
ToolTalk User’s Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 816–1324–10
May 2002

Copyright 2002 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, ToolTalk and Solaris are trademarks, registered trademarks, or
service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or
registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an
architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2002 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, ToolTalk et Solaris sont des marques de fabrique ou des marques
déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous
licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits
portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

020115@3062

Contents

Preface 13

1 Introducing the ToolTalk Service 17

Overview 17
ToolTalk Scenarios 18

Using the ToolTalk Desktop Services Message Set 18
Using the ToolTalk Document and Media Exchange Message Set 20
Using the CASE Interoperability Message Sets 21
Using the ToolTalk Filename Mapping Functions 22
Using ToolTalk in a Multi-Threaded Environment 23

How Applications Use ToolTalk Messages 23
Sending ToolTalk Messages 23
Message Patterns 24
Receiving ToolTalk Messages 24

ToolTalk Message Distribution 25
Process-Oriented Messages 25
Object-Oriented Messages 25
Determining Message Delivery 25

Modifying Applications to Use the ToolTalk Service 26

2 An Overview of the ToolTalk Service 27

ToolTalk Architecture 27
Starting a ToolTalk Session 28

Background and Batch Sessions 30
X Window System 30

3

Locating ttsession 30
Maintaining ToolTalk Files and Databases 30
Demonstration Programs 31

3 Message Patterns 33

Message Pattern Attributes 33
Scope Attributes 36

Scoping to a Session Only 36
Scoping to a File Only 37
Scoping to a File in a Session 37
Scoping to a File and/or a Session 38
Adding Files to Scoped Patterns 39

Context Attributes 40
Pattern Argument Attributes 40
Disposition Attributes 41

4 Setting Up and Maintaining the ToolTalk Processes 43

Location of the ToolTalk Service Files 43
Version 45
Requirements 45
Environment Variables 45

ToolTalk Environment Variables 45
Other Environment Variables 47
Environment Variables Required to Start Programs on Remote Hosts 47
Using Context Slots to Create Environment Variables 48

Installing the ToolTalk Database Server 48
Confirming that the rpc.ttdbserverd is installed on a system. 49
Confirming that the rpc.ttdbserverd is running on a system. 50
From the Solaris Distribution CD-Rom 50

Running the New ToolTalk Database Server 50
Redirecting the ToolTalk Database Server 51

Redirecting the Host Machine 51
Redirecting the File System Partition 52

5 Maintaining Application Information 53

Installing Application Types 53
Examining ToolTalk Type Information 55

4 ToolTalk User’s Guide • May 2002

Removing ToolTalk Type Information 55
Updating the ToolTalk Service 56

� To send the ttsession process a SIGUSR2: 56
Process Type Errors 56
Using ttsnoop to Debug Messages and Patterns 57

Composing and Sending Messages 58
Composing and Registering Patterns 60
Displaying Message Components 62
Sending Pre-Created Messages 63
Receiving Messages 63
Stop Receiving Messages 64

6 Maintaining Files and Objects Referenced in ToolTalk Messages 65

ToolTalk-Enhanced Shell Commands 65
Maintaining and Updating ToolTalk Databases 66
Displaying, Checking, and Repairing Databases 67

7 Participating in ToolTalk Sessions 69

Including the ToolTalk API Header File 69
Registering with the ToolTalk Service 70
Registering in the Initial Session 70

Registering in a Specified Session 71
Registering in Multiple Sessions 72

Setting Up to Receive Messages 73
Sending and Receiving Messages in the Same Process 74
Sending and Receiving Messages in a Networked Environment 74
Unregistering from the ToolTalk Service 75
Using ToolTalk in a Multi-Threaded Environment 75

Initialization 75
ToolTalk procids and sessions 76
ToolTalk storage 77
Common Problems 77

8 Sending Messages 79

How the ToolTalk Service Routes Messages 79
Sending Notices 79
Sending Requests 80

Contents 5

Sending Offers 81

Changes in State of Sent Message 81

Message Attributes 81

Address Attribute 82

Scope Attributes 82

Serialization of Structured Data 85

ToolTalk Message Delivery Algorithm 85

Process-Oriented Message Delivery 86

Object-Oriented Message Delivery 87

Otype Addressing 90

Modifying Applications to Send ToolTalk Messages 90

Creating Messages 90

Adding Message Callbacks 97

Sending a Message 99

Examples 99

9 Dynamic Message Patterns 101

Defining Dynamic Messages 101

Creating a Message Pattern 103

Adding a Message Pattern Callback 103

Registering a Message Pattern 104

Deleting and Unregistering a Message Pattern 104

Updating Message Patterns with the Current Session or File 105

Joining the Default Session 105

Joining Multiple Sessions 106

Joining Files of Interest 107

10 Static Message Patterns 109

Defining Static Messages 109

Defining Process Types 109

Signatures 110

Creating a Ptype File 111

Automatically Starting a Tool 114

Defining Object Types 114

Signatures 115

Creating Otype Files 116

Installing Type Information 118

6 ToolTalk User’s Guide • May 2002

Checking for Existing Process Types 119

Declaring Process Type 119

Undeclaring Process Types 120

11 Receiving Messages 123

Retrieving Messages 123

Identifying and Processing Messages Easily 125

Recognizing and Handling Replies Easily 125

Checking Message Status 125

Examining Messages 126

Callback Routines 128

Callbacks for Messages Addressed to Handlers 129

Attaching Callbacks to Static Patterns 129

Handling Requests 130

Replying to Requests 130

Rejecting or Failing a Request 131

Observing Offers 132

Destroying Messages 133

12 Objects 135

Object-Oriented Messaging 135

Object Data 135

Creating Object Specs 136

Assigning Otypes 137

Determining Object Specification Properties 137

Storing Spec Properties 138

Adding Values to Properties 138

Writing Object Specs 138

Updating Object Specs 138

Maintaining Object Specs 139

Examining Spec Information 139

Comparing Object Specs 140

Querying for Specific Specs in a File 140

Moving Object Specs 142

Destroying Object Specs 143

Managing Object and File Information 143

Managing Files that Contain Object Data 143

Contents 7

Managing Files that Contain ToolTalk Information 144
An Example of Object-Oriented Messaging 144

13 Managing Information Storage 147

Information Provided to the ToolTalk Service 147
Information Provided by the ToolTalk Service 147
Calls Provided to Manage the Storage of Information 148

Marking and Releasing Information 148
Allocating and Freeing Storage Space 149

Special Case: Callback and Filter Routines 150
Callback Routines 150
Filter Routines 151

14 Handling Errors 153

Retrieving ToolTalk Error Status 153
Checking ToolTalk Error Status 154
Returned Value Status 154

Functions with Natural Return Values 154
Functions with No Natural Return Values 154

Returned Pointer Status 155
Returned Integer Status 156
Broken Connections 157
Error Propagation 157

A Migrating from the Classing Engine to the ToolTalk Types Database 159

The ttce2xdr Script 159
Converting the User Database 159
Converting the System Database 160
Converting the Network Database 161

B A Simple Demonstration of How the ToolTalk Service Works 163

Inter-Application Communication Made Easy 163
Adding Inter-Operability Functionality 164

Modifying the Xedit Application 164
Modifying the Xfontsel Application 165

We Have Tool Communication! 166

8 ToolTalk User’s Guide • May 2002

Adding ToolTalk Code to the Demonstration Applications 167
Adding ToolTalk Code to the Xedit Files 167
Adding ToolTalk Code to the Xfontsel Files 174

C The ToolTalk Standard Message Sets 181

The ToolTalk Desktop Services Message Set 181
Why the ToolTalk Desktop Services Message Set was Developed 182
Key Benefits of the ToolTalk Desktop Services Message Set 182

The ToolTalk Document and Media Exchange Message Set 182
ToolTalk Document and Media Exchange Message Set Development History

