other
books to help you with Motif programming.

Solaris CDE Naming Conventions
Solaris CDE uses the prefixes DT and SDT in uppercase and lowercase combinations,
in names for desktop clients, desktop libraries, and so on. Do not use these prefixes in
any Solaris CDE desktop application you write.

14 Solaris Common Desktop Environment: Motif Transition Guide • May 2002

CHAPTER 2

Motif Environment

This chapter contains information for developers writing Solaris Motif applications for
either the OpenWindows or Solaris CDE environment.

� “Motif Packaging in the Solaris Software” on page 15
� “Compiling and Linking Motif Programs” on page 15
� “Shared Library Policy” on page 16

Motif Packaging in the Solaris Software
The Motif runtime support in the Solaris 2.6 software includes the following:

� Shared libraries
� Header files
� Key bindings
� uil compiler
� Man pages
� Demos and sample source

The Motif header files required for application development are located in
/usr/dt/include. The Motif libraries are located in /usr/dt/lib.

Compiling and Linking Motif Programs
When you compile Motif programs, include the following compiler syntax to enable
the compiler to find the Motif and X Window System™ header files:

-I/usr/dt/include -I/usr/openwin/include

15

Use the following compiler syntax to direct the linker to the correct shared libraries as
shown in the following:

-R/usr/dt/lib -R/usr/openwin/lib -L/usr/dt/lib -L/usr/openwin/lib

The following is an example of a compile-and-link line for a Motif application:

cc -o myprog -I/usr/dt/include -I/usr/openwin/include myprog.c \
-R/usr/dt/lib -R/usr/openwin/lib -L/usr/dt/lib \

-lXm -L/usr/openwin/lib -lXt -lX11

Shared Library Policy
Sun will increment the major version number of each shared Motif library whenever
there are binary-incompatible differences from the previous release. Sun will make
available (either on the Motif distribution or through some other channel) all prior
versions of each library. This will ensure that your applications linked with a
particular release can continue to run, even after a new Motif release has been
installed.

16 Solaris Common Desktop Environment: Motif Transition Guide • May 2002

CHAPTER 3

Solaris Motif Toolkits

This chapter provides some information about Solaris 2.6 Motif and IXI Motif, and
introduces the widgets available for Solaris CDE application development.

� “Motif Toolkits in Solaris Software” on page 17
� “Widgets Available for CDE Application Development” on page 19

Motif Toolkits in Solaris Software
This section discusses the Solaris 2.6 Motif and IXI Motif toolkits. For a summary of
the differences between the Motif toolkits available for Solaris application
development, see “Summary of Motif Toolkits” on page 11.

Solaris 7 Motif
Solaris 7 Motif: Based on The Open Group’s Motif 2.1 with additional bug fixes and
enhancements. The Solaris 7 software always includes the Motif toolkit.

Enhancements to Existing Motif 2.1 Functionality
The Solaris Motif library contains minor enhancements to Motif 2.1 usability to
emulate certain OPEN LOOK user interface and Microsoft® Windows features. The
usability enhancements include:

� Optionally allowing mouse button 2 on a three-button mouse to be used to extend
the current selection. This is equivalent to the OPEN LOOK Adjust function.

� Allowing mouse button 3 to activate a CascadeButton menu (for OPEN LOOK
compatibility).

17

� Ability to re-map keybindings to be consistent with those for OPEN LOOK or
Microsoft Windows applications.

Solaris CDE Libraries for Motif

Motif Library (libXm)

Solaris CDE provides all the Motif 1.2.5 header files. The Solaris CDE libraries for
Motif are the Motif 1.2.5 libraries with bug fixes and enhancements.

Motif UIL library (libUill)

The Motif user interface language (UIL) is a specification language for describing the
initial state of a Motif application’s user interface. The CDE version of the Motif UIL
library is essentially unchanged from the Motif 1.2.5 version.

Include the UilDef.h header file (found in the /usr/dt/include/uil directory) to
access UIL.

Motif Resource Manager Library (libMrm)

The Motif resource manager (MRM) is responsible for creating widgets based on
definitions contained in user interface definition (UID) files created by the UIL
compiler. MRM interprets the output of the UIL compiler and generates the
appropriate argument lists for widget creation functions. Use libMrm to access the
Motif resource manager. The CDE version is essentially unchanged from the Motif
version.

Include the Mrm/MrmPublic.h header files to access libMrm in your application.

Related Documentation
See the OSF/Motif Programmer’s Reference for information on UIL, the UIL compiler,
UID, and Mrm.

IXI Motif 1.2.2 Toolkit
The IXI Motif 1.2.2 toolkit, which was available for Solaris 2.3 software development,
contains some incompatibilities with standard OSF/Motif 1.2.2. These features are not
part of the OSF/Motif 1.2 specification, and are not present in the Solaris 2.4 and later
Motif toolkits.

18 Solaris Common Desktop Environment: Motif Transition Guide • May 2002

XmList convenience functions
The following are the nonstandard functions in IXI Motif. Remove them from your
application code if you have used them:

� XmListRecolorItem()
� XmListRecolorPos()
� XmListSetClientDataPos()
� XmListSetClientDatasPos()

XmForm widget
The XmForm widget implementation in IXI Motif and OSF/Motif 1.2.2 are different,
although the APIs are identical. Hence, applications linked with IXI Motif can exhibit
minor behavioral or visual differences in the XmForm widget when they are re-linked
with OSF/Motif.

The Solaris Motif toolkits use the OSF/Motif XmForm widget implementation, which
is binary compatible with the OSF/Motif 1.2.2, but not the IXI Motif, XmForm widget.

Complex Text Layout (CTL) Support
Solaris 7 software supports the five new CTL widgets introduced by Motif 2.1. This is
achieved by a single binary developed on the Solaris 7 operating environment that
provides advanced and standard support for Hebrew, Arabic and Thai customers.

The following new Motif widgets are supported.

� XmNotebook is a full featured widget that provides functionality similar to a
notebook or “tab” widget

� XmContainer is a full featured GUI icon “tree” display widget
� XmSpinBox is a user control to increase and decrease a numerical text field
� XmScale widget has changed to provide a new vertical display

Widgets Available for CDE Application
Development
This section discusses the widgets available for Solaris CDE application development,
as an extension to Solaris Motif.

Chapter 3 • Solaris Motif Toolkits 19

Solaris Motif Control Widgets
The Solaris Motif control widgets are designed to ease porting OPEN LOOK
applications to the Solaris CDE desktop by providing equivalent functionality in
Solaris Motif. These widgets are not considered to be part of Solaris Motif, but rather
an extension to Solaris Motif. The libDtWidget library contains widgets and
functions that are used to provide common functionality across all CDE applications.
The widgets provided include:

TABLE 3–1 CDE Control Widgets

Widget Name Description

DtSpinBox TextField widget with additional controls for incrementing and
decrementing numeric values, or browsing through and selecting from a
list of text strings. Can be read-only. DtSpinBox is functionally similar
to the OPEN LOOK numeric text field.

DtComboBox Combination of TextField and pop-up list widgets that provides a list
of valid choices for the TextField. Can be read-only.

DtMenuButton Command widget that provides the menu cascading functionality of an
XmCascadeButton widget outside of a menu bar, or a menu pane.
DtMenuButton is functionally equivalent to the OPEN LOOK menu
button.

20 Solaris Common Desktop Environment: Motif Transition Guide • May 2002

Examples of each type of widget follow:

� Text field and arrow button widget (DtSpinBox)

� Text field and list box widget (DtComboBox)

Chapter 3 • Solaris Motif Toolkits 21

� Menu button widget (DtMenuButton)

The DtComboBox custom widget calls the Selection Callback of the Combo Box
widget, instead of the List widget, when the browseSelectCallback or the
defaultActionCallback is triggered for the List widget of a Combo Box.

This action may cause failure for applications that rely on the List widget Selection
callback to be called when the List widget’s browseSelectCallback or
defaultActionCallback is triggered.

Note – The Solaris CDE software supports all Motif 1.2 widgets.

Compatibility with Motif 2.1
The APIs of the DtSpinBox and DtComboBox widgets are similar to the Motif 2.1
release of XmSpinBox and XmComboBox widgets. The APIs are designed so an
application can easily switch to the Motif 2.1 version of these widgets. The main thing
you need to do to switch is to change the Dt names for the class, types, and creation
routines to Xm.

22 Solaris Common Desktop Environment: Motif Transition Guide • May 2002

This information is supplied in case you choose to port your application to Motif 2.1
but this is not a recommendation that you do so.

Note – The Solaris CDE software does not guarantee strict API or binary compatibility
between its widgets and the Motif 2.1 widgets.

Library and Header Files
The library libDtWidget provides access to the DtSpinBox, DtComboBox, and
DtMenuButton widgets. The libDtWidget header files for these widgets are:

� Dt/SpinBox.h
� Dt/ComboBox.h
� Dt/MenuButton.h

Demo Programs
You can find the Solaris Motif control widgets demos in
/usr/dt/examples/dtwidget. Read the README file for detailed information on
the demos.

Related Documentation

For more information on Solaris Motif control widgets, see the relevant man pages and
Solaris Common Desktop Environment: Programmer’s Guide.

CDE Terminal Widget
The DtTerm widget is part of the Solaris CDE development environment. It provides
the functionality required to emulate an ANSI X3.64-1979-style terminal (specifically a
DEC® VT220-like terminal with extensions). The Terminal widget library,
libDtTerm, provides the DtTerm widget for adding a terminal window to a GUI. If
you include a terminal in your application, use Solaris Motif widgets to add display
enhancements to it such as pop-up menus and scrollbars.

The Solaris CDE Terminal application, which is a part of the runtime environment, is a
window that behaves as a terminal, enabling access to traditional terminal-based
applications from within the desktop. The DtTerm widget is the foundation for the
desktop runtime terminal.

The libDtTerm library includes a set of convenience functions to create, access, and
support the DtTerm widget.

Chapter 3 • Solaris Motif Toolkits 23

Library and Header Files
The libDtTerm library provides a set of widgets based on Motif for designing a
terminal or for adding a terminal window to a GUI.

Include the Dt/Term.h header file to access libDtTerm APIs in your application.

Demo Programs
You can find the DtTerm demos in /usr/dt/examples/dtterm. See the README
file for detailed information on the demos.

Related Documentation

For more information on the DtTerm widget, see the relevant man pages.

For more information on the desktop terminal application, see the terminal help
volume, the relevant man pages, or Solaris Common Desktop Environment: User’s Guide.

Text Editor Widget
The CDE text editing system consists of two components:

� The Text Editor application, which provides editing services through graphical,
action, and ToolTalk interfaces

� The editor widget, DtEditor, which provides a programmatic interface for the
following editing services:

� Cut and paste
� Search and replace
� Simple formatting
� Spell checking (for 8-bit locales)
� Undo previous edit
� Enhanced I/O handling capabilities that support input and output of ASCII

text, multibyte text, and buffers of data
� Support for reading and writing files directly

Although the Motif text widget also provides a programmatic interface, applications
that want to assure a system-wide uniform editor should use the DtEditor widget.
The CDE Text Editor and Mailer applications use the editor widget. Use this widget in
the following circumstances:

� You need the functionality, such as spell checking, undo, and find/change, that is
provided by the DtEditor widget.

24 Solaris Common Desktop Environment: Motif Transition Guide • May 2002

� You want users to be able to read and write data to and from a file.

� When your program does not need to edit the text while the widget has control of
the text.

Library and Header Files
The DtEditor widget is in the libDtWidget library. The header file is
Dt/Editor.h.

