
Common Desktop Environment:
Desktop KornShell User’s Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 816–0283–10
May 2002

Copyright 2002 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or service marks
of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2002 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, ou
marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des
marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques
SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

020115@3062

Contents

Preface 7

1 Introduction to Desktop KornShell 11

Using Desktop KornShell to Create Motif Applications 11

Resources 12

Unsupported Resources 13

dtksh app-defaults File 14

Variable Values 15

Return Values 15

Immediate Return Value 16

Initializing the Xt Intrinsics 17

Creating Widgets 18

Using a Callback 19

Registering a Callback 19

Passing Data to a Callback 20

2 A Sample Script 23

Writing the Script 23

Adding a Callback 25

3 Advanced Topics 27

Using Context Variables 27

Event Handler Context Variables 27

Translation Context Variables 28

Workspace Callback Context Variables 28

3

Input Context Variables 28
Accessing Event Subfields 30
Responding to a Window Manager Close Notice 31
Responding to a Session Manager Save State Notice 32
Cooperating With Workspace Manager 34
Creating Localized Shell Scripts 35
Using dtksh to Access X Drawing Functions 36
Setting Widget Translations 37

4 A Complex Script 39

Using script_find 39
Analyzing script_find 41

Functions and Callbacks 41
Main Script 43

A dtksh Commands 49

Built-in Xlib Commands 50
Built-in Xt Intrinsic Commands 51
Built-in Motif Commands 54
Built-in Common Desktop Environment Application Help Commands 64
Built-in Localization Commands 65
Built-in libDt Session Management Commands 65
Built-in libDt Workspace Management Commands 66
Built-in libDt Action Commands 67
Built-in libDt Data-Typing Commands 68
Miscellaneous Built-in libDt Commands 69
Built-in Desktop Services Message Set Commands 69

B dtksh Convenience Functions 77

DtkshAddButtons 77

DtkshSetReturnKeyControls 78

DtkshUnder, DtkshOver, DtkshRightOf, and DtkshLeftOf 79

DtkshFloatRight, DtkshFloatLeft, DtkshFloatTop, and DtkshFloatBottom 79

DtkshAnchorRight, DtkshAnchorLeft, DtkshAnchorTop, and DtkshAnchorBottom
80

DtkshSpanWidth and DtkshSpanHeight 81

DtkshDisplayInformationDialog, DtkshDisplayQuestionDialog,

4 Common Desktop Environment: Desktop KornShell User’s Guide • May 2002

DtDisplayWarningDialog, DtkshDisplayWorkingDialog, and
DtkshDisplayErrorDialog 81

DtkshDisplayQuickHelpDialog and DtkshDisplayHelpDialog 82

C The script_find Script 85

Listing for script_find 85

Find.sticky 92

Find.help 92

Index 93

Contents 5

6 Common Desktop Environment: Desktop KornShell User’s Guide • May 2002

Preface

The Desktop KornShell User’s Guide provides the information you need to create Motif
applications with KornShell (kshell) scripts. In addition to the basic information you’ll
need to get started, several example scripts of increasing complexity are described.
Throughout this guide the term dtksh means the Desktop KornShell.

Who Should Use This Guide
This guide is intended for programmers who want a quick and easy means of creating
Motif applications, but don’t have the time, knowledge, or inclination to use the C
programming language. A good understanding of kshell programming, Motif, the Xt
Intrinsics, and, to a lesser extent, Xlib is needed. An understanding of C would also be
helpful.

How This Guide Is Organized
Chapter 1 describes the basic information you need to begin writing Motif
applications in dtksh scripts.

Chapter 2 describes two simple dtksh scripts. The first script creates a push button
widget within a bulletin board widget. The second script expands the first by adding a
callback for the push button.

Chapter 3 describes more advanced topics pertaining to dtksh scripts.

Chapter 4 describes a much more complex script than either of the ones described in
Chapter 2. This script creates a graphic interface to the find command.

7

Appendix A lists all the dtksh commands.

Appendix B contains man pages for commands or functions that are not documented
elsewhere.

Appendix C contains the complete listing of the complex script described in Chapter 4.

Related Books
The following books provide information on kshell programming, Motif, the Xt
Intrinsics, and Xlib:

� Desktop KornShell Graphical Programming For the Common Desktop Environment
Version 1.0, by J. Stephen Pendergrast, Jr., published by Addison-Wesley, Reading,
MA 01867.

� The New KornShell Command and Programming Language, by Morris I. Bolsky and
David G. Korn, published by Prentice-Hall, Englewood Cliffs, NJ 07632.

� KornShell Programming Tutorial, by Barry Rosenberg, published by Addison-Wesley,
Reading, MA 01867.

� OSF/Motif Programmer’s Guide, Open Software Foundation, 11 Cambridge Center,
Cambridge, MA 02142, published by Prentice-Hall, Englewood Cliffs, NJ 07632.

� OSF/Motif Programmer’s Reference, Open Software Foundation, 11 Cambridge
Center, Cambridge, MA 02142, published by Prentice-Hall, Englewood Cliffs, NJ
07632.

� OSF/Motif Reference Guide, by Douglas A. Young, published by Prentice-Hall,
Englewood Cliffs, NJ 07632.

� Mastering OSF/Motif Widgets (Second Edition), by Donald L. McMinds, published
by Addison-Wesley, Reading, MA 01867

� The X Window System Programming and Applications with Xt OSF/Motif Edition, by
Douglas A. Young, published by Prentice-Hall, Englewood Cliffs, NJ 07632.

� The Definitive Guides to the X Window System, Volume 1: Xlib Programming Manual, by
Adrian Nye, published by O’Reilly and Associates, Sebastopol, CA 95472.

� The Definitive Guides to the X Window System, Volume 2: Xlib Reference Manual, edited
by Adrian Nye, published by O’Reilly and Associates, Sebastopol, CA 95472.

� The Definitive Guides to the X Window System, Volume 3: X Window System User’s
Guide, by Valerie Quercia and Tim O’Reilly, published by O’Reilly and Associates,
Sebastopol, CA 95472.

� The Definitive Guides to the X Window System, Volume 4: X Toolkit Intrinsics
Programming Manual, by Adrian Nye and Tim O’Reilly, published by O’Reilly and
Associates, Sebastopol, CA 95472.

8 Common Desktop Environment: Desktop KornShell User’s Guide • May 2002

� The Definitive Guides to the X Window System, Volume 5: X Toolkit Intrinsics Reference
Manual, edited by Tim O’Reilly, published by O’Reilly and Associates, Sebastopol,
CA 95472.

� The Definitive Guides to the X Window System, Volume 6: Motif Programming Manual,
by Dan Heller, published by O’Reilly and Associates, Sebastopol, CA 95472.

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com.

Typographic Conventions
The following table describes the typographic changes used in this book.

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; on-screen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace with
a real name or value

To delete a file, type rm
filename.

AaBbCc123 Book titles, new words, or terms, or
words to be emphasized.

Read Chapter 6 in User’s Guide.

These are called class options.

You must be root to do this.

Preface 9

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

10 Common Desktop Environment: Desktop KornShell User’s Guide • May 2002

CHAPTER 1

Introduction to Desktop KornShell

Desktop KornShell(ldtksh) provides kshell scripts with the means for easily
accessing most of the existing Xt and Motif functions. dtksh is based on ksh-93,
which provides a powerful set of tools and commands for the shell programmer, and
which supports the standard set of kshell programming commands.

dtksh supports all the features and commands provided by ksh-93. In addition,
dtksh supports a large selection of the libDt functions, most of the widget-related
Motif functions, a large subset of the Xt Intrinsics functions, and a small subset of the
Xlib functions. All the supported functions are listed in Appendix A.

Using Desktop KornShell to Create Motif
Applications
This section describes how to use dtksh to create Motif applications. To successfully
use dtksh, you should have experience with Xlib, the Xt Intrinsics, the Motif widgets,
and KornShell programming. It is also helpful to know the C programming language.
If you are not familiar with any of these, you should refer to the appropriate
documentation. Even if you are familiar with these systems, you should have access to
the applicable man pages for reference.

In addition, your system should have these libraries:

� libDtHelp
� libDtSvc
� libX11
� libXm
� libXt
� libtt

11

Resources
Resources are widget variables that you use to define attributes such as size, location,
or color. Each widget usually has a combination of its own resources, plus resources it
inherits from higher level widgets. Xt Intrinsics and Motif resource names consist of a
prefix (XtN or XmN) followed by the base name. The first letter of the base name is
always lowercase, and the first letter of subsequent words within the base name is
always uppercase. The convention for resource names in dtksh scripts is to delete the
prefix and use the base name. Thus, the resource XmNtopShadowColor becomes
topShadowColor.

Some Xt and Motif commands allow the shell script to pass in a variable number of
parameters, representing resource-value pairs. This is similar to the argument list
passed to the corresponding Xt or Motif C function. Examples include any of the
commands used to create a widget, plus the XtSetValues command. In dtksh,
resources are specified by a string with the following syntax:

resource:value

where resource is the name of the resource and value is the value assigned to the
resource. dtksh automatically converts the value string to an appropriate internal
representation. For example:

XtSetValues $WIDGET height:100 width:200 resizePolicy:RESIZE_ANY

XmCreateLabel LABEL $PARENT myLabel labelString:”Close Dialog”

When you retrieve widget resource values using XtGetValues, the return value is
placed in an environment variable. Thus, unlike the Xt Intrinsics, the dtksh version of
XtGetValues uses a name:(environment) variable pair, rather than a name:value
pair. For example:

XtGetValues $WIDGET height:HEIGHT resizePolicy:POLICY
sensitive:SENSITIVE echo $HEIGHT echo $POLICY echo

$SENSITIVE

The preceding dtksh segment might produce this output:

100 RESIZE ANY

TRUE

Certain types of resource values, including string tables and bit masks, have special
representation. For example, the List widget allows a string table to be specified for
both the items and selectedItems resources. In dtksh, a string table is
represented as a comma-separated list of strings, which is similar to how Motif treats
them. When a resource that returns a string table is queried using XtGetValues, the
resulting value is a comma-separated set of strings.

12 Common Desktop Environment: Desktop KornShell User’s Guide • May 2002

A resource that expects a bit mask value to be passed to it expects the mask to be
specified as a string composed of the various mask values separated by the |(bar)
character. When a resource that returns a bit mask is queried, the return value is a
string representing the enabled bits, separated by the | character. For example, you
could use the following command to set the mwmFunctions resource for the
VendorShell widget class:

XtSetValues mwmFunctions: MWM_FUNC_ALL|MWM_FUNC_RESIZE

Unsupported Resources
dtksh supports most of the Motif resources. The following lists unsupported
resources. Resources with an * (asterisk) can be specified at widget creation time by
using XtSetValues, but can’t be retrieved using XtGetValues.

� All widget and gadget Classes:

� Any fontlist resource *
� Any pixmap resource *

� Composite:

� insertPosition
� children

� Core:

� accelerators
� translations *
� colormap

� XmText:

� selectionArray
� selectionArrayCount

� ApplicationShell:

� argv

� WMShell:

� iconWindow
� windowGroup

� Shell:

� createPopupChildrenProc

� XmSelectionBox:

� textAccelerators

� Manager, Primitive, and Gadget Subclasses:

� userData

� XmFileSelectionBox:

Chapter 1 • Introduction to Desktop KornShell 13

� dirSearchProc
� fileSearchProc
� qualifySearchDataProc

dtksh app-defaults File
The dtksh app-defaults file, named Dtksh, is found in a location based on the
following path description:

/usr/dt/app-defaults/<LANG>

The only information contained in this app-defaults file is the inclusion of the
standard Dt base app-defaults file. The following is a listing of the dtksh
app-defaults file:

#include

"Dt"

The file Dt is also located in /usr/dt/app-defaults/<LANG> and is shown in the
following listing.

*foregroundThreshold:
70
!###
!#
!# Help system specific resources
!#
!###
!#
!# Display Area Colors
!#
!# These resources set the colors for the display area(where
!# actual help text is displayed). The resources are complex
!# because they have to override the standard color resources
!# in all cases.
!#
*XmDialogShell.DtHelpDialog*DisplayArea.background: White
*XmDialogShell*XmDialogShell.DtHelpDialog*DisplayArea.background: White
*XmDialogShell.DtHelpDialog*DisplayArea.foreground: Black
*XmDialogShell*XmDialogShell.DtHelpDialog*DisplayArea.foreground: Black
!#

!# Menu Accelerators
!#
!# The following resources establish keyboard accelerators
!# for the most frequently accessed menu commands.
!#

*DtHelpDialogWidget*searchMenu.keyword.acceleratorText: Ctrl+I
*DtHelpDialogWidget*searchMenu.keyword.accelerator: Ctrl<Key>i
*DtHelpDialogWidget*navigateMenu.backTrack.acceleratorText: Ctrl+B
*DtHelpDialogWidget*navigateMenu.backTrack.accelerator: Ctrl<Key>b

14 Common Desktop Environment: Desktop KornShell User’s Guide • May 2002

*DtHelpDialogWidget*navigateMenu.homeTopic.acceleratorText: Ctrl+H
*DtHelpDialogWidget*navigateMenu.homeTopic.accelerator: Ctrl<Key>h
*DtHelpDialogWidget*fileMenu.close.acceleratorText: Alt+F4

*DtHelpDialogWidget*fileMenu.close.accelerator: Alt<Key>f4

Variable Values
This section describes the types of values for some of the variables in a dtksh
app-defaults file.

Defined Values
The C bindings of the interfaces to X, Xt and Motif include many nonstring values that
are defined in header files. The general format of such values consists of an Xt or Xm
prefix followed by a descriptive name. For example, one of the constraint values for a
child of a form widget is XmATTACH_FORM. Equivalent values are specified in dtksh
by dropping the prefix, just as in a Motif defaults file:

� XmDIALOG_COMMAND_TEXT becomes DIALOG_COMMAND_TEXT
� XtATTACH_FORM becomes ATTACH_FORM

Boolean Values
You can specify a Boolean value as a parameter to a dtksh command using the words
True or False; case is not significant. A Boolean result is returned as either True or
False, using all lowercase letters.

Return Values
Graphical commands in dtksh fall into one of four categories, based on the definition
of the corresponding C function:

1. The function is void and returns no values. Example: XtMapWidget()

2. The function is void, but returns one or more values through reference parameters.
Example: XmGetColors()

3. The function returns a non-Boolean value. Example:
XtCreateManagedWidget()

4. The function returns a Boolean value. Example: XtIsSensitive()

Category 1
A dtksh category 1 command follows the calling sequence of its corresponding C
function. The number and order of parameters can be determined by looking at the
standard documentation for the function. Example:

Chapter 1 • Introduction to Desktop KornShell 15

XtMapWidget $FORM

Category 2
A dtksh category 2 command also generally follows the calling sequence of its
corresponding C function. It returns a value in an environment variable, instead of
passing a pointer to a return variable. Example:

XmGetColors $FORM $BG FOREGROUND TOPSHADOW BOTTOMSHADOW SELECT

echo “Foreground color = “ $FOREGROUND

Category 3
A dtksh category 3 command differs slightly from its corresponding C function.
Where the C function returns its value as the value of the procedure call, a dtksh
command requires an additional parameter. This parameter is the name of an
environment variable into which the return value is to be placed. It is always the first
parameter. Example:

XmTextGetString TEXT_VALUE $TEXT_WIDGET

echo “The value of the text field is “$TEXT_VALUE

Category 4
A dtksh category 4 command returns a value that can be used in a conditional
expression just as in C. If the C function also returns values through reference
variables (as in category 2), the dtksh command also uses variable names for the
corresponding parameters. Example:

if XmIsTraversable $PUSH_BUTTON; then
echo “The pushbutton is traversable”
else

echo “The pushbutton is not traversable” fi

Generally, the order and type of parameters passed to a command matches those
passed to the corresponding C function, except as noted for category 3 commands.

Immediate Return Value
Many of the category 3 commands return a single value using an environment
variable specified as the first parameter to the command (for these special commands,
the first parameter has the name variable). If this return value is immediately used in
an expression, the special environment variable "-" may be used in place of a variable
name. When dtksh encounters "-" as the name of the environment variable in which
the return value is to be returned, it instead returns the result as the value of the
command. This allows the shell script to embed the command call in another
command call. This feature only works for commands that return a single value, and
the value is returned in the first parameter. For example:

16 Common Desktop Environment: Desktop KornShell User’s Guide • May 2002

XtDisplay DISPLAY $FORM

XSync $DISPLAY true

can be replaced by the equivalent statement:

XSync $(XtDisplay "-" $FORM) true

The reference to $DISPLAY is replaced with the value returned by the call to
XtDisplay.