183
Key Benefits of the ToolTalk Document and Media Exchange Message Set 183

General ToolTalk Message Definitions and Conventions 184
Errors 186
General ToolTalk Development Guidelines and Conventions 187

Always Make Anonymous Requests 187
Let Tools Be Started as Needed 188
Reply When Operation has been Completed 188
Avoid Statefulness Whenever Possible 188
Declare One Process Type per Role 189

Developing ToolTalk Applications 189
Messaging Alliances 191

D Frequently Asked Questions 193

Questions 195
What is the ToolTalk service? 195
Is the ToolTalk Service the Sun implementation of the Common Object Request
Broker Architecture (CORBA)? 195
What files are part of the ToolTalk service? 196
Where is the initial X-based ttsession started? 197
Where is rpc.ttdbserverd started? 197
Where are the ToolTalk type databases stored? 197
Do I need X Windows to use the ToolTalk service? 198
Can I use the ToolTalk service with MIT X? 198
Where is the session id of the X-session? 198
How does tt_open connect to a ttsession? 199
After calling tt_open, when does a session actually begin? 199

Contents 9

If another session is attached, does the first session get killed? 200
How can processes on different machines communicate using the ToolTalk
service? 200
What is the purpose of tt_default_session_set? 202
How can a process connect to more than one session? 202
Can you start a ttsession with a known session id? 202
What information does a session id contain? 203
Is there a standard way to announce that a new program has joined a session?

203
Where is my message going? 203
What is the basic flow of a message? 204
What happens when a message arrives to my application? 205
How can I differentiate between messages? 206
Can a process send a request to itself? 207
Can I pass my own data to a function registered by
tt_message_callback_add? 208
How can I send arbitrary data in a message? 208
Can I transfer files with the ToolTalk service? 208
How are memory (byte) ordering issues handled by the ToolTalk service? 209
Can I re-use messages? 209
What happens when I destroy a message? 209
Can I have more than one handler per message? 209
Can I run more than one handler of a given ptype? 210
What value is disposition in a message? 211
What are the message status elements? 211
When should I use tt_free? 211
What does the ptype represent? 211

Why are my new types not recognized? 212

Is ptype information used if a process of that ptype already exists? 212

Can the ptype definition be modified to always start an instance (whether or not
one is already running)? 212

What does tt_ptype_declare do? 212

What is TT_TOKEN? 213

When are my patterns active? 213

Must I register patterns to get replies? 213

How can I observe requests? 213

How do I match to attribute values in static patterns? 213

Why am I unable to wildcard a pattern for TT_HANDLER? 214

Can I set a pattern to watch for any file scoped message? 214

10 ToolTalk User’s Guide • May 2002

Is file scope in static patterns the same as file_in_session scope? 214
What is the difference between arg_add, barg_add, and iarg_add? 215
What is the type or vtype in a message argument? 215
How do I use contexts? 215
How does ttsession check for matches? 215
How many kinds of scope does the ToolTalk service have? 216
What are the TT_DB directories, and what is the difference between the types
database and the TT_DB directories? 217
What should the tt_db databases contain? 217
What does rpc.ttdbserverd do? 217
Do ttsession and rpc.ttdbserverd ever communicate? 218
What message bandwidth can be supported? 218
Is there a limit to the message size or the number of arguments? 218
What is the most time efficient method to send a message? 218
What network overhead is involved? 218
Does the ToolTalk service use load balancing to handle requests? 219
What resources are required by a ToolTalk application? 219
What happens if the ttsession exits unexpectedly? 219
What happens if rpc.ttdbserverd exits unexpectedly? 220
What happens if a host or a link is down? 220
What does tt_close do? 220
Is message delivery guaranteed on a network? 221
Is there a temporal sequence of message delivery? 221
What is unix, xauth, and des? 221
Can my applications hide messages from each other? 221
Is there protection against interception or imitation? 222
Where are queued messages stored and how secure is the storage? 222
Is the ToolTalk service C2 qualified? 222
How can I trace my message’s progress? 222
How can I isolate my debugging tool from all the other tools using the ToolTalk
service? 222
Can I use the ToolTalk service with C++? 223
Should I qualify my filenames? 223
Can you tell me about ToolTalk objects? 224
Is there a ToolTalk news group? 224

Contents 11

Glossary 225

Index 229

12 ToolTalk User’s Guide • May 2002

Preface

This manual describes the ToolTalk® service and how you modify your application to
send and receive ToolTalk messages. Topics in this manual include:

� General concepts of the ToolTalk service
� What the ToolTalk service is and how it works
� Requirements to set up and maintain the ToolTalk service
� What is required to integrate your application with the ToolTalk service
� How to modify your application to send messages addressed to processes or

ToolTalk objects
� How to register message pattern information for the messages your application

wants to receive
� How to receive and handle messages delivered to your application by the ToolTalk

service
� How to create and manage ToolTalk objects in your application data
� How to maintain ToolTalk objects at the system administrator level and what users

must do to maintain these objects and the files in which they are stored
� How the ToolTalk service enables an application to communicate with other

applications

Who Should Use this Book
This guide is for developers who create or maintain applications that use the ToolTalk
service to inter-operate with other applications; it is also useful for system
administrators who set up workstations. This guide assumes familiarity with Solaris
operating environment commands, system administrator commands, and system
terminology.

13

How This Manual Is Organized
This manual is organized as follows:

Chapter 1 describes how the ToolTalk service works and how it uses information that
your application supplies to deliver messages; and how applications use the ToolTalk
service.

Chapter 2 describes new and changed features of this release; and application and
ToolTalk components.

Chapter 3 describes message pattern attributes.

Chapter 4 describes ToolTalk file locations, hardware and software requirements, how
to find ToolTalk version information, and installation instructions for the ToolTalk
database server.

Chapter 5 describes how to maintain application information.

Chapter 6 describes how to maintain files references in ToolTalk messages; how
system administrators and users maintain ToolTalk objects; and how to perform
maintenance on ToolTalk databases.

Chapter 7 describes the location of the ToolTalk API header file; how you initialize
your application and start a session with the ToolTalk service; how you provide file
and session information to the ToolTalk service; how to manage storage and handle
errors; and how to unregister your message patterns and close your communication
with the ToolTalk service when your process is ready to quit.

Chapter 8 explains how messages are routed, and describes the ToolTalk message
attributes and algorithm. It also describes how to create messages, fill in message
contents, attach callbacks to requests, and send messages.

Chapter 9 describes how to create a dynamic message pattern and register it with the
ToolTalk service; and how to add callbacks to your dynamic message patterns.

Chapter 10 describes how to provide process and object type information at
installation time; how to make a static message pattern available to the ToolTalk
Service; how to declare a ptype; and register it with the Sun Vendor Type Registration
program.

Chapter 11 describes how to retrieve messages delivered to your application; how to
handle the message once you have examined it; how to send replies; and when to
destroy messages.

Chapter 12 describes how to create ToolTalk specification objects for the objects your
process creates and manages.

14 ToolTalk User’s Guide • May 2002

Chapter 13 describes how to manage and remove objects.

Chapter 14 describes how to handle error conditions.

Appendix A describes how to convert the Classing Engine databases to the ToolTalk
Types database.

Appendix B presents how the ToolTalk service can enable an application to
communicate with other applications.

Appendix C describes the ToolTalk message sets that have been developed to help you
develop applications that follow the same protocol as other applications with which
your application wants to inter-operate.

Appendix D provides the answers to some frequently asked questions about the
ToolTalk service.

Related Documentation
The following is a list of related ToolTalk documentation:

� ToolTalk Reference Guide

� ToolTalk Message Sets

� CASE Inter-Operability Message Sets

� ToolTalk and Open Protocols, ISBN 013-031055-7 Published by Prentice Hall

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com.

Preface 15

Typographic Conventions
The following table describes the typographic changes used in this book.

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; on-screen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace with
a real name or value

To delete a file, type rm
filename.

