
Common Desktop Environment:
Style Guide and Certification

Checklist

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 816–0284–10
May 2002

Copyright 2002 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or service marks
of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2002 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, ou
marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des
marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques
SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

020115@3062

Contents

Preface 11

Part I Style Guide

1 Introduction to the Common Desktop Environment 17

Advantages of a Common User Interface 17
Relationship to the Open Group’s Motif Style Guides 18

2 Input, Navigation, Selection, and Activation 19

Input Guidelines 19
Navigation 20

Mouse-Based Navigation 20
Keyboard-Based Navigation 20

Selection 21
Mouse-Based Multiple Selection 21
Mouse-Based Range Selection 22
Mouse-Based Discontiguous Selection 22

Component Activation 23
Basic Activation 23
Mnemonics 23
CheckButton 23
OptionButton 24
Gauge 24

3

3 Drag and Drop 25

Drag-and-Drop User Model 25
Drag-and-Drop Feedback 26

Type of Item Being Dragged 27
Drop Zone 28
Resulting Activity 29
Success or Failure 29

Parts of a Drag Icon 30
State Indicator 30
Operation Indicator 31
Source Indicator 32

Drag-and-Drop Mechanics 35
Types 35
Actions 35
Matching Operations 36

Determining Drag Sources 37
Scrolling Lists 38
Dialog Boxes 39
Windows 40

Dragging and Dropping a Multiple Selection 40
Standard Supported Drop Zones 41

The Front Panel 41
File Manager 41
No Drop-Only Targets 42

Mouse Button Usage 42
Placement Upon Drop 43
Ending a Drag 44
Performance Guidelines 44
Using Attachments in Your Application 46

Attachment User Model 47
Attachment Functionality 47
Editing and Saving Attachments 48
Attachment Menu Contents 50

4 Visual Design 51

Color Philosophy 51
What Is an Icon? 52

4 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Icon-Centric Components 53
File Manager 53
Application Manager 54
Front Panel and Subpanels 55
Minimized Window Icons 56
Other Graphics 56

Color Usage in Icons 56
Icon Color Palette 56
Dynamic Colors 57

Design Philosophy and Helpful Hints 58
Designing with Color 58
Icon Styles 59
Designing Your Application Icon 60
Designing Your Application Group Icon 60
Designing Your Document Icons 61
International Icons 61
Differences with Other Platforms 62

Implementation of Required Icons 63
Formats 63
Resolutions 64
Sizes 64
Icon Naming Conventions 65
Alignment 66
Optional Icons Sizes 67
Optional Front Panel Icon Style 67

5 Window and Session Control 71

Window Control Guidelines 71
Window Management Actions 72
Window Decorations 72
Window Menus 73
Window Icons 75
Window Placement 75

Workspace Management Guidelines 76
Session Management Support 77

Contents 5

6 Application Design Principles 79

Component Layout Guidelines 79
Main Window Layout 79
Menu Bar Layout 80

Common Menu Types 83
File Menu Contents 83
<Object-type> and Selected Menu Contents 85
Edit Menu Contents 87
View Menu 88
Options Menu 89
Help Menu Contents 89
Attachment Menu Contents 91
Pop-up Menus 91

General Menu Design Rules 95
Tool Bars 97

Tool Bar Guidelines 97
Design Issues for Tool Bars 98
Tool Bar Components 98

Window Titles 100
Work-in-Progress Feedback 101
General Application Design Rules 102
Application Installation 103

7 Common Dialogs 105

Dialog Box Design and Layout 105
Dialog Box Placement 110
Dialog Box Interaction 111
Expandable Windows and Dialog Boxes 112

Guidelines for Expandable Windows and Dialog Boxes 113
Components of Expandable Windows 113

File Selection Dialog Boxes 117
Contents 118
File Selection Dialog Box Behavior 120
Labeling 121
Button Activation 121
Selection and Navigation 122
Guidelines for Specific File Selection Dialog Box Uses 122

6 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Print Dialog Box 124

Standard Print Menu Items for Applications 124

Guidelines for Common Print Dialog Functions 125

Guidelines for Application-Specific Print Dialog Box Functions 126

Some Sample Layouts 127

The Properties Dialog 128

Guidelines 128

The About Dialog Box 129

Guidelines for the About Dialog Box 130

8 Application Messages 133

Error Messages and Informational Messages 133

Error Messages 133

Guidelines for Error Messages 134

Access to Online Help 136

Helpful Hints 136

Informational Messages 137

Guidelines for Informational Messages 137

Other Message Dialogs 138

Work-in-Progress Feedback 139

9 Designing for Accessibility 141

Accessibility 141

Access and the Style Guide 142

Physical Disabilities 142

Guideline 143

Visual Disabilities 143

Guidelines 144

Hearing Disabilities 144

Guidelines 145

Language, Cognitive, and Other Disabilities 145

Guidelines 145

Existing Keyboard Access Features 145

Guideline 146

Resources for More Information on Accessibility 146

Organizations 147

Conferences 148

Contents 7

Bibliography 148

Part II Certification Checklist

10 Certification Checklist 151

How to Use the Checklist 151

Preface 152

Input Models 153

Keyboard Focus Model 153

Input Device Model 153

Navigation 156

Mouse-Based Navigation 156

Keyboard-Based Navigation 159

Menu Traversal 163

Scrollable Component Navigation 167

Selection 168

Selection Models 168

Selection Actions 179

Transfer Models 180

Component Activation 189

Basic Activation 189

Accelerators 190

Mnemonics 190

Tear-off Activation 191

Help Activation 192

Default Activation 192

Expert Activation 193

Previewing and Autorepeat 194

Cancel Activation 194

Window Management 195

Window Support 195

Window Decorations 196

Window Navigation 198

Icons 198

Application Window Management 198

Session Management Support 201

Application Design Principles 201

8 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Layout 201

Attachments 231

Installation 232

Interaction 232

Visuals 234

Toolbars 235

Expandable Windows 236

Messages 238

Work-in-Progress Feedback 242

Controls, Groups, and Models 243

CheckButton 243

ComboBox 244

CommandBox 245

FileSelectionBox 246

List 250

Option Button 251

Paned Window 252

Panel 252

Push Button 252

Radio Button 253

Sash 254

Scale 255

ScrollBar 256

SelectionBox 258

SpinBox 258

Text 259

Gauge 261

Accessibility 262

A Keyboard Functions 265

Keyboard Functions Tables 265

B Mouse Functions 275

Mouse Operations and Functions 276

Select and Adjust Binding 278

Transfer Bindings 280

Menu Bindings 281

Contents 9

Index 283

10 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Preface

The Common Desktop Environment: Style Guide and Certification Checklist provides
application design style guidelines and the list of requirements for Common Desktop
Environment application-level certification. Common Desktop Environment
requirements consist of the OSF/Motif Version 1.2 requirements with Common
Desktop Environment-specific additions.

The checklist describes keys using a model keyboard mechanism. Wherever keyboard
input is specified, the keys are indicated by the engravings on the OSF/Motif model
keyboard. Mouse buttons are described using a virtual button mechanism to better
describe behavior independent from the number of buttons on the mouse.

Who Should Use This Book
This book provides information to assist the application designer in developing
consistent applications and behaviors within the applications.

Before You Read This Book
As you compare the behavior of your application to the requirements in this checklist,
you may want to consult the OSF/Motif Style Guide (Revision 1.2) for additional style
considerations.

By default, this checklist assumes that your application is being designed for a
left-to-right language environment in an English-language locale. Some sections of the
checklist may require appropriate changes for other locales.

11

The Style Guide Part of the book refers to checklist items in Chapter 10. Each checklist
item is labeled with numbers or letters. The numbered items correspond to the
checklist items from the OSF/Motif Style Guide, Revision 1.2. The Common Desktop
Environment-specific additions are labeled with alphabetic identifiers. The checklist
items references are followed by the page number where the checklist item appears.

How This Book Is Organized
This book consists of two parts and appendices. Explanations of the sections of the
book follow:

Part I, “Style Guide,” describes style considerations you should follow when designing
applications for the Common Desktop Environment.

Chapter 1 is an introduction to the checklist and how to use it.

Chapter 2 provides information on the keyboard focus model and the input device
model, mouse-based and keyboard-based navigation, menu traversal, scrollable
component navigation, selection and transfer models, selection actions, and basic
activation.

Chapter 3 provides information on incorporating drag and drop into your application.

Chapter 4 provides information on designing icons and other visuals consistent with
the Common Desktop Environment style.

Chapter 5 provides information on window support, window decorations, window
navigation, icons, application window management, and session management
support.

Chapter 6 provides information on layout, interaction, support for alternative visuals,
messages, and work-in-progress feedback.

Chapter 7 provides information on creating dialog boxes.

Chapter 8 provides information on ways to provide feedback to the user.

Chapter 9 provides information on making software applications accessible to people
with disabilities.

Part II, “Certification Checklist,” is the certification checklist, which consists of a
checklist divided into several topics:

Chapter 10 provides the list of requirements for Common Desktop Environment
application-level certification.

Appendix A provides information on keyboard functions and keyboard engravings.

12 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Appendix B provides information on mouse functions.

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com.

Typographic Conventions
The following table describes the typographic changes used in this book.

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; on-screen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace with
a real name or value

To delete a file, type rm
filename.

AaBbCc123 Book titles, new words, or terms, or
words to be emphasized.

Read Chapter 6 in User’s Guide.

These are called class options.

You must be root to do this.

Preface 13

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

14 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

PART I Style Guide

15

16 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

CHAPTER 1

Introduction to the Common Desktop
Environment

The Common Desktop Environment is a graphical user interface for UNIX® in its
various flavors (AIX, HP/UX, Solaris™, UnixWare, and so forth). UNIX is a powerful
and portable operating system. The desktop now brings unparalleled ease of use to
UNIX.

The desktop has been jointly developed by Hewlett-Packard, IBM, Novell and Sun
Microsystems. It is being adopted as a standard operating environment by these
companies and many others in the UNIX workstation market.

Advantages of a Common User Interface
The desktop interface brings greater ease-of-use and a consistent interface to UNIX.
This provides many advantages to both end users and application developers. Among
these advantages are:

� An easier to use interface enables users to learn the system quickly and use it
efficiently.

� Consistency between UNIX platforms enables users to move from one computer to
another with minimal difficulty. It also enables programmers to write a single
application that can be compiled for each platform, significantly reducing
development effort.

� The desktop provides as much consistency as possible with the Microsoft Windows
and IBM OS/2 environments. This enables users to easily move between these
environments and the desktop.

� Unlike many competing operating systems, several built-in productivity
applications enable the desktop user to be productive before buying application
software.

17

� The desktop specifications have been submitted to the X/Open standards
organization, ensuring that desktop is “open” and will not tie the user to
proprietary solutions.

Relationship to the Open Group’s Motif
Style Guides
The desktop user interface follows the Motif guidelines. Motif, however, does not
define a desktop, only the basic behaviors for applications and widgets. The Style
Guide and Certification Checklist defines the guidelines that enable an application to
integrate well with the desktop. Thus, to write a desktop-conforming application, you
should follow both the CDE 2.1/Motif 2.1 Style Guide and Glossary and the Common
Desktop Environment: Style Guide and Certification Checklist.

Compliance with the desktop interface guidelines is voluntary and self-regulated.
There is no formal certification process. Applications that meet all the required
guidelines in this style guide and the CDE 2.1/Motif 2.1 Style Guide and Glossary can be
considered desktop compliant.

Note – CDE 2.1/Motif 2.1 Style Guide and Glossary is part of a set of style guides for
Motif that are available from The Open Group (www.opengroup.com). This book set
replaces the OSF/Motif Style Guide, although there are few differences in the actual
guidelines.

In this book, priorities have been assigned to each guideline: Required, recommended,
and optional.

18 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

CHAPTER 2

Input, Navigation, Selection, and
Activation

Input devices have different actions depending on which part of the interface the user
is interacting with. Usually, mouse users can access windows and controls more easily
than keyboard users, due to the inherent flexibility in mouse manipulation. Keyboard
users must use specific keys to move the cursor in the application.

Users have to move pointers and cursors within the interface to indicate where actions
should occur. To do so, users employ navigation methods that vary, depending on the
cursor’s location in the interface. Therefore, navigation refers to how users move
pointers and cursors within the interface.

Users often need to indicate which element of the interface they want to interact with.
Selection enables users to identify individual or multiple elements for subsequent
interaction.

Activation refers to using controls to perform actions. When a user chooses a button or
chooses an item from a menu, for example, the user is activating those controls.

The following sections outline Common Desktop Environment requirements for input,
navigation, selection, and activation.

Input Guidelines
Virtual keys are names for generic operations that the user can perform through the
interface. They may be mapped to one or more physical key combinations.
Application developers are strongly urged to provide support for Help, Properties,
Undo, Cut, Copy, and Paste if their application has functions corresponding to these
virtual keys. Other virtual keys may be supported as appropriate.

19

Required a: Components and applications
that have functions
corresponding to the
Motif/Common Desktop
Environment virtual keys
must support those keys.

See the checklist item for a list
of the virtual keys and their
mappings.

Navigation
The desktop allows either BSelect or BMenu to be used to display menus. This
capability has been added for users familiar with environments that provide a
dedicated mouse menu button.

For mouse-based navigation of text fields, the desktop has added a requirement that
the text cursor be placed at the mouse cursor position, rather than at the beginning or
the end of the text field.

Mouse-Based Navigation

Optional b: BMenu Press or BMenu Click on a menu bar item displays the
menu.

Required c: BMenu Press or BMenu Click on an option button displays the
option menu.

Required d: BSelect Press on a text field causes the text cursor to be inserted
at the mouse cursor position.

Keyboard-Based Navigation
The requirement to support Tab as a navigation key within groups of push buttons has
been added to make keyboard navigation easier for users who have difficulty with the
standard keyboard. This change is intended to reduce the number of side-to-side
traversals of the keyboard (from Tab to arrow keys and back) that a user must perform
to navigate within a single dialog box.

20 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Optional e: Each time a new window is opened, keyboard focus is placed in
the first field or location within the window or in a default
location, if this is appropriate for the particular window.

Required f: The Tab key moves input focus between push buttons within a
group.

The arrow keys also move the selected focus per the OSF/Motif
Style Guide, Revision 1.2.

Required g: Use the Control, Shift, and Alt keys only to modify the function
of other keys or key combinations.

Optional h: Use the Alt key only to provide access to mnemonics.

Selection
The desktop has incorporated two significant changes to selection in Motif. The first is
that users may elect to have either Adjust or Transfer capability on the middle mouse
button. In addition, the desktop integrates drag and select on the first mouse button.

On a three-button mouse, button 2 is typically used for the BTransfer (or BSelect)
function. However, in a Common Desktop Environment environment, the user may
change an environment setting indicating that mouse button 2 should be used for the
BAdjust function instead. BAdjust can be used to toggle the selection state of elements
under the multiple selection model.

The following guidelines describe the BAdjust behaviors.

Mouse-Based Multiple Selection

Required i: If your application contains collections that follow the
multiple selection model, BAdjust is supported and behaves
just like BSelect, when the BTransfer button is currently
configured to behave as BAdjust.

Required j: In a collection that uses multiple selection, clicking BSelect or
BAdjust on an unselected element adds that element to the
current selection. Clicking BSelect or BAdjust on a selected
element removes that element from the current selection.
Clicking BSelect or BAdjust moves the location cursor to that
element.

Chapter 2 • Input, Navigation, Selection, and Activation 21

Mouse-Based Range Selection

Required m: If your application contains collections that follow the range selection
model, BAdjust is supported and behaves just like Shift+BSelect, when the
BTransfer button is currently configured to behave as BAdjust.Required n:

Reselect The extended range is determined by the anchor
and the current pointer position, in exactly the
same manner as when the selection was initially
made.

Enlarge Only The selection can only be enlarged. The extended
range is determined by the anchor and the current
pointer position, but then is enlarged to include
the current selection.

Balance Beam A balance point is defined at the midpoint of the
current selection. When the user presses
Shift+BSelect or BAdjust on the opposite side of
the balance point from the anchor, this model
works exactly like the reselect model. When the
user presses Shift+BSelect, BAdjust, or starts a
navigation action modified by Shift on the same
side of the balance point as the anchor, this model
moves the anchor to the opposite end of the
selection and then works exactly like the reselect
model.

When the user releases BSelect or BAdjust, the anchor does not move, all the
elements within the extended range are selected, and all the elements
outside of it are deselected.

Mouse-Based Discontiguous Selection

Required o: In a collection that uses discontiguous selection, BAdjust can be
used to extend the range of a discontiguous selection. The
extended range is determined in exactly the same way as when
BAdjust is used to extend a range selection.

22 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Component Activation
The following guidelines have been provided to clarify double-click timing and
mnemonics, to explain changes in activation of specific components, and explain
behaviors of components that are new in CDE Motif.

Basic Activation

Required x: The time allowed to detect a double click (*doubleClickTime:
500) should be no less than 500 milliseconds.

Mnemonics

Required y: Mnemonic characters must be chosen for ease-of-location within
the text of a label. Wherever possible, use the first character of
the label. If that is not possible, try to use the last character of the
label, or if there is more than one word, the first character of the
second word. After that, go through the label from the second
character on until a unique mnemonic is found.

CheckButton

Required 7-1: Your application uses check buttons to select settings that are not
mutually exclusive. A check button graphically indicates its state
with the presence or absence of a check mark.

A check button is used to select settings that are not mutually
exclusive. The user needs to know whether the button is set or
not.

Chapter 2 • Input, Navigation, Selection, and Activation 23

OptionButton

Required 7-23: When the user presses BSelect or BMenu in an option button, the
associated option menu is posted.

BSelect Press is a consistent way of activating an option button.

Required 7-24: When the user releases BSelect or BMenu within the same option
button that the press occurred in, the associated option menu is
posted if it was not posted at the time of the press. When the
user releases BSelect or BMenu outside of the option button, the
associated option menu is unposted.

BSelect Release or BMenu Release posts or unposts an option
menu, depending on whether the release occurs inside the
option button and whether the option menu was posted at the
time of the press.

Gauge

Required ib: A gauge is similar to a scale except that a gauge is a display-only
device with no user interactions. The appearance of a gauge is
similar to a scale, but the gauge lacks a scale slider.

Optional ic: Despite being a display-only device, a gauge should get
keyboard focus so that the user can access Help or Settings for
that control.

24 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

CHAPTER 3

Drag and Drop

Drag and drop enables the user to directly manipulate objects in the computing
environment. This chapter discusses and provides guidelines for incorporating drag
and drop into your application. If you plan to use drag and drop or attachments in
your application, then you should read this chapter.

You should be familiar with the description of Motif 1.2 drag and drop as covered in
the OSF/Motif Style Guide, Version 1.2. If you are not, read Section 4.3.4, “Drag
Transfer,” in that book. Where differences occur, this chapter supersedes the OSF/Motif
Style Guide, Version 1.2.

Drag-and-Drop User Model
Direct manipulation of objects in the computing environment helps the user feel in
control of the computer, which in turn helps the user feel more comfortable about
trying new operations and about computers in general. It is also a more efficient
method for performing many operations.

To understand the drag-and-drop user model, you must understand the following
terms:

drop zone An area of the workspace that accepts a dropped icon. Drop zones are
usually represented by the control or icon graphic, such as the Trash Can
or the Print Manager control.

drag icon The composite cursor used during the drag. See “Parts of a Drag Icon”
on page 30 for details.

25

In the Common Desktop Environment, the user can select and drag icons in File
Manager, mail messages and attachments in Mailer, appointments in Calendar, and
text from text editors or text fields. These items can be dropped onto any drop zone that
accepts them. For example, a document icon from File Manager can be dropped onto a
folder icon in File Manager, onto the Print Manager icon on the Front Panel, or on the
attachment list in Mailer.

When an item is dropped, some action happens with the dropped item. For example,
the document might get printed, moved, or attached. The action taken depends on the
object being dragged and where it is dropped.

Recommended dq: You should provide a drag-and-drop (DND) method for all
objects represented as icons. Provide a DND method for all
elements that the user can directly manipulate.

Recommended dr: Any basic function that your application supports through
drag and drop is also supported through menus, buttons, or
dialog boxes.

Drag and drop is considered an accelerator to functionality
that is accessible through other user interface controls
supported within your application. There should be no basic
operation that is supported solely through drag and drop.

Drag-and-Drop Feedback
Visual feedback to the user is one of the critical elements for making drag and drop
work. Without clear visual feedback, it is difficult for the user to predict the results of a
drag-and-drop operation. Visual feedback must also be timely.

The user should be able to identify visually the following items during a
drag-and-drop operation:

� Type of item being dragged — The drag icon should show the user what type of
item is being dragged.

� Drop zone — The drop zone should visually indicate when the dragged item is
over the drop zone, and whether the drop zone is valid or invalid for that item.

� Resulting activity — The drag icon should visually indicate what action will take
place when the item is dropped.

� Success or failure — When the item is dropped, transition effects should indicate
the success or failure of the drop.

26 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Type of Item Being Dragged
The visual feedback for drag and drop is based on the concept that what you see is
what you drag. For example, if the user selects a folder icon in File Manager and starts
dragging it, the drag icon should show the folder icon as part of the drag icon, as
illustrated in Figure 3–1.

FIGURE 3–1 Drag icon showing the object being dragged

Required dt: During a drag operation, your application changes the
current pointer to a drag icon.

Recommended du: During a drag operation, your application changes the
current drag cursor to include a source indicator.

While this may seem like an obvious behavior, it is critical to give users feedback
showing exactly what they are dragging. Providing this kind of consistency makes
drag and drop more predictable to the user. Text drags are the exception in that the
actual text is not dragged. Figure 3–1 shows a text drag icon.

FIGURE 3–2 Example of a text drag icon

Applications are responsible for supplying a graphic to be used in the drag icon. This
graphic is usually one of the icons already supplied with the application, such as the
32x32 icons used in File Manager to represent documents. The graphic used depends
on what is being dragged.

In cases where the user does not select an icon to start a drag, it is still appropriate to
show a relevant graphic in the drag icon especially if that graphic will be used by the
destination application upon drop. For example, in Calendar Appointment Editor, the
user can select an appointment from the scrolling list, which does not show icons. An
appointment icon is used as part of the drag icon. If the appointment were dropped on
File Manager, File Manager would display the appointment using the same graphic.

Chapter 3 • Drag and Drop 27

Drop Zone
The user needs to know when the dragged item is over a valid drop zone. There are
two pieces to this feedback; the drag icon and the drop zone. The drag icon changes
from an arrow to a cannot pointer when the user moves the drag icon over anything
but a valid drop zone. This behavior is sometimes referred to as drag over feedback. On
the desktop, there is no differentiation between invalid drop zones and something that
is not ever a drop zone. Figure 3–3 shows a sample cannot pointer drag icon.

FIGURE 3–3 Example of a cannot pointer drag icon

The drop zone feedback options (referred to as drag under feedback) indicate valid drop
zones. The options include a solid line drawn around the site, a raised or lowered
surface with a beveled edge around the drop zone, or drawing a pixmap over the drop
zone. The beveled edge effect is used to make the drop zone look recessed. Figure 3–4
shows the recessed appearance. On the desktop, most drop zones use the recessed
appearance when a drag icon is over the drop zone to indicate it is a valid drop zone.

FIGURE 3–4 Example of drop zone feedback from the Front Panel.

Recommended dw: During a drag operation, your application changes the drop
zone feedback to indicate a valid drop zone.

Recommended dv: During a drag operation, your application changes the
current drag cursor to indicate invalid drop zones. It uses the
standard Common Desktop Environment cannot pointer.

Optional dz: Any cursor change or drag-over effect your application uses
occurs within .2 seconds of the mouse pointer reaching the
target area and does not interfere, in any noticeable way,
with the interactive performance of the drag operation.

28 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Resulting Activity
In the Common Desktop Environment, there are three operations that can be
associated with the drag icon. These operations are explained in “Parts of a Drag Icon”
on page 30. The drag icon has alternate graphics, supplied as part of the desktop,
used to indicate to the user when the operation is a copy or link. The default
operation, move, requires no alternate icon graphics.

Success or Failure
The user needs an indication that the drag-and-drop operation either succeeded or
failed. You should use transition effects to indicate the success or failure of the drop.

There are two kinds of transition effects: melt and snap back. The melt effect is used
when the user drops a drag icon on a valid drop zone. The effect looks like the drag
icon melts into the drop zone. The drag icon goes away and is replaced by whatever is
appropriate for the destination application. Dropping a drag icon on the Print
Manager control on the Front Panel may show nothing other than the melt in effect.
Dropping a drag icon on the File Manager control would show the melt in effect
followed by the icon appearing in File Manager.

The snap back effect is used when the drop fails. Drops can fail in two ways: because
the drop zone is invalid, or because the data transfer fails. If the user drops a drag icon
over an invalid drop zone, one that shows the cannot pointer drag icon, then the drag
icon snaps back to the source application.

Once a drop occurs, the source and destination applications have to transfer the data.
If the data transfer fails, there are two things that the destination application should
do. The first is to indicate to the API that the drop failed so that the dropped item will
get snapped back to the source application. The second is to put up an error notice to
the user that clearly indicates why the drop failed and what, if anything, the user can
do to correct the situation.

Sometimes the transition effect does not take place immediately. The icon appears
where it is placed until the transfer is done. During this time, applications should set
the cursor to the busy state. The icon cannot be moved or selected by the user until the
transfer is complete; the busy cursor tells the user the transfer is in process.

Recommended ea: In a collection that supports copy, move, or link operations
that can be performed by dragging, the feedback presented
to the user during the drag operation indicates whether a
single object or multiple objects are being manipulated.

Chapter 3 • Drag and Drop 29

Required eb: After a successful transfer, the data is placed in the drop
zone, and any transfer icon used by your application is
removed.

Required ec: If your application removes data upon the completion of a
drag and drop, it does so only if the drag-and-drop transfer
has completed successfully.

Required ed: After a failed transfer, the data remains at the drag source
and is not placed in the drop zone. Any transfer icon used by
your application is removed.

Recommended ee: If the user drops an object at an inappropriate drop zone
within your application’s window, your application
participates in the display of a snap back effect and also posts
an error dialog box indicating the reason the drop was
disallowed.

Required 6-17: If your application provides any drag-and-drop help dialog
boxes, they contain a Cancel button for canceling the
drag-and-drop operation in progress.

Parts of a Drag Icon
The drag icon is composed of three parts, as shown in Figure 3-5. Starting from the
left, the drag icon is composed of the state indicator plus the operation indicator plus
the source indicator (here shown as a folder icon). On the right is the composited drag
icon.

FIGURE 3–5 Example drag icon showing the three parts

State Indicator
The state indicator is really a pointer for positioning combined with a valid or invalid
drop zone indicator. The valid state indicator should resemble an arrow pointer with a
hot spot so users can position the cursor in a predictable manner. The invalid state
indicator, a cannot pointer (illustrated in Figure 3–3), appears when users are over an
invalid drop zone.

30 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Operation Indicator
The second part of the drag icon is the operation indicator. A drag operation can be a
move, copy or link.

move The item being dragged is moved to the destination.

copy The item is copied to the destination.

link A connection is retained between the destination and the source. This
operation is defined to some extent by the application and is not commonly
used.

See “Actions” on page 35to see how move, copy, and link map to user actions.

The operation indicator gives the user feedback on what operation is occurring during
the drag. Figure 3–6shows the copy and link feedback. Because most drags are move
operations, an operation indicator is added to the drag icon only for copy or link
operations.

FIGURE 3–6 Examples of copy (left) and link operation indicators

Note – Operation feedback is drawn on top of the state and source feedback. This is
basic Motif behavior.

The user can force a drag to be a move, copy or link by pressing certain keys during a
drag (Shift = move, Control = copy, and Shift+Control = link).

The source application can also force a copy. When the user forces an operation, the
drop zone should match that operation for the drop to succeed; otherwise the drop
zone should indicate the operation is invalid.

Required 4-36: If the move, copy, or link operation the user requests is not
available, the transfer operation fails.

Required 4-55: In a collection that supports selection, Shift+BTransfer
Release or Shift+BSelect Release forces a drag move
operation. If a move is not possible, the operation fails.

Chapter 3 • Drag and Drop 31

Required 4-56: In a collection that supports selection, Control+BTransfer
Release or Shift+BSelect Release forces a drag copy
operation. If a copy is not possible, the operation fails.

Required 4-57: In a collection that supports selection,
Control+Shift+BTransfer Release or Shift+BSelect Release
forces a drag link operation. If a link is not possible, the
operation fails.

Recommended s: In a collection that supports selection, if BTransfer Motion (or
BSelect Motion) results in the start of a drag operation,
feedback is presented to the user that indicates that a copy,
move, or link operation is in progress. Whether the operation
is a copy, move, or link depends on the type of object created
at the drop zone and whether the source object is removed.

Recommended t: In a collection that supports selection, if Control+BTransfer
Motion or Control+BSelect Motion results in the start of a
drag operation, feedback is presented to the user that
indicates that a copy operation is in progress.

Recommended u: In a collection that supports selection, if
Control+Shift+BTransfer Motion or Control+Shift+BSelect
Motion results in the start of a drag operation, feedback is
presented to the user that indicates that a link operation is in
progress.

Source Indicator
The source indicator is a representation of the selection (or the thing being dragged). It
comes in several versions depending upon whether the selection represents single or
multiple items and what kind of thing the selection is representing. Table 3–1 shows
examples of drag icons.

Note – Since the drag icons are dynamically composited as cursors, screen shots
cannot be taken; therefore, Table 3–1is an approximation of what is seen on the screen
and may not be completely accurate.

The hot spot is located on the top left corner (1,1) for the text drag icons. The hot spot
for the single and multiple drag icons is located at the top left pixel of the invalid icon
(3,3). Each drag icon has been tuned to increase user accuracy at targeting and
positioning.

32 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

TABLE 3–1 The possible drag icons shown with generic source indicators.

Operation Text Selection Single Selection Multiple Selection

Valid Move

Valid Copy

Valid Link

Chapter 3 • Drag and Drop 33

TABLE 3–1 The possible drag icons shown with generic source indicators. (Continued)
Operation Text Selection Single Selection Multiple Selection

Invalid Move

None

Invalid Copy

Invalid Link

34 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Drag-and-Drop Mechanics
There are several areas of the underlying application architecture that are useful to
understand when designing drag and drop.

� What type of object is being dragged.
� What action takes place when the object is dropped.
� How to match operations between source and destination applications.

Types
In the Common Desktop Environment, there are three types of dragable objects: files,
buffers, and text selections.

Each application has its own objects that can be dragged and dropped. For example,
Calendar uses appointments, Mailer uses mail messages, and File Manager uses
folders and files. The folder and file icons in File Manager exist as separate entities in
the underlying file system and are, therefore, treated as files when dragged and
dropped. However, Calendar appointments and Mailer messages do not exist as
separate entities in the file system. When these objects get dragged they are treated as
buffers.

This difference can lead to some conflicts for the user. The user sees both of these types
of objects as the same — both can appear as icons and both can be manipulated
separately from other similar objects. Yet, due to the implementation, the user may see
different results from a drag-and-drop operation based on which type of object is
being manipulated.

Text selections fall into a different category because selecting a piece of text is very
different to the user than selecting an icon. The user selects a range of text in a
document window; the text does not represent the whole document, it only represents
a piece of a document. Rarely does a user see the piece of text as a distinct object and
the user does not expect a piece of text to behave like an icon when dropped. For this
reason, the drag-and-drop model for text mirrors the cut, copy, and paste operations
available from the Edit menu.

Actions
There are two actions that can take place when an object is dropped: insert or load.

The insert action inserts the dropped object into the destination, adding it to the
current data in the application or document. The object is inserted when a user
schedules an appointment, prints a document, attaches a document, pastes text, or

Chapter 3 • Drag and Drop 35

appends a mail message. Such an action is a move or copy operation depending on the
destination and the user. The user might decide to copy a piece of selected text, as
opposed to moving it. The drag icon should indicate whether the operation is a copy
or move.

The load action operates the same as if the user had chosen Open from the File menu,
selected a file, and clicked the Open button. The dropped object gets loaded into the
application. The user can edit it and save changes back to the original file. Load only
works with files at this time, not with buffers or text. The user should see the copy
drag icon when dragging an object over a drop zone that supports the load action.

Load does work with buffers; however, buffers are loaded as read-only. See the section
on “Attachment User Model” on page 47for more details.

Matching Operations
When designing how drag and drop works in an application, you must understand
how Motif figures out what operation gets done when the source and destination of a
drag and drop don’t match.

For each drag source, an application advertises which drag-and-drop operations are
possible and on what destinations it can be dropped. For each drag destination, the
application advertises the possible sources and the types of operations. If a source and
its destination have two or more operations in common, Motif follows a specific order
to determine which operation to use. That order is move, copy, link. The application
cannot change the operation that is accepted based on the type of thing being dragged.

For example, application A might advertise that an element can be moved or copied.
Application B advertises that the destination accepts copy or link. The intersection in
this example is copy. If the destination in application B accepts move or copy, then the
source is moved because the move operation comes first in the operation order.

In this example, the user could override the move operation by holding down a
modifier key, for example the Control key to make the operation a copy. This will
work if the copy operation is in the common set of operations. If the copy operation is
not in the common set, then the drag becomes an invalid drag.

The only time matching operations may be a consideration is when you have a
destination that could accept moves but prefers copies. In that case, the destination is
better off only accepting copies.

It is wise to always accept copy. Accepting copy broadens the scope of acceptable
drops. In most cases where a move is accepted, a copy would work just as well.
Remember, move is implemented as a copy followed by a delete.

36 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Determining Drag Sources
When you decide to use drag and drop in an application, you must decide what
control elements can be dragged and how that element is to be represented. Typically,
the user selects something like text or a file to drag, but the application may have
other elements for which drag and drop may make sense, such as mail messages or
appointments.

This section provides general guidelines for determining drag sources and then talks
about specific elements that can be dragged.

Note – Drags are only sourced from human interface elements that have selectable
components or items. Drags cannot be sourced from static labels like those on buttons
or menus.

Before you decide on a drag source from your application, you must consider how the
drag is to be integrated into the selection mechanism of your application. The user
must be able to select or drag without any confusion as to the result of that action.

Required 4-58 When a drag move operation moves a selection within the
same component, the selection moves along with the
elements selected.

In other words, when selected elements are moved with a
drag operation, they should stay selected after the move.

Required 4-59 In text-like collections, initiating a drag within a selected
region drags the entire text selection.

Required 4-60 In list-like and graphics-like collections, initiating a drag
with either BSelect or BTransfer on a selected element drags
the entire selection.

Required 4-61 In list-like and graphics-like collections, initiating a drag
with BTransfer or BSelect on an unselected element drags just
that element and leaves the selection unaffected.

Required 4-62 When a drag is initiated in an unselected region and the
pointer is over two possible dragable elements, the drag uses
the dragable element highest in the stacking order.

Chapter 3 • Drag and Drop 37

Required 4-67 When BTransfer (or BSelect) is released, the drop operation
ordinarily occurs at the location of the hot spot of the drag
icon pointer and into the highest drop zone in the stacking
order. However, if a drop occurs within a selection and
pending delete is enabled, the transferred data replaces the
contents of the entire selection.

Scrolling Lists
In the Common Desktop Environment, items in a scrolling list are text objects by
default. They can be buffer objects, but they cannot be both text and buffers. For
example, the Calendar Appointment Editor has a scrolling list of appointments that
the user can select and drag. When the user drags an appointment, they are
manipulating a buffer and the drag icon shows an appointment icon as the source
indicator, as shown in Figure 3–7. A Mailer container window has a list of mail
messages in the upper portion of the window. Users can select and drag one or more
messages from this list. These messages are actually buffers and the drag icon shows a
mail message as the source indicator. If multiple mail messages are dragged, then the
drag icon shows the multiple source indicator.

FIGURE 3–7 Example of a scrolling list with an item selected for dragging

If your application uses a scrolling list to show mail message headers or list other
kinds of objects, then you need to integrate dragging with extended selection. this
behavior can be seen in the Mailer application.

38 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Required k: In a collection that uses range selection, pressing BSelect on
an unselected element sets an anchor on the element, or at
the position where BSelect was pressed, and deselects all
elements in the collection. If BSelect is released before the
drag threshold has been exceeded, then the element under
the pointer should be selected. If BSelect Motion exceeds the
drag threshold, then a new selection should begin. The
anchor and the current position of the pointer determine the
current range. As BSelect is dragged through the collection,
the current range is highlighted. When BSelect is released,
the anchor does not move, and all the elements within the
current range are selected.

Required l: In a collection that uses range selection, pressing BSelect on
an currently selected element should not cause all other
elements in the selection set to be deselected. If BSelect is
released before the drag threshold is exceeded, then, at that
point, all other elements should be deselected and the
element under the pointer should remain selected. If BSelect
Motion exceeds the drag threshold, then no element should
be deselected and a drag operation should begin.

Dialog Boxes
Sometimes an application needs to be able to drag from inside a dialog box. For
example, in the Calendar Appointment Editor, there are a series of text fields on the
left side where the user enters information about an appointment. Allowing drags
from this area lets the user drag text from the appointment description.

FIGURE 3–8 Example Calendar Appointment Editor dialog box

Chapter 3 • Drag and Drop 39

The recommended method for indicating that something can be dragged is to include
an icon graphic in the dialog box. The icon graphic should be dragable. This icon
graphic must be the same icon used to represent the data in File Manager. In Calendar,
the appointment icon is shown just as it would appear in File Manager (see Figure
3–8), with a label under it. This is the same icon used in the drag icon source indicator.

Place the icon graphic in the dialog box adjacent to the information to be dragged. The
upper right corner of the dialog box or window is the default position, but it can be
changed depending on the application. In Calendar Appointment Editor, the icon is
placed near the main text field to indicate that you can drag the text fields.

Recommended ds: Use an icon graphic in a dialog box or window to indicate
that objects within the dialog box or window can be dragged.
Use the same icon graphic used to represent the dragable
object in File Manager. Place the icon adjacent to any display
of the contents of the object, if such display exists. If there is
no such display, place the icon in the upper right corner of
the dialog box or window, unless a more suitable placement
is determined. The icon should be 32x32 in size and have a
label under it. The label should indicate what kind of object
the icon graphic represents. The icon graphic should also be
used as the source indicator in the drag icon.

Windows
In some applications, you may want to allow the user to drag the entire document or
file. For example, in Icon Editor, it might make sense to allow the user to drag the file
for the icon currently in the editor. The application should indicate to the user that the
document or file can be dragged by incorporating an icon graphic in the window of
the application. The icon graphic should be dragable. In the case of Icon Editor, one of
the icons used for displaying the contents of the icon file could be used for the drag.
The icon should follow the guidelines for an icon used in dialog boxes; that is, it
should be the same icon used to represent the document in File Manager, be 32x32
pixels, have a label, be placed adjacent to the data being dragged, and be used as the
source indicator in the drag icon.

Dragging and Dropping a Multiple
Selection
When the user selects more than one item to be dragged, the drag icon should change
to indicate there is more than one item selected.

40 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Some drop zones may be able to accept only a single item. It is not possible for a drop
zone to differentiate between a single and a multiple set of items being dropped. The
drop icon does not display the cannot pointer; instead the items should melt in and
then be snapped back by the destination application. The snap back should be
followed by an error notice that tells the user why the drop failed.

Recommended ef: Applications that accept only single items should reject all
multiple-item drops.

There is no consistent method to determine which of the
selected items the user really wants to drop.

Standard Supported Drop Zones
The standard supported drop zones in the Common Desktop Environment are Front
Panel controls, open windows, and folder, action, and certain other icons in File
Manager. Dropping on minimized icons and on File Manager icons that do not
support drops are not supported in the Common Desktop Environment.

The Front Panel
The Front Panel is a collection of controls and other functions put together for easier
and faster access for users. As a consequence, its drag and drop behaviors are heavily
dependent upon the context of the destination. For example, if the destination is a
printer, then print it. If the destination is a subpanel, then install it. Most applications
will not vary in behavior quite as broadly as the Front Panel.

File Manager
File Manager for the Common Desktop Environment allows users to drop icons on the
desktop. The icon on the desktop becomes a reference. The creation of the reference
and resulting behaviors are not consistent with the future user model for the Common
Desktop Environment. Until the user model and architecture are further specified,
developers are not encouraged to do any drops onto the desktop or to copy the File
Manager behavior.

Within File Manager windows, File Manager allows dropping onto icons other than
folders and action icons for the Common Desktop Environment 1.0. For example,
dropping a mail message icon onto a mail container icon appends the mail message.

Chapter 3 • Drag and Drop 41

When mail messages or calendar appointments, or other buffers are dragged from the
source application and dropped onto File Manager, they must be named. The
underlying API supports a name field for the item being dragged. This name should
be used as the name of the buffer. The name should be determined in a manner
consistent with the application from where it came. If there is no appropriate name, as
in dropping a text selection in File Manager, File Manager should name the resulting
file “unnamed”. If there is a name conflict, File Manager should put up a dialog box
and ask the user to rename the dropped file.

No Drop-Only Targets
The Common Desktop Environment does not support the concept of a specific control
or graphical target used only for drops. Any control in the human interface that has
selectable items can be dropped upon and should provide drop zone feedback. This
includes data panes, scrolling lists, and text entry fields. The operation that takes place
upon the drop should be consistent with the users expectations for that application
type.

Mouse Button Usage
In the Common Desktop Environment, the user can modify mouse mappings to
accommodate different working styles. BSelect has been modified to support drag and
drop in addition to BTransfer, which has been used historically for Transfer operations
in Motif.

Users can set up their systems to use Bselect or BTransfer to perform drag and drops,
or use BSelect only. Consider this when you design your application. Check how the
user has set the mouse button mappings and use those mappings.

Required p: Your application supports the use of mouse button 1 to
perform drag-and-drop operations.

In Motif 1.2, drag and drop is typically performed using
button 2 on a three-button mouse (BTransfer). However, in
the Common Desktop Environment environment, mouse
button 1 (BSelect) should be supported for drag and drop to
support mouse usage compatible with other graphical user
interface (GUI) environments. A drag can be initiated with
either mouse button 1 or mouse button 2.

42 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Required q: When button 2 of a three-button mouse is configured to
operate as BAdjust, your application does not perform any
BTransfer operations when clicking mouse button 2.

On a three-button mouse, button 2 is typically used for the
BTransfer function. However, in a CDE environment, the
user may change an environment setting indicating that
mouse button 2 should be used for the BAdjust function
instead. BAdjust can be used to extend the selection set in the
same manner as Shift+BSelect.

Required r: BSelect should always initiate a drag if the drag is started on
a selected item. The drag starts once the drag threshold has
been reached. This is true for text regions, scrolling lists, and
other similar elements.

Placement Upon Drop
From the user’s point of view, the placement of the dropped item is dependent on the
task the user is doing and the application or context the task is in.

In File Manager, if the default is set to As Placed, then icons are placed where they are
dropped. If the default is set to Sorted Grid, then a dropped icon is automatically
sorted and then placed, which means it may not be placed where the user drops it.

In some cases, where the dropped item gets placed is not a criteria. For example, Front
Panel controls require only that the dragged item be over the control to activate the
drop zone.

In the Compose window in Mailer, the placement depends on what is being dropped.
If the user is dragging a piece of text, then the text is inserted at the drop point. From
user testing, this is what users expect. If the user drops an icon, a file, or a buffer, then
the contents are included at the insertion point. This mirrors the behavior the user gets
when the user selects a file from the Include File Selection Box.

You should determine appropriate behavior for your application based on what type
of tasks the user is doing.

Chapter 3 • Drag and Drop 43

Required 4-37 If a collection does not have a fixed insertion point or keep
elements ordered in a specific way, the insertion position for
transferred data is determined as follows:
� For BTransfer-based (or BSelect) primary and drag

transfer operations, excepted as noted below for text
collections, the insertion position is the position at which
the user releases BTransfer (or BSelect).