Demo Programs
A demo containing an example of the DtEditor widget (editor.c) is in
/usr/dt/examples/dtwidget directory. Read the README file for detailed
information on the demo.

Related Documentation

For more information on the Text Editor widget, see the relevant man pages and
Solaris Common Desktop Environment: Programmer’s Guide.

Chapter 3 • Solaris Motif Toolkits 25

26 Solaris Common Desktop Environment: Motif Transition Guide • May 2002

CHAPTER 4

Development Environment Transition
Issues

If you want to port an OPEN LOOK or Motif application to the Solaris CDE desktop,
you need to consider the development environment transition as well as the graphical
user interface (GUI) transition. The OpenWindows and Solaris CDE development
environments are different in many ways but similar in others. This chapter compares
and contrasts the two development environments.

� “Features Exclusive to Solaris CDE” on page 27
� “OpenWindows Versus Solaris CDE Development Environments” on page 28

The Solaris CDE desktop is based on the same X server as is part of the OpenWindows
environment. For example, you can access Display PostScript™ (DPS), and the XIL™
and XGL™ libraries from Solaris CDE.

Features Exclusive to Solaris CDE
This section briefly describes the features of the Solaris CDE development
environment that do not appear in the OpenWindows environment in any analogous
form.

� Desktop Korn shell: Provides a way to engage in graphic user interaction through
shell scripts. See Common Desktop Environment: Desktop KornShell User’s Guide for
detailed information on desktop Kornshell.

� Workspace Manager: Provides support for multiple workspaces. Each workspace is
a virtual screen. Most desktop applications can run as expected without knowledge
of the Workspace Manager. See Common Desktop Environment: Programmer’s
Overview and Solaris Common Desktop Environment: Programmer’s Guide for more
information on the Workspace Manager.

27

OpenWindows Versus Solaris CDE
Development Environments
This section contrasts some of the functionality that OpenWindows and Solaris CDE
development environments have in common, but that might be implemented
differently.

GUI Application Builders
Both the OpenWindows and Solaris CDE development environments contain GUI
application builders.

� The OpenWindows Developer’s Guide (Devguide) is a tool that helps produce the
GUI for OPEN LOOK applications. Devguide has code generators that produced
XView and OLIT source code. The Devguide Motif Conversion Utilities product,
which was first shipped with the Solaris 2.3 release, produces Motif code from
Devguide GIL files.

� CDE Application Builder (App Builder) produces Solaris Motif code. It also enables
you to integrate some of the desktop services into your application; for example,
drag and drop, ToolTalk messaging, sessioning, help, and internationalization. If
you used Devguide to create your application, you can use App Builder’s
GIL-to-BIL converter to create BIL files, which is the format the App Builder uses.

If you have used Devguide to build an application, the CDE Application Builder will
feel very familiar to you. The palette is visually similar. Much of the Devguide
functionality is retained, such as the Build and Test feature and the ability to build
projects.

See Common Desktop Environment: Programmer’s Overview and Common Desktop
Environment: Application Builder User’s Guide for more information on App Builder.

Drag and Drop
The underlying basic functionality of OpenWindows drag and drop and CDE drag
and drop are similar. Both versions of drag and drop contain general purpose APIs
that provide the same outcome from a user’s perspective.

However, CDE drag and drop also provides a convenience API that serves two
purposes:

� It is easier to use than the APIs that Motif 1.2.3 provides
� It defines and implements data transfer policies

28 Solaris Common Desktop Environment: Motif Transition Guide • May 2002

The OpenWindows environment has conventions for drag and drop policies, but it is
up to the developer to implement the policies. If you use drag and drop in your OPEN
LOOK application, much of the data transfer code you wrote can be condensed by
using the CDE convenience APIs.

See Common Desktop Environment: Programmer’s Overview and Solaris Common Desktop
Environment: Programmer’s Guide for more information on CDE drag and drop.

ToolTalk Messaging
OpenWindows ToolTalk messaging is compatible with the CDE ToolTalk Messaging
Service. In addition to the OpenWindows ToolTalk functionality, the CDE ToolTalk
Messaging Service provides:

� Two standard ToolTalk protocols known as message sets

� tttrace

The tttrace utility is a debugging tool that helps monitor ToolTalk API calls and
ToolTalk’s internal message processing.

� ttsnoop

The ttsnoop utility is a debugging tool that helps monitor messages that are sent
between your application and other applications.

See Common Desktop Environment: Programmer’s Overview, Common Desktop
Environment: ToolTalk Messaging Overview, and the tttrace(1) and ttsnoop(1)
man pages for more information on the CDE extensions of ToolTalk.

Typing
The OpenWindows classing engine identifies the characteristics, or attributes, of files.
The classing engine specifies attributes such as print method, icons, and open
commands for specific file types. The classing engine consists of two parts:

� A database that stores file type names and attributes
� A collection of routines that query the database

The Solaris CDE data typing and actions form the analog of the classing engine. The
data-typing mechanism consists of two tables (DATA_ATTRIBUTES and
DATA_CRITERIA) that specify attributes such as icons, actions, and commands for
specific file types. DATA_CRITERIA corresponds to the classing engine’s File name
space. DATA_ATTRIBUTES corresponds to the classing engine’s Type name space.
The actions field in the DATA_ATTRIBUTES table corresponds to the former print and
open methods in the classing engine. In the Solaris CDE development environment, it
acts as a reference to another table called ACTION, and is greatly enhanced over the
former classing engine methods.

Chapter 4 • Development Environment Transition Issues 29

See Common Desktop Environment: Programmer’s Overview and Solaris Common Desktop
Environment: Programmer’s Guide for more information on data typing and actions.

Help
CDE help differs from OpenWindows help in three areas:

� User model
� Programming tasks
� Richness of help system

See Common Desktop Environment: Programmer’s Overview and Common Desktop
Environment: Help System Author’s and Programmer’s Guide for more information on the
CDE help system.

User Model
The OpenWindows user model is very simple. The user places the pointer over the
portion of the application he wants help on, and presses the Help key.

The CDE user model is similar but slightly different. The user receives help from that
portion of the application that has input focus. That is, the user must select a portion
of the application and then press the Help key to receive help on that portion.

CDE help provides on item help for those objects that cannot get input focus. You must
provide an On Item selection in your application’s Help menu so users can access help
for those items.

� Programming Tasks
Writing OLIT and XView help is very similar. In either case, your application provides
the text appropriate for a widget or object, respectively. The OpenWindows window
manager determines which application is responsible when the user presses the Help
key, and dispatches an event to that application.

OLIT has a specialized Help widget, and XView has a Help frame, that puts the right
information into the Help dialog display area and makes the dialog appear on the
screen. You either have to include a function call to OLRegisterHelp() in OLIT, or
set an object attribute in XView, to enable help on a widget (object).

To provide CDE help with your application, you must:

1. Establish help callbacks on all relevant widgets.

These callbacks must be able to provide the help information for the associated
widgets.

30 Solaris Common Desktop Environment: Motif Transition Guide • May 2002

2. Create and manage the help dialogs.

CDE provides DtHelpDialog and DtHelpQuickDialog widgets to create help
dialog boxes and quick help dialogs. CDE has one shared help dialog that displays
help.

3. Implement on item help.

Common Desktop Environment: Help System Author’s and Programmer’s Guide provides
source code to do this.

Richness of Help System
OpenWindows help has a single help dialog in which you can place text only. CDE
help is much richer. CDE provides both quick and full help. You can also include
much more than just text in your help dialogs; for example, color graphics and
hyperlinks. The user can print help and also use navigation facilities to stack and
traverse help attached to different widgets.

Internationalization
You can internationalize an OpenWindows, as well as a CDE, application. The steps to
internationalize an OpenWindows application that are different in CDE than in the
OpenWindows environment are documented in Appendix B .

See Common Desktop Environment: Programmer’s Overview and Common Desktop
Environment: Internationalization Programmer’s Guide for more information on
internationalizing a CDE application.

Fonts
In the OpenWindows environment, the default font type is Lucida. The same is true
for the CDE desktop, so the CDE user will see no font style differences from the
OpenWindows desktop.

Fonts in the OpenWindows environment have proprietary font names, whereas CDE
is open. All CDE font names start with -dt- and are common across all CDE
platforms. Both CDE and OpenWindows fonts follow the X11 XLFD font
specifications.

In both the OpenWindows and CDE environments, your application should not
override the system font defaults. This enables the user to customize his desktop. In
the OpenWindows environment, the user can choose font type and style through the
Workspace Properties desktop application. In CDE, the user can choose font size
through the Style Manager.

Chapter 4 • Development Environment Transition Issues 31

In the OpenWindows environment, you have to specify fonts for any locale in which
you want your application to run. By using the CDE Interface fonts, your application
will run the same across all locales and desktops. If you use Application fonts, you
must still specify fonts for Asian locales.

The CDE font aliases are in /usr/dt/config/xfonts/<locale>, where <locale> is
the directory corresponding to the locale in which you are interested. The default font
resources that the Style Manager uses are in /usr/dt/config/<locale>/sys.fonts.

See Common Desktop Environment: Programmer’s Overview and Solaris Common Desktop
Environment: Programmer’s Guide for more information on CDE fonts.

Motif Applications and Color
The CDE environment changes the color threshold values for Motif; hence, Motif
applications may have different colors under Solaris CDE from those in the
OpenWindows environment.

32 Solaris Common Desktop Environment: Motif Transition Guide • May 2002

CHAPTER 5

Toolkit Transition Issues

This chapter describes toolkit terminology, common widgets, CDE exclusive widgets,
and high-level widgets, and provides information about the different libraries.

� “OPEN LOOK Versus Solaris Motif Toolkits” on page 33
� “XView Libraries Versus Solaris Motif Libraries” on page 36
� “OLIT Libraries Versus Solaris Motif Libraries” on page 40

OPEN LOOK Versus Solaris Motif
Toolkits
When you compare an OPEN LOOK application with its Solaris Motif counterpart, a
few contrasting visual elements are immediately apparent. For example, the OPEN
LOOK buttons are round whereas the Solaris Motif buttons are square. The shading
applied to buttons and other objects for a three-dimensional appearance are also
different. Although such cosmetic elements do not affect a program’s behavior, and
can often be disregarded when porting, your application will not be CDE style-guide
compliant if you deviate from the CDE look.

Several differences are often significant in a conversion effort. The most critical of these
features and other GUI elements are summarized in three sections:

� Aspects of the OPEN LOOK user interface that are missing from Solaris Motif
� Aspects of Solaris Motif that do not appear in the OPEN LOOK user interface
� Features or other elements that appear in both specifications but are implemented

differently

See the Preface for a list of style guides and other references that describe the OPEN
LOOK and Solaris Motif GUIs.

33

See Appendix A for a more detailed list of the user interaction changes from OPEN
LOOK to CDE.

Features Only in the OPEN LOOK User Interface
The following features are found in the OPEN LOOK user interface and are
implemented in XView or OLIT (or both) but do not appear in Solaris Motif:

� Split window control

� Scrollbar anchors

� Defaults of the menu

� Automatic default; shortcut method for selecting the default
� Default menu item indicated by a ring

� Font chooser widget

� Pointer warping in notices

� Can drop onto minimized windows (icons)

Features Only in the Solaris Motif User Interface
The following features are found in Solaris Motif and not in the OPEN LOOK user
interface:

� Front Panel

� Tools for producing and registering help volumes with hypertext capabilities

� Additional user interface objects (widgets) available for applications and specified
in the CDE Style Guide

Notable Implementation Differences Between
Toolkits
Many features are roughly equivalent in the OPEN LOOK user interface and Solaris
Motif but have significant implementation differences. The following are the most
important differences:

� Tear off Menus
� Input focus indicators
� Widget classes (sliders and gauges versus scales, for example)
� Secondary text selections

Other significant differences include the following:

34 Solaris Common Desktop Environment: Motif Transition Guide • May 2002

� Keyboard bindings
� The window manager controls associated with each window
� Internalization
� Mouse button behavior

The remainder of this section provides information on some of these features.