AaBbCc123 Book titles, new words, or terms, or
words to be emphasized.

Read Chapter 6 in User’s Guide.

These are called class options.

You must be root to do this.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

16 ToolTalk User’s Guide • May 2002

CHAPTER 1

Introducing the ToolTalk Service

This chapter describes the basic concepts of the ToolTalk Service.

Overview
The ToolTalk service enables independent applications to communicate with each
other without having direct knowledge of each other. Applications create and send
ToolTalk messages to communicate with each other. The ToolTalk service receives
these messages, determines the recipients, and then delivers the messages to the
appropriate applications, as shown in Figure 1–1.

FIGURE 1–1 Applications Using the ToolTalk Service

17

ToolTalk Scenarios
The scenarios in this section illustrate how the ToolTalk service helps users solve their
work problems. The message protocols used in these scenarios are hypothetical.

Using the ToolTalk Desktop Services Message Set
The ToolTalk Desktop Services Message Set allows an application to integrate and
control other applications without user intervention. This section illustrates two
scenarios that show how the Desktop Services Message Set might be implemented.

The Smart Desktop
A common user requirement for a graphic user interface (GUI) front-end is the ability
to have data files be aware (or “know”) of their applications. To do this, an
application-level program is needed to interpret the user’s requests. Examples of this
application-level program (known as smart desktops) are the Apple Macintosh finder,
Microsoft Windows File Manager, and the Solaris File Manager. The key common
requirements for smart desktops are:

1. Takes a file
2. Determines its application
3. Invokes the application

The ToolTalk Service encompasses additional flexibility by allowing classes of tools to
edit a specific data type. The following scenario illustrates how the Desktop Services
Message Set might be implemented as a smart desktop transparent to the end-user.

1. Diane double clicks on the File Manager icon.

� The File Manager opens and displays the files in Diane’s current directory.

2. Diane double clicks on an icon for a data file.

a. The File Manager requests that the file represented by the icon be displayed.
The File Manager encodes the file type in the display message.

b. The ToolTalk session manager matches the pattern in the display message to a
registered application (in this case, the Icon Editor), and finds an instance of the
application running on Diane’s desktop.

18 ToolTalk User’s Guide • May 2002

Note – If the ToolTalk session manager does not find a running instance of the
application, it checks the statically-defined ptypes and starts an application that
best matches the pattern in the message. If none of the ptypes match, it returns
failure to the File Manager application.

c. The Icon Editor accepts the display message, de-iconifies itself, and raises itself
to the top of the display.

3. Diane manually edits the file.

Integrated Toolsets
Another significant application for which the Desktop Services Message Set can be
implemented is integrated toolsets. These environments can be applied in vertical
applications (such as a CASE software developer toolset) or in horizontal
environments (such as compound documents). Common to both of these applications
is the premise that the overall solution is built out of specialized applications designed
to perform one particular task well. Examples of integrated toolset applications are
text editors, drawing packages, video or audio display tools, compiler front-ends, and
debuggers. The integrated toolset environment requires applications to interact by
calling on each other to handle user requests. For example, to display video, an editor
calls a video display program; or to check a block of completed code, an editor calls a
compiler. The following scenario illustrates how Desktop Services Message Set might
be implemented as an integrated toolset:

1. George is working on a compound document using his favorite editor.

He decides to change some of the source code text.

2. George double clicks on the source code text.

a. The Document Editor first determines the text represents source code and then
determines what file contains the source code.

b. The Document Editor sends an edit message request, using the file name as a
parameter for the message.

c. The ToolTalk session manager matches the pattern in the edit message to a
registered application (in this case, the Source Code Editor), and finds an
instance of the application running on George’s desktop.

Note – If the ToolTalk session manager does not find a running instance of the
application, it checks the statically-defined ptypes and starts an application that
best matches the pattern in the message. If none of the ptypes match, it returns
failure to the Document Editor application.

d. The Source Code Editor accepts the edit message request.

Chapter 1 • Introducing the ToolTalk Service 19

e. The Source Code editor determines that the source code file is under
configuration control, and sends a message to check out the file.

f. The Source Code Control application accepts the message and creates a
read/write copy of the requested file. It then passes the name of the file back to
the Source Code Editor.

g. The Source Code Editor opens a window that contains the source file.

3. George edits the source code text.

Using the ToolTalk Document and Media Exchange
Message Set
The ToolTalk Document and Media Exchange Message Set is very flexible and robust.
This section illustrates three applications of the ToolTalk Document and Media
Exchange Message Set:

� Integrating multimedia into an authoring application
� Adding multimedia extensions to an existing application
� Extending the cut and paste facility of X with a media translation facility

Integrating Multimedia Functionality
Integrating multimedia functionality into an application allows end-users of the
application to embed various media types in their documents.

Typically, an icon that represents the media object is embedded in the document. Upon
selection of an embedded object, the ToolTalk service automatically invokes an
appropriate external media application and the object is played as illustrated in the
following scenario.

1. Daniel opens a document that contains multimedia objects.

2. The window shows the document with several icons representing various media
types (such as sound, video, and graphics).

3. Daniel double-clicks on the sound icon.

A sound application (called a player) is launched and the embedded recording is
played.

4. To edit the recording, Daniel clicks once on the icon to select it and uses the third
mouse button to bring up an Edit menu.

An editing application is launched and Daniel edits the media object.

20 ToolTalk User’s Guide • May 2002

Adding Multimedia Extensions to Existing Applications
The ToolTalk Document and Media Exchange Message Set also allows an application
to use other multimedia applications to extend its features or capabilities. For
example, a calendar manager can be extended to use the audiotool to play a sound file
as a reminder of an appointment, as illustrated in the following scenario:

1. Karin opens her calendar manager and sets an appointment.

2. Karin clicks on an audio response button, which causes the soundtool to pop up.

3. Karin records her message; for example, “Bring the report.”

When Karin’s appointment reminder is executed, the calendar manager will start the
audiotool and play Karin’s recorded reminder.

Extending the X Cut and Paste Facility
The ToolTalk Document and Media Exchange Message Set can support an extensible,
open-ended translation facility. The following scenario illustrates how an extensible
multimedia cut and paste facility could work:

1. Maria opens two documents that are different media types.

2. Maria selects a portion of Document A and cuts the portion using the standard
X-windowing cut facility.

3. Maria then pastes the cut portion into Document B.

a. Document B negotiates the transfer of the cut data with Document A.

b. If Document B does not understand any of the types offered by Document B, it
requests a tagged media type. Document B uses the tagged media type to
broadcast a ToolTalk message requesting a translation of the media type to a
media type it understands.

c. A registered translation utility accepts the request and returns the translated
version of the media type to Document B.

d. The paste of the translated data into Document B is performed.

Using the CASE Interoperability Message Sets
The CASE Interoperability Message Sets allow an application to integrate and control
other applications without user intervention. This section illustrates several scenarios
that show how the CASE Interoperability Message Sets might be used.

User Scenario: Fixing Bugs
This scenario steps through a complete cycle of how to fix a bug for a released
application. It begins with receiving the bug report and describes the process required
to fix the problem.

Chapter 1 • Introducing the ToolTalk Service 21

1. Larry receives a bug report that indicates his application has a problem.

2. Larry invokes his CASE environment.

A CASE user interface is displayed. The functions Larry wants to perform are
available in this CASE user interface.

3. Larry writes a test case that duplicates the failure stated in the bug report.

4. Larry selects the debug function to run the application against the test case.

a. A Debug request is sent.

b. The messaging environment selects the debugging application. It does not find
an instance of the application running in Larry’s CASE environment, so it
automatically starts a debugger.

c. The debugging application receives the request and loads the binary.

5. Larry tests the code and reviews the debugging state in the debugging window.

He finds a function call that appears to be passing incorrect arguments.

6. Larry selects the edit function to edit this code.

a. The debugging tool sends an edit request.

b. The source editor receives a message to edit the specified source file.