This capability is available for all category 3 commands except those that create a
widget, those that return more than a single value, and those whose first parameter is
not a named variable. Commands that do not accept "-" as the environment variable
name include the following:

� XtInitialize()

� XtCreateApplicationShell()

� XtCreatePopupShell()

� XtCreateManagedWidget()

� XtCreateWidget()

� All commands of the form:

XmCreate...()

� Most commands of the form:

tt_...()

Initializing the Xt Intrinsics
A dtksh script must first initialize the Xt Intrinsics before it can call any of the Xlib,
Xt, Motif, or libDt commands. You accomplish this by invoking the XtInitialize
command, which returns an application shell widget. As is true for all dtksh
commands that return a widget ID, XtInitialize returns the widget ID in the
environment variable that is the first argument. For example, in:

XtInitialize TOPLEVEL myShellName Dtksh $0 “$@”

the widget ID is returned in the environment variable TOPLEVEL.

dtksh provides a default app-defaults file, which is used if the call to
XtInitialize specifies an application class name of Dtksh. This app-defaults
file contains the standard set of Dt application default values, so dtksh applications
have a consistent look with other Dt applications.

Chapter 1 • Introduction to Desktop KornShell 17

Creating Widgets
There are several commands you can use to create widgets:

XtCreateWidget Creates an unmanaged widget.

XtCreateManagedWidget Creates a managed widget.

XtCreateApplicationShellCreates an application shell.

XtCreatePopupShell Creates a pop-up shell.

XmCreate<widgettypes> Creates an unmanaged widget.

There is a specific format for each of these commands that you must follow. For
example, suppose you want to create an unmanaged push button widget as a child of
the top-level widget. You can use either XtCreateWidget or
XmCreatePushButton. The formats for these commands are:

� XtCreateWidget variable name widgetclass $parent [resource:value ...]

� XmCreatePushButton variable $parent name [resource:value ...]

The actual commands to create a push button widget are:

XtCreateWidget BUTTON button XmPushButton $TOPLEVEL

XmCreatePushButton BUTTON $TOPLEVEL button

Each of the preceding commands do exactly the same thing: create an unmanaged
push button. Note that no resource values are set. Suppose that you want the
background color of the push button to be red, and the foreground color to be black.
You can set the values of these resources this way:

XtCreateWidget BUTTON button XmPushButton $TOPLEVEL \
background:Red \
foreground:Black

XmCreatePushButton BUTTON $TOPLEVEL button\
background:Red \

foreground:Black

All of the C functions that create a widget return a widget ID, or ID. The
corresponding dtksh commands set an environment variable equal to the widget ID.
These are category 3 commands, so the first argument is the name of the environment
variable in which to return the widget ID. The widget ID is an ASCII string used by
dtksh to access the actual widget pointer. Either of the following commands could be
used to create a new form widget; however, in each case the widget ID for the new
form widget is returned in the environment variable FORM:

� XtCreateManagedWidget FORM name XmForm $PARENT
� XmCreateForm FORM $PARENT name

18 Common Desktop Environment: Desktop KornShell User’s Guide • May 2002

After either of these commands, you can use $FORM to reference the new form widget.
For example, you could use this command to create a label widget within the new
form widget:

XmCreateLabel LABEL $FORM name\
labelString:”Hi Mom” \

CH_FORM \

leftAttachment:ATTACH_FORM

Note – There is a special widget ID called NULL, provided for cases where a shell
script may need to specify a NULL widget. For example, to disable the
defaultButton resource for a form widget, use the command XtSetValues $FORM
defaultButton:NULL

Using a Callback
A callback is a function or procedure that is executed when an event or combination of
events occurs. For example, a callback is used to achieve the desired result when a
push button is “pressed.” It is easy for a dtksh shell script to assign a command to be
activated whenever a particular callback is invoked for a widget. The command could
be as simple as a string of commands blocked together, or the name of the shell
function to invoke.

Registering a Callback
An application registers a callback with a widget to specify a condition in which it is
interested and to specify what action should occur when that condition occurs. The
callback is registered using XtAddCallback. The action can be any valid dtksh
command. For example:

XtAddCallback $WIDGET activateCallback “ActivateProc”
XtAddCallback $WIDGET activateCallback \

“XtSetSensitive $BUTTON false”

Chapter 1 • Introduction to Desktop KornShell 19

Passing Data to a Callback
A callback needs to be passed context information, so it can determine what condition
led to its call. For a C procedure, this information is typically passed in a callData
structure. For example, a scale widget invoking a valueChangedCallback passes an
instance of the following structure in callData:

typedef struct {
int reason;
XEvent event;
int value;

}XmScaleCallbackStruct;

The C application’s callback then does something like:

if (scaleCallData->reason == XmCR_VALUE_CHANGED)
{

eventType =scaleCallData->event->type;
display =scaleCallData->event->xany.display;

}

Similarly, when a callback is invoked in dtksh, the following special environment
variable is set up before the callback command executes:

CB_WIDGET

This is set to the widget ID for the widget that is invoking the callback.

CB_CALL_DATA

This is set to the address of the callData structure passed by the widget to the
callback.

The CB_CALL_DATA environment variable represents a pointer to a structure, and
access to its fields uses a syntax similar to that of C. Nested environment variables are
defined, named the same as the fields of the structure (but all in uppercase), and a dot
is used to indicate containment of an element in a structure. Thus, the previous C code
to access the callData provided by the scale widget translates to:

if [${CB_CALL_DATA.REASON} = “CR_VALUE_CHANGED”]; then
eventType=${CB_CALL_DATA.EVENT.TYPE}
display=${CB_CALL_DATA.EVENT.XANY.DISPLAY}

fi

The same is true of the event structure within the callData structure.

For most callback structures, the shell script is able to reference any of the fields
defined for the particular callback structure, using the technique described earlier. In
most cases, the shell script is not able to alter the values of the fields within these
structures. The exception to this is the XmTextVerifyCallbackStruct, which is
available during the losingFocusCallback, the modifyVerifyCallback and the

20 Common Desktop Environment: Desktop KornShell User’s Guide • May 2002

motionVerifyCallback for the text widget. dtksh supports the modification of
certain fields within this structure, to the extent that it is supported by Motif. The
following fields within the callback structure are capable of being modified:

� CB_CALL_DATA.DOIT
� CB_CALL_DATA.STARTPOS
� CB_CALL_DATA.TEXT.PTR
� CB_CALL_DATA.TEXT.LENGTH
� CB_CALL_DATA.TEXT.FORMAT

This is an example of how one of these fields can be modified:

� CB_CALL_DATA.DOIT=”false”
� CB_CALL_DATA.TEXT.PTR=”*”
� CB_CALL_DATA.TEXT.LENGTH=1

Chapter 1 • Introduction to Desktop KornShell 21

22 Common Desktop Environment: Desktop KornShell User’s Guide • May 2002

CHAPTER 2

A Sample Script

This chapter shows you how to use what you learned about dtksh in Chapter 1. The
two simple scripts described here should give you a good start at writing your own
scripts.

Writing the Script
This script creates a bulletin board widget within which a push button widget is
placed. The script is kept simple by not including any callbacks. The second script
includes a callback.

Here’s the first script:

#!/usr/dt/bin/dtksh
XtInitialize TOPLEVEL dttest1 Dtksh

$0 XtSetValues $TOPLEVEL

title:“dttest1” XtCreateManagedWidget
BBOARD bboard XmBulletinBoard $TOPLEVEL

\ resizePolicy:RESIZE_NONE height:150 width:250\

background:SkyBlue XtCreateManagedWidget BUTTON pushbutton XmPushButton

$BBOARD \ background:goldenrod \
foreground:MidnightBlue \

labelString:”Push Here” \
height:30 width:100 x:75 y:60

shadowThickness:3 XtRealizeWidget

23

$TOPLEVEL XtMainLoop

Figure 2-1 shows the window that the first script produces.

FIGURE 2–1 Window From script dttest

The first line of the script:

#!/usr/dt/bin/dtksh

tells the operating system that this script should be executed using
/usr/dt/bin/dtksh rather than the standard shell.

The next line initializes the Xt Intrinsics.

XtInitialize TOPLEVEL dttest1 Dtksh $0

The name of the top-level widget is saved in the environment variable $TOPLEVEL,
the shell widget name is dttest1, the application class name is Dtksh, and the
application name is given by the dtksh variable $0.

The next line sets the title resource to the name of the script.

XtSetValues $TOPLEVEL

title:”dttest1”

Notice that there is no space between the colon after the resource name (title) and its
value. An error message appears if you have a space between them.

The next four lines create a bulletin board widget and set some of its resources.

XtCreateManagedWidget
BBOARD bboard XmBbulletinBoard $TOPLEVEL \

resizePolicy:RESIZE_NONE \

background:SkyBlue\

height:150 width:250

24 Common Desktop Environment: Desktop KornShell User’s Guide • May 2002

The bulletin board widget’s ID is saved in the environment variable $BBOARD. The
widget’s name is bboard. This name is used by the Xt Intrinsics to set the values of
resources that might be named in an external resource file. The widget class is
XmBulletinBoard. The bulletin board’s parent widget is the widget ID contained in
the environment variable $TOPLEVEL. This is the top-level widget created by the
initialization command in the first line. The \ (backslash) at the end of the line tells
dtksh that this command continues on the next line.

The next six lines create a push button widget as a child of the bulletin board, and set
some of the push button’s resources.

XtCreateManagedWidget
BUTTON pushbutton XmPushButton $BBOARD \

background:goldenrod \

foreground:MidnightBlue \
labelString:”Push Here”\

height:30 width:100 x:75 y:60\

shadowThickness:3

This is basically the same procedure used to create the bulletin board, except that the
variable, name, class, and parent are different.

The next line causes the top-level widget and all its children to be realized.

XtRealizeWidget

$TOPLEVEL

Finally, the XtMainLoop command initiates a loop processing of events for the
widgets.

XtMainLoop

In this script, all that happens is the window appears on the display. It stays there until
you terminate the script, either by choosing Close on the Window Manager menu or
by pressing CTRL-C in the terminal window from which you executed the script.

Adding a Callback
To provide a function for the push button so that when it is pressed a message appears
in the terminal window and the script terminates, you have to add a callback. Also,
you must tell the push button about the existence of this callback. The following is the
script with the new code added:

#!/usr/dt/bin/dtksh
activateCB() { echo “Pushbutton activated; normal termination.”

Chapter 2 • A Sample Script 25

exit 0 } XtInitialize TOPLEVEL dttest2 Dtksh $0 XtSetValues $TOPLEVEL

title:”dttest2” XtCreateManagedWidget BBOARD bboard

XmBulletinBoard $TOPLEVEL \
resizePolicy:RESIZE_NONE \

background:SkyBlue \
height:150 width:250 XtCreateManagedWidget BUTTON

pushbutton XmPushButton $BBOARD \
background:goldenrod \

foreground:MidnightBlue \
labelString:”Push Here”\

height:30 width:100 x:75 y:60 shadowThickness:3 XtAddCallback $BUTTON

activateCallback activateCB XtRealizeWidget $TOPLEVEL

XtMainLoop

The callback is the function activateCB(). You typically add the callback to the
push button after it (the push button) has been created:

XtAddCallback $BUTTON

activateCallback activateCB

Now the pushbutton knows about the callback. When you click the push button, the
function activateCB() is executed, and the message “Pushbutton activated;
normal termination.” appears in the terminal window from which you executed
the script. The script is terminated by the call to the function exit 0().

26 Common Desktop Environment: Desktop KornShell User’s Guide • May 2002

CHAPTER 3

Advanced Topics

Now that you have the basic information about dtksh, this chapter introduces you to
more advanced topics.

Using Context Variables
dtksh has a number of variables that provide context to certain aspects of an
application.

Event Handler Context Variables
An application registers event handlers with a widget to specify an action to occur
when one of the specified events occurs. The action can be any arbitrary dtksh
command line. For example:

XtAddEventHandler $W "Button2MotionMask" false "ActivateProc"
XtAddEventHandler $W "ButtonPressMask|ButtonReleaseMask" \

false "echo action"

Two environment variables are defined to provide context to the event handler:

EH_WIDGET Set to the ID of the widget for which the event handler
is registered.

EH_EVENT Set to the address of the XEvent which triggered the
event handler.

Access to the fields within the XEvent structure is shown in the following example:

if [${EH_EVENT.TYPE} = "ButtonPress"]; then
echo "X = "${EH_EVENT.XBUTTON.X}
echo "Y= "${EH_EVENT.XBUTTON.Y}

27

elif [${EH_EVENT.TYPE} = "KeyPress"]; then
echo "X = "${EH_EVENT.XKEY.X}

echo "Y = "${EH_EVENT.XKEY.Y}

fi

Translation Context Variables
The Xt Intrinsics provides for event translations to be registered for a widget. Context
for event translation is provided in the same way it is provided for event handlers.
The two variables defined for translation commands are:

TRANSLATION_WIDGET Set to the widget handle for the widget for which the
translation is registered.

TRANSLATION_EVENT Set to the address of the XEvent that triggered the
translation.

Dot-notation provides access to the fields of the event:

echo "Event type = "${TRANSLATION_EVENT.TYPE}

echo "Display ="${TRANSLATION_EVENT.XANY.DISPLAY}

Workspace Callback Context Variables
An application has the ability to register a callback function that is invoked whenever
the user changes to a new workspace. When the callback is invoked, two special
environment variables are set, and can be accessed by the shell callback code:

CB_WIDGET Set to the ID for the widget that is invoking the
callback.

CB_CALL_DATA Set to the X atom that uniquely identifies the new
workspace. This can be converted to its string
representation, using the XmGetAtomName command.

Input Context Variables
The Xt Intrinsics provides the XtAddInput facility, which allows an application to
register interest in any data available from a particular file descriptor. When
programming in C, the application provides a handler function, which is invoked
when input is available. It is up to the handler to read the data from the input source
and to handle character escaping and line continuations.

28 Common Desktop Environment: Desktop KornShell User’s Guide • May 2002

dtksh also supports the XtAddInput facility, but takes it a step further and makes it
easier for shell programmers to use. By default, when a shell script registers interest in
a file descriptor, dtksh invokes the shell script’s input handler only when a complete
line of text has been received. A complete line of text is defined as a line terminated
either by an unescaped newline character or by the end of the file. The input handler
is also called if no data is available and the end of the file has been reached. The
handler can then use XtRemoveInput to remove the input source and to close the file
descriptor. The advantage of this default behavior is that input handlers need not be
concerned with escape processing or with handling line continuations. The
disadvantage is that it assumes that all of the input is line-oriented and contains no
binary information.

dtksh also supports a “raw” input mode if the input source contains binary
information or if the input handler wants to read the data from the input source
directly. In raw mode, dtksh does not read any of the data from the input source.
Whenever dtksh is notified that input is available on the input source, it invokes the
shell script’s input handler. It is then the handler’s responsibility to read the incoming
data, perform any required buffering and escape processing, and detect when the end
of the file has been reached (so that the input source can be removed and the file
descriptor closed). This mode seldom needs to be used by a dtksh script.

Whether the input handler has been configured to operate in the default mode or in
raw mode, dtksh sets up several environment variables before calling the shell
script’s input handler. These environment variables provide the input handler with
everything needed to handle the incoming data. The environment variables are:

INPUT_LINE If operating in the default mode, this variable contains
the next complete line of input available from the input
source. If INPUT_EOF is true, then there is no data in
this buffer. If operating in raw mode, then this variable
always contains an empty string.

INPUT_EOF If operating in the default mode, this variable is set to
false anytime INPUT_LINE contains data, and it is set
to true when the end of file is reached. When the end of
file is reached, the shell script’s input handler should
unregister the input source and close the file descriptor.
If operating in raw mode, this variable is always set to
false.

INPUT_SOURCE This indicates the file descriptor for which input is
available. If operating in raw mode, this file descriptor
is used to obtain the pending input. The file descriptor
is also used to close the input source, when no longer
needed.

INPUT_ID This indicates the ID returned by XtAddInput, when
the input source was originally registered. This
information is needed to remove the input source with

Chapter 3 • Advanced Topics 29

XtRemoveInput.