Tear-off Menus
In Solaris Motif, tear-off menus replace the pinned menus of the OPEN LOOK user
interface. Selecting the dashed line on the top of the menu “tears-off” the menu.

Secondary Text Selection
The OPEN LOOK secondary text selection is roughly analogous to the Motif quick
transfer mechanism.

Window Controls
One of the most critical implementation differences involves window controls. When
the Motif user presses the Window menu button in the upper left corner of the title
bar, or the OPEN LOOK user presses the MENU button anywhere on the window
background (including the header), a menu is displayed. The options offered under
the two GUIs introduce a key contrast.

The Motif Window menu offers a choice of Restore, Move, Size, Minimize, Maximize,
Lower, and Close. The OPEN LOOK base Window menu offers Close, Full Size,
Properties, Back, Refresh, and Quit. The two lists are fundamentally the same, but
have very different effects.

In the OPEN LOOK user interface, the Close option minimizes (iconifies) the window,
and Quit terminates the application.

In Motif, the Minimize option minimizes the window, and the Close option terminates
the application. Many users familiar with the OPEN LOOK user interface have found
themselves exiting a Motif program when their intent was to close its window to an
icon.

Mouse Button Behavior
The structure of the mouse buttons is very similar in both specifications; however, the
difference is significant enough to cause some confusion.

Table 5–1 shows the default left-to-right mapping of the three OPEN LOOK mouse
buttons.

Chapter 5 • Toolkit Transition Issues 35

TABLE 5–1 OPEN LOOK Mouse Buttons

BUTTON Description

SELECT Specifies an object or manipulates objects and controls, drag

ADJUST Extends or reduces the number of selected objects

MENU Displays a menu associated with the pointer location or

specified object

The three Motif mouse button assignments, described in Table 5–2 , also start by
default with the left mouse button.

TABLE 5–2 Motif Mouse Buttons

Button Description

BSelect Selects, activates, and sets the location cursor, drag

BTransfer Moves and copies elements, drag and drop transfer. Can be customized
to be the OPEN LOOK Adjust button.

BMenu Displays menus

XView Libraries Versus Solaris Motif
Libraries
This section compares the XView and Solaris Motif libraries.

Terminology
The XView toolkit and the Xt (OLIT and Motif) toolkits use the following terminology:

XView Xt (OLIT and Motif)

Package Widget

Attribute Resources

Frame Shell

XView is based directly on Xlib, whereas Motif is based on the Intrinsics (Xt) toolkit
and the Intrinsics toolkit is based on Xlib.

36 Solaris Common Desktop Environment: Motif Transition Guide • May 2002

XView OLIT Motif

XLib Xt Xt

XLib XLib

Because of this fundamental difference, the basic library functions to initialize the
environment and create, modify and destroy graphical objects, are different, as shown
in the following examples:

XView Motif/Xt

xv_init() XtAppInitialize()

xv_create() XtCreateWidget()

xv_set() XtSetValues()

xv_destroy() XtDestroyWidget()

Functions that deal with event handling callbacks, and internationalization features,
for example, get more complicated. For these features, simple one-to-one
correspondence does not exist.

OPEN LOOK Versus Motif Toolkit Architecture
OLIT and Motif have very similar architectures whereas XView and Motif do not.
When migrating from XView to Motif, you should note these toolkit differences.

The XView toolkit implements both the user interface objects, called packages, and the
routines and processes that hold the interface together (creation routines, event
processing, and so on), while Motif and OLIT implement basically just the user
interface object, widgets, leaving the routines and processes to the Intrinsics library. For
example, xv_init() is a function that is in the XView library. The corresponding
function to use for OLIT or Motif programming, XtAppInitialize(), is in the Xt
Intrinsics library.

The three toolkits represent two different GUIs. The appearance of the XView and
OLIT toolkits are similar, whereas the appearance of Solaris Motif is noticeably
different. Although there is a rough one-to-one correspondence between the function
calls in the libraries, the behavior of parallel programs is different. That is, even after
an OLIT (or XView) program has been converted to use the Solaris Motif library, it still
to some degree has an OPEN LOOK appearance. A program in such a state does not
adhere to either style completely.

Chapter 5 • Toolkit Transition Issues 37

Programming Model
Although the APIs are different, both XView and Motif are based on the same
object-oriented methodology for programming a user interface:

� Initialize the toolkit

� Instantiate user interface objects

� Register callbacks on the user interface objects

� Enter event loop, waiting for user to generate events on the user interface objects

The overall structure of a program being ported from XView to Motif can remain
intact even though all the function calls must be converted from one API to the other.

Common Types of User Interface Objects
Both XView and Motif are user interface toolkits that support some common types of
user interface objects. However, XView implements many of these objects at a higher
level that requires more than one Motif widget to produce the equivalent of a single
XView object.

Table 5–3 lists the basic mapping of common objects for XView and its equivalent
Solaris Motif widget:

TABLE 5–3 Basic Mapping of Common Objects.

XView Package Equivalent Solaris Motif Widget

Base Frame XmTopLevelShell + XmMainWindow

Command Frame XmDialogShell + XmBulletinBoard

Notice XmDialogShell + XmMessageBox (MessageDialog)

Canvas XmScrolledWindow + XmDrawingArea

Panel XmBulletinBoard or XmForm

Panel Button XmPushButton

Menu Button DtMenuButton (not accessible in OpenWindows
environment)

Abbrev Menu Button XmRowColumn (Option Menu)

Checkbox XmRowColumn + XmToggleButtons (CheckBox)

Exclusive Choice XmRowColumn + XmToggleButtons (Radio Box)

Scrolling List XmScrolledWindow + XmList

Message XmLabel

38 Solaris Common Desktop Environment: Motif Transition Guide • May 2002

TABLE 5–3 Basic Mapping of Common Objects. (Continued)
XView Package Equivalent Solaris Motif Widget

Slider XmScale

Text Field XmTextField

Numeric Text Field DtSpinBox (not accessible in OpenWindows environment)

Text SubWindow XmScrolledWindow + XmText (ScrolledText)

TTY SubWindow XmScrolledWindow + XmTermPane;

DtTerm (not accessible in OpenWindows environment)

Scrollbar XmScrollBar

Popup Menu XmMenuShell + XmRowColumn (Popup Menu)

Pulldown Menu XmMenuShell + XmRowColumn (Pulldown Menu)

Pullright Menu XmMenuShell + XmRowColumn (Pulldown Menu)

File Chooser XmDialogShell + XmFileSelectionBox

Differences Between XView and Solaris Motif
XView abstracts a number of other X11 functions that Motif (Xt) does not. In order to
get equivalent functionality in Motif, these must be re-coded with direct Xlib calls.

The XView packages with no Motif equivalents are:

� Icon
� Server Image
� Colormap Segment (CMS)
� Cursor
� Fullscreen
� Server
� Font

Additionally, no Solaris Motif equivalent exists for the OPEN LOOK user interface
functionality that splits windows into different views. To implement this function, you
must subclass one of the Motif Manager widgets.

Some XView functions can be coded with the Motif/Xt API; however, these APIs are
significantly different, and require complete redesign and recoding. These functions
are:

Chapter 5 • Toolkit Transition Issues 39

XView API Motif/Xt

Selection service Xt selection API

Drop target package Motif drag-and-drop API1

Notifier Xt event management API

1. If you are porting to CDE, use the CDE drag-and-drop API. It is an extension of the Motif 1.2 drag-and-drop API
and is easier to use.

X Resources
The X resources that control the behavior and appearance of XView and Motif
applications are different. XView objects may not necessarily have instance names
attached to them, unlike Motif/Xt objects. XView resources are independent of
instance names. For example, Window.Foreground.Color affects all relevant
XView objects.

Motif/Xt resources contain either class or instance names, for example,
mainframe.control_panel.button1.foreground. To make Xt resources affect
more than one object, use wildcards and class names.

External Files
XView reads in several files at start-up time ranging from message files to application
specific default files containing X resources. The content and location of some of these
files are different from Motif. (For example, Motif/Xt does not read in a message
domain file (.mo file) under $OPENWINHOME.) The internationalization messaging
scheme is completely different for Motif.

OLIT Libraries Versus Solaris Motif
Libraries
Solaris Motif and OLIT support a number of convenience routines that are useful in
manipulating objects in the user interface.

Routines Only in OLIT Library
These features are unique to the OLIT library.

� Error-Handling Routines

40 Solaris Common Desktop Environment: Motif Transition Guide • May 2002

OLIT provides a range of routines to enable the application to customize error
handling.

� Dynamic Resources

OLIT provides support for the user to dynamically change the value of certain
resources (such as colors or fonts) after an application has been invoked.

Routines Only in Solaris Motif Libraries
These features are unique to the Solaris Motif libraries.

� UIL Support

Solaris Motif supports the engine for using UIL definitions for the user interface
layout. This separation allows the user interface to be modified without
recompiling the program’s executables. OLIT’s Devguide solution (golit)
provides similar functionality by allowing the user interface to be defined in GIL
file format; however, the application must be recompiled when the user interface
changes.

� Clipboard Routines

Solaris Motif provides a library for managing the clipboard and its selections.

� Widget-Creation Routines

Solaris Motif provides a complete set of routines that create a particular type of
widget or group of widgets.

� Compound String Support

Solaris Motif requires the user of compound strings for most text. To support these
special string formats, Solaris Motif includes a number of routines to create and
manipulate compound strings.

Widgets
Both the OLIT and Solaris Motif toolkits support a number of common widgets and
gadgets with similar functionality, and each supports a number of more exclusive
widgets. If a widget is implemented in one toolkit but not in the other, you can often
build an equivalent object using multiple widgets in the other toolkit.

Table 5–4 matches the common widget name to the actual class name of the widget in
each toolkit.

Chapter 5 • Toolkit Transition Issues 41

TABLE 5–4 Common Widget Mapping

OLIT Class Name Solaris Motif Class Name

BulletinBoard XmBulletinBoard

DrawArea XmDrawingArea

ExclusiveChoice + RectButtons XmRowColumn + XmToggleButtons (Radio
Box)

Form XmForm

Manager XmManager

MenuButton DtMenuButton (not accessible in
OpenWindows environment)

NoticeShell XmDialogShell + XmMessageBox

AbbrevMenuButton XmRowColumn (Option Menu)

PopupWindowShell XmDialogShell

NonExclusiveRectButton XmRowColumn + XmToggleButtons (Check
Box)

PopupMenuShell XmMenuShell

Primitive XmPrimitive

OblongButton XmPushButton

ControlArea XmRowColumn

Scrollbar XmScrollBar

ScrollingList XmList + XmScrolledWindow

ScrolledWindow XmScrolledWindow

Slider XmScale

StaticText XmLabel

TextEdit XmText

TextField XmTextField

RectButton XmToggleButton

Widgets Exclusive to Solaris Motif
This section briefly describes the widgets that are exclusive to Solaris Motif.

42 Solaris Common Desktop Environment: Motif Transition Guide • May 2002

Note – These widgets are also available for Motif development in the OpenWindows
environment, except for the DtTerm, DtEditor, DtComboBox, DtSpinBox, and
DtMenuButton widgets.