7. Larry wants to modify the source code, so he selects the checkout function.

a. The source code editor sends a checkout request.

b. The source code editor receives the checkout notification, and changes the
buffer state to modifiable.

8. Larry edits the source code to fix the bug and selects the Build function to build the
application.

a. The build request is sent.

b. The build application receives the build request, and performs the build.

c. When the build completes, the build application sends the BuildFinished notice.

d. The debugger receives the BuildFinished notice and reloads the newly built
application binary.

9. Larry retests the application to confirm the bug fix works.

10. Larry exits the CASE environment.

a. Quit requests are sent to the source code editor, debugger, version manager, and
builder applications.

Using the ToolTalk Filename Mapping Functions
The Filename Mapping functions are a part of the ToolTalk API. You can use them
independently of ToolTalk message passing to encode and decode canonical forms of
network-visible filenames. You can pass these canonical forms among applications that
need to access a common file. This file could have different pathnames depending on

22 ToolTalk User’s Guide • May 2002

the host from which the file is referenced. For example a file may be known as
/home/fred/test.c on host A, but as /net/A/export/home/fred/test.c on
another host. The filename mapping API converts an NFS-visible filename to a
canonical name (via tt_host_file_netfile()) which may be passed among
applications on different hosts. Another host may then pass that canonical pathname
into the API (tt_host_netfile_file()) to have the canonical name converted
back to a UNIX pathname which will be correct for the invoking program.

Using ToolTalk in a Multi-Threaded Environment
For the Solaris™ 2.6 release and compatible versions, the ToolTalk library is
Multi-threaded safe. Users who wish to run ToolTalk in an Multi-threaded
environment can either use it as is in a single thread, or use several new API calls
designed to provide thread-private data where necessary (for example, procids and
session IDs).

How Applications Use ToolTalk
Messages
Applications create, send, and receive ToolTalk messages to communicate with other
applications. Senders create, fill in, and send a message; the ToolTalk service
determines the recipients and delivers the message to the recipients. Recipients
retrieve messages, examine the information in the message, and then either discard the
message or perform an operation and reply with the results.

Sending ToolTalk Messages
ToolTalk messages are simple structures that contain fields for address, subject, and
delivery information. To send a ToolTalk message, an application obtains an empty
message, fills in the message attributes, and sends the message. The sending
application needs to provide the following information:

� Is the message a notice, a request, or an offer? (that is, should the recipient respond
to the message?)

� What interest does the recipient share with the sender? (for example, is the
recipient running in a specific user session or interested in a specific file?)

To narrow the focus of the message delivery, the sending application can provide more
information in the message.

Chapter 1 • Introducing the ToolTalk Service 23

Message Patterns
An important ToolTalk feature is that senders need to know little about the recipients
because applications that want to receive messages explicitly state what message they
want to receive. This information is registered with the ToolTalk service in the form of
message patterns.

Applications can provide message patterns to the ToolTalk service at installation time
and while the application is running. Message patterns are created similarly to the
way a message is created; both use the same type of information. For each type of
message an application wants to receive, it obtains an empty message pattern, fills in
the attributes, and registers the pattern with the ToolTalk service. These message
patterns usually match the message protocols that applications have agreed to use.
Applications can add more patterns for individual use.

When the ToolTalk service receives a message from a sending application, it compares
the information in the message to the register patterns. Once matches have been
found, the ToolTalk service delivers copies of the message to all recipients.

For each pattern that describes a message an application wants to receive, the
application declares whether it can handle or observe the message. Although many
applications can observe a message, only one application can handle the message to
ensure that a requested operation is performed only once. If the ToolTalk service
cannot find a handler for a request, it returns the message to the sending application
indicating that delivery failed.

Receiving ToolTalk Messages
When the ToolTalk service determines that a message needs to be delivered to a
specific process, it creates a copy of the message and notifies the process that a
message is waiting. If a receiving application is not running, the ToolTalk service looks
for instructions (provided by the application at installation time) on how to start the
application.

The process retrieves the message and examines its contents.

� If the message contains a notice that an operation has been performed, the process
reads the information and then discards the message.

� If the message contains a request to perform an operation, the process performs the
operation and returns the result of the operation in a reply to the original message.
Once the reply has been sent, the process discards the original message.

24 ToolTalk User’s Guide • May 2002

ToolTalk Message Distribution
The ToolTalk service provides two methods of addressing messages: process-oriented
messages and object-oriented messages.

Process-Oriented Messages
Process-oriented messages are addressed to processes. Applications that create a
process-oriented message address the message to either a specific process or to a
particular type of process. Process-oriented messages are a good way for existing
applications to begin communication with other applications. Modifications to support
process-oriented messages are straightforward and usually take a short time to
implement.

Object-Oriented Messages
Object-oriented messages are addressed to objects managed by applications.
Applications that create an object-oriented message address the message to either a
specific object or to a particular type of object. Object-oriented messages are
particularly useful for applications that currently use objects or that are to be designed
around objects. If an existing application is not object-oriented, the ToolTalk service
allows applications to identify portions of application data as objects so that
applications can begin to communicate about these objects.

Note – Programs coded to the ToolTalk object-oriented messaging interface are not
portable to CORBA-compliant systems without source changes.

Determining Message Delivery
To determine which groups receive messages, you scope your messages. Scoping limits
the delivery of messages to a particular session or file.

Sessions
A session is a group of processes that have an instance of the ToolTalk message server
in common. When a process opens communication with the ToolTalk service, a default
session is located (or created if a session does not already exist) and a process identifier
(procid) is assigned to the process. Default sessions are located either through an
environment variable (called process tree sessions) or through the X display (called X
sessions).

Chapter 1 • Introducing the ToolTalk Service 25

The concept of a session is important in the delivery of messages. Senders can scope a
message to a session and the ToolTalk service will deliver it to all processes that have
message patterns that reference the current session. To update message patterns with
the current session identifier (sessid), applications join the session.

Files
A container for data that is of interest to applications is called a file in this book.

The concept of a file is important in the delivery of messages. Senders can scope a
message to a file and the ToolTalk service will deliver it to all processes that have
message patterns that reference the file without regard to the process’s default session.
To update message patterns with the current file path name, applications join the file.

You can also scope a message to a file within a session. The ToolTalk service will
deliver the message to all processes that reference both the file and session in their
message patterns.

Note – The file scoping feature is restricted to NFS and UFS file systems; it does not
work, for example, across tmpfs filesystems.

Modifying Applications to Use the
ToolTalk Service
Before you modify your application to use the ToolTalk service you must define (or
locate) a ToolTalk message protocol: a set of ToolTalk messages that describe operations
applications agree to perform. The message protocol specification includes the set of
messages and how applications should behave when they receive the messages.

To use the ToolTalk service, an application calls ToolTalk functions from the ToolTalk
application programming interface (API). The ToolTalk API provides functions to
register with the ToolTalk service, to create message patterns, to send messages, to
receive messages, to examine message information, and so on. To modify your
application to use the ToolTalk service, you must first include the ToolTalk API header
file in your program. You also need to modify your application to:

� Initialize the ToolTalk service and join a session.
� Register message patterns with the ToolTalk service.
� Send and receive messages.
� Unregister message patterns and leave your ToolTalk session.

26 ToolTalk User’s Guide • May 2002

CHAPTER 2

An Overview of the ToolTalk Service

As computer users increasingly demand that independently developed applications
work together, inter-operability is becoming an important theme for software
developers. By cooperatively using each other’s facilities, inter-operating applications
offer users capabilities that would be difficult to provide in a single application. The
ToolTalk service is designed to facilitate the development of inter-operating
applications that serve individuals and work groups.

ToolTalk Architecture
The following ToolTalk service components work together to provide inter-application
communication and object information management:

� ttsession is the ToolTalk communication process.