� In a text-like collection, when the user drops selected
text, the insertion position is the position at which the
user releases BTransfer (or Bselect). When the user drops
an icon, the insertion position is the text cursor and the
data is pasted before it.

� In a list-like collection, the insertion position for other
transfer operations is the element with the location
cursor, and the data is pasted before it.

� The insertion position is the position in the destination
where transferred data is placed. Some mouse-based
transfer operations place data at the pointer position if
possible. Other operations, including keyboard-based
transfer, generally place the data at the location cursor.

Ending a Drag
The following two items allow users to stop a drag operation without any data loss or
other negative result.

Required dx: Pressing Cancel ends a drag-and-drop operation by
canceling the drag in progress.

Required dy: Releasing BTransfer (or BSelect) when not over a drop target
ends a drag-and-drop operation.

Performance Guidelines
There are several points during a drag-and-drop operation that the timing and
response to the user is critical. The responsibility for ensuring optimal performance
belongs to the source and destination applications, as well as the Motif Drag-and-Drop
API and Drag-and-Drop Convenience API.

44 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

The following time line explains the individual user steps and system responses in a
drag-and-drop operation. The suggested guideline for interaction timing is noted after
the relevant step.

1. The user makes a selection. The pointer is over the selected object. The user presses
and holds down the mouse button.

2. The user starts to move the pointer. The user should be able to move the pointer 10
pixels before a drag is initiated. If the user is pressing BTransfer, there is no drag
threshold.

The pointer changes to a drag icon when the drag is initiated.
Movement Latency: The latency from hand movement to drag icon display should be
less than 50 ms with a maximum limit of 70 ms.

3. The user drags over a drop zone, crossing the boundary line with the hot spot on
the drag icon.

The drag icon changes to the cannot pointer if it is not over a valid drop zone. The
drop zone becomes highlighted if it is a valid drop zone.
Movement Latency: The latency from hand movement to drag icon display should be
less than 50 msec. with a maximum limit of 70 msec.

4. The user drops the drag icon on the drop zone.

If the drop zone is not valid, the drag icon is snapped back to the source using the
snap back transition effect.
If the drop zone is valid, the drag icon is melted into the destination using the melt in
transition effect.
Echo Latency: The display latency from mouse button release to feedback echo should
be less than 50 msec. with a maximum limit of 120 msec.
Snappy Transitions: Transitional animations should run from 200 to 350 msec. with a
maximum limit of 500 msec. The animation should run at the same speed regardless of
hardware conditions.

5. The destination application starts the data transfer.

A message is displayed to the user indicating data transfer has started.
Progress is indicated by further messages.
The completion of the data transfer is indicated to the user.
If the data transfer fails, it is up to the destination application to provide the user with
appropriate feedback as to why it failed.
Command Latency: The latency from command invocation (drop occurred) to
completion should be in the range of 0.3 to 1 second with a maximum of 2 seconds.
Busy Feedback: When a command may run longer than 2 seconds, display a busy
cursor whenever the cursor is over the busy object. When possible, display partial
results. The progress indicator or busy cursor should be displayed in less than 0.5
second.

Chapter 3 • Drag and Drop 45

Progress Indicators: A status message or an In Progress *messagebox* should be
displayed upon completion of the transitional animation indicating the data transfer is
taking place. For example: Data transfer is 10% complete. This message can
then be updated every 2 to 3 seconds until the transfer is 100% complete.
Notice: If the data transfer fails, a message should appear, either in the status area or in
an In Progress *messagebox*, indicating why the drop failed and what the user can do
about it, if anything.

Using Attachments in Your Application
This section discusses the user model and guidelines for attaching documents to
documents in the Common Desktop Environment 1.0. This functionality can be seen in
the Mailer software application. If you plan to include an attachment list in the
interface of your application, then you should read this section.

Note – This set of guidelines is not a description of an embedded document
architecture.

For the Common Desktop Environment, attachment and attachment list are defined as
follows:

attachment Suppose you had two documents called A and B. If a document, A,
is attached to another document, B, then A continues to exist as a
separate document that is “carried” by B. A is shown as an icon
within B. A can be opened and viewed independently and can be
detached from B at a later time, as if never attached at all.

attachment list The area in which attachments are displayed. Should be scrollable
and include room for showing icon labels.

Note – Users do not think of a document that has several attached documents as a
container. Containers are an implementation concept that should not appear in the
attachments human interface. For that purpose, the term container should not be used
to describe attachments to the user. (It may be an appropriate term elsewhere.)

46 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Attachment User Model
Attachments are shown as icons where they are attached. These icons are the same
icons as those used in File Manager and other places in the Common Desktop
Environment. The basic rule of behavior is that if the same icon is used in File
Manager as in an attachment, then every effort should be made to make the two
behave the same in every situation.

There are three levels of functionality for attached documents:

1. Ability to attach and detach documents

2. Ability to open, view, and quit an attached document in a separate window

3. Ability to edit the attachment in a separate window and save changes back to the
attached document

The goal is to provide Level 3 functionality whenever possible. If an attachment
cannot provide this level, then it should degrade its level of functionality in the steps
shown. This section is written assuming Level 3 functionality.

If a document provides significantly different functionality as an attachment from that
provided as a File Manager icon, then provide a different icon for the attachment to
clearly indicate to the user the difference in functionality.

Attachment Functionality
To incorporate attachments into an application, several issues should be considered.

What Can Be Attached?
You should determine for each application what items it can attach. For example,
Mailer can attach documents, scripts, and applications, but not folders.

What is the Method for Attaching?
There are two methods of attachment, through the file selection dialog box that comes
up when you choose Add File from the Attachment menu, and through drag and drop
from File Manager or another application.

Recommended eh: Drag and drop should not be the only method for attaching
objects.

Chapter 3 • Drag and Drop 47

Recommended el: When the user chooses something to attach from the file
selection dialog box that is not an attachable item, then the
user receives an error message explaining why the chosen
item cannot be attached. For example:

The folder “My.Stuff” cannot be attached because it is a
folder. Only documents, applications, and scripts can be
attached.

Recommended ej: When the user attempts to drop something into the
attachment list that is not attachable, then the drop fails and
the item is snapped back to its source.

What Happens When Something Is Attached?
The act of attaching document A to document B copies the bits of document A into
document B. There is no further connection with the original file. If the user opens the
attached document and makes changes, the changes are saved back to the attached
document only, not back to a file in the file system.

Attachments in Attachments
Users can attach messages or text files that have attachments inside them. This is
sometimes referred to as “nesting”. The user reading the text file would perhaps see a
mail message icon that the user could then open, which may have a text message and
more attachments.

Editing and Saving Attachments
The user should be able to open an attachment, edit it, and save the changes back to
the attachment. If the attachment does not have the ability to do this, then the Open
action should not appear in the Actions portion of the menu when that attachment is
selected and double-clicking should not open the attachment.

Recommended ei: Double-clicking is a shortcut for selecting the attachment and
choosing the Open menu item for attachments and should
never be the only way to access attachments.

Recommended ek: When the user has one or more attachments open for editing
and attempts to do any operation that would result in
potentially losing the user’s edits, the user should be clearly
warned and given the opportunity to save changes.

48 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Executing Attachments
If the user tries to open or double-click on an executable attachment, then there may
be times when the user should be asked to confirm this operation. Both the name of
the attachment and the name of the action being taken on the attachment should be
variables. An example error message follows:

“Invitation” is an executable attachment. Do you want to Run it?

Buttons: Run, Cancel, Help

Read-Only Attachments
Read-only attachments can be opened for reading only. This state should be indicated
to the user by inactivating the menus in the attachment application, inactivating the
selection cursor, or some other obvious method. At a minimum, the Save menu item in
the attachment application should be dimmed.

Drag Load and Attachments
Drag load can be accomplished in two ways. In applications that directly support drag
load, users can drag an icon, from File Manager, over the open window for that
application and drop it which loads the file represented by that icon. The same result
can be accomplished by dropping an icon onto an action icon. The action starts an
editor, which then loads the file represented by the icon. When an icon from File
Manager is drag loaded, it is equivalent to choosing Open from the File menu. The
open file can be edited and saved.

In the case of attachments, users can drag and drop an attachment onto editors or
actions that support drag load but any edits made are not saved back to the
attachment. Attachments, which are implemented as buffers, are loaded as read only
data.

When the user tries to save changes to a loaded attachment, the editor displays a file
selection dialog box and asks the user to confirm the name and to choose a place in the
file system to save the file. The name used in the file selection dialog box is the same
as the attachment name. If the editor (command line application) cannot bring up a
file selection dialog box, then it should clearly and visibly indicate to the user that the
loaded file is read-only.

If the user wants to edit the attachment directly, the user must select the attachment in
the attachment list, choose Open from the Attachment menu or double-click on the
attachment. This opens the attachment in a manner that allows for editing and saving
changes.

Another option is to drag load an attachment, edit it, save it to a new file name, and
replace the old attachment with the new one manually.

Chapter 3 • Drag and Drop 49

Attachment Menu Contents

Recommended bw: If your application uses an attachment menu, it contains the
following choices, with the specified functionality, when the
actions are actually supported by your application.

Recommended Add
File...

Selects files and other items to be attached. A file selection
box is displayed allowing the user to select the desired files
to attach. The default button in the file selection box is
Attach.

Recommended Save As... Saves the currently selected attachments. The user is
prompted with a file selection dialog box for indicating
where in the file system the attachments are to be saved.
When multiple attachments are selected, the name field is
inactive and the current names of the attachments are used
as the name of the new file. This menu item is active only
when one or more attachments are selected.

Recommended Rename... Renames the attachment icon. The application should
provide in-line renaming of attachment icons, such as File
Manager uses. If the application cannot provide in-line
renaming, then Rename allows the user to rename an
attachment by displaying a dialog box, requesting the name
from the user. This menu item is active only when a single
attachment is selected. It is not active when multiple
attachments are selected.

Recommended Delete Deletes attachments from the attachment list. This menu item
is active only when an attachment is selected.

Recommended Select All Selects all the attachments in the attachment list.

50 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

CHAPTER 4

Visual Design

The Common Desktop Environment is a visually rich environment. This chapter
provides information on designing icons and other visuals consistent with the desktop
style. It discusses some of the design philosophy behind the desktop, and some useful
hints to help you successfully create icons in the desktop.

Icons are graphics that represent the objects (that is, applications, files, and devices)
present in a graphical user interface (GUI). Fitting your application into the desktop
means designing icons to represent your application and the data files it creates. These
icons should be created in several sizes and color depths.

This chapter discusses the desktop components where icons are used, the
requirements of the environment, and discusses the design process. A series of
examples have been provided that may parallel your own implementation situation.

Color Philosophy
In most other GUIs, the color is applied in a localized and specific sense, either in
individual icons or specific control areas, such as window borders or title bars. In the
desktop, color is pervasive, as virtually everything is drawn with colors, with a
notable absence of black lines.

Most of the icons in this environment use color sparingly, preferring grays instead.
This limited use of colors keeps the number of colors used from the palette in the
desktop to a minimum and works well visually. Because the icons, being largely
colorless, always appear in the context of colored backgrounds, they stand out more.

51

What Is an Icon?
An icon can be defined as a specific graphical element, one that can be moved, copied,
deleted, opened, and so on, usually through direct manipulation.

Numerous graphical elements in the desktop are not manipulable and, therefore, not
technically icons, but may still be needed in your application. This book discusses the
entire range of graphical elements you may need to provide.

FIGURE 4–1 Screen shot of the desktop environment

Icons can serve to:

� Identify data and application objects
� Facilitate direct manipulation of objects
� Indicate an object’s state (selected, and others)
� Convey a recognizable product identity
� Show the relationships between the objects of a product

52 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

All of these purposes for an icon serve as guidelines for designing icons. The visual
designer has more responsibility for some of these requirements than for others. For
example, the direct manipulation of objects and the indication of an object’s state and
location are done by the desktop system, while identifying and conveying product
identity and object relationships fall mainly under the responsibility of the visual
designer.

Recommend ey: Icons should be used to represent only objects and applications.

Icons provide a visual representation for objects and facilitate
direct manipulation. If icons are used for other purposes (for
example, as illustrations) where the user can’t drag them, select
them, and so on, it creates a confusing inconsistency.>

Applying a set of design guidelines, like the ones here, should be considered during
icon design. A new product on the user’s desktop means adding a new set of icons to
the ones already present. Conforming to these guidelines ensures the new icons do not
clash with the user’s expectations.

Icon-Centric Components

File Manager
File Manager is the tool that provides for the presentation and organization of the
user’s file structure. The basic types of iconic objects displayed in File Manager are
files, directories (folders), executables and actions. In this chapter, these objects are
referred to as documents, folders, and applications. File Manager displays the icons in
two sizes, called Icon and Small Icon views in the Set View Properties dialog box. Icon
is size 32x32 and Small Icon is size 16x16.

Chapter 4 • Visual Design 53

FIGURE 4–2 Collection of icons at sizes 32x32 and 16x16 as used in File Manager

Documents, folders, and applications are represented by three different shapes.
Documents are vertical rectangles meant to look like pieces of paper. Folders are
horizontal rectangles with a tab to look like a file folder. Applications can be any shape
and use the entire icon square. All objects in File Manager should indicate to the user
that they can be manipulated, that is, dragged and dropped.

Application Manager
This window is similar to File Manager, but its focus is on holding applications rather
than documents. All network-accessible applications in the desktop are placed here in
containers, called application groups, rather than folders.

Application Manager is like a “network store.” This is the place users go to find the
latest applications available on their system.

FIGURE 4–3 Examples of application group icons from Application Manager

54 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Application group icons, as illustrated in Figure 4–3, are like folders in that they
represent a collection of objects, in this case related objects. If your application requires
support files or comes with sample files, for example, you can design your own
application group icon that represents where a user can get the related files for your
application.

Front Panel and Subpanels
The Front Panel is the “control” panel for the desktop and usually appears at the
bottom of the screen. Front Panel icons provide quick access to the user’s most
commonly used applications.

FIGURE 4–4 Partial screen shot of Front Panel with the Personal Applications subpanel open

The Front Panel also has subpanels of icons that can be accessed through the arrow
buttons on the Front Panel. The concept of the subpanel is that it is an extension of
that Front Panel icon. For example, Figure 3-4 shows the Personal Applications
subpanel open. Users can add applications to this subpanel by dropping them on the
Install drop site. Users can choose to promote icons in the subpanel to the Front Panel
via the pop-up menu.

Chapter 4 • Visual Design 55

Minimized Window Icons
Minimized window icons appear on the desktop when a window is minimized. The
icon should represent the application that controls the minimized window (see Figure
4–5). These icons are different from the icons used in the Front Panel in that they
represent running applications, although they are the same size.

FIGURE 4–5 Minimized window icons for Terminal, Text Editor, Calendar, and File Manager

Other Graphics
The dominant elements in this category include button graphics, tool bar graphics (see
figure below), and graphics used as labels. A tool palette in a paint program is one
example. A document orientation button (landscape or portrait) in a printer dialog box
is another. These are graphics that you create for use in your application and are not
used elsewhere.

FIGURE 4–6 Example of a tool bar used in the Calendar application

Color Usage in Icons
When designing icons for a desktop application, you must be aware of the available
color palette and the dynamic mapping of colors.

Icon Color Palette
The icons in the desktop use a palette of 22 colors:

� Eight static grays
� Eight static colors: white, black, red, blue, green, cyan, magenta, and yellow

56 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

� Five dynamic colors: Foreground, Background, TopShadow, BottomShadow, and
Select

� A transparent “color” which allows the background to show through

These colors are the default colors in the Icon Editor, which is the recommended tool
for creating desktop icons (see Figure 4–7). This set of colors provides a reasonable
palette with which to create icons. This limited palette was chosen to maximize the
attractiveness and readability of icons without using an unnecessary number of colors.

If you use colors other than the ones listed here, then your icons may experience color
flashing effects that can make the icon unreadable. The best way to ensure
predictability of appearance of your icons is to use only the 22 colors in the desktop
palette.

Recommended ez: Icons should use only the palette of 22 colors.

FIGURE 4–7 Icon Editor, showing the 22 Common Desktop Environment colors available for
icons

Dynamic Colors
It is important to understand the limited role of the dynamic colors. These represent
the colors used to display the user interface elements on which your icon appears. If
your icon appears in File Manager, File Manager determines what the background
color is. If the user changes the color palette in Style Manager, the colors in the user
interface change to match, and the background color the icons are displayed on
changes.

Chapter 4 • Visual Design 57

In general, these colors have little use in most icons. There are two ways they are used:

� If your icon does not fill the entire bounding box, then fill the unused area with the
transparent color.

� You can draw a shadow under your icon. This is only recommended for
Front-Panel-style icons. Do not use this for File Manager icons. See “Optional Front
Panel Icon Style” on page 67for more detail.

FIGURE 4–8 Example of dynamic color shadows

Design Philosophy and Helpful Hints
The visual designer must approach the design of icons both individually and globally.
Each icon should be individually designed according to the metaphor for that object.
Pay careful attention to the visual effect produced by the entire set of icons for an
application; they should work together as a family of icons.

Icon design is an iterative process. It is useful to save as many of the iterations as
possible whether they are done on paper or computer. When icons are tested with
users, it helps to have a varied set of choices to work with.

The philosophy behind the graphic language of the desktop is that users benefit if the
computer world more closely resembles the real world. This extends from the
three-dimensional appearance of windows and controls, such as push buttons and
menu bars, to the general appearance of icons.

Your application icon can range from a logo to an object like the paint bucket in Figure
4–12. An icon that looks “real” looks more like something that can be dragged and
dropped and manipulated in other ways.

Designing with Color
Your icon should primarily use the eight static grays with the eight static colors used
mostly as accents. The eight static colors are very strong and can easily be overused.
Using mostly the static grays allows icons to blend gracefully with the already colorful

58 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

desktop environment. The static colors can be dithered with the static grays to tone the
colors down for coverage of larger areas. The grays can also be used to smooth the
edges of icons, this is sometimes referred to as “anti-aliasing”.

It is recommended not to use the dynamic colors in File Manager icons, because the
appearance of the icon will change when the user changes color palettes. Such a
change could be inappropriate as well as unpredictably ugly.

Icon Styles
Icons run the gamut of graphical styles. From the earliest GUI days, the favorite has
been a simple black outline style. As color has been added, the style has been that of
coloring books, adding color within the black lines. This is a natural drawing style,
especially when done on white backgrounds. Many icons are pictographic, while
others are abstract.

FIGURE 4–9 Calendar icon in black and white outline style on left and the desktop gray style
on right

The desktop, with its pervasive use of colored and medium-value backgrounds, uses
both lighter and darker shades to create fairly realistic images. You are encouraged to
explore this rendered style.

FIGURE 4–10 Examples of three-dimensional icons in the desktop

Another element of style is the point of view taken in portraying the object. The
Common Desktop Environment uses a head on view, as can be seen in Figure 4-10,
usually from slightly above if the object in question is a three-dimensional one, such as
a printer. It is best to use a treatment that gives the icon a slight dimensional quality, as
this reinforces the perception that the icon can be dragged and dropped.

Chapter 4 • Visual Design 59

FIGURE 4–11 Outline style converted to Common Desktop Environment style, in XPM and
XBM formats

Designing Your Application Icon
The application icon is the most important icon for you to design. This is the place for
your product identity, as well as a clear indication to the user of what your application
does. The application icon is what the user opens to run your application.

There are no shape conventions for application icons. They can fill the entire icon
bounding box or they can be irregular in shape. It is recommended that your icon
have a three-dimensional style to it. The icons shown in Figure 4–12 are application
icons used in the desktop that you can also use as templates when designing your
own icons.

FIGURE 4–12 Examples of application icons used in the desktop

Designing Your Application Group Icon
The application group icon represents the container in which users find your
application, as well as any other files you may choose to include, such as ReadMe or
sample files. Design the icon in such a way that users know it is a container, such as a
folder or box.

60 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

FIGURE 4–13 Examples of application group icons

The concept used in Application Manager is that of an icon based on accordion-style
folders, as seen in Figure 4–13. This icon is large enough that images can be stamped
on the front of it to indicate to the user what kind of things can be found inside.

Designing Your Document Icons
A document icon should help the user understand what kind of data is stored in that
document icon and what application is associated with the document. Figure
4–14shows a number of document icons used in the desktop that you can use as
templates when designing your own document icons.

FIGURE 4–14 Examples of document icons used in the desktop

Applications that support multiple file formats need different document icons for the
different output formats. Rather than creating a distinctively different graphic for each
format, you might use the same graphic for the basic file and add a “tag” to delineate
the format.

In the case of the document icon, the basic rectangle of the document is left- aligned in
the icon square. If the tag approach is used, place the tag on the right side of the icon,
half on and half off the basic icon, but not obliterating the descriptive graphic, as
illustrated in Figure 4–14.

International Icons
If your program will be used in more than one country, you should either design your
icons for worldwide use or create separate icons for each country.

Chapter 4 • Visual Design 61

Worldwide icons are ones that are universally understood. For example, a document
icon can be understood around the world because it represents paper, which is used
everywhere. Icons for things like a mailbox or trash can are not universal because
these objects look different in different countries.

Humor usually does not translate well. Text and symbols are also country-specific and
should not be used in icons. Avoid the use of animals or body parts (heads, hands, and
so on) because these have varying meanings and may be offensive in some cultures.

Recommended fa: Icons should be designed for international use.

Differences with Other Platforms
The desktop is different from the application spaces you may be familiar with in the
following ways:

� The desktop requires the larger 48x48 size to accommodate higher resolution
displays.

� The desktop has a different color space for icons. You may be able to reuse icons
from other environments, but if they have color in them, chances are some of the
colors will need to be changed to map onto the desktop palette. The basic design
should still work. See Table 4–1for aid in translating colors.

� Perhaps the most significant difference is that, in most cases, desktop icons appear
against a background color other than white, which seems to be the norm in other
environments. This can make your icon appear unreadable if you simply copy it
from another environment. You should test any icons from other environments
before using them on the desktop.

TABLE 4–1 RGB Values for Common Desktop Environment Icon Colors

Color
RGB Values
Decimal RGB Values Hex Grays

RGB Values
Decimal RGB Values Hex

Black 0, 0, 0 #00 Gray1 222, 222,222 #de

White 255 ,255, 255 #ff Gray2 189, 189,189 #bd

Red 255, 0, 0 #ff0000 Gray3 173, 173,173 #ad

Green 0, 255, 0 #00ff00 Gray4 148, 148,148 #94

Blue 0, 0, 255 #0000ff Gray5 115, 115,115 #73

Yellow 255, 255, 0 #ffff00 Gray6 99, 99, 99 #63

Cyan 0, 255, 255 #00ffff Gray7 66, 66, 66 #42

Magenta 255, 0, 255 #ff00ff Gray8 33, 33, 33 #33

62 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Implementation of Required Icons
This section discusses the details you need to know to create icons that display
correctly in the desktop environment, such as formats, resolutions, sizes, naming, and
so on.

Formats
The desktop runs in both color and monochrome modes, so you must create your
icons in two formats: XPM for color, and XBM for monochrome. The Icon Editor saves
icon files to both formats.

Note – The monochrome icons generated by the Icon Editor usually need some further
refinement. For example, when converting the colors and greys to black and white,
parts of the icon may disappear altogether or appear too thick.

In the desktop, buttons and palettes can use either the XBM or XPM formats. It is
strongly recommended that you use XPM format wherever possible for your button,
palette, and tool bar graphics.

The XBM file format has only two colors: foreground and background. In the desktop,
the foreground color is not fixed, but varies according to the background color. In one
color scheme, the background color might be a dark gray causing any text or graphics
to appear in white. However, a color scheme with a light gray background will cause
text and graphic to appear in black.

This inverting of the foreground color will have strange effects on certain icons. For
something simple, like an arrow shape, there is no adverse consequence. But for other
images, the “negative” version created by the inverting of the foreground color might
be illegible and, therefore, unusable.

For example, an ice cream cone graphic, with white as the foreground color to create a
solid white scoop of ice cream on top of an outlined cone, will look quite different
when the ice cream cone becomes a black outline with a black scoop of ice cream. If
your application lets users choose the flavor of ice cream, a confusing message will be
sent to your user when the color changes.

Chapter 4 • Visual Design 63

FIGURE 4–15 Monochrome (XBM) bitmaps, with foreground reversal consequences

Resolutions
The desktop accommodates three display resolutions: low resolution (640x480),
medium resolution (800x600), and high resolution (mega-pixel). The size of the Front
Panel and some of the icons change automatically depending on the display
resolution. For this reason, your application must provide different sized icons.

Recommended ew: Any icons or graphics displayed by your application are
designed to be distinguishable on low- (640x480), medium-
(800x600), and high- (mega-pixel) resolution displays.
Alternatively, your application provides different sized
visuals for low-, medium-, and high-resolution displays.

Sizes
There are three sizes of the desktop icons: 16x16, 32x32, and 48x48, referred to as 16,
32, and 48. (They have suffixes of .t, .m and .l respectively.) If your application
comes from the PC domain, then the size 16 and 32 icons used in the desktop should
be familiar sizes. Table 4–2defines where each size is used.

64 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

TABLE 4–2 Icon Sizes and Usage

Component Low Resolution Med. Resolution High Resolution

File Manager 32, 16 32, 16 32, 16

Application Manager 32, 16 32, 16 32, 16

Front Panel 32 48 48

Subpanels 16 32 32

Front Panel Controls 16 16 16

Minimized Window 32 48 48

Note – 24x24 icons (suffixes of .s) are used for internal application graphics like
toolbar graphics and are not part of the standard set of desktop icons.

Table 4–3 lists the icons you need to create for an application. A total of 16 icon files
are needed, assuming one of each type and size. Figure 4–16shows an example set of
icons.

TABLE 4–3 Minimum Required Icon Set

Type of Icon Color Color Color Mono. Mono. Mono.

16 32 48 16 32 48

Application Icon � � � � � �

Document or File Icon � � � �

Application Container Icon � � � �

Minimized Windows � �

Recommended ex: Any icons or graphics displayed by your application are
designed to display well on black-and-white and gray-scale
monitors. These visuals also display well on low-color (16)
systems.

Icon Naming Conventions
The basic name for the icon must be no more than seven characters. The size and color
suffixes are appended to the name, as shown in Table 4–4.

Chapter 4 • Visual Design 65

TABLE 4–4 Icon Name Conventions

Size COLOR B&W B&W Mask

48 Iconame.l.pm Iconame.l.bm Iconame.l_m.bm

32 Iconame.m.pm Iconame.m.bm Iconame.m_m.bm

24 Iconame.s.pm Iconame.s.bm Iconame.s_m.bm

16 Iconame.t.pm Iconame.t.bm Iconame.t_m.bm

The suffix .pm is for the color XPM format. The suffix .bm is for the XBM format. The
suffix _m refers to the mask for the black and white icon.

Please note that you do not have to provide icons in all these configurations. Table 4–3
lists the required icons. For example, the .s icons are used primarily for things like
tool bars, which your application may not have.

FIGURE 4–16 Example of a minimum required set of icons for Mailer

Alignment
Depending on the graphic you use for your icon, the bits may not take up the entire
space allocated for the icon. The recommended rules for where the empty space goes
in a desktop icon are shown in Figure 4–17. Following these rules ensures your icons
visually line up with other icons when used in File Manager or on the Front Panel.

66 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Recommended fb: 16x16 and 32x32 icons are left-aligned; any empty bits are on
the right side of the bounding box.

Recommended fc: 48x48 icons are centered in the bounding box.

FIGURE 4–17 Example of a left-aligned 32x32 icon with a tag on the right side

Optional Icons Sizes
There is no 48 requirement for the document or application group icons because
neither are expected to be used for a minimized window icon (the tool’s icon is used
instead) or on the Front Panel. But it is possible that a user might promote one of these
icons to the Front Panel.

When a size 48 icon is not available, the Front Panel uses the size 32 icon instead. If
you think your icons might be used in the Front Panel, you can supply size 48 icons.

Optional Front Panel Icon Style
The icons that appear by default in the Front Panel have a slightly different
appearance from File Manager icons. They appear to be etched into the surface. This
gives the icons a more permanent look, because they cannot be dragged and dropped.

You do not have to provide size 48 icons with an etched appearance like the default
icons in the desktop. It is not easy to determine if and when your icons will be used in
the Front Panel; therefore, it is recommended you not design specifically for this
usage, rather design for File Manager usage which will be more common.

Chapter 4 • Visual Design 67

If you decide to design Front Panel icons, the following are instructions on developing
the etched look. It is strongly recommended that you work with a visual designer to
implement this style.

Achieving the Etched Look
You must be familiar with dynamic colors to apply etching. Start with a size 48 icon
that does not use the entire 48x48 space. The artwork should leave a few pixels on all
sides for the etching.

FIGURE 4–18 Example of an icon lighted from the top left edge

The icon has to be rendered with both light and dark colors, preferably grays. The icon
must be lit from above and to the left. The upper and left edges must be light in color,
while the lower and right edges must be dark in color. Figure 4–18 shows the desktop
Text Editor icon before any etching has been applied.

68 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

FIGURE 4–19 Applying the bottomShadow and topShadow colors

The etched effect is applied by drawing a single-pixel line of the bottomShadow color
just outside the upper and left edges of the icon artwork, and by drawing a
single-pixel line of topShadow color just below and to the right of the artwork.

The lighting model of the icon and of the etched shadow must be consistent or the
effect does not work. If your icon is drawn with black lines, the etched look will be
flawed by doubling the dark lines on the top and left edges.

The style of the icon is critical to making the etched effect look right and to making
your icon blend in with other Front Panel icons. Study the Front Panel icons supplied
with the desktop for guidance. Icons with perspective scenes, icons with black
outlines, and icons on raised “slabs” will not work.

Chapter 4 • Visual Design 69

Evolving the Etched Look
Etching is a way of making the icon appear to be part of the surface it is etched on.
Not all the parts of an icon have to be etched into the surface. You can apply selective
etching, making part of the object anchor itself in the panel and some of it lie on the
panel or protrude from it slightly.

FIGURE 4–20 Example of anchoring page while letting pencil protrude from surface

The Help icon, for example, takes away the etch, made with the topShadow color, under
and next to the right-hand book, and replaces it with a select color shadow. This makes
it appear that one book is protruding slightly from the shelf. The printer icon has a
protruding paper tray. In the Style Manager icon, the palette, letters, and mouse are
above the etched-in window frame. The File Manager icon has gone the furthest, as
only the edge of the opening is etched, while the drawer front and the cocked folder
protrude and even have a shadow.

The principle is to have something in the artwork anchored, yet let the 3-D nature of
the objects come out as well. The variable content in an icon, like the printer page or
the mail envelopes in the Mailer icon, should not be anchored.

70 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

CHAPTER 5

Window and Session Control

Your application is presented to the user as a series of windows. Some of these
windows present the main portion of the application. Others are dynamic, only
appearing to the user when needed to accomplish certain tasks. All of these windows
should contain menus, border decorations, and behavior styles appropriate to their
function. The following chapter describes the guidelines that should be applied when
designing the windows in your application.

Window Control Guidelines
The specifics of the appropriate window borders and decorations are outlined in
“Window Decorations” on page 72, and the different window management behaviors
are specified in “Window Management Actions” on page 72.

The fundamental user-visible characteristic of primary windows is that stacking,
workspace placement, and minimization can be independent of other primary
windows. Secondary window stacking, workspace placement, and minimization must
be tied to the associated primary window.

Required aa: Application windows should be clearly distinguishable as
primary or secondary windows based on appearance and
behavior.

71

Window Management Actions

Required aq: Windows should follow Common Desktop Environment
window management functionality conventions, as shown in
Table 10-2.

Primary windows should provide Close, Move, Lower, and
Minimize as the minimum set of capabilities. They should allow
Resize and Maximize as appropriate. Secondary windows
should be designed so that resizing and maximizing are neither
necessary nor appropriate. Most secondary windows should
only include the Close, Move, and Lower capabilities. In
extraordinary cases, a secondary window may provide the
Resize and Maximize capabilities. Secondary windows do not
provide Minimize capability - they are minimized with the
associated primary window.

Required as: Windows that have form factor constraints need to set Window
Manager hints for minimum size, maximum size, aspect ratio,
and resize increment as appropriate.

Required at: Maximizing a window should show more content (objects or
controls) if appropriate (as opposed to scaling up the sizes of
objects and controls).

Required au: Windows that have Close or Exit functionality need to support
the window management protocol for Close if there is a window
menu. In the case of dialog boxes, the Close item on the window
menu corresponds to the Cancel functionality or dialog box
dismissal with no further action taken.

Window Decorations
Window decorations are the user-visible controls in the frame of an application
window. The Figure 5–1shows some sample decorations typically associated with a
primary window.

Required ab: Windows that support particular window management
functionality must request the corresponding window
decoration (for example, a window that can be minimized
should request the minimize button).

In addition, windows that support any window management
functionality (move, resize, minimize, maximize, close, and
others) must have a window menu with the appropriate items
for that functionality.

72 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

FIGURE 5–1 Example primary window decorations

Required ad: Follow Common Desktop Environment window decoration
conventions, as shown in Table 10-1.

Primary windows should have the following window decorations: Border, Title,
Menu, and Minimize. If appropriate, primary windows should also include Maximize
and Resize decorations.

Secondary windows should be designed so that resizing and maximizing are neither
necessary nor appropriate. Most secondary windows should only include the Border,
Title, and Menu decorations. If your secondary window allows resizing or
maximizing, however, it must also include the appropriate decoration. The Figure
5–2shows a typical secondary window decoration.

FIGURE 5–2 Example secondary window decorations

Window Menus
Windows have a menu that allows the user to perform various operations that affect
the size and placement of the application window. Developers should use the
following standard window menu items in their applications.

Required ae: Follow Common Desktop Environment window menu
conventions. Items should appear in the window menu if they
are applicable to the window or its minimized window icon.

Chapter 5 • Window and Session Control 73

FIGURE 5–3 Sample window menu

The following items are valid English-language choices in the window menu (the
mnemonics for each choice are listed in parentheses). They should be added to the
menu in the order listed. Unless otherwise noted, the functionality of these menu
items is as described in the OSF/Motif Style Guide, Revision 1.2.

� Restore (R)

� Move (M)

� Size (S)

� Minimize (n)

� Maximize (x)

� Lower (L)

� separator

� Occupy Workspace ... (O)

� Allows a user to specify which workspaces the application occupies.

� Occupy All Workspaces (A)

Enables the user to place the application in all available workspaces.

� Unoccupy Workspace (U)

Removes the application from the current workspace. If the application is only
occupying one workspace, the item should be made insensitive.

� separator

� Close (C)

74 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Recommended at: Applications should not add items to the window menu. If
an extraordinary requirement has an application add items
to the window menu, the items should be appended to the
end of the menu with a separator between Close and the
application items.

Optional ag: Accelerators, aside from Alt+F4 for Close, should not be
used in the window menu (to minimize conflict with other
uses of the Alt key for application accelerators,
localization, and others).

Window Icons
Applications should use icons to represent themselves to the user when minimized on
the desktop.

Optional ah: Applications should provide unique window icons for their
primary windows. The window icon image should have a
similar appearance to the associated file or Front Panel icon
image.

Optional ai: The window icon label should contain the same text as the title
of the corresponding primary window, or an abbreviated form
of it. Refer to “Layout” on page 240 for window title guidelines.

Optional aj: The window icon image should have a similar appearance to the
associated file or Front Panel icon image. Refer to “Design
Philosophy and Helpful Hints” on page 50.

Window Placement
Window positioning should be left to the Window Manager or to user control.

Recommended ak: Applications should not require or force windows or
window icons to be positioned at a particular screen location.

Recommended al: A secondary window is placed by the application relative to
the associated primary window. It should be placed close to,
but not obscuring, the component that caused it to be
displayed and the information that is necessary to interact
with the dialog box.

Chapter 5 • Window and Session Control 75

Recommended an: If a secondary window is allowed to be stacked below its
associated primary window (not constrained to stay on top
of the primary window), it should be placed such that it is
not completely covered by the primary window. This
recommendation takes precedence over other placement
recommendations.

Recommended ao: If a menu or dialog box is already on display, reinvoking the
command that caused it to be displayed automatically brings
that window or menu to the front of the window stack
without changing its position on the screen.

Workspace Management Guidelines
Desktop applications appear in one of several work areas called workspaces. A user
may have several workspaces active on the desktop. The application should behave in
certain ways in relation to those workspaces.

Recommended av: When your application creates a new window, it should
come up in the user’s current workspace and only occupy
that single workspace.

Recommended aw: Application windows that are related to a particular task
should move together between workspaces.

For example, a spreadsheet application may have one or more secondary windows
open that allow the user to change the properties of data cells in the main window. If
the user moves the main window to a different workspace, the properties windows
should move with it.

On the other hand, a word processor may have several windows open, where each is
used to edit a different document. In this case, when a user moves one of the windows
to a different workspace, the other windows may remain where they are.

76 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Session Management Support
When you design a desktop application, you must consider the following guidelines
for session management.

Required ax: Applications should support Interclient Communications
Conventions Manual (ICCCM) mechanisms for session
management of their primary windows and key properties.

The ICCCM defines important relationships and behaviors
between applications and the window manager, including
protocols for saving and restoring application state across
invocations.

Required ay: Applications should support ICCCM mechanisms for session
management of all associated windows (that is, secondary
windows that may include help windows).

Associated windows include multiple primary windows and
secondary windows, such as online help windows.

Optional az: Applications should accept messages from the Common
Desktop Environment Session Manager that inform them the
user is logging out and should save their state at that time.

Optional ba: Applications that have a single primary window that is open
at the time the user logs out should restore the primary
window, in the workspace last occupied, when the user logs
in again.

Optional bb: Save user context wherever possible. For example,
applications that support the editing of files should save the
state of the file at logout and should restore the file in the
application window when users log in again.

Optional bc: Applications that have multiple primary windows that are
open at the time the user logs out should restore all primary
windows, in their respective workspaces, when the user logs
in again.

Chapter 5 • Window and Session Control 77

78 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

CHAPTER 6

Application Design Principles

Your application should present its components to the user in a logical and
task-organized manner. Menus should follow a common organization and naming
convention to enable users to use the same rules and practices across the desktop. The
following sections outline the Common Desktop Environment application design and
menu structure requirements.

Component Layout Guidelines
When you design the physical organization of the controls within your application,
you should use the following guidelines to ensure that users are presented with a
consistent interface throughout the desktop.

Main Window Layout

Required 6-1: Your application should be composed of at least one main
window.

A main window contains a client area and, optionally, a
menu bar, a command area, a message area, and scroll bars.
The client area contains the framework of the application.
The use of a main window ensures interapplication
consistency.

79

Required bd: The default size of the application’s main window must be
large enough to accommodate a typical amount of data, but
should not fill the entire physical display size to minimize
visual conflicts with other applications.

Required 6-2: If your application has multiple main windows that serve the
same primary function, each window closes and iconifies
separately.

For example, a text editor might allow the user to edit
multiple documents, each in its own main window. Each
window is then treated as a separate application and can be
closed or iconified when it is not being used.

Required 6-3: If your application has multiple main windows that serve
different primary functions, each window should be able to
iconify independently of the other windows.

For instance, a debugger might provide separate main
windows for editing source code, examining data values, and
viewing results. Each window can be iconified when it is not
being used, but it is up to the application to decide whether
each window closes separately or whether closing one
window closes the entire application.

Required be: Resize corners should be included in any main window that
incorporates a scrolling data pane or list.

Any changes to the overall size of the window should result
in a corresponding increase or decrease in the size of the
scrollable portion. Additionally, your application might
reorganize elements within the window based on the
increased or decreased amount of space (for example, it
might reorganize a row of buttons into two rows).

Menu Bar Layout

Note – These requirements apply only in a left-to-right language environment in an
English-language locale. You must make the appropriate changes for other locales.

80 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Required 6-4: If your application has a menu bar, it is a horizontal bar at
the top edge of the application, just below the title area of the
window frame. A menu bar organizes the most common
features of an application. It contains a list of menu topics in
cascading buttons; each button is associated with a distinct
pull-down menu containing commands that are grouped by
common functionality. The use of a menu bar yields
consistency across applications.

A menu bar organizes the most common features of an
application. It contains a list of menu topics in buttons; each
button is associated with a distinct pull-down menu
containing commands that are grouped by common
functionality. The use of a menu bar is not required, but it is
strongly recommended.

Required 6-5: The menu bar for your application contains only cascading
buttons.

The use of other types of buttons in the bar precludes user
browsing of the menu structure.

Recommended bn: There are several common menu operations that should be
considered “standard”. The standard menu bar entries are
File, Edit, View, Options and Help. If your application
provides that functionality to the user, it should be included
in the menu bar under the appropriate name. The contents of
these menu entries are discussed below in more detail.

Standard menu bar entries should be presented in the
following order:

File Edit View Options Help

You should exclude from your menu bar any item shown in
the preceding text if your application does not support the
associated function. For example, if your application does
not support the ability to display its data in different views,
then you should not include a View menu.

You may add application-specific menus in between any of
the standard menu items, with the following exceptions:
� The File menu, if present, is located in the first menu

position on the left.
� The Help menu is located on the far right position.
� If File and Edit are present, they should be next to each

other.

For example, your application may have:

File Edit <category1> <category2> View Options
<category3> Help

Chapter 6 • Application Design Principles 81

Recommended bo: Applications that are not file-oriented in nature (or that
manage files transparently, not exposing this activity to the
user) should replace the File menu with one or more
application-specific menus.

Possible replacements for the File menu:

Replacement1: <app-label> Selected

Replacement2: <app-label><obj-type>

Replacement3: <obj-type>

You may use Replacement1 if your application has more than
one object type. Items on <app-label> would be used for
global actions that are not specific to an object type. The
items in Selected are actions that pertain to objects that are
currently selected, and may change depending on what
objects are selected. If nothing is selected, this menu should
have a single item that says (none selected). If an item is
selected, but there are no items that apply to that object, this
menu should have a single item that says (none).

You may use Replacement2 if your application has a single
object type. Actions that are global to the application are on
<app-label>, and actions that are specific to the object type
are on <obj-type>.

You may use Replacement3 if your application has a single
object type, and does not require an <app-label> menu. For
example, a Print Manager might contain a Printer menu.

All other menubar guidelines that apply to File-oriented
applications also apply to non-File-oriented applications.
Thus, the following menubar would be valid:

<app-label> Selected Edit <category1> View <category2>
Help

Applications that are complex or are extremely
domain-specific (for example, an application for medical
imaging and diagnosis of cat scan data) may require other
approaches to their menu bar design. For example,

<app-label><category1><category2> Selected Edit
<object-type> Options Help

Recommended bp: Exit or Close should be located on the first (leftmost) menu
of your menubar.

82 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Common Menu Types
User actions fall into categories that are similar across a wide range of applications.
Your application should use the following standard menus when possible to enable
the user to easily locate desired functionality.

File Menu Contents

Note – These requirements apply only in a left-to-right language environment in an
English-language locale. You need to make the appropriate changes for other locales.

Chapter 6 • Application Design Principles 83

Required 6-7: If your application uses a File menu, it contains the following
choices, with the specified functionality, when the actions are
actually supported by your application.

Items should be presented to the user in the order listed
below. In all cases where a dialog is recommended to be
displayed to the user, and the dialog has functionality
outlined in Chapter 7, “Common Dialogs”, your application
should use a dialog box.
� New [REQUIRED]

Creates a new file. If the current client area will be used
to display the new file, your application clears the
existing data from the client area. If changes made to the
current file will be lost, your application displays a
dialog, asking the user about saving changes. The
mnemonic is N.

� Open... [REQUIRED]
Opens an existing file by prompting the user for a file
name with a dialog box. If changes made to the current
file will be lost, your application displays a dialog asking
the user about saving changes. The mnemonic is O.