Accessing Event Subfields
The XEvent structure has many different configurations, based on the event’s type.
dtksh provides access only to the most frequently used XEvents. Any of the other
standard XEvents can be accessed using the event type XANY, followed by any of the
subfields defined by the XANY event structure, which includes the following subfields:

� ${TRANSLATION_EVENT.XANY.TYPE}
� ${TRANSLATION_EVENT.XANY.SERIAL}
� ${TRANSLATION_EVENT.XANY.SEND_EVENT}
� ${TRANSLATION_EVENT.XANY.DISPLAY}
� ${TRANSLATION_EVENT.XANY.WINDOW}

dtksh supports full access to all of the event fields for the following event types:

� XANY
� XBUTTON
� XEXPOSE
� XNOEXPOSE
� XGRAPHICSEXPOSE
� XKEY
� XMOTION

The following examples show how the subfields for the preceding event types can be
accessed:

${TRANSLATION_EVENT.XBUTTON.X}
$(CB_CALL_DATA.EVENT.XKEY.STATE)

${EH_EVENT.XGRAPHICSEXPOSE.WIDTH}

30 Common Desktop Environment: Desktop KornShell User’s Guide • May 2002

Responding to a Window Manager Close
Notice
When the user selects Close from the Window Manager menu for an application, the
application is terminated unless it has arranged to “catch” the Close notification. If the
application does not catch the notification, then multiple windows managed by the
application all disappear and application data may be left in an undesirable state. To
avoid this, dtksh provides for catching and handling the Close notification. The
application must:

� Define a procedure to handle the Close notification
� Request notification when Close is selected
� Override the response, so the application is not shut down

The following code illustrates this processing.

This is the ‘callback’ invoked when the user selects
the ‘Close’ menu item
WMCallback()
{
echo "User has selected the Close menu item"
}
Create the toplevel application shell
XtInitialize TOPLEVEL test Dtksh $0 "$@"
XtDisplay DISPLAY $TOPLEVEL
Request notification when the user selects the ‘Close’
menu item
XmInternAtom DELETE_ATOM $DISPLAY "WM_DELETE_WINDOW" false
XmAddWMProtocolCallback $TOPLEVEL $DELETE_ATOM "WMCallback"
Ask Motif to not automatically close down your
application window

XtSetValues $TOPLEVEL deleteResponse:DO_NOTHING

Chapter 3 • Advanced Topics 31

Responding to a Session Manager Save
State Notice
Session Manager allows applications to save their current state when the user
terminates the current session, so that when the user later restarts the session, an
application can return to the state it was in. In dtksh, this is accomplished by setting
up a handler in a similar way of handling a Close notification. If a handler is not set
up, the application has to be restarted manually in the new session, and the
application does not retain any state.

To set up a handler to save the current state, the application must:

� Define functions to save the state at the end of the session and to restore it on
startup

� Register interest in the Session Manager notification

� Register the function to save the state

� At startup, determine whether the saved state should be restored

The following code illustrates this process.

#! /usr/dt/bin/dtksh
Function invoked when the session is being ended by the user
SessionCallback()

{
Get the name of the file into which we should save our
session information
if DtSessionSavePath $TOPLEVEL PATH SAVEFILE; then

exec 9>$PATH

Save off whether we are currently in an iconified state
if DtShellIsIconified $TOPLEVEL ; then

print -u9 ‘Iconified’
else

print -u9 ‘Deiconified’
fi

Save off the list of workspaces we currently reside in
if DtWsmGetWorkspacesOccupied $(XtDisplay "-" $TOPLEVEL) \

$(XtWindow "-" $TOPLEVEL) \
CURRENT_WS_LIST ;

then
Map the comma-separated list of atoms into
their string representation

oldIFS=$IFS
IFS=","
for item in $CURRENT_WS_LIST;

32 Common Desktop Environment: Desktop KornShell User’s Guide • May 2002

do
XmGetAtomName NAME $(XtDisplay "-" $TOPLEVEL) \

$item
print -u9 $NAME

done
IFS=$oldIFS

fi

exec 9<&-
Let the session manager know how to invoke us when
the session is restored
DtSetStartupCommand $TOPLEVEL \
"/usr/dt/contrib/dtksh/SessionTest $SAVEFILE"

else
echo "DtSessionSavePath FAILED!!"
exit -3
fi

}
Function invoked during a restore session; restores the
application to its previous state
RestoreSession()
{

Retrieve the path where our session file resides
if DtSessionRestorePath $TOPLEVEL PATH $1; then

exec 9<$PATH
read -u9 ICONIFY

Extract and restore our iconified state
case $ICONIFY in Iconified) DtSetIconifyHint $TOPLEVEL True;;
*) DtSetIconifyHint $TOPLEVEL False;
esac

Extract the list of workspaces we belong in, convert
them to atoms, and ask the Workspace Manager to relocate
us to those workspaces
WS_LIST=""
while read -u9 NAME
do
XmInternAtom ATOM $(XtDisplay "-" $TOPLEVEL) \

$NAME False
if [${#WS_LIST} -gt 0]; then

WS_LIST=$WS_LIST,$ATOM
else

WS_LIST=$ATOM
fi
done

DtWsmSetWorkspacesOccupied $(XtDisplay "-" $TOPLEVEL) \
$(XtWindow "-" $TOPLEVEL) $WS_LIST

exec 9<&-
else

echo "DtSessionRestorePath FAILED!!"
exit -3

fi
}

Chapter 3 • Advanced Topics 33

################## Create the Main UI #######################
XtInitialize TOPLEVEL wmProtTest Dtksh $0 "$@"
XtCreateManagedWidget DA da XmDrawingArea $TOPLEVEL \

height:200 width:200
XmInternAtom SAVE_SESSION_ATOM $(XtDisplay "-" $TOPLEVEL) \

"WM_SAVE_YOURSELF" False

If a command-line argument was supplied, then treat it as the
name of the session file
if (($# > 0))
then
Restore to the state specified in the passed-in session file
XtSetValues $TOPLEVEL mappedWhenManaged:False
XtRealizeWidget $TOPLEVEL
XSync $(XtDisplay "-" $TOPLEVEL) False
RestoreSession $1
XtSetValues $TOPLEVEL mappedWhenManaged:True
XtPopup $TOPLEVEL GrabNone

else
This is not a session restore, so come up in the default state
XtRealizeWidget $TOPLEVEL
XSync $(XtDisplay "-" $TOPLEVEL) False

fi

Register the fact that we are interested in participating in
session management
XmAddWMProtocols $TOPLEVEL $SAVE_SESSION_ATOM
XmAddWMProtocolCallback $TOPLEVEL $SAVE_SESSION_ATOM \

SessionCallback

XtMainLoop

Cooperating With Workspace Manager
dtksh provides access to all of the major Workspace Manager functions of the Dt
libraries, including functions for querying and setting the set of workspaces with
which an application is associated; for querying the list of all workspaces; for querying
and setting the current workspace; and for requesting that an application be notified
any time the user changes to a different workspace.

From a user’s perspective, workspaces are identified by a set of names, but from the
Workspace Manager’s standpoint, workspaces are identified by X atoms. Whenever
the shell script asks for a list of workspace identifiers, a string of X atoms is returned.
If more than one X atom is present, then the list is comma-separated. The Workspace
Manager expects that the shell script uses the same format when passing workspace
identifiers back to it. During a given session, it is safe for the shell script to work with
the X atoms, since they remain constant over the lifetime of the session. However, as

34 Common Desktop Environment: Desktop KornShell User’s Guide • May 2002

was shown in the Session Manager shell script example in the previous section, if the
shell script is going to save and restore workspace identifiers, the identifiers must be
converted from their X atom representation to a string before they are saved. Then,
when the session is restored, the shell script needs to remap the names into X atoms
before passing the information on to the Workspace Manager. Mapping between X
atoms and strings, and between strings and X atoms, is accomplished using the
following two commands:

� XmInternAtom ATOM $DISPLAY $WORKSPACE_NAME false
� XmGetAtomName NAME $DISPLAY $ATOM

Specific dtksh commands for dealing with workspace management are documented
in “Built-in libDt Session Management Commands” in Appendix A.

Creating Localized Shell Scripts
dtksh scripts are internationalized and then localized in a process similar to C
applications. All strings that may be presented to the user are identified in the script.
A post-processor extracts the strings from the script and, from them, builds a
catalogue, which can then be translated to any desired locale. When the script
executes, the current locale determines which message catalog is searched for strings
to display. When a string is to be presented, it is identified by a message-set ID
(corresponding to the catalog) and a message number within the set. These values
determine what text the user sees. The following code illustrates the process:

Attempt to open our message
catalog catopen MSG_CAT_ID "myCatalog.cat"

The localized button label is in set 1, and is message
2 XtCreatePushButton OK $PARENT ok \

labelString:$(catgets $MSG_CAT_ID 1 2 "OK")

The localized button label is in set 1, and is message
#3 XtCreatePushButton CANCEL $PARENT cancel \

labelString:$(catgets $MSG_CAT_ID 1 3 "Cancel")

Close the message catalog, when no longer needed

catclose $MSG_CAT_ID

It is important to note that the file descriptor returned by catopen must be closed
using catclose and not by using the kshell exec command.

Chapter 3 • Advanced Topics 35

Using dtksh to Access X Drawing
Functions
dtksh commands include standard Xlib drawing functions to draw lines, points,
segments, rectangles, arcs, and polygons. In the standard C programming
environment, these functions take a graphics context (GC) as an argument, in addition
to the drawing data. In dtksh drawing functions, a collection of GC options are
specified in the parameter list to the command.

By default, the drawing commands create a GC that is used for that specific command
and then discarded. If the script specifies the -gc option, the name of a graphics
context object can be passed to the command. This GC is used in interpreting the
command, and the variable is updated with any modifications to the GC performed
by the command.

-gc <GC> <GC> is the name of an environment variable which
has not yet been initialized or which has been left
holding a graphic context by a previous drawing
command. If this option is specified, then it must be the
first GC option specified.

-foreground <color> The foreground color, which may be either the name of
a color or a pixel number.

-background <color> The background color, which may be either the name
of a color or a pixel number.

-font The name of the font to be used.

-line_width <number> The line width to be used during drawing.

-function <drawing
function>

The drawing function, which can be xor, or, clear,
and, copy, noop, nor, nand, set, invert, equiv,
andReverse, orReverse, or copyInverted.

-line_style <style> The line style, which can be any of the following:
LineSolid, LineDoubleDash, or LineOnOffDash.

36 Common Desktop Environment: Desktop KornShell User’s Guide • May 2002

Setting Widget Translations
dtksh provides mechanisms for augmenting, overriding, and removing widget
translations, much as in the C programming environment. In C, an application installs
a set of translation action procedures, which can then be attached to specific sequences
of events (translations are composed of an event sequence and the associated action
procedure). Translations within dtksh are handled in a similar fashion, except only a
single action procedure is available. This action procedure, named ksh_eval,
interprets any parameters passed to it as dtksh commands and evaluates them when
the translation is triggered. The following shell script segment gives an example of
how translations can be used:

BtnDownProcedure()
{

echo "Button Down event occurred in button "$1
}
XtCreateManagedWidget BUTTON1 button1 XmPushButton $PARENT \

labelString:"Button 1" \
translations:’#augment
<EnterNotify>:ksh_eval("echo Button1 entered")
<Btn1Down>:ksh_eval("BtnDownProcedure 1")’

XtCreateManagedWidget BUTTON2 button2 XmPushButton $PARENT \
labelString:"Button 2"

XtOverrideTranslations $BUTTON2 \
’#override

<Btn1Down>:ksh_eval("BtnDownProcedure 2")’

Chapter 3 • Advanced Topics 37

38 Common Desktop Environment: Desktop KornShell User’s Guide • May 2002

CHAPTER 4

A Complex Script

This chapter describes a much more complex script than that described in Chapter 2.
Because of its length, the entire script is listed in Appendix C. Remember that this
guide is not a tutorial on KornShell programming. If you are not familiar with
KornShell programming, you should obtain a book on the subject and have it handy
for reference.

Using script_find
The script, script_find, demonstrates how you can use dtksh to provide a
graphical interface to the find command. script_find produces a window within
which you can specify parameters for the find command. To fully understand the
script, you should be familiar with the find command and you should have its man
page available. A number of the toggle button menu choices in the window produced
by script_find require some knowledge of the find command.

The script’s window allows you to specify a search directory and a file name. Other
options allow you to place restrictions on the type of file system to search and the file
type on which to match. Figure 4-1 shows the script’s window.

39

FIGURE 4–1 Window for script_find

Enter the search directory and file name you’re looking for in the text fields at the top
of the window. In addition, select any applicable choice (or choices) from the five
toggle buttons. You can further restrict the search with the option menus. When you
have made all the necessary selections, click OK. If all is well, a window appears
shortly thereafter and displays the results of the find operation. An error dialog
appears if you don’t specify a search directory or file name, or if the specified search
directory is invalid. For example, suppose you want to find a file called
two_letter_calls, and you think it resides somewhere in the directory
/users/dlm. When you enter the directory in the Search Directory text field, you
inadvertently type /users/dln instead of /users/dlm. When you click OK or
Apply, script_find can’t find the directory /users/dln, so it creates the error
dialog to notify you of this.

FIGURE 4–2 script_find error Dialog

40 Common Desktop Environment: Desktop KornShell User’s Guide • May 2002

When you correct the mistake, script_find then executes properly and creates a
dtterm window within which it displays the complete path of the file you requested,
providing that the file is found.

FIGURE 4–3 Window Showing Complete Path

If script_find cannot find the file in the specified directory, nothing appears in the
dtterm window.

Analyzing script_find
The structure of script_find is similar to a C program: some functions and
callbacks appear first, followed by the main script.

The first two lines of the script are important, and should be included in every dtksh
script you write:

#! /usr/dt/bin/dtksh .

/usr/dt/lib/dtksh/DtFunc.dtsh

The first line executes the dtksh system and the second loads the dtksh convenience
functions. The second line wasn’t used in the scripts described in Chapter 2 because
those scripts did not use any dtksh convenience functions.

Functions and Callbacks
script_find has the following functions and callbacks:

� PostErrorDialog()
� OkCallback()

Chapter 4 • A Complex Script 41

� LoadStickyValues()
� EvalCmd()
� RetrieveAndSaveCurrentValues()

PostErrorDialog()
This function is called when an error is detected, such as when the user enters an
invalid directory. The function calls the convenience function
DtkshDisplayErrorDialog() which displays a dialog box whose title is Find
Error and whose message is contained in the variable $1, which is passed from the
calling location.

dialogPostErrorDialog()
{

DtDisplayErrorDialog “Find Error” “$1” \

DIALOG_PRIMARY_APPLICATION_MODAL }

The last parameter, DIALOG_PRIMARY_APPLICATION_MODAL, tells dtksh to
create a dialog that must be responded to before any other interaction can occur.

OkCallback()
OkCallback() is called when either the OK or Apply button on the main
script_find window is pressed. If the OK button is pressed, the script_find
window is unmanaged. For either Apply or OK, the input search directory is
validated; if it is invalid, then OkCallback() calls PostErrorDialog(). If it is
valid, checks are made on the status of the toggle buttons on the script_find
window and corresponding adjustments are made to the variable $CMD. This variable
contains the entire command that is ultimately executed.

LoadStickyValues()
This function is called from the main program after the window has been created and
managed. It loads all the values from the most recent execution of the script. These
values are saved in a file called Find.sticky by the function
RetrieveandSaveCurrentValues().

EvalCmd()
EvalCmd() is used by LoadStickyValues() to evaluate each line in
Find.sticky as a dtksh command. The following is a list of a Find.sticky file:

XmTextSetString $SD “/users/dlm”
XmTextFieldSetInsertionPosition $SD 10
XmTextSetString $FNP “two_letter_calls”

42 Common Desktop Environment: Desktop KornShell User’s Guide • May 2002

XmTextFieldSetInsertionPosition $FNP 16
XtSetValues $FSTYPE menuHistory:$NODIR
XtSetValues $FILETYPE menuHistory:$NOTYPE
XmToggleButtonSetState $T2 true false

XmToggleButtonSetState $T4 true false

RetrievAndSaveCurrentValues()
RetrieveAndSaveCurrentValues() retrieves the current settings and values of
the widgets in the script_find window and saves them in the file Find.sticky.
Find.sticky is then used by LoadStickyValues() the next time the script is
executed.

Main Script
The remainder of the script is the equivalent of Main() in a C program. It initializes
the Xt Intrinsics and creates all the widgets used in the script_find window. The
set -f in the first line tells dtksh to suppress expansion of wildcard characters in
path names. This is necessary so that the find command can perform this expansion.

The script_find window (see Figure 4-4) consists of a Form widget with four areas.
The areas are marked by Separator widgets, and each area has several widgets, all of
which are children of the Form.

FIGURE 4–4 Widgets in script_find Window

Chapter 4 • A Complex Script 43

The widgets are created in sequence by area, from top to bottom.