This process joins together senders and receivers that are either using the same X
server or interested in the same file. One ttsession communicates with other
ttsessions when a message needs to be delivered to an application in another
session.

� rpc.ttdbserverd is the ToolTalk database server process.

One rpc.ttdbserverd is installed on each machine which contains a disk
partition that stores files of interest to ToolTalk clients or files that contain ToolTalk
objects.

File and ToolTalk object information is stored in a records database managed by
rpc.ttdbserverd.

� libtt is the ToolTalk application programming interface (API) library.

Applications include the API library in their program and call the ToolTalk
functions in the library.

27

The ToolTalk service uses the Remote Procedure Call (RPC) to communicate between
these ToolTalk components.

Applications provide the ToolTalk service with process and object type information.
This information is stored in an XDR format file, which is referred to as the ToolTalk
Types Database in this manual.

Starting a ToolTalk Session
The ToolTalk message server ttsession automatically starts when you open
communication with the ToolTalk server. This background process must be running
before any messages can be sent or received. Each message server defines a session.

Note – A session can have more than one session identifier.

To manually start a session, enter the following command on the command line:

ttsession [-a level][-d display][-spStvh][-{-E|X}][-c command]

See Table 2–1 for a description of the ttsession command line options.

TABLE 2–1 ttsession Command Line Options

Argument Description

-a level Sets the server authentication level.

The level must be unix, gss, or des.

-d display Directs ttsession to start an X session for the given display.

Normally, ttsession uses the $DISPLAY environment variable.

-h Prints help on how to invoke ttsession and exits.

-p Starts a new ttsession and prints out its session id.

-S Directs ttsession not to fork a background instance to manage its session.

-o allow_unaut_types_
load=<yes|no>

By default calls to tt_session_types_load(3) in the ToolTalk API will fail with
TT_ERR_ACCESS. The system-wide default may be changed using
ttsession_file(4). The behavior for a particular ttsession may be changed using
this option, if and only if, the ttsession_file(4) has not “locked” per-session
changes to this option.

28 ToolTalk User’s Guide • May 2002

TABLE 2–1 ttsession Command Line Options (Continued)
Argument Description

-s Enables silent operation; warning messages are not printed.

-N Maximize the number of clients allowed to connect to this session by attempting to
raise the limit of open file descriptors. The precise number of file descriptors allowed is
system dependent. On Solaris 2.6 and compatible versions ttsession always
maximizes the number of clients so there is no need to specify this option.

-t Turns on trace mode. If trace mode is turned on while ttsession is running,
messages appear on the console.

Use this mode to see how messages are dispatched and delivered. Trace mode displays
the state of a message when it is first seen by ttsession. It also displays any attempt
to send the message to a given process with the success of that attempt.

To toggle the trace mode on or off, use the USR1 signal.

-v Prints the version number and exits.

-E Reads in the types from the Classing Engine database. This option is disabled. (The
ToolTalk service now uses the XDR format databases.)

-X Reads in the types from the XDR format database in $TTHOME/.tt/types.xdr and
/etc/tt/types.xdr. This option is the default.

-c command Starts a process tree session and runs the given command.

The special environment variable TT_SESSION will be set to the name of this session.
Any process that was started with this environment variable will default to be in this
session.

This option must be the last option on the command line; any characters placed after
the -c option on the command line are taken as the command to be executed.

If command is omitted, the value of $SHELL is used instead.

Note – If neither the -c, -d, or -p options are specified, ttsession starts an X
session for the display specified in the $DISPLAY environment variable.

ttsession responds to two signals.

� If it receives the SIGUSR1 signal, it toggles the trace mode on or off.

� If it receives the SIGUSR2 signal, it rereads the types file.

Chapter 2 • An Overview of the ToolTalk Service 29

Background and Batch Sessions
Run your application as its own session if it runs as a background job, in a batch
session, or in a session bound to a character terminal. To run your application in its
own session, use the -c parameter with the ttsession command, as follows:

ttsession -c [command-to-non-in-batch]

This command will fork off a shell from which you can run your application.

Note – The -c parameter must be the last option on the command line; any characters
placed after the -c parameter on the command line are taken as the command to be
executed.

X Window System
To establish a session under the X Window System, execute ttsession either
without arguments (which takes the display from the $DISPLAY environment
variable) or specify the display with the -d parameter as follows:

ttsession -d :0

When ttsession is invoked, it immediately forks and the parent copy exits; the
process managing the session executes in the background. The session is registered as
a property, named by TT_SESSION on the root window of screen 0; the host and port
number is given for communication with the process managing the session.

Locating ttsession
To display the sessid of the session for the Xdisplay:

xprop -root | grep TT_SESSION

Maintaining ToolTalk Files and
Databases
The ToolTalk package contains a special set of shell commands you can use to copy,
move, and remove ToolTalk files (that is, files mentioned in messages and files that
contain ToolTalk objects). After a standard shell command (such as cp, mv, or rm) is
performed, the ToolTalk service is notified that a file location has changed.

30 ToolTalk User’s Guide • May 2002

The ToolTalk package also contains a database check and repair utility for the ToolTalk
database, ttdbck, that you can use to check and repair your ToolTalk databases.

Demonstration Programs
The ToolTalk service source files contain two Motif-based demonstration programs:

� ttsample1—A simple demonstration of the ToolTalk service sending and
receiving messages.

� edit_demo—Two programs, cntl and edit, that demonstrate ToolTalk
object-oriented messaging.

Chapter 2 • An Overview of the ToolTalk Service 31

32 ToolTalk User’s Guide • May 2002

CHAPTER 3

Message Patterns

This chapter describes how to provide message pattern information to the ToolTalk
service. The ToolTalk service uses message patterns to determine message recipients.
After receiving a message, the ToolTalk service compares the message to all current
message patterns to find a matching pattern. Once a match is made, the message is
delivered to the application that registered the message pattern.

You can provide message pattern information to the ToolTalk service using either
dynamic or static methods, or both. The method you choose depends on the type of
messages you want to receive.

� If the types of messages you want to receive will vary while your application is
running, the dynamic method allows you to add, change, or remove message pattern
information after your application has started.

� If you want a message to start your application or to be queued if your application
is not running, the static method provides an easy way to specify these instructions.
The static method also provides an easy way to specify the message pattern
information if you want to receive a defined set of messages. For more information,
see Chapter 10.

Regardless of the method you choose to provide message patterns to the ToolTalk
service, you will want to update these patterns with each current session and file
information so that you receive all messages that reference the session or file in which
you are interested.

Message Pattern Attributes
The attributes in your message pattern specify the type of messages you want to
receive. Although some attributes are set and have only one value, you can supply
multiple values for most of the attributes you add to a pattern.

33

Table 3–1 provides a complete list of attributes you can put in your message patterns.

TABLE 3–1 ToolTalk Message Pattern Attributes

Pattern Attribute Value Description

Category TT_OBSERVE TT_HANDLE
TT_HANDLE_PUSH
TT_HANDLE_ROTATE

Declares whether you want to perform the operation
listed in a message or only observe a message.

Scope TT_SESSION TT_FILE
TT_FILE_IN_SESSION TT_BOTH

Declares interest in messages about a session or a file,
or both; Join a session or file after the message pattern is
registered to update the sessid and filename.

Arguments arguments or results Declares the positional arguments for the operation in
which you are interested.

Context <name, value> Declares the keyword or non-positional arguments for
the operation in which you are interested

Class TT_NOTICE TT_REQUEST
TT_OFFER

Declares whether you want to receive notices, requests,
offers, or all.

File char *pathname Declares the files in which you are interested. If the
scope of the pattern does not require a file, the file is an
attribute only.

Object char *objid Declares what objects in which you are interested.

Operation char *opname Declares the operations in which you are interested.