� Save [REQUIRED]
Saves the currently opened file without removing the
existing contents of the client area. If the file has no
name, your application displays a dialog prompting the
user to enter a file name. The mnemonic is S.

� Save As... [REQUIRED]
Saves the currently opened file under a new name by
prompting the user for a file name with a dialog box. If
the user tries to save the file using an existing name, your
application displays a dialog that warns the user about a
possible loss of data. Does not remove the existing
contents of the client area. The mnemonic is A.

84 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

� Print [RECOMMENDED]
Schedules a file for printing. If your application needs
specific information in order to print, it displays a dialog,
requesting the information from the user. In this case, the
menu entry is followed by an ellipsis (Print...). The
mnemonic is P.

� Close [RECOMMENDED]
Closes the current primary window and its associated
secondary windows. This action does not terminate the
application - Exit should be used for that purpose. If
changes made to the current primary window will be
lost, your application displays a dialog, asking the user
about saving those changes. If your application uses only
a single primary window or multiple dependent primary
windows, this action is not supplied. The mnemonic is C.

� Exit [REQUIRED]
Ends the current application and all windows associated
with it. If changes made to the current file will be lost,
your application displays a dialog, asking the user about
saving changes. The mnemonic is x.

Required bq: If the user chooses Exit, or in any other manner indicates that
the application should be terminated, but there are changes
to the current file that have not been saved, your application
displays a dialog box asking whether the changes should be
saved before exiting.

The user must always be given the opportunity to explicitly
state whether unsaved changes should be saved or
discarded. A dialog box similar to the one described should
also be displayed if the user chooses Open from the File
menu, but has not saved changes to the current file.

<Object-type> and Selected Menu Contents
The <object-type> menu contains controls that allow the user to create instances of the
object-type. Both the <object-type> and Selected menus allow the user to manipulate
object instances. Additional items should be added to the <object-type> or Selected
menus if they relate solely to the manipulation of objects managed by the application
(as opposed to more generic services that the application might provide).

Chapter 6 • Application Design Principles 85

Recommended br: If your application uses an <object-type> menu or a Selected
menu, it contains the following choices, with the specified
functionality, when the actions are actually supported by
your application. Items should be presented to the user in
the order listed below.
� New... [RECOMMENDED]

Creates a new instance of the object-type. A dialog box is
presented allowing the user to specify the values for
settings associated with that object. The mnemonic is N.

� Move To... [OPTIONAL]
Allows the user to move the selected objects into a folder.
A file selection dialog box is displayed allowing the user
to select the desired folder. The mnemonic is M.

� Copy To... [OPTIONAL]
Allows the user to copy the selected objects into a folder.
A file selection dialog box is displayed allowing the user
to select the desired folder. The mnemonic is C.

� Put in Workspace [OPTIONAL]
Allows the user to put a link for the object onto the
Common Desktop Environment desktop in the current
workspace. The mnemonic is t.

Any of the preceding three menu choices should be provided
only if the objects managed by your application are able to
reside as separate entities outside of your application’s main
window. For example, a printer object created by a printer
management application might be able to be placed in a
Folder window and function as an application unto itself.
Your application should also support drag and drop as a
method for performing any of these actions.
� Delete [OPTIONAL]

Removes the selected objects. A confirmation dialog box
should be presented to the user before the object is
actually deleted. The mnemonic is D.

� Properties [RECOMMENDED]
Displays a Properties window that shows the current
values for settings associated with the selected object.
The mnemonic is P.

� <Default Action> [RECOMMENDED]
This choice should enact the default action for the
selected object. “Open” is a typical default.

86 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Edit Menu Contents

Note – These requirements apply only in a left-to-right language environment in an
English-language locale. You must make the appropriate changes for other locales.

Required 6-8: If your application uses an Edit menu, it contains the
following choices, with the specified functionality, when the
actions are actually supported by your application:
� Undo [RECOMMENDED]

Reverses the most recently executed action. The
mnemonic is U.

� Cut [RECOMMENDED]
Removes the selected portion of data from the client area
and puts it on the clipboard. The mnemonic is t.

� Copy [RECOMMENDED]
Copies the selected portion of data from the client area
and puts it on the clipboard. The mnemonic is C.

� Copy Link [OPTIONAL]
Copies a link of the selected portion of data from the
client area and puts it on the clipboard. The mnemonic is
K.

� Paste [RECOMMENDED]
Pastes the contents of the clipboard into the client area.
The mnemonic is P.

� Paste Link [OPTIONAL] Pastes a link of the data
represented by the contents of the clipboard into the
client area. The mnemonic is L.

� Clear [RECOMMENDED]
Removes a selected portion of data from the client area
without copying it to the clipboard. The remaining data
is not rearranged to fill in the gap left by the Clear
operation. The mnemonic is E.

Chapter 6 • Application Design Principles 87

� Delete [RECOMMENDED]
Removes a selected portion of data from the client area
without copying it to the clipboard. The mnemonic is D.

� Select All [RECOMMENDED]
Sets the primary selection to be all the selectable elements
in the client area. The mnemonic is S.

� Deselect All [RECOMMENDED]
Removes from the primary selection all the selectable
elements in the client area. The mnemonic is l.

� Select Pasted [OPTIONAL]
Sets the primary selection to the last element or elements
pasted into a component of the client area. The
mnemonic is a.

� Reselect [OPTIONAL]
Sets the primary selection to the last selected element or
elements in a component of the client area. This action is
available only in components that do not support
persistent selections and only when the current selection
is empty. The mnemonic is R.

� Promote [OPTIONAL]
Promotes to the primary selection the current selection of
a component of the client area. This action is available
only for components that support persistent selections.
The mnemonic is m.

Recommended bs: If your application does not provide an <object-type> or
Selected menu, but allows the user to select data within the
window and manage settings for the selected data, then it
provides a Properties ... choice as the last item in the Edit
menu.

View Menu

Recommended bt: If your application provides a View menu, it only contains
functions that affect the way the current data is presented. It
does not contain any option that alters the data itself.

88 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Options Menu

Recommended bu: If your application has global settings that control the way
the application behaves, it provides an Options menu from
which these can be set.

Help Menu Contents

Note – These requirements apply only in a left-to-right language environment in an
English-language locale. You must make the appropriate changes for other locales.

Chapter 6 • Application Design Principles 89

Recommended bv: If your application includes a Help menu, it contains the
following set of choices, with the specified functionality,
when the actions are actually supported by your application.
The Help choices included here supersede those listed for
Motif 1.2.

This is the Common Desktop Environment-recommended
Help menu and should be used instead of the Motif 1.2 Help
menu. Items should be presented to the user in the order
listed.
� Overview [REQUIRED]

Provides general information about the window from
which help was accessed or about the application overall.
The mnemonic is v. Place a separator after.

� Index [OPTIONAL]
Provides an index listing topics for all help information
available for your application. The mnemonic is I.

� Table of Contents [RECOMMENDED]
Provides a table of contents listing topics for all help
information available for your application. The
mnemonic is C.

� Tasks [RECOMMENDED]
Provides access to help information indicating how to
perform different tasks using your application. The
mnemonic is T.

� Reference [RECOMMENDED]
Provides access to reference information. The mnemonic
is R.

� Tutorial [OPTIONAL]
Provides access to your application’s tutorial. The
mnemonic is l.

� Keyboard [OPTIONAL]
Provides information about your application’s use of
function keys, mnemonics, and keyboard accelerators.
Also provides information on general Common Desktop
Environment use of such keys. The mnemonic is K.

90 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

� Mouse [OPTIONAL]
Provides information about using a mouse with your
application. The mnemonic is M.

� Mouse and Keyboard [OPTIONAL]
Provides information about your application’s use of
function keys, mnemonics, keyboard accelerators and
mouse operations. Also provides information on general
Common Desktop Environment use of such keys. The
mnemonic is M.

� On Item [OPTIONAL]
Initiates context-sensitive help by changing the shape of
the pointer to the question mark pointer. When the user
moves the pointer to a component and presses BSelect,
any available context-sensitive help for the component is
presented. The mnemonic is O.

� Using Help [REQUIRED]
Provides information on how to use the Common
Desktop Environment Help Facility. The mnemonic is U.

� About applicationname [REQUIRED]
Displays a dialog box indicating, minimally, the name
and version of your application, and displaying its icon
or some other signature graphic for your application. The
mnemonic is A.

The Overview, Using Help and About items are required.
The Table of Contents, Tasks and Reference items are
recommended. You can choose to have separate Mouse and
Keyboard topics, or have a single combined Mouse and
Keyboard topic. You should not use all three items.

Attachment Menu Contents
See Chapter 3, “Drag and Drop” for information on menu recommendations your
application should use if it supports attachments.

Pop-up Menus

Note – These requirements apply only in a left-to-right language environment in an
English-language locale. You must make the appropriate changes for other locales.

Chapter 6 • Application Design Principles 91

Pop-up menus provide access to frequently used functions and should be used
pervasively throughout the Common Desktop Environment desktop environment. A
pop-up menu may contain a collection of options that appear in different menus
available from the menu bar. For example, it may contain items from both the File and
Edit menus.

Recommended by: Your application should provide a pop-up menu for any
element that is selectable within its data pane.

Recommended bx: If your application provides functions that apply to a data
pane and not any specific element therein, then a pop-up
menu is provided that contains the frequently used data
pane functions and is accessible by pressing BMenu when
the mouse pointer is over the background of the pane or a
nonselectable element within the pane.

Recommended cb: The functions accessible from within your application’s
pop-up menus are also accessible from buttons displayed
within the window or menus accessed through the menu bar.

Recommended ca: Every pop-up menu in your application has a title that
indicates the function the menu performs or the element on
which it operates.

Optional cd: Choices within your pop-up menus are organized in the
following manner:

<choices that manage the object such as Open, Save, and
Properties>

----------- separator ----------------

<standard edit menu choices such as Cut, Copy and Paste>

----------- separator ----------------

<other choices>

92 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Optional 6-11: If your application uses any of the common pop-up menu
actions, the actions function according to the following
specifications. See item for supplemental guidelines.
� Properties

Displays a properties dialog box that the user can use to
set the properties of the component.

� Undo
Reverses the last executed action.

� Primary Move
Moves the contents of the primary selection to the
component. This action is available only in editable
components.

� Primary Copy
Copies the contents of the primary selection to the
component. This action is available only in editable
components.

� Primary Link
Places a link to the primary selection in the component.
This action is available only in editable components.

� Cut
Cuts elements to the clipboard. If the menu is popped up
in a selection, cuts the entire selection to the clipboard.

� Copy
Copies elements to the clipboard. If the menu is popped
up in a selection, copies the entire selection to the
clipboard.

� Copy Link
Copies a link of elements to the clipboard. If the menu is
popped up in a selection, copies a link to the entire
selection to the clipboard.

� Paste
Pastes the contents of the clipboard to the component.
This action is available only in editable components.

� Paste Link
Pastes a link of the contents of the clipboard to the
component. This action is available only in editable
components.

� Clear
Removes a selected portion of data from the client area
without copying it to the clipboard. If the menu is
popped up in a selection, deletes the selection.

� Delete
Removes a selected portion of data from the client area
without copying it to the clipboard. If the menu is
popped up in a selection, deletes the selection.

Chapter 6 • Application Design Principles 93

� Select All
Sets the primary selection to be all of the elements in the
collection with the pop-up menu.

� Deselect All
Deselects the current selection in the collection with the
pop-up menu.

� Select Pasted
Sets the primary selection to be the last element or
elements pasted into the collection with the pop-up
menu.

� Reselect
Sets the primary selection to be the last selected element
or elements in the component with the pop-up menu.
This action is available only in components that do not
support persistent selections and only when the current
selection is empty.

� Promote
Promotes the current selection to the primary selection. It
is available only in components that support persistent
selections.

Recommended cc: Pop-up menus for selectable objects contain the following set
of choices, with the specified functionality, when the actions
are actually supported by your application. These guidelines
supplement item .
� Move To...

Allows the user to move the selected objects into a folder.
A file selection dialog box is displayed allowing the user
to select the desired folder.

� Copy To...
Allows the user to copy the selected objects into a folder.
A file selection dialog box is displayed allowing the user
to select the desired folder.

� Put in Workspace
Allows the user to put a link for the selected objects onto
the Common Desktop Environment desktop in the
current workspace.

� Delete
Deletes the selected object. A confirmation is displayed to
the user before actually removing the object.

� Help...
Displays a help window pertaining to objects of the type
selected.

94 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Required 6-12: When a pop-up menu is popped up in the context of a
selection, any action that acts on elements acts on the entire
selection.

In the context of a selection, pop-up menu actions affect the
entire selection.

General Menu Design Rules
As you design your application-specific menu panes, follow these guidelines to ensure
maximum usability and accessibility.

Recommended ce: If the selection of a menu item will result in the user being
queried for more information, such as through the posting of
a file selection dialog, the menu item should be followed by
an ellipsis (“...”). This requirement does not apply to menu
items that will result in a simple warning or confirmation
dialog being displayed.

The use of an ellipsis helps set the user’s expectation for the
behavior of the interface. When they select an item without
an ellipsis, they know that they can expect an immediate
result.

Recommended cf: Menus accessed from within your application contain at least
two menu items.

No menu should contain only one item. If your application
provides a menu with only one item, you should consider
moving that item into another menu or making it a button
within the window. The longer the menu, the more effort is
needed for the user to access choices near the bottom. If your
menu has a lot of choices, break it up into two or more
menus, or group some items into submenus.

Optional cg: Submenus accessed from within your application contain at
least three menu items.

Submenus may be used to group like items into a single
secondary cascading menu where putting the items into the
primary cascading menu would make it too long. However,
if your submenu contains only two options, you should
strongly look at removing the secondary cascading menu
and putting the options into the primary cascading menu
since it takes more effort for the user to access options
located in a submenu.

Chapter 6 • Application Design Principles 95

Optional ci: If your application contains a menu that is expected to be
accessed frequently, then a tear-off menu option is provided
in that menu.

The user should be able to tear-off frequently accessed menus
so that these can remain posted on the desktop as the user
uses your application.

Required 6-14: If your application uses a tear-off button in a menu, the
tear-off button is the first element in the menu.

Optional cj: Provide keyboard accelerators where appropriate.

If specific menu items within a menu are expected to be used
frequently, not the menu as a whole, then your application
provides keyboard accelerators for these items and displays
the keyboard accelerators in the associated menu to the right
of the item to which they relate. You should not use
accelerators that have already been defined for system
functions - refer to Appendix A, Keyboard Functions, for a
list of pre-defined key assignments.

Recommended ck: The labels used for items in the menu bar do not appear as
options within the menus themselves.

The names of items in the menu bar serve as titles for the
options the menu contains. The name of the menu bar item
should provide a term that accurately describes the concept
of the category relating all of the menu items and should not
be used as the name of any item within the menu itself.

Required cl: Any menu choice that is not currently an appropriate
selection is dimmed (insensitive).

Dimmed controls cannot be activated by the user and should
appear only when the inactive state is short-term (that is,
there is something the user can do within the application or
the desktop environment to make the control become active).
When the control is persistently inactive (because of the
current configuration of the application or system, or a
particular set of companion software is not currently
installed), the control should be removed from the menu
rather than be dimmed.

Required 6-15: All menus are wide enough to accommodate their widest
elements.

96 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Tool Bars
Tool bars are a method used to provide quick access to things that are already
user-accessible in an application by other methods. For example, an application can
provide access to frequently used features from its menus through its tool bar. Some
common usages of tool bars are navigation, changing data views, accessing frequently
used tools or editors, simplifying the number of steps to complete a common
operation, and providing a fast path to frequently used menu items.

FIGURE 6–1 Example from Common Desktop Environment Calendar.

Tool Bar Guidelines

Required fd: If you use a tool bar, it should be used only in windows with
a menu bar.

Required fe: Tool bars should contain only operations that are already
available to the user in your application menus. All items in
a tool bar should be redundant.

Items in a toolbar are meant to provide quick access to
operations that are already accessible to the user by other
methods.

Required ff: When an action represented by a tool bar icon is unavailable
to the user, that icon should be made insensitive, with the
associated stippled appearance. Whenever a menu item is
made insensitive, the corresponding tool bar item must be
made insensitive as well.

Recommended fg: Give users the option to hide the tool bar.

Chapter 6 • Application Design Principles 97

Design Issues for Tool Bars
When designing your application and an associated tool bar, consider the following
issues.

� Would the usability of the application be improved by placing these items on the
tool bar?

Tool bars should only be used when they improve or enhance user access to
common operations, such as in an application with several large menus.

� What kinds of operations are being placed on a tool bar? How are they grouped?

Tool bars should present a natural organization of actions. Grouping items that are
dissimilar can confuse users because they do not expect to find the item they are
looking for in that context.

� Is the tool bar too crowded?

Placing too many items in the tool bar can cause the user to have to search for the
item they are looking for, rather then being able to quickly find it and use it. Keep
the number of buttons to a minimum so that you don’t increase the difficulty of
your application when using a tool bar.

� Are the icons clearly representative of their associated action?

Cryptic icons add to user confusion. Keep the pixmaps as simple as possible.
Remember that all graphics must be international in scope. When designing a
graphic to represent a command, such as Save, remember that the icon has to
represent a verb, as opposed to a noun like most other icons. This can make the
icon more confusing to users.

Tool Bar Components
A tool bar is typically constructed using the following Motif components.

Tool Bar Container
The tool bar uses a container component to provide a layout mechanism for the drawn
buttons that make up a tool bar. You may choose most any container for the tool bar,
as long as it allows for the specified behavior.

Required fh: The tool bar container is placed directly under the menu bar
and should be the same width as the window, as well as
similar height to the menu bar.

98 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Recommended fi: If you use a tool bar in your application, then you should
provide a status line in the same primary window as the tool
bar.

This status line should provide immediate feedback to the
user as to the purpose of the button that the mouse is
currently over or that has the keyboard focus. When the
arrow is over a tool bar icon, the status line should display a
brief definition of what the icon represents or what will
happen when the user clicks the icon.

Recommended fj: You may provide labels under tool bar icons. These labels
should serve to explain the purpose of the icon.

Tool Bar Button
The Motif DrawnButton provides an appropriate medium for the graphic buttons in
tool bars.

Recommended fk: Drawn buttons in the tool bar should be the same width and
height. Similar or related items should be grouped, and
groups should be evenly spaced across the tool bar.

Pixmap
The pixmap for the drawn button is the graphic that conveys the functionality to be
expected by pushing a particular button.

Recommended fl: All pixmaps in the tool bar should be the same size.

This ensures that all the buttons will be the same size.

Recommended fm: The recommended size of the pixmap is 24x24. The default
for the drawn button is to resize itself according to the size of
its label type, which, in this case, would be a pixmap.

Chapter 6 • Application Design Principles 99

Window Titles
The following guidelines should be followed when defining titles for your primary
and secondary windows.

Optional bf The title of your primary window (the main window your
application displays to the user) should be the name of your
application.

Note that this does not have to be the actual name of the
executable invoked by the user.

Carefully consider how the title you choose for your primary
window works when it is used in icons and pop-up
windows. If the name of the pop-up window is too long, you
may remove the application title, but remember that without
the title users might have difficulty telling which pop-up
windows belong with the originating primary window.

Optional bg: Use initial capital letters for each word in the title (in
languages that support capitalization).

Optional bh: Follow the application name for each property window, as a
minimum, with the title Properties and the name of the
object it affects.

Optional bi: Begin the title of each pop-up window with the application
title followed by a colon, then the title of the pop-up
window. The colon should have a space both before and after
it for readibility.

Pop-up windows should always indicate which primary
window they are associated with (which primary window
invoked that pop-up).

Optional bj: Use a hyphen to denote the current file name, when the
application has files that can be loaded or saved. The hyphen
should have a space before and after it. Only the base name
of the file should be displayed, not the entire path.

The hyphen is used to denote specific instances of a window
or data. The colon serves to delimit general categories or
commands. For example, a file manager might have the
following title for a Properties dialog box:

File Manager : Properties - myfile

Recommended bk: Follow the application name for each command window
with the same title that is on the window button or window
item users choose to display that window.

100 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Optional bl: In the case of multiple primary windows, include the
application name at the beginning of each window title, and
add a name that uniquely identifies that primary window.
No separator should be provided for these names (for
example, Calendar Manager Multibrowse, Catalog Search,
Admintool Databases).

Optional bm: An abbreviated name for the application may be used on
other windows, so long as it is done on all windows.

Work-in-Progress Feedback

Recommended gt: If any command chosen by the user is expected to take
longer than 2 seconds to complete, but less than 10 seconds,
your application displays the standard busy pointer as
feedback that the command is executing.

The user must receive assurance that your application has
"heard" the request and is working on it. If the results of the
request cannot be displayed immediately, some feedback
must be provided. The busy cursor should be displayed
within 0.5 seconds of execution of the command.

Recommended gu: If any command chosen by the user is expected to take
longer than 10 seconds to complete, your application
displays a working dialog box or other feedback of similar
character that indicates that the application is working on the
request. The feedback should reveal progress toward
completion of the activity.

If an activity is expected to take a significant amount of time
(10 seconds or more), your application should display
feedback stronger than the busy pointer. Displaying the busy
pointer for long amounts of time may lead the user to
conclude that the application has become hung. A progress
indicator should be displayed in these scenarios that
indicates that the application is still functioning and is
working on the user’s request. The progress indicator should
show how much of the activity has been completed and what
amount remains.

Chapter 6 • Application Design Principles 101

Recommended gv: When your application displays work-in-progress feedback
to the user, it does not block access to other applications and
services within the desktop environment.

Multitasking should always be supported and, as such, your
application should allow the user to access other services
while it is busy performing some activity. Preferably, the user
is also able to access other features within your application
even though it is currently working on another request.
When this is supported, your application should display an
enhanced busy pointer that indicates that the application is
busy but still willing to accept input.

General Application Design Rules

Required ep: There is always exactly one control within any window of
your application that has the input focus if the window in
which it resides has the input focus.

If any window within your application has focus, some
control within that window must have focus. The user
should not have to explicitly set focus to a control within the
window.

Optional eq: When a text field within your application does not have the
input focus, the text cursor is not displayed within that field.

Although use of inactive text cursors is allowed within the
Motif style, it is better to hide the text cursor on focus out
rather than display the inactive text cursor. This makes it
easier for the user to quickly scan the screen or a window
and determine which text field currently has focus.

Optional er: Your application provides keyboard mnemonics for all
buttons, menus, and menu items displayed within the
application.

Once the user becomes adept at using your application,
keyboard mnemonics provide the user a quick way to access
functionality. Mnemonics also facilitate access to
functionality from within keyboard-centric applications or
windows. The user need not frequently switch between use
of the mouse or use of the keyboard. Mnemonics should be
provided pervasively throughout the user interface.

102 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Optional es: Your application provides keyboard accelerators for those
functions that are expected to be used frequently by the user.

Keyboard accelerators provide the user who has become
expert at using your application a quick way to access
application functionality without having to go through
menus and dialog boxes.

Required ev: If your application does not use the values of global
environment settings, such as multiclick timeout intervals,
drag thresholds, window color settings, mouse left- or
right-handedness, and so on, but instead uses its own values
for these settings, then your application provides one or
more Options dialog boxes that allow the user to change the
values for these settings.

In general, you should not override the value of settings
treated as global environment settings. These settings are
controlled by the user through the Common Desktop
Environment Style Manager. If you choose to ignore these
settings and specify your own settings, then your application
will be have inconsistently with other applications in the
Common Desktop Environment desktop. If you nevertheless
choose to provide your own values, then you must provide
the user a way to make your settings consistent with the rest
of the desktop.

Application Installation

Required em: Applications should be installed to folders in the Application
Manager not directly to the Front Panel or subpanels. For
consistency, only Common Desktop Environment desktop
components will install to these locations. Users may choose
to rearrange their Front Panel, but applications should not do
this without user consent.

Chapter 6 • Application Design Principles 103

104 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

CHAPTER 7

Common Dialogs

Use dialog boxes (secondary windows) to support user tasks that require detailed
interaction from the user and that do not lend themselves well to direct manipulation
in the main window. For example, you may not require a dialog box to support the
task of setting a margin if the task can be performed by directly moving a margin stop
on a ruler. On the other hand, you might require a dialog to support formatting a
document if the task requires that the user specify several formatting options.

Dialog Box Design and Layout

Optional ct: Keep the size of your dialog boxes to a minimum.
Remember that on low-resolution displays, dialogs
may take up most of the screen real estate, and may
even run off the edge of the screen if not designed
correctly.

Optional cu: Avoid complexity in your dialog boxes. If your dialog
box must support many functions, consider using an
expandable dialog box (see “Expandable Windows” on
page 291), or use more than one dialog in a nested
fashion.

Optional cv: Avoid the use of resize handles in your dialog box.
However, you may use resize handles when resizing is
useful in allowing users to see more information; for
example, when your dialog contains a scrolling list that
is likely to be quite long, and users will frequently need
to search the list.

105

Recommended cp: The title of dialog boxes used within your application
adheres to the conventions listed in Table 10-3.

Required cq: Every dialog box in your application has at least one
button that either performs the dialog box action and
dismisses it or dismisses the dialog box without taking
any action.

Recommended cr: If your application uses common dialog box actions,
the actions have the following specified functionality
and labels:

Label Functionality

Yes Indicates affirmative response to a
question posed in the dialog box.

No Indicates negative response to a
question posed in the dialog box.

OK Applies any changes made to
components in the dialog box and
dismisses the dialog box.

<command> Applies any changes made to the
components in the dialog box,
performs the action associated with
<command>, and optionally
dismisses the dialog box.

The <command> button should be used in lieu of OK,
Yes, or No as a button label when it provides more
meaning to the user as to the action that will be
performed when that button is clicked.

Apply Applies any changes made to
components in the dialog box and
does not dismiss it.

Retry Causes the task in progress to be
attempted again.

Stop Ends the task in progress at the next
possible break point.

Pause Causes the task in progress to
pause.

Resume Causes a task that has paused to
resume.

106 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Save As Defaults Saves the current settings as the
default settings that will appear the
next time the window is displayed.
The settings are not applied to any
selected object and the dialog box is
not dismissed.

A Save As Defaults button should
be provided if it is expected that a
user would want to use different
default values for a set of controls
within a dialog box than those that
you provide as the factory settings.
For example, a Save As Defaults
button might be provided in a
"New <object type>" window,
allowing the user to indicate that
whenever a new instance of that
object-type is created, the current
values should be displayed as the
default settings instead of the
values given by the application.

Reset Cancels any changes that have not
yet been applied by your
application. The controls within the
dialog box are reset to their state
since the last time the dialog box
action was applied. If no changes
have been applied within the
current invocation of the dialog
box, the controls are reset to the
state when the dialog box was first
displayed.

Reset to Factory Cancels any changes that have not
yet been applied. Components in
the dialog box are reset to their
default state and value as specified
by the vendor that delivered the
application (that is, the controls are
restored to the original factory
settings).

Cancel Dismisses the dialog box without
performing any actions not yet
applied.

Help Provides help for the dialog box.

Chapter 7 • Common Dialogs 107

Recommended cs: Any visible control that is not currently active or whose
setting is currently invalid is dimmed.

Dimmed controls cannot be activated by the user and
should appear only when the inactive state is
short-term (that is, there is something the user can do
within the application or the desktop environment to
make the control become active). When the control is
persistently inactive (because of the current
configuration of the application or system, or a
particular set of companion software is not currently
installed), the control should be removed rather than
dimmed.

Optional cw: Every dialog box in your application has exactly one
default button that is activated when the Return key is
pressed.

The default button should be associated with the most
likely response from the user and should not be
potentially destructive or irreversible. Some
applications may have dialog boxes that do not reveal a
default button until a specific set of fields has been
filled out or otherwise manipulated.

Optional cx: If a dialog box displayed by your application has
controls that are considered to be advanced features,
use an expandable dialog box, or use a multiple page
dialog box that provides a <category> option menu
that allows a user to navigate to each page.

Controls that relate to advanced features should not be
displayed with the set of options initially displayed to
the user. The typical user should be presented with
only those options that are necessary to use the basic
functionality of the application. Users looking to access
advanced functionality within the dialog box may use
the Category option button (see Figure 7-1). If the
number of advanced controls is very few, or the
settings for these controls are highly related to the
settings of basic controls displayed in the dialog box
(that is, the settings of the advanced controls change
when the user changes settings for basic controls), you
might choose to provide an expandable dialog box (see
the section on Expandable Windows and Dialog Boxes).

108 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

FIGURE 7–1 An example of using a Category option menu in a dialog

Optional dl: Controls within your dialog box are placed in a left-right,
top-down layout based on the order in which the user is
expected to fill out or choose options within the dialog box.

This assumes that your application is being designed for a
left-to-right language environment. Alternate design
approaches may be necessary for other locales.

Chapter 7 • Common Dialogs 109

Required dm: Push buttons that affect the dialog box as a whole, either by
modifying its contents or layout, invoking the action of the
dialog box, or dismissing the dialog box, are located at the
bottom of the dialog box.

In general, there should only be one row of buttons at the
bottom of a dialog box. If your application has dialog boxes
that contain several global buttons, it may be necessary to
create two or more rows of buttons at the bottom of the
dialog box. The last row should contain the standard dialog
box buttons (OK, Reset, Cancel, and Help). If a dialog box
contains buttons that are not related to the dialog box as a
whole, but instead, relate to a specific control within the
dialog box, the buttons should be located near the control to
which they relate.

Required dn: If your application provides an Apply button within a dialog
box, it also provides an OK button or command button that
performs the dialog box action then dismisses it.

Optional do: Your application does not use cascading buttons within
dialog boxes unless there is absolutely no other design
alternative that can be used without a negative impact on the
layout of your dialog box.

In general, cascade buttons should only be used within
menus and menu bars. You should avoid their use in all
other locations unless absolutely necessary.

Dialog Box Placement

Recommended al: A secondary window is placed by the application relative to
the associated primary window. It should be placed close to,
but not obscuring, the component that caused it to be
displayed and the information that is necessary to interact
with the dialog box.

Some suggestions are given in section 6.2.4.3, “Determining
Dialog Box Location and Size,” of the OSF/Motif Style
Guide, Revision 1.2. Additional or modified
recommendations include:

Optional am: If a dialog box does not relate to specific items in the
underlying window, it should be placed below the menu bar
(if there is one) and centered (horizontally) over the work
area.

110 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Recommended an: If a secondary window is allowed to be stacked below its
associated primary window (not constrained to stay on top
of the primary window), it should be placed such that it is
not completely covered by the primary window. This
recommendation takes precedence over other placement
recommendations.

Recommended ao: If a menu or dialog box is already on display, reinvoking the
command that caused it to be displayed automatically brings
that window or menu to the front of the window stack
without changing its position on the screen.

Dialog Box Interaction
All of the navigation and selection guidelines that apply to applications in general
should apply to your dialogs. In addition, as you design your application-specific
dialog boxes, you should follow these guidelines to ensure maximum usability and
accessibility.

Required en: When your application displays a dialog box, it places the
input focus at the first text field into which the user is
allowed to type an entry, or at the first control within the
dialog box with which the user should interact.

Input focus should always be placed at a predictable and
intuitive location. The user should not be forced to set focus
at the control most likely to be used when the window is
displayed.

Recommended eo: As the user presses the Tab key within dialog boxes of your
application, the input focus moves to different controls
within the window in a left-right, top-down order.

This assumes that your application is being designed for a
left-to-right language environment. Alternate design
approaches may be necessary for other locales.

Chapter 7 • Common Dialogs 111

Required et: Dialog boxes displayed by your application never block
input to other applications within the desktop (that is, they
are not system modal) unless it is absolutely essential that
the user perform no other action in the desktop until the user
responds to the dialog box.

Applications must allow the user the freedom to access
information and tools within the user’s desktop
environment. Only in the most dire circumstances should an
application ever block access to other applications and
services within the environment.

Recommended eu: Dialog boxes displayed by your application never block
access to other functionality within the application
(application modal) unless it is essential that the state of the
application remains unchanged until the user responds to the
dialog box.

Required 6-18 A warning dialog box allows the user to cancel the
destructive action about which the dialog box is providing a
warning.

Expandable Windows and Dialog Boxes
This section describes a standard method for providing expandable windows or
dialogs in Common Desktop Environment. Expandable windows allow users to
selectively display advanced or application-specific functionality in a separate portion
of the window that is normally not visible when the window is initially displayed.
Users can choose to display the entire window, or only the core functionality,
according to their own needs and preferences. Applications can implement
expandable windows fairly easily using existing toolkit components.

Use expandable windows only when your application needs to present a limited set of
additional dialog box options. Consider using an alternate method if your dialog
would grow unmanageably large, for example, larger than a typical low-resolution
display could handle. Keep in mind also how your dialog will expand when
translated into other languages. An alternative method for expandable dialogs is to
use a multipage dialog and provide a Category button for switching pages.

112 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Guidelines for Expandable Windows and Dialog
Boxes

Recommended fn: The primary pane of the dialog box or window should
contain all of the controls needed to complete the task. This
should include all critical and frequently used functionality.

Recommended fo: It is assumed that infrequently used features are placed in
the secondary pane. The core functionality of the application
should not depend on any controls placed in secondary
panes.

Required fp: Command buttons are aligned along the bottom of the dialog
box. When the window is expanded to show a secondary
pane, then buttons are moved to the bottom of the secondary
pane. See Chapter 6, “Application Design Principles” for
information about layout of action buttons in dialog boxes.

Recommended fq: If important controls must be placed in the secondary pane,
the application can specify that the window in question
should be displayed in its expanded state by default. Users
should still be able to shrink the window by pressing the
Contract button.

Components of Expandable Windows
To create an expandable window or dialog box, use the standard Motif widgets in
conjunction with state variables and some simple rules that govern its behavior. In
addition to the application-defined controls and displays that make up the content of
the window itself, use a primary and secondary pane in the following way.

Primary and Secondary Panes
The primary pane should contain the core or base functionality required by nearly all
end-users of the application. The primary pane is a standard Motif container that is
the main component of the window or dialog. Only the primary pane is visible when
the expandable window is initially displayed. An “expand button” allows the user to
display a secondary pane providing access to the full functionality of the window or
dialog. (See Figure 7-2.)

Chapter 7 • Common Dialogs 113

FIGURE 7–2 Calendar Appointment Editor primary pane with Expand button (More)

Expanding the Secondary Pane
The secondary pane provides space for additional options or advanced functionality
without increasing the difficulty of the core functionality in the primary pane. The
secondary pane can be expanded in a vertical or a horizontal direction. To determine
the appropriate direction in which to expand, consider the following questions:

� What are the reading patterns in the countries that will be using the applications?

� What makes the most sense based on the information in the dialog?

Recommended fr: The secondary pane should expand in the direction most
consistent with users’ expectations, the reading pattern of the
language in which it will be displayed, and the content of the
information displayed.

Recommended fs: If possible, the panes should have the same default width.

Required ft: A separator should be used to separate the primary pane
from the secondary pane.

The user needs to have clear visual feedback as to which
elements are part of the primary pane and which elements
are part of the secondary pane of the expandable window.

114 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Resizing the Expanded Window or Dialog

Required fu: If a window is resizable, any sizing changes should be
allocated to the pane containing scrolling lists or text fields
whose displayed length is less than their stored length. If
both panes contain scrollable controls, size changes should
be distributed evenly between the two panes. If neither pane
contains scrollable controls, the window should not be
resizable.

FIGURE 7–3 Calendar Appointment Editor with expand button (Less) and primary and
secondary panes

Expand Button
The expand button is used to display the secondary pane. The expand button is a
standard Motif drawn button with a label that changes depending on the state of the
window. The button labels for the two states should tell the user what will happen.
For example, the button might say Options when the window is closed and Basic

Chapter 7 • Common Dialogs 115

when the window is open. Clicking the Options button displays the bottom pane;
clicking the Basic button hides the bottom pane. Labels should be opposites such as
Expand and Contract, More and Less, or Basic and Options.

Required fv: The expandable window should have one button that
changes its label based on the state of the window.

Required fw: The expand button should have two labels that reflect the
two states of the expandable window accurately. The current
label should indicate to the user what will happen if the user
clicks the button.

Examples of possible labels are Basic and Options, Expand
and Contract, and More and Less.

Optional fx: The expand button may contain a graphic in addition to the
label. This graphic should indicate the direction in which the
window will expand or contract.

Placing the Expand Button

Recommended fy: The button should appear in the lower left-hand corner of
the window or dialog box for expansion in the vertical
direction and in the lower-right hand corner for expansion in
the horizontal direction.

Required fz: If the window or dialog box contains a scrolling list
positioned to the far right side of the pane, do not align the
drawn button with the scroll bar. For example, the button
should be aligned with the list, not the scroll bar.

Window State

Required ga: Applications must remember the state of each window or
dialog box (expanded or not expanded) independently (not
collectively). The state should be changed only by the user
and should always be preserved until explicitly altered by
the user.

116 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Recommended gb: Applications should remember the state of each expandable
window or dialog box across sessions, so that users don’t
have to manually configure the expandable windows each
time the application is run.

If appropriate, applications can provide a mechanism to
allow users to set the state of an expandable window on a
global basis in the application. This would be part of the
application’s Options.

File Selection Dialog Boxes
The Common Desktop Environment file selection dialog box is a subclass of the Motif
file selection dialog box that has enhancements for improved usability. As long as your
application uses the standard Motif file selection dialog box calls, the Common
Desktop Environment enhanced version will appear in the Common Desktop
Environment environment. There are additional guidelines to follow to make your
dialog consistent and easy to use. Use the file selection dialog box whenever your
application supports a task that involves choosing a file or directory. Examples are:
Open, Include, Save As, and Copy To.

Chapter 7 • Common Dialogs 117

Contents

required 7-10: If your application uses a file selection dialog box, it contains
the following components:
� A directory Text component showing the current

directory path. The user can edit the directory Text
component and press <Return> or <Enter> to change the
current directory.

� A group of push buttons, including a command button,
and Update, Cancel, and Help buttons. The command
button is typically labeled Open or Save, but if there is
another label that better describes the resulting action
(such as Include), that label should be used. Activating
the command button carries out the corresponding action
and dismisses the file selection dialog box.

� For applications that allow saving to different formats, an
option button allowing users to specify the format when
saving a file.

� A file name Text component for displaying and editing a
file name. This component is optional when the file
selection dialog box is used to choose an existing file or
directory.

118 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

FIGURE 7–4 Example of an Open file selection dialog box

Required 7-17: The file selection box displays the contents of a directory in
the contents list when the file selection box is initialized,
when the user presses Enter or Return in the directory text
component, and when the user opens a directory in the
contents list. The contents list is updated each time the
contents of the directory changes.

This specification ensures the consistent operation of a
directory and file search in a file selection dialog box.

Optional ht: Directory and file name lists should be presented
alphabetically, case insensitive. The first item on the directory
list should be the parent directory and it should be labeled
“..”.

Recommended de: The file selection dialog box should not display hidden (dot)
directories or files, unless your users depend on using these
types of files. If your application does support displaying
hidden files, you should supply a check box allowing users
to toggle between showing and not showing hidden files, or
else allow users to toggle between showing and hiding files
at a global level in your application.

Chapter 7 • Common Dialogs 119

Recommended df: The file selection dialog box should not show the full path
names for files and directories, but should only show the
relative names, except for the directory text field

The global Common Desktop Environment setting should be:

XmFileSelectionBox.fullPathMode: false

Unless your application overrides this behavior, your file
selection dialog box should not show full path names in the
list boxes.

Required dg: In general, the file selection dialog box should recall the
directory location that was previously set by the user.

For example, if the user brings up Save As and navigates to
/users/jay/letters to save the file, the next time the
user brings up Save As, the file selection box should be in the
directory /users/jay/letters. This information,
however, should not be recalled once the user has closed the
primary window, but should resort to the default directory.

If your application supports multiple primary windows, each
window should recall the directory location that was set for
that window.

File Selection Dialog Box Behavior

Optional hq: The file selection dialog box should come up in a directory
that makes sense for the task. For example, when saving a
new file from an editor, the file selection box should come up
in the user’s home directory. If the user navigates to some
other directory within the file selection box, the application
should remember that directory the next time it is brought
up.

Optional hr: Users should never be allowed to overwrite an existing file
through the file selection box without a warning dialog box
prompt.

Optional hs: Keyboard focus should be placed in the file name field each
time users bring up a file selection dialog box.

120 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Labeling

Optional hu: Labels should be clear. In the English language, use the
following labels for the file selection dialog box fields and
lists:

Component Label

Directory text field Enter Path or Folder Name

Filter text Field Filter

Directory list Folder

Contents list Files

File text field Enter Filename:*

Optional hv: Optionally, application developers can make this label more
instructive and specific, such as Enter File to Open for Open
dialog boxes. (see following sections for specific
recommendations).

These labels should be the default labels. If they are not set by
default, you need to set them via resources in your
application’s app-defaults file.

Recommended he: When the file selection box is used to specify an existing file
(for example, to open a document), the command button is
normally labeled Open and it should be the default action.

Required hj: When the file selection dialog box is used to specify a new file
name (for example, a Save As dialog box), the command
button is normally labeled Save and is the default action. This
specification ensures the uniform appearance of a file
selection box across applications.

Button Activation

Recommended hf: If the Update button is activated while a directory is selected
in the contents list, the directory is opened, its contents are
displayed in the contents list, and the directory text is
updated.

Required hg: If the Open button is activated while the appropriate file is
selected in the contents list, the file is utilized by the
application and the file selection box is dismissed.

Chapter 7 • Common Dialogs 121

Selection and Navigation

Required 7-12: Double-clicking BSelect on an item in the contents list selects
that item and activates the default action. In all cases,
double-clicking BSelect on a directory in the contents list
opens that directory and displays its contents in the contents
list (the default action is Open).
� When the file selection dialog box is used to choose an

existing file, double-clicking BSelect on an appropriate
file in the contents List chooses that file and dismisses the
file selection dialog box (the default action is Open).

� When the file selection dialog box is used to choose an
existing directory or to specify a new directory or file, the
files list should not appear.

Required 7-13: The normal text navigation and editing functions are
available in the text components for moving the cursor
within each text component and changing the contents of the
text.

These actions provide a convenient way to choose a directory
or file name from the corresponding List while focus remains
in the Text component.

Optional 7-15 Your application allows the user to select a file by scrolling
through the list of file names and selecting the desired file or
by entering the file name directly into the file selection text
component. Selecting a file from the list causes that file name
to appear in the file selection text area.

This method for selecting a file needs to be consistent across
applications.

Required 7-16 Your application makes use of the selection when one of the
following occurs:
� The user activates the command push button while an

appropriate item is selected in the contents List.
� The user double-clicks BSelect on an appropriate file in

the contents list.
� The user presses Return or Enter while the file name text

component has the keyboard focus and contains an
appropriate item.

Guidelines for Specific File Selection Dialog Box
Uses
The following guidelines apply for specific uses of the file selection dialog box, and
should be observed in addition to the more general guidelines.

122 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Open Dialog

Recommended hm: If the user has opened the application without supplying a
file name argument, the Open dialog box should use the
user’s home directory as the default directory.

An exception to this rule might be made if a clearly more
useful directory can be identified; for example, the icon
editor might default to $HOME/.dt/icons. For applications
that allow editing, never default to a directory in which the
user does not have read and write permission, such as
/usr/dt/bin.

Required hn: If the user has opened the application with a file name
argument, the Open dialog box should default to the
directory in which that file resides.

Save As Dialog

Optional ho: When using the file selection dialog box in Save As capacity,
provide a default name of Untitled, place the location cursor
in the file name field and highlight the file name text to
create a “delete pending type-in” mode. If the current
directory already has a file of that name, create a name
Untitled2, and so forth.