� DtTerm

This widget provides the functionality required to emulate an ANSI
X3.64-1979-style terminal emulator (specifically a DEC VT220-like terminal with
extensions).

� DtEditor

This widget provides a programmatic interface for editing services such as cut and
paste.

� DtComboBox

This widget is a combination of a text field and a list widget that provides a list of
valid choices for the text field. Selecting an item from this list automatically fills the
text field with that list item.

� DtSpinBox

This widget is a convenient user interface control that increments and decrements
an arbitrary TextField.

� DtMenuButton

This widget is a command widget that complements the menu cascading
functionality of an XmCascadeButton widget. (OLIT has its own menu button
widget, with equivalent functionality to DtMenuButton.)

� XmArrowButton

This button is a primitive push button widget that displays an arrow label.

� XmCommand

This is a manager widget that builds a command box and manages the
user-selected commands and command history.

� XmDrawnButton

This button is a primitive push button whose label can be drawn by the program.

� XmFrame

This manager widget is used to parent a single child and enclose that child with a
frame or border.

� XmLabelGadget

This gadget is a low-overhead object for read-only text.

� XmMainWindow

This manager widget supports a menu bar, command area, and work area.

� XmPanedWindow

This manager widget implements resizeable panes within a window.

Chapter 5 • Toolkit Transition Issues 43

� XmSelectionBox

This widget box allows you to select one item from a list in a general dialog box.

� FileSelectionBox

This widget provides a standard way to select a file (typically for the application to
read or write).

The libDtWidget library, which contains the DtComboBox, DtSpinBox,
DtMenuButton and DtEditor widgets, depends directly on the following libraries:

� Xm library for the Motif superclass support
� Xt library for creation and manipulation of widgets
� X library for the base X Window System

Widgets Exclusive to OLIT
This section briefly describes the widgets that are exclusive to OLIT.

� DropTarget

This primitive widget implements both the source and destination ends of
drag-and-drop operations.

� FlatWidget

These special widgets manage any number of subobjects within the context of a
single widget. When implementing menus or choice objects that contain many
subitems, they provide a significant memory savings.

� FooterPanel

This manager widget automatically supports a window with a floating footer area.

� RubberTile

This manager widget allows relative-sizing constraints to be placed on its children.

� Stub

This primitive widget enables you to customize its behavior without subclassing.

44 Solaris Common Desktop Environment: Motif Transition Guide • May 2002

CHAPTER 6

Porting Issues and Ideas

This chapter discusses porting OPEN LOOK applications to Solaris Motif on the
Solaris CDE desktop. Much of the information presented is generic enough to
encompass porting from OPEN LOOK to Motif running on the OpenWindows
desktop.

� “Elements of Migrating” on page 45
� “Do You Need to Port?” on page 46
� “If You Decide to Port” on page 47
� “Start Small” on page 48
� “Architectural Impact” on page 49
� “Use Transition Tools” on page 53
� “Use Existing Code” on page 54
� “Tips” on page 55
� “Summary: Things to Keep in Mind” on page 56

Elements of Migrating
Migrating from the OPEN LOOK user interface to Motif is complex. It generally will
not amount to a widget-for-widget swap. Do not expect it to be as straightforward as a
line-by-line code translation. Depending on your application, the migration can range
from a major architectural impact down to subtle widget differences.

Besides migrating from the OPEN LOOK user interface to Motif, porting to the Solaris
CDE desktop means that you have the Solaris CDE development environment
infrastructure available to your application. See Chapter 4 for a summary of some of
these features. See Common Desktop Environment: Programmer’s Overview for a more
detailed description of the development environment components and
documentation.

45

Do You Need to Port?
First you should decide whether you really have to port your application. As
mentioned in “Running Existing Applications on the Solaris CDE Desktop”
on page 13, OPEN LOOK and Motif applications run “as is” on the Solaris CDE
desktop. So you do not need to port your existing applications to Motif or CDE to have
them run on the Solaris CDE desktop.

This provides you with flexibility about when and under what circumstances you
decide to port your application. For example, you may decide to wait until a major
release of your product before porting your application to the Solaris CDE desktop.

Basic Integration
Basic application integration is a set of highly recommended tasks you should perform
to integrate your application into the Solaris CDE desktop. These tasks do not require
modification of the source code for your application. (Some types of print
integration—enabling printing in your application—require slight code modification,
but these are optional to basic integration.)

Basic integration does not involve extensive use of the desktop application program
interface (API). Therefore, it does not provide other interaction with the desktop, such
as drag-and-drop capabilities.

A lot can be done to integrate your application into the Solaris CDE desktop without
modifying any code. You can:

� Define actions for your application

� Write a help volume and have it available from the top level of the Help Manager

� Integrate your application with the Front Panel and Application Manager

� Enable printing

The Solaris CDE desktop provides interoperability between your application and
other desktop applications. You can add new services (see “Recommended
Integration” on page 47 and “Optional Integration” on page 48) if you want to use
them and are willing to modify your code.

See Solaris Common Desktop Environment: Programmer’s Guide for details on how to
enable printing in your application, and for a list of the steps that comprise basic
integration. See the “Registering an Application” chapter of Solaris Common Desktop
Environment: Advanced User’s and System Administrator’s Guide for detailed instructions
on how to implement the basic integration steps.

46 Solaris Common Desktop Environment: Motif Transition Guide • May 2002

If You Decide to Port
If you decide that you definitely want to port, think of the process as an art and not as
a science. There is no magic tool that will perform the port for you. There is no
foolproof algorithm to follow that works every time. What you really need to do is
learn Motif and CDE, and understand the CDE style guidelines. This takes time and
patience.

Benefits of Porting
Benefits of porting to the CDE desktop include:

� Taking advantage of new features offered by CDE
� Providing easy portability on a wide variety of platforms
� Enabling better “ease of use” by ensuring that your application behaves according

to the CDE style guidelines
� Providing interoperability with other Solaris CDE applications in areas where the

Solaris CDE and OpenWindows environments differ, for example:

� Window manager interaction
� Drag and drop
� Session management

Integrating into the Solaris CDE Environment
Recommended and optional integration require changes to your code to implement
the functionality within these categories. Your application will be even more
integrated with the desktop the more CDE functionality you adopt.

Recommended Integration
The Solaris CDE development environment contains components and guidelines so
that your application will integrate well with other applications on the desktop:

� Help system
� ToolTalk messaging system
� Session Manager
� Drag and drop
� Internationalization
� Standard font names
� Error message guidelines

Chapter 6 • Porting Issues and Ideas 47

� User customization issues

Optional Integration
The following Solaris CDE components enable you to leverage services provided by
the desktop for achieving specialized tasks:

� Solaris Motif control widgets
� Data typing
� Action invocation
� Workspace Manager
� Terminal widget
� Text editor widget
� Calendar API
� Desktop Korn shell

Start Small
If you plan to port your application to the Solaris CDE desktop, or if you want to
practice porting, start with a small example and work your way up.

Convert and Clean Up
With small applications that have simple GUIs, you can practice porting by using a
two-step process:

� Convert the GUI object-by-object from the OPEN LOOK user interface to Motif.
(See “Use a Motif GUI Builder” on page 49 below.)

� Clean up the resulting GUI so that it adheres to the CDE style guidelines. Take
advantage of this opportunity to review the GUI for ease-of-use and
customer-specific issues. You might decide to change the interface, even if the
object-by-object conversion is style-guide compliant.

Chapter 7, takes a simple OPEN LOOK application and illustrates this process.

Note – This is not the recommended way to port large, real-life applications.

48 Solaris Common Desktop Environment: Motif Transition Guide • May 2002

Use a Motif GUI Builder
Use a Motif GUI builder such as Application Builder (App Builder) or SunSoft Visual
WorkShop™ to build the new Motif GUI for the application. You need flexibility to
experiment and make changes when you port using the two-step process described in
“Convert and Clean Up” on page 48. If you manually code in a particular GUI, it is
difficult and time consuming to make modifications. App Builder provides flexibility
by enabling you to drag and drop objects to easily create prototype GUIs. It generally
requires less time to use a GUI builder to lay out a new Motif interface than it does
trying to port the GUI by hand.

In fact, whatever porting process you use and no matter how large your application,
you should consider using a Motif GUI builder. These builders produce the GUI and
application framework code, which frees your time to focus on application code.

Architectural Impact
Resist the urge to dive right in and start transforming your code to Solaris Motif.
Begin the process of porting your application to Motif and CDE by examining your
application’s architecture.

The more architecture your application has, the more important it is to re-architect the
application correctly up front. In these situations the complexity of the porting process
increases dramatically if you use the “convert and clean up” strategy.

GUI and Internals
For programs in which important functions are insulated from the surrounding GUI,
the impact of the difference in the OPEN LOOK user interface and Motif can be
negligible. However, if the code is tightly linked to the user’s actions or relies on a
specific OPEN LOOK feature, producing a Solaris Motif equivalent may be difficult.

If you can draw a line through your code modules and completely isolate those that
constitute the user interface from those that make up the remainder of your
application, then you can focus your migration efforts on the process of replacing the
user interface modules with equivalent ones developed for Motif. Many application
developers follow software development methods that require this kind of clean
separation and, in some cases, even formally specify the program boundaries between
user interface and application internals.

Chapter 6 • Porting Issues and Ideas 49

Alternatively, if your software is more monolithic and has application-specific abilities
embedded within functions that also provide the user interface, then you may have to
spend extra time separating the two types of functions, thereby complicating your
migration. In an extreme case, you must choose between violating the style guide or
redesigning part of the program.

The amount of time involved in taking full advantage of the Solaris CDE software
significantly depends on how your application is laid out. Applications that are well
designed are easier to port and to properly break down for maintenance and
readability.

Static Versus Dynamic Layout
As mentioned previously, porting your application to Motif is not an object-for-object
swap. Such swapping concentrates on the static aspects of your application user
interface. Complex applications in particular contain many objects that manage the
application infrastructure and make it work in dynamic situations. (Dynamic aspects
of your application include, but are not limited to, resizing windows, localization, and
font changes.) These manager widgets that handle the dynamic geometry in your
application are different in the OPEN LOOK and Motif toolkits. Your application will
not display the dynamism you want if you try an object-for-object swap of manager
widgets. Introducing an appropriate design to handle the dynamic aspects of your
application typically increases the complexity of its architecture.

XView does not provide much variety for dynamic layout. It primarily fixes objects at
(x, y) positions, which can cause difficulties if an application font is changed or the
application is localized. Motif and OLIT provide a variety of geometry manager
widgets; however, they have significant differences.

TABLE 6–1 OLIT and Motif Geometry Manager Widgets

OLIT Motif Comments

BulletinBoard XmBulletinBoard Basically equivalent; provide static x,y
pixel-based positioning for children

Caption (none) OLIT Caption widget provides a way to
automatically place a label on one of the
four sides of a control widget.

To get this functionality in Motif, create a
separate XmRowColumn widget that
contains two children: the label and the
control

50 Solaris Common Desktop Environment: Motif Transition Guide • May 2002

TABLE 6–1 OLIT and Motif Geometry Manager Widgets (Continued)
OLIT Motif Comments

ControlArea XmRowColumn Both widgets provide a way to lay out
children in rows and columns.

The OLIT ControlArea widget
supports aligning Caption widget
children vertically by colon, which the
Motif XmRowColumn widget does not.1

The Motif XmRowColumn widget enforces
certain size policies on children (usually
forces children in a particular row or
column to be the same size), but the OLIT
ControlArea widget does not.

FooterPanel (none) OLIT FooterPanel widget provides a
way to lay out a window with a floating
footer child at the bottom.