Otype char *otype Declares the type of objects in which you are interested.

address TT_PROCEDURE TT_OBJECT
TT_HANDLER TT_OTYPE

Declares the type of address in which you are
interested.

disposition TT_DISCARD TT_QUEUE
TT_START TT_START+TT_QUEUE

Instructs the ToolTalk service how to handle messages
to your application if an instance is not currently
running.

sender char *procid Declares the sender in which you are interested.

sender_ptype char *ptype Declares the type of sending process in which you are
interested.

session char *sessid Declares the session in which you are interested.

state TT_CREATED TT_SENT
TT_HANDLED TT_FAILED
TT_QUEUED TT_STARTED
TT_REJECTED TT_RETURNED
TT_ACCEPTED TT_ABSTAINED

Declares the state of the message in which you are
interested.

All your message patterns must at least specify:

34 ToolTalk User’s Guide • May 2002

� Category — Whether the application wants to perform operations listed in
messages or only view messages.

� Use TT_OBSERVE if you only want to observe messages.

� Use TT_HANDLE if you want to perform operations requested by the messages.

� Use TT_HANDLE_PUSH if you want to use the most recently registered pattern
of this category (if any) before using any pattern of another HANDLE category

� Use TT_HANDLE_ROTATE if you want to use TT_HANDLE. If no eligible
TT_HANDLE_PUSH patterns are found, use the TT_HANDLE_ROTATE pattern
that was least recently used to deliver a message before using any TT_HANDLE
patterns.

� Scope — Whether the application is interested in messages about a particular
session or file.

� Use TT_SESSION to receive messages from other processes in your session.

� Use TT_FILE to receive messages about the file you have joined.

� Use TT_FILE_IN_SESSION to receive messages for the file you have joined
while in this session.

� Use TT_BOTH to receive both messages for the file, the session, or the file and
the session you have joined.

The ToolTalk service compares message attributes to pattern attributes as follows:

� The ToolTalk service counts the message attribute as matched if:

� No pattern attribute is specified.

� The pattern does not name a context slot.

� The pattern has an empty context slot.

Note – The fewer pattern attributes you specify, the more messages you become
eligible to receive.

� If there are multiple values specified for a pattern attribute, one of the values must
match the message attribute value. If no value matches, the ToolTalk service will
not consider your application as a receiver.

� If context slots are contained in the message, the ToolTalk service will not consider
your application as a receiver unless:

� A value specified in a context slot of a pattern matches the value specified in the
message context slot.

� When multiple context slots are specified in a message, each context slot value
in the message matches a corresponding context slot value in the pattern.

Chapter 3 • Message Patterns 35

Scope Attributes
You can specify the following types of scopes in your message patterns:

1. Scope to a session only.
2. Scope to a file only.
3. Scope only to a file in a particular session.
4. Scope to either or both a file and a session.

Note – File scopes are restricted to NFS and UFS file systems; you cannot scope a file
across other types of file systems (for example, a tmpfs file system).

Scoping to a Session Only
The type TT_SESSION scopes to a session only. Static session-scoped patterns require
an explicit tt_session_join call to set the scope value; dynamic session-scoped
patterns can be set with either the tt_session_join call or the
tt_pattern_session_add call.

Note – The session specified by these calls must be the default session.

Example 3–1 shows a static session-scoped pattern; Example 3–2 shows a dynamic
session-scoped pattern.

EXAMPLE 3–1 Static Session-Scoped Pattern

Obtain procid tt_open();

Ptype is scoped to session tt_ptype_declare(ptype);

Join session tt_session_join(tt_default_session());

EXAMPLE 3–2 Dynamic Session-Scoped Pattern with a File Attribute

Obtain procid tt_open();

Create pattern Tt_pattern pat = tt_create_pattern();

36 ToolTalk User’s Guide • May 2002

EXAMPLE 3–2 Dynamic Session-Scoped Pattern with a File Attribute (Continued)

Add scope to pattern tt_pattern_scope_add(pat, TT_SESSION);

Add session to pattern tt_pattern_session_add (tt_default_session());

Register pattern tt_pattern_register(pat);

Scoping to a File Only
The type TT_FILE scopes to a file only. Example 3–3 shows a static file-scoped
pattern; Example 3–4 shows a dynamic file-scoped pattern.

EXAMPLE 3–3 Static File-Scoped Pattern

Obtain procid tt_open();

Ptype is scoped to file tt_ptype_declare(ptype);

Join file tt_file_join(file);

EXAMPLE 3–4 Dynamic File-Scoped Pattern

Obtain procid tt_open();

Create pattern Tt_pattern pat = tt_create_pattern();

Add scope to pattern tt_pattern_scope_add(pat, TT_FILE);

Add file to pattern tt_pattern_file_add (pat, file);

Register pattern tt_pattern_register(pat);

Scoping to a File in a Session
The type TT_FILE_IN_SESSION scopes to the specified file in the specified session
only. A pattern with this scope set will only match messages that are scoped to both
the file and the session. Example 3–5 adds the session and then registers the pattern.

EXAMPLE 3–5 Adding a Session to the TT_FILE_IN_SESSION-Scoped Pattern

Obtain procid tt_open();

Create pattern Tt_pattern pat = tt_create_pattern();

Chapter 3 • Message Patterns 37

EXAMPLE 3–5 Adding a Session to the TT_FILE_IN_SESSION-Scoped Pattern (Continued)

Add scope to pattern tt_pattern_scope_add(pat,TT_FILE_IN_SESSION);

Add file to pattern tt_pattern_file_add(pat, file);

Add session to pattern tt_pattern_session_add(pat, tt_default_session());

Register pattern tt_pattern_register(pat);

Example 3–6 registers the pattern and then joins a session.

EXAMPLE 3–6 Joining a Session to Set the Session of a TT_FILE_IN_SESSION-Scoped
Pattern

Obtain procid tt_open();

Create pattern Tt_pattern pat = tt_create_pattern();

Add scope to pattern tt_pattern_scope_add(pat, TT_FILE_IN_SESSION);

Add file to pattern tt_pattern_file_add(pat, file);

Register pattern tt_pattern_register(pat);

Join session tt_session_join(tt_default_session());

Example 3–7 sets the scope value for a static pattern.

EXAMPLE 3–7 Setting the Scope Value for a TT_FILE_IN_SESSION Static Pattern

Obtain procid tt_open();

Declare Ptype Tt_ptype_declare(ptype);

Join File tt_file_join(file);

Join session tt_session_join(tt_default_session());

Scoping to a File and/or a Session
A TT_BOTH-scoped pattern will match messages that are scoped to the file, the session,
or the file and the session. However, when you use this scope, you must explicitly
make a tt_file_join call; otherwise, the ToolTalk service will only match messages
that are scoped to both the file and session of the registered pattern. Example 3–8 and
Example 3–9 show examples of how to use this scope.

38 ToolTalk User’s Guide • May 2002

EXAMPLE 3–8 A Dynamic Pattern that Uses the TT_BOTH Scope

Obtain procid tt_open();

Create pattern Tt_pattern pat = tt_create_pattern();

Add scope to pattern tt_pattern_scope_add(pat, TT_BOTH);

Add session to pattern tt_pattern_session_add(pat,tt_default_session());

Add file to pattern tt_pattern_file_add (pat, file);

Register pattern tt_pattern_register(pat);

EXAMPLE 3–9 A Static Pattern that Uses the TT_BOTH Scope

Obtain procid tt_open();

Declare Ptype Tt_ptype_declare(ptype);

Join file tt_file_join(file);

Join session tt_session_join(tt_default_session());

Adding Files to Scoped Patterns
To match TT_SESSION-scoped messages and TT_SESSION-scoped patterns that have
the same file attributes, you can add file attributes to TT_SESSION-scoped patterns
with the tt_pattern_file_add call, as shown in Example 3–10.

Note – The file attribute values do not affect the scope of the pattern.