Initialize
Initialize is accomplished by the Xt Intrinsics function XtInitialize():

XtInitialize TOPLEVEL find Dtksh $0 “${@:-}”

This creates a top-level shell that serves as the parent of a Form widget, which is
created next.

Create a Form Widget
A Form widget is used as the main parent widget. Form is a Manager widget that
allows you to place constraints on its children. Most of the widgets in the main
script_find window are children of the Form. The description of the creation of the
rest of the widgets is separated into the four areas of the window (see Figure 4-4).

First Area
The first area consists of two Label widgets, two TextField widgets, and a Separator
widget that separates the first and second areas.

FIGURE 4–5 First Area of script_find Window

The following code segment creates and positions the first Label widget and positions
it within the Form using the DtkshAnchorTop and DtkshAnchorLeft convenience
functions:

XtCreateManagedWidget SDLABEL sdlabel XmLabel $FORM \
labelString:”Search Directory:” \
$(DtkshAnchorTop 12) \

$(DtkshAnchorLeft 10)

The following code segment creates and positions the first TextField widget. Note that
it is positioned in relation to both the Form and the Label widget.

XtCreateManagedWidget SD sd XmText $FORM \
columns:30 \
value:”.” \

44 Common Desktop Environment: Desktop KornShell User’s Guide • May 2002

$(DtkshAnchorTop 6) \
$(DtkshRightOf $SDLABEL 10) \
$(DtkshAnchorRight 10) \
navigationType:EXCLUSIVE_TAB_GROUP

XmTextFieldSetInsertionPosition $SD 1

The remaining Label widget and TextField widget are created in the same manner.

The Separator widget is created as a child of the Form widget and positioned under
the second TextField widget.

XtCreateManagedWidget SEP sep XmSeparator $FORM \
separatorType:SINGLE_DASHED_LINE \
$(DtkshUnder $FNP 10) \

$(DtkshSpanWidth)

Second Area
The second area consists of a RowColumn widget, five ToggleButton gadgets, and
another Separator widget.

FIGURE 4–6 Second Area of script_find Window

A gadget is a widget that relies on its parent for many of its attributes, thus saving
memory resources.

The RowColumn widget is created as a child of the Form widget, and positioned
directly under the Separator widget created in the first area.

XtCreateManagedWidget RC
rc XmRowColumn $FORM \

orientation:HORIZONTAL \
numColumns:3 \

packing:PACK_COLUMN \
$(DtkshUnder $SEP 10) \
$(DtkshSpanWidth 10 10) \

navigationType:EXCLUSIVE_TAB_GROUP

The five ToggleButton gadgets are created as children of the RowColumn using the
convenience function DtkshAddButtons:

DtkshAddButtons -w $RC XmToggleButtonGadget \
T1 “Cross Mount Points” ““\
T2 “Print Matching Filenames” ““\

Chapter 4 • A Complex Script 45

T3 “Search Hidden Subdirectories” ““\
T4 “Follow Symbolic Links” ““\

T5 “Descend Subdirectories First” ““

Another Separator is then created to separate the second and third areas. Note that this
Separator widget ID is called SEP2.

XtCreateManagedWidget SEP2 sep XmSeparator $FORM \
separatorType:SINGLE_DASHED_LINE \
$(DtkshUnder $RC 10) \

$(DtkshSpanWidth)

Third Area
The third area consists of two option menus and another Separator widget.

FIGURE 4–7 Third Area of script_find Window

The Option Menus are pull-down menus. When the user clicks the option menu
button, a menu pane with a number of choices appears. The user drags the pointer to
the appropriate choice and releases the mouse button. The menu pane disappears and
the option menu button label displays the new choice.

The first option menu menu pane consists of a number of push button gadgets,
representing various restrictions that can be imposed upon the find command:

XmCreatePulldownMenu PANE $FORM pane
DtkshAddButtons -w $PANE XmPushButtonGadget \

NODIR “no restrictions” ““\
NFS “nfs” ““\
CDFS “cdfs” ““\
HFS “hfs” ““

Next, the Option Menu button itself is created and managed, with the
menu pane just created ($PANE) identified as a subMenuId:
XmCreateOptionMenu FSTYPE $FORM fstype \

labelString:”Restrict Search To File System Type:” \
menuHistory:$NODIR \
subMenuId:$PANE \

$(DtkshUnder $SEP2 20) \
$(DtkshSpanWidth 10 10) \
navigationType:EXCLUSIVE_TAB_GROUP

XtManageChild $FSTYPE

46 Common Desktop Environment: Desktop KornShell User’s Guide • May 2002

The second option menu button is created in the same manner. It provides further
restrictions on the find command.

The third separator is created in the same manner as the other separators.

Fourth Area
The fourth area consists of four push button widgets, all children of the Form widget.

The four push buttons are used as follows:

� OK executes the find command with the parameters input in the script_find
window and removes the script_find window.

� Apply executes the find command with the parameters input in the
script_find window but does not remove the script_find window.

� Close terminates script_find without executing the find command.

� Help creates a dialog box with information on the use of script_find.

The push buttons are created and positioned in much the same manner as any of the
other widgets, although they are each labeled differently. The following code segment
shows how the OK push button is created:

XtCreateManagedWidget OK
ok XmPushButton $FORM \

labelString:”Ok” \
$(DtkshUnder $SEP3 10) \
$(DtkshFloatLeft 4) \
$(DtkshFloatRight 24) \
$(DtkshAnchorBottom 10)

XtAddCallback $OK activateCallback “OkCallback”

Set Operating Parameters
XtSetValues is used to set some initial operating parameters:

XtSetValues $FORM \
initialFocus:$SD \
defaultButton:$OK \
cancelButton:$CLOSE \

navigationType:EXCLUSIVE_TAB_GROUP

� Initial focus is set to the first TextField widget in the first area.

Chapter 4 • A Complex Script 47

� Default button is set to the OK push button in the fourth area.
� Cancel button is set to the Close button in the fourth area.
� Navigation type is set to EXCLUSIVE_TAB_GROUP.

The following line configures the TextField widgets so that pressing the return key
does not activate the default button within the Form. See the description of
EXCLUSIVE_TAB_GROUP in Appendix B for more information on its use.

DtkshSetReturnKeyControls $SD $FNP $FORM $OK

Realize and Loop
The last three lines of the script load the previous values of the script_find
window, realize the top-level widget, and then enter a loop waiting for user input.

LoadStickyValues
XtRealizeWidget $TOPLEVEL

XtMainLoop

48 Common Desktop Environment: Desktop KornShell User’s Guide • May 2002

APPENDIX A

dtksh Commands

This appendix contains a list of the commands supported by dtksh. Many of these
commands are almost identical to their Motif, Xt Intrinsics, or Xlib counterparts.
Commands that return a value must have the return variable as an environment
variable that is the first parameter in the call. Some commands have more differences.

The following subsections give a synopsis of each of the dtksh commands. In general,
parameter ordering and types are the same as for corresponding C procedures;
exceptions are noted. For more detail on the functionality and parameters of a
command, see the standard documentation for the corresponding Xlib, Xt Intrinsics, or
Motif procedure.

In the command definitions, parameters named var, var2, var3, and so on, indicate that
the shell script should supply the name of an environment variable into which some
value will be returned. The word variable indicates an environment variable that
accepts a return value.

Commands that return a Boolean value (which can be used directly as part of an if
statement), are noted as such.

Parameters enclosed within [] are optional.

49

Built-in Xlib Commands
XBell display volume

XClearArea display drawable [optional GC arguments] x y width height exposures

XClearWindow display drawable

XCopyArea display drawabledisplay src dest srcX
srcY width height destX destY [optional GC arguments]

XDefineCursor display window cursor

XDrawArc display drawable [optional GC arguments] x y width height angle1 angle2

XDrawLine display drawable [optional GC arguments] x1 y1 x2 y2

XDrawLines display drawable [-coordinateMode] [optional GC arguments]
x1 y1 x2 y2 [x3 y3 ...]

where coordinateMode is either CoordModeOrigin or CoordModePrevious.

XDrawPoint display drawable [optional GC arguments] x y

XDrawPoints display drawable [-coordinateMode]
[optional GC arguments] x1 y1 [x2 y2 x3 y3 ...]

where coordinateMode is either CoordModeOrigin or CoordModePrevious.

XDrawRectangle display drawable [optional GC arguments] x y width height

XDrawSegments display drawable [optional GC arguments] x1 y1 x2 y2[x3 y3 x4 y4 ...]

XDrawString display drawable [optional GC arguments] x y string

XDrawImageString display drawable [optional GC arguments] x y string

XFillArc display drawable [optional GC arguments] x y width height angle1 angle2

XFillPolygonXFillArc display drawable [-shape] [-coordinateMode]
[optional GC arguments] x1 y1 x2 y2 ...

where shape is either Complex, Convex, or Nonconvex, and coordinateMode is either
CoordModeOrigin or CoordModePrevious.

XFillRectangle display drawable [optional GC arguments] x y width height

XFlush display

XHeightOfScreen variable screen

XRaiseWindow display window

XRootWindowOfScreen variable screen

XSync display discard
where discard is either true or false.

50 Common Desktop Environment: Desktop KornShell User’s Guide • May 2002

XTextWidth variable fontName string

Note – The XTextWidth command is different from the corresponding Xlib
procedure because it takes the name of a font instead of a pointer to a font structure.

XUndefineCursor display window

XWidthOfScreen variable screen

Built-in Xt Intrinsic Commands
All the Xt Intrinsics commands used to create a new widget require that you specify a
widget class for the new widget. The widget (or gadget) class name is the standard
class name provided by Motif. For example, the class name for a Motif push button
widget is XmPushButton, while the class name for the Motif label gadget is
XmLabelGadget.

XtAddCallback widgetHandle callbackName ksh-command
where callbackName is one of the standard Motif or Xt callback names, with the Xt
or Xm prefix dropped. For example, activateCallback.

XtAddEventHandler widgetHandle eventMask nonMaskableFlag ksh-command
where eventMask is of the form mask|mask|mask and the mask components are any
of the standard set of X event masks, and nonMaskableFlag is either true or false.

XtAddInput variable [-r] fileDescriptor ksh-command
Registers the indicated file descriptor with the X Toolkit as an alternate input
source. It is the responsibility of the shell script’s input handler to unregister the
input source when it is no longer needed and to close the file descriptor.

If the -r option is specified (raw mode), then dtksh does not automatically read
any of the data available from the input source; it will be up to the specified kshell
command to read all data. If the -r option is not specified, then the command
specified in ksh-command is invoked only when a full line is read (that is, a line
terminated by either an unescaped newline character or the end of the file) or when
the end of the file is reached. The raw mode is useful for handlers that expect to
process nontextual data, or for handlers that do not want dtksh automatically
reading in a line of data. When the end of file is detected, it is the shell script’s
input handler’s responsibility to use XtRemoveInput to remove the input source
and to close the file descriptor, if necessary.

In all cases, several environment variables are set up, which can be used by the
handler. These include:

Appendix A • dtksh Commands 51

INPUT_LINE
Empty if in raw mode; otherwise, it contains the next line to be processed.

INPUT_EOF
Set to true if end-of-file is reached; otherwise, set to false.

INPUT_SOURCE
File descriptor associated with this input source.

INPUT_ID
The ID associated with this input handler; returned by XtAddInput().

XtAddTimeout variable interval ksh-command

XtAddWorkProc variable ksh-command
In dtksh, the kshell command is typically a kshell function name. Like regular
work procedures, this function is expected to return a value that indicates whether
the work procedure wants to be called again, or whether it has completed its work
and can be automatically unregistered. If the dtksh function returns 0, then the
work procedure remains registered; any other value causes the work procedure to
be automatically unregistered.

XtAugmentTranslations widgetHandle translations

XtCreateApplicationShell variable applicationName widgetClass [resource:value ...]

XtCallCallbacks widgetHandle callbackName
where callbackName is one of the standard Motif or Xt callback names, with the Xt
or Xm prefix dropped; for example, activateCallback.

XtClass variable widgetHandle
Returns the name of the widget class associated with the passed-in widget handle.

XtCreateManagedWidget variable widgetName widgetClass
parentWidgetHandle [resource:value ...]

XtCreatePopupShell variable widgetName widgetClass
parentWidgetHandle [resource:value ...]

XtCreateWidget variable widgetName widgetClass
parentWidgetHandle [resource:value ...]

XtDestroyWidget widgetHandle [widgetHandle ...]

XtDisplay variable widgetHandle

XtDisplayOfObject variable widgetHandle

XtGetValues widgetHandle resource: var1 [resource: var2 ...]

XtHasCallbacks variable widgetHandle callbackName
where callbackName is one of the standard Motif or Xt callback names, with the Xt
or Xm prefix dropped; for example, activateCallback.

variable is set to one of the strings CallbackNoList, CallbackHasNone, or
CallbackHasSome.

52 Common Desktop Environment: Desktop KornShell User’s Guide • May 2002

XtInitialize variable shellName applicationClassName applicationName [arguments]
Using Dtksh as the applicationClassName causes the application to use the default
dtksh app-defaults file. The arguments parameter is used to reference any
command-line arguments that might have been specified by the user of the shell
script; these are typically referred to using the shell syntax of "$@".

Returns a value which can be used in a conditional statement.

XtIsManaged widgetHandle
Returns a value which can be used in a conditional statement.

XtIsSubclass widgetHandle widgetClass
where widgetClass is the name of a widget class. Returns a value which can be used
in a conditional statement.

XtNameToWidget variable referenceWidget name

XtIsRealized widgetHandle
Returns a value which can be used in a conditional statement.

XtIsSensitive widgetHandle
Returns a value which can be used in a conditional statement.

XtIsShell widgetHandle
Returns a value which can be used in a conditional statement.

XtLastTimestampProcessed variable display

XtMainLoop

XtManageChild widgetHandle

XtManageChildren widgetHandle [widgetHandle ...]

XtMapWidget widgetHandle

XtOverrideTranslations widgetHandle translations

XtParent variable widgetHandle

XtPopdown widgetHandle

XtPopup widgetHandle grabType
where grabType is one of the strings GrabNone, GrabNonexclusive or
GrabExclusive.

XtRealizeWidget widgetHandle

XtRemoveAllCallbacks widgetHandle callbackName
where callbackName is one of the standard Motif or Xt callback names, with the Xt
or Xm prefix dropped; for example, activateCallback

XtRemoveCallback widgetHandle callbackName ksh-command
where callbackName is one of the standard Motif or Xt callback names, with the Xt or
Xm prefix dropped; for example, activateCallback. As is true with traditional
Xt callbacks, when a callback is removed, the same kshell command string must be
specified as was specified when the callback was originally registered.

Appendix A • dtksh Commands 53

XtRemoveEventHandler widgetHandle eventMasknonMaskableFlag ksh-command
where eventMask is of the form mask|mask|mask and the mask components are any
of the standard set of X event masks; that is. ButtonPressMask where
nonMaskableFlag is either true or false.

As is true with traditional Xt event handlers, when an event handler is removed,
the same eventMask, nonMaskableFlag setting, and kshell command string must be
specified as was specified when the event handler was originally registered.

XtRemoveInput inputId
where inputId is the handle that was returned in the specified environment variable
when the alternate input source was registered using the XtAddInput command.

XtRemoveTimeOut timeoutId
where timeoutId is the handle that was returned in the specified environment
variable when the timeout was registered using the XtAddTimeOut command.

XtRemoveWorkProc workprocID
where workprocID is the handle that was returned in the specified environment
variable when the work procedure was registered using the XtAddWorkProc
command.

XtScreen variable widgetHandle

XtSetSensitive widgetHandle state
where state is either true or false.

XtSetValues widgetHandle resource:value [resource: value ...]

XtUninstallTranslations widgetHandle

XtUnmanageChild widgetHandle

XtUnmanageChildren widgetHandle [widgetHandle ...]

XtUnmapWidget widgetHandle

XtUnrealizeWidget widgetHandle

XtWindow variable widgetHandle

Built-in Motif Commands
XmAddWMProtocolCallback widgetHandle protocolAtom ksh-command

where protocolAtom is typically obtained using the XmInternAtom command.

XmAddWMProtocols widgetHandle protocolAtom [protocolAtom ...]
where protocolAtom is typically obtained using the XmInternAtom command.

54 Common Desktop Environment: Desktop KornShell User’s Guide • May 2002

XmCommandAppendValue widgetHandle string

XmCommandError widgetHandle errorString

XmCommandGetChild variable widgetHandle childType
where childType is one of the strings DIALOG_COMMAND_TEXT,
DIALOG_PROMPT_LABEL, DIALOG_HISTORY_LIST, or DIALOG_WORK_AREA.