The Motif XmMainWindow widget can be
configured for this layout by setting the
“message area child” to be a widget that
can be used as a footer (such as an
XmForm or XmRowColumn widget).

Form XmForm Both widgets provide a means for
attaching their children relative to each
other and relative to the Form itself,
however each takes a different view of
these “attachments.”

The OLIT Form widget provides
attachment resources for the x and y
dimensions, while the Motif XmForm
widget provides separate attachments for
all four sides (top, bottom, left, right).
You can convert OLIT Form widget
attachments to equivalent XmForm
widget attachments if both attachment
paradigms are well understood.

The Motif XmForm widget also provides a
special type of attachment called
“Position.” Children can be attached to
dynamic positions in the Form widget
which change as the Form widget’s size
changes. This enables children to be
configured to always occupy a certain
percentage of the Form widget’s real
estate.

Chapter 6 • Porting Issues and Ideas 51

TABLE 6–1 OLIT and Motif Geometry Manager Widgets (Continued)
OLIT Motif Comments

RubberTile (none) OLIT RubberTile widget enables
children to be configured to take up a
percentage of the RubberTile widget’s
height (if vertically oriented) or width (if
horizontally oriented).

In Motif you can achieve similar
functionality by using the Position-based
attachment resources in the XmForm
widget.

ScrolledWindow XmScrolledWindow Both widgets provide a way to
encompass a child widget into a
scrollable view port.

(none) XmMainWindow Motif XmMainWindow widget provides a
manager that lays out its children into
specific areas of the window. These areas
include the menu bar area, command
area, work area, and message area.

OLIT has no equivalent widget.

(none) XmPanedWindow Motif XmPanedWindow widget provides
a way to lay out its children in vertically
oriented panes. Each of the panes has a
sash that can vertically resize the pane.

OLIT has no equivalent widget.

1. CDE App Builder provides a geometry manager abstraction called a group that enables widgets to be
automatically positioned in common layouts, including being vertically aligned by colon. App Builder generates
all the code to implement this functionality.

Study the Target Environment
The CDE desktop is quite different from the OpenWindows desktop, although it
contains many of the same types of tools. The most obvious difference is that it is a
Motif desktop. Read the “Architectural Overview” chapter of Common Desktop
Environment: Programmer’s Overview for a discussion of the end user and development
environment architectural structure. Also read about:

� Motif: See “Motif 2.1 Documentation” on page 80 and “Motif Programming”
on page 82 for a listing of Motif documentation.

� CDE Look and Feel: Refer to Common Desktop Environment: Style Guide and
Certification Checklist for details. To be style-guide compliant, your application must
pass the checklist at the end of the book.

52 Solaris Common Desktop Environment: Motif Transition Guide • May 2002

� CDE runtime and Development Environments: See “CDE Documentation”
on page 79 for a listing of all CDE documentation that Sun provides. In addition,
the desktop applications each have online help volumes.

GUI Development Tools
If you used a Motif GUI builder to create the GUI for your application, your migration
to the Solaris CDE desktop will probably be easier. In most cases, the use of a builder
implies that you have some degree of separation between user interface functions and
application internals, the advantages of which were previously discussed.

Also, builders typically use generalized internal storage formats or are capable of
generating interchange files, each of which may be post-processed to automate some
of the conversion process. Contact your builder vendor to see what migration tools
they are currently offering.

Other less tangible tools that you might have used and that could ease your transition
include development approaches that produced functional requirements documents or
high-level designs. These representations may describe your application in terms less
specific to the OPEN LOOK user interface that are more amenable to being mapped to
CDE and Solaris Motif than your source code.

Use Transition Tools
No one tool on the market will do everything you need for transitioning your
application to the Solaris CDE desktop. Nonetheless, depending on different aspects of
your application, you may find tools to solve some of your problems. These
specialized tools can make the transition easier.

As you research the tools available to you, ask yourself if any are a good match for
your application transition and what you are trying to do.

Tools to Transition to Motif
Many third-party tools are offered to transition to Motif. For example, Integrated
Computer Solutions (ICS) offers two converters: one translates XView source code to
GIL files and one translates GIL files to Motif source code.

Sun’s Devguide offers Motif Conversion Utilities as a way of helping customers make
the transition. Devguide’s front end is still in the OPEN LOOK user interface, and it
has the same OPEN LOOK palette, but you can use the Motif Conversion Utilities to

Chapter 6 • Porting Issues and Ideas 53

transform GIL files into UIL files or Motif and C code. Use the Motif Conversion
Utilities (guil and gmf) in the Solaris 2.4 Software Developer’s Kit to convert GIL
files to UIL and Motif C code. UIL files can be imported into Motif GUI builders to
generate Motif-based GUIs.

Sun also provides a Motif GUI builder called SunSoft Visual WorkShop.

Note that using transition tools for GUI migration results in a GUI that you will
probably need to refine to be CDE style-guide compliant. You may need less time to
re-layout the GUI if you use a GUI builder tool.

Tools to Transition to the Solaris CDE Desktop
If you used Devguide to create your application, you can use App Builder’s
GIL-to-BIL converter to create BIL files, which is the format the App Builder uses. BIL
file format is similar to GIL file format. However, BIL files contain CDE-specific
information and produce a Solaris Motif GUI. The GIL-to-BIL converter makes some
educated conversion guesses based on heuristics, which might not give you the result
you want. For best results, take the BIL files that the converter produces, load them
into App Builder, and modify the user interface as needed.

App Builder is a tool in the Solaris CDE environment that is very similar to Devguide,
which is used in the OpenWindows environment. Transitioning to CDE in this manner
solves a significant number of conversion problems. Because App Builder generates
files for you, these files are easier to manipulate than C code you would have to write
yourself. App Builder preserves application stubs files, so your application-specific
code is unchanged. It also uses the same file-naming conventions as Devguide.

If you did not use Devguide, there are currently no third-party tools to use for
converting OPEN LOOK applications to CDE. Try a Motif conversation tool such as is
discussed in “Tools to Transition to Motif” on page 53 above.

Use Existing Code
This section discusses the ways in which the Solaris CDE software provides code for
you to either use or learn from to develop Solaris CDE applications.

GUI Builder Code
Use a Motif GUI builder such as App Builder or SunSoft Visual WorkShop to build a
simple Solaris CDE application. Then generate code from it to see what the code looks
like. This is a good way to learn how to use Solaris Motif and some of the CDE
functionality.

54 Solaris Common Desktop Environment: Motif Transition Guide • May 2002

The more features in App Builder you use, the more coverage you get in generated
code of Solaris CDE features. Try App Builder to, for example, alter object attributes,
create connections, and use the Applications Framework Editor. Then generate code
and examine it. Cycle through this process to generate variations of code to look at
and learn from.

Demo Code
The Solaris CDE development environment contains demo source code that can
considerably ease your application porting tasks.

Each development environment component has a demo directory in
/usr/dt/examples. The demo directory contains an example program that uses the
component’s APIs. Read the demo code to learn how to incorporate the component
behavior into your application. In some cases you can copy and paste code from the
demo into your application.

The /usr/dt/examples/template directory contains a demo program that
integrates most of the Solaris CDE components that comprise basic and recommended
integration functionality. This template demo illustrates how to write a simple
application that is well integrated with the Solaris CDE desktop.

Tips
Here are some tips about writing applications for the CDE desktop.

Floating Menus
To ensure that your application works properly on the CDE desktop, any functionality
you put into floating menus should also be provided by some pulldown menu. This
will enable your application to work with both two-button and three-button mouse
devices.

Colormap Behavior
Colormap installation is handled differently under CDE than it was in the
OpenWindows environment. This difference is most visible for applications that
specify a list of subwindows that use colormaps other than the default colormap. This
list of subwindows is specified in the WM_COLORMAP_WINDOWS property.

Chapter 6 • Porting Issues and Ideas 55

In the OpenWindows environment, applications need only to specify a list of
subwindows in this property. As the user moves the pointer around the screen, the
OpenWindows window manager (olwm) installs the appropriate colormap for
whatever window is under the pointer.

The CDE window manager, dtwm, does not provide this behavior. Applications that
relied on olwm’s pointer-based colormap installation will likely not display in their
proper colors when run under CDE. There are several things that you can do to avoid
this problem:

� Avoid using the WM_COLORMAP_WINDOWS property entirely, and update the
colormap attribute of the top-level window (the window of the shell widget) with
whatever colormap is appropriate. This colormap will be installed whenever the
window is given the input focus.

� The WM_COLORMAP_WINDOWS property is an ordered list of windows, and typically
only the first window in this list will have its colormap installed and will appear in
its proper colors. The other subwindows will most likely appear with incorrect
colors. If it is important for a particular subwindow to appear with its correct
colors, it should be placed first in the list.

� If the ID of the top-level window does not appear in the list, it is implicitly
assumed to appear first. To get a subwindow to display with its correct colors, the
ID of the top-level window should appear in the list somewhere after the ID of the
subwindow.

� Applications can update the WM_COLORMAP_WINDOWS property at any time. If the
application’s state changes such that a different subwindow should now have its
colormap installed, the application should update the property so that the new
subwindow appears first.

The user can also modify the key bindings of dtwm to bind the f.next_cmap() and
f.prev_cmap() functions to keyboard keys. These functions will step forward and
backward through the WM_COLORMAP_WINDOWS list and install a different colormap
each time the user presses the appropriate keys.

Summary: Things to Keep in Mind
Here is a list of things to keep in mind as you think about porting your application to
the Solaris CDE desktop:

� OPEN LOOK to Motif migration is a complex and wide-ranging issue

It generally does not amount to an object-for-object swap. Do you really need to
port? If so, think of it as an art and not as a science.

� What is your schedule?

56 Solaris Common Desktop Environment: Motif Transition Guide • May 2002

When must you ship? What resources do you have available to you? Can you tie
the port in with the next major release?

� How did you build your application?

Did you use a builder? Were any other tools involved in producing your
application? If so, go to your vendor and ask for CDE support.

� Is your application GUI separate from internals?

Did you use C++ objects to encapsulate the GUI? If so it will be easier to port your
application.

� Are you starting from XView or OLIT?

OLIT applications are generally easier to port because they rely on the Xt intrinsics,
as does Motif.

� Are there any customer issues?

Do you have to be concerned about interoperability with other systems? Are there
transition and training issues for the customer? Is a mixed desktop acceptable for
now?

Chapter 6 • Porting Issues and Ideas 57

58 Solaris Common Desktop Environment: Motif Transition Guide • May 2002

CHAPTER 7

Porting Example: OPEN LOOK to
Solaris Motif

This chapter presents an example of porting an OPEN LOOK application with a
simple graphical user interface (GUI) to Solaris Motif. It illustrates the two-step
process of porting: first translating the OPEN LOOK user interface objects one-by-one
to Motif objects, then cleaning up the interface and making sure it conforms to the
CDE style guide.

� “OpenWindows 3.4 Snapshot Application” on page 59
� “Convert” on page 60
� “Clean Up” on page 61

Of course, your goal in porting from the OPEN LOOK user interface to Solaris Motif
should be to convert the GUI and clean up at the same time. The more familiar you
become with the CDE style guide, the easier this will be. Also, as you learn more about
Motif, learning the correlation between OPEN LOOK objects and Motif widgets will
become easier.

When porting your application, take the opportunity to examine its user interface.
Think about whether it could be streamlined or made more user-friendly. In going
from the OPEN LOOK user interface to Motif, the application’s look will change
anyway. This is a good time to re-examine design decisions you made in the past.

OpenWindows 3.4 Snapshot Application
Figure 7–1 is an illustration of the OpenWindows 3.4 Snapshot application. It is
running on the Solaris CDE desktop using the Motif Window Manager, so it has a
Motif title bar.