EXAMPLE 3–10 Adding Two File Attributes to a Session-Scoped Pattern

Obtain procid tt_open();

Create pattern Tt_pattern pat = tt_create_pattern();

Add scope to pattern tt_pattern_scope_add(pat, TT_SESSION);

Add session to pattern tt_pattern_session_add(tt_default_session());

Add first file attribute to
pattern

tt_pattern_file_add(pat, file1);

Chapter 3 • Message Patterns 39

EXAMPLE 3–10 Adding Two File Attributes to a Session-Scoped Pattern (Continued)

Add second file attribute to
pattern

tt_pattern_file_add(pat, file2);

Register pattern tt_pattern_register(pat);

Context Attributes
ToolTalk contexts are sets of <name, value> pairs explicitly included in both messages
and patterns. ToolTalk contexts allow fine-grain matching.

You can use contexts to associate arbitrary pairs with ToolTalk messages and patterns,
and to restrict the set of possible recipients of a message. One common use of the
restricted pattern matching provided by ToolTalk context attributes is to create
sub-sessions. For example, two different programs could be debugged simultaneously
with tools such as a browser, an editor, a debugger, and a configuration manager
active for each program. The message and pattern context slots for each set of tools
contain different values; the normal ToolTalk pattern matching of these values keep
the two sub-sessions separate.

Another use for the restricted pattern matching provided by ToolTalk context
attributes is to provide information in environment variables and command line
arguments to tools started by the ToolTalk service.

Pattern Argument Attributes
ToolTalk pattern arguments may be strings, binary data, or integer values which
Tooltalk service uses to match against incoming messages.

Arguments differ from contexts in that arguments are positional paramaters while
contexts are named paramaters. The order of arguments, set in a message, determines
the order in which they are present in the sent and received message. That is, they
must agree with the order and types of arguments set in a pattern. Since arguments
are positional, you must add a “wildcard” argument for intermidiate arguments in a
pattern if you wish to match an argument that is not the first argument in the
incoming message. Wildcard arguments should have the vtype of “ALL” and the
value of NULL.

40 ToolTalk User’s Guide • May 2002

You must use the pattern argument adding API call that matches the type of your
argument (integer, binary data, or ASCII string). In particular, you should note that it
is not possible to add a pattern argument with a wildcard value of NULL with
tt_pattern_iarg_add(), since NULL, or 0 is a valid integer argument value. To
add wildcard arguments, use tt_pattern_arg_add().

Disposition Attributes
Disposition attributes instruct the ToolTalk service how to handle messages to your
application if an instance of the application is not currently running.

The disposition value specified in the static type definition of a pattern is the default
disposition; however, if the message deposition specifies the handler ptype the default
disposition value is over-ridden. For example, a message disposition specifies a static
type definition for the ptype UWriteIt which includes the message signature Display.
This message signature does not match any of the static signatures in the pattern. The
ToolTalk service will follow the instructions for the disposition set in the message; for
example, if the message disposition is TT_START and the UWriteIt ptype specifies a
start string, the ToolTalk service will start an instance of the application if one is not
running.

Chapter 3 • Message Patterns 41

42 ToolTalk User’s Guide • May 2002

CHAPTER 4

Setting Up and Maintaining the
ToolTalk Processes

Note – The ToolTalk database server program must be installed on all machines which
store files that contain ToolTalk objects or files that are the subject of ToolTalk
messages.

Location of the ToolTalk Service Files
The ToolTalk binaries and library are located in /usr/openwin with symbolic links
located in /usr/dt. This ensures that users of either Common Desktop Environment
(CDE) or OpenWindows™ (OW) get the same version of ToolTalk. Online man pages
and ToolTalk demo program source are located in /usr/openwin.

Table 4–1 describes the ToolTalk Service files.

TABLE 4–1 ToolTalk Service Files

File/location Description

ttsession Communicates with other ttsessions on the network to deliver
messages.

rpc.ttdbserverd Stores and manages ToolTalk object specs and information on
files referenced in ToolTalk messages.

ttcp ttmv ttrm ttrmdir
tttar

These commands are standard operating system shell
commands that inform the ToolTalk service when files that
contain ToolTalk objects or files that are the subject of ToolTalk
messages are copied, moved, or removed.

43

TABLE 4–1 ToolTalk Service Files (Continued)
File/location Description

ttdbck A database check and recovery tool for the ToolTalk
databases.

tt_type_comp This is a compiler for ptypes and otypes. It compiles the ptype
and otype files and automatically installs them in the ToolTalk
Types database.

ttce2xdr Converts ToolTalk type data from the Classing Engine
database format to the XDR-database format.

ttsnoop This is a Motif application that enables you to register
ToolTalk patterns and/or send ToolTalk messages, and to
generally observe ToolTalk message traffic. It is useful both for
debugging existing applications and as a tutor in
understanding how different parts of a pattern filter incoming
messages.

tttrace tttrace is analogous to truss(1). It is an application that
can be used in two ways. It enables you to trace either the
message-passing and pattern-matching occurring in a given
ttsession, or it can be used to provide a per-program trace
of all calls into the ToolTalk API.

libtt.so.2 This is the application programming interface (API) library.

tttk.h and tt_c.h (located
in /usr/dt/include/Tt)

Header files that contain the ToolTalk functions used by
applications to send and receive messages.

/usr/openwin/man/man1 ToolTalk man pages for the user commands such as
ttsession, ttdbck, tt_type_comp, and so on.

/usr/openwin/man/man1m ToolTalk man pages for the ToolTalk administrative
commands suc such as rpc.ttdbserverd, ttdbck, and so
on.

/usr/openwin/man/man3 ToolTalk man pages for the ToolTalk API calls.

/usr/openwin/man/man4 ToolTalk man pages for the ToolTalk message sets, and for
configuration files used for by ttsession(1) and
rpc.ttdbserverd(1m)

/usr/openwin/man/man5 ToolTalk man pages for the ToolTalk include files.

ttsample, edit_demo, and
Makefile (located in
/usr/openwin/share/src/tooltalk/demo)

Source code for simple ToolTalk demo programs.

44 ToolTalk User’s Guide • May 2002

Version
All ToolTalk commands support a -v option that prints the version string.

Requirements
The software required by the ToolTalk service includes ONC RPC.

Environment Variables
This section addresss ToolTalk and related environment variables.

ToolTalk Environment Variables
There are several ToolTalk environment variables that may be set. Table 4–2 describes
these variables.

TABLE 4–2 Environment Variables

Variable Description

TTSESSION_CMD Overrides the standard options specified when tools automatically start
ttsession. If this variable is set, all ToolTalk clients use this command to
automatically start their X sessions.

TT_ARG_TRACE_WIDTH Defines the number of characters of argument and context values to print
when in trace mode. The default is to print the first 40 characters.

TT_FILE ttsession places a pathname in this variable when a tool is invoked by a
message scoped to the defined file.

TT_HOSTNAME_MAP Points to a map file. The defined map file is read into the ToolTalk client for
redirecting host machines.

TT_PARTITION_MAP Points to a map file. The defined map file is read into the ToolTalk client for
redirecting file partitions.

Chapter 4 • Setting Up and Maintaining the ToolTalk Processes 45

TABLE 4–2 Environment Variables (Continued)
Variable Description

TT_SESSION ttsession communicates its session identifier to the tools that it starts. If
this variable is set, the ToolTalk client library uses its value as the default
session identifier. The string stored in this variable can be passed to
tt_default_session_set.

TT_TOKEN Notifies the ToolTalk client library that it has been started by ttsession; the
client can then confirm to ttsession that the start was successful.

TT_TRACE_SCRIPT Tells libtt to turn on client-side tracing as specified in the trace script for
tttrace(1).

TTPATH Tells the ToolTalk service where the ToolTalk Types databases used by
tt_type_comp(1) and rpc.ttdbserverd(1M) reside.

CEPATH Tells the Classing Engine where the ToolTalk Types databases reside.

DISPLAY Causes ttsession to communicate its session identifier to the tools that it
starts if the TT_SESSION variable is not set.