Optional hp: When using the file selection dialog box in a Save As
capacity, add a file name extension if the application
supports file typing by extension, and make this extension
visible in the file name field. Do not highlight the extension
to create a “delete pending type-in” mode, but allow users to
modify the extension or delete it explicitly.

After saving a file using “Save As”, the application should
use that newly saved file as the current file, and all
subsequent edits and saves should apply to that newly
created file.

The Save As dialog should use the same directory in which
the current file resides.

Chapter 7 • Common Dialogs 123

Directory Selection Dialog

Recommended hh: When the file selection dialog box is used to choose an
existing directory (for example, to install a set of files into the
chosen directory) or to specify a new directory, the command
button should be given an appropriate label, such as Install,
Choose, Create, or OK. If this button is activated while the
appropriate directory is selected in the contents list, the
directory is utilized by the application and the file selection
box is dismissed.

Required hi: When the file selection dialog box is used to choose an
existing directory, there must also be an additional button,
labeled Update, that is enabled whenever a directory is
selected in the contents list, and opens the directory. This
Update button is the default action.

Optional hk: When the file selection dialog box is used to choose an
existing file, files are shown in the contents list but they are
all disabled. Double-clicking BSelect on a disabled file name
has no effect.

Print Dialog Box
These are guidelines for a common look and feel print dialog box, which may be used
wherever a print action is available. The print dialog is not a widget. Developers are
encouraged to use these guidelines as a starting point and to add functionality as
appropriate for their applications. It is important, however, to remember that users
expect consistency from one print dialog to another; therefore, the common area
should be left as unchanged as possible. Use a print dialog box whenever users would
want to select options for printing a file, a selection, or other type of object. If your
application supports printing, you should use a print dialog box, and you may
provide an optional nondialog method of printing directly, that is, “silent” printing.

Standard Print Menu Items for Applications
Print...: brings up a print dialog so the user can choose from the available options
before printing the selected objects.

Print One: prints one copy of the selected objects, using the default print methods
previously defined by the user. The user is not prompted for further information
through a dialog.

124 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Guidelines for Common Print Dialog Functions
Applications are expected to provide many different types of printing functions and
capabilities. This section provides guidelines for the most commonly used types of
print options so that appearance and behavior for these items is consistent across
applications. These common items are grouped into a common area that is located in
the top portion of the print dialog. Figure 7–5 shows a typical print dialog. The
common area is the area above the separator line.

FIGURE 7–5 A basic print dialog. box

The common area contains the following components:

� Dialog Title: Print
� File: this is a noneditable field. It displays the file name (if available). If the user is

printing a nonfile object, this field should display the object type if possible (for
example, mail message, calendar appointment).

� Printer: A combination box; could also be a text field. It contains the name of the
printer destination. The default entry is labeled Default, that is, whatever printer is
the default destination. The user may select or type any other valid printer name. If
it is a combination box, the list of printers could reflect what is appropriate for that
printing job. The dialog should retain the last user entry or selection made.

� Copies: A spin box (numeric widget) where the user selects or types the number of
output copies desired. Optionally, this could be a text field.

� Banner Page Title: A text field where the user may enter the text the user wants to
appear on the banner page (that is, cover page) of their output. This field should
pick up the default banner title if the user has set it elsewhere. Optionally, you
could add a check box to turn the banner page off completely.

� Separator lines: Used between the common fields, the application-specific fields,
and the buttons.

� The print dialog contains the following standard buttons:

Chapter 7 • Common Dialogs 125

� Print: Accepts the user’s choices in the dialog, prints the selected objects, and
exits the dialog.

� Cancel: Ignores the user’s choices in the dialog, prints nothing, and exits the
dialog.

� Help: Brings up an associated Help window.
� Optional buttons could include Reset, Print Preview.

Guidelines for Application-Specific Print Dialog
Box Functions
The standard print dialog application-specific area is the bottom half of the dialog box
illustrated in Figure 7–6.

Depending upon the application or function, developers may choose to add more
fields to the common Print dialog. The controls in the dialog are laid out horizontally;
if more fields are needed, it is suggested that you add another separator line, then
place the additional controls below it, as illustrated. If any additional push buttons are
needed, they should go between the Print and Cancel buttons.

Optional Fields
Some possible optional fields include:

Print Page Numbers This checkbox applies only when ASCII files are being
printed. If the objects selected for printing are non-ASCII,
this control should be dimmed. When turned on, output
pages will be numbered.

Print Command Options A text field where the user may type an lp command or
script name to override the instructions in the other fields.
If you want to provide print methods besides lp, rename
this field (Print Method, Use Print Command, and so on).

Priority This might be an option menu containing values for High,
Medium, and Low, or might be a spin box containing
numbers.

Orientation An option menu containing the values Portrait and
Landscape (see Figure 7–6).

Resolution An option menu or a spin box containing numeric values,
in dpi (see Figure 7–6).

Sides An option menu containing the values Single and Double
(see Figure 7–6).

Paper Size An option menu containing the values Letter, Legal, and so
on. (Figure 7–6).

126 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Paper Source An option menu containing the values Upper Tray, Lower
Tray, and so on. (see Figure 7–6).

If the dialog box is to be used for an application, consider:

Page Range Two text fields, from x to y (see Figure 7–7).

Reduce/Enlarge A spin box containing values for percentages (see Figure 7–7).

Print Preview A button that brings up a WYSIWYG representation of the output.

Some Sample Layouts
Figure 7–6and Figure 7–7show some example Print dialog box layouts.

FIGURE 7–6 Example print dialog box layout for general printing

Chapter 7 • Common Dialogs 127

FIGURE 7–7 Example print dialog box layout for printing from applications

The Properties Dialog
User a properties dialog if your application provides settings that control the behavior
of an application or the characteristics of an object.

Guidelines

Recommended cz: If your application manages objects and allows the user to see
or modify settings for these objects, these settings are
displayed in an object properties window that is accessible
from a Properties ... choice in the Edit, <object-type>, or
Selected menus, as well as from the pop-up menu associated
with the object.

Recommended da: If your application provides access to a Properties or Options
window, this window includes the following set of buttons in
the order listed, with the specified functionality, when
supported by your application.

128 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

OK Applies any changes made to
components in the DialogBox and
dismisses it. OK may be replaced by a
more appropriate label (for example,
Add). The alternate label should be a
verb phrase.

Apply Applies any changes made to
components in the DialogBox and does
not dismiss it.

Reset Cancels any changes that have not yet
been applied by your application. The
controls within the DialogBox are reset
to their state since the last time the
DialogBox action was applied. If no
changes have been applied within the
current invocation of the DialogBox, the
controls are reset to their state as of
when the DialogBox was first
displayed.

Reset to Factory Cancels any changes that have not yet
been applied. Components in the dialog
box are reset to their default state or
value as specified by the vendor that
delivered the application (that is, the
controls are restored to the original
factory settings).

Cancel Dismisses the dialog box without
performing any actions not yet applied.

Help Provides help for the dialog box.

Recommended db: If your application provides a Properties window that
displays settings for a selected object, the Properties window
tracks the current selection and modifies the state of any
controls to accurately reflect the properties of the currently
selected object.

The About Dialog Box
The About dialog box is used to present version and other information about your
application. Use as the dialog that comes up when the user chooses About
<application name> from the Help menu.

Chapter 7 • Common Dialogs 129

Guidelines for the About Dialog Box
The About dialog box should contain a minimum set of information about the
application that is visible in a single text pane.

That minimum set should be:

� Application name
� Version number
� Release date
� Copyright

Required di: The About dialog box should contain a Close button. Other
buttons are optional, such as Help and More.

The following information might also be contained in the About box:

Recommended dj: Information about the operating system or other aspects
required to run the application, for example, Common
Desktop Environment 1.0.

Optional dk: A More Information dialog box for additional information
such as development team credits, licensing, client or xhost
information.

FIGURE 7–8 Example About dialog box

130 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

FIGURE 7–9 About dialog box with a More button

Chapter 7 • Common Dialogs 131

132 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

CHAPTER 8

Application Messages

From time to time, an application needs to present feedback to keep the user informed
about the progress of ongoing activities and to alert the user to situations that require
intervention. The Common Desktop Environment Motif interface provides many ways
to provide such feedback to the user. This section describes the use of error messages,
informational messages, and other message dialog boxes.

Error Messages and Informational
Messages
Error messages and informational messages are appropriate in different situations.
Present an error message when it is crucial to bring the information to the user’s
attention because the intended action cannot be carried out without user intervention.
Present informational messages to describe progress, indicate short-term status, or
give helpful suggestions. Informational messages should be gentle and nondisruptive
to the flow of activity. Therefore, you must assume that the user may not notice
informational messages. If it is important that your users see a particular piece of
information, present it in an error dialog box or in another type of message dialog box.

Error Messages
Use error messages to present crucial messages to the user when user intervention is
necessary for the successful completion of an operation. Error messages are intended
to bring a problem to the user’s attention and to help the user resolve the problem.

133

Guidelines for Error Messages
Use a Motif error dialog box to present application error messages. Figure 8–1shows a
typical error dialog box. Keep in mind the basic three-part structure for error
messages. Whenever possible, each message should tell the user:

� What happened
� Why it happened
� What should be done to correct the problem

FIGURE 8–1 An error dialog box.

The text describes the error, why it happened, and offers to retry the operation. A Help
button in the lower right will bring up appropriate online documentation.

Recommend gd: Error messages displayed by your application indicate the
possible cause of the error and indicate the possible actions
the user can take in response.

Keep the information in the ErrorDialog clear and concise.
The idea is to alert users to the problem, have them quickly
understand the problem, and learn how to recover from it. A
large amount of text makes it more difficult for the user to
focus on the critical information.

Recommend gc: Messages displayed by your application do not assume that
the user has any expert knowledge about computer systems
in general, or the UNIX system in particular.

It is appropriate to assume that the user has knowledge about basic terms used within
the desktop, such as files or programs. Such knowledge can be assumed to have been
learned by the user through tutorials, online help and user documentation. However,
terminology that is typically understood only by an expert or frequent computer user
should be avoided unless the application is specifically targeted at computer

134 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

professionals. Likewise, messages returned to your application by the underlying
operating system should not be passed through to the user, but instead, should be
“translated” into language that can be understood by the novice user.

Try to make the error message specific to the immediate situation and as helpful as
possible. For example, if the user has entered an invalid name, the error message
should not simply state that an invalid name was entered. Instead, tell the user which
character was invalid. If the rules for valid names are simple, describe them in the
error message; otherwise, describe the rules in the online help and give the user access
through the Help button.

In many cases, the only user response to an error dialog box will be to click the OK
button to dismiss the dialog box. However, often it may be possible to offer to resolve
the problem for the user. If you have buttons for user actions, be sure to also include a
Cancel button.

Optional ge: Your application uses audio feedback, in addition to any
messages displayed, to signal error conditions and events.

Optional gh: Urgent conditions that require immediate attention by the
user, no matter which application or desktop service the user
is currently accessing, are brought to the user’s attention
using audiovisual notification. The alarm is signaled in the
current workspace regardless of the workspace in which the
application resides.

Some applications, such as network monitors or stock watch
programs, may need to grab the user’s immediate attention
to some event. Both visual and audio alarms should be used
to signal the user. The user should be able to acknowledge
the alarm and cause it to cease.

Keep in mind that the user may be running several applications at once, and may be
focused on another application while your application is running in the background
and encounters an error. The application name should appear in the title bar, to help
the user identify the source of the error message.

Once users have read an error message, they may need to access other parts of their
system to resolve the problem. Whenever reasonable, posting an error dialog box
should not block further interaction with your application and, if at all possible, it
should not block other applications.

Optional gq: Your application writes error messages to the Common
Desktop Environment error log when it is not appropriate to
display these to the user in a message dialog box, but when
the message may nevertheless be useful in diagnosing
problems.

Chapter 8 • Application Messages 135

You might also write error messages that are displayed to the user in the error log if it
would be valuable to the user or an administrator to refer to these messages at some
later time. Messages written to the error log should provide additional information
about the error and should state the context in which the error occurred.

Access to Online Help

Recommended gj: Your application provides a Help button in all message
dialog boxes, except those that contain self-explanatory
messages.

Applications should be designed with both the expert and
novice user in mind. The novice user must be able to access
additional information clarifying the message, the
circumstances under which it might have been displayed,
and what the user should do in response to the message.

The brief description of the problem in the ErrorDialog should be sufficient for the
experienced user, but may not contain enough information to enable less experienced
users to resolve the problem. Rather than confusing the dialog with additional text,
use the Help button to take the user directly to the online documentation for a more
detailed description of the error, its causes, and methods for resolving the issue. Users
who still need additional help can browse the general online help facilities from there.
A few notices may not need Help buttons because the text of the message will cover
the condition sufficiently.

For more information on how to access online help directly from the error dialog box
see the Help System Author’s and Programmer’s Guide.

Helpful Hints

Optional gh: Urgent conditions that require immediate attention by the
user, no matter which application or desktop service the user
is currently accessing, are brought to the user’s attention
using audiovisual notification. The alarm is signaled in the
current workspace regardless of the workspace in which the
application resides.

Applications should not send messages to command entry windows or to the UNIX
console (that is, applications should not write to the default UNIX files stdout or
stderr). Applications are often launched by double-clicking icons in the File
Manager, Front Panel, or Application Manager, which means users will not see

136 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

messages that are written to stdout or stderr. Even if the application is launched
from a terminal window, the user may subsequently close the terminal window, and
messages appearing there will often not be seen. Worse, if the user does not have a
console window running (the console window is difficult to launch in Common
Desktop Environment), messages intended for the console may blast across the screen
and make everything look ugly.

Informational Messages
Use informational messages in the window footer to present progress, status, or
helpful information to the user. Informational messages should not be used to present
crucial information, because informational messages are deliberately designed to be
nonobtrusive and many users may not notice them.

Guidelines for Informational Messages

Recommended gi: Your application uses footer messages only to communicate
status, progress, or information (help) messages. It does not
use the footer to present error messages.

Motif provides a message area at the bottom of the main window, but this is rather
clumsy and ugly. A more elegant approach is to provide a wider margin below the
data area of the main window where status information can be unobtrusively
displayed, as shown in Figure 8–2. For other examples of the use of informational
messages, see the status message area in the Common Desktop Environment Mailer.

FIGURE 8–2 An informational message in the lower margin of a window.

The text “Loading earth.gif...” is displayed at the start of the load and the text “Done”
is added when the load completes. The entire message is removed 5 seconds later.

Informational messages in the footer area should be left-justified and displayed in a
light font in keeping with their unobtrusive nature. Note that the margin where
informational messages are displayed should not accept mouse focus. Progress
messages in the footer area should normally be displayed only while the operation is
in progress. Notices and other information that is no longer valid should be removed
within a few seconds to avoid confusion about whether the information is current.

Chapter 8 • Application Messages 137

Other Message Dialogs

Recommended gk: Your application uses the appropriate style dialog box for the
display of messages to the user.

Optional gl: An information dialog box is used to display status,
completion of activity, or other informative types of
messages to which the user need not necessarily respond
other than to acknowledge having read the message.

Minimally, information dialog boxes should have an OK
button so that the user can dismiss the dialog box. If there is
additional information available about the situations under
which the message is displayed or other references for the
topic to which the message relates, then a Help button
should be included.

Optional gn: A question dialog box is used to ask questions of the user.
The question is clearly worded to indicate what a Yes
response or a No response means. The buttons displayed are
Yes, No, and Help. Help provides additional information as
to what the application will do in response to a Yes or No
choice.

Where possible, you should replace the label for the Yes and
No buttons to make it clear what action will be performed as
a result of choosing either option. For example, if the user
has made changes to a document and has not saved these
but has chosen the application’s Exit option, you might
display a question dialog box that asks, “Changes have not
been saved. Do you want to save these before exiting?” The
buttons should be Save, Discard, Cancel, and Help. These
labels allow the more experienced user to click the correct
button without having to carefully read the question and
relate it to the button labels.

Optional go: A warning dialog box is used to communicate the
consequences of an action requested by the user that may
result in the loss of data, system or application accessibility,
or some other undesirable event. The dialog box is presented
before the action is performed and offers the user the
opportunity to cancel the requested operation. The buttons
displayed are Yes, No, and Help, or Continue, Cancel, and
Help. Help provides additional information on the
consequences of performing the action requested.

The use of Yes and No or Continue and Cancel depends on
the wording of your message. The labels for Yes and No
should be replaced as suggested previously. Continue may
be replaced with a label more specific to the action that will
be performed.

138 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Optional gp: A working dialog box is used to display in-progress
information to the user when this information is not
displayed in the footer of your application’s window. The
dialog box contains a Stop button that allows the user to
terminate the activity. The operation is terminated at the next
appropriate breakpoint, and a confirmation might be
displayed asking whether the user really wants to stop the
activity. The confirmation message might state the
consequences of stopping the action.

Work-in-Progress Feedback

Recommended gt: If any command chosen by the user is expected to take
longer than 2 seconds to complete, but less than 10 seconds,
your application displays the standard busy pointer as
feedback that the command is executing.

The user must receive assurance that your application has
“heard” the request and is working on it. If the results of the
request cannot be displayed immediately, some feedback
must be provided. The busy cursor should be displayed
within 0.5 seconds of execution of the command.

Recommended gu: If any command chosen by the user is expected to take
longer than 10 seconds to complete, your application
displays a working dialog box or other feedback of similar
character that indicates that the application is working on the
request. The feedback should reveal progress toward
completion of the activity.

If an activity is expected to take a significant amount of time
(10 seconds or more), your application should display
feedback stronger than the busy pointer. Displaying the busy
pointer for long amounts of time may lead the user to
conclude that the application has become “hung.” A progress
indicator should be displayed in these scenarios that
indicates that the application is still functioning and is
working on the user’s request. The progress indicator should
show how much of the activity has been completed and what
amount remains.

Chapter 8 • Application Messages 139

Recommended gv: When your application displays work-in-progress feedback
to the user, it does not block access to other applications and
services within the desktop environment.

Multitasking should always be supported and thus your
application should allow the user to access other services
while it is busy performing some activity. Preferably, the user
is also able to access other features within your application
even though it is currently working on another request.
When this is supported, your application should display an
enhanced busy pointer that indicates that the application is
busy but still willing to accept input.

140 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

CHAPTER 9

Designing for Accessibility

This chapter provides guidelines for making software applications accessible to people
with disabilities.

Accessibility
Accessibility means removing barriers that can prevent people with disabilities from
participating in substantial life activities, including the use of services, products, and
information.

Removing barriers to access often results in benefits for a wide range of people—not
only those with disabilities. For example, until curb cut ramps were placed on
sidewalks, it was difficult or impossible for people in wheelchairs to cross a street. In
addition to providing a wheelchair solution, curb cuts have benefited people on
bicycles, as well as those pushing shopping carts and baby carriages.

Designing accessible software has similar beneficial consequences for a wide range of
users. Solutions that allow use of the keyboard instead of the mouse aid users
involved in keyboard-intensive tasks. Users of portables or those in open offices with
telephones ringing may not be able to use or hear sounds. Providing visual cues to
augment or replace audible cues assists these users, in addition to assisting hearing
impaired users.

There is a growing market for accessible computer products. Approximately 40 million
Americans have a disability of some type, and as the population ages, more and more
people will develop age-related disabilities (25% by age 55, jumping to 50% at age 65).

141

Like all computer users, users with disabilities vary in age, computer experience,
interests, and education. When barriers are removed, the computer gives them a tool
to compete with all other users on an equal basis. Users with disabilities are engineers,
artists, scientists, designers, lawyers, administrative assistants, and software engineers.
The common thread among these diverse users is that computers play an important
role in their daily work.

Not only does providing access provide benefits for a wide range of users, but it is
also a requirement in all current federal contracts under section 508 of the Federal
Rehabilitation Act. In the commercial sector, the Americans with Disabilities Act
(ADA) calls for similar considerations when reasonably accommodating current and
prospective employees.

Access and the Style Guide
Many users with disabilities can use application software without any adjunct
adaptive software or hardware, while others may use additional technology such as
screen readers or speech recognition. In either case, it is important to follow required
style guidelines because those guidelines provide standard methods that make it
possible for users with disabilities to access applications either directly or through
adaptive software and hardware.

The easiest way to ensure accessible applications is to follow the style guidelines, and
to read and follow the advice offered in this chapter.

Physical Disabilities
Physical disabilities can be the result of congenital conditions, accidents, or excessive
muscular strain. Examples include spinal cord injuries, degenerative nerve diseases,
stroke, and repetitive stress injuries.

While physical capabilities vary greatly between and within the disability examples
cited, they have a common requirement for keyboard access to all controls, features,
and information in application software. Providing comprehensive keyboard access is
essential to ensure that the user who cannot utilize a mouse can productively use
Motif applications.

Full keyboard access to an application is necessary, but not sufficient to make
applications accessible. The other central requirement is to follow the key mapping
guidelines found throughout this style guide. Consistent use of these mappings not

142 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

only provides more usable applications for all users by reducing learning across
applications, but also increases the effectiveness of alternate I/O technology such as
speech control and screen reading software.

Guideline

Recommended id: All application functions are accessible from the keyboard.

Visual Disabilities
Visual disabilities may require use of tools ranging from reading glasses, to large-sized
displays and fonts, to screen reading software that enables completely blind users to
navigate and hear what is on the screen.

Reading small fonts can be challenging for users with low vision. All fonts, including
those in text panes, menus, labels, and information messages should be easily
configurable by the user—font size and type should never be hard coded.

Interpreting information that depends upon color (for example, red = stop, green = go)
can be difficult for people with visual impairments. A significant number of people are
color blind and are unable to see differences between some colors. For these reasons,
never use color as the only source of information.

In addition to being difficult to interpret, some background and text color
combinations can result in text that is difficult to read for users with visual
impairments. Again, the key is to provide choice. Never hard code color choices. Users
should always have the capability to override default colors, so they can choose the
colors that work best for them.

Provide meaningful names for every widget instance. Meaningful names help screen
reading software give useful information to users with visual impairments. Rather
than naming an eraser graphic widget5, for example, call it eraser or some other such
descriptive name.

Without such descriptive information, blind or low-vision users cannot interpret
unlabeled, graphically labeled, or custom widgets. Providing this information is a
requirement for access in such cases. As an added bonus, meaningful widget names
make for code that is easier to debug.

Finally, remember that many users with visual disabilities depend upon keyboard
navigation and control, and they will not be using a pointing device.

Chapter 9 • Designing for Accessibility 143

Guidelines

Recommended ie: Colors should not be hard coded.

Recommended if: Graphic attributes, such as line, border, and shadow, should
not be hard coded.

Recommended ig: Font sizes and styles should not be hard coded.

Recommended ih: All application code uses descriptive names for widgets.
Such descriptive names for widgets using graphics instead of
text (for example, palette items and icons) allow screen
reading software to provide descriptive information to blind
users.

Hearing Disabilities
People with hearing disabilities either cannot detect sound or may have difficulty
distinguishing audio output from typical background noise.

Never assume that users will hear an auditory notice. Remember that users sitting in
airplanes, in noisy offices, or in other public places where sound must be turned off
need the same types of visual notification as hearing impaired users. Additionally,
some users are able to hear audible cues only at certain frequencies or volumes.
Volume and frequency of audio feedback should be easily configurable by the user.
Never hard code these parameters.

Sounds unaccompanied by visual notification, such as a beep indicating that a print
job is complete, are of no value to users with hearing impairments or others who are
not using sound. While such sounds can be valuable, never create a design that
assumes sounds will be heard.

On the other hand, it would be intrusive for most users to see a warning window
whenever a printout is ready. Visual notices can take the form of changing an icon,
posting a message in an information area, or providing a message window as
appropriate. Anyone using a system in a public area will benefit from the option of
choosing to see rather than hear such notices.

The key point is to provide users with a choice. When appropriate, provide visual as
well as audio notification. If visual notification does not make sense as the default
behavior, then be sure to provide it as an option.

144 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Guidelines

Recommended ii: Interactions do not depend upon the assumption that a user
will hear an audible notification.

Recommended ij: Where appropriate, users can choose to receive cues as audio
or visual information.

Recommended ik: The application does not overuse or rely exclusively on
audible information.

Recommended il: Users can choose to configure the frequency and volume of
audible cues.

Language, Cognitive, and Other
Disabilities
The access guidelines outlined for visual, hearing, and physical disabilities typically
benefit users with cognitive, language, and other disabilities by allowing them to
choose effective means of communication, sometimes through the use of adaptive
technology.

Guidelines

Recommended im: Tear-off menus and user configurable menus for key
application features may be provided for users with
language and cognitive disabilities.

Existing Keyboard Access Features
When designing CDE Motif applications, be aware of existing system-level key
mappings used by access features in the X Window System server. These server
features, known as AccessX, provide basic workstation accessibility, typically used by
people with mobility impairments. AccessX became a supported part of the X
Windows server in version X11R6.

Chapter 9 • Designing for Accessibility 145

The built-in, server-level access features include:

StickyKeys Provides locking or latching of modifier keys (for example, Shift,
Control) so that they can be used without simultaneously pressing the
keys being modified. StickyKeys allow single-finger operation of
multiple key combinations.

RepeatKeys Delays the onset of key repeat, allowing users with limited
coordination time to release keys before multiple characters are sent.

SlowKeys Requires a key to be pressed and held for a set period before keypress
acceptance. This allows users with limited coordination to accidentally
press keys without sending keypress events.

MouseKeys An alternative to the mouse which provides keyboard-based explicit
control of cursor movement and all mouse button press and release
events.

ToggleKeys Indicates locking key state with a tone when pressed; for example,
Caps Lock.

BounceKeys Requires a delay between keystrokes before accepting the next
keypress so users with tremors can prevent the system from accepting
inadvertent keypresses.

Guideline

Recommended in: Application keymappings do not conflict with existing
system-level key mappings reserved for access features in the
X Windows server as shown in Table 10-6.

Resources for More Information on
Accessibility
For more information about software accessibility, consult the following organizations,
conferences, and books.

146 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Organizations
Clearinghouse on Computer Accommodation (COCA)

18th & F Streets, NW

Room 1213

Washington, DC 20405

(202) 501-4906

A central clearinghouse of information on technology and accessibility. COCA
documentation covers products, government resources, user requirements, legal
requirements, and much more.

Sensory Access Foundation

385 Sherman Avenue, Suite 2

Palo Alto, CA 94306

(415) 329-0430

A nonprofit organization that consults on application of technology "to increase
options for visually and hearing impaired persons." Publishes newsletters on adaptive
technology.

Special Needs Project

3463 State Street

Santa Barbara, CA 93105

(805) 683-9633

Vendor of books for professionals and families on a wide variety of disability issues.

Trace Research and Development Center

S-151 Waisman Center

1500 Highland Avenue

Madison, WI 53528

(608) 262-6966

A central source for the current information on assistive technologies as well as a
major research and evaluation center. Trace distributes databases and papers on
adaptive technology and resources.

Chapter 9 • Designing for Accessibility 147

Conferences
CSUN

Conference on Technology and Persons with Disabilities

Every spring in Los Angeles, California

(818) 885-2578

Closing the Gap

Conference on Microcomputer Technology in Special Education and Rehabilitation

Every fall in Minneapolis, Minnesota

(612) 248-3294

Bibliography
Brown, Carl. Computer Access in Higher Education for Students with Disabilities, 2nd
Edition. George Lithograph Company, San Francisco. 1989.

Cornsweet, T.N. Visual Perception. Academic Press, New York. 1970.

Edwards, A., Edwards, E., and Mynatt, E. Enabling Technology for Users with Special
Needs (InterCHI ’93 Tutorial). 1993.

Johnson, M, and Elkins, S. Reporting on Disability. Advocado Press, Lousville, KY,
1989.

Managing Information Resources for Accessibility, U.S. General Services
Administration Information Resources Management Service, Clearinghouse on
Computer Accommodation, 1991.

Vanderheiden, G.C., Thirty-Something Million: Should They Be Exceptions?, Human
Factors, 32(4), 383-396. 1990

Vanderheiden, G.C. Making Software More Accessible for People with Disabilities,
Release 1.2. Trace Research & Development Center, 1992.

Walker, W.D., Novak, M.E., Tumblin, H.R., Vanderheiden, G.C. Making the X Window
System Accessible to People with Disabilities. Proceedings: 7th Annual X Technical
Conference. O’Reilly & Associates, 1993.

148 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

PART II Certification Checklist

149

150 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

CHAPTER 10

Certification Checklist

The Common Desktop Environment Certification Checklist provides the list of
requirements for Common Desktop Environment application-level certification.
Common Desktop Environment requirements consist of the OSF/Motif Release 1.2
requirements with Common Desktop Environment-specific additions.

How to Use the Checklist
You certify your own application by comparing its behavior with that specified in the
checklist. For each checklist item, check Yes only if your application performs exactly
as described for that item. If you have not implemented a specified type of behavior in
any manner anywhere in your application, check N/A (not applicable) for the items
pertaining to that behavior.

The checklist describes keys using a model keyboard mechanism. Wherever keyboard
input is specified, the keys are indicated by the engravings that they have on the
OSF/Motif model keyboard. Mouse buttons are described using a virtual button
mechanism to better describe behavior independent from the number of buttons on
the mouse. For more information on the model keyboard and virtual button
mechanisms, consult the Preface and Section 2.2.1, “Pointing Devices” of the
OSF/Motif Style Guide, Revision 1.2.

Note – This checklist uses Common Desktop Environment typographical conventions
for keyboard and mouse inputs. These conventions differ from those used in the
OSF/Motif Style Guide, Revision 1.2. For information, see

151

By default, this checklist assumes that your application is being designed for a
left-to-right language environment in an English-language locale. Some sections of the
checklist may require appropriate changes for other locales.

As you compare the behavior of your application to the requirements in the checklist,
we recommend that you follow along in the OSF/Motif Style Guide, Revision 1.2.
Each item in this checklist contains the corresponding section number from the
OSF/Motif checklist, if the item came from that list. Each item in the checklist is also
followed by a brief explanation or justification. If you do not understand a particular
item, refer to the appropriate section in the OSF/Motif guide and check the glossary
for any terms that are unclear.

The headings used in this checklist correspond to the headings in the OSF/Motif Style
Guide, Revision 1.2 and the checklist items are labeled with the numbers used in that
book. The Common Desktop Environment-specific additions are labeled with
alphabetic identifiers.

Each checklist item also has a priority label: Required, Recommended, or Optional.
The Required items must be followed for an application to be Common Desktop
Environment compliant. Recommended items should be followed where feasible.
Optional items are alternative implementations which the interface designer can
choose.

Preface

y n/a n

Required _ _ _ 1-1: Each of the nonoptional keys described on the OSF/Motif
model keyboard is available either as specified or by using
other keys or key combinations if the specified key is
unavailable (Preface).

The model keyboard does not correspond directly to any
existing keyboard; rather, it assumes a keyboard with an
ideal set of keys. However, to ensure consistency across
applications, the nonoptional keys or substitutes for them
must always be available.

152 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Input Models

Keyboard Focus Model

y n/a n

Required _ _ _ 2-1: Only one window at a time has the keyboard focus. The
window that has the focus is highlighted. Within the
window that has the keyboard focus, only one component at
a time has the focus.

The keyboard focus determines which component on the
screen receives keyboard events. This rule prevents
confusion about which window and component have the
focus.

Required _ _ _ 2-2: When your application uses an explicit focus policy,
pressing BSelect does not move focus to a component that is
not traversable or does not accept input.

An explicit focus policy requires the user to explicitly select
which window or component receives the keyboard focus.
Generally, the user gives the focus to a window or
component by pressing BSelect over it. However, this policy
must not allow the user to give focus to a component that is
not traversable or does not accept input.

Required _ _ _ 2-3: When your application uses an explicit focus policy, the
component with the keyboard focus is highlighted by a
location cursor.

The user needs to know the location of the keyboard focus
to be able to control an application.

Input Device Model

y n/a n

Chapter 10 • Certification Checklist 153

Required _ _ _ 2-4: Your application supports methods of interaction for
keyboard-only users. All features of your application are
available from the keyboard.

Some users may not have access to a pointing device. These
users need to be able to access the full functionality of the
application from the keyboard. Additionally, advanced users
will be able to use the keyboard to perform some tasks more
quickly than with a pointing device.

Required _ _ _ 2-5: Your application uses the following bindings for mouse
buttons:

BSelect Used for selection, activation, and setting
the location cursor, and is the leftmost
button, except for left-handed users, where
it can be the rightmost button.

BTransfer Used for moving and copying elements,
and is the middle mouse button, unless
dragging is integrated with selection or the
mouse has fewer than three buttons.

BMenu Used for popping up menus, and is the
rightmost button, except for left-handed
users, where it can be the leftmost button,
or unless the mouse has fewer than three
buttons. If the mouse has one button,
BMenu is bound to Alt+BSelect.

These bindings ensure a consistent interface for using
standard mouse-based operations across applications.

Required _ _ _ 2-6: Your application does not warp the pointer unless you have
given the user a means of disabling the behavior.

The pointer position is intended only as input to applications,
not as an output mechanism. An application warps the
pointer when it changes the pointer’s position. This practice
is confusing to users and reduces their sense of control over
an application. Warping the pointer can also cause problems
for users of absolute location pointing devices.

Required _ _ _ a: Components and applications that have functions
corresponding to the Motif/Common Desktop Environment
virtual keys must support those keys.

If these virtual keys are available, the following mappings
should be used. Priorities indicate the importance of
implementing these functions in your application.

Required _ _ _ Help = F1 Pressing the Help key provides the user
with help information in a window or in
the status area.

154 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Required _ _ _ Properties =
Control+I

Pressing the Properties key invokes a
dialog box for making object-specific
settings.

Required _ _ _ Undo =
Control+Z

Pressing the Undo key reverses the effect of
the last applied operation. This is the
primary key mapping for Undo.

Optional _ _ _ Undo =
Alt+Backspace

This is a secondary key mapping for Undo.
It should be supported in addition to
Control+Z to help users migrating from
previous versions of Motif, Microsoft
Windows, or OS/2.

Required _ _ _ Cut =
Control+X

Pressing the Cut key removes the selected
object and places it in the clipboard. This is
the primary key mapping for Cut.

Optional _ _ _ Cut =
Shift+Delete

This is a secondary key mapping for Cut. It
should be supported in addition to
Control+X to help users migrating from
previous versions of Motif, Microsoft
Windows, or OS/2.

Required _ _ _ Copy =
Control+C

Pressing the Copy key places a copy of the
selected object in the clipboard. This is the
primary key mapping for Copy.

Optional _ _ _ Copy =
Control+Insert

This is a secondary key mapping for Copy.
It should be supported in addition to
Control+C to help users migrating from
previous versions of Motif, Microsoft
Windows, or OS/2.

Required _ _ _ Paste =
Control+V

Pressing the Paste key places the contents
of the clipboard at the selected location.
This is the primary key mapping for Paste.

Optional _ _ _ Paste =
Shift+Insert

This is a secondary key mapping for Paste.
It should be supported in addition to
Control+V to help users migrating from
previous versions of Motif, Microsoft
Windows, or OS/2.

Optional _ _ _ Open =
Control+O

Pressing the Open key opens the object,
which is typically the default action.

Optional _ _ _ Stop =
Control+S

Pressing the Stop key cancels an operation.

Optional _ _ _ Again =
Control+A

Pressing the Again key repeats the last
operation.

Chapter 10 • Certification Checklist 155

Optional _ _ _ Print =
Control+P

Pressing the Print key initiates printing.

Optional _ _ _ Save =
Control+S

Pressing the Save key saves the current file.

Optional _ _ _ New =
Control+N

Pressing the New key will create a new
object.

Navigation

Mouse-Based Navigation

y n/a n

Required _ _ _ 3-1: When the keyboard focus policy is explicit, pressing BSelect
on a component moves focus to it, except for components,
such as scroll bars, that are used to adjust the size and
location of other elements.

BSelect provides a convenient mechanism for using the
mouse to move focus when the keyboard focus policy is
explicit.

Required _ _ _ 3-2: When the pointer is on a menu, your application uses BSelect
Press to activate the menu in a spring-loaded manner.

A spring-loaded menu is one that appears when the user
presses a mouse button, remains on the screen for as long as
the button is pressed, and disappears when the user releases
the button. BSelect, mouse button 1, provides a means of
activating spring-loaded menus that is consistent across
applications.

Required _ _ _ 3-3: When the pointer is in an element with an inactive pop-up
menu and the context of the element allows the pop-up menu
to be displayed, your application uses BMenu Press to
activate the pop-up menu in a spring-loaded manner.

The availability of a pop-up menu can depend on the
location of the pointer within an element, the contents of an
element, or the selection state of an element. BMenu, mouse
button 3, provides a consistent means of activating a
spring-loaded pop-up menu.

156 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Required _ _ _ 3-4: If the user takes an action to post a pop-up menu, and a
menu can be posted for both an inner element and an outer
element that contains the inner element, the pop-up menu for
the internal element is posted.

This specification ensures that the pop-up menu for an
internal element is always accessible.

Required _ _ _ 3-5: Once a pop-up menu is posted, BMenu behaves just as
BSelect does for any menu system.

The specified operation of BMenu is for manipulating pop-up
menus.

Required _ _ _ 3-6: BSelect is also available from within posted pop-up menus
and behaves just as in any menu system.

Once a pop-up menu is posted, the user can select an element
from it using the standard selection mechanism, BSelect.

Required _ _ _ 3-7: When a menu is popped up or pulled down in a posted
manner, your application places the location cursor on the
menu’s default entry, or on the first entry in the menu if there
is no default entry.

A posted menu remains visible until it is explicitly unposted.
Placing the location cursor on the default entry allows the
user to select the default operation easily. When there is no
default entry, placing the location cursor on the first entry
yields uniform behavior across applications.

Required _ _ _ 3-8: Your application removes a spring-loaded menu system
when the mouse button that activated it is released, except
when the button is released on a cascading button in the
menu hierarchy.

The concept of a spring-loaded menu system requires that
the menu disappear when the mouse button is released.

Required _ _ _ 3-9: While a spring-loaded menu system is popped up or pulled
down, moving the pointer within the menu system moves
the location cursor to track the pointer.

Once a spring-loaded menu system has appeared on the
screen, the user needs to be able to maneuver the location
cursor through the menu system using the mouse.

Chapter 10 • Certification Checklist 157

Required _ _ _ 3-10: When a spring-loaded menu system is popped up or pulled
down and the pointer rests on a cascading button, the
associated menu is pulled down and becomes traversable.
The associated menu is removed, possibly after a short delay,
when the pointer moves to a menu item outside of the menu
or its cascading button.

The user needs to be able to use the mouse to access all of the
associated menus of a menu system. This feature allows the
user to move quickly to any menu in a menu system.

Required _ _ _ 3-11: When a spring-loaded menu system that is part of the menu
bar is pulled down, moving the pointer to any other element
on the menu bar unposts the current menu system and posts
the pull-down menu associated with the new element.

This feature of a spring-loaded menu system allows the user
to browse quickly through all of the menus attached to a
menu bar.

Required _ _ _ 3-12: When a spring-loaded menu system is popped up or pulled
down, and the button that activated the menu system is
released within a component in the menu system, that
component is activated. If the release is on a cascading button
or an option button, the associated menu is activated in a
posted manner if it was not posted prior to the associated
button press.

Releasing the mouse button that activated a spring-loaded
menu provides a means of activating a menu element that is
consistent across applications.

Required _ _ _ 3-13: When the pointer is in an area with a pop-up menu, your
application uses BMenu Click to activate the menu in a
posted manner if it was not posted prior to the BMenu Click.

BMenu Click provides a means of posting a pop-up menu
that is consistent across applications.

Required _ _ _ 3-14: Once a pull-down or option menu is posted, BSelect Press in
the menu system causes the menu to behave as a
spring-loaded menu.

This feature of a posted pull-down or option menu allows the
user to switch easily between using a posted menu and a
spring-loaded menu.

158 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Required _ _ _ 3-15: If a button press unposts a menu and that button press is not
also passed to the underlying component, subsequent events
up to and including the button release are not passed to the
underlying component.

When a button press unposts a menu, the press can be
passed to the underlying component. Whether or not it is
passed to the underlying component, the press can have
additional effects, such as raising and giving focus to the
underlying window. If the press is not passed to the
underlying component, events up to and including the
release must not be passed to that component.

Required _ _ _ 3-16: Once a pop-up menu is posted, BSelect Press or BMenu Press
in the menu system causes the menu to behave as a
spring-loaded menu.

This feature of a posted pop-up menu allows the user to
switch easily between using a posted menu and a
spring-loaded menu.

Optional _ _ _ b: BMenu Press or BMenu Click on a menu bar item displays
the menu.

Required _ _ _ c: BMenu Press or BMenu Click on an option button displays
the option menu.

Required _ _ _ d: BSelect Press on a text field causes the text cursor to be
inserted at the mouse cursor position.

Keyboard-Based Navigation

y n/a n

Required _ _ _ 3-17: In a text component, the text cursor is shown differently
when the component does and does not have the keyboard
focus.

In a text component, the text cursor serves as the location
cursor and, therefore, must indicate whether the component
has keyboard focus.

Required _ _ _ 3-18: If a text component indicates that it has lost the keyboard
focus by hiding the text cursor and if the component
subsequently regains the focus, the cursor reappears at the
same position it had when the component lost focus.

To ensure predictability, it is important that the text cursor
not change position when a text component loses and then
regains the keyboard focus.

Chapter 10 • Certification Checklist 159

Required _ _ _ 3-19: If a small component, such as a sash, indicates that it has the
keyboard focus by filling, no other meaning is associated
with the filled state.

This rule reduces possible confusion about the significance
of filling in a small component.

Required _ _ _ 3-20: All components are designed and positioned within your
application so that adding and removing each component’s
location cursor does not change the amount of space that the
component takes up on the screen.

For visual consistency, the sizes and positions of
components should not change when keyboard focus moves
from one component to another.

Required _ _ _ 3-21: Control+Tab moves the location cursor to the next field, and
Control+Shift+Tab moves the location cursor to the previous
field. Unless Tab and Shift+Tab are used for internal
navigation within a field, Tab also moves the location cursor
to the next field, and Shift+Tab also moves the location
cursor to the previous field.

These keys provide a consistent means of navigating among
fields in a window.

Required _ _ _ 3-22: Tab (if not used for internal navigation) and Control+Tab
move the location cursor forward through fields in a
window according to the following rules:
� If the next field is a control, Tab (if not used for internal

navigation) and Control+Tab move the location cursor to
that control.

� If the next field is a group, Tab (if not used for internal
navigation) and Control+Tab move the location cursor to
a traversable component within the group.

� If the next field contains no traversable components, Tab
(if not used for internal navigation) and Control+Tab
skip the field.

These rules ensure the consistent operation of Tab (if not
used for internal navigation) and Control+Tab across
applications.

Required _ _ _ 3-23: Shift+Tab (if not used for internal navigation) and
Control+Shift+Tab move the location cursor backward
through fields in the order opposite to that of Tab (if not
used for internal navigation) and Control+Tab.

These rules result in the uniform operation of Shift+Tab (if
not used for internal navigation) and Control+Shift+Tab
across applications.

160 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Required _ _ _ 3-24: When a window acquires focus, the location cursor is placed
on the control that last had focus in the window, providing
that all the following conditions are met:
� The window uses an explicit keyboard focus policy.
� The window acquires the focus through keyboard

navigation or through a button press other than within
the client area of the window.

� The window had the focus at some time in the past.
� The control that last had focus in the window is still

traversable.

This rule ensures that when the user returns to a window
after navigating away, the focus returns to the component
where the user left it.

Required _ _ _ 3-25: Field navigation wraps between the first and last fields in
the window.

This feature of field navigation provides the user with a
convenient way to move through all of the fields in a
window.