The Snapshot GUI is fairly simple. It contains:

� Load..., Save..., Snap, and View... buttons

59

� Print menu button
� Snap Type and Snap Delay exclusive settings
� Beep and Hide check box settings
� Drop target

FIGURE 7–1 OpenWindows 3.4 Snapshot Application GUI

Convert
Using App Builder, the Snapshot GUI translates object-for-object into the GUI shown
in Figure 7–2:

60 Solaris Common Desktop Environment: Motif Transition Guide • May 2002

FIGURE 7–2 Motif Port of Snapshot GUI (Direct Translation)

You can see that the pieces of the interface and the general layout are very similar to
the OPEN LOOK version. The buttons remain, except that they are square now instead
of round. The check boxes look the same. The OPEN LOOK exclusive settings have
changed to Motif radio buttons (which also offer mutually exclusive choices). A small
text field with no label replaces the drop target.

Clean Up
If you want, you can consider yourself finished with this application port. No
functionality has been lost, and the GUI now appears in Motif. However, you should
ask yourself two questions:

� Is the resulting application style-guide compliant?
� Can the GUI be redesigned to make the application more user friendly?

Consider CDE Style Guidelines
Common Desktop Environment: Style Guide and Certification Checklist highly recommends
placing menu bars in applications. In addition, it considers File, Options, and Help
menus as standard, to be placed in order from left to right. (Other menus are also
considered standard but do not apply to the Snapshot application.)

Chapter 7 • Porting Example: OPEN LOOK to Solaris Motif 61

The cleaned-up version places the Load, Save, and Print buttons under the File menu.
These are typical file operations. “Beep During Countdown” and “Hide Window
During Capture” are options that users have available to them, and are therefore put
under the Options menu. This design decision also makes the interface less cluttered,
since the text for these check boxes takes up a lot of screen space. A Help menu is
added to comply with the style guidelines.

Common Desktop Environment: Style Guide and Certification Checklist calls for a footer
message at the bottom of an application whenever status is displayed there. This is
added to the Snapshot GUI.

Motif does not support a drop site object. CDE supports a drag source object, which
appears in the final GUI as a labelled camera icon. If you want drop support, the CDE
style guidelines indicate that you must provide code to enable objects to be dropped
anywhere in the application’s main window.

Finally, the Snap button at the bottom is highlighted, indicating that it is the default
value (between Snap and View) if the user presses Return instead of pressing a button.

Other Design Considerations
The radio buttons take up a lot of screen space in the Snapshot GUI. CDE provides a
widget called a DtComboBox that takes up less screen space and provides the same
functionality. The Snap Type and Snap Delay radio buttons are replaced by
DtComboBox widgets. The most typically used values appear as DtComboBox
defaults.

You cannot use the DtComboBox widget if you are developing your application for
the OpenWindows desktop. This widget is part of the CDE development environment,
not the OpenWindows development environment. Even if you do have access to the
ComboBox, however, you may want to retain the radio boxes, depending on issues
such as ergonomics, customer needs, and consistency.

FIGURE 7–3 Motif Port of Snapshot GUI (Final Port)

62 Solaris Common Desktop Environment: Motif Transition Guide • May 2002

Chapter 7 • Porting Example: OPEN LOOK to Solaris Motif 63

64 Solaris Common Desktop Environment: Motif Transition Guide • May 2002

APPENDIX A

User Interaction Changes

This appendix presents all the user interactions that have changed from the OPEN
LOOK style to the CDE style. If a user interaction is not mentioned, the OPEN LOOK
and CDE styles are the same.

Use this information to give your CDE application the correct user model.

Note – In this appendix, CDE Style Guide refers to Common Desktop Environment: Style
Guide and Certification Checklist.

TABLE A–1 User Interaction Changes

Category Topic OPEN LOOK: CDE:

Desktop

Multiple
desktops

One main workspace or virtual,
multiple screen support (OLVWM).

Multiple workspaces are accessible
from the Front Panel; users can add,
remove, and navigate between
workspaces.

Action
feedback

No indicator to provide feedback
when application is launched.

Indicator light on Front Panel, which
initially blinks when application is first
launched and when other actions
occur.

Application
access

Applications (and utilities) are
accessible from Programs menu off
Workspace menu. Programs menu
customizable via GUI.

Applications accessible from the Front
Panel, the Application Manager, the
Personal Applications subpanel, as
well as the Programs submenu of the
Workspace menu. No GUI for
customizing Programs menu.

65

TABLE A–1 User Interaction Changes (Continued)
Category Topic OPEN LOOK: CDE:

Drag and drop
to desktop

When icon from File Manager dropped
on desktop, the application associated
with the icon is launched or executed.

Dropping icon from File Manager onto
desktop does not launch or execute: it
creates a reference to the icon on the
desktop (the original icon still appears
in the File Manager).

Fast help
information

Uses Magnify Help; has link to More
Help window for further information.

Uses On Item Help to go to item in
Help handbook.

Application
Help

Available by pressing keyboard Help
key when in application.

Help available from most menu bars
(located at the far right of the menu
bar) and dialog boxes; also available
by pressing the keyboard Help key
when in application.

************** ************** ************************************** **************************************

Properties

Multiple terms
used to
indicate
properties

Uses the term Properties (and
sometimes, Settings), generally found
under Edit menu.

Uses the terms Options and Properties.

Options refers to application-specific
characteristics and is generally found
under the File or Options menu.

Properties is used to set object-specific
characteristics and is generally found
under the Edit menu.

Global desktop
options

Set from the Workspace menu. Set from the Style Manager
application.

************** ************** ************************************** **************************************

Windows

Window titles Generally follows the form:

“File Manager V3.4:
/home/username/Project_Folder”.

Generally follows the form:

“File Manager - Project_Folder”.

Version numbers not included in title
(version numbers can be included in
the application’s About box).

Title format specified in CDE Style
Guide (see pages 92-93).

Move a
window

Click anywhere on window frame
(except window corners) and drag to
move the window.

Click window title area and drag to
move the window.

Expand a
window

Double-click the frame to expand
window: window expands vertically.
The window position is retained.

Click the maximize button to expand
the entire window. The default is
maximize equals full screen. To change
the maximize direction to vertical only,
use the
Dtwm*maximumClientSize:verticalresource.

66 Solaris Common Desktop Environment: Motif Transition Guide • May 2002

TABLE A–1 User Interaction Changes (Continued)
Category Topic OPEN LOOK: CDE:

Resize a
window

Click any corner of the window and
drag to resize.

Click any part of the window frame
(including the corners) and drag to
resize the window. A resize outline box
will display and update the window’s
size during the resize operation.

Raise a
window

Click either the title bar or the window
frame.

Click anywhere in window.

Remove or
dismiss
window

Click pushpin to remove (dismiss)
windows.

Choose Close from the Window menu
or press Alt + F4. OPEN LOOK
applications run in CDE do not have
pushpins, and are dismissed by the
above actions.

Closing a
window to an
icon (iconify)

Choose the Close command from the
Window menu to iconify. [Window
menu is the boxed arrow in upper left
corner of window.]

Since Close is the default choice in the
Window menu, a single-click on the
Window menu icon will close the
window (if default action in Properties
is set to Left Mouse Press: Selects
Default Item).

Choose Minimize from the Window
menu or click the minimize button at
the upper right corner of the window
frame.

Quitting
(terminating)
an application

Choose the Quit (or Exit) command in
Window menu.

Choose Close or Exit command in
either the Window or File menu or
double-click the Window menu icon to
exit application.

************** ************** ************************************** **************************************

Menus
Menu layout
type

Uses menu buttons. Uses menu bar.

Menu layout
(standard)

File-View-Edit-Properties File-Edit-View-Options-Help

Keep menu on
desktop

Click a pushpin in the menu. Has tear-off menus.

Appendix A • User Interaction Changes 67

TABLE A–1 User Interaction Changes (Continued)
Category Topic OPEN LOOK: CDE:

Default action
from menu

In Workspace Properties, can configure
Left Mouse Press to represent Selects
Default Item.

In this mode, a single click on the
menu button chooses the default menu
item. The default item is shown in the
menu surrounded by a ring.

There is no default menu item.

Quick menu
access

Abbreviated pop-up menu shows
available commands. Displayed by
clicking mouse button 3 (MENU).

Same.

Accessing
menus from
the keyboard

No keyboard mnemonics used to
access menus.

Can use keyboard to display and
choose from menu. The menu’s
mnemonic is shown by the underlined
character in the menu’s name (this
may not be the first letter of the menu
name). The menu is displayed by
holding down Alt + the underlined
letter. To access a particular menu
option, press the key for the item’s
mnemonic, or press the down arrow to
move to the item and press Return or
Spacebar.

************** ************** ************************************** **************************************

Dialog Boxes

File selection

(via typing file
name or
choosing from
scrolling list)

Generally offers command windows
(for example, New, Load, Load/Save)
that enable users to type or select a
file.

Offers a standard Common Desktop
Environment file selection dialog box
that can be modified to accommodate
application-specific file
navigation/selection options. See CDE
Style Guide for examples and
guidelines.

Print dialog
box

Print dialog boxes vary by application. Offers a common Print dialog box that
can be modified to accommodate
application-specific print options. See
pages 116-122 of CDE Style Guide for
examples and guidelines.

68 Solaris Common Desktop Environment: Motif Transition Guide • May 2002

TABLE A–1 User Interaction Changes (Continued)
Category Topic OPEN LOOK: CDE:

Remove or
dismiss dialog
box

Property windows are a form of dialog
box that use both a pushpin and
buttons. The Apply button applies
changes and dismisses an unpinned
Property window but not a pinned
one. To dismiss a pinned window, click
the pushpin.

Button actions determine whether
dialog box remains up after action
taken: Cancel dismisses the dialog box
without performing any actions not
yet applied, Close dismisses the dialog
box, OK applies changes and
dismisses the dialog box, and Apply
applies changes and does not dismiss
the dialog box. No pushpins are used
when OPEN LOOK applications are
run in CDE. See Chapter 7 of CDE
Style Guide, “Common Dialogs,” for
more information.

************** ************** ************************************** **************************************

Controls

Mutually-exclusive
choice controls

Uses Exclusive Settings control to
present a group of mutually exclusive
choices. Appearance: touching
rectangles.

Uses radio buttons: see pages 244-245
of CDE Style Guide for guidelines.
Appearance: round buttons.

Controls for
choosing
related
items/values

Uses the abbreviated menu button,
which displays the current choice
without displaying the entire menu.
Can either choose a value from the
button menu or type a value in a text
field and press Return to validate the
value.

Uses a ComboBox, a Command Box,
or a SpinBox to perform the same
functions as the abbreviated menu
button types. ComboBox uses a
scrollable list box, CommandBox uses
a prompt for text input and a list
component, and SpinBox presents
values as a ring of items that wrap. See
the “Controls, Groups, and Models”
section of CDE Style Guide (starting on
page 234) for descriptions and
guidelines.

Toolbars Does not use toolbars. Uses toolbars.

Button shape Rounded buttons. Square buttons.

************** ************** ************************************** **************************************

Mouse

Default mouse
button
functions

Mouse button 1 = Select

Mouse button 2 = Adjust

Mouse button 3 = Menu

Mouse button 1 = Select

Mouse button 2 = Transfer (can be
changed to Adjust through Style
Manager)

Mouse button 3 = Menu

Appendix A • User Interaction Changes 69

TABLE A–1 User Interaction Changes (Continued)
Category Topic OPEN LOOK: CDE:

Extend
selection

On a 3-button mouse, use mouse
button 2 (also called the ADJUST
button) to do an extended selection.