Appendix A • dtksh Commands 55

XmCommandSetValue widgetHandle commandString

XmCreateArrowButton variable parentWidgetHandle name [resource:value...]

XmCreateArrowButtonGadget variable parentWidgetHandle
name [resource:value ...]

XmCreateBulletinBoard variable parentWidgetHandle name [resource:value ...]

XmCreateBulletinBoardDialog variable parentWidgetHandle
name [resource:value ...]

XmCreateCascadeButton variable parentWidgetHandle name [resource:value ...]

XmCreateCascadeButtonGadget variable parentWidgetHandle
name [resource:value ...]

XmCreateCommand variable parentWidgetHandle name [resource:value ...]

XmCreateDialogShell variable parentWidgetHandle name [resource:value ...]

XmCreateDrawingArea variableparent WidgetHandle name [resource:value ...]

XmCreateDrawnButton variable parentWidgetHandle name [resource:value ...]

XmCreateErrorDialog variable parentWidgetHandle name [resource:value ...]

XmCreateFileSelectionBox variable parentWidgetHandle name
[resource:value ...]

XmCreateFileSelectionDialog variable parentWidgetHandle name
[resource:value ...]

>XmCreateForm variable parentWidgetHandle name [resource:value ...]

XmCreateFormDialog variable parentWidgetHandle name [resource:value ...]

XmCreateFrame variable parentWidgetHandle name [resource:value ...]

XmCreateInformationDialog variable parentWidgetHandle name [resource:value ...]

XmCreateLabel variable parentWidgetHandle name
[resource:value ...]

XmCreateLabelGadget variable parentWidgetHandle name [resource:value ...]

XmCreateList variable parentWidgetHandle name [resource:value ...]

XmCreateMainWindow variable parentWidgetHandle name [resource:value ...]

XmCreateMenuBar variable parentWidgetHandle name [resource:value ...]

XmCreateMenuShell variable parentWidgetHandle name [resource:value ...]

XmCreateMessageBox variable parentWidgetHandle name [resource:value ...]

XmCreateMessageDialog variable parentWidgetHandle name [resource:value ...]

XmCreateOptionMenu variable parentWidgetHandle name [resource:value ...]

56 Common Desktop Environment: Desktop KornShell User’s Guide • May 2002

XmCreatePanedWindow variable parentWidgetHandle name [resource:value ...]

XmCreatePopupMenu variable parentWidgetHandle name [resource:value ...]

XmCreatePromptDialog variable parentWidgetHandle name [resource:value ...]

XmCreatePulldownMenu variable parentWidgetHandle name [resource:value ...]

XmCreatePushButton variable parentWidgetHandle name [resource:value ...]

XmCreatePushButtonGadget variable parentWidgetHandle name [resource:value ...]

XmCreateQuestionDialog variable parentWidgetHandle name [resource:value ...]

XmCreateRadioBox variable parentWidgetHandle name [resource:value ...]

XmCreateRowColumn variable parentWidgetHandle name [resource:value ...]

XmCreateScale variable parentWidgetHandle name [resource:value ...]

XmCreateScrollBar variable parentWidgetHandle name [resource:value ...]

XmCreateScrolledList variable parentWidgetHandle name [resource:value ...]

XmCreateScrolledText variable parentWidgetHandle name [resource:value ...]

XmCreateScrolledWindow variable parentWidgetHandle name [resource:value ...]

XmCreateSelectionBox variable parentWidgetHandle name [resource:value ...]

XmCreateSelectionDialog variable parentWidgetHandle name [resource:value ...]

XmCreateSeparator variable parentWidgetHandle name [resource:value ...]

XmCreateSeparatorGadget variable parentWidgetHandle name [resource:value ...]

XmCreateText variable parentWidgetHandle name [resource:value ...]

XmCreateTextField variable parentWidgetHandle name [resource:value...]

XmCreateToggleButton variable parentWidgetHandle name [resource:value ...]

XmCreateToggleButtonGadget variable parentWidgetHandle name [resource:value ...]

XmCreateWarningDialog variable parentWidgetHandle name [resource:value ...]

XmCreateWorkArea variable parentWidgetHandle name [resource:value ...]

XmCreateWorkingDialog variable parentWidgetHandle name [resource:value ...]

XmFileSelectionDoSearch widgetHandle directoryMask

XmFileSelectionBoxGetChild variable widgetHandle childType
where childType is one of the strings DIALOG_APPLY_BUTTON,
DIALOG_CANCEL_BUTTON, DIALOG_DEFAULT_BUTTON, DIALOG_DIR_LIST,
DIALOG_DIR_LIST_LABEL, DIALOG_FILTER_LABEL, DIALOG_FILTER_TEXT,
DIALOG_HELP_BUTTON, DIALOG_LIST, DIALOG_LIST_LABEL,
DIALOG_OK_BUTTON, DIALOG_SEPARATOR, DIALOG_SELECTION_LABEL,
DIALOG_TEXT, or DIALOG_WORK_AREA.

Appendix A • dtksh Commands 57

XmGetAtomName variable display atom

XmGetColors widgetHandle background variable var2 var3 var4
The XmGetColors command differs from the C procedure in that it takes a
widgetHandle instead of a screen pointer and a colormap.

XmGetFocusWidget variable widgetHandle

XmGetPostedFromWidget variable widgetHandle

XmGetTabGroup variable widgetHandle

XmGetTearOffControl variable widgetHandle

XmGetVisibility variable widgetHandle

XmInternAtom variable display atomString onlyIfExistsFlag
where onlyIfExistsFlag can be set to either true or false.

XmIsTraversable widgetHandle
Returns a value which can be used in a conditional statement.

XmListAddItem widgetHandle position itemString
The order of the parameters for the XmListAddItem command is not identical to
its corresponding C programming counterpart.

XmListAddItems widgetHandle position itemString [itemString ...]
The order of the parameters for the XmListAddItems command is not identical to
its corresponding C programming counterpart.

XmListAddItemsUnselected widgetHandle position itemString [itemString ...]
The order of the parameters for the XmListAddItemsUnselected command is
not identical to its corresponding C programming counterpart.

XmListAddItemUnselected widgetHandle position itemString
The ordering of the parameters to the XmListAddItemUnselected command are
not identical to its corresponding C programming counterpart.

58 Common Desktop Environment: Desktop KornShell User’s Guide • May 2002

XmListDeleteAllItems widgetHandle

XmListDeleteItem widgetHandle itemString

XmListDeleteItems widgetHandle itemString [itemString ...]

XmListDeleteItemsPos widgetHandle itemCount position

XmListDeletePos widgetHandle position

XmListDeletePositions widgetHandle position [position ...]

XmListDeselectAllItems widgetHandle

XmListDeselectItem widgetHandle itemString

XmListDeselectPos widgetHandle position

XmListGetSelectedPos variable widgetHandle
Returns a comma-separated list of indices in variable. Returns a value which can be
used in a conditional statement.

XmListGetKbdItemPos variable widgetHandle

XmListGetMatchPos variable widgetHandle itemString
Returns a comma-separated list of indices in variable. Returns a value which can be
used in a conditional statement.

XmListItemExists widgetHandle itemString
Returns a value which can be used in a conditional statement.

XmListItemPos variable widgetHandle itemString

XmListPosSelected widgetHandle position
Returns a value which can be used in a conditional statement.

XmListPosToBounds widgetHandle position variable var2 var3 vari4
Returns a value which can be used in a conditional statement.

XmListReplaceItemsPos widgetHandle position itemString [itemString ...]
The order of the parameters for the XmListReplaceItemsPos command is not
identical to its corresponding C programming counterpart.

XmListReplaceItemsPosUnselected widgetHandle position itemString
[itemString ...]

The order of the parameters for the XmListReplaceItemsPosUnselected
command is not identical to its corresponding C programming counterpart.

XmListSelectItem widgetHandle itemString notifyFlag
where notifyFlag can be set to either true or false.

XmListSelectPos widgetHandle position notifyFlag
where notifyFlagcan be set to either trueor false.

XmListSetAddMode widgetHandle state
where state can be set to either true or false.

Appendix A • dtksh Commands 59

XmListSetBottomItem widgetHandle itemString

XmListSetBottomPos widgetHandle position

XmListSetHorizPos widgetHandle position

XmListSetItem widgetHandle itemString

XmListSetKbdItemPos widgetHandle position
Returns a value which can be used in a conditional statement.

XmListSetPos widgetHandle position

XmListUpdateSelectedList widgetHandle

XmMainWindowSep1 variable widgetHandle

XmMainWindowSep2 variable widgetHandle

XmMainWindowSep3 variable widgetHandle

XmMainWindowSetAreas widgetHandle menuWidgetHandle
commandWidgetHandle horizontalScrollbarWidgetHandle
verticalScrollbarWidgetHandle workRegionWidgetHandle

XmMenuPosition widgetHandle eventHandle
where eventHandle refers to an X event, which has typically been obtained by
accessing the CB_CALL_DATA.EVENT, EH_EVENT or TRANSLATION_EVENT
environment variables.

XmMessageBoxGetChild variable widgetHandle childType
where childTypeis one of the strings DIALOG_CANCEL_BUTTON,
DIALOG_DEFAULT_BUTTON, DIALOG_HELP_BUTTON,
DIALOG_MESSAGE_LABEL, DIALOG_OK_BUTTON, DIALOG_SEPARATOR, or
DIALOG_SYMBOL_LABEL.

XmOptionButtonGadget variable widgetHandle

XmOptionLabelGadget variable widgetHandle

XmProcessTraversal widgetHandle direction
where direction is one of the strings TRAVERSE_CURRENT, TRAVERSE_DOWN,
TRAVERSE_HOME, TRAVERSE_LEFT, TRAVERSE_NEXT,
TRAVERSE_NEXT_TAB_GROUP, TRAVERSE_PREV,
TRAVERSE_PREV_TAB_GROUP, TRAVERSE_RIGHT, or TRAVERSE_UP.

Returns a value which can be used in a conditional statement.

XmRemoveWMProtocolCallback widgetHandle protocolAtom ksh-command
where protocolAtom is typically obtained using the XmInternAtom command.

As is true with traditional Window Manager callbacks, when a callback is removed,
the same kshell command string must be specified, as was specified when the
callback was originally registered.

60 Common Desktop Environment: Desktop KornShell User’s Guide • May 2002

XmRemoveWMProtocols widgetHandle protocolAtom [protocolAtom ...]
where protocolAtom is typically obtained using the XmInternAtom command.

XmScaleGetValue widgetHandle variable

XmScaleSetValue widgetHandle value

XmScrollBarGetValues widgetHandle variable var2 var3 var4

XmScrollBarSetValues widgetHandle value sliderSize increment
pageIncrement notifyFlag

where notifyFlag can be set to either true or false.

XmScrollVisible widgetHandle widgetHandle leftRightMargin topBottomMargin

XmSelectionBoxGetChild variable widgetHandle childType
where childType is one of the strings DIALOG_CANCEL_BUTTON,
DIALOG_DEFAULT_BUTTON, DIALOG_HELP_BUTTON, DIALOG_APPLY_BUTTON,
DIALOG_LIST, DIALOG_LIST_LABEL, DIALOG_OK_BUTTON,
DIALOG_SELECTION_LABEL, DIALOG_SEPARATOR, DIALOG_TEXT, or
DIALOG_WORK_AREA.

XmTextClearSelection widgetHandle time
where time is typically either obtained from within an X Event or is queried by a
call to the XtLastTimestampProcessed command.

XmTextCopy widgetHandle time
where time is typically either obtained from within an X Event or is queried by a
call to the XtLastTimestampProcessed command.

Returns a value which can be used in a conditional statement.

XmTextCut widgetHandle time
where time is typically either obtained from within an X Event or is queried by a
call to the XtLastTimestampProcessed command.

Returns a value which can be used in a conditional statement.

XmTextDisableRedisplay widgetHandle

XmTextEnableDisplay widgetHandle

XmTextFindString widgetHandle startPosition string direction variable
where direction is one of the strings TEXT_FORWARD or TEXT_BACKWARD.

Returns a value which can be used in a conditional statement.

XmTextGetBaseline variable widgetHandle

XmTextGetEditable widgetHandle
Returns a value which can be used in a conditional statement.

Appendix A • dtksh Commands 61

XmTextGetInsertionPosition variable widgetHandle

XmTextGetLastPosition variable widgetHandle

XmTextGetMaxLength variable widgetHandle

XmTextGetSelection variable widgetHandle

XmTextGetSelectionPosition widgetHandle variable var2
Returns a value which can be used in a conditional statement.

XmTextGetString variable widgetHandle

XmTextGetTopCharacter variable widgetHandle

XmTextInsert widgetHandle position string

XmTextPaste widgetHandle
Returns a value which can be used in a conditional statement.

XmTextPosToXY widgetHandle position variable var2
Returns a value which can be used in a conditional statement.

XmTextRemove widgetHandle
Returns a value which can be used in a conditional statement.

XmTextReplace widgetHandle fromPosition toPosition string

XmTextScroll widgetHandle lines

XmTextSetAddMode widgetHandle state
where state can be set to either true or false.

XmTextSetEditable widgetHandle editableFlag
where editableFlag can be set to either true or false.

XmTextSetHighlight widgetHandle leftPosition rightPosition mode
where mode is one of the strings HIGHLIGHT_NORMAL, HIGHLIGHT_SELECTED or
HIGHLIGHT_SECONDARY_SELECTED.

XmTextSetInsertionPosition widgetHandle position

XmTextSetMaxLength widgetHandle maxLength

XmTextSetSelection widgetHandle firstPosition lastPosition time
where time is typically either obtained from within an X Event or is queried by a
call to the XtLastTimestampProcessed command.

XmTextSetString widgetHandle string

XmTextSetTopCharacter widgetHandle topCharacterPosition

XmTextShowPosition widgetHandle position

XmTextXYToPos variable widgetHandle x y

XmTextFieldClearSelection widgetHandle time
where time is typically either obtained from within an X Event or is queried by a
call to the XtLastTimestampProcessed command.

62 Common Desktop Environment: Desktop KornShell User’s Guide • May 2002

XmTextFieldGetBaseline variable widgetHandle

XmTextFieldGetEditable widgetHandle
Returns a value which can be used in a conditional statement.

XmTextFieldGetInsertionPosition variable widgetHandle

XmTextFieldGetLastPosition variable widgetHandle

XmTextFieldGetMaxLength variable widgetHandle

XmTextFieldGetSelection variable widgetHandle

XmTextFieldGetSelectionPosition widgetHandle variable var2
Returns a value which can be used in a conditional statement.

XmTextFieldGetString variable widgetHandle

XmTextFieldInsert widgetHandle position string

XmTextFieldPosToXY widgetHandle position variable var2
Returns a value which can be used in a conditional statement.

XmTextFieldRemove widgetHandle
Returns a value which can be used in a conditional statement.

XmTextFieldReplace widgetHandle fromPosition toPosition string

XmTextFieldSetEditable widgetHandle editableFlag
where editableFlag can be set to either true or false.

XmTextFieldSetHighlight widgetHandle leftPosition rightPosition mode
where mode is one of the strings HIGHLIGHT_NORMAL, HIGHLIGHT_SELECTED, or
HIGHLIGHT_SECONDARY_SELECTED.

XmTextFieldSetInsertionPosition widgetHandle position

XmTextFieldSetMaxLength widgetHandle maxLength

XmTextFieldSetSelection widgetHandle firstPosition lastPosition time
where time is typically either obtained from within an X Event or is queried by a
call to the XtLastTimestampProcessed command.

XmTextFieldSetString widgetHandle string

XmTextFieldShowPosition widgetHandle position

XmTextFieldXYToPos variable widgetHandle x y

XmTextFieldCopy widgetHandle time
where time is typically either obtained from within an X Event or is queried by a
call to the XtLastTimestampProcessed command.

Returns a value which can be used in a conditional statement.

XmTextFieldCut widgetHandle time
where time is typically either obtained from within an X Event or is queried by a
call to the XtLastTimestampProcessed command.

Appendix A • dtksh Commands 63

Returns a value which can be used in a conditional statement.

XmTextFieldPaste widgetHandle
Returns a value which can be used in a conditional statement.

XmTextFieldSetAddMode widgetHandle state
where state can be set to either true or false.

XmToggleButtonGadgetGetState widgetHandle
Returns a value which can be used in a conditional statement.

XmToggleButtonGadgetSetState widgetHandle state notifyFlag
where state can be set to either true or false, and where notifyFlag can be set to either
true or false.

XmToggleButtonGetState widgetHandle
Returns a value which can be used in a conditional statement.