Required _ _ _ 3-26: When the Down Arrow and Up Arrow keys are used for
component navigation within a field, they behave according
to the following rules:

In a left-to-right language environment, the Down Arrow
key moves the location cursor through all traversable
controls in the field, starting at the upper left and ending at
the lower right, then wrapping to the upper left. If the
controls are aligned in a matrix-like arrangement, Down
Arrow first traverses one column from top to bottom, then
traverses the column to its right, and so on. In a right-to-left
language environment, Down Arrow moves the location
cursor through all traversable controls, starting at the upper
right and ending at the lower left.
� Up Arrow moves the location cursor through all

traversable controls in the field in the order opposite to
that of Down Arrow.

These rules ensure a consistent means of navigating among
components using the directional keys.

Chapter 10 • Certification Checklist 161

Required _ _ _ 3-27: When the Right Arrow and Left Arrow keys are used for
component navigation within a field, they behave according
to the following rules:
� In a left-to-right language environment, the Right Arrow

moves the location cursor through all traversable
controls in the field, starting at the upper left and ending
at the lower right, then wrapping to the upper left. If the
controls are aligned in a matrix-like arrangement, the
Right Arrow first traverses one row from left to right,
then traverses the row below it, and so on. In a
right-to-left language environment, the Right Arrow
moves the location cursor through all traversable
controls, starting at the lower left and ending at the
upper right.

� Left Arrow moves the location cursor through all
traversable controls in the field in the order opposite to
that of the Right Arrow.

These rules ensure a consistent means of navigating among
components using the directional keys.

Required _ _ _ 3-28: If a control uses the Right Arrow and Left Arrow for internal
navigation, Begin moves the location cursor to the leftmost
edge of the data or the leftmost element in a left-to-right
language environment. In a right-to-left language
environment, Begin moves the location cursor to the
rightmost edge of the data or the rightmost element.

This rule permits convenient navigation to the left or right
edge of the data or the left or right element in a control.

Required _ _ _ 3-29: If a control uses the Right Arrow and Left Arrow keys for
internal navigation, the End key moves the location cursor
to the rightmost edge of the data or the rightmost element in
a left-to-right language environment. In a right-to-left
language environment, End moves the location cursor to the
leftmost edge of the data or the leftmost element.

This rule permits convenient navigation to the left or right
edge of the data or the left or right element in a control.

162 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Required _ _ _ 3-30: If a control uses the Up Arrow and Down Arrow keys for
internal navigation, Control+Begin moves the location
cursor to one of the following:
� The first element
� The topmost edge of the data
� In a left-to-right language environment, the topmost left

edge of the data; in a right-to-left language environment,
the topmost right edge of the data

This rule permits convenient navigation to the beginning of
the data in a control.

Required _ _ _ 3-31: If a control uses the Up Arrow and Down Arrow keys for
internal navigation, Control+End moves the location cursor
to one of the following:
� The last element
� The bottommost edge of the data
� In a left-to-right language environment, the bottommost

right edge of the data; in a right-to-left language
environment, the bottommost left edge of the data

This rule permits convenient navigation to the end of the
data in a control.

Optional _ _ _ e: Each time a new window is opened, keyboard focus is
placed in the first field or location within the window or in a
default location, if this is appropriate for the particular
window.

Required _ _ _ f: The Tab key moves input focus between push buttons
within a group.

The arrow keys also move the selected focus per the
OSF/Motif Style Guide, Revision 1.2.

Required _ _ _ g: Use the Control, Shift, and Alt keys only to modify the
function of other keys or key combinations.

Optional _ _ _ h: Use the Alt key only to provide access to mnemonics.

Menu Traversal

y n/a n

Chapter 10 • Certification Checklist 163

Required _ _ _ 3-32: If the user traverses to a menu while the keyboard focus
policy is implicit, the focus policy temporarily changes to
explicit and reverts to implicit whenever the user traverses
out of the menu system.

Menus must always be traversable, even when the keyboard
focus policy is generally implicit.

Required _ _ _ 3-33: Your application uses the F10 key to activate the menu bar
system if it is inactive. The location cursor is placed on the
first traversable cascading button in the menu bar. If there are
no traversable cascading buttons, the key does nothing.

F10 provides a consistent means of traversing to the menu
bar using the keyboard.

Required _ _ _ 3-34: When the keyboard focus is in an element with an inactive
pop-up menu and the context of the element allows the
pop-up menu to be displayed, your application uses the
menu key to activate the pop-up menu. The location cursor is
placed on the default item of the menu, or on the first
traversable item in the pop-up menu if there is no default
item.

The Menu key provides a uniform way of activating a
pop-up menu from the keyboard.

Required _ _ _ 3-35: When the keyboard focus is in an option button, your
application uses the Select key or the Spacebar to post the
option menu. The location cursor is placed on the previously
selected item in the option menu; or, if the option menu has
been pulled down for the first time, the location cursor is
placed on the default item in the menu. If there is an active
option menu, the Return, Select, or Spacebar keys select the
current item in the option menu, unpost the menu system,
and return the location cursor to the option button.

These keys provide a means of posting an option menu from
the keyboard that is consistent across applications.

Required _ _ _ 3-36: Your application uses the Down Arrow, Left Arrow, Right
Arrow, and Up Arrow keys to traverse through the items in a
menu system.

The Down Arrow, Left Arrow, Right Arrow, and Up Arrow
directional keys provide a consistent means of navigating
among items in a menu system.

164 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Required _ _ _ 3-37: When a menu traversal action traverses to the next or
previous component in a menu or menu bar, the order of
traversal and the wrapping behavior are the same as that of
the corresponding component navigation action within a
field.

This specification provides consistency between menu
traversal and component navigation within a field.

Required _ _ _ 3-38: If your application uses any two-dimensional menus, they do
not contain any cascading buttons.

Cascading buttons in a two-dimensional menu would restrict
the user’s ability to navigate to all of the elements of the
menu using the keyboard.

Required _ _ _ 3-39: When focus is on a component in a menu or menu bar
system, the Down Arrow key behaves in the following way:
� If the component is in a vertical or two-dimensional

menu, traverse down to the next traversable component,
wrapping within the menu if necessary.

� If the component is in a menu bar, and the component
with the keyboard focus is a cascading button, post its
associated pull-down menu and traverse to the default
entry in the menu or, if the menu has no default, to the
first traversable entry in the menu.

This rule results in consistent operation of the directional
keys in a menu or menu bar system.

Required _ _ _ 3-40: When focus is on a component in a menu or menu bar
system, the Up Arrow key behaves in the following way:

If the component is in a vertical or two-dimensional menu,
this action traverses up to the previous traversable
component, wrapping within the menu if necessary, and
proceeding in the order opposite to that of the Down Arrow
key.

This rule results in consistent operation of the directional
keys in a menu or menu bar system.

Chapter 10 • Certification Checklist 165

Required _ _ _ 3-41: When focus is on a component in a menu or menu bar
system, the Left Arrow key behaves in the following way:
� If the component is in a menu bar or two-dimensional

menu, but not at the left edge, traverse left to the
previous traversable component.

� If the component is at the left edge of a menu bar, wrap
within the menu bar.

� If the component is at the left edge of a vertical or
two-dimensional menu that is the child of a vertical or
two-dimensional menu, unpost the current menu and
traverse to the parent cascading button.

� If the component is at the left edge of a vertical or
two-dimensional menu that is the child of a menu bar,
unpost the current menu and traverse left to the previous
traversable entry in the menu bar. If that entry is a
cascading button, post its associated pull-down menu
and traverse to the default entry in the menu or, if the
menu has no default, to the first traversable entry in the
menu.

This rule results in consistent operation of the directional
keys in a menu or menu bar system.

166 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Required _ _ _ 3-42: When focus is on a component in a menu or menu bar
system, the Right Arrow key behaves in the following way:
� If the component is a cascading button in a vertical menu,

post its associated pull-down menu and traverse to the
default entry in the menu or, if the menu has no default,
to the first traversable entry in the menu.

� If the component is in a menu bar or two-dimensional
menu, but not at the right edge, traverse right to the next
traversable component.

� If the component is at the right edge of a menu bar, wrap
within the menu bar.

� If the component is not a cascading button and is at the
right edge of a vertical or two-dimensional menu, and if
the current menu has an ancestor cascading button
(typically in a menu bar) from which the Down Arrow
key posts its associated pull-down menu, unpost the
menu system pulled down from the nearest such ancestor
cascading button and traverse right from that cascading
button to the next traversable component. If that
component is a cascading button, post its associated
pull-down menu and traverse to the default entry in the
menu or, if the menu has no default, to the first
traversable entry in the menu.

This rule results in consistent operation of the directional
keys in a menu or menu bar system.

Required _ _ _ 3-43: All menu traversal actions, with the exception of menu
posting, traverse to tear-off buttons in the same way as for
other menu entries.

Traversal of tear-off buttons needs to be consistent with
traversal of other menu items.

Required _ _ _ 3-44: If your application uses the F10, Menu, or Cancel key to
unpost an entire menu system and an explicit focus policy is
in use, the location cursor is moved back to the component
that had it before the menu system was posted.

Returning the location cursor to the component that had it
previously allows the user to resume a task without
disruption.

Scrollable Component Navigation

y n/a n

Chapter 10 • Certification Checklist 167

Required _ _ _ 3-45: Any scrollable components within your application support
the appropriate navigation and scrolling operations. Your
application uses the page navigation keys Page Up, Page
Down, Control+Page Up (for Page Left), and Control+Page
Down (for Page Right) for scrolling the visible region by a
page increment.

A user needs to be able to view and access the entire contents
of a scrollable component.

Required _ _ _ 3-46: When scrolling by a page, your application leaves at least one
unit of overlap between the old and new pages.

The overlap between one page and the next yields visual
continuity for the user.

Required _ _ _ 3-47: Any keyboard operation that moves the cursor to or in the
component, or that inserts, deletes, or modifies items at the
cursor location scrolls the component so that the cursor is
visible when the operation is complete.

The user needs to be able to see the results of moving the
location cursor or operating on the contents of the scrollable
component.

Required _ _ _ 3-48: If a mouse-based scrolling action is in progress, the Cancel
key cancels the scrolling action and returns the scrolling
device to its state prior to the start of the scrolling operation.

The Cancel key provides a convenient way for the user to
cancel a scrolling operation.

Selection

Selection Models

y n/a n

168 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Required _ _ _ 4-1: Your system supports five selection models: single selection,
browse selection, multiple selection, range selection, and
discontiguous selection.

Each collection has one or more appropriate selection
models. The model limits the kinds of choices the user can
make in the collection. Some collections enforce a selection
model, while others allow the user or application to change
it.

Mouse-Based Single Selection

y n/a n

Required _ _ _ 4-2: In a collection that uses single selection, when BSelect is
clicked in a deselected element, the location cursor moves to
that element, that element is selected, and any other selection
in the collection is deselected.

Single selection is the simplest selection model, used to select
a single element. BSelect, the first mouse button, provides a
consistent means of selecting an object within a group using
the mouse.

Mouse-Based Browse Selection

y n/a n

Required _ _ _ 4-3: In a collection that uses browse selection, when BSelect is
released in a selectable element, that element is selected, and
any other selection in the collection is deselected. As BSelect
is dragged through selectable elements, each element under
the pointer is selected, and the previously selected element is
deselected. The selection remains on the element where
BSelect is released, and the location cursor is moved there.

Browse selection is used to select a single element. It also
allows the user to browse through the collection by dragging
BSelect. See “Mouse-Based Multiple Selection” on page 170.

4-4: This item has been deleted.

Chapter 10 • Certification Checklist 169

Mouse-Based Multiple Selection

y n/a n

Required _ _ _ i: If your application contains collections that follow the
multiple selection model, BAdjust is supported and behaves
just like BSelect, when the BTransfer button is currently
configured to behave as BAdjust.

On a three-button mouse, button 2 is typically used for the
BTransfer (or BSelect) function. However, in a Common
Desktop Environment environment, the user may change an
environment setting indicating that mouse button 2 should
be used for the BAdjust function instead. BAdjust can be
used to toggle the selection state of elements under the
multiple selection model.

Required _ _ _ j: In a collection that uses multiple selection, clicking BSelect or
BAdjust on an unselected element adds that element to the
current selection. Clicking BSelect or BAdjust on a selected
element removes that element from the current selection.
Clicking BSelect or BAdjust moves the location cursor to that
element.

Mouse-Based Range Selection

y n/a n

4-5: This item has been replaced by items k and l.

Required _ _ _ k: In a collection that uses range selection, pressing BSelect on
an unselected element sets an anchor on the element, or at
the position where BSelect was pressed, and deselects all
elements in the collection. If BSelect is released before the
drag threshold has been exceeded, then the element under
the pointer should be selected. If BSelect Motion exceeds the
drag threshold, then a new selection should begin. The
anchor and the current position of the pointer determine the
current range. As BSelect is dragged through the collection,
the current range is highlighted. When BSelect is released, the
anchor does not move, and all the elements within the
current range are selected.

Range selection allows the user to select multiple contiguous
elements of a collection by pressing and dragging BSelect.

170 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Required _ _ _ l: In a collection that uses range selection, pressing BSelect on
an currently selected element should not cause all other
elements in the selection set to be deselected. If BSelect is
released before the drag threshold is exceeded, then, at that
point, all other elements should be deselected and the
element under the pointer should remain selected. If BSelect
Motion exceeds the drag threshold, then no element should
be deselected and a drag operation should begin.

Required _ _ _ 4-6: In a text-like collection that uses range selection, the anchor
point is the text pointer position when BSelect is pressed, and
the current range consists of all elements between the anchor
point and the current text pointer position.

In text-like collections, elements are ordered linearly, and a
text pointer is always considered to be between elements at a
point near the actual pointer position.

Required _ _ _ 4-7: In a graphics-like or list-like collection that uses a marquee to
indicate the range of a range selection, the current range
consists of those elements that fall completely within the
marquee. If there is an anchor element, the marquee is
always made large enough to enclose it completely.
Otherwise, an anchor point is used and is the point at which
BSelect was pressed; the anchor point determines one corner
of the marquee. If the collection is not arranged as a list or
matrix, the marquee is extended to the pointer position. If the
collection is arranged as a list or matrix, the marquee is either
extended to completely enclose the element under the
pointer or extended to the pointer position. Clicking BSelect
on a selectable element makes it an anchor element, selects it,
and deselects all other elements.

A marquee, or highlighted rectangle, is often used to indicate
the range of a selection in graphics-like and list-like
collections.

Required _ _ _ 4-8: This item has been deleted.

Required _ _ _ m: If your application contains collections that follow the range
selection model, BAdjust is supported and behaves just like
Shift+BSelect, when the BTransfer button is currently
configured to behave as BAdjust.

On a three-button mouse, button 2 is typically used for the
BTransfer function. However, in a Common Desktop
Environment environment, the user may change an
environment setting indicating that mouse button 2 should
be used for the BAdjust function instead. BAdjust can be
used to extend the selection set in the same manner as
Shift+BSelect.

Chapter 10 • Certification Checklist 171

Required _ _ _ n: In a collection that uses range selection, when the user
presses Shift+BSelect, or BAdjust, the anchor remains
unchanged, and an extended range for the selection is
determined, based on one of the extension models.

Optional _ _ _ Reselect The extended range is determined by the anchor
and the current pointer position, in exactly the
same manner as when the selection was initially
made.

Optional _ _ _ Enlarge
Only

The selection can only be enlarged. The extended
range is determined by the anchor and the
current pointer position, but then is enlarged to
include the current selection.

Optional _ _ _ Balance
Beam

A balance point is defined at the midpoint of the
current selection. When the user presses
Shift+BSelect or BAdjust on the opposite side of
the balance point from the anchor, this model
works exactly like the reselect model. When the
user presses Shift+BSelect, BAdjust, or starts a
navigation action modified by Shift on the same
side of the balance point as the anchor, this
model moves the anchor to the opposite end of
the selection and then works exactly like the
reselect model.

When the user releases BSelect or BAdjust, the anchor does
not move, all the elements within the extended range are
selected, and all the elements outside of it are deselected.

Mouse-Based Discontiguous Selection

y n/a n

Required _ _ _ 4-9: In a collection that uses discontiguous selection, the behavior
of BSelect is exactly the same as in the range selection model.
After the user sets the anchor with BSelect, Shift+BSelect
works exactly as in the range selection model.

Discontiguous selection is an extension of range selection
that allows the user to select multiple discontiguous ranges
of elements.

172 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Required _ _ _ 4-10: In a collection that uses discontiguous selection, when the
current selection is not empty and the user clicks
Control+BSelect, the anchor and location cursor move to that
point. If the current selection is not empty and the user clicks
Control+BSelect on an element, the selection state of that
element is toggled, and that element becomes the anchor
element.

In discontiguous selection, Control+BSelect Click provides a
convenient means of moving the anchor and toggling the
selection state of the element under the pointer.

Required _ _ _ 4-11: In a collection that uses discontiguous selection,
Control+BSelect Motion toggles the selection state of a range
of elements. The range itself is determined exactly as for
BSelect Motion. Releasing Control+BSelect toggles the
selection state of the elements in the range according to one
of two models:

Anchor
Toggle

Toggling is based on an anchor element. If the
range is anchored by a point, and is not empty,
the anchor element is set to the element within
the range that is nearest to the anchor point.
Toggling sets the selection state of all elements in
the range to the inverse of the initial state of the
anchor element.

Full
Toggle

The selection state of each element in the
extended range is toggled.

In discontiguous selection, Control+BSelect provides a
convenient means of toggling the selection state of elements
in a range.

Required _ _ _ 4-12: In a collection that uses discontiguous selection, after
Control+BSelect toggles a selection, Shift+BSelect or
Control+Shift+BSelect extends the range of toggled elements.
The extended range is determined in exactly the same way as
when Shift BSelect is used to extend a range selection. When
the user releases Control+Shift+BSelect, the selection state of
elements added to the range is determined by the toggle
model in use (either Anchor Toggle or Full Toggle). If
elements are removed from the range, they either revert to
their state prior to the last use of Control+BSelect or change
to the state opposite that of the elements remaining within
the extended range.

Shift+BSelect and Control+Shift+BSelect provide a
convenient means of extending the range of toggled
elements.

Chapter 10 • Certification Checklist 173

Required _ _ _ o: In a collection that uses discontiguous selection, BAdjust can
be used to extend the range of a discontiguous selection. The
extended range is determined in exactly the same way as
when BAdjust is used to extend a range selection.

On a three-button mouse, mouse button 2 is typically used
for the BTransfer function. However, in a Common Desktop
Environment environment, the user may change an
environment setting indicating that mouse button 2 should
be used for the BAdjust function instead. BAdjust can be
used to extend the selection set in the same manner as
Shift+BSelect.

Keyboard Selection

y n/a n

Required _ _ _ 4-13: The selection models support keyboard selection modes
according to the following rules:
� Single selection supports only add mode.
� Browse selection supports only normal mode.
� Multiple selection supports only add mode.
� Range selection supports normal mode. If it also supports

add mode, normal mode is the default.
� Discontiguous selection supports both normal mode and

add mode. Normal mode is the default.

Selection must be available from the keyboard. In normal
mode, used for making simple contiguous selections from the
keyboard, the location cursor is never disjoint from the
current selection. In add mode, used for making more
complex and possibly disjoint selections, the location cursor
can move independently of the current selection.

Required _ _ _ 4-14: If a collection supports both normal mode and add mode,
Shift+F8 switches from one mode to the other. Mouse-based
selection does not change when the keyboard selection mode
changes. In editable components, add mode is a temporary
mode that is exited when the user performs an operation on
the selection or deselects the selection.

Shift+F8 provides a convenient means of switching between
normal mode and add mode.

174 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Keyboard-Based Single Selection

y n/a n

Required _ _ _ 4-15: In a collection that uses single selection, the navigation keys
move the location cursor independently from the selected
element. If the user presses the Select key or the Spacebar on
an unselected element, the element with the location cursor is
selected, and any other selection in the collection is
deselected.

Single selection supports only add mode. Pressing the Select
key or the Spacebar is similar to clicking BSelect.

Keyboard-Based Browse Selection

y n/a n

Required _ _ _ 4-16: In a collection that uses browse selection, the navigation keys
move the location cursor and select the cursored element,
deselecting any other element. If the application has
deselected all elements or if the cursor is left disjoint from the
selection, the Select key or the Spacebar selects the cursored
element and deselects any other element.

Browse selection supports only normal mode. A navigation
operation is similar to dragging BSelect.

Keyboard-Based Multiple Selection

y n/a n

Required _ _ _ 4-17: In a collection that uses multiple selection, the navigation
keys move the location cursor independently from the
current selection. The Select key or the Spacebar on an
unselected element adds the element to the current selection.
Pressing the Select key or the Spacebar on a selected element
removes the element from the current selection.

Multiple selection supports only add mode. Pressing the
Select key or the Spacebar is similar to clicking BSelect.

Chapter 10 • Certification Checklist 175

Keyboard-Based Range Selection

y n/a n

Required _ _ _ 4-18: In a collection that uses range selection and is in normal
mode, the navigation keys move the location cursor and
deselect the current selection. If the cursor is on an element, it
is selected. The anchor moves with the location cursor.

Text-like collections can use a different model in which the
navigation keys leave the anchor at its current location,
except that, if the current selection is not empty, it is
deselected and the anchor is moved to the location of the
cursor prior to navigation.

Range selection supports normal mode, and, if the collection
also supports add mode, normal mode is the default.

Required _ _ _ 4-19: In a collection that uses range selection, whether in normal
mode or add mode, the Select key or Spacebar (except in a
text component) moves the anchor to the cursor, deselects the
current selection, and, if the cursor is on an element, selects
the element. Unless the anchor is on a deselected item,
Shift+Select or Shift+Spacebar (except in text) extends the
selection from the anchor to the cursor, based on the
extension model used by Shift+BSelect (Reselect, Enlarge
Only, or Balance Beam.

In range selection, pressing the Select key or Spacebar is
similar to clicking BSelect, and pressing Shift+Select or
Shift+Spacebar extends the range as with Shift+BSelect.

Required _ _ _ 4-20: In a collection that uses range selection and is in normal
mode, using Shift in conjunction with the navigation keys
extends the selection, based on the extension model used by
Shift+BSelect. If the current selection is empty, the anchor is
first moved to the cursor. The cursor is then moved according
to the navigation keys, and the selection is extended based on
the extension model used by Shift+BSelect.

In range selection, shifted navigation extends the selection in
a similar manner to dragging Shift+BSelect.

176 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Required _ _ _ 4-21: In a collection that uses range selection and is in add mode,
the navigation keys move the location cursor but leave the
anchor unchanged. Shifted navigation moves the location
cursor according to the navigation keys, and the selection is
extended based on the extension model used by
Shift+BSelect.

Shifted navigation in add mode is similar to shifted
navigation in normal mode, except that when the selection is
empty the anchor does not move to the cursor prior to
navigation.

Keyboard-Based Discontiguous Selection

y n/a n

Required _ _ _ 4-22: In a collection that uses discontiguous selection and is in
normal mode, all keyboard operations have the same effect as
in the range selection model.

Normal mode does not permit multiple discontiguous
selections.

Required _ _ _ 4-23: In a collection that uses discontiguous selection and is in add
mode, the Select key or Spacebar moves the anchor to the
location cursor and initiates toggling. If the cursor is on an
element, the selection state of that element is toggled, but the
selection state of all other elements remains unchanged.
Shift+Select or Shift+Spacebar and shifted navigation
operations extend the selection between the anchor and the
location cursor, based on the toggle mechanism used by
Control+BSelect (Anchor Toggle or Full Toggle).

Add mode permits use of the keyboard to make multiple
discontiguous selections.

Canceling a Selection

y n/a n

Chapter 10 • Certification Checklist 177

Required _ _ _ 4-24: Your application uses the Cancel key to cancel or undo any
incomplete motion operation used for selection. Once the
user presses the Cancel key to cancel a motion operation, the
application ignores subsequent key and button releases until
after all buttons and keys are released. Pressing the Cancel
key while extending or toggling leaves the selection state of
all elements as they were prior to the button press.

The Cancel key allows the user to cancel an incomplete
selection operation quickly and consistently.

Autoscrolling and Selection

y n/a n

Required _ _ _ 4-25: If the user drags the pointer out of a scrollable collection
during a motion-based selection operation, autoscrolling is
used to scroll the collection in the direction of the pointer. If
the user presses the Cancel key with BSelect pressed, the
selection operation is canceled.

Autoscrolling provides a convenient means of extending a
selection to elements outside the viewport of a scrollable
collection.

Selecting and Deselecting All Elements

y n/a n

Required _ _ _ 4-26: In a collection that uses multiple, range, or discontiguous
selection, Control+/ selects all the elements in the collection,
places the anchor at the beginning of the collection, and
leaves the location cursor at its previous position.

Control+/ provides the user with a convenient means of
selecting all of the objects in a collection.

Required _ _ _ 4-27: In a collection that is in add mode, Control+\ deselects all
the elements in the collection. In a collection that is in normal
mode, Control+\ deselects all the elements in the collection,
except the element with the location cursor if the location
cursor is being displayed. In either mode, Control+\ leaves
the location cursor at its current position and moves the
anchor to the location cursor.

Control+\ allows the user to deselect all of the selected
objects quickly and uniformly.

178 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Using Mnemonics for Elements

y n/a n

Required _ _ _ 4-28: If your application supports mnemonics associated with
selectable elements, typing a mnemonic while the collection
has the keyboard focus is equivalent to moving the location
cursor to the element and pressing the Select key or Spacebar.

Mnemonics within a collection of selectable elements provide
an additional selection method.

Selection Actions

y n/a n

Required _ _ _ 4-29: When the keyboard focus policy is explicit, the destination
component is the editable component that last had the
keyboard focus. When the keyboard focus policy is implicit,
the destination component is the editable component that last
received mouse button or keyboard input.

The destination component is used to identify the component
on which certain operations, primarily data transfer
operations, act. There is only one destination component at a
time.

Required _ _ _ 4-30: If the keyboard focus is in a component (or a pop-up menu of
a component) that supports selections, operations that act on
a selection act on the selection in that component.

A selection operation acts on the component that has focus, if
that component supports selections.

Required _ _ _ 4-31: If the keyboard focus is in a component (or a pop-up menu of
a component) that supports some operation that does not act
on a selection, invoking the operation acts on that
component.

An operation that does not act on a selection acts on the
component that has focus, if that component supports the
operation.

Chapter 10 • Certification Checklist 179

Required _ _ _ 4-32: Inserting or pasting elements into a selection, except for a
primary transfer operation at the bounds of the primary
selection, first deletes the selection if pending delete is
enabled.

Pending delete controls the conditions under which the
selection is deleted. It is enabled by default.

Required _ _ _ 4-33: In normal mode, inserting or pasting elements disjoint from
the selection also deselects the selection, except for primary
transfer operations whose source and destination are in the
same collection. In add mode, the selection is not deselected.

In add mode, a transfer operation that is disjoint from the
selection does not affect the selection.

Required _ _ _ 4-34: In editable list-like and graphics-like collections, Delete
deletes the selected elements.

Delete provides a consistent means of deleting the selection.

Required _ _ _ 4-35: In editable text-like collections, Delete and Backspace behave
as follows:
� If the selection is not empty and the control is in normal

mode, the selection is deleted.
� If the selection is not empty, the control is in add mode,

and the cursor is not disjoint from the selection, the
selection is deleted.

� If the selection is not empty and the control is in add
mode, but the cursor is disjoint from the selection, Delete
deletes one character forward, and Backspace deletes one
character backward.

� If the selection is empty, Delete deletes one character
forward, and Backspace deletes one character backward.

In text, Delete and Backspace provide a convenient way to
delete the entire selection or single characters.

Transfer Models

y n/a n

180 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Required _ _ _ 4-36: If the move, copy, or link operation the user requests is not
available, the transfer operation fails.

Three transfer operations are generally available: copy, move,
and link. The user requests one of these operations by
pressing the buttons or keys appropriate for the type of
transfer. In general, for mouse-based operations, the modifier
Control forces a copy, Shift forces a move, and Control+Shift
forces a link. However, any requested transfer operation
must fail if that operation is not available.

Required _ _ _ 4-37: If a collection does not have a fixed insertion point or keep
elements ordered in a specific way, the insertion position for
transferred data is determined as follows:
� For BTransfer-based (or BSelect) primary and drag

transfer operations, excepted as noted below for text
collections, the insertion position is the position at which
the user releases BTransfer (or BSelect).

� In a text-like collection, when the user drops selected text,
the insertion position is the position at which the user
releases BTransfer (or Bselect). When the user drops an
icon, the insertion position is the text cursor and the data
is pasted before it.

� In a list-like collection, the insertion position for other
transfer operations is the element with the location
cursor, and the data is pasted before it.

The insertion position is the position in the destination where
transferred data is placed. Some mouse-based transfer
operations place data at the pointer position if possible.
Other operations, including keyboard-based transfer,
generally place the data at the location cursor.

Required _ _ _ p: Your application supports the use of mouse button 1 to
perform drag-and-drop operations.

In Motif 1.2, drag and drop is typically performed using
button 2 on a three-button mouse (BTransfer). However, in
the Common Desktop Environment environment, mouse
button 1 (BSelect) should be supported for drag and drop to
support mouse usage compatible with other graphical user
interface (GUI) environments. A drag can be initiated with
either mouse button 1 or mouse button 2.

Chapter 10 • Certification Checklist 181

Required _ _ _ q: When button 2 of a three-button mouse is configured to
operate as BAdjust, your application does not perform any
BTransfer operations when clicking mouse button 2.

On a three-button mouse, button 2 is typically used for the
BTransfer (or BSelect) function. However, in a Common
Desktop Environment environment, the user can change an
environment setting indicating that mouse button 2 should
be used for the BAdjust function instead. When this is the
case, BAdjust click should not result in the transfer of any
data.

Required _ _ _ r: BSelect should always initiate a drag if the drag is started on
a selected item. The drag starts once the drag threshold has
been reached. This is true for text regions, scrolling lists, and
other similar elements.

Clipboard Transfer

y n/a n

Required _ _ _ 4-38: Keyboard-based clipboard selection actions are available in
every editable collection in your application.

Clipboard selection actions need to be available from the
keyboard.

Required _ _ _ 4-39: Your application uses the Cut key (or Shift+Delete) and the
Cut entry on the Edit menu to cut the selected elements from
an editable component to the clipboard.

The Cut key (or Shift+Delete) and the Cut entry on the Edit
menu offer a consistent means of cutting the selection to the
clipboard from the keyboard.

Required _ _ _ 4-40: Your application uses the Copy key (or Control+Insert) and
the Copy entry on the Edit menu to copy the selected
elements to the clipboard.

The Copy key or (Control+Insert) and the Copy entry on the
Edit menu offer a consistent means of copying the selection
to the clipboard from the keyboard.

Required _ _ _ 4-41: Your application uses the Paste key (or Shift+Insert) to paste
the contents of the clipboard into an editable component.

The Paste key (or Shift+Insert) offers a consistent way of
pasting the contents of the clipboard from the keyboard.

182 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Required _ _ _ 4-42: If Paste or Paste Link is invoked using a component’s pop-up
menu, the data is pasted at the insertion position of the
component. However, if the pop-up menu is popped up over
a selection, the selection is first deleted, even if pending
delete is disabled, and the pasted data replaces it, if possible.

Popping up a pop-up menu over a selection indicates that a
Paste or Paste Link operation should replace the selection.

Required _ _ _ 4-43: If Paste or Paste Link is invoked from the Edit menu or by a
keyboard operation, and the insertion position in the target
component is not disjoint from a selection, the pasted data
replaces the selection contents if pending delete is enabled.

Pending delete determines whether the selection is deleted
when the insertion position is not disjoint from the selection
and Paste or Paste Link is invoked from the Edit menu or by
a keyboard operation.

Primary Transfer

y n/a n

Required _ _ _ 4-44: In an editable collection, BTransfer Click, Control+BTransfer
Click, Alt, Copy, and Control+Alt+Insert copy the primary
selection to the insertion position. (Note that the insertion
position is usually different for mouse and keyboard
operations.)

These operations provide a convenient way for the user to
force a copy operation.

Required _ _ _ 4-45: In an editable collection, Shift+BTransfer Click, Alt+Cut, and
Alt+Shift+Delete move the primary selection to the insertion
position. (Note that the insertion position is usually different
for mouse and keyboard operations.)

These operations provide a convenient way for the user to
force a move operation.

Required _ _ _ 4-46: In an editable collection, Control+Shift+BTransfer Click
places a link to the primary selection at the insertion position.

Control+Shift+BTransfer provides a convenient way for the
user to force a link operation.

Chapter 10 • Certification Checklist 183

Required _ _ _ 4-47: A Primary Move moves the primary selection as well as the
elements selected; that is, the element moved to the
destination becomes selected as the primary selection.
Primary Copy and Primary Link do not select transferred
data at the destination.

This rule provides the expected treatment of the selection in a
move, copy, and link operation.

Quick Transfer

y n/a n

Required _ _ _ 4-48: All text components support quick transfer.

Quick transfer is used to make a temporary selection and
then immediately move, copy, or link that selection to the
insertion position of the destination component. In text, quick
transfer provides a convenient way to move, copy, or link
text without disturbing the primary selection.

Required _ _ _ 4-49: If a component supports quick transfer, Alt+BTransfer
Motion or Control+Alt+BTransfer Motion temporarily selects
elements in the specified range and, on release, copies them
to the insertion position of the destination component.

These operations provide a convenient way to perform a
quick copy.

Required _ _ _ 4-50: If a component supports quick transfer, Alt+Shift+BTransfer
Motion temporarily selects elements in the specified range
and, on release, moves them to the insertion position of the
destination component.

This operation provides a convenient way to perform a quick
cut.

Required _ _ _ 4-51: If a component supports quick transfer,
Control+Alt+Shift+BTransfer Motion temporarily selects
elements in the specified range and, on release, places a link
to them at the insertion position of the destination
component.

This operation provides a convenient way to perform a quick
link.

184 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Required _ _ _ 4-52: Quick transfer does not disturb the primary selection or affect
the clipboard, except when the destination of the transfer is
within or on the boundaries of the primary selection and
pending delete is enabled. In this case, quick transfer deletes
the contents of the primary selection, leaving an empty
primary selection, before pasting the transferred elements.

Quick transfer is a secondary selection mechanism, so it
cannot disrupt the primary selection. When the destination of
the transfer is in the primary selection, quick transfer
replaces the primary selection with the secondary selection.

Required _ _ _ 4-53: With quick transfer, the range of the temporary selection is
determined by using the same model as when BSelect Motion
determines the range of a primary selection.

This rule provides consistency between primary selection
and quick transfer operations.

Required _ _ _ 4-54: If the user drags the pointer out of a scrollable collection
while making the temporary selection, autoscrolling is used
to scroll the collection in the direction of the pointer. If the
user releases BTransfer with the pointer outside of the
collection, or if the user presses the Cancel key with
BTransfer pressed, the highlighting is removed and a transfer
is not performed.

Autoscrolling provides a convenient means of extending a
temporary selection to elements outside the viewport of a
scrollable collection.

Drag Transfer

y n/a n

Required _ _ _ 4-55: In a collection that supports selection, Shift+BTransfer
Release or Shift+BSelect Release forces a drag move
operation. If a move is not possible, the operation fails.

This mechanism offers a convenient way for the user to force
a move operation.

Required _ _ _ 4-56: In a collection that supports selection, Control+BTransfer
Release or Shift+BSelect Release forces a drag copy operation.
If a copy is not possible, the operation fails.

This mechanism offers a convenient way for the user to force
a copy operation.

Chapter 10 • Certification Checklist 185

Required _ _ _ 4-57: In a collection that supports selection,
Control+Shift+BTransfer Release pr Shift+BSelect Release
forces a drag link operation. If a link is not possible, the
operation fails.

This mechanism offers a convenient way for the user to force
a link operation.

Required _ _ _ 4-58: When a drag move operation moves a selection within the
same component, the selection moves along with the
elements selected.

In other words, when selected elements are moved with a
drag operation, they should stay selected after the move. This
mechanism offers a convenient way to move the selection
within a component.

Required _ _ _ 4-59: In text-like collections, initiating a drag within a selected
region drags the entire text selection.

To be consistent, drag-and-drop actions need to operate on
the entire selection.

Required _ _ _ 4-60: In list-like and graphics-like collections, initiating a drag with
either BSelect or BTransfer on a selected element drags the
entire selection.

To be consistent, drag-and-drop actions need to operate on
the entire selection.

Required _ _ _ 4-61: In list-like and graphics-like collections, initiating a drag with
BTransfer or BSelect on an unselected element drags just that
element and leaves the selection unaffected.

Unselected elements can be dragged without affecting the
selection.

Required _ _ _ 4-62: When a drag is initiated in an unselected region and the
pointer is over two possible draggable elements, the drag
uses the draggable element highest in the stacking order.

This guideline ensures the consistency of drag operations.

Required _ _ _ 4-63: When your application starts a drag operation, the pointer is
replaced with a drag icon.

A drag icon provides visual feedback that a drag operation is
in progress.

Required _ _ _ 4-64: All drag icons used by your application include a source
indicator.

A source indicator gives a visual representation of the
elements being dragged.

186 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Required _ _ _ 4-65: Pressing the Cancel key ends a drag-and-drop operation by
canceling the drag in progress.

The Cancel key provides a consistent way for the user to
cancel a drag operation.

Required _ _ _ 4-66: Releasing BTransfer ends a drag-and-drop operation.

Releasing BTransfer offers a consistent means of ending a
drag operation.

Required _ _ _ 4-67: When BTransfer (or BSelect) is released, the drop operation
ordinarily occurs at the location of the hot spot of the drag
icon pointer and into the highest drop zone in the stacking
order. However, if a drop occurs within a selection and
pending delete is enabled, the transferred data replaces the
contents of the entire selection.

This rule provides consistency in the treatment of
mouse-based transfer operations.

Required _ _ _ 4-68: After a successful transfer, the data is placed in the drop
zone, and any transfer icon used by your application is
removed.

A transfer icon can be used to represent the type of data
being transferred during a drop operation. A successful drop
operation results in the transfer of data.

Required _ _ _ 4-69: After a failed transfer, the data remains at the drag source
and is not placed in the drop zone. Any transfer icon used by
your application is removed.

A failed drop operation does not result in the transfer of data.

Recommended _ _ _ s: In a collection that supports selection, if BTransfer Motion (or
BSelect Motion) results in the start of a drag operation,
feedback is presented to the user that indicates that a copy,
move, or link operation is in progress. Whether the operation
is a copy, move, or link depends on the type of object created
at the drop zone and whether the source object is removed.

Although, typically, an unmodified drag results in a move
operation, depending on the location of the source object and
the target drop zone, the drag may in fact result in a copy or
link operation. For example, dragging an icon representing
an attachment to a mail message typically results in a copy of
the attachment being created as opposed to the original being
removed from the mail message. Any feedback presented
should incorporate use of a drag icon that portrays the source
object being manipulated.

Chapter 10 • Certification Checklist 187

Recommended _ _ _ t: In a collection that supports selection, if Control+BTransfer
Motion or Control+BSelect Motion results in the start of a
drag operation, feedback is presented to the user that
indicates that a copy operation is in progress.

The feedback presented should incorporate use of a drag icon
that portrays the source object being copied.

Recommended _ _ _ u: In a collection that supports selection, if
Control+Shift+BTransfer Motion or Control+Shift+BSelect
Motion results in the start of a drag operation, feedback is
presented to the user that indicates that a link operation is in
progress.

The feedback presented should incorporate use of a drag icon
that portrays the source object being linked.

Recommended _ _ _ v: In a collection that supports copy, move, or link operations
that can be performed by dragging, the feedback presented to
the user during the drag operation indicates whether a single
object or multiple objects are being manipulated.

Feedback provided during the drag operation should ensure
that the user feels confident that the desired set of objects is
being dragged. The drag icon used for multiobject drag
operations should integrate the feedback used to indicate
whether the operation is a move, copy, or link.

Optional _ _ _ w: If your application allows the user to paste data into its data
pane, it allows the user to drag and drop files from the File
Manager into the data pane.

The user should be able to drag and drop files into
application data panes. The result should be the inclusion of
some element of the file, or the display of an error message
indicating that the file selected cannot be incorporated into
the application’s data. Drag transfers that are accepted can
result in a number of different responses from your
application: 1) the icon image for the file might be inserted at
the drop point; 2) the application might perform some
activity using the data contained within the file as its input;
3) the data contained within the file might be inserted at the
drop point; or 4) the name of the file might be inserted at the
drop point.

188 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Component Activation

Basic Activation

y n/a n

Required _ _ _ 5-1: Your application uses BSelect to activate a button.

BSelect, the first mouse button, provides a consistent means
of activating a button using the mouse.

Required _ _ _ 5-2: When a button has the focus, your application uses the Select
key or Spacebar to activate the button.

The Select key and Spacebar provide a uniform way of
selecting a button. Selecting a button is equivalent to
activating the button.

Required _ _ _ 5-3: When an activatable menu entry has the focus, your
application uses the Select, Spacebar, Enter, or Return key to
activate the entry.

The Select, Spacebar, Enter, and Return keys offer a consistent
means of activating a menu entry using the keyboard.

Required _ _ _ 5-4: When BSelect is pressed over a button, the appearance of the
button changes to indicate that releasing BSelect will activate
the button. If, while BSelect is pressed, the pointer is moved
outside of the button, the visual state is restored. If, while
BSelect is still pressed, the pointer is moved back inside of
the button, the visual state is again changed to indicate the
pending activation. If BSelect is pressed and released within a
button, the button is activated, regardless of whether the
pointer has moved out of the button while it was pressed.

The visual state of a button offers a cue to the user about
whether the button will be activated when the mouse button
is released.

Required _ _ _ 5-5: If a selectable element of a collection is activatable, BSelect
Click, the Select key, and Spacebar (except in text) select it.
BSelect Click 2 selects and activates it.

This rule provides for consistent integration of activation and
selection in a collection where elements can be both selected
and activated.

Chapter 10 • Certification Checklist 189

Required _ _ _ x: The time allowed to detect a double click
(*doubleClickTime: 500) should be no less than 500
milliseconds.

Accelerators

y n/a n

Required _ _ _ 5-6: If your application uses accelerators, the component with the
accelerator displays the accelerator key or key combination
following the label of the component.

An accelerator is a key or key combination that invokes the
action of some component regardless of the position of the
location cursor when the accelerator is pressed. So that the
user knows that there is an accelerator associated with a
component, the accelerator needs to be displayed.

Required _ _ _ 5-7: If a button with an accelerator is within a primary or
secondary window, or within a pull-down menu system from
its menu bar, it is activatable whenever the input focus is in
the window or the menu bar system. If a button with an
accelerator is within a pop-up menu system, it is activatable
whenever the focus is in the pop-up menu system or the
component with the pop-up menu.

An accelerator must be activatable from the window or
component associated with the accelerator.

Mnemonics

y n/a n

190 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Required _ _ _ 5-8: If your application uses mnemonics, the label for the
component with the mnemonic contains the character that is
its mnemonic. If the label does not naturally contain the
character, the mnemonic is placed in parentheses following
the label.

A mnemonic is a single character that can be associated with
any component that contains a text label. Mnemonics provide
a fast way of selecting a component from the keyboard. To let
the user know that there is a mnemonic associated with a
selection, the mnemonic is underlined in the label of the
selection by the toolkit. For a mnemonic to be underlined, the
label for a selection needs to contain the mnemonic character.
If the label does not contain the mnemonic, putting the
mnemonic in parentheses following the label provides visual
consistency.

Required _ _ _ y: Mnemonic characters must be chosen for ease-of-location
within the text of a label. Wherever possible, use the first
character of the label. If that is not possible, try to use the last
character of the label, or if there is more than one word, the
first character of the second word. After that, go through the
label from the second character on until a unique mnemonic
is found.

Required _ _ _ 5-9: All mnemonics are case insensitive for activation.