Click mouse button 1 at the beginning
of the text that you want to select,
move pointer to end of desired text,
and click mouse button 2; text is
highlighted.

To do an extend selection, use Shift
key + mouse button 1, or change the
behavior of mouse button 2 from
Transfer (the default setting) to Adjust
through Style Manager.

Displaying
menus

Click mouse button 3 on a menu
button to display the menu.

Click a menu bar entry with either
mouse button 1 or mouse button 3 to
display the menu.

Opening icons:
shortcut

Double-click icons to open. Double-click icons to open. Single- or
double-click Front Panel controls, and
single-click Style Manager controls, to
launch the related application.

Quick Cut To move text to insertion point, hold
down the Cut key, select text (a line is
drawn through selected text), and
release the Cut key. When key is
released, text moves to the insertion
point.

To move text to insertion point, hold
down Alt + Shift + mouse button 2
(Transfer), and select text (a line is
drawn under selected text). When
combination is released, text moves to
the insertion point.

Quick Paste To copy to the insertion point, hold
down the Paste key, select text (a line
is drawn under selected text), and
release the Paste key.

To copy to the insertion point, hold
down Alt + mouse button 2 (Transfer),
and select text (a line is drawn under
selected text). When combination is
released, text is copied to the insertion
point. (This will also work with Alt +
Control + mouse button 2.)

************** ************** ************************************** **************************************

Drag and Drop

Drag and drop

(direct
manipulation)

Uses one set of drag-and-drop
methods and visual feedback.

The basics of drag and drop are similar
to OPEN LOOK, but the specifics are
different. See Chapter 3 of CDE Style
Guide, “Drag and Drop,” for details of
drag-and-drop operations,
performance guidelines, feedback, and
graphics specific to CDE.

Drop onto
minimized
icons

Can drop onto minimized icons on
desktop; drop will result in
appropriate action.

Not supported.

Can drop onto Front Panel controls
(for example, Printer, Calendar
Manager, Trash, Text Editor, Mailer).

70 Solaris Common Desktop Environment: Motif Transition Guide • May 2002

TABLE A–1 User Interaction Changes (Continued)
Category Topic OPEN LOOK: CDE:

Drag and drop
multiple
messages from
Mail
application to
File Manager

Creates one mailfile icon per message
in File Manager.

Creates one mailbox that contains all
the selected messages.

Drag mail
messages to
another
mailbox
window

Not available. Moves the selected messages to the
destination mailbox.

Drop selected
icon into text
window

Text appears at drop point. Text appears at insertion point (same
as choosing Include from the File
menu).

Drop zone
(target)

Drop zone (target) is a small rectangle
typically located in top right of
application’s control area.

No specific drop zone graphic is used;
any editable control can serve as a
drop zone. User gets feedback on
validity of drop zone.

Sourcing drags Uses drag-and-drop source indicator
graphic.

Several versions of source indicators
are used, representing the type of
selection (single or multiple) and the
type of object selected. The drag icons
are dynamically composed and
contain the source indicator
information.

************** ************** ************************************** **************************************

Keyboard

Keyboard
accelerators
and engravings

Uses Meta key in combination with
accelerator key. Standard examples:
Meta + z = Undo, Meta + c = Copy,
Meta + v = Paste, Meta + x = Cut.

Uses default set of key bindings and
enables customization of key bindings
(for example, EMACS).

Uses Control key in combination with
accelerator key. Standard examples:
Control + z = Undo, Control + c =
Copy, Control + v = Paste, Control + x
= Cut.

Default key bindings sometimes differ
from OPEN LOOK key bindings (see
Appendix A of CDE Style Guide for key
engravings). Customization is also
available (see Chapter 10 of CDE
User’s Guide for customization
information).

Sun Special
keys

Supported in OPEN LOOK. Supported in Solaris CDE.

Appendix A • User Interaction Changes 71

TABLE A–1 User Interaction Changes (Continued)
Category Topic OPEN LOOK: CDE:

Deleting
characters

Can use either Backspace or Delete
key.

The Backspace key deletes characters
to the left of the cursor; the Delete key
deletes characters to the right of the
cursor.

72 Solaris Common Desktop Environment: Motif Transition Guide • May 2002

APPENDIX B

Internationalization and CDE

This is a guide for software developers writing internationalized Solaris CDE
applications. It presents the differences between OpenWindows and CDE
internationalization. Any steps that must be performed to internationalize a Solaris
CDE application that are not mentioned in this appendix remain unchanged from the
OpenWindows guidelines. For general information on CDE and internationalization,
see Common Desktop Environment: Internationalization Programmer’s Guide.

� “Ensure Correct CDE NLS Environment” on page 73
� “Message Catalog Functions” on page 74
� “Locale Announcement” on page 74
� “Character Strings and XmStrings” on page 75
� “Include app-defaults File” on page 75
� “Localize Motif Resources” on page 75
� “Deliver Message Catalog” on page 76
� “Fonts” on page 77
� “Internationalizing Shell Scripts” on page 77

Solaris CDE supports all locales that Solaris 2.6 supports.

This appendix assumes familiarity with Xt and Motif programming.

Ensure Correct CDE NLS Environment
You must make sure that the NLSPATH environment variable is set properly. This
ensures that your application will find message catalogs.

If your application calls DtInitialize(), then NLSPATH is set to the CDE default
location for finding message catalogs. The default location is
/<CDE_INSTALLATION>/lib/nls/msg/<locale>/<application>.cat; for example,
/usr/dt/lib/nls/msg/ja/dtcm.cat.

73

DtInitialize() sets other variables and performs other tasks. Consult its manpage
to determine whether you need this function. DtInitialize() is in libDtSvc. If
your application does not already link to this library, you may not want to invoke
DtInitialize() just to set NLSPATH.

If your application does not call DtInitialize(), you must set NLSPATH to ensure
that your application can find message catalogs.

If your application installs or expects message files to be in a location other than the
default location, you should append that location to NLSPATH.

Note – Other CDE applications may not be able to find their message catalogs if you
reset NLSPATH entirely. It is better to append to NLSPATH if your message file
location differs from the default location.

Message Catalog Functions
To be portable to other XPG4 UNIX platforms, Solaris CDE applications must use the
catopen(), catclose(), and catgets() family of XPG4 messaging functions
(instead of gettext() and so on). See the man pages for information on how to use
these functions.

Also, if the system on which you are writing your application does not define
NL_CAT_LOCALE in a header file, you must define it in your application. This ensures
that the application is portable to other UNIX XPG4-compliant platforms.

Locale Announcement
So that your application knows what locale it is running in, use:

� XtSetLanguageProc()—If your application is Motif/Xt GUI-based
� setlocale()—If your application is not GUI-based

74 Solaris Common Desktop Environment: Motif Transition Guide • May 2002

Character Strings and XmStrings
This section describes how to convert between character strings and XmStrings.

To Convert from Character String to XmString
In Motif, you must make an explicit call to convert a string to XmString, an internal
representation of the string. If you internationalize your application, use
XmStringCreateLocalized() to perform this conversion.

In Solaris Motif—unlike in Motif 1.2.3—XmStringCreateLocalized() recognizes
\n as a line separator, so a string can have multiple lines.

To Convert from XmString to Character String
To convert from XmString to a character string, you must traverse the compound
string and retrieve each segment individually. See section 19.3.3 of the Motif
Programming Manual, Volume 6A, which contains a code sample that performs this
conversion.

Do not use XmStringGetLtoR() to convert from XmString to a character string. This
function assumes the text is oriented left-to-right.

Include app-defaults File
If your application uses resources, make sure to include an app-defaults file. Refer
to the X Toolkit Intrinsics Programming Manual (Volume 4, Section 2.3.3) for details on
setting up an app-defaults file.

Localize Motif Resources
Localize any Motif resource that represents something that must be customized for a
particular locale by putting the resource in your app-defaults file. These include,
but are not limited to:

Appendix B • Internationalization and CDE 75

� XmNmnemonic
� XmNfontList
� XmNcolumns
� XmNinputMethod
� XmNpreeditType

Deliver Message Catalog
Every SVR4 UNIX platform contains the gencat utility. Run gencat on the
translated message catalog file to produce a binary form of the message catalog. The
resulting file is a formatted message database.

CDE and gencat
Each platform has its own implementation of gencat. Follow these rules for message
catalogs to ensure that each message catalog’s format does not cause different gencat
utilities to break:

1. Use a $quote directive if you have trailing spaces (see the gencat man page).

2. Do not put more than one space between the message id and the message string.

3. Insert a space between $ and the comments.

4. Message IDs need to be sorted in ascending order.

.msg Files
A .msg file is a message catalog containing translatable text that appears in your
application code. It is the file that you give to a translator for translation. See the
gencat man page for its format. Use gencat to turn a translated message catalog to a
message database.

.cat Files
A .cat file is a message catalog that results when you run gencat on a .msg file.
This is a binary file.

76 Solaris Common Desktop Environment: Motif Transition Guide • May 2002

Fonts
In the OpenWindows environment, font alias names differ depending on the
application locale. In Solaris CDE, the font alias names are independent of locale. Refer
to Common Desktop Environment: Internationalization Programmer’s Guide or Solaris
Common Desktop Environment: Programmer’s Guide for information on CDE font names.

Internationalizing Shell Scripts
The dtdspmsg utility is useful for internationalizing shell scripts. The dtdspmsg
command displays a selected message from a message catalog. See the dtdspmsg
man page for details.

Appendix B • Internationalization and CDE 77

78 Solaris Common Desktop Environment: Motif Transition Guide • May 2002

APPENDIX C

Recommended Reading

This appendix lists books and articles on issues related to OPEN LOOK, Motif, and
Solaris CDE application development. The books are available through Sun Express or
through your local bookstore.

� “CDE Documentation” on page 79
� “ToolTalk Documentation” on page 80
� “Motif 2.1 Documentation” on page 80
� “Graphical User Interfaces” on page 81
� “Motif Programming” on page 82
� “OPEN LOOK Programming” on page 82
� “Xt/XLib Programming” on page 83

CDE Documentation
The Common Desktop Environment documentation set contains documents that will
help you in your transition to Solaris CDE. These books will be published soon by
Addison-Wesley.

Development Environment
� Common Desktop Environment: Programmer’s Overview

� Common Desktop Environment: Style Guide and Certification Checklist

� Common Desktop Environment: Application Builder User’s Guide

� Solaris Common Desktop Environment: Programmer’s Guide

� Common Desktop Environment: Help System Author’s and Programmer’s Guide

� Common Desktop Environment: ToolTalk Messaging Overview

79

� Common Desktop Environment: Internationalization Programmer’s Guide

� Common Desktop Environment: Desktop KornShell User’s Guide

� Common Desktop Environment: Product Glossary

Online man pages are available for all development environment components.

Run-time Environment
� Solaris Common Desktop Environment: User’s Guide

� Solaris Common Desktop Environment: Advanced User’s and System Administrator’s
Guide

� Solaris Common Desktop Environment: User’s Transition Guide

Online help volumes are available for most of the run-time environment components.

ToolTalk Documentation
� The ToolTalk Service: An Inter-Operability Solution, published by SunSoft Press and

PTR Prentice Hall, Englewood Cliffs, NJ 07632, ISBN 0-13-088717-X

� ToolTalk and Open Protocols: Inter-Application Communication, by Astrid Julienne and
Brian Holtz, published by SunSoft Press and PTR Prentice Hall, Englewood Cliffs,
NJ 07632, ISBN 013-031055-7

The Solaris 7 Software Developer AnswerBook set contains:

� ToolTalk Reference Manual
� ToolTalk User’s Guide

Motif 2.1 Documentation
The documentation listed in this section describes Motif 2.1 interfaces. You can
purchase these books at your local bookstore.