XmToggleButtonSetState widgetHandle state notifyFlag
where state can be set to either true or false, and where notifyFlag can be set to either
true or false.

XmUpdateDisplay widgetHandle

Built-in Common Desktop Environment
Application Help Commands
DtCreateQuickHelpDialog variable parentWidgetHandle name[resource:value ...]

DtCreateHelpDialog variable parentWidgetHandle name [resource:value...]

DtHelpQuickDialogGetChild variable widgetHandle childType
where childType is one of the strings HELP_QUICK_OK_BUTTON,
HELP_QUICK_PRINT_BUTTON, HELP_QUICK_HELP_BUTTON,
HELP_QUICK_SEPARATOR, HELP_QUICK_MORE_BUTTON, or
HELP_QUICK_BACK_BUTTON.

DtHelpReturnSelectedWidgetId variable widgetHandle var2
variable is set to one of the strings HELP_SELECT_VALID,
HELP_SELECT_INVALID, HELP_SELECT_ABORT, or HELP_SELECT_ERROR. var2
is set to the widgetHandle for the selected widget.

DtHelpSetCatalogName catalogName

64 Common Desktop Environment: Desktop KornShell User’s Guide • May 2002

Built-in Localization Commands
catopen variable catalogName

Opens the indicated message catalog and returns the catalog ID in the environment
variable specified by variable. If a shell script needs to close the file descriptor
associated with a message catalog, then the catalog ID must be closed using the
catclose command.

catgets variable catalogId setNumber messageNumber defaultMessageString
Attempts to extract the requested message string from the message catalog
associated with the catalogId parameter. If the message string cannot be located,
then the default message string is returned. In either case, the returned message
string is placed into the environment variable indicated by variable.

catclose catalogId
Closes the message catalog associated with the indicated catalogId.

Built-in libDt Session Management
Commands
DtSessionRestorePath widgetHandle variable sessionFile

Given the file name for the session file (excluding any path information), this
command returns the full path for the session file in the environment variable
variable.

Returns 0 if successful, 1 if unsuccessful.

DtSessionSavePath widgetHandle variable var2
The full path name for the session file is returned in the environment variable
variable. The file name portion of the session file (excluding any path information) is
returned in the environment variable indicated by var2.

Returns 0 if successful, 1 if unsuccessful.

DtShellIsIconified widgetHandle
Allows a shell script to query the iconified state of a shell window. Returns 0 if
successful, 1 if unsuccessful.

DtSetStartupCommand widgetHandle commandString
Part of the session management process is telling the Session Manager how to
restart your application the next time the user reopens the session. This command
passes the specified command string to the Session Manager. The widget handle
should refer to an application shell.

Appendix A • dtksh Commands 65

DtSetIconifyHint widgetHandle iconifyHint
where iconifyHint can be set to either true or false.

Allows the initial iconified state for a shell window to be set. This command only
works if the window associated with the widget has been realized but not yet
displayed.

Built-in libDt Workspace Management
Commands
DtWsmAddCurrentWorkspaceCallback variable widgetHandle ksh-command

Evaluates the specified kshell command whenever the user changes workspaces.
The handle associated with this callback is returned in the environment variable
indicated by variable. The widget indicated by widgetHandle should be a shell
widget.

DtWsmRemoveWorkspaceCallback callbackHandle
Removes a workspace notification callback. When removing a workspace callback,
you must pass in the callback handle that was returned when you registered the
callback with DtWsmAddCurrentWorkspaceCallback.

DtWsmGetCurrentWorkspace display rootWindow variable
Returns the X atom that represents the user’s current workspace in the environment
variable indicated by variable. Use the XmGetAtomName command to map the X
atom into its string representation.

DtWsmSetCurrentWorkspace widgetHandle workspaceNameAtom
Changes the user’s current workspace to the workspace indicated by
workspaceNameAtom.

Returns 0 if successful, 1 if unsuccessful.

DtWsmGetWorkspaceList display rootWindow variable
Returns a string of comma-separated X atoms, representing the current set of
workspaces defined for the user, in the environment variable indicated by variable.

Returns 0 if successful, 1 if unsuccessful.

DtWsmGetWorkspacesOccupied display window variable
Returns a string of comma-separated X atoms, representing the current set of
workspaces occupied by the indicated shell window in the environment variable
indicated by variable.

Returns 0 if successful, 1 if unsuccessful.

66 Common Desktop Environment: Desktop KornShell User’s Guide • May 2002

DtWsmSetWorkspacesOccupied display window workspaceList
Moves the indicated shell window to the set of workspaces indicated by the string
workspaceList, which must be a comma-separated list of X atoms.

DtWsmAddWorkspaceFunctions display window
Forces the Window Manager menu to include the functions used to move the
window to other workspaces. This command only works if the window is in the
withdrawn state.

DtWsmRemoveWorkspaceFunctions display window
Forces the Window Manager menu to not display the functions used to move the
window to other workspaces; this prevents the window from being moved to any
other workspaces. This command only works if the window is in the withdrawn
state.

DtWsmOccupyAllWorkspaces display window
Requests that a window occupy all workspaces, including new workspaces, as they
are created.

DtWsmGetCurrentBackdropWindows display rootWindow variable
Returns a string of comma-separated window IDs, representing the set of root
backdrop windows.

Built-in libDt Action Commands
The set of commands in this section provide you with the tools for loading the action
databases, querying information about actions defined in the databases, and
requesting that an action be initiated.

DtDbLoad
Reads in the action and data-types databases. If called multiple times, then the old
databases are freed before the new ones are read. This command must be called
before any of the other libDt action commands, or any of the libDt data typing
commands. The shell script should also use the DtDbReloadNotify command, so
that the shell script can be notified if new databases must be loaded.

DtDbReloadNotify ksh-command
Requests notification whenever the action or data-types databases need to be
reloaded. The specified kshell command is executed when the notification is
received. Typically, the kshell command includes a call to the DtDbLoad command.

DtActionExists actionName
Tests to see if an action exists in the database with the name specified by the
actionName parameter. Returns a value which can be used in a conditional
statement.

Appendix A • dtksh Commands 67

DtActionLabel variable actionName
Returns the localizable LABEL attribute associated with the indicated action. If the
action does not exist, then an empty string is returned.

DtActionDescription variable actionName
Returns the value of the DESCRIPTION attribute associated with the indicated
action. An empty string is returned if the action is not defined, or if the
DESCRIPTION attribute was not specified.

Built-in libDt Data-Typing Commands
DtLoadDataTypes

Loads the data-typing databases and should be invoked before any of the other
data-typing commands.

DtDtsFileToDataType variable filePath
Returns the name of the data type associated with the file indicated by the filePath
argument in the variable argument. The variable argument is set to an empty string if
the file cannot be typed.

DtDtsFileToAttributeValue variable filePath attrName
Returns the string representing the value of the specified attribute for the data type
associated with the indicated file. If the attribute is not defined, or if the file could
not be typed, then the variable argument is set to an empty string.

DtDtsFileToAttributeList variable filePath
Returns the space-separated list of attribute names defined for the data type
associated with the indicated file. A shell script can then query the individual
values for the attributes, using the DtDtsFileToAttributeValue command.
The variable argument is set to an empty string if the file cannot be typed. This
command differs from its corresponding C programming counterpart, in that it
only returns the names of the defined attributes and not their values.

DtDtsDataTypeToAttributeValue variable dataType attrName optName
Returns the string representing the value of the specified attribute for the indicated
data type. If the attribute is not defined, or if the indicated data type does not exist,
then the variable argument is set to an empty string.

DtDtsDataTypeToAttributeList variable dataType optName
Returns the space-separated list of attribute names defined for the indicated data
type. A shell script can then query the individual values for the attributes, using the
DtDtsDataTypeToAttributeValue command. The variable argument is set to
an empty string if the data type is not defined. This command differs from its
corresponding C programming counterpart, in that it only returns the names of the
defined attributes and not their values.

68 Common Desktop Environment: Desktop KornShell User’s Guide • May 2002

DtDtsFindAttribute variable name value
Returns a space-separated list of datatype names whose attribute indicated by the
name argument has the value indicated by the value argument. If an error occurs,
the variable argument is set to an empty string.

DtDtsDataTypeNames variable
Returns a space-separated list representing all the data types currently defined in
the data-types database. If an error occurs, then the variable argument is set to an
empty string.

DtDtsSetDataType variable filePath dataType override
Sets a data type for the specified directory. The variable argument is set to the
resultant saved data type for the directory.

DtDtsDataTypeIsAction dataType
Determines whether a particular data type represents an action entry. Returns a
value which can be used in a conditional statement.

Miscellaneous Built-in libDt Commands
DtGetHourGlassCursor variable display

Returns the X cursor ID associated with the standard Dt hourglass cursor.

DtTurnOnHourGlass widgetHandle
Turns on the standard Dt hourglass cursor for the indicated widget.

DtTurnOffHourGlass widgetHandle
Turns off the standard Dt hourglass cursor for the indicated widget.

Built-in Desktop Services Message Set
Commands
The following set of commands implements the minimum subset of the Desktop
Services Message Set required to allow a shell script to participate in the Desktop
Services protocol. Many of the ToolTalk commands differ slightly from their associated
C programming call. For ToolTalk commands that typically return a pointer, a C
application validates that pointer by calling the tt_ptr_error() function; this
function call returns a Tt_status value, which indicates whether the pointer was
valid, and if not, why it was not valid. Because of the kshell code’s design, the string
pointer that the shell script sees is not typically the same as the string pointer returned
by the underlying C code. Typically, during shell programming, this is not a problem
because the important information is the string value, not the string pointer.

Appendix A • dtksh Commands 69

To allow shell scripts to get the status of a pointer, any of the commands that normally
return a pointer also return the associated Tt_status value for the pointer
automatically. This saves the shell script from needing to make an additional call to
check the validity of the original pointer. In the case of a pointer error occurring,
dtksh returns an empty string for the pointer value and sets the Tt_status code
accordingly.

The Tt_status value is returned in the status argument. The Tt_status value is a
string representing the error and can assume any of the following values:

TT_OK
TT_WRN_NOTFOUND
TT_WRN_STALE_OBJID
TT_WRN_STOPPED
TT_WRN_SAME_OBJID
TT_WRN_START_MESSAGE
TT_ERR_CLASS
TT_ERR_DBAVAIL
TT_ERR_DBEXIST
TT_ERR_FILE
TT_ERR_INVALID
TT_ERR_MODE
TT_ERR_ACCESS
TT_ERR_NOMP
TT_ERR_NOTHANDLER
TT_ERR_NUM
TT_ERR_OBJID
TT_ERR_OP
TT_ERR_OTYPE
TT_ERR_ADDRESS
TT_ERR_PATH
TT_ERR_POINTER
TT_ERR_PROCID
TT_ERR_PROPLEN
TT_ERR_PROPNAME
TT_ERR_PTYPE
TT_ERR_DISPOSITION
TT_ERR_SCOPE
TT_ERR_SESSION
TT_ERR_VTYPE
TT_ERR_NO_VALUE
TT_ERR_INTERNAL
TT_ERR_READONLY
TT_ERR_NO_MATCH
TT_ERR_UNIMP
TT_ERR_OVERFLOW
TT_ERR_PTPE_START

70 Common Desktop Environment: Desktop KornShell User’s Guide • May 2002

TT_ERR_CATEGORY
TT_ERR_DBUPDATE
TT_ERR_DBFULL
TT_ERR_DBCONSIST
TT_ERR_STATE
TT_ERR_NOMEM
TT_ERR_SLOTNAME
TT_ERR_XDR
TT_DESKTOP_EPERM
TT_DESKTOP_ENOENT
TT_DESKTOP_EINTR
TT_DESKTOP_EIO
TT_DESKTOP_EAGAIN
TT_DESKTOP_ENOMEM
TT_DESKTOP_EACCES
TT_DESKTOP_EFAULT
TT_DESKTOP_EEXIST
TT_DESKTOP_ENODEV
TT_DESKTOP_ENOTDIR
TT_DESKTOP_EISDIR
TT_DESKTOP_EINVAL
TT_DESKTOP_ENFILE
TT_DESKTOP_EMFILE
TT_DESKTOP_ETXBSY
TT_DESKTOP_EFBIG
TT_DESKTOP_ENOSPC
TT_DESKTOP_EROFS
TT_DESKTOP_EMLINK
TT_DESKTOP_EPIPE
TT_DESKTOP_ENOMSG
TT_DESKTOP_EDEADLK
TT_DESKTOP_ECANCELED
TT_DESKTOP_ENOTSUP
TT_DESKTOP_ENODATA
TT_DESKTOP_EPROTO
TT_DESKTOP_ENOTEMPTY
TT_DESKTOP_ETIMEDOUT
TT_DESKTOP_EALREADY
TT_DESKTOP_UNMODIFIED
TT_MEDIA_ERR_SIZE
TT_MEDIA_ERR_FORMAT

Some of the commands take a message scope as a parameter. The scope indicates
which clients have the potential of receiving the outgoing message. For these
commands, the scope parameter can be set to any of the following values:

TT_SCOPE_NONE

Appendix A • dtksh Commands 71

TT_SESSION
TT_FILE
TT_BOTH
TT_FILE_IN_SESSION

TT_file_netfile variable status filename
Converts the indicated filename, assumed to be a valid file name on the local host,
to its corresponding netfilename format. A netfilename can be passed to other hosts on
a network and then converted back to a path relative to the other host, using the
tt_netfile_file command.

tt_netfile_file variable status netfilename
Converts the indicated netfilename to a path name that is valid on the local host.

tt_host_file_netfile variable status host filename
Converts the indicated file, assumed to be resident on the specified host, into its
corresponding netfilename format.

tt_host_netfile_file variable status host netfilename
Converts the indicated netfilename into a valid path on the indicated host.

ttdt_open variable status var2 toolname vendor version sendStarted
Opens a ToolTalk communications endpoint. It returns in the variable argument the
procID associated with this connection. It returns the file descriptor associated with
this connection in var2; this file descriptor can be used to register an alternate Xt
input handler. The sendStarted argument is a value and if set to true, causes a
Started message to be automatically sent.

Any procIDs returned by ttdt_open contain embedded spaces. To prevent kshell
from interpreting the procID as a multiple parameter (versus a single parameter
with embedded spaces), you should always enclose any references to the
environment variable containing the procID within double quotes, as shown:

ttdt_close STATUS “$PROC_ID” ““ True

tttk_Xt_input_handler procID source id

For the ToolTalk messages to be received and processed, the shell script must
register an Xt input handler for the file descriptor returned by the call to
ttdt_open. The Xt input handler is registered using the XtAddInput command,
and the handler must be registered as a raw input handler. The input handler that
the shell script registers should invoke tttk_Xt_input_handler to get the
message received and processed. The following code block demonstrates how this
is done:

ttdt_open PROC_ID STATUS FID “Tool” “HP” “1.0” True XtAddInput
INPUT_ID -r $FID “ProcessTTInput \”$PROC_ID\””
ProcessTTInput()
{

tttk_Xt_input_handler $1 $INPUT_SOURCE $INPUT_ID

}

72 Common Desktop Environment: Desktop KornShell User’s Guide • May 2002

Refer to the description of the XtAddInput command for more details about
alternate Xt input handlers.

Note that the \” (backslash and double quotation mark) characters before and after
the reference to the procID environment variable are necessary, because the value
contained in the procID environment variable contains embedded spaces and could
be misinterpreted unless escaped as shown.

ttdt_close status procID newProcId sendStopped
Closes the indicated communications connection and optionally sends a Stopped
notice, if the sendStopped argument is set to true.

Because the procID returned by the call to ttdt_open contains embedded spaces,
it is necessary to enclose any references to the procID environment variable within
double quotation marks:

ttdt_close STATUS “$PROC_ID” “$NEW_PROC_ID” False

ttdt_session_join variable status sessId shellWidgetHandle join
Joins the session indicated by the sessId argument as a good desktop citizen, by
registering patterns and default callbacks for many standard desktop message
interfaces. If the sessId argument does not specify a value (that is, it is an empty
string), then the default session is joined. If the shellWidgetHandle argument
specifies a widget handle (that is, it is not an empty string), then it should refer to a
mappedWhenManaged applicationShellWidget. The join argument is a
Boolean and should be set to true or false. This command returns an opaque
pattern handle in the variable argument; when no longer needed, this handle can be
destroyed using the ttdt_session_quit command.

ttdt_session_quit status sessId sessPatterns quit
Destroys the message patterns specified by the sessPatterns argument and, if the
quit argument is set to true, quits the session indicated by the sessId argument or
quits the default session if sessId is empty.

ttdt_file_join variable status pathName scope join ksh-command
Registers interest in the deleted, modified, reverted, moved, and saved messages
for the indicated file in the indicated scope. An opaque pattern handle is returned
in the variable argument. When no longer interested in monitoring messages for the
indicated file, this should be destroyed by calling ttdt_file_quit.