The user must be able to activate a mnemonic by pressing
either the lowercase or the uppercase variant of the
mnemonic key.

Required _ _ _ 5-10: When the location cursor is within a menu or a menu bar,
pressing the mnemonic key of a component within that menu
or menu bar moves the location cursor to the component and
activates it. If a mnemonic is used for an option button or for
a cascading button in a menu bar, pressing Alt and the
mnemonic anywhere in the window or its menus moves the
cursor to the component with that mnemonic and activates it.

A mnemonic is generally activatable when the location cursor
is within the component that contains the mnemonic.
Pressing Alt and the mnemonic provides a way to activate a
visible mnemonic when the location cursor is within the
window that contains the mnemonic.

Tear-off Activation

y n/a n

Chapter 10 • Certification Checklist 191

Required _ _ _ 5-11: Activating a tear-off button tears off the menu that contains
the button.

A tear-off button is like a push button with the special
interaction of tearing off the menu from its cascading button.
Tear-off buttons use the same basic activation as other
buttons.

Required _ _ _ 5-12: When a menu with a tear-off button is posted, pressing
BTransfer in the tear-off button starts a tear-off action. As long
as BTransfer is held, a representation of the menu follows the
movement of the pointer. Releasing BTransfer ends the
tear-off action by unposting the menu system, creating a new
window at the current pointer location that contains the
contents of the menu, and giving focus to the new window in
explicit pointer mode.

Help Activation

y n/a n

Required _ _ _ 5-13: Your application uses the Help key on a component to invoke
any context-sensitive help for the component or its nearest
ancestor with context-sensitive help available.

The Help key offers the user a consistent mechanism for
invoking context-sensitive help.

Required _ _ _ z: Your application provides context-sensitive help at all
locations.

The user should never get a “help not available” message.

Default Activation

y n/a n

192 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Required _ _ _ 5-14: If your application uses default push buttons in a window,
the current default push button is highlighted. When the
focus is on a push button, its action is the default action, and
the push button shows default highlighting. If the default
action in a window varies, some push button always has
default highlighting, except when there is no current default
action.

Placing emphasis on the default push button in a dialog box
provides the user with a visual cue about the expected reply
to the dialog box.

Required _ _ _ 5-15: When focus is in a window with a default action and an
activatable menu does not have the focus, the Enter key and
Control+Return invoke the default action. If focus is in a
component other than multiline text or an activated menu,
Return also invokes the default action. These actions have no
other effect on the component with the focus, unless the
default action has some effect on that component.

These rules ensure that the means of invoking a default
action are consistent across applications.

Required _ _ _ 5-16: Except in the middle of a button motion operation, pressing
the Cancel key anywhere in a dialog box is equivalent to
activating the Cancel push button in the dialog box.

The Cancel key provides a uniform means of canceling dialog
box from the keyboard.

Expert Activation

y n/a n

Required _ _ _ 5-17: If your application supports expert activation, expert actions
exist only as shortcuts to application features that are
available through another mechanism.

Expert activation, using mouse double-clicking on buttons,
provides a convenient way for experienced users to perform
certain tasks quickly. However, new users and keyboard-only
users need to be able to perform the same tasks.

Required _ _ _ 5-18: When the focus is on a button used for expert activation, no
default action is available, unless the default and expert
actions are the same.

This rule minimizes possible confusion between default and
expert activation.

Chapter 10 • Certification Checklist 193

Required _ _ _ 5-19: If a component with an expert action is selectable, activating
the expert action first selects the component and then
performs the expert action.

A user needs to be able to select a component, even if it has
an expert action associated with it.

Previewing and Autorepeat

y n/a n

Required _ _ _ 5-20: If your application supports activation preview using BSelect,
the previewing information is removed when the user
releases BSelect.

Activation preview presents the user with additional
information that describes the effect of activating a button.
This information cannot interfere with the normal operation
of the application.

Cancel Activation

y n/a n

194 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Required _ _ _ 5-21: Pressing the Cancel key stops current interaction in the
following contexts:
� During a mouse-based selection or drag operation, it

cancels the operation.
� During a mouse-based scrolling operation, it cancels the

scrolling action and returns the system to its state prior
to the start of the scrolling operation.

� Anywhere in a dialog box that has a Cancel push button,
it is equivalent to activating that push button, except
during a mouse-based selection or drag operation.

� In a pull-down menu, it either dismisses the menu and
moves the location cursor to the cascading button used
to pull it down, or unposts the entire menu system. In a
pop-up menu, option menu, tear-off menu, or menu bar,
it unposts the menu system.

� When the focus is in a torn off menu window, it closes
the torn off menu window.

These guidelines for the Cancel key ensure the consistent
operation of the key across applications.

Window Management

Window Support
This section corresponds to section 7.2 of the OSF/Motif Style Guide, Revision 1.2. The
different window types are discussed throughout the OSF/Motif Style Guide, Revision
1.2 and this book. In particular, see Chapter 6.

y n/a n

Chapter 10 • Certification Checklist 195

Required _ _ _ aa: Application windows should be clearly distinguishable as
primary or secondary windows based on appearance and
behavior.

Primary Window:
� Primary window decoration (see “Window Decorations”

on page 196)
� Primary window management (see “Window

Management Actions” on page 199)
� Window stacking, workspace placement, and

minimization can be independent of other primary
windows

Secondary Window:
� Secondary window decoration (see “Window

Decorations” on page 196)
� Secondary window management (see “Window

Management Actions” on page 199)
� Window stacking, workspace placement, and

minimization tied to the associated primary window

Window Decorations

y n/a n

Required _ _ _ ab: Windows that support particular window management
functionality must request the corresponding window
decoration (for example, a window that can be minimized
should request the minimize button).

Required _ _ _ ac: Windows that support any window management
functionality (move, resize, minimize, maximize, close, and
others) must have a window menu with items for that
functionality.

Required _ _ _ ad: Follow Common Desktop Environment window decoration
conventions, as shown in Table 10–1.

.

196 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

TABLE 10–1 Common Desktop Environment Window Decoration Conventions

Border Title Menu Min Max Resize

Primary
Window:

Default

Front Panel

Yes

Yes1

Yes

No

Yes

Yes2

Yes

Yes

Yes2

No

Yes1

No

Secondary
Window:

Default

Front Panel

Yes

No

Yes

Yes

Yes

Yes

No

No

No3

No

No3

No

1. The Front Panel has custom visuals for the window decorations.

2. Decorations for resize and maximize should be provided for primary windows if appropriate.

3. Secondary windows should be designed such that resizing and maximization are not necessary or appropriate. If
a secondary window must be resizable and maximizable, the associated decorations should be displayed.

y n/a n

Required _ _ _ ae: Follow Common Desktop Environment window menu
conventions. Items should appear in the window menu if
they are applicable to the window or its minimized window
icon.
� Restore (R)
� Move (M)
� Size (S)
� Minimize (n)
� Maximize (x)
� Lower (L)
� Occupy Workspace ... (O)
� Occupy All Workspaces (A)
� Unoccupy Workspace (U)
� Close (C) Alt+F4

Optional _ _ _ af: Applications should not add items to the window menu. If
an extraordinary requirement has an application add items to
the window menu, the items should be appended to the end
of the menu with a separator between Close and the
application items.

Optional _ _ _ ag: Accelerators, aside from Alt+F4 for Close, should not be used
in the window menu (to minimize conflict with other uses of
the Alt key for application accelerators, localization, and
others).

Chapter 10 • Certification Checklist 197

Window Navigation
This section corresponds to section 7. 4 of OSF/Motif Style Guide, Revision 1.2. There
are no checklist items for application developers.

Icons

y n/a n

Optional _ _ _ ah: Applications should provide unique window icons for their
primary windows. The window icon image should have a
similar appearance to the associated file or Front Panel icon
image.

Optional _ _ _ ai: The window icon label should contain the same text as the
title of the corresponding primary window, or an abbreviated
form of it. Refer to “Layout” on page 201 for window title
guidelines.

Optional _ _ _ aj: The window icon image should have a similar appearance to
the associated file or Front Panel icon image. Refer to
“Design Philosophy and Helpful Hints” on page 58.

Application Window Management

Window Placement

y n/a n

Recommend _ _ _ ak: Applications should not require or force windows or window
icons to be positioned at a particular screen location.

Recommend _ _ _ al: A secondary window is placed by the application relative to
the associated primary window. It should be placed close to,
but not obscuring, the component that caused it to be
displayed and the information that is necessary to interact
with the dialog box.

Some suggestions are given in section 6.2.4.3, “Determining
Dialog Box Location and Size,” of the OSF/Motif Style
Guide, Revision 1.2. Additional or modified
recommendations include:

198 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Optional _ _ _ am: If a dialog box does not relate to specific items in the
underlying window, it should be placed below the menu bar
(if there is one) and centered (horizontally) over the work
area.

Recommend _ _ _ an: If a secondary window is allowed to be stacked below its
associated primary window (not constrained to stay on top of
the primary window), it should be placed such that it is not
completely covered by the primary window. This
recommendation takes precedence over other placement
recommendations.

Recommend _ _ _ ao: If a menu or dialog box is already on display, reinvoking the
command that caused it to be displayed automatically brings
that window or menu to the front of the window stack
without changing its position on the screen.

Window (Document) Clustering

y n/a n

Optional _ _ _ ap: Windows that are closely related in supporting a particular
task should be placed in a window cluster. Secondary
windows are automatically placed in a window cluster with
the associated primary window. Windows in a window
cluster are stacked together, minimized or normalized
together, and kept in the same workspace.

Note – Currently the only mechanism for forming a window cluster that is supported
by the Window Manager is to indicate a primary-secondary relationship.

Window Management Actions

y n/a n

Required _ _ _ aq: Windows should follow Common Desktop Environment
window management functionality conventions, as shown in
Table 10–2

.

Chapter 10 • Certification Checklist 199

TABLE 10–2 Common Desktop Environment Window Management Conventions

Close Move Lower Min Max Resize

Primary
Window:

Default

Front Panel

Yes

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes1

No

Yes1

No

Secondary
Window:

Default

Subpanel

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No2

No

No2

No

1. Resize and maximize functionality should be provided for primary windows if appropriate.

2. Secondary windows can contain the Maximum and Resize window manager functions, if appropriate.

y n/a n

Required _ _ _ ar: Windows that support particular window management
functionality should request corresponding window
decoration (for example, a window that can be minimized
should request the minimize button).

Required _ _ _ as: Windows that have form factor constraints need to set
Window Manager hints for minimum size, maximum size,
aspect ratio, and resize increment as appropriate.

Recommended _ _ _ at: Maximizing a window should show more content (objects or
controls) if appropriate (as opposed to scaling up the sizes of
objects and controls).

Required _ _ _ au: Windows that have Close or Exit functionality need to
support the window management protocol for Close if there
is a window menu. In the case of dialog boxes, the Close item
on the window menu corresponds to the Cancel functionality
or dialog box dismissal with no further action taken.

Recommended _ _ _ av: When your application creates a new window, it should
come up in the user’s current workspace and only occupy
that single workspace.

Recommended _ _ _ aw: Application windows that are related to a particular task
should move together between workspaces.

200 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Session Management Support

y n/a n

Required _ _ _ ax: Applications should support Interclient Communications
Conventions Manual (ICCCM) mechanisms for session
management of their primary windows and key properties.

Required _ _ _ ay: Applications should support ICCCM mechanisms for session
management of all associated windows (that is, secondary
windows that may include help windows).

Optional _ _ _ az: Applications should accept messages from the Common
Desktop Environment Session Manager that inform them the
user is logging out and should save their state at that time.

Optional _ _ _ ba: Applications that have a single primary window that is open
at the time the user logs out should restore the primary
window, in the workspace last occupied, when the user logs
in again.

Optional _ _ _ bb: Save user context wherever possible. For example,
applications that support the editing of files should save the
state of the file at logout and should restore the file in the
application window when users log in again.

Optional _ _ _ bc: Applications that have multiple primary windows that are
open at the time the user logs out should restore all primary
windows, in their respective workspaces, when the user logs
in again.

Application Design Principles

Layout

Main Window

y n/a n

Chapter 10 • Certification Checklist 201

Required _ _ _ 6-1: Your application should be composed of at least one main
window.

A main window contains a client area and, optionally, a
menu bar, a command area, a message area, and scroll bars.
The client area contains the framework of the application.
The use of a main window ensures interapplication
consistency.

Required _ _ _ bd: The default size of the application’s main window must be
large enough to accommodate a typical amount of data, but
should not fill the entire physical display size to minimize
visual conflicts with other applications.

Each application potentially must share the display with
other applications. The default window size should not take
up all the available screen space.

Required _ _ _ be: Resize corners should be included in any main window that
incorporates a scrolling data pane or list.

Resize corners should be included in any main window that
incorporates a scrolling data pane or list. Any changes to the
overall size of the window should result in a corresponding
increase or decrease in the size of the scrollable portion.
Additionally, your application might reorganize elements
within the window based on the increased or decreased
amount of space (for example, it might reorganize a row of
buttons into two rows).

Required _ _ _ 6-2: If your application has multiple main windows that serve the
same primary function, each window closes and iconifies
separately.

For example, a text editor might allow the user to edit
multiple documents, each in its own main window. Each
window is then treated as a separate application and can be
closed or iconified when it is not being used.

Required _ _ _ 6-3: If your application has multiple main windows that serve
different primary functions, each window should be able to
iconify independently of the other windows.

For example, a debugger might provide separate main
windows for editing source code, examining data values, and
viewing results. Each window can be iconified when it is not
being used, but it is up to the application to decide whether
each window closes separately or whether closing one
window closes the entire application.

202 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Window Titles

y n/a n

Optional _ _ _ bf: The title of your primary window (the main window your
application displays to the user) should be the name of your
application.

Note that this does not have to be the actual name of the
executable invoked by the user.

Carefully consider how the title you choose for your primary
window works when it is used in icons and pop-up
windows. If the name of the pop-up window is too long, you
may remove the application title; however, without the title,
users might have difficulty telling which pop-up window
belongs with the originating primary window.

Optional _ _ _ bg: Use initial capital letters for each word in the title (in
languages that support capitalization).

Optional _ _ _ bh: Follow the application name for each property window, as a
minimum, with the title Properties and the name of the object
it affects.

Optional _ _ _ bi: Begin the title of each pop-up window with the application
title followed by a colon, then the title of the pop-up window.
The colon should have a space both before and after it for
readibility.

Pop-up windows should always indicate which primary
window they are associated with (which primary window
invoked that pop-up).

Optional _ _ _ bj: Use a hyphen to denote the current file name, when the
application has files that can be loaded or saved. The hyphen
should have a space before and after it. Only the base name
of the file should be displayed, not the entire path.

The hyphen is used to denote specific instances of a window
or data. The colon serves to delimit general categories or
commands. For example, a file manager might have the
following title for a Properties dialog box:

File Manager : Properties - myfile

Optional _ _ _ bk: Follow the application name for each command window
with the same title that is on the window button or window
item users choose to display that window.

Chapter 10 • Certification Checklist 203

Recommended _ _ _ bl: In the case of multiple primary windows, include the
application name at the beginning of each window title, and
add a name that uniquely identifies that primary window.
No separator should be provided for these names (for
example, Calendar Manager Multibrowse, Catalog Search,
Admintool Databases).

Optional _ _ _ bm: An abbreviated name for the application may be used on
other windows, so long as it is done on all windows.

Menu Bar

Note – These requirements apply only in a left-to-right language environment in an
English-language locale. You must make the appropriate changes for other locales.

y n/a n

Required _ _ _ 6-4: If your application has a menu bar, it is a horizontal bar at
the top edge of the application, just below the title area of the
window frame. A menu bar organizes the most common
features of an application. It contains a list of menu topics in
cascading buttons; each button is associated with a distinct
pull-down menu containing commands that are grouped by
common functionality. The use of a menu bar yields
consistency across applications.

Required _ _ _ 6-5: The menu bar for your application contains only cascading
buttons.

When other buttons are included as topics in a menu bar,
they inhibit menu browsing.

_ _ _ 6-6: This item has been deleted. It is replaced by the following
guideline.

204 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Recommended _ _ _ bn: There are several common menu operations that should be
considered “standard”. The standard menu bar entries are
File, Edit, View, Options and Help. If your application
provides that functionality to the user, it should be included
in the menu bar under the appropriate name. The contents of
these menu entries are discussed below in more detail.

Standard menu bar entries should be presented in the
following order:

File Edit View Options Help

You should exclude from your menu bar any item shown in
the preceding text if your application does not support the
associated function. For example, if your application does not
support the ability to display its data in different views, then
you should not include a View menu.

You may add application-specific menus in between any of
the standard menu items, with the following exceptions:
� The File menu, if present, is located in the first menu

position on the left.
� The Help menu is located on the far right position.
� If File and Edit are present, they should be next to each

other.

For example, your application may have:

File Edit <category1> <category2> View Options
<category3> Help

Chapter 10 • Certification Checklist 205

Recommended _ _ _ bo: Applications that are not file-oriented in nature (or that
manage files transparently, not exposing this activity to the
user) should replace the File menu with one or more
application-specific menus.

Replacing the File menu:

Replacement1: <app-label> Selected

Replacement2: <app-label><obj-type>

Replacement3: <obj-type>

You may use Replacement1 if your application has more than
one object type. Items on <app-label> would be used for
global actions that are not specific to an object type. The
items in Selected are actions that pertain to objects that are
currently selected, and may change depending on what
objects are selected. If nothing is selected, this menu should
have a single item that says (none selected). If an item is
selected, but there are no items that apply to that object, this
menu should have a single item that says (none).

You may use Replacement2 if your application has a single
object type. Actions that are global to the application are on
<app-label>, and actions that are specific to the object type
are on <obj-type>.

You may use Replacement3 if your application has a single
object type, and does not require an <app-label> menu. For
example, a Print Manager might contain a Printer menu.

All other menubar guidelines that apply to File-oriented
applications also apply to non-File-oriented applications.
Thus, the following menubar would be valid:

<app-label> Selected Edit <category1> View <category2>
Help

Applications that are complex or are extremely
domain-specific (for example, an application for medical
imaging and diagnosis of cat scan data) may require other
approaches to their menu bar design. For example,

<app-label><category1><category2> Selected Edit
<object-type> Options Help

Recommended _ _ _ bp: Exit or Close should be located on the first (leftmost) menu of
your menubar.

206 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

File Menu Contents

Note – These requirements apply only in a left-to-right language environment in an
English-language locale. You must make the appropriate changes for other locales.

y n/a n

Required _ _ _ bq: If the user chooses Exit, or in any other manner indicates that
the application should be terminated, but there are changes
to the current file that have not been saved, your application
displays a dialog box asking whether the changes should be
saved before exiting.

The user must always be given the opportunity to explicitly
state whether unsaved changes should be saved or discarded.
A dialog box similar to the one described should also be
displayed if the user chooses the Open from the File menu,
but has not saved changes to the current file.

Required _ _ _ 6-7 If your application uses a File menu, it contains the following
choices, with the specified functionality, when the actions are
actually supported by your application.

Required _ _ _ New Creates a new file. If the current client area will
be used to display the new file, your application
clears the existing data from the client area. If
changes made to the current file will be lost,
your application displays a dialog box, asking
the user about saving changes. The mnemonic is
N.

Required _ _ _ Open ... Opens an existing file by prompting the user for
a file name with a dialog box. If changes made to
the current file will be lost, your application
displays a dialog box asking the user about
saving changes. The mnemonic is O.

Required _ _ _ Save ... Saves the currently opened file without
removing the existing contents of the client area.
If the file has no name, your application displays
a dialog box, prompting the user to enter a file
name. The mnemonic is S.

Chapter 10 • Certification Checklist 207

Required _ _ _ Save As... Saves the currently opened file under a new
name by prompting the user for a file name with
a dialog box. If the user tries to save the file
using an existing name, your application
displays a dialog box that warns the user about a
possible loss of data. Does not remove the
existing contents of the client area. The
mnemonic is A.

Recommended _ _ _ Print Schedules a file for printing. If your application
needs specific information to print, it displays a
dialog box, requesting the information from the
user. In this case, the menu entry is followed by
an ellipsis (Print...). The mnemonic is P.

Recommended _ _ _ Close Closes the current primary window and its
associated secondary windows. If your
application uses only a single primary window
or multiple dependent primary windows, this
action is not supplied. The mnemonic is C.

Required _ _ _ Exit Ends the current application and all windows
associated with it. If changes made to the current
file will be lost, your application displays a
dialog box, asking the user about saving
changes. The mnemonic is X.

The use of a File menu with these common file operations
yields consistency across applications.

<Object-type> / Selected Menu Contents

y n/a n

Recommended _ _ _ br: If your application uses an <object-type> menu or a Selected
menu, it contains the following choices, with the specified
functionality, when the actions are actually supported by
your application. Items should be presented to the user in the
order listed below.

The <object-type> menu contains controls that allow the user
to create instances of the object-type. Both the <object-type>
and Selected menus allow the user to manipulate object
instances. Additional items should be added to the
<object-type> or Selected menus if they relate solely to the
manipulation of objects managed by the application (as
opposed to more generic services that the application might
provide).

208 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Recommended _ _ _ New ... Creates a new instance of the object-type. If
appropriate, a dialog box is presented
allowing the user to specify the values for
settings associated with that object.

Optional _ _ _ Move To ... Allows the user to move the selected
objects into a folder. A file selection dialog
box is displayed allowing the user to select
the desired folder.

Optional _ _ _ Copy To ... Allows the user to copy the selected objects
into a folder. A file selection dialog box is
displayed allowing the user to select the
desired folder.

Optional _ _ _ Put in
Workspace

Allows the user to put a link for the object
onto the Common Desktop Environment
desktop in the current workspace.

_ Any of the preceding three menu choices should be provided
only if the objects managed by your application are able to
reside as separate entities outside of your application’s main
window. For example, a printer object created by a printer
management application might be able to be placed in a
Folder window and function as an application unto itself.
Your application should also support drag and drop as a
method for performing any of these actions.

Optional _ _ _ Delete Removes the selected objects. A
confirmation dialog box should be
presented to the user before the object is
actually deleted.

Recommended _ _ _ Properties Displays a Properties window that shows
the current values for settings associated
with the selected object.

Recommended _ _ _ <Default
Action>

This choice should enact the default action
for the selected object. “Open” is a typical
default.

Edit Menu Contents

Note – These requirements apply only in a left-to-right language environment in an
English-language locale. You must make the appropriate changes for other locales.

y n/a n

Chapter 10 • Certification Checklist 209

Required _ _ _ 6-8 If your application uses an Edit menu, it contains the
following choices, with the specified functionality, when the
actions are actually supported by your application:

Optional _ _ _ Undo Reverses the most recently executed action. The
mnemonic is U.

Optional _ _ _ Cut Removes the selected portion of data from the
client area and puts it on the clipboard. The
mnemonic is T.

Optional _ _ _ Copy Copies the selected portion of data from the
client area and puts it on the clipboard. The
mnemonic is C.

Optional _ _ _ Copy Link Copies a link of the selected portion of data from
the client area and puts it on the clipboard. The
mnemonic is K.

Optional _ _ _ Paste Pastes the contents of the clipboard into the
client area. The mnemonic is P.

Optional _ _ _ Paste Link Pastes a link of the data represented by the
contents of the clipboard into the client area. The
mnemonic is L.

Optional _ _ _ Clear Removes a selected portion of data from the
client area without copying it to the clipboard
and does not compress the remaining data. The
mnemonic is E.

Optional _ _ _ Delete Removes a selected portion of data from the
client area without copying it to the clipboard.
The mnemonic is D.

Optional _ _ _ Select All Sets the primary selection to be all the elements
in a component of the client area.

Optional _ _ _ Deselect
All

Removes from the primary selection all the
elements in a component of the client area.

Optional _ _ _ Select
Pasted

Sets the primary selection to the last element or
elements pasted into a component of the client
area.

Optional _ _ _ Reselect Sets the primary selection to the last selected
element or elements in a component of the client
area. This action is available only in components
that do not support persistent selections and
only when the current selection is empty.

Optional _ _ _ Promote Promotes to the primary selection the current
selection of a component of the client area. This
action is available only for components that
support persistent selections.

210 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

_ _ _ The use of an Edit menu with these common editing
operations yields consistency across applications.

Recommended _ _ _ bs: If your application does not provide an <object-type> or
Selected menu, but allows the user to select data within the
window and manage settings for the selected data, then it
provides a Properties ... choice as the last item in the Edit
menu.

Required _ _ _ 6-9: This item has been deleted.

View Menu

y n/a n

Recommended _ _ _ bt: If your application provides a View menu, it only contains
functions that affect the way the current data is presented. It
does not contain any option that alters the data itself.

Options Menu

y n/a n

Recommended _ _ _ bu: If your application has global settings that control the way
the application behaves, it provides an Options menu from
which these can be set.

Help Menu Contents

Note – These requirements apply only in a left-to-right language environment in an
English-language locale. You must make the appropriate changes for other locales.

y n/a n

Recommended _ _ _ bv: If your application includes a Help menu, it contains the
following set of choices, with the specified functionality,
when the actions are actually supported by your application.
The Help choices included here supersede those listed for
Motif 1.2.

Chapter 10 • Certification Checklist 211

Required _ _ _ Overview Provides general information about
the window from which help was
accessed or about the application
overall. The mnemonic is V. Place a
separator after.

Optional _ _ _ Index Provides an index listing topics for all
help information available for your
application. The mnemonic is I.

Recommended _ _ _ Table of Contents Provides a table of contents listing
topics for all help information
available for your application. The
mnemonic is C.

Recommended _ _ _ Tasks Provides access to help information
indicating how to perform different
tasks using your application. The
mnemonic is T.

Recommended _ _ _ Reference Provides access to reference
information. The mnemonic is R.

Optional _ _ _ Tutorial Provides access to your application’s
tutorial. The mnemonic is L.

Optional _ _ _ Keyboard Provides information about your
application’s use of function keys,
mnemonics, and keyboard
accelerators. Also provides
information on general Common
Desktop Environment use of such
keys. The mnemonic is K.

Optional _ _ _ Mouse Provides information about using a
mouse with your application. The
mnemonic is M.

Optional _ _ _ Mouse and Keyboard Provides information about your
application’s use of function keys,
mnemonics, keyboard accelerators,
and using a mouse with your
application. Also provides
information on general Common
Desktop Environment use of such
keys. The mnemonic is M. Use rather
than separate mouse and keyboard
choices if this information is best
presented together.

212 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Optional _ _ _ On Item Initiates context-sensitive help by
changing the shape of the pointer to
the question mark pointer. When the
user moves the pointer to a
component and presses BSelect, any
available context-sensitive help for
the component is presented. The
mnemonic is O. Set off with
separators on both sides.

Required _ _ _ Using help Provides information on how to use
the Common Desktop Environment
Help Viewer. The mnemonic is U. Set
off with separators on both sides.

Required _ _ _ About
applicationname

Displays a dialog box indicating,
minimally, the name and version of
your application, and displays its icon
or some other signature graphic for
your application. The mnemonic is A.

Attachment Menu Contents

y n/a n

Recommended _ _ _ bw: If your application uses an attachment menu, it contains the
following choices, with the specified functionality, when the
actions are actually supported by your application.

Recommended _ _ _ Add File ... Selects files and other items to be attached.
A file selection box is displayed allowing
the user to select the desired files to attach.
The default button in the file selection box
is Attach.

Recommended _ _ _ Save As ... Saves the currently selected attachments.
The user is prompted with a file selection
dialog box for indicating where in the file
system the attachments are to be saved.
When multiple attachments are selected,
the name field is inactive and the current
names of the attachments are used as the
name of the new file. This menu item is
active only when one or more attachments
are selected.

Chapter 10 • Certification Checklist 213

Recommended _ _ _ Rename ... Renames the attachment icon. The
application should provide in-line
renaming of attachment icons, such as File
Manager uses. If the application cannot
provide in-line renaming, then Rename
allows the user to rename an attachment by
displaying a dialog box, requesting the
name from the user. This menu item is
active only when a single attachment is
selected. It is not active when multiple
attachments are selected.

Recommended _ _ _ Delete Deletes attachments from the attachment
list. This menu item is active only when an
attachment is selected.

Recommended _ _ _ Select All Selects all the attachments in the
attachment list.

Pop-up Menus

Note – These requirements apply only in a left-to-right language environment in an
English-language locale. You must make the appropriate changes for other locales.

y n/a n

Recommended _ _ _ bx: If your application provides functions that apply to a data
pane and not any specific element therein, then a pop-up
menu is provided that contains the frequently used data pane
functions and is accessible by pressing BMenu when the
mouse pointer is over the background of the pane or a
nonselectable element within the pane.

Recommended _ _ _ by: Your application should provide a pop-up menu for any
element that is selectable within its data pane.

Pop-up menus provide access to frequently used functions
and should be used pervasively throughout the Common
Desktop Environment desktop environment. A pop-up menu
may contain a collection of options that appear in different
menus available from the menu bar. For example, it may
contain items from both the File and Edit menus.

214 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Recommended _ _ _ bz: When a pop-up menu is displayed over an unselected object,
any action selected from the pop-up menu applies to that
object only, and not to any other objects that might currently
be selected.

The preceding helps to protect the user from inadvertently
applying an action to objects that the user may not realize are
currently selected. Pressing the menu button invokes a
pop-up menu pertinent to the object under the mouse cursor
whether it is selected to not; if the object under the mouse
cursor and other objects are selected, the pop-up menu is
pertinent to the selected set.

Recommended _ _ _ ca: Every pop-up menu in your application has a title that
indicates the function the menu performs or the element on
which it operates.

Recommended _ _ _ cb: The functions accessible from within your application’s
pop-up menus are also accessible from buttons displayed
within the window or menus accessed through the menu bar.

Because pop-up menus are hidden, they should only provide
redundant access to functions available from more visible
controls within the application’s windows.

Optional _ _ _ 6-11: If your application uses any of the common pop-up menu
actions, the actions function according to the following
specifications.

Optional _ _ _ Properties Displays a Properties dialog box that the
user can use to set the properties of the
component.

Optional _ _ _ Undo Reverses the most recently executed action.

Optional _ _ _ Primary Move Moves the contents of the primary selection
to the component. This action is available
only in editable components.

Optional _ _ _ Primary Copy Copies the contents of the primary
selection to the component. This action is
available only in editable components.

Optional _ _ _ Primary Link Places a link to the primary selection in the
component. This action is available only in
editable components.

Optional _ _ _ Cut Cuts elements to the clipboard. If the menu
is popped up in a selection, cuts the entire
selection to the clipboard.

Chapter 10 • Certification Checklist 215

Optional _ _ _ Copy Copies elements to the clipboard. If the
menu is popped up in a selection, this
action copies the entire selection to the
clipboard.

Optional _ _ _ Copy Link Copies a link of elements to the clipboard.
If the menu is popped up in a selection,
copies a link to the entire selection to the
clipboard.

Optional _ _ _ Paste Pastes the contents of the clipboard to the
component. This action is available only in
editable components.

Optional _ _ _ Paste Link Pastes a link of the contents of the
clipboard to the component. This action is
available only in editable components.

Optional _ _ _ Clear Removes a selected portion of data from
the client area without copying it to the
clipboard. If the menu is popped up in a
selection, deletes the selection.

Optional _ _ _ Delete Removes a selected portion of data from
the client area without copying it to the
clipboard. If the menu is popped up in a
selection, deletes the selection.

Optional _ _ _ Select All Sets the primary selection to be all of the
elements in the collection with the pop-up
menu.

Optional _ _ _ Deselect All Deselects the current selection in the
collection with the pop-up menu.

Optional _ _ _ Select Pasted Sets the primary selection to be the last
element or elements pasted into the
collection with the pop-up menu.

Optional _ _ _ Reselect Sets the primary selection to be the last
selected element or elements in the
component with the pop-up menu. This
action is available only in components that
do not support persistent selections and
only when the current selection is empty.

Optional _ _ _ Promote Promotes the current selection to the
primary selection. It is available only in
components that support persistent
selections.

The use of pop-up menus with these common actions yields
consistency across applications.

216 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Recommended _ _ _ cc: Pop-up menus for selectable objects contain the following set
of choices, with the specified functionality, when the actions
are actually supported by your application.

Optional _ _ _ Move To ... Allows the user to move the selected
objects into a folder. A file selection dialog
box is displayed allowing the user to select
the desired folder.

Optional _ _ _ Copy To ... Allows the user to copy the selected objects
into a folder. A file selection dialog box is
displayed allowing the user to select the
desired folder.

Optional _ _ _ Put in
Workspace

Allows the user to put a link for the
selected objects onto the Common Desktop
Environment desktop in the current
workspace.

Optional _ _ _ Delete Deletes the selected object. A confirmation
is displayed to the user before actually
removing the object.

Optional _ _ _ Properties ... Displays a dialog box indicating the
current settings for attributes associated
with the selected object.

Optional _ _ _ Help ... Displays a help window pertaining to
objects of the type selected.

Optional _ _ _ cd: Choices within your pop-up menus are organized in the
following manner:

<choices that manage the object such as Open, Save, or
Properties>

----------- separator ----------------

<standard edit menu choices such as Cut, Copy, and Paste>

----------- separator ----------------

<other choices>

Required _ _ _ 6-12: When a pop-up menu is popped up in the context of a
selection, any action that acts on elements acts on the entire
selection.

In the context of a selection, pop-up menu actions affect the
entire selection.

Chapter 10 • Certification Checklist 217

Dialog Boxes

y n/a n

Required _ _ _ 6-13: Information dialog boxes do not interrupt the user’s
interaction with your application.

An information dialog box conveys information to the user
that does not require immediate attention, so it does not
need to be modal.

Menu Design

y n/a n

Recommended _ _ _ ce: If the selection of a menu item will result in the user being
queried for more information, such as through the posting
of a file selection dialog, the menu item should be followed
by an ellipsis (“...”). This requirement does not apply to
menu items that will result in a simple warning or
confirmation dialog being displayed.

The use of an ellipsis helps set the user’s expectation for the
behavior of the interface. When they select an item without
an ellipsis, they know that they can expect an immediate
result.

Recommended _ _ _ cf: Menus accessed from within your application contain at
least two menu items.

No menu should contain only one item. If your application
provides a menu with only one item, you should look at
moving that item into another menu or making it a button
within the window. The longer the menu, the more effort is
needed for the user to access choices near the bottom. If
your menu has a lot of choices, break it up into two or more
menus, or group some items into submenus.

Optional _ _ _ cg: Submenus accessed from within your application contain at
least three menu items.

Submenus may be used to group like items into a single
secondary cascading menu where putting the items into the
primary cascading menu would make it too long. However,
if your submenu contains only two options, you should
strongly look at removing the secondary cascading menu
and putting the options into the primary cascading menu
since it takes more effort for the user to access options
located in a submenu.

218 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Recommended _ _ _ ch: No menu in your application contains more than 15 choices.

The longer the menu the more effort is needed for the user
to access choices near the bottom. If your menu has a lot of
choices, you should look at breaking it up into two or more
menus, or grouping some items into submenus.

Optional _ _ _ ci: If your application contains a menu that is expected to be
accessed frequently, then a tear-off menu option is provided
in that menu.

The user should be able to tear-off frequently accessed
menus so that these can remain posted on the desktop as the
user uses your application.

Optional _ _ _ cj: Provide keyboard accelerators where appropriate.

If specific menu items within a menu are expected to be
used frequently, not the menu as a whole, then your
application provides keyboard accelerators for these items
and displays the keyboard accelerators in the associated
menu to the right of the item to which they relate.

Recommended _ _ _ ck: The labels used for items in the menu bar do not appear as
options within the menus themselves.

The names of items in the menu bar serve as titles for the
options the menu contains. The name of the menu bar item
should provide a term that accurately describes the concept
of the category relating all of the menu items and should not
be used as the name of any item within the menu itself.

Required _ _ _ cl: Any menu choice that is not currently an appropriate
selection is dimmed (insensitive).

Dimmed controls cannot be activated by the user and
should appear only when the inactive state is short-term
(that is, there is something the user can do within the
application or the desktop environment to make the control
become active). When the control is persistently inactive
(because of the current configuration of the application or
system, or a particular set of companion software is not
currently installed), the control should be removed rather
than dimmed.

Recommended _ _ _ cm: If a menu item is used to indicate a selection state, use a
checkbox or radio button to indicate the state of the item.
Use a checkbox if a single item is used to represent on or off
states, and use radio buttons for multiple adjacent menu
items in which only one of the items may be selected.

Required _ _ _ cn: If radio buttons are used in a menu, use separators between
each set of radio buttons and other menu items.

Chapter 10 • Certification Checklist 219

Recommended _ _ _ co: If a checkbox or radio button is used on a menu item, it
should always be shown as either selected or not selected,
and should not disappear when in the unselected state.

Required _ _ _ 6-14: If your application uses a tear-off button in a menu, the
tear-off button is the first element in the menu.

When a tear-off button is activated, the menu changes into a
dialog box. The tear-off button needs to be the first item in
the menu so that the entire contents of the menu are torn off.

Required _ _ _ 6-15: All menus are wide enough to accommodate their widest
elements.

The ability to see the full label of each menu element allows
the user to browse through a menu.

Dialog Box Design

Note – These requirements apply only in a left-to-right language environment in an
English-language locale. You must make the appropriate changes for other locales.

y n/a n

Recommended _ _ _ cp: The title of dialog boxes used within your application
adheres to the conventions listed in Table 10–3

.

TABLE 10–3 Dialog Box Title Conventions

Window Usage Window Title Format

Message <app or object name> : <action or situation>

Progress <app or object name> : <action> in Progress

Action (Command) <app name> : <action>

Object Properties <app name> : <object-type> Properties

Application Options <app name> : <type> Options

y n/a n

220 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Required _ _ _ cq: Every dialog box in your application has at least one button
that either performs the dialog box action and dismisses it or
dismisses the dialog box without taking any action.

Recommended _ _ _ cr: If your application uses common dialog box actions, the
actions have the following specified functionality and labels:

Optional _ _ _ Yes Indicates an affirmative response to a
question posed in the dialog box.

Optional _ _ _ No Indicates a negative response to a question
posed in the dialog box.

Optional _ _ _ OK Applies any changes made to components
in the dialog box and dismisses the dialog
box.

Optional _ _ _ <command> Applies any changes made to components
in the dialog box, performs the action
associated with the <command>, and
dismisses the dialog box.

Should be used in lieu of OK, Yes, or No as
a button label when it provides more
meaning to the user as to the action that
will be performed when that button is
clicked.

Optional _ _ _ Apply Applies any changes made to components
in the dialog box and does not dismiss it.

Optional _ _ _ Retry Causes the task in progress to be attempted
again.

Optional _ _ _ Stop Ends the task in progress at the next
possible break point.

Optional _ _ _ Pause Causes the task in progress to pause.

Optional _ _ _ Resume Causes a task that has paused to resume.

Chapter 10 • Certification Checklist 221

Optional _ _ _ Save As
Defaults

Saves the current settings as the default
settings that will appear the next time the
window is displayed. The settings are not
applied to any selected object and the
dialog box is not dismissed.

A Save As Defaults button should be
provided if it is expected that a user would
want to use different default values for a
set of controls within a dialog box than
those that you provide as the factory
settings. For example, a Save As Defaults
button might be provided in a “New
<object-type>” window, allowing the user
to indicate that whenever a new instance of
that object-type is created, the current
values should be displayed as the default
settings instead of the values given by the
application.

Optional _ _ _ Reset Cancels any changes that have not yet been
applied by your application. The controls
within the dialog box are reset to their state
since the last time the dialog box action
was applied. If no changes have been
applied within the current invocation of the
dialog box, the controls are reset to the
state when the dialog box was first
displayed.

Optional _ _ _ Reset to Factory Cancels any changes that have not yet been
applied. Components in the dialog box are
reset to their default state and value as
specified by the vendor that delivered the
application (that is, the controls are
restored to the original factory settings).

Optional _ _ _ Cancel Dismisses the dialog box without
performing any actions not yet applied.

Recommended _ _ _ Help Provides help for the dialog box.

222 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Recommended _ _ _ cs: Any visible control that is not currently active or whose
setting is currently invalid is dimmed.

Dimmed controls cannot be activated by the user and should
appear only when the inactive state is short-term (that is,
there is something the user can do within the application or
the desktop environment to make the control become active).
When the control is persistently inactive (because of the
current configuration of the application or system, or a
particular set of companion software is not currently
installed), the control should be removed rather than
dimmed.

Optional _ _ _ ct: Keep the size of your dialog boxes to a minimum. Remember
that on low-resolution displays, dialogs may take up most of
the screen real estate, and may even run off the edge of the
screen if not designed correctly.

Optional _ _ _ cu: Avoid complexity in your dialog boxes. If your dialog box
must support many functions, consider using an expandable
dialog box (see “Expandable Windows” on page 236), or use
more than one dialog in a nested fashion.

Optional _ _ _ cv: Avoid the use of resize handles in your dialog box. However,
you may use resize handles when resizing is useful in
allowing users to see more information; for example, when
your dialog contains a scrolling list that is likely to be quite
long, and users will frequently need to search the list.

Optional _ _ _ cw: Every dialog box in your application has exactly one default
button that is activated when the Return key is pressed.

The default button should be associated with the most likely
response from the user and should not be potentially
destructive or irreversible. Some applications may have
dialog boxes that do not reveal a default button until a
specific set of fields has been filled out or otherwise
manipulated.

Chapter 10 • Certification Checklist 223

Optional _ _ _ cx: If a dialog box displayed by your application has controls
that are considered to be advanced features, use an
expandable dialog box, or use a multiple page dialog box
that provides a <category> option menu that allows a user to
navigate to each page.

Controls that relate to advanced features should not be
displayed with the set of options initially displayed to the
user. The typical user should be presented with only those
options that are necessary to use the basic functionality of the
application. Users looking to access advanced functionality
within the dialog box may use the <Category> option button
(see Figure 7-1). If the number of advanced controls is few, or
the settings for these controls are highly related to the
settings of basic controls displayed in the dialog box (that is,
the settings of the advanced controls change when the user
changes settings for basic controls), you might choose to
provide an expandable dialog box (see the section on
Expandable Windows and Dialog Boxes).

Property Windows

y n/a n

Required _ _ _ cy: If your application provides settings that control the behavior
of the application, these settings are displayed in an
application properties window that is accessible from an
Options menu.

Recommended _ _ _ cz: If your application manages objects and allows the user to
see or modify settings for these objects, these settings are
displayed in an object properties window that is accessible
from a Properties ... choice in the Edit, <object-type>, or
Selected menus, as well as from the pop-up menu associated
with the object.

Recommended _ _ _ da: If your application provides access to a Properties or Options
window, this window includes the following set of buttons in
the order listed, with the specified functionality, when
supported by your application.

Required _ _ _ OK Applies any changes made to components in the
dialog box and dismisses it. OK may be replaced
by a more appropriate label; for example, Add.
The alternate label should be a verb phrase.

Optional _ _ _ Apply Applies any changes made to components in the
dialog box and does not dismiss it.

224 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Required _ _ _ Reset Cancels any changes that have not yet been
applied by your application. The controls within
the dialog box are reset to their state since the
last time the dialog box action was applied. If no
changes have been applied within the current
invocation of the dialog box, the controls are
reset to the state when the dialog box was first
displayed.

Optional _ _ _ Reset to
Factory

Cancels any changes that have not yet been
applied. Components in the dialog box are reset
to their default state or value as specified by the
vendor that delivered the application (that is, the
controls are restored to the original factory
settings).

Required _ _ _ Cancel Dismisses the dialog box without performing
any actions not yet applied.

Required _ _ _ Help Provides help for the dialog box.

Recommended _ _ _ db: If your application provides a Properties window that
displays settings for a selected object, the Properties window
tracks the current selection and modifies the state of any
controls to accurately reflect the properties of the currently
selected object.