� OSF Application Environment Specification (AES) User Environment Volume,
Revision C, PTR Prentice Hall, 1993.

Describes the Motif Application Environment Specification. Information on these
specifications can also be found in the Motif 2.1 - Programmer’s Reference.

80 Solaris Common Desktop Environment: Motif Transition Guide • May 2002

� CDE 2.1/Motif 2.1 User’s Guide from The Open Group (www.opengroup.org)

This guide describes the basic features of both the Motif user environment and the
Common Desktop Environment. It explains how a user interacts with these
features and with Motif and CDE-based applications, as well as how to customize
Motif environments and the CDE and how to use the Information Manager to
access, read, and search online documentation.

� Motif 2.1 - Programmer’s Reference from The Open Group (www.opengroup.org)

This programmer’s reference manual provides reference information for the Motif
commands and functions in UNIX-style manual pages. The reference information
covers the toolkit (library functions, widget documentation, and resources), the
window manager, UI language commands, and the library functions.

� Motif 2.1 - Programmer’s Guide from The Open Group (www.opengroup.org)

These three volumes provide detailed reference descriptions of all Motif programs,
Xt widget classes, Xm widget classes, translations, Xm data types and functions,
Mrm functions, Uil functions, and file formats.

� CDE 2.1/Motif 2.1 - Style Guide and Glossary from The Open Group
(www.opengroup.org)

This guide provides developers who design and implement new products with a
framework of behavior specifications that is consistent with the Motif and
Common Desktop Environment (CDE) user interface. This behavior is established
by drawing out the common elements from a variety of current behavioral models.
The document also includes a comprehensive glossary of terms used in the
Desktop Documentation set.

Graphical User Interfaces
OPEN LOOK to Motif GUI Transition Guide 801,6567-10, SunSoft, October, 1993.

OPEN LOOK Graphical User Interface: Programmer’s Guide, UNIX System Laboratories,
1992.

OPEN LOOK Graphical User Interface: User’s Guide, UNIX System Laboratories, 1992.

OPEN LOOK Graphical User Interface Application Style Guidelines, Sun Microsystems,
Inc., Addison-Wesley Publishing Company, Inc., 1990.

OPEN LOOK Graphical User Interface Functional Specification, Sun Microsystems, Inc.,
Addison-Wesley Publishing Company, Inc., 1990.

OPEN LOOK Graphical User Interface: Programmer’s Reference Manual, Prentice Hall,
1992.

OPEN LOOK Intrinsics Toolkit Widget Set Programmer’s Guide, AT&T, 1990.

Appendix C • Recommended Reading 81

OPEN LOOK Intrinsics Toolkit Widget Set Reference Manual, AT&T, 1990.

OSF/Motif Programmer’s Guide, Revision 1.2, Open Software Foundation, Prentice Hall,
1993.

OSF/Motif Programmer’s Reference, Revision 1.2, Open Software Foundation, Prentice
Hall, 1993.

OSF/Motif Style Guide, Revision 1.2, Open Software Foundation, Prentice Hall, 1993.

OLIT & Motif: A Technical Comparison, Amy Moore, M. Goyal, SunSoft, September,
1992.

Motif Programming
Motif Programming in the X Window System Environment, William A. Parrette,
McGraw-Hill, 1993.

Motif Programming: The Essentials—and More, Marshall Brain, Digital Press, 1992.

Motif Programming Manual, Dan Heller, O’Reilly & Associates, 1992.

Motif Reference Manual, Paula Ferguson, O’Reilly & Associates, 1992.

The X Window System Programming and Applications with Xt, OSF/Motif Edition,
Douglas Young, Prentice Hall, 1990.

OPEN LOOK Programming
An OPEN LOOK at Unix: A Developer’s Guide to X. John David Miller, M&T Books, 1990.

The X Window System Programming and Applications with Xt, OPEN LOOK Edition,
Douglas Young and John A. Pew, Prentice Hall, 1992.

XView Programming Manual, Dan Heller, O’Reilly & Associates, Inc., 1991.

XView Reference Manual, Thomas Van Raalte (ed.), O’Reilly & Associates, Inc., 1991.

82 Solaris Common Desktop Environment: Motif Transition Guide • May 2002

Xt/XLib Programming
Programmer’s Supplement for Release 5 of the X Window System, Version 11, David
Flanagan, O’Reilly & Associates, Inc., 1991.

X Toolkit Intrinsics Programming Manual, Adrian Nye and Tim O’Reilly, O’Reilly &
Associates, Inc., 1990.

X Window System Toolkit, Paul J. Asente and Ralph R. Swick, Digital Press, 1990.

X Window System, X Version 11 Release 5, Third Edition, Digital Press, 1992.

X Toolkit Intrinsics Reference Manual, O’Reilly & Associates, Inc., 1991.

Xlib: C Language X Interface, James Gettys, Robert W. Scheifler, Ron Newman, Silicon
Press, 1989.

Xlib Programming Manual, Adrian Nye, O’Reilly & Associates, Inc., 1990.

Xlib Reference Manual, Adrian Nye (ed.), O’Reilly & Associates, Inc., 1990.

Appendix C • Recommended Reading 83

84 Solaris Common Desktop Environment: Motif Transition Guide • May 2002

Index

A
actions, CDE, 29
app-defaults, 75
Application Builder (App Builder), 28, 49, 54,

60
architecture, OPEN LOOK versus Motif, 37

B
basic integration, 46
BIL files, 54

C
callbacks, 37
CascadeButton, 17
.cat file, 76
catclose(), 74
catgets(), 74
CDE

features exclusive to, 27
features in common with

OpenWindows, 28, 32
CDE applications, internationalization, 73, 77
CDE documentation, 79
CDE examples, source code location, 55
CDE widgets

compatibility with Motif 2.1, 22
demo programs, 23
DtComboBox, 21
DtMenuButton, 22

CDE widgets (continued)
DtSpinBox, 21
library and header files, 23

classing engine, 29
color, 32
ComboBox, 62
compiling

Motif applications, 15
controls, window, 35

D
DATA_ATTRIBUTES table, 29
DATA_CRITERIA table, 29
data typing, CDE, 29
DEC VT220, 23, 43
demo programs, 23
Desktop Korn shell (dtksh), 27
development tools, GUI, 53
Devguide, 28, 54
documentation

CDE, 79
GUI, 81
Motif 2.1, 80
Motif programming, 82
OPEN LOOK programming, 82
ToolTalk, 80
Xt/XLib programming, 83

DPS, 27
drag and drop, 28
DropTarget, 44
DtComboBox, 20, 23, 43

85

DtInitialize(), 73
dtksh, 27
DtMenuButton, 20, 22, 43
DtSpinBox, 20, 23, 43
DtTerm, 43

E
existing applications

running in CDE environment, 13
running in Solaris environment, 12

F
FileSelectionBox, 44
Flat Widget, 44
fonts, 31, 77
Footer Panel, 44

G
gencat, 76
gettext(), 74
GIL files, 54
GIL-to-BIL converter, 28, 54
gmf, 54
GUI

application builders, 28
development tools, 53
documentation, 81

guil, 54

H
help system, 28, 30

I
integration

basic, 46
into CDE environment, 47
optional, 48
recommended, 47

internationalization, 28, 31
CDE applications, 73, 77

IXI 1.2.2 Motif, 18

L
levels of integration

basic, 46
optional, 48
recommended, 47

libDtTerm, 24
libDtWidget, 20, 23, 44
libMrm, 18
libUil, 18
libXm, 18
linking Motif applications, 15

M
Manager, Workspace, 27
manager widgets, 50
menu button widget (DtMenuButton), 22
menus, tear-off, 35
message catalog, delivery, 76
message sets, 29
Microsoft Windows, 17
migrating to Solaris Motif, 45
model, for XView and Motif programming, 38
Motif, 62

applications and color, 32
buttons, 36
conversion utilities, 54
enhancements to existing functionality, 17
GUI builders, 49, 53
IXI 1.2.2, 18
programming documentation, 82
resources, localization, 75
shared library policy, 16
Solaris, 17, 19
summary of Solaris toolkits, 11
transition to, 53
UIL library, 18
widgets and XView objects, 38
Window Manager (mwm), 59

Motif 1.2, 22
Motif 2.1, 22

86 Solaris Common Desktop Environment: Motif Transition Guide • May 2002

Motif 2.1 documentation, 80
Motif application development

OpenWindows environment, 12
Solaris CDE environment, 14

Motif code, produced from GIL files, 28
mouse button behavior, 35
.msg file, 76

N
NL_CAT_LOCALE, 74
NLS environment, 73
NLSPATH, 73

O
objects, types common to XView and Motif, 38
OLIT, 13, 28, 34, 37, 57
OLIT libraries

routines only in, 40
routines only in CDE Motif, 41
versus CDE Motif libraries, 40, 44
widgets, 41
widgets exclusive to Motif, 42

OPEN LOOK, 20, 34
optional integration, 48

P
porting

architectural impact, 49
basic integration, 46
benefits, 47
CDE Motif, to, 45, 57
elements of, 45
example, 59
small applications, 48
summary, 56
two-step process, 59

porting tasks
CDE, 13
Motif, 12

PostScript, 27
programming model, XView and Motif, 38

Q
$quote directive, 76

R
radio buttons, 62
recommended integration, 47
RubberTile, 44
run-time terminal, dtterm, 23

S
secondary text selection, 35
Session Manager, 28
setlocale(), 74
Snap button, 62
Solaris

Motif run-time and developer support, 15
Motif toolkits, summary, 11

Solaris Motif
enhancements to Motif 1.2.5, 17
libraries, 18
run-time and developer support, 15
Solaris vs. CDE environment, 12

source code location, CDE examples, 55
Stub, 44

T
tasks

porting to CDE, 13
porting to Motif, 12

tear-off menus, 35
Terminal

DEC VT220-like, 23, 43
DtTerm widget, 23

Terminal widget
demo programs, 24
library and header files, 24

Text Editor
demo programs, 25
DtEditor widget, 24, 43
library and header files, 25
when to use widget, 24

Index 87

text field and arrow button widget
(DtSpinBox), 21

text field and list box widget
(DtComboBox), 21

text selection, secondary, 35
toolkits, implementation differences, 34
ToolTalk Messaging Service, 28

message sets, 29
ttsnoop, 29
tttrace, 29

U
UIL, 18, 41, 54
UIL compiler, 15, 18
UilDef.h header file, 18

W
widget

CDE control, 20, 23
DtTerm, 23
Motif 1.2, 22
Motif 2.1, 23
XmForm, 19
XmList, 19

window controls, 35
Workspace Manager, 27

X
X resources, 40
X Server, 27
XGL, 27
XIL, 27
Xlib, 36
Xm library, 44
XmArrowButton, 43
XmComboBox, 22
XmCommand, 43
XmDrawnButton, 43
XmForm widget, 19
XmFrame, 43
XmLabelGadget, 43
XmList convenience functions, 19

XmMainWindow, 43
XmPanedWindow, 43
XmSelectionBox, 44
XmSpinBox, 22
XmString, 75
Xt intrinsics, 57
Xt library, 44
XtSetLanguageProc(), 74
XView, 13, 28, 34, 37, 57

packages, 39
XView libraries

differences from Motif, 39
external files, 40
objects similar to Motif, 38
terminology, 36

88 Solaris Common Desktop Environment: Motif Transition Guide • May 2002