The requested ksh-command is evaluated anytime one of the messages is received
for the indicated file. When this kshell command is evaluated, the following
environment variables are defined and provide additional information about the
received message:

DT_TT_MSG
Contains the opaque handle for the incoming message

DT_TT_OP
Contains the string representing the operation to be performed; that is,
TTDT_DELETED, TTDT_MODIFIED, TTDT_REVERTED, TTDT_MOVED or
TTDT_SAVED.

Appendix A • dtksh Commands 73

DT_TT_PATHNAME
Contains the pathname for the file to which this message pertains.

DT_TT_SAME_EUID_EGID
Set to True if the message was sent by an application operating with the same
effective user ID (euid) and effective group ID (egid) as this process.

DT_TT_SAME_PROCID
Set to True if the message was sent by an application with the same procID (as
returned by ttdt_open).

When the callback completes, it must indicate whether the passed-in message was
“consumed” (replied-to, failed, or rejected). If the callback returns the message (as
passed-in in the DT_TT_MSG environment variable), then it is assumed that the
message was not consumed. If the message was consumed, then the callback should
return 0, or one of the values returned by the tt_error_pointer command. The
callback can return its value in the following fashion:

return $DT_TT_MSG (or) return 0

ttdt_file_quit status patterns quit
Destroys the message patterns specified by the patterns argument and unregisters
interest in the path name that was passed to the ttdt_file_join command, if quit is
set to true. The patterns argument should be the value that was returned by the call
to the ttdt_file_join command.

ttdt_file_event status op patterns send
Creates, and optionally sends, a ToolTalk notice announcing an event pertaining to
a file. The file is indicated by the path name that was passed to the
ttdt_file_join command when patterns was created. The op argument indicates
what should be announced for the indicated file, and it can be set to
TTDT_MODIFIED, TTDT_SAVED, or TTDT_REVERTED. If op is set to
TTDT_MODIFIED, then this command registers to handle Get_Modified, Save and
Revert messages in the scope specified when the patterns were created. If op is set
to TTDT_SAVED or TTDT_REVERTED, this command unregisters from handling
Get_Modified, Save, and Revert messages for this file. If the send argument is set to
true, then the indicated message is sent.

ttdt_Get_Modified pathName scope timeout
Sends a Get_Modified request in the indicated scope and waits for a reply or for the
specified timeout (in milliseconds) to elapse. A Get_Modified request asks other
ToolTalk clients if they have any changes pending on pathname that they intend to
make persistent. Returns a value which can be used in a conditional statement. A
value of true is returned if an affirmative reply is received within the specified
timeout; otherwise, false is returned.

ttdt_Save status pathName scope timeout

74 Common Desktop Environment: Desktop KornShell User’s Guide • May 2002

Sends a Save request in the indicated scope and waits for a reply or for the
indicated timeout (in milliseconds) to elapse. A Save request asks the handling
ToolTalk client to save any changes pending for the file specified in the pathName
argument. A status of TT_OK is returned if an affirmative reply is received before
the timeout elapses. Otherwise, one of the standard Tt_status error values is
returned.

ttdt_Revert status pathName scope timeout
Sends a Revert request in the indicated scope and waits for a reply or for the
indicated timeout (in milliseconds) to elapse. A Revert request asks the handling
ToolTalk client to discard any changes pending for the file specified in the
pathName argument. A status of TT_OK is returned if an affirmative reply is
received before the timeout elapses. Otherwise, one of the standard Tt_status error
values is returned.

The following commands are typically used by the callback registered with the
ttdt_file_join command. They serve as the mechanism for consuming and
destroying a message. A message is consumed by either rejecting, failing, or replying
to it. tt_error_pointer can be used by the callback to obtain a return pointer for
indicating an error condition.

tt_error_pointer variable ttStatus
Returns a “magic value,” which is used by ToolTalk to represent an invalid pointer.
The magic value returned depends upon the ttStatus value passed-in. Any of the
valid Tt_status values may be specified.

tttk_message_destroy status msg
Destroys any patterns that may have been stored on the message indicated by the
msg argument, and then destroys the message.

tttk_message_reject status msg msgStatus msgStatusString destroy
Sets the status and the status string for the indicated request message, and then
rejects the message. It then destroys the passed-in message, if the destroy argument
is set to True. This command is one way in which the callback specified with the
ttdt_file_join command can consume a message. It is typically safe to destroy
the message, using tttk_message_destroy, after rejecting the message.

tttk_message_fail status msg msgStatus msgStatusString destroy
Sets the status and the status string for the indicated request message, and then fails
the message. It then destroys the passed-in message, if the destroy argument is set
to True. This command is one way in which the callback specified with the
ttdt_file_join command can consume a message. It is typically safe to destroy
the message, using tttk_message_destroy, after failing the message.

tt_message_reply status msg
Informs the ToolTalk service that the shell script has handled the message and filled
in all return values. The ToolTalk service then sends the reply back to the sending
process, filling in the state as TT_HANDLED. After replying to a message, it is
typically safe to destroy the message, using the tttk_message_destroy
command.

Appendix A • dtksh Commands 75

76 Common Desktop Environment: Desktop KornShell User’s Guide • May 2002

APPENDIX B

dtksh Convenience Functions

The dtksh utility includes a file of convenience functions. This file is itself a shell
script containing shell functions that may be useful to a shell programmer. The shell
functions perform operations that dtksh programmers frequently have to do for
themselves. These include functions for quickly creating certain kinds of dialogs (help,
error, warning, and so on), a function for easily creating a collection of buttons, and
functions that make it easier to configure the constraint resources for a child of a form
widget. It is not a requirement that shell script writers use these convenience
functions; they are supplied to make it easier for developers to write shorter and more
readable shell scripts.

Before a shell script can access these functions, it must first include the file containing
the convenience functions. The convenience functions are located in the file
/usr/dt/scripts/DtFuncs.sh. Use the following notation to include them in a
shell script:

. /usr/dt/lib/dtksh/DtFuncs.dtsh

DtkshAddButtons
DtkshAddButtons adds one or more buttons of the same kind into a composite
widget. It is most often used to add a collection of buttons into a menupane or
menubar.

Usage:

DtkshAddButtons parent widgetClass label1 callback1
[label2 callback2 ...]

DtkshAddButtons [-w] parent widgetClas variable1 label1 callback1 \

[variable2 label2 callback2 ...]

77

The -w option indicates that the convenience function should return the widget
handle for each of the buttons it creates. The widget handle is returned in the specified
environment variable. The widgetClass parameter can be set to any of the
following, but it defaults to XmPushButtonGadget if nothing is specified.

� XmPushButton
� XmPushButtonGadget
� XmToggleButton
� XmToggleButtonGadget
� XmCascadeButton
� XmCascadeButtonGadget

Examples:

DtkshAddButtons $MENU XmPushButtonGadget Open do_Open Save do_Save
Quit exit

DtkshAddButtons -w $MENU XmPushButtonGadget B1 Open do_Open B2 Save

do_Save

DtkshSetReturnKeyControls
DtkshSetReturnKeyControls configures a text widget within a form widget so
that the Return key does not activate the default button within the form, but instead
moves the focus to the next text widget within the form. This is useful if you have a
window that contains a series of text widgets, and the default button should not be
activated until the user presses the Return key while the focus is in the last text
widget.

Usage:

DtkshSetReturnKeyControls textWidget nextTextWidget formWidget

defaultButton

The textWidget parameter specifies the widget to be configured to catch the Return key
and force the focus to move to the next text widget (as indicated by the nextTextWidget
parameter). The formWidget parameter specifies the form containing the default button
and should be the parent of the two text widgets. The defaultButton parameter
indicates which component is to be treated as the default button within the form
widget.

Examples:

DtkshSetReturnKeyControls $TEXT1 $TEXT2 $FORM $OK

DtkshSetReturnKeyControls $TEXT2 $TEXT3 $FORM $OK

78 Common Desktop Environment: Desktop KornShell User’s Guide • May 2002

DtkshUnder, DtkshOver, DtkshRightOf,
and DtkshLeftOf
These convenience functions simplify the specification of certain classes of form
constraints. They provide a way of attaching a component to one edge of another
component. They are used when constructing the resource list for a widget. This
behavior is accomplished using the ATTACH_WIDGET constraint.

Usage:

DtkshUnder widgetId [offset]
DtkshOver widgetId [offset]
DtkshRightOf widgetId [offset]

DtkshLeftOf widgetId [offset]

The widgetId parameter specifies the widget to which the current component is to be
attached. The offset value is optional and defaults to 0 if not specified.

Example:

XtCreateManagedWidget BUTTON4 button4 XmPushButton $FORM \
labelString:"Exit" \
$(DtkshUnder $BUTTON2) \

$(DtkshRightOf $BUTTON3)

DtkshFloatRight, DtkshFloatLeft,
DtkshFloatTop, and DtkshFloatBottom
These convenience functions simplify the specification of certain classes of form
constraints. They provide a way of positioning a component, independent of the other
components within the form. As the form grows or shrinks, the component maintains
its relative position within the form. The component may still grow or shrink,
depending upon the other form constraints specified for the component. This behavior
is accomplished using the ATTACH_POSITION constraint.

Usage:

DtkshFloatRight [position]
DtkshFloatLeft [position]
DtkshFloatTop [position]

DtkshFloatBottom [position]

Appendix B • dtksh Convenience Functions 79

The optional position parameter specifies the relative position to which the indicated
edge of the component is positioned. The position value is optional and defaults to 0 if
one is not specified.

Example:

XtCreateManagedWidget BUTTON1 button1 XmPushButton $FORM \
labelString:"Ok" \
$(DtkshUnder $SEPARATOR) \
$(DtkshFloatLeft 10) \

$(DtkshFloatRight 40)

DtkshAnchorRight, DtkshAnchorLeft,
DtkshAnchorTop, and
DtkshAnchorBottom
These convenience functions simplify the specification of certain classes of form
constraints. They provide a way of attaching a component to one of the edges of a
form widget in such a way that, as the form grows or shrinks, the component’s
position does not change. However, depending upon the other form constraints set on
this component, it may still grow or shrink in size. This behavior is accomplished
using the ATTACH_FORM constraint.

Usage:

DtkshAnchorRight [offset]
DtkshAnchorLeft [offset]
DtkshAnchorTop [offset]

DtkshAnchorBottom [offset]

The optional offset parameter specifies how far from the edge of the form widget the
component should be positioned. If an offset is not specified, then 0 is used.

Example:

XtCreateManagedWidget BUTTON1 button1 XmPushButton $FORM \
labelString:"Ok" \
$(DtkshUnder $SEPARATOR) \
$(DtkshAnchorLeft 10) \

$(DtkshAnchorBottom 10)

80 Common Desktop Environment: Desktop KornShell User’s Guide • May 2002

DtkshSpanWidth and DtkshSpanHeight
These convenience functions simplify the specification of certain classes of form
constraints. They provide a way of configuring a component so that it spans either the
full height or width of the form widget. This behavior is accomplished by attaching
two edges of the component (top and bottom for DtSpanHeight, and left and right
for DtSpanWidth) to the form widget. The component typically resizes whenever the
form widget is resized. The ATTACH_FORM constraint is used for all attachments.

Usage:

DtkshSpanWidth [leftOffset rightOffset]

DtkshSpanHeight [topOffset bottomOffset]

The optional offset parameters specify how far from the edges of the form widget the
component should be positioned. If an offset is not specified, then 0 is used.

Example:

XtCreateManagedWidget SEP sep XmSeparator $FORM \

$(DtkshSpanWidth 1 1)

DtkshDisplayInformationDialog,
DtkshDisplayQuestionDialog,
DtDisplayWarningDialog,
DtkshDisplayWorkingDialog, and
DtkshDisplayErrorDialog
These convenience functions create a single instance of each of the Motif feedback
dialogs. If an instance of the requested type of dialog already exists, then it is reused.
The parent of the dialog is obtained from the environment variable $TOPLEVEL,
which should be set by the calling shell script, and then should not be changed. The
handle for the requested dialog is returned in one of the following environment
variables:

� _DTKSH_ERROR_DIALOG_HANDLE
� _DTKSH_QUESTION_DIALOG_HANDLE
� _DTKSH_WORKING_DIALOG_HANDLE
� _DTKSH_WARNING_DIALOG_HANDLE

Appendix B • dtksh Convenience Functions 81

� _DTKSH_INFORMATION_DIALOG_HANDLE

Note – If you are attaching your own callbacks to the dialog buttons, do not destroy
the dialog when you are done with it. Unmanage the dialog, so that it can be used
again at a later time. If it is necessary to destroy the dialog, then be sure to clear the
associated environment variable so the convenience function does not attempt to reuse
the dialog.

Usage:

DtkshDisplay<name>Dialog title message [okCallback closeCallback

helpCallback dialogStyle]

The Ok button is always managed, and by default unmanages the dialog. The Cancel
and Help buttons are only managed when a callback is supplied for them. The
dialogStyle parameter accepts any of the standard resource settings supported by the
associated bulletin board resource.

Example:

DtkshDisplayErrorDialog "Read Error" "Unable to read the file"
"OkCallback" \

"CancelCallback" "" DIALOG_PRIMARY_APPLICATION_MODAL

DtkshDisplayQuickHelpDialog and
DtkshDisplayHelpDialog
These convenience functions create a single instance of each of the help dialogs. If an
instance of the requested type of help dialog already exists, then it is reused. The
parent of the dialog is obtained from the environment variable $TOPLEVEL, which
should be set by the calling shell script, and then should not be changed. The handle
for the requested dialog is returned in one of the following environment variables:

� _DTKSH_HELP_DIALOG_HANDLE
� _DTKSH_QUICK_HELP_DIALOG_HANDLE

Note – If it is necessary to destroy a help dialog, then be sure to clear the associated
environment variable so that the convenience function does not attempt to reuse the
dialog.

Usage:

82 Common Desktop Environment: Desktop KornShell User’s Guide • May 2002

DtkshDisplay*HelpDialog title helpType helpInformation [locationId]

The meaning of the parameters is dependent upon the value specified for the helpType
parameter. Their meanings are:

� helpType = HELP_TYPE_TOPIC

� helpInformation = help volume name
� locationId = help topic location ID

� helpType = HELP_TYPE_STRING

� helpInformation = help string
� locationId = <not used>

� helpType = HELP_TYPE_DYNAMIC_STRING

� helpInformation = help string
� locationId = <not used>

� helpType = HELP_TYPE_MAN_PAGE

� helpInformation = manual page name
� locationId = <not used>

� helpType = HELP_TYPE_FILE

� helpInformation = help file name
� locationId = <not used>

Example:

DtkshDisplayHelpDialog "Help On Dtksh" HELP_TYPE_FILE

"helpFileName"

Appendix B • dtksh Convenience Functions 83

84 Common Desktop Environment: Desktop KornShell User’s Guide • May 2002

APPENDIX C

The script_find Script

This appendix contains the complete listing of script_find described in Chapter 4,
“A Complex Script.” The script executes a second script called Find.sticky, which
is listed after script_find. There is also a file called Find.help, which is a text file
accessed when the user clicks the Help button on the main script window. See Chapter
4 for more information on this script.