File Selection Dialog Box

y n/a n

Optional _ _ _ dc: If your application allows the user to open or save files, then
it uses the standard Common Desktop Environment file
selection dialog box to allow the user to select specific files
and directories.

All user interactions with the file system should be
facilitated by providing a point-and-click style of choosing
files and directories. The user should never be forced to
memorize and type in file paths. The user must be able to
explore the contents and structure of the file system using
scrolling lists. The expert user, however, should be able to
directly enter a complete file path, as well as be able to use
relative paths and environment variables such as $HOME.

The labels and contents of the standard file selection dialog
box may be modified as appropriate to make clear the
particular context in which it is being used within your
application.

Chapter 10 • Certification Checklist 225

Recommended _ _ _ dd: If your application allows the objects it manages to exist as
separate entities within folders or toolboxes within the
desktop environment, a Copy To menu option or button is
provided that displays a file selection dialog box that allows
the user to select the desired folder in which an icon for the
object should be placed.

Recommended _ _ _ de: The file selection dialog box should not display hidden (dot)
directories or files, unless your users depend on using these
types of files. If your application does support displaying
hidden files, you should supply a check box allowing users
to toggle between showing and not showing hidden files, or
else allow users to toggle between showing and hiding files
at a global level in your application.

Recommended _ _ _ df: The file selection dialog box should not show the full path
names for files and directories, but should only show the
relative names, except for the directory text field

The global Common Desktop Environment setting should
be:

XmFileSelectionBox.fullPathMode: false

Unless your application overrides this behavior, your
file selection dialog box should not show full path
names in the list boxes.

Required _ _ _ dg: In general, the file selection dialog box should recall the
directory location that was previously set by the user.

For example, if the user brings up Save As and navigates to
/users/jay/letters to save the file, the next time the
user brings up Save As, the file selection box should be in
the directory /users/jay/letters. This information,
however, should not be recalled once the user has closed the
primary window, but should resort to the default directory.

About Dialog Box

y n/a n

226 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Optional _ _ _ dh: The About dialog box should contain a minimum set of
information about the application that is visible in a single
text pane.

That minimum set should be:
� Application name
� Version number
� Release date
� Copyright

Required _ _ _ di: The About dialog box should contain a Close button. Other
buttons are optional, such as Help and More.

Other information contained in the about box might be:

y n/a n

Recommended _ _ _ dj: Information about the operating system or other aspects
required to run the application, for example, Common
Desktop Environment 1.0.

Optional _ _ _ dk: A More Information dialog box for additional information
such as development team credits, licensing, client or xhost
information.

Dialog Box Layout

y n/a n

Optional _ _ _ dl: Controls within your dialog box are placed in a left-right,
top-down layout based on the order in which the user is
expected to fill out or choose options within the dialog box.

Note – This assumes that your application is being designed
for a left-to-right language environment. Alternative design
approaches may be necessary for other locales.

Chapter 10 • Certification Checklist 227

Required _ _ _ dm: Push buttons that affect the dialog box as a whole, either by
modifying its contents or layout, invoking the action of the
dialog box, or dismissing the dialog box, are located at the
bottom of the dialog box.

In general, there should only be one row of buttons at the
bottom of a dialog box. If your application has dialog boxes
that contain several global buttons, it may be necessary to
create two or more rows of buttons at the bottom of the
dialog box. The last row should contain the standard dialog
box buttons (OK, Reset, Cancel, and Help). If a dialog box
contains buttons that are not related to the dialog box as a
whole, but relate to a specific control within the dialog box,
the buttons should be located with the control to which they
relate.

Required _ _ _ dn: If your application provides an Apply button within a
dialog box, it also provides an OK button or command
button that performs the dialog box action then dismisses it.

Optional _ _ _ do: Your application does not use cascading buttons within
dialog boxes unless there is absolutely no other design
alternative that can be used without a negative impact on
the layout of your dialog box.

In general, cascading buttons should only be used within
menus and menu bars. You should avoid their use in all
other locations unless absolutely necessary.

Recommended _ _ _ dp: If your application needs to use cascading buttons outside of
a menu pane, you should use the DtMenuButton widget.

Designing Drag and Drop

y n/a n

Recommended _ _ _ dq: You should provide a drag-and-drop (DND) method for all
objects represented as icons. Provide a DND method for all
elements that the user can directly manipulate.

Recommended _ _ _ dr: Any basic function that your application supports through
drag and drop is also supported through menus, buttons, or
dialog boxes.

Drag and drop is considered an accelerator to functionality
that is accessible through other user interface controls
supported within your application. There should be no basic
operation that is supported solely through drag and drop.

228 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Recommended _ _ _ ds: Use an icon graphic in a dialog box or window to indicate
that objects within the dialog box or window can be
dragged. Use the same icon graphic used to represent the
draggable object in File Manager. Place the icon adjacent to
any display of the contents of the object, if such display
exists. If there is no such display, place the icon in the upper
right corner of the dialog box or window, unless a more
suitable placement is determined. The icon should be 32x32
in size and have a label under it. The label should indicate
what kind of object the icon graphic represents. The icon
graphic should also be used as the source indicator in the
drag icon.

Required _ _ _ dt: During a drag operation, your application changes the
current pointer to a drag icon.

A drag icon provides visual feedback that a drag operation
is in progress.

Recommended _ _ _ du: During a drag operation, your application changes the
current drag cursor to include a source indicator.

A source indicator gives a visual representation of the
elements being dragged.

Recommended _ _ _ dv: During a drag operation, your application changes the
current drag cursor to indicate invalid drop zones. It uses
the standard Common Desktop Environment cannot pointer.

The user must receive feedback as to where an object can
and cannot be dropped. Minimally, feedback should be
provided as to what are invalid drop zones. Preferably,
feedback for valid drop zones is enhanced by use of
animation, recessing of the target drop zone, and other such
drag-over effects.

Recommended _ _ _ dw: During a drag operation, your application changes the drop
zone feedback to indicate a valid drop zone.

Preferably, feedback for valid drop zones is enhanced by use
of animation, recessing of the target drop zone, and other
such drag-over effects.

Required _ _ _ dx: Pressing Cancel ends a drag-and-drop operation by
canceling the drag in progress.

Cancel provides a consistent way for the user to cancel a
drag operation.

Required _ _ _ dy: Releasing BTransfer (or BSelect) when not over a drop target
ends a drag-and-drop operation.

Releasing BTransfer (or BSelect) offers a consistent means of
ending a drag operation.

Chapter 10 • Certification Checklist 229

Optional _ _ _ dz: Any cursor change or drag-over effect your application uses
occurs within .2 seconds of the mouse pointer reaching the
target area and does not interfere, in any noticeable way,
with the interactive performance of the drag operation.

Recommended _ _ _ ea: In a collection that supports copy, move, or link operations
that can be performed by dragging, the feedback presented
to the user during the drag operation indicates whether a
single object or multiple objects are being manipulated.

Feedback provided during the drag operation should ensure
that the user feels confident that the desired set of objects is
being dragged. The drag icon used for multi-object drag
operations should integrate the feedback used to indicate
whether the operation is a move, copy, or link.

Required _ _ _ eb: After a successful transfer, the data is placed in the drop
zone, and any transfer icon used by your application is
removed.

A transfer icon can be used to represent the type of data
being transferred during a drop operation. A successful drop
operation results in the transfer of data.

Required _ _ _ ec: If your application removes data upon the completion of a
drag and drop, it does so only if the drag-and-drop transfer
has completed successfully.

If a drag-and-drop operation has been canceled or failed, the
data or object that was the source of the drag must not be
removed.

Required _ _ _ ed: After a failed transfer, the data remains at the drag source
and is not placed in the drop zone. Any transfer icon used
by your application is removed.

A failed drop operation does not result in the transfer of
data.

Recommended _ _ _ ee: If the user drops an object at an inappropriate drop zone
within your application’s window, your application
participates in the display of a snap back effect and also
posts an error dialog box indicating the reason the drop was
disallowed.

The error message should state the context (for example,
running action A on object B), what happened (for example,
could not connect to system X), and how to correct the
problem (for example, press the Help button to obtain
information on diagnosing remote execution problems).

230 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Recommended _ _ _ ef: Applications that accept only single items should reject all
multiple-item drops.

There is no consistent method to determine which of the
selected items the user really wants to drop.

Recommended _ _ _ eg: If your application supports drag and drop as a means of
loading a file into the application, the application responds
to this operation in a manner similar to when the file is
loaded through more conventional means such as choosing
Open from the File menu.

As an accelerator, drag-and-drop loading of files should
provide the same kind of feedback and behavior as choosing
Open from the File menu. For example, if changes to a
currently loaded file have not yet been saved, your
application should display a message dialog box asking
whether the changes should first be saved before loading the
new file.

Required _ _ _ 6-17: If your application provides any drag-and-drop help dialog
boxes, they contain a Cancel button for canceling the
drag-and-drop operation in progress.

The Cancel button in the help dialog box provides a
convenient way for the user to cancel a drag-and-drop
operation.

Attachments

y n/a n

Recommended _ _ _ eh: Drag and drop should not be the only method for attaching
objects.

Recommended _ _ _ ei: Double-clicking is a shortcut for selecting the attachment
and choosing the Open menu item for attachments and
should never be the only way to access attachments.

Recommended _ _ _ ej: When the user attempts to drop something into the
attachment list that is not attachable, then the drop fails and
the item is snapped back to its source.

Recommended _ _ _ ek: When the user has one or more attachments open for editing
and attempts to do any operation that would result in
potentially losing the user’s edits, the user should be clearly
warned and given the opportunity to save changes.

Chapter 10 • Certification Checklist 231

Recommended _ _ _ el: When the user chooses something to attach from the file
selection dialog box that is not an attachable item, then the
user receives an error message explaining why the chosen
item cannot be attached. For example:

The folder “My.Stuff” cannot be attached because
it is a folder. Only documents, applications, and scripts

can be attached.

Installation

y n/a n

Required _ _ _ em: Applications should be installed to folders in the
Application Manager not directly to the Front Panel or
subpanels. For consistency, only Common Desktop
Environment desktop components will install to these
locations. Users may choose to rearrange their Front Panel,
but applications should not do this without user consent.

Interaction

y n/a n

Required _ _ _ 6-18: A warning dialog box allows the user to cancel the
destructive action about which the dialog box is providing a
warning.

The user needs to have a way to cancel an operation that can
cause destructive results.

Required _ _ _ en: When your application displays a dialog box, it places the
input focus at the first text field into which the user is
allowed to type an entry, or at the first control within the
dialog box with which the user should interact.

Input focus should always be placed at a predictable and
intuitive location. The user should not be forced to set focus
at the control most likely to be used when the window is
displayed.

232 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Recommended _ _ _ eo: As the user presses the Tab key within dialog boxes of your
application, the input focus moves to different controls
within the window in a left-right, top-down order.

Note – This assumes that your application is being designed
for a left-to-right language environment. Alternative design
approaches may be necessary for other locales.

Required _ _ _ ep: There is always exactly one control within any window of
your application that has the input focus if the window in
which it resides has the input focus.

If any window within your application has focus, some
control within that window must have focus. The user
should not have to explicitly set focus to a control within the
window.

Optional _ _ _ eq: When a text field within your application does not have the
input focus, the text cursor is not displayed within that field.

Although use of inactive text cursors is allowed within the
Motif style, it is better to hide the text cursor on focus out
rather than display the inactive text cursor. This makes it
easier for the user to quickly scan the screen or a window
and determine which text field currently has focus.

Optional _ _ _ er: Your application provides keyboard mnemonics for all
buttons, menus, and menu items displayed within the
application.

Once the user becomes adept at using your application,
keyboard mnemonics provide the user a quick way to access
functionality. Mnemonics also facilitate access to
functionality from within keyboard-centric applications or
windows. The user need not frequently switch between use
of the mouse or use of the keyboard. Mnemonics should be
provided pervasively throughout the user interface.

Optional _ _ _ es: Your application provides keyboard accelerators for those
functions that are expected to be used frequently by the user.

Keyboard accelerators provide the user who has become
expert at using your application a quick way to access
application functionality without having to go through
menus and dialog boxes.

Chapter 10 • Certification Checklist 233

Required _ _ _ et: Dialog boxes displayed by your application never block
input to other applications within the desktop (that is, they
are not system modal) unless it is absolutely essential that
the user perform no other action in the desktop until the
user responds to the dialog box.

Applications must allow the user the freedom to access
information and tools within the user’s desktop
environment. Only in the most dire circumstances should an
application ever block access to other applications and
services within the environment.

Required _ _ _ eu: Dialog boxes displayed by your application never block
access to other functionality within the application
(application modal) unless it is essential that the state of the
application remains unchanged until the user responds to
the dialog box.

Required _ _ _ ev: If your application does not use the values of global
environment settings, such as multiclick timeout intervals,
drag thresholds, window color settings, mouse left- or
right-handedness, and so on, but instead uses its own values
for these settings, then your application provides one or
more Options dialog boxes that allow the user to change the
values for these settings.

In general, you should not override the value of settings
treated as global environment settings. These settings are
controlled by the user through the Common Desktop
Environment Style Manager. If you choose to ignore these
settings and specify your own settings, then your
application will behave inconsistently with other
applications in the Common Desktop Environment desktop.
If you nevertheless choose to provide your own values, then
you must provide the user a way to make your settings
consistent with the rest of the desktop.

Visuals

y n/a n

234 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Recommended _ _ _ ew: Any icons or graphics displayed by your application are
designed to be distinguishable on low- (640x480), medium-
(800x600), and high- (mega-pixel) resolution displays.
Alternatively, your application provides different sized
visuals for low-, medium-, and high-resolution displays.

Desktop system configurations are including more
high-resolution monitors. The user must be able to discern
any visuals used by your application on these type of
monitors. The embedded base, however, still contains many
standard VGA monitors. Your application’s visuals must
display well on these systems and should not appear overly
large.

Recommended _ _ _ ex: Any icons or graphics displayed by your application are
designed to display well on black-and-white and gray-scale
monitors. These visuals also display well on low-color (16)
systems.

Recommended _ _ _ ey: Icons should be used to represent only objects and
applications.

Icons provide a visual representation for objects and
facilitate direct manipulation. If icons are used for other
purposes (for example, as illustrations) where the user can’t
drag them, select them, and so on, it creates a confusing
inconsistency.

Recommended _ _ _ ez: Icons should use only the palette of 22 colors.

The Common Desktop Environment icon palette was chosen
to maximize attractiveness and readability without using an
unnecessary number of colors. Use of additional colors may
cause undesirable color shifting on the display.

Recommended _ _ _ fa: Icons should be designed for international use.

Don’t use text, symbols, humor, animals, and other items
that may be interpreted differently in other cultures.

Recommended _ _ _ fb: 16x16 and 32x32 icons are left-aligned; any empty bits are on
the right side of the bounding box.

Recommended _ _ _ fc: 48x48 icons are centered in the bounding box.

Toolbars

y n/a n

Required _ _ _ fd: If you use a tool bar, it should be used only in windows with
a menu bar.

Chapter 10 • Certification Checklist 235

Required _ _ _ fe: Tool bars should contain only operations that are already
available to the user in your application menus. All items in
a tool bar should be redundant.

Required _ _ _ ff: When an action represented by a tool bar icon is unavailable
to the user, that icon should be made insensitive, with the
associated stippled appearance. Whenever a menu item is
made insensitive, the corresponding tool bar item must be
made insensitive as well.

Recommended _ _ _ fg: Give users the option to hide the tool bar.

Required _ _ _ fh: The tool bar container is placed directly under the menu bar
and should be the same width as the window, as well as
similar height to the menu bar.

Recommended _ _ _ fi: If you use a tool bar in your application, then you should
provide a status line in the same primary window as the
tool bar.

This status line should provide immediate feedback to the
user as to the purpose of the button that the mouse is
currently over or that has the keyboard focus. When the
arrow is over a tool bar icon, the status line should display a
brief definition of what the icon represents or what will
happen when the user clicks the icon.

Recommended _ _ _ fj: You may provide labels under tool bar icons. These labels
should serve to explain the purpose of the icon.

Recommended _ _ _ fk: Drawn buttons in the tool bar should be the same width and
height. Similar or related items should be grouped, and
groups should be evenly spaced across the tool bar.

Recommended _ _ _ fl: All pixmaps in the tool bar should be the same size.

This ensures that all the tool bar buttons are the same size.

Recommended _ _ _ fm: The recommended size of the pixmap is 24x24. The default
for the drawn button is to resize itself according to the size
of its label type, which, in this case, would be a pixmap.

Expandable Windows

y n/a n

Recommended _ _ _ fn: The primary pane of the dialog box or window should
contain all of the controls needed to complete the task. This
should include all critical and frequently used functionality.

236 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Recommended _ _ _ fo: It is assumed that infrequently used features are placed in
the secondary pane. The core functionality of the application
should not depend on any controls placed in secondary
panes.

Required _ _ _ fp: Command buttons are aligned along the bottom of the
dialog box. When the window is expanded to show a
secondary pane, then buttons are moved to the bottom of
the secondary pane. See Chapter 6 for information about
layout of action buttons in dialog boxes.

Recommended _ _ _ fq: If important controls must be placed in the secondary pane,
the application can specify that the window in question
should be displayed in its expanded state by default. Users
should still be able to shrink the window by pressing the
Contract button.

Recommended _ _ _ fr: The secondary pane should expand in the direction most
consistent with users’ expectations, the reading pattern of
the language in which it will be displayed, and the content
of the information displayed.

Recommended _ _ _ fs: If possible, the panes should have the same default width.

Required _ _ _ ft: A separator should be used to separate the primary pane
from the secondary pane.

The user needs to have clear visual feedback as to which
elements are in the primary and which in the secondary
panes of the expandable window.

Required _ _ _ fu: If a window is resizable, any sizing changes should be
allocated to the pane containing scrolling lists or text fields
whose displayed length is less than their stored length. If
both panes contain scrollable controls, size changes should
be distributed evenly between the two panes. If neither pane
contains scrollable controls, the window should not be
resizable.

Required _ _ _ fv: The expandable window should have one button that
changes its label based on the state of the window.

Required _ _ _ fw: The expand button should have two labels that reflect the
two states of the expandable window accurately. The current
label should indicate to the user what will happen if the user
clicks the button.

Examples of possible labels are Basic and Options, Expand
and Contract, and More and Less.

Optional _ _ _ fx: The expand button may contain a graphic in addition to the
label. This graphic should indicate the direction in which the
window will expand or contract.

Chapter 10 • Certification Checklist 237

Recommended _ _ _ fy: The button should appear in the lower left-hand corner of
the window or dialog box for expansion in the vertical
direction and in the lower-right hand corner for expansion
in the horizontal direction.

Required _ _ _ fz: If the window or dialog box contains a scrolling list
positioned to the far right side of the pane, do not align the
drawn button with the scroll bar. For example, the button
should be aligned with the list, not the scroll bar.

Required _ _ _ ga: Applications must remember the state of each window or
dialog box (expanded or not expanded) independently (not
collectively). The state should be changed only by the user
and should always be preserved until explicitly altered by
the user.

Recommended _ _ _ gb: Applications should remember the state of each expandable
window or dialog box across sessions, so that users don’t
have to manually configure the expandable windows each
time the application is run.

If appropriate, applications can provide a mechanism, as an
option, to allow users to set the state of an expandable
window globally for the application. This would be part of
the application’s Options.

Messages

y n/a n

Recommended _ _ _ gc: Messages displayed by your application do not assume that
the user has any expert knowledge about computer systems
in general, or the UNIX system in particular.

It is appropriate to assume that the user has knowledge
about basic terms used within the desktop, such as files or
programs. Such knowledge can be assumed to have been
learned by the user through Tutorials, online help, and user
documentation. However, terminology that is typically
understood only by an expert or frequent computer user
should be avoided unless the application is specifically
targeted at computer professionals. Likewise, messages
returned to your application by the underlying operating
system should not be passed through to the user, but
instead, should be “translated” into language that can be
understood by the novice user.

238 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Recommended _ _ _ gd: Error messages displayed by your application indicate the
possible cause of the error and indicate the possible actions
the user can take in response.

Optional _ _ _ ge: Your application uses audio feedback, in addition to any
messages displayed, to signal error conditions and events.

Optional _ _ _ gf: Don’t rely on error messages from the kernel and library
routines. Error messages from kernel and library routines
are normally not seen by the user, and even when the user
does see them, they are usually too low-level and cryptic to
be understood by nonprogrammers. Applications should
check for error conditions and use an error dialog box to
present an appropriate error message in terms of the user’s
actions and intentions.

Recommended _ _ _ gg: Your application displays a confirmation or warning
message dialog box to the user when an action instigated by
the user will be irreversible and potentially destructive with
respect to the information stored within the system or the
operation of the system or desktop environment.

Optional _ _ _ gh: Urgent conditions that require immediate attention by the
user, no matter which application or desktop service the
user is currently accessing, are brought to the user’s
attention using audiovisual notification. The alarm is
signaled in the current workspace regardless of the
workspace in which the application resides.

Some applications, such as network monitors or stock watch
programs, may need to grab the user’s immediate attention
to some event. Both visual and audio alarms should be used
to signal the user. The user should be able to acknowledge
the alarm and cause it to cease.

Recommended _ _ _ gi: Your application uses footer messages only to communicate
status, progress, or information (help) messages. It does not
use the footer to present error messages.

The footer is a good location for prompt messages that help
the user to determine how to choose options within a
window or fill out a particular field. It should not be used to
present error messages to the user or informational
messages that are important for the user to notice. These
should be presented in the appropriate style message dialog
box.

Chapter 10 • Certification Checklist 239

Recommended _ _ _ gj: Your application provides a Help button in all message
dialog boxes, except those that contain self-explanatory
messages.

Applications should be designed with both the expert and
novice user in mind. The novice user must be able to access
additional information clarifying the message, the
circumstances under which it might have been displayed,
and what the user should do in response to the message.

Recommended _ _ _ gk: Your application uses the appropriate style dialog box for
the display of messages to the user.

Optional _ _ _ gl: An information dialog box is used to display status,
completion of activity, or other informative types of
messages to which the user need not necessarily respond
other than to acknowledge having read the message.

Minimally, information dialog boxes should have an OK
button so that the user can dismiss the dialog box. If there is
additional information available about the situations under
which the message is displayed or other references for the
topic to which the message relates, then a Help button
should be included.

Optional _ _ _ gm: An error dialog box is used to display error messages to the
user. The error dialog box displayed states what the error is
and specifies why it occurred. The error dialog box contains
a Help button so that the user may get additional
information, unless the message is self-explanatory. The
error dialog box contains an OK button that dismisses the
dialog box.

A Cancel button is not required for error dialog boxes unless
the error resulted in the suspension of an activity that was in
progress. In this case, the message should indicate whether
the user has the option to continue the activity or stop it,
and the buttons for the dialog box should be Continue,
Cancel, and Help. In general, error dialog boxes should not
be modal unless it is critical that the user not continue
interacting with the application until the user has
acknowledged having read the error message.

240 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Optional _ _ _ gn: A question dialog box is used to ask questions of the user.
The question is clearly worded to indicate what a Yes
response or a No response means. The buttons displayed are
Yes, No, and Help. Help provides additional information as
to what the application will do in response to a Yes or No
choice.

Where possible, you should extend the label for the Yes and
No buttons to make it clear what action will be performed as
a result of choosing either option. For example, if the user
has made changes to a document and has not saved these
but has chosen the application’s Exit option, you might
display a question dialog box that asks “Changes have not
been saved. Do you want to save these before exiting?” The
buttons should be Save, Discard, Cancel, and Help. These
labels allow the more experienced user to click the correct
button without having to carefully read the question and
relate it to the button labels.

Optional _ _ _ go: A warning dialog box is used to communicate the
consequences of an action requested by the user that may
result in the loss of data, system or application accessibility,
or some other undesirable event. The dialog box is
presented before the action is performed and offers the user
the opportunity to cancel the requested operation. The
buttons displayed are Yes, No, and Help, or Continue,
Cancel, and Help. Help provides additional information on
the consequences of performing the action requested.

The use of Yes and No, or Continue and Cancel, depends on
the wording of your message. The labels for Yes and No
should be extended as suggested previously. Continue may
be replaced with a label more specific to the action that will
be performed.

Optional _ _ _ gp: A working dialog box is used to display in-progress
information to the user when this information is not
displayed in the footer of your application’s window. The
dialog box contains a Stop button that allows the user to
terminate the activity. The operation is terminated at the
next appropriate breakpoint, and a confirmation might be
displayed asking whether the user really wants to stop the
activity. The confirmation message might state the
consequences of stopping the action.

Chapter 10 • Certification Checklist 241

Optional _ _ _ gq: Your application writes error messages to the Common
Desktop Environment error log when it is not appropriate to
display these to the user in a message dialog box, but when
the message may nevertheless be useful in diagnosing
problems.

You might also write error messages that are displayed to
the user in the error log if it would be valuable to the user or
an administrator to refer to these messages at some later
time. Messages written to the error log should provide
additional information about the error and should state the
context in which the error occurred.

Optional _ _ _ gr: Informational messages should be left aligned and
displayed in a light font in keeping with their unobtrusive
nature. Note that the margin where informational messages
are displayed should not accept mouse focus.

Optional _ _ _ gs: Progress messages should normally be displayed only while
the operation is in progress. Notices and other information
that is no longer valid should be removed within a few
seconds to avoid confusion about whether or not the
information is current.

Work-in-Progress Feedback

y n/a n

Recommended _ _ _ gt: If any command chosen by the user is expected to take
longer than 2 seconds to complete, but less than 10 seconds,
your application displays the standard busy pointer as
feedback that the command is executing.

The user must receive assurance that your application has
“heard” the request and is working on it. If the results of the
request cannot be displayed immediately, some feedback
must be provided. The busy pointer should be displayed
within 0.5 seconds of execution of the command.

242 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Recommended _ _ _ gu: If any command chosen by the user is expected to take
longer than 10 seconds to complete, your application
displays a working dialog box or other feedback of similar
character that indicates that the application is working on
the request. The feedback should reveal progress toward
completion of the activity.

If an activity is expected to take a significant amount of time
(10 seconds or more), your application should display
feedback stronger than the busy pointer. Displaying the
busy pointer for long amounts of time may lead the user to
conclude that the application has become “hung.” A
progress indicator should be displayed in these scenarios
that indicates that the application is still functioning and is
working on the user’s request. The progress indicator should
show how much of the activity has been completed and
what amount remains.

Recommended _ _ _ gv: When your application displays work-in-progress feedback
to the user, it does not block access to other applications and
services within the desktop environment.

Multitasking should always be supported and, as such, your
application should allow the user to access other services
while it is busy performing some activity. Preferably, the
user is also able to access other features within your
application even though it is currently working on another
request. When this is supported, your application should
display an enhanced busy pointer that indicates that the
application is busy but still willing to accept input.

Controls, Groups, and Models

CheckButton

y n/a n

Chapter 10 • Certification Checklist 243

Required _ _ _ 7-1: Your application uses check buttons to select settings that
are not mutually exclusive. A check button graphically
indicates its state with the presence or absence of a check
mark.

A check button is used to select settings that are not
mutually exclusive. The user needs to know whether the
button is set or not.

Required _ _ _ 7-2: When the user presses BSelect in a check button, the check
button is armed. If the check button was previously unset, it
is shown in the set state. If the check button was previously
set, it is shown in the unset state.

BSelect Press arms a check button and shows the result of
activating it by releasing BSelect.

Required _ _ _ 7-3: When the user releases BSelect in the same check button in
which the press occurred:
� If the check button was previously unset, it is set.
� If the check button was previously set, it is unset.

In all cases the check button is disarmed, and, if the check
button is in a menu, the menu is unposted.

BSelect Release activates a check button.

Required _ _ _ 7-4: When the user presses the Enter or Return key in a check
button, if the check button is in a window with a default
action, the default action is activated. If the check button is
in a menu:
� If the check button was previously unset, it is set.
� If the check button was previously set, it is unset.

In both cases, the check button is disarmed, and the menu is
unposted.

The Enter and Return keys perform the default action of a
window or activate a check button in a menu.

Required _ _ _ 7-5: When the user presses the Select key or Spacebar in a check
button, if the check button was previously unset, it is set. If
the check button was previously set, it is unset. In both
cases, the check button is disarmed, and, if the check button
is in a menu, the menu is unposted.

The Select key and Spacebar activate a check button.

ComboBox

y n/a n

244 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Required _ _ _ gw: In a list that can be scrolled, such as a scrollable list box, do
not allow the cursor to wrap.

Required _ _ _ gx: Provide vertical scroll bars when some of the data is not
visible in the combo box.

Recommended _ _ _ gy: Provide horizontal scroll bars when elements are wider than
the list box.

Recommended _ _ _ gz: Display the elements in an order that is meaningful to the
user.

Recommended _ _ _ ha: Display an initial value from the list in the text-entry field.
Display selected emphasis on the initial value so that typed
text will replace the value.

Recommended _ _ _ hb: Make the combination box large enough to display a
minimum of six list items at a time.

Recommended _ _ _ hc: When a user increases the size of the window in which the
combo box is displayed, increase the number of items
displayed in the combo box.

Recommended _ _ _ hd: When a user decreases the size of the window in which the
combo box is displayed, decrease the number of items
displayed in the combo box. As a minimum, reduce the
combo box to the text-entry field and a list box with one
entry displayed. If the window is sized so that two list items
cannot be displayed, clip the combo box.

CommandBox

y n/a n

Required _ _ _ 7-6: If your application uses a command box, it is composed of a
text component with a command-line prompt for text input
and a list component for a command history area. The list
uses either the single selection or browse selection model.

This specification ensures the consistent appearance and
operation of a command box across applications.

Recommended _ _ _ 7-7: When an element of a command box list is selected, its
contents are placed in the text area.

This specification provides a convenient way of selecting a
previously entered command.

Chapter 10 • Certification Checklist 245

Required _ _ _ 7-8: The list navigation actions Up Arrow, Down Arrow,
Control+Begin, and Control+End are available from the text
component for moving the cursored element within the list
and thus changing the contents of the text.

These actions provide a convenient way to choose a
command from the list while focus remains in the text
component.

Required _ _ _ 7-9: The default action of the command box passes the command
in the text area to the application for execution and adds the
command to the end of the list.

Maintaining a history of commands provides a convenient
means of entering often-used commands.

FileSelectionBox

y n/a n

Required _ _ _ 7-10: If your application uses a file selection dialog box, it
contains the following components:
� A directory text component showing the current

directory path. The user can edit the directory text
component and press Return or Enter to change the
current directory.

� For applications that allow saving to different formats,
an option button allowing users to specify the format
when saving a file.

� A file name text component for displaying and editing a
file name. This component is optional when the file
selection box is used to choose an existing file or
directory.

� A group of push buttons, including a command button,
and Update, Cancel, and Help buttons. The command
button is typically labeled Open or Save, but if there is
another label that better describes the resulting action
(such as Include), that label should be used. Activating
the command button carries out the corresponding
action and dismisses the file selection box.

Recommended _ _ _ he: When the file selection box is used to specify an existing file
(for example, to open a document), the command button is
normally labeled Open and it should be the default action.

246 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Recommended _ _ _ hf: If the Update button is activated while a directory is selected
in the contents list, the directory is opened, its contents are
displayed in the contents list, and the directory text is
updated.

Required _ _ _ hg: If the Open button is activated while the appropriate file is
selected in the contents list, the file is utilized by the
application and the file selection box is dismissed.

Recommended _ _ _ hh: When the file selection dialog box is used to choose an
existing directory (for example, to install a set of files into
the chosen directory) or to specify a new directory, the
command button should be given an appropriate label, such
as Install, Choose, Create, or OK. If this button is activated
while the appropriate directory is selected in the contents
list, the directory is utilized by the application and the file
selection box is dismissed.

Required _ _ _ hi: When the file selection dialog box is used to choose an
existing directory, there must also be an additional button,
labeled Update, that is enabled whenever a directory is
selected in the contents list, and opens the directory. This
Update button is the default action.

Required _ _ _ hj: When the file selection dialog box is used to specify a new
file name (for example, a Save As dialog box), the command
button is normally labeled Save and is the default action.
This specification ensures the uniform appearance of a file
selection box across applications.

Optional _ _ _ hk: When the file selection dialog box is used to choose an
existing file, files are shown in the contents list but they are
all disabled. Double-clicking BSelect on a disabled file name
has no effect.

Required _ _ _ hl: The normal text navigation and editing functions are
available in the text components for moving the cursor
within each text component and changing the contents of
the text.

These actions provide a convenient way to choose a
directory or file name from the corresponding list while
focus remains in the text component.

_ _ _ 7-11: This item has been deleted.

Chapter 10 • Certification Checklist 247

Required _ _ _ 7-12: Double-clicking BSelect on an item in the contents list selects
that item and activates the default action. In all cases,
double-clicking BSelect on a directory in the contents list
opens that directory and displays its contents in the contents
list (the default action is Open).
� When the file selection box is used to choose an existing

file, double-clicking BSelect on an appropriate file in the
contents list chooses that file and dismisses the file
selection box (the default action is Open).

� When the file selection box is used to choose an existing
directory or to specify a new directory or file, the files
list should not appear.

Required _ _ _ 7-13: The normal text navigation and editing functions are
available in the text components for moving the cursor
within each text component and changing the contents of
the text.

_ _ _ 7-14: This item has been deleted.

Optional _ _ _ 7-15: Your application allows the user to select a file by scrolling
through the list of file names and selecting the desired file or
by entering the file name directly into the file selection text
component. Selecting a file from the list causes that file
name to appear in the file selection text area.

This method of selecting a file needs to be consistent across
applications.

Required _ _ _ 7-16: Your application makes use of the selection when one of the
following occurs:
� The user activates the command push button while an

appropriate item is selected in the contents list.
� The user double-clicks BSelect on an appropriate file in

the contents list.
� The user presses Return or Enter while the file name text

component has the keyboard focus and contains an
appropriate item.

Required _ _ _ 7-17: The file selection box displays the contents of a directory in
the contents list when the file selection box is initialized,
when the user presses Enter or Return in the directory text
component, and when the user opens a directory in the
contents list. The contents list is updated each time the
contents of the directory changes.

This specification ensures the consistent operation of a
directory and file search in a file selection box.

248 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Recommended _ _ _ hm: If the user has opened the application without supplying a
file name argument, the Open dialog box should use the
user’s home directory as the default directory.

An exception to this rule might be made if a clearly more
useful directory can be identified; for example, the icon
editor might default to HomeDirectory/.dt/icons. For
Applications that allow editing, never default to a directory
in which the user does not have read and write permission,
such as /usr/dt/bin.

Required _ _ _ hn: If the user has opened the application with a file name
argument, the Open dialog box should default to the
directory in which that file resides.

Optional _ _ _ ho: When using the file selection dialog box in Save As capacity,
provide a default name of Untitled, place the location cursor
in the file name field and highlight the file name text to
create a “delete pending type-in” mode. If the current
directory already has a file of that name, create a name
Untitled2, and so forth.

Optional _ _ _ hp: When using the file selection dialog box in a Save As
capacity, add a file name extension if the application
supports file typing by extension, and make this extension
visible in the file name field. Do not highlight the extension
to create a “delete pending type-in” mode, but allow users
to modify the extension or delete it explicitly.

Optional _ _ _ hq: The file selection dialog box should come up in a directory
that makes sense for the task. For example, when saving a
new file from an editor, the file selection box should come
up in the user’s home directory. If the user navigates to
some other directory within the file selection box, the
application should remember that directory the next time it
is brought up.

Optional _ _ _ hr: Users should never be allowed to overwrite an existing file
through the file selection box without a warning dialog box
prompt.

Optional _ _ _ hs: Keyboard focus should be placed in the file name field each
time users bring up a file selection dialog box.

Optional _ _ _ ht: Directory and file name lists should be presented
alphabetically, case insensitive. The first item on the
directory list should be the parent directory and it should be
labeled “..”.

Optional _ _ _ hu: Labels should be clear. In the English language, use the
following labels for the file selection dialog box fields and
lists:

Chapter 10 • Certification Checklist 249

TABLE 10–4 File Selection Dialog Box Labels

Component Label

Directory text field Enter Path or Folder Name:

Filter text Field Filter:

Directory list Folders:

Contents list Files:

File text field Enter File Name:*

y n/a n

Optional _ _ _ hv: Optionally, application developers can make this label more
instructive and specific, such as Enter File to Open for Open
dialog boxes.

These labels should be the default labels. If they are not set
by default, you need to set them through resources in your
application’s app-defaults file.

List

y n/a n

Required _ _ _ 7-18: Within a list component, your application uses the Up
Arrow key to move the location cursor to the previous item
in the list and the Down Arrow key to move the location
cursor to the next item in the list. In a scrollable list, the Left
Arrow key scrolls the list one character to the left, and the
Right Arrow key scrolls the list one character to the right.

The arrow keys provide a consistent means of moving the
location cursor within a list component.

Required _ _ _ 7-19: Within a list component, your application uses
Control+Begin to move the location cursor to the first item
in the list and Control+End to move the location cursor to
the last item in the list. In a scrollable list, the Begin key
moves the horizontal scroll region so that the leftmost edge
of the list is visible, and the End key moves the horizontal
scroll region so that the rightmost edge of the list is visible.

These keys offer a convenient mechanism for moving the
location cursor quickly through a list.

250 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Required _ _ _ 7-20: Within a scrollable list, the Page Up key moves the location
cursor to the item one page up in the list, and the Page
Down key moves the location cursor to the item one page
down in the list. In a scrollable list, the Page Left key (or
Control+Page Up) scrolls the list one page to the left, and
the Page Right key (or Control+Page Down) scrolls the list
one page to the right.

These keys offer a convenient mechanism for paging
through a list.

Required _ _ _ 7-21: Within a list component, your application uses BSelect Click
2 to select the item that was double-clicked and then initiate
any default action for the window.

Double-clicking using BSelect provides a consistent way of
activating the default action for a list.

Option Button

y n/a n

Required _ _ _ 7-22: If your application uses option buttons, the label for the
button is the last selection made from the option button.

An option button is used to post an option menu which
allows the user to select from a number of choices. The label
of an option button needs to display the most recent
selection from the associated option menu.

Required _ _ _ 7-23: BSelect Press is a consistent way of activating an option
button.

Required _ _ _ 7-24: When the user releases BSelect or BMenu within the same
option button that the press occurred in, the associated
option menu is posted if it was not posted at the time of the
press. When the user releases BSelect or BMenu outside of
the option button, the associated option menu is unposted.

BSelect Release or BMenu Release posts or unposts an
option menu, depending on whether the release occurs
inside the option button and whether the option menu was
posted at the time of the press.

Required _ _ _ 7-24: When the user presses the Select key or Spacebar in an
option button, the associated option menu is posted.

The Select key or Spacebar posts an option menu from the
keyboard.

Chapter 10 • Certification Checklist 251

Paned Window

y n/a n

Required _ _ _ 7-26: If your application uses paned windows, they are composed
of any number of groups of components, called panes, each
separated by a sash and a separator. The panes, sashes, and
separators are grouped linearly, either horizontally or
vertically. A sash is the handle on a separator between two
panes that is used to adjust the position of the separator.

This specification ensures the consistent appearance of a
paned window across applications.

Panel

y n/a n

Required _ _ _ 7-27: The Down Arrow, Left Arrow, Right Arrow, and Up Arrow
directional keys navigate among components in a panel.

A panel group organizes a collection of basic controls in a
horizontal, vertical, or two-dimensional layout. The
directional keys are used to navigate among the controls.

Push Button

y n/a n

Required _ _ _ 7-28: When the user presses BSelect in a push button, the push
button is armed. When the user releases BSelect in the same
push button that the press occurred in, the push button is
disarmed and activated. When the user releases BSelect
outside the push button, the push button is disarmed but
not activated.

BSelect provides a consistent means of activating a push
button.

252 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Required _ _ _ 7-29: When the user presses the Enter or Return key in a push
button that is in a window with a default action, the push
button is activated. When the user presses the Enter or
Return key in a push button in a menu, the push button is
activated and the menu is unposted.

The Enter and Return keys activate a dialog box or a push
button in a menu.

Required _ _ _ 7-30: When the user presses the Select key or Spacebar in a push
button, the push button is activated. If the push button is in
a menu, the menu is unposted.

The Select key and Spacebar activate a push button.

Radio Button

y n/a n

Required _ _ _ 7-31: If your application uses radio buttons, each button
graphically indicates its state.

Radio buttons are used to represent a panel of mutually
exclusive selections. The user needs to know which button
in the panel is set.

Required _ _ _ 7-32: When the user presses BSelect in a radio button, the radio
button is armed. If the radio button was previously unset, it
is shown in the set state.

BSelect Press arms a radio button and shows the result of
activating it by releasing BSelect.

Required _ _ _ 7-33: When the user releases BSelect in the same radio button that
the press occurred in and the radio button was previously
unset, it is set, and any other radio button in the same panel
that was previously set is unset. The radio button is
disarmed, and, if the radio button is in a menu, the menu is
unposted.

BSelect Release activates a radio button.

Chapter 10 • Certification Checklist 253

Required _ _ _ 7-34: When the user presses the Enter or Return key in a radio
button, if the radio button is in a window with a default
action, the default action is activated. If the radio button is
in a menu:
� If the radio button was previously unset, it is set, and

any other radio button in the same panel that was
previously set is unset.

� The radio button is disarmed, and the menu is unposted.

The Enter and Return keys perform the default action of a
window or activate a radio button in a menu.

Required _ _ _ 7-35: When the user presses the Select key or Spacebar in a radio
button, if the radio button was previously unset, it is set,
and any other radio button in the same panel that was
previously set is unset. The radio button is disarmed, and, if
the radio button is in a menu, the menu is unposted.

The Select key and Spacebar activate a radio button.

Sash

y n/a n

Required _ _ _ 7-36: Within a paned window, your application uses a sash to
adjust the position of a separator, which adjusts the sizes of
the panes next to it. As a sash is moved, the pane in the
direction of the sash movement gets smaller and the
opposite pane gets larger by an equal amount.

This specification results in the uniform operation of a
paned window across applications.

Required _ _ _ 7-37: Within a sash, BSelect Motion or BTransfer Motion causes
the sash to track the movement of the pointer. In a vertically
oriented paned window, the sash tracks the vertical position
of the pointer. In a horizontally oriented paned window, the
pane tracks the horizontal position of the pointer.

BSelect, mouse button 1, and BTransfer, mouse button 2,
provide a consistent means of moving a sash in a paned
window using the mouse.

Required _ _ _ 7-38: The Up Arrow and Down Arrow keys (for a sash that can
move vertically) and the Left Arrow and Right Arrow keys
(for a sash that can move horizontally) move the sash one
increment in the specified direction.

The arrow keys offer a uniform means of moving a sash in a
paned window.

254 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Required _ _ _ 7-39: Control+Up Arrow and Control+Down Arrow (for a sash
that can move vertically) and Control+Left Arrow and
Control+Right Arrow (for a sash that can move horizontally)
move the sash one large increment in the specified direction.

These keys provide a convenient way of moving a sash
quickly in a paned window.

Scale

y n/a n

Required _ _ _ 7-40: If a scale has arrow buttons, your application uses BSelect
Press in an arrow button to move the slider one increment in
the direction of the side of the slider on which the button
was pressed and autorepeats until the button is released.

BSelect Press provides a consistent means of adjusting a
scale component using the mouse.

Required _ _ _ 7-41: In a scale trough, if the scale has tick marks, BSelect Press
moves the slider one major tick mark in the direction of the
side of the slider on which the trough was pressed and
autorepeats until the button is released. If the scale does not
have tick marks, BSelect Press in the trough moves the slider
one large increment in the direction of the side of the slider
on which the trough was pressed and autorepeats until the
button is released.

BSelect Press provides a consistent means of adjusting a
scale component using the mouse.