Listing for script_find
#! /usr/dt/bin/dtksh
set -u

. /usr/dt/lib/dtksh/DtFuncs.dtsh
#
This sample shell script provides a graphical interface to the
‘find’ command. Each time it is executed, it will attempt to
restore the dialog to the last set of values entered by the user.
When the ‘find’ command is initiated, the output will be displayed
in a dtterm window.
#
#

Post an# error dialog. The main application window is disabled
until the error dialog is unposted. The message to be displayed
in the # error dialog is passed in as $1
#
PostErrorDialog()
{

DtDisplayErrorDialog “Find Error” “$1” \
DIALOG_PRIMARY_APPLICATION_MODAL

}

#

85

This is both the ‘Ok’ and the ‘Apply’ callback; in the case of the
‘Ok’ callback, it unposts the main application window, and then
exits, if the dialog contains valid information. For both ‘Ok’ and
‘Apply’, the set of search directories is first validated; if any
of the paths are not valid, then an error dialog is posted.
Otherwise, the ‘find’ process is started in a terminal window.
#

OkCallback()
{

RetrieveAndSaveCurrentValues
if [“$SD_VAL” = ““] ; then

PostErrorDialog “You must specify a directory to search”
else

for i in $SD_VAL ; do
if [! -d $i] ; then

MSG=”The following search directory does not exist:
$i”
PostErrorDialog “$MSG”
return 1

fi
done
if [$CB_WIDGET = $OK] ; then

XtPopdown $TOPLEVEL
fi CMD=”/bin/find $SD_VAL”

if [! “$FNP_VAL” = ““] ; then
CMD=$CMD” -name $FNP_VAL”

fi

if ! $(XmToggleButtonGetState $T1); then
CMD=$CMD” -xdev”

fi

if $(XmToggleButtonGetState $T3); then
CMD=$CMD” -hidden”

fi

if $(XmToggleButtonGetState $T4); then
CMD=$CMD” -follow”

fi

if $(XmToggleButtonGetState $T5); then
CMD=$CMD” -depth”

fi

case $FSTYPE_VAL i
n $NFS) CMD=$CMD” -fsonly nfs” ;;

$CDFS) CMD=$CMD” -fsonly cdfs” ;;
$HFS) CMD=$CMD” -fsonly hfs” ;;
*) ;;

esac

case $FILETYPE_VAL in
$REGULAR) CMD=$CMD” -type f” ;;

86 Common Desktop Environment: Desktop KornShell User’s Guide • May 2002

$DIRECTORY) CMD=$CMD” -type d” ;;
$BLOCK) CMD=$CMD” -type b” ;;
$CHAR) CMD=$CMD” -type c” ;;
$FIFO) CMD=$CMD” -type p” ;;
$SYMLINK) CMD=$CMD” -type l” ;;
$SOCKET) CMD=$CMD” -type s” ;;
$NET) CMD=$CMD” -type n” ;;
$MOUNT) CMD=$CMD” -type M” ;;
$HIDDEN) CMD=$CMD” -type H” ;;
*) ;;

esac

if $(XmToggleButtonGetState $T2); then
CMD=$CMD” -print”

fi
/usr/dt/bin/dtterm -title “Find A File” -e /usr/dt/bin/dtexec

-open -1 $CMD &
if [$CB_WIDGET = $OK] ; then
exit 0

fi
fi

}

#
This function attempt to load in the previous dialog values.
Each line read from the file is then interpreted as a ksh command.
#
LoadStickyValues()
{

if [-r “./Find.sticky”] ; then
exec 6< “./Find.sticky”
XtAddInput FID 6 “EvalCmd”

fi
}

#
This function is invoked for each line in the ‘sticky’ values file.
It will evalutate each line as a dtksh command.
#

EvalCmd()
{

if [${#INPUT_LINE} -gt 0]; then
eval “$INPUT_LINE”

fi
if [“$INPUT_EOF” = ‘true’]; then
XtRemoveInput $INPUT_ID
eval exec $INPUT_SOURCE’<&-’

fi
}
#
This function retrieves the current values, and then saves them
off into a file, so that they can be restored the next time the
dialog is displayed. It is called anytime the user selects either
the “Ok” or “Apply” buttons.
#

Appendix C • The script_find Script 87

RetrieveAndSaveCurrentValues()
{

XmTextGetString SD_VAL $SD
XmTextGetString FNP_VAL $FNP
XtGetValues $FSTYPE menuHistory:FSTYPE_VAL
XtGetValues $FILETYPE menuHistory:FILETYPE_VAL

exec 3> “./Find.sticky”
if [! “$SD_VAL” = ““] ; then

print -u 3 “XmTextSetString \$SD \”$SD_VAL\””
print -u 3 “XmTextFieldSetInsertionPosition \$SD ${#SD_VAL}”

fi
if [! “$FNP_VAL” = ““] ; then

print -u 3 “XmTextSetString \$FNP \”$FNP_VAL\””
print -u 3 “XmTextFieldSetInsertionPosition \$FNP ${#FNP_VAL}”

fi

case $FSTYPE_VAL in
$NFS) FST=”\$NFS” ;;
$CDFS) FST=”\$CDFS” ;;
$HFS) FST=”\$HFS” ;;
*) FST=”\$NODIR” ;;

esac
print -u 3 “XtSetValues \$FSTYPE menuHistory:$FST”

case $FILETYPE_VAL in
$REGULAR) FT=”\$REGULAR” ;;
$DIRECTORY) FT=”\$DIRECTORY” ;;
$BLOCK) FT=”\$BLOCK” ;;
$CHAR) FT=”\$CHAR” ;;
$FIFO) FT=”\$FIFO” ;;
$SYMLINK) FT=”\$SYMLINK” ;;
$SOCKET) FT=”\$SOCKET” ;;
$NET) FT=”\$NET” ;;
$MOUNT) FT=”\$MOUNT” ;;
$HIDDEN) FT=”\$HIDDEN” ;;
*) FT=”\$NOTYPE” ;;

esac
print -u 3 “XtSetValues \$FILETYPE menuHistory:$FT”

if $(XmToggleButtonGetState $T1); then
print -u 3 “XmToggleButtonSetState \$T1 true false”
fi

if $(XmToggleButtonGetState $T2); then
print -u 3 “XmToggleButtonSetState \$T2 true false”
fi

if $(XmToggleButtonGetState $T3); then
print -u 3 “XmToggleButtonSetState \$T3 true false”
fi

if $(XmToggleButtonGetState $T4); then
print -u 3 “XmToggleButtonSetState \$T4 true false”
fi

88 Common Desktop Environment: Desktop KornShell User’s Guide • May 2002

if $(XmToggleButtonGetState $T5); then
print -u 3 “XmToggleButtonSetState \$T5 true false”
fi

exec 3<&-
}
################ Create the Main UI ####################

set -f
XtInitialize TOPLEVEL find Dtksh $0 “${@:-}”
XtSetValues $TOPLEVEL title:”Find Files”

XtCreateManagedWidget FORM form XmForm $TOPLEVEL

XtCreateManagedWidget SDLABEL sdlabel XmLabel $FORM \
labelString:”Search Directory:” \
$(DtkshAnchorTop 12) \
$(DtkshAnchorLeft 10)

XtCreateManagedWidget SD sd XmText $FORM \
columns:30 \
value:”.” \
$(DtkshAnchorTop 6) \
$(DtkshRightOf $SDLABEL 10) \
$(DtkshAnchorRight 10) \
navigationType:EXCLUSIVE_TAB_GROUP

XmTextFieldSetInsertionPosition $SD 1

XtCreateManagedWidget FNPLABEL fnpabel XmLabel $FORM \
labelString:”Filename Pattern:” \
$(DtkshUnder $SDLABEL 24) \
$(DtkshAnchorLeft 10)

XtCreateManagedWidget FNP fnp XmText $FORM \
columns:30 \ $(DtkshUnder $SD 8) \
$(DtkshRightOf $FNPLABEL 10) \
$(DtkshAnchorRight 10) \
navigationType:EXCLUSIVE_TAB_GROUP

XtCreateManagedWidget SEP sep XmSeparator $FORM \
separatorType:SINGLE_DASHED_LINE \
$(DtkshUnder $FNP 10) \
$(DtkshSpanWidth)

XtCreateManagedWidget RC rc XmRowColumn $FORM \
orientation:HORIZONTAL \
numColumns:3 \
packing:PACK_COLUMN \

$(DtkshUnder $SEP 10) \
$(DtkshSpanWidth 10 10) \
navigationType:EXCLUSIVE_TAB_GROUP

DtkshAddButtons -w $RC XmToggleButtonGadget \
T1 “Cross Mount Points” ““\

Appendix C • The script_find Script 89

T2 “Print Matching Filenames” ““\
T3 “Search Hidden Subdirectories” ““\
T4 “Follow Symbolic Links” ““\
T5 “Descend Subdirectories First” ““

XtCreateManagedWidget SEP2 sep XmSeparator $FORM \
separatorType:SINGLE_DASHED_LINE \
$(DtkshUnder $RC 10) \
$(DtkshSpanWidth)

XmCreatePulldownMenu PANE $FORM pane
DtkshAddButtons -w $PANE XmPushButtonGadget \

NODIR “no restrictions” ““\
NFS “nfs” ““\
CDFS “cdfs” ““\
HFS “hfs” ““

XmCreateOptionMenu FSTYPE $FORM fstype \
labelString:”Restrict Search To File System Type:” \
menuHistory:$NODIR \
subMenuId:$PANE \

$(DtkshUnder $SEP2 20) \
$(DtkshSpanWidth 10 10) \
navigationType:EXCLUSIVE_TAB_GROUP

XtManageChild $FSTYPE

XmCreatePulldownMenu PANE2 $FORM pane2
DtkshAddButtons -w $PANE2 XmPushButtonGadget \

NOTYPE “no restrictions” ““\
REGULAR “regular” ““\
DIRECTORY “directory” ““\
BLOCK “block special” ““\
CHAR “character special” ““\
FIFO “fifo” ““\
SYMLINK “symbolic link” ““\
SOCKET “socket” ““\
NET “network special” ““\
MOUNT “mount point” ““\
HIDDEN “hidden directory” ““

XmCreateOptionMenu FILETYPE $FORM filetype \
labelString:”Match Only Files Of Type:” \
menuHistory:$NOTYPE \
subMenuId:$PANE2 \

$(DtkshUnder $FSTYPE 10) \
$(DtkshSpanWidth 10 10) \
navigationType:EXCLUSIVE_TAB_GROUP

XtManageChild $FILETYPE
XtSetValues $FILETYPE spacing:90

XtCreateManagedWidget SEP3 sep3 XmSeparator $FORM \
$(DtkshUnder $FILETYPE 10) \
$(DtkshSpanWidth)

XtCreateManagedWidget OK ok XmPushButton $FORM \

90 Common Desktop Environment: Desktop KornShell User’s Guide • May 2002

labelString:”Ok” \
$(DtkshUnder $SEP3 10) \
$(DtkshFloatLeft 4) \
$(DtkshFloatRight 24) \
$(DtkshAnchorBottom 10)

XtAddCallback $OK activateCallback “OkCallback”

XtCreateManagedWidget APPLY apply XmPushButton $FORM \
labelString:”Apply” \

$(DtkshUnder $SEP3 10) \
$(DtkshFloatLeft 28) \
$(DtkshFloatRight 48) \
$(DtkshAnchorBottom 10)

XtAddCallback $APPLY activateCallback “OkCallback”

XtCreateManagedWidget CLOSE close XmPushButton $FORM \
labelString:”Close” \

$(DtkshUnder $SEP3 10) \
$(DtkshFloatLeft 52) \
$(DtkshFloatRight 72) \
$(DtkshAnchorBottom 10)

XtAddCallback $CLOSE activateCallback “exit 1”

XtCreateManagedWidget HELP help XmPushButton $FORM \
labelString:”Help” \

$(DtkshUnder $SEP3 10) \
$(DtFloatLeft 76) \
$(DtkshFloatRight 96) \
$(DtkshAnchorBottom 10)

XtAddCallback $HELP activateCallback \
“DtkshDisplayQuickHelpDialog ‘Using The Find Command’

HELP_TYPE_FILE \
‘./Find.help’ “

XtSetValues $FORM \
initialFocus:$SD \
defaultButton:$OK \
cancelButton:$CLOSE \
navigationType:EXCLUSIVE_TAB_GROUP

DtkshSetReturnKeyControls $SD $FNP $FORM $OK
LoadStickyValues

XtRealizeWidget $TOPLEVEL

XtMainLoop

Appendix C • The script_find Script 91

Find.sticky
The following script, Find.sticky is executed by script_find. Find.sticky
remembers the file and directory names used in the most recent execution of
script_find.

XmTextSetString $SD “/users/dlm”
XmTextFieldSetInsertionPosition $SD 10
XmTextSetString $FNP “elmbug”
XmTextFieldSetInsertionPosition $FNP 6
XtSetValues $FSTYPE menuHistory:$NODIR
XtSetValues $FILETYPE menuHistory:$DIRECTORY
XmToggleButtonSetState $T1 true false

XmToggleButtonSetState $T2 true false

Find.help
Find.help is a text file that is displayed on screen when the user clicks the Help
button in the main script_find window.

This dialog presents a graphical interface to the
UNIX ‘find’ command. The only required field is
the name of the directory to be searched;
all other fieldsare optional. Once the fields have
been set to the desired values, you canuse the
‘Ok’ or ‘Apply’ button to initiate the find operation.
The results of the find operation are displayed

in a dtterm terminal window.

92 Common Desktop Environment: Desktop KornShell User’s Guide • May 2002

Index

A
action commands, 67
app-defaults file, 14
application help commands, 64
applications, Motif, 11

B
Boolean Values, 15
bulletin board, 24

C
callback, 19, 25

pass data to, 20
register, 19
script_find, 41
workspace, 28

category 1, 15
category 2, 16
category 3, 16
category 4, 16
CB_CALL_DATA, 20
command

CDE application help, 64
commands, 49

action, 67
data-typing, 68
libDt, 69
libdt, 68
libDt session management, 65

commands (continued)
localization, 65
message set, 69
Motif, 54
workspace management, 66
Xt Intrinsics, 51

context variable
event handler, 27
input, 28
translation, 28
workspace callback, 28

convenience functions, 77
create form widget, 44
create menu, 46
create separator widget, 45
create widget, 18

D
data-typing commands, 68
Defined Values, 15
drawing functions, 36
DtDisplayWarningDialog, 81
dtksh

definition, 11
relationshipt to ksh-93, 11

Dtksh, app-defaults file, 14
DtkshAddButtons, 46, 77
DtkshAnchorBottom, 80
DtkshAnchorLeft, 80
DtkshAnchorRight, 80
DtkshAnchorTop, 80

93

DtkshDisplayErrorDialog, 42, 81
DtkshDisplayHelpDialog, 82
DtkshDisplayInformationDialog, 81
DtkshDisplayQuestionDialog, 81
DtkshDisplayQuickHelpDialog, 82
DtkshDisplayWorkingDialog, 81
DtkshFloatBottom, 79
DtkshFloatLeft, 79
DtkshFloatRight, 79
DtkshFloatTop, 79
DtkshLeftOf, 79
DtkshOver, 79
DtkshRightOf, 79
DtkshSetReturnKeyControls, 78
DtkshSpanHeight, 81
DtkshSpanWidth, 81
DtkshUnder, 79

E
event handler, 27
event subfield, 30

F
Find.sticky, 92
functions

supported, 11

H
handle, 18

I
immediate return value, 16
initialize, 24
initialize Xt Intrinsics, 17
input context variable, 28
input mode, 29

K
ksh-93, 11

L
libDt commands, 68
libDt session management commands, 65
libraries, required, 11
localization commands, 65
localized script, 35

M
menu, create, 46
message set commands, 69
Motif applications, 11
Motif commands, 54
mwmFunctions, 13

P
parameters, variable number, 12
pushbutton, 25

R
register callback, 19
required linbraries, 11
resource

unsupported, 13
resources, 12
return value

category 1, 15
category 2, 16
category 3, 16
category 4, 16
immediate, 16

Return Values, 15

S
sample script, 23

94 Common Desktop Environment: Desktop KornShell User’s Guide • May 2002

script
localized, 35
sample, 23
writing, 23

script, complex, 39
script_find, 39, 85
session manager save state notice, 32
supported functions, 11

T
top-level widget, 24
topShadowColor, 12
translation, 28, 37

U
unsupported resources, 13

V
variable values, 15
VendorShell, 13

W
widget

bulletin board, 24
create, 18
form, 44
handle, 18
pushbutton, 25
separator, 45
top-level, 24
translations, 37

window manager close notice, 31
workspace callback, 28
workspace management, 34
workspace management commands, 66

X
XmCreateForm, 18

XmCreateLabel, 19
XmCreateOptionMenu, 46
XmCreatePulldownMenu, 46
XmCreatePushButton, 18
XmNtopShadowColor, 12
XmTextFieldSetInsertionPosition, 43, 45
XmTextSetString, 43
XmToggleButtonSetState, 43
Xt Intrinsics

initialize, 17
Xt Intrinsics commands, 51
XtAddCallback, 19, 47, 51
XtAddEventHandler, 51
XtAddInput, 28, 51
XtCreateApplicationShell, 18
XtCreateManagedWidget, 18, 23, 44, 52
XtCreatePopupShell, 18
XtCreateWidget, 18
XtDisplay, 52
XtGetValues, 12
XtInitialize, 17, 23, 44
XtMainLoop, 24, 48
XtManageChild, 46
XtRealizeWidget, 24, 48
XtrealizeWidget, 25
XtRemoveInput, 29
XtSetValues, 13, 23, 43, 47

Index 95

96 Common Desktop Environment: Desktop KornShell User’s Guide • May 2002