Required _ _ _ 7-42: Within a scale slider, BSelect Motion causes the slider to
track the position of the pointer. In a vertical scale, the slider
tracks the vertical position of the pointer. In a horizontal
scale, the slider tracks the horizontal position of the pointer.

BSelect Motion offers a convenient way to adjust a scale
component precisely using the mouse.

Required _ _ _ 7-43: Within a scale slider or trough, BTransfer Motion positions
the slider to the point of the button press and then causes
the slider to track the position of the pointer. In a vertical
scale, the slider tracks the vertical position of the pointer. In
a horizontal scale, the slider tracks the horizontal position of
the pointer.

BTransfer Motion provides another convenient way to adjust
a scale component precisely using the mouse.

Chapter 10 • Certification Checklist 255

Required _ _ _ 7-44: If a mouse-based sliding action is in progress, the Cancel key
cancels the sliding action and returns the slider to its
position prior to the start of the sliding operation.

The Cancel key provides a consistent way for the user to
cancel a mouse-based sliding action.

Required _ _ _ 7-45: In a vertical scale, the Up Arrow and Down Arrow keys
move the slider one increment in the specified direction. In a
horizontal scale, the Left Arrow and Right Arrow keys move
the slider one increment in the specified direction.

The arrow keys provide a uniform way of adjusting the
slider in a scale component using the keyboard.

Required _ _ _ 7-46: In a vertical scale, Control+Up Arrow and Control+Down
Arrow move the slider one large increment in the specified
direction. In a horizontal scale, Control+Left Arrow and
Control+Right Arrow move the slider one large increment in
the specified direction.

These keys provide a convenient way of adjusting the slider
in a scale component quickly using the keyboard.

Required _ _ _ 7-47: Your application uses the Begin key or Control+Begin to
move the slider to its minimum value. The End key or
Control+End moves the slider to its maximum value.

These keys provide a convenient mechanism for setting a
scale to its minimum or maximum value using the
keyboard.

ScrollBar

y n/a n

Required _ _ _ 7-48: Within a scroll bar, your application uses BSelect Press in an
arrow button to move the slider one increment in the
direction of the side of the slider on which the button was
pressed and autorepeats until the button is released.

BSelect Press provides a consistent means of adjusting a
scroll bar using the mouse.

Required _ _ _ 7-49: In the trough of a scroll bar, BSelect Press moves the slider
one page in the direction of the side of the slider on which
the trough was pressed and autorepeats until the button is
released.

BSelect Press provides a consistent means of adjusting a
scroll bar using the mouse.

256 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Required _ _ _ 7-50: Within a scrollbar slider, BSelect Motion causes the slider to
track the position of the pointer. In a vertical scroll bar, the
slider tracks the vertical position of the pointer. In a
horizontal scroll bar, the slider tracks the horizontal position
of the pointer.

BSelect Motion offers a convenient way to adjust a scroll bar
precisely using the mouse.

Required _ _ _ 7-51: Within a scrollbar slider or trough, BTransfer Motion
positions the slider to the point of the button press and then
causes the slider to track the position of the pointer. In a
vertical scroll bar, the slider tracks the vertical position of
the pointer. In a horizontal scroll bar, the slider tracks the
horizontal position of the pointer.

BTransfer Motion offers another convenient way to adjust a
scroll bar precisely using the mouse.

Required _ _ _ 7-52: If a mouse-based scrolling action is in progress, pressing the
Cancel key cancels the scrolling action and returns the slider
to its position prior to the start of the scrolling operation.

The Cancel key provides a consistent way for the user to
cancel a mouse-based scrolling action.

Required _ _ _ 7-53: In a vertical scroll bar, the Up Arrow and Down Arrow keys
move the slider one increment in the specified direction. In a
horizontal scroll bar, the Left Arrow and Right Arrow keys
move the slider one increment in the specified direction.

The arrow keys provide a uniform means of adjusting a
scroll bar using the keyboard.

Required _ _ _ 7-54: In a vertical scroll bar, Control+Up Arrow and
Control+Down Arrow move the slider one large increment
in the specified direction. Control+Left Arrow and
Control+Right Arrow move the slider one large increment in
the specified direction.

These keys provide a convenient way of adjusting a scroll
bar quickly using the keyboard.

Required _ _ _ 7-55: Your application uses the Page Up and Page Down keys to
move the slider in a vertical scroll bar one page in the
specified direction. The Page Left key (or Control+Page Up)
and the Page Right key (or Control+Page Down) move the
slider in a horizontal scroll bar one page in the specified
direction.

These keys allow for the convenient movement of the slider
in a scroll bar using the keyboard.

Chapter 10 • Certification Checklist 257

Required _ _ _ 7-56: Your application uses the Begin key or Control+Begin to
move the slider to the minimum value. The End key or
Control+End moves the slider to the maximum value.

These keys offer a convenient mechanism for setting a scroll
bar to its minimum or maximum value using the keyboard.

SelectionBox

y n/a n

Required _ _ _ 7-57: If your application uses a selection box, it is composed of at
least a text component for the selected alternative and a list
component above the text component for presenting
alternatives. The list uses either the single selection or
browse selection model. Selecting an element from the list
places the selected element in the text component.

This specification ensures the consistent appearance and
operation of a selection box across applications.

Required _ _ _ 7-58: The list navigation actions Up Arrow, Down Arrow,
Control+Begin, and Control+End are available from the text
component for moving the cursored element within the list
and thus changing the contents of the text.

These actions provide a convenient way to choose an
element from the list while focus remains in the text
component.

SpinBox

y n/a n

Required _ _ _ hw: Present the items as a ring of items that wrap. For example,
if a user is at the largest number and presses the up arrow,
the smallest number is displayed and vice versa so that the
user can spin through all the items by pressing the same
arrow.

Required _ _ _ hx: Move through the items in a spin box as shown in Table
10–5.

258 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

TABLE 10–5 Navigation in a Spin Box

Movement Keys Example

Toward the beginning of
the list

left arrow, down arrow Chronological: If Tuesday is
displayed, move to Monday when
the user presses the left or down
arrow.

Magnitude: If 15 is displayed, move
to 14 when the user presses the left
or down arrow.

Toward the end of the list right arrow, up arrow Chronological: If Tuesday is
displayed, move to Wednesday
when the user presses the right or
up arrow.

Magnitude: If 15 is displayed, move
to 16 when the user presses the
right or up arrow.

y n/a n

Recommended _ _ _ hy: Values can be set using the arrow buttons or through
keyboard input. Values should be evaluated immediately
upon entry. If a value is entered that is already in the list,
scroll to the position of that entry in the list.

Recommended _ _ _ hz: If entry of non-listed items is permitted, use the following
behavior. When a new value is entered, scroll the list to the
position appropriate for the new entry. If the user scrolls off
the new entry, scroll to the next appropriate value in the list
and the keyboard-entered value is lost.

Recommended _ _ _ ia: On entry of an invalid value, an auditory warning and error
message should be provided.

Text

y n/a n

Chapter 10 • Certification Checklist 259

Required _ _ _ 7-59: In a multiline text component, the Up Arrow key moves the
location cursor up one line, and the Down Arrow key moves
the location cursor down one line. In a single-line text
component, the Up Arrow key navigates upward to the
previous component, and the Down Arrow key navigates
downward to the next component, if the text component is
designed to act like a basic control.

The up and down arrow keys provide a uniform means of
navigation within text components.

Required _ _ _ 7-60 The Left Arrow key moves the location cursor left one
character, and the Right Arrow key moves the location
cursor right one character.

The Left Arrow and Right Arrow keys offer a consistent way
of navigating within text components.

Required _ _ _ 7-61: n a text component used generally to hold multiple words,
Control+Right Arrow moves the location cursor to the right
by a word, and Control+Left Arrow moves the location
cursor to the left by a word.

Control+Right Arrow and Control+Left Arrow provide a
uniform way of navigating by words in a text component.
Moving right by a word means that the location cursor is
placed before the first character that is not a space, tab, or
newline character after the next space, tab, or newline.
Moving left by a word means that the location cursor is
placed after the first space, tab, or newline character
preceding the first previous character that is not a space, tab,
or newline.

Required _ _ _ 7-62: In a text component used generally to hold multiple words,
the Begin key moves the location cursor to the beginning of
the line, and the End key moves the location cursor to the
end of the line.

These keys allow the user to move quickly to the beginning
or end of a line of text in a text component.

Required _ _ _ 7-63: In a multiline text component, Control+Begin moves the
location cursor to the beginning of the file, and Control+End
moves the location cursor to the end of the file.

These keys permit the user to move quickly to the beginning
or end of a file in a text component.

Required _ _ _ 7-64: Your application uses Spacebar or Shift+Spacebar to insert a
space in a text component. Modifying these with Control
invokes the normal selection function.

This specification ensures that selection is available from the
keyboard in a text component.

260 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Required _ _ _ 7-65: Return in a multiline text component inserts a carriage
return. The Enter key or Control+Return invokes the default
action.

This specification ensures that activation is available from
the keyboard in a text component.

Required _ _ _ 7-66: In a multiline text component, Tab is used for tabbing. In a
single-line text component, Tab is used either for tabbing or
to move to the next field.

Tab is used for tabbing in multiline text.

Required _ _ _ 7-67: If a text component supports replace mode, insert toggles
between insert mode and replace mode.

By default, the component starts in insert mode, where the
location cursor is between two characters. In insert mode,
typing a character inserts the character at the position of the
location cursor.

In replace mode, the location cursor is on a character. Typing
a character replaces the current character with that newly
entered character and moves the location cursor to the next
character, selecting it.

These rules ensure the uniform operation of a text
component with a replace mode.

Required _ _ _ 7-68: Your application uses BSelect Click 2 to select text a word at
a time.

Double-clicking with mouse button 1 provides a convenient
mechanism for selecting words in a text component.

Gauge

y n/a n

Required _ _ _ ib: A gauge is similar to a scale except that a gauge is a
display-only device with no user interactions. The
appearance of a gauge is similar to a scale, but the gauge
lacks a scale slider.

Optional _ _ _ ic: Despite being a display-only device, a gauge should get
keyboard focus so that the user can access Help or Settings
for that control.

Chapter 10 • Certification Checklist 261

Accessibility

y n/a n

Recommended _ _ _ id: All application functions are accessible from the keyboard.

Recommended _ _ _ ie: Colors should not be hard coded.

Recommended _ _ _ if: Graphic attributes, such as line, border, and shadow, should
not be hard coded.

Recommended _ _ _ ig: Font sizes and styles should not be hard coded.

Recommended _ _ _ ih: All application code uses descriptive names for widgets.
Such descriptive names for widgets using graphics instead
of text (for example, palette items and icons) allow screen
reading software to provide descriptive information to blind
users.

Recommended _ _ _ ii: Interactions do not depend upon the assumption that a user
will hear an audible notification.

Recommended _ _ _ ij: Where appropriate, users can choose to receive cues as
audio or visual information.

Recommended _ _ _ ik: The application does not overuse or rely exclusively on
audible information.

Recommended _ _ _ il: Users can choose to configure the frequency and volume of
audible cues.

Recommended _ _ _ im: Tear-off menus and user configurable menus for key
application features may be provided for users with
language and cognitive disabilities.

Recommended _ _ _ in: Application keymappings do not conflict with existing
system-level key mappings reserved for access features in
the X Windows server as shown in Table 10–6.

TABLE 10–6 Keyboard Mappings for Server-Level Access Features

Keyboard Mapping Reserved For

Five consecutive clicks of
Shift key

On/Off for StickyKeys

Shift key held down 8
seconds

On/Off for SlowKeys and RepeatKeys

262 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

TABLE 10–6 Keyboard Mappings for Server-Level Access Features (Continued)
Keyboard Mapping Reserved For

Six consecutive clicks of
Control key

On/Off for screen reader numeric keypad functions.

Six consecutive clicks of
Alt key

Reserved for future access use

Chapter 10 • Certification Checklist 263

264 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

APPENDIX A

Keyboard Functions

This appendix provides information on keyboard functions and keyboard engravings.

Keyboard Functions Tables
TABLE A–1 Keyboard Functions and Key Engravings

Function Key Engraving (US Keyboard) Description

Activation Select, spacebar, or
Control+spacebar

Starts the action associated with a component (for
example, an action choice).

Backspace Backspace Deletes one character to the left of the cursor or the
current selection.

Backtab Shift+Tab or Backtab Moves the cursor to the previous field. The cursor is
positioned either on the previous choice in that field or
on the currently set choice in that field. The cursor
moves from right to left and bottom to top. At the
top-leftmost field, the cursor moves to the
bottom-rightmost field. Within a text-entry field,
backtab moves the cursor to the character position
defined by the previous tab stop.

Beginning of data Control+Home Moves the cursor to the top-leftmost position in the
current field.

Beginning of line Home Moves the cursor to the leftmost choice in a group of
choices, or to the beginning of the current line in a
text-entry field.

265

TABLE A–1 Keyboard Functions and Key Engravings (Continued)
Function Key Engraving (US Keyboard) Description

Cancel Esc or Cancel Removes the window without applying any changes
that were not previously applied in that window.

Cancel direct
manipulation

Esc or Cancel Cancels the direct manipulation operation.

Clear Delete or no assignment1 Removes selected element or group of elements from
window without compressing the space previously
occupied by the element or group of elements.

Close Alt+F4 Closes active window.

Context-sensitive help F1, Shift+F1, Help Displays context-sensitive help for the element relative
to the current context, such as the cursor position or the
process currently in progress.

Copy Control+C, Control+Insert Produces a duplicate of the selected element or group of
elements and places it on the clipboard.

Cut Control+X, Shift+Delete Removes the selected element or group of elements to
the clipboard.

Default action Enter, Return If the cursor is on a component that can be activated,
performs that action. If the cursor is on a component
that does not support activation performs the default
action for that window.

Delete next character Delete1 Deletes the next character in text.

Delete previous
character

Backspace Deletes the previous character in text.

Delete selection Delete1 Removes a selected element or group of elements and,
when appropriate for the window, compresses the
space it occupied.

Deselect all Control+Backslash Removes selected-state emphasis from all elements in
the active window.

Display drop-down list
or drop-down
combination box

Alt+down arrow Displays or removes the list for the drop-down list or
the drop-down combination box.

End of data Control+End Moves the cursor to the bottom-rightmost position in
the current field.

End of line End Moves the cursor to the rightmost choice in a group of
choices, or to the end of the current line in a text-entry
field.

Extend selection to
beginning of data

Control+Shift+Home Extends the selection to the beginning of the data.

266 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

TABLE A–1 Keyboard Functions and Key Engravings (Continued)
Function Key Engraving (US Keyboard) Description

Extend selection to
beginning of the line

Shift+Home Extends the selection to the beginning of a line.

Extend selection down Shift+down arrow Extends the selection down a line.

Extend selection to end
of data

Control+Shift+End Extends the selection to the end of the data.

Extend selection to end
of line

Shift+End Extends the selection to the end of a line.

Extend selection to the
left

Shift+left arrow Extends the selection to the left.

Extend selection down
one page

Shift+Page Down Extends the selection down a page.

Extend selection to the
left one page

Control+Shift+Page Up Extends the selection a page to the left.

Extend selection to the
right one page

Control+Shift+Page Down Extends the selection a page to the right.

Extend selection up one
page

Shift+Page Up Extends the selection up one page.

Extend selection down
one paragraph

Control+Shift+down arrow Extends the selection down one paragraph.

Extend selection up one
paragraph

Control+Shift+up arrow Extends the selection up one paragraph.

Extend selection to the
right

Shift+right arrow Extends the selection to the right.

Extend selection Shift+spacebar,
Control+Shift+spacebar

Extends the selection to the cursor position (not valid in
text).

Extend selection up Shift+up arrow Extends the selection up a line.

Extend selection word
left

Control+Shift+left arrow Extends the selection one word to the left.

Extend selection word
right

Control+Shift+right arrow Extends the selection one word to the right.

Help (Overview help) F2 (in a Help window) Displays a brief overview of each action, task, or both,
that a user can perform within the window.

Help index F11 (in a Help window) Displays an alphabetic listing of help topics for an
object or a product.

Appendix A • Keyboard Functions 267

TABLE A–1 Keyboard Functions and Key Engravings (Continued)
Function Key Engraving (US Keyboard) Description

Help F1 Displays context-sensitive help for the item that
contains the cursor

Hide Alt+F9 Removes the window and all associated windows from
the screen.

Keyboard help F9 (in a Help window) Displays a listing of all the key assignments for an
object or a product.

Maximize Alt+F10 Enlarges the window to its largest possible size.

Minimize Alt+F9 Reduces the window to its smallest possible size and
removes all of the windows associated with that
window from the screen.

Move Alt+F7 Allows a user to move a window to a different location.

Move cursor Arrow keys or Control+arrow
keys

Moves the cursor left, right, up, or down. At the last
choice, the cursor wraps. For example, at the
bottom-most choice, the cursor wraps to the top-most
choice to the right.

Move cursor to and
from menu bar

F10 Moves the cursor from within a window to its menu
bar or from the menu bar to within the window.

Move cursor to the next
field

Tab or Control+Tab Moves the cursor to the next field.

Move cursor to the
previous field

Shift+Tab or
Control+Shift+Tab

Moves the cursor to the previous field.

Move cursor to the next
associated window
(within a window
family)

Alt+F6 Moves the input focus to the next window within a
window family.

Move cursor to the
previous associated
window (within a
window family)

Alt+Shift+F6 Moves the input focus to the previous window within a
window family.

Move cursor forward
between unassociated
windows

Alt+Esc Moves the input focus forward between the groups of
associated windows displayed from different objects (if
more than one object is displayed by an object).

Move cursor between
window families

Alt+Tab Moves the input focus between open, but not hidden,
window families.

Move cursor backwards
between window
families

Alt+Shift+Tab Moves the input focus backwards between open, but
not hidden, window families.

268 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

TABLE A–1 Keyboard Functions and Key Engravings (Continued)
Function Key Engraving (US Keyboard) Description

Move cursor to another
window pane

F6 Moves the cursor in a clockwise direction from one
window pane to the next.

New line Enter or Return Moves the cursor to the next line of text in replace
mode or adds a new line in text in insert mode.

Page down Page Down A scrolling action that displays information below the
currently visible window area.

Page left Control+Page Up A scrolling action that displays information to the left of
the currently visible window area.

Page right Control+Page Down A scrolling action that displays information to the right
of the currently visible window area.

Page up Page Up A scrolling action that displays information above the
currently visible window area.

Paragraph down Control+down arrow A scrolling action that displays one paragraph below
the currently visible window area.

Paragraph up Control+up arrow A scrolling action that displays one paragraph above
the currently visible window area.

Paste Control+V or Shift+Insert Copies the contents of the clipboard into the window at
the specified location.

Pop-up menu Shift+F10 Displays a pop-up menu for the indicated element or
group of selected elements.

Redo Shift+Alt+Backspace Reverses the effect of the last applied undo action.

Refresh now F5, Control+R Updates the window to reflect the underlying data.

Restore Alt+F5 Returns the window to the size it was and the position
it was in before the user minimized or maximized the
window.

Select all Control+Slash Selects all elements in active window.

Select element on which
cursor is positioned

Spacebar (if it is not assigned
to any other function) or
Control+spacebar

Selects element on which cursor is positioned.

Size Alt+F8 Allows a user to change the size of the window.

Space spacebar or Shift+spacebar Inserts a space in text.

Appendix A • Keyboard Functions 269

TABLE A–1 Keyboard Functions and Key Engravings (Continued)
Function Key Engraving (US Keyboard) Description

Tab Tab Moves the cursor to the next field. The cursor is
positioned either on the first choice in that field or on
the currently set choice in that field. The cursor moves
from left to right and top to bottom. At the
bottom-rightmost field, the cursor moves to the
top-leftmost field. Within a text-entry field, Tab moves
the cursor to the character position defined by the next
tab stop or resets the tab.

Toggle between insert
and replace modes in
text entry

Insert Toggles between insert and replace modes.

Toggle in or out of
keyboard add mode
when in extended
selection mode

Shift+F8 Toggles in or out of keyboard add mode when extended
selection is provided for a view. The initial deselection
is bypassed and the new selected objects are added or
removed from the current group of selected objects.

Tutorial Shift+F2 (in a Help window) Displays online educational information.

Undo Alt+Backspace, Control+Z Reverses the action of the most recently performed user
action.

Using help Shift+F10 (in a pop-up
window)

Displays help information that describes how to use the
help facility.

Window list Control+Esc Displays the window list window from the window
menu.

Window menu Alt + Spacebar or Shift+Esc Displays window menu.

Word left Control+left arrow Moves the cursor to the beginning of the word to the
left of the cursor.

Word right Control+right arrow Moves the cursor to the beginning of the next word to
the right of the cursor.

1. Assign the Delete key to either the Delete or Clear function, if only one is provided. If both Delete and Clear functions are provided,
assign the Delete key to the Delete function

TABLE A–2 Mnemonic Assignments for menu Choices

Choice Mnemonic Location

About A Help menu

Clear E Edit menu

Close C File menu and Window menu

Copy C Edit menu

Copy Link K Edit menu

270 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

TABLE A–2 Mnemonic Assignments for menu Choices (Continued)
Choice Mnemonic Location

Copy To C Selected menu

Cut T Edit menu

Delete D Object-type menu and Edit
menu

Deselect All L Edit menu

Exit X File menu

Find F Edit menu

Icon C View menu

Include I View menu

Index I Help menu

Keyboard K Help menu

Lower L Window menu

Maximize X Window menu

Minimize N Window menu

Mouse M Help menu

Mouse and Keyboard M Help menu

Move M Window menu

Move To M Selected menu

New N File menu

Occupy All Workspaces A Window menu

Occupy Workspace O Window menu

On Item O Help menu

Open O File menu

Overview V Help menu

Paste P Edit menu

Paste Link L Edit menu

Print P File menu

Promote M Edit menu

Properties P Selected menu

Appendix A • Keyboard Functions 271

TABLE A–2 Mnemonic Assignments for menu Choices (Continued)
Choice Mnemonic Location

Put in Workspace T Selected menu

Redo R Edit menu

Reference R Help menu

Refresh E View menu

Reselect R Edit menu

Restore R Window menu

Save S File menu

Save as A File menu

Select All S Edit menu

Select Pasted A Edit menu

Size S Window menu

Sort S View menu

Table of Contents C Help menu

Tasks T Help menu

Tutorial L Help menu

Undo U Edit menu

Unoccupy Workspace U Window menu

Using Help U Help menu

View Help TBD View menu (object-oriented)

TABLE A–3 Keyboard Mappings for Space Bar and Enter Key

Element Space bar Enter key

menu Activates current item Activates current item

pushbutton Activates button Performs default action if default action
exists for the window containing the
element

text field Adds a space Performs default action if default action
exists for the window containing the
element

272 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

TABLE A–3 Keyboard Mappings for Space Bar and Enter Key (Continued)
Element Space bar Enter key

list item Selects current item Performs default action if default action
exists for the window containing the
element

icon Selects Performs default action if default action
exists for the window containing the
element

Appendix A • Keyboard Functions 273

274 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

APPENDIX B

Mouse Functions

On a one-, two-, or three- button mouse, the mouse buttons are assigned to various
functions which are defined below.

Some two-button mice use chording as a way to simulate a third mouse button. If so,
treat as a three-button mouse, where mouse button 3 is mouse button 1+mouse button
2 (chorded).

Motif supports two different mouse models:

� Separate Selection and Transfer:

� Mouse button 1 is used only for selection and activation.
� Mouse button 2 is used only for data transfer and direct manipulation.

� Integrated Selection and Transfer:

� Mouse button 1 is used both for selection and activation and for data transfer
and direct manipulation.

The way the mouse buttons are assigned depends upon the number of mouse buttons
available, as well as whether selection and transfer are integrated or are separate.

Regardless of the way that the buttons are assigned, a number of virtual mouse
buttons are defined:

SELECT Used for selection and activation. SELECT is always mouse button
1 (the leftmost button, for a right-handed person).

ADJUST Used for adjusting and selection. ADJUST is always Shift+mouse
button 1. In addition, on a three-button mouse, with integrated
selection and transfer, ADJUST may optionally be assigned to
mouse button 2.

TRANSFER Used for data transfer and manipulation operations. With separate
selection and transfer, TRANSFER is always assigned to mouse
button 2. With integrated selection and transfer, TRANSFER is

275

mouse button 1 (integrated with SELECT), and on a three-button
mouse, may also optionally be assigned to mouse button 2.

MENU Used to obtain pop-up menus. On a three-button mouse, MENU is
always assigned to mouse button 3. On a two-button mouse with
integrated selection and transfer, MENU is assigned to mouse
button 2. Otherwise, MENU is assigned to Alt+mouse button 1.

That is, on a two- or three-button Mouse, with Separated SELECTION and
TRANSFER, the virtual mouse buttons are assigned as follows:

SELECT mouse button 1

ADJUST Shift+mouse button 1

TRANSFER mouse button 2

MENU mouse button 3 on a three-button mouse, or Alt+mouse button 1
on a two-button mouse

On a one-, two-, or three-button mouse, with Integrated SELECTION and TRANSFER,
the virtual mouse buttons are assigned as followed:

SELECT mouse button 1 (integrated with TRANSFER)

ADJUST Shift+mouse button 1. Optionally mouse button 2 on a
three-button mouse

TRANSFER mouse button 1 (integrated with SELECT) Optionally mouse
button 2 on a three-button mouse.

MENU mouse button 3 on a three-button mouse, or mouse button 2 on a
two-button mouse, or Alt+mouse button 1 on a one-button mouse.

Note – On a three-button mouse, with integrated selection and transfer, if neither
ADJUST nor TRANSFER are assigned to mouse button 2, mouse button 2 may be used
for application-defined purposes.

Mouse Operations and Functions
TABLE B–1 Mouse Operations and Functions

Operation Name Function

Activate Activates a control that doesn’t have selections.

276 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

TABLE B–1 Mouse Operations and Functions (Continued)
Operation Name Function

Default Activate Open Selects and performs default action on item Open.

Open Opens view corresponding to icon Open.

Manipulate Manipulates nonselectable aspects of the interface
(for example. scroll).

Move Cursor Moves cursor to component or element.

Spring-Loaded Pull-down Menu Displays persistent pull-down menu from cascade
button.

Persistent Pull-down Menu Displays persistent pull-down menu from cascade
button.

Point Select Selects an item if over one, deselecting other items
(browse and extended selection).

Browse Select Shows which items can be selected, selecting one
over which pointer is released.

Group Click Select Selects a range or area of elements.

Group Swipe Select Selects a range or area of elements.

Point Toggle [select mode] Toggles selection state of an item
(extended selection).

Group Click Toggle [select mode] Toggles elements in range or area
(extended selection).

Group Swipe Toggle [select mode] Toggles elements in range or area
(extended selection).

Point Toggle [toggle mode] Toggles selection state of an item
(single and multiple selection).

Group Click Toggle [toggle mode] Toggles elements in range or area
(multiple selection).

Adjust Click Adjusts current selection region.

Adjust Swipe Adjusts current selection region.

Select Word Selects a word in text.

Range Click Select Word Selects a range of words

Range Swipe Select Word Selects a range of words.

Toggle Word Toggles selection of a word.

Range Click Toggle Word Toggles a range of words.

Range Swipe Toggle Word Toggles a range of words.

Appendix B • Mouse Functions 277

TABLE B–1 Mouse Operations and Functions (Continued)
Operation Name Function

Adjust Click Word Adjusts selection to word boundary.

Adjust Swipe Word Adjusts selection in word increments.

Primary Copy Copies primary selection to pointer.

Primary Move Moves primary selection to pointer.

Primary Link Links primary selection to pointer.

Quick Copy Makes and copies secondary selection to
destination.

Quick Move Makes and move secondary selection to
destination.

Quick Link Makes and link secondary selection to destination.

Drag Transfer Transfers dragged items to pointer (usually move).

Drag Copy Copies dragged items to pointer.

Drag Move Moves dragged items to pointer.

Drag Link Links dragged items to pointer.

Spring-Loaded Pop-up Menu Displays spring-loaded pop-up menu.

Persistent Pop-up Menu Displays persistent pop-up menu.

Select and Adjust Binding
SELECT This is the virtual mouse button used for selection and activation.

SELECT is always mouse button 1 (the leftmost button, for a
right-handed person).

ADJUST This is the virtual mouse button used for adjusting a selection.
ADJUST is always Shift+mouse button 1. In addition, on a
three-button mouse, with integrated selection and transfer,
ADJUST may optionally be assigned to mouse button 2.

TABLE B–2 Select and Adjust Key Bindings

Operation Name Key Bindings

Activate SELECT Click

Default Activate SELECT Double-Click

Open SELECT Double-Click

278 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

TABLE B–2 Select and Adjust Key Bindings (Continued)
Operation Name Key Bindings

Manipulate SELECT Press, Move, Release

Move Cursor Control+SELECT Click

Spring-Loaded pull-down Menu SELECT Press

Persistent pull-down Menu SELECT Click

Point Select SELECT Click

Browse Select SELECT Press, Move, Release

Group Click Select SELECT Click, Move, ADJUST Click

Group Swipe Select SELECT Press, Move, Release

Point Toggle [select mode] Control+SELECT Click

Group Click Toggle [select mode] Control+SELECT Click, Move,
ADJUST Click

Group Swipe Toggle [select mode] Control+SELECT Press, Move,
Release

Point Toggle [toggle mode] SELECT Click

Group Click Toggle [toggle mode] SELECT Click, Move, ADJUST Click

Group Swipe Toggle [toggle mode] SELECT Press, Move, Release

Adjust Clock ADJUST Click

Adjust Swipe ADJUST Press, Move, Release

Adjust Click Control+ADJUST Click

Adjust Swipe Control+ADJUST Press, Move, Release

Select Word SELECT Double-Click

Range Click Select Word SELECT Double-Click, Move, Adjust Click

Range Swipe Select Word SELECT Double Press, Move, Release

Toggle Word Control+SELECT Double-Click

Range Click Toggle Word Control+SELECT Double-Click, Move, ADJUST
Click

Range Swipe Toggle Word Control+SELECT Double-Click, Move, Release

Adjust Click Word ADJUST Double-Click

Adjust Swipe Word ADJUST Double Press, Move, Release

Adjust Click Word Control+ADJUST Double-Click

Appendix B • Mouse Functions 279

TABLE B–2 Select and Adjust Key Bindings (Continued)
Operation Name Key Bindings

Adjust Swipe Word Control+ADJUST Double Press, Move, Release

Transfer Bindings
TRANSFER This is the virtual mouse button which may be used for data

transfer and manipulation operations. On a two- or three-button
Mouse, with separate Selection and Transfer, TRANSFER is always
assigned to mouse button 2. On a one-, two-, or three-button
Mouse, with Integrated Selection and Transfer, TRANSFER is
always assigned to mouse button 1 (integrated with SELECT). In
addition, on a three-button Mouse, with Integrated Selection and
Transfer, TRANSFER may optionally be assigned to mouse button
2.

TABLE B–3 Key Bindings When TRANSFER is Assigned Mouse Button 2

Operation Name Key Bindings

Manipulate TRANSFER Press, Move, Release

Primary Copy TRANSFER Click

Primary Copy Control+TRANSFER Click

Primary Move Shift+TRANSFER Click

Primary Link Control+Shift+TRANSFER Click

Quick Copy Alt+TRANSFER Press, Move, Control+Release

Quick Move Alt+TRANSFER Press, Move, Shift+Release

Quick Link Alt+TRANSFER Press, Move, Control+Shift+Release

The set of bindings in Table B–4are always defined. When selection and transfer are
integrated, Style Guide rules indicate when these bindings are used for transfer vs.
selection.

TABLE B–4 Key Bindings

Operation Name Key Bindings

Drag Transfer TRANSFER Press, Move, Release

Drag Copy TRANSFER Press, Move, Control+Release

280 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

TABLE B–4 Key Bindings (Continued)
Operation Name Key Bindings

Drag Move TRANSFER Press, Move, Shift+Release

Drag Link TRANSFER Press, Move, Control+Shift+Release

Menu Bindings
MENU is the virtual mouse button used to obtain popup menus. On a two-or
three-button mouse, with separate SELECTION and TRANSFER:

MENU mouse button 3 on a three- button mouse, or Alt+mouse button 1
on atwo-button mouse.

On a one-, two-, or three-button mouse, with integrated selection and transfer:

MENU mouse button 3 on a three-button mouse, or mouse button 2 on a
two-button mouse, or Alt+mouse button 1 on a one-button mouse.

TABLE B–5 Menu Bindings

Operation Name Key Bindings

Spring-Loaded Popup Menu MENU Press

Persistent Popup Menu MENU Click

Spring-Loaded pull-down Menu MENU Press

Persistent pull-down Menu MENU Click

Appendix B • Mouse Functions 281

282 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

Index

A
accelerators, 155, 190
accessibility

designing for, 141
organizations, 145

activation, keyboard function, 265
alternative visuals support, 234
application design principles

alternative visuals, 234
component layout, 79
designing drag-and-drop layout, 228
dialog box layout, 218, 220, 227
Edit menu contents layout, 87, 209
File menu contents layout, 83, 207
file selection dialog box layout, 225
Help menu contents layout, 89, 211
installation, 103
interaction, 111, 232
MainWindow layout, 79, 201
Menu bar layout, 204
menu bar layout, 80
menu design layout, 95, 218
messages, 238
Options menu layout, 89, 211
pop-up menus layout, 214
Selected menu contents layout, 85, 208
View menu layout, 88, 211
window layout, 79
work-in-progress feedback, 101, 139, 242

application window management
actions, 72, 199
clustering, 199
placement, 75, 198

attachment
editing, 48
functionality, 47
menu contents, 50, 91
read-only, 48
saving, 48
user model, 47
using in your application, 46

autoscrolling and selection, 178

B
backspace, keyboard function, 265
backtab, keyboard function, 265
basic activation, 23, 189
beginning of data, keyboard function, 265
beginning of line, keyboard function, 265

C
cancel activation, 194
canceling a selection, 177
Certification Checklist

application design principles
alternative visuals, 234
designing drag-and-drop layout, 228
dialog box layout, 218, 220, 227
Edit menu contents layout, 87, 209
File menu contents layout, 83, 207
file selection dialog box layout, 225
Help menu contents layout, 89, 211

283

Certification Checklist, application design
principles (continued)

interaction, 111, 232
MainWindow layout, 79, 201
Menu bar layout, 204
menu design layout, 95, 218
messages, 238
Options menu layout, 89, 211
pop-up menus layout, 214
Selected menu contents layout, 85, 208
View menu layout, 88, 211
work-in-progress feedback, 101, 139, 242

application window management
actions, 72, 199
clustering, 199
placement, 75, 198

component activation
accelerators, 190
basic activation, 23, 189
cancel activation, 194
default activation, 192
expert activation, 193
help activation, 192
mnemonics, 23, 190
previewing, 194
TearOff activation, 191

controls, groups, and models
CheckButton, 23, 243
CommandBox, 245
FileSelectionBox, 246
Gauge, 24, 261
List, 250
OptionButton, 251
PanedWindow, 252
Panel, 252
PushButton, 252
RadioButton, 253
Sash, 254
Scale, 255
ScrollBar, 256
Text, 259

input models
input device model, 153
keyboard focus model, 153

navigation
keyboard-based, 20, 159
menu traversal, 163
mouse-based, 20, 156

Certification Checklist, navigation (continued)
scrollable component, 167

overview, 151
preface key descriptions, 152
selection actions, 179
selection models

autoscrolling and selection, 178
canceling a selection, 177
keyboard, 174
keyboard-based browse selection, 175
keyboard-based discontiguous

selection, 177
keyboard-based multiple selection, 175
keyboard-based range selection, 176
keyboard-based single selection, 175
mouse-based browse selection, 169
mouse-based discontiguous selection, 22,

172
mouse-based multiple selection, 21, 170
mouse-based range selection, 22, 170
mouse-based single selection, 169
overview, 168
selecting and deselecting, 178
using mnemonics for elements, 179

session management support, 77, 201
transfer models

clipboard transfer, 182
drag transfer, 185
overview, 180
primary transfer, 183
quick transfer, 184

window management
icon, 75
icons, 198
window decorations, 72, 196
window navigation, 198
window support, 195

CheckButton, 23, 243
clipboard transfer, 182
color

designing with, 58
dynamic, 57
philosophy, 51
usage in icons, 56

CommandBox, 245
Common Desktop Environment,

introduction, 17
common user interface, advantages, 17

284 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

component activation
accelerators, 190
basic activation, 23, 189
cancel activation, 194
default activation, 192
expert activation, 193
help activation, 192
mnemonics, 23, 190
previewing, 194
TearOff activation, 191

controls, groups, and models
CheckButton, 23, 243
CommandBox, 245
FileSelectionBox, 246
Gauge, 24, 261
List, 250
OptionButton, 251
PanedWindow, 252
Panel, 252
PushButton, 252
RadioButton, 253
Sash, 254
Scale, 255
ScrollBar, 256
Text, 259

D
default activation, 192
designing drag-and-drop layout, 228
dialog box

about, 129
design, 105
dragging from within, 39
layout, 105
placement, 110
print, 124

dialog box layout, 218, 220, 227
disabilities

hearing, 144
language, 145
physical, 142
visual, 143

drag-and-drop
actions, 35
dialog box, from within, 39
drag sources, determining, 37

drag-and-drop (continued)
drop zones, supported, 41
ending, 44
feedback, 29, 45
File Manager, 41
Front Panel, 41
matching operations, 36
mechanics, 35
multiple selection, 40
operation indicator, 31
performance, 44
placement upon drop, 42
source indicator, 32
state indicator, 30
types of objects, 35
user model, 25

drag icon
definition, 25
parts, 30

drag sources, 37
drag transfer, 185
drop point, 43
drop zone, 25, 28, 41

E
Edit menu contents layout, 87, 209
end of data, keyboard function, 266
end of line, keyboard function, 266
error messages, 133
expert activation, 193

F
feedback for work in progress, 101, 139, 242
File menu, 83
File menu contents layout, 83, 207
file selection dialog box layout, 225
FileSelectionBox, 246

G
Gauge, 24, 261

Index 285

H
help

online, 136
help activation, 192
Help menu contents layout, 89, 211

I
icon

alignment, 66
application group, 60
Application Manager, 54
color palette, 56
definition, 51
design hints, 58
design philosophy, 58
document, 61
etched, 67
File Manager, 53
format, 63
Front Panel, 55
international, 61
minimized, 56
naming convention, 65
required, 63
sizes, 64
styles, 59
window, 75

input device model, 153
input devices, 19
input guidelines, 19
input models

input device model, 153
keyboard focus model, 153

insert, keyboard function, 269
insert mode, 270
installation

guideline, 103
interaction and application design, 111, 232

K
key assignments, accelerator keys, 154
key assignments, by function, 265
key bindings

mouse, 280

key descriptions, Certification Checklist, 152
keyboard-based browse selection, 175
keyboard-based discontiguous selection, 177
keyboard-based multiple selection, 175
keyboard-based navigation, 20, 159
keyboard-based range selection, 176
keyboard-based single selection, 175
keyboard focus model, 153
keyboard function

activation, 265
backspace, 265
backtab, 265
beginning of data, 265
beginning of line, 265
cancel, 266
characters, deleting, 266
clearing, 266
closing, 266
context-sensitive

help, 266
copying, 266
cutting, 266
default action, 266
deselect all (choice), 266
direct manipulation, canceling, 266
direct manipulation cancel, 266
drop-down list, displaying, 266
end of data, 266
end of line, 266
extending, selection, 266
help

context sensitive, 266
overview choice, 267

hiding, 268
inserting a space, 269
key assignments, 265
keyboard (device), help, 268
maximizing, 268
minimizing, 268
moving, 268
moving, cursor, 268
new line, 269
page down, 269
page left, 269
page right, 269
page up, 269
paragraph down, 269
paragraph up, 269

286 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

keyboard function (continued)
pasting, 269
pop-up menu, displaying, 269
redo (choice), 269
refresh, 269
restore, 269
select all, 269
selection, 269
selection, deleting, 266
size (choice), 269
tab, 270
tutorial (choice), 270
undo (choice), 270
using help (choice), 270
window list, 270
window menu, 270
word left, 270
word right, 270

keyboard selection, 174

L
List, 250

M
MainWindow layout, 79, 201
Menu bar layout, 204
menu design, 95
menu design layout, 95, 218
menu traversal navigation, 163
messages

error, 133
guidelines, 134
informational, 133

messages and application design, 238
Mnemonic Assignments, 270
mnemonics, 23, 179, 190
mode

insert, 270
replace, 270

models for selection, 168
mouse

button usage, 42
menu bindings, 281
select and adjust bindings, 278

mouse (continued)
transfer bindings, 280

mouse-based browse selection, 169
mouse-based discontiguous selection, 22, 172
mouse-based multiple selection, 21, 170
mouse-based range selection, 22, 170
mouse-based single selection, 169
mouse functions, 275
mouse operation

activate, 276
adjust click, 277
adjust swipe, 277
browse select, 277
drag copy, 278
drag link, 278
drag transfer, 278
group click select, 277
group click toggle, 277
group swipe select, 277
group swipe toggle, 277
manipulate, 277
move cursor, 277
open, 277
persistent pull-down menu, 277
point select, 277
point toggle, 277
primary copy, 278
primary link, 278
primary move, 278
quick copy, 278
quick link, 278
quick move, 278
select and adjust key bindings, 278
select word, 277
spring-loaded pull-down menu, 277
toggle word, 277

multiple selection, 40

N
navigation

keyboard-based, 20, 159
menu traversal, 163
mouse based, 20
mouse-based, 20, 156
scrollable component, 167

new line, keyboard function, 269

Index 287

O
Open Group Motif Style Guide, relation to, 18
operation indicator, 31
OptionButton, 251
Options menu layout, 89, 211
overview of transfer models, 180

P
page down, keyboard function, 269
page up, keyboard function, 269
PanedWindow, 252
Panel, 252
pop-up menus layout, 214
previewing, 194
primary transfer, 183
PushButton, 252

Q
quick transfer, 184

R
RadioButton, 253
replace mode, 270

S
Sash, 254
Scale, 255
scrollable component navigation, 167
ScrollBar, 256
scrolling list, 38
Selected menu contents layout, 85, 208
selecting and deselecting elements, 178
selection actions, 179
selection models

autoscrolling and selection, 178
canceling a selection, 177
keyboard, 174
keyboard-based browse selection, 175
keyboard-based discontiguous

selection, 177

selection models (continued)
keyboard-based multiple selection, 175
keyboard-based range selection, 176
keyboard-based single selection, 175
mnemonics, 179
mouse-based browse selection, 169
mouse-based discontiguous selection, 22,

172
mouse-based multiple selection, 21, 170
mouse-based range selection, 22, 170
mouse-based single selection, 169
overview, 168
selecting and deselecting, 178

session
control, 71

session management support, 77, 201
source indicator, 32
state indicator, 30

T
tab, keyboard function, 270
TearOff activation, 191
Text, 259
tool bar, 56

button, 99
tool bars, 97
transfer models

clipboard transfer, 182
drag transfer, 185
overview, 180
primary transfer, 183
quick transfer, 184

V
View menu layout, 88, 211
virtual keys, 19
visual design, 51

W
window

control guidelines, 71
decorations, 72

288 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

window (continued)
expandable, 112
icon, 75
layout, 79
management, 72
menus, 73
placement, 75
titles, 100

window clustering, 199
window decorations, 72, 196
window management

icon, 75
icons, 198
window decorations, 72, 196
window navigation, 198
window support, 195

window management actions, 72, 199
window navigation, 198
window placement, 75, 198
window support, 195
work-in-progress feedback, 101, 139, 242
workspace management, 76

Index 289

290 Common Desktop Environment: Style Guide and Certification Checklist • May 2002