If the DISPLAY variable is set, the ToolTalk client library uses its value as the
default session identifier. This variable is typically set when ttsession is
auto-started while running under OpenWindows.

NOTE: Under the Solaris operating environment, this variable may not be
passed across to some accounts. That is, if you are logged on the console as
User A and switch-user to User B, ttsession may not autostart when you
attempt to run a ToolTalk program that normally autostarts ttsession. To
avoid this problem, either manually set the this variable or include it in your
.login file.

DTMOUNTPOINT If set, the value of this environment variable will be used in place of /net in
pathnames constructed to answer tt_host_netfile_file()(3) queries, by
rpc.ttdbserverd(1M).

A process is given a modified environment when it is automatically started by the
ToolTalk service. The modified environment includes the environment variables
$TT_SESSION, $TT_TOKEN, and any contexts in the start-message whose keyword
begins with the dollar sign symbol ($). Optionally, the environment variable
$TT_FILE may also be included in the modified environment if it is a file-scoped
message.

Note – If the tt_open call will be invoked by a child process, the parent process must
propagate the modified environment to that child process.

46 ToolTalk User’s Guide • May 2002

Other Environment Variables
The TMPDIR environment variable is another environment variable that you can set to
manipulate the ToolTalk development environment. For example, the following line
redirects files to the /var/tmp directory.

TMPDIR=/var/tmp

Environment Variables Required to Start Programs
on Remote Hosts
The start string is always executed on the host on which ttsession is running;
however, the executed process can start another process on another host.

To do this, first make your start string be similar to the following:

rsh farhost myprog

Next, to make sure myprog is placed in the right session and receives its initial
message, you need to propagate the important ToolTalk environment variables. The
ttrsh shell script shown in Example 4–1 propagates these environment variables.

EXAMPLE 4–1 Propagating ToolTalk Environment Variables

#! /bin/sh
Runs a command remotely in background, by pointing stdout and stderr
at /dev/null. By running this through the Bourne shell at the other end,
we get rid of the rsh and rshd.
#set -x
user=
debug=
HOST=${HOST-‘hostname‘}
if ["$1" = "-debug"]; then

debug=1
shift

fi
if [$# -lt 2 -o "$1" = "-h" -o "$1" = "-help"];
then

echo "Usage: ttrsh [-debug] remotehost [-l username] \
remotecommand"

echo "Usage: ttrsh [-h | -help]"
exit 1

else
host=$1
shift
if test "$1" = "-l" ; then

shift
user=$1
shift

fi
fi

Chapter 4 • Setting Up and Maintaining the ToolTalk Processes 47

EXAMPLE 4–1 Propagating ToolTalk Environment Variables (Continued)

xhostname=‘expr "$DISPLAY" : "\([^:]*\).*"‘
xscreen=‘expr "$DISPLAY" : "[^:]*\(.*\)"‘
if test x$xscreen = x; then

xscreen=":0.0"
fi
if test x$xhostname = x -o x$xhostname = x"unix";
then

DISPLAY=$HOST$xscreen
fi
if ["$user" = ""]; then

userOption=""
else

userOption="-l $user"
fi
if [$debug]; then

outputRedirect=
else

outputRedirect=’> /dev/null 2>&1 &’
fi
(

echo "OPENWINHOME=$OPENWINHOME;export OPENWINHOME;\
TT_SESSION=$TT_SESSION;export TT_SESSION;\
TT_TOKEN=$TT_TOKEN;export TT_TOKEN;TT_FILE=$TT_FILE;\
export TT_FILE;DISPLAY=$DISPLAY;export DISPLAY;($*)" \
$outputRedirect | rsh $host $userOption /bin/sh &

) &

Using Context Slots to Create Environment
Variables
Message contexts have a special meaning when the ToolTalk service starts an
application. If the name of a context slot begins with a dollar sign ($), the ToolTalk
service interprets the value as an environment variable. For example, the following
uses the value of context slot $CON1.

start "my_application $CON1"

Installing the ToolTalk Database Server
The ToolTalk Database server is used to store three types of information:

1. ToolTalk objects specs.

2. ToolTalk session IDs of sessions with clients that have joined a file using the
tt_file_join call.

48 ToolTalk User’s Guide • May 2002

3. File-scoped messages that are queued because the message disposition is
TT_QUEUED and a handler that can handle the message has not yet been started.

In addition, the ToolTalk Database server answers queries for the ToolTalk filename
mapping API calls (tt_host_file_netfile() and tt_host_netfile_file()).

Note – The ToolTalk database server does not store messages that are scoped to
file-in-session.

The ToolTalk service requires that a database server run on each machine that stores
files that contain ToolTalk objects or files that are the subject of ToolTalk messages.
When an application attempts to reference a file on a machine that does not contain a
database server, an error similar to the following message is displayed:

% Error: Tool Talk database server on integral is not running: tcp

where integral is the hostname and tcp is the application protocol. This error message
indicates that the connection failed. A failed connection can also be caused by network
problems.

Confirming that the rpc.ttdbserverd is installed on
a system.
All machines should have the SUNWtltk and SUNWdtcor packages installed if they
contain files referenced in ToolTalk messages. To confirm that rpc.ttdbserverd is
installed on a system:

1. Login to the system.

2. Use pkginfo(1) to determine that the SUNWtltk and SUNWdtcor packages are
installed.

Caution – The /etc/inetd.conf config line below is installed by the SUNWdtcor
Solaris package. If a system does not have SUNWtltk installed, you should make sure
that SUNWdtcor is present before installing SUNWtltk. Do not copy a Solaris 7
(SunOS 5.7 or compatible) server onto a machine running the Solaris 1.0 (SunOS
4.0/4.1 or compatible) operating environment.

3. Check that the /etc/inetd.conf file contains the following line.

100083/1 tli rpc/tcp wait root /usr/openwin/bin/rpc.ttdbserverd

If you find that rpc.ttdbserverd is not present, then you can install it by adding
the SUNWtltlk and SUNWdtcor packages using pkgadd(1M). After adding the
packages have inetd reread its configuration file:

Chapter 4 • Setting Up and Maintaining the ToolTalk Processes 49

ps -ef | grep inetd # kill -HUP inetd-pid

Note – inetd-pid is from the ps listing.

Confirming that the rpc.ttdbserverd is running on
a system.
To determine if the ToolTalk database server is actually running on a specific system,
you can use the rpcinfo(1M) command:

% rpcinfo -T tcp -t <hostname> 100083
program 100083 version 1 ready and waiting

%

Note – hostname is from hostname(1).

From the Solaris Distribution CD-Rom
To install the ToolTalk software package from the Solaris distribution cd-rom, use the
pkgadd command. The package name for the ToolTalk software is SUNWt/tk; the
developer’s package name is SUNWt/tkd; and the manpage package name is
SUNWt/tkm.

Running the New ToolTalk Database
Server
Once a newer version of the ToolTalk database server has been run on a machine, you
cannot revert to a previous version of the ToolTalk database server. Any attempt to run
a previous version of the ToolTalk database server displays the following error
message:

rpc.ttdbserverd[pid #: rpc.ttdbserverd version (1.0.x)
does not match the version (1.1) of the database tables.

Please install an rpc.ttdbserverd version 1.1 (or greater).

50 ToolTalk User’s Guide • May 2002

Redirecting the ToolTalk Database Server
You can redirect both database host machines and the file system partitions.

� Redirecting a database host machine allows a ToolTalk client to physically access
ToolTalk data from a machine that is not running a ToolTalk database server.

� Redirecting a file system partition allows a ToolTalk database to logically read and
write ToolTalk data from and to a read-only file system partition (for example, a
CD-Rom) by physically accessing a different file system partition. Redirecting a file
system partition also is done if a system administrator wants all ToolTalk databases
to reside on a single local partition instead of one per local partition, which is the
default.

Redirecting the Host Machine
When you redirect a database host machine, a ToolTalk client can physically access
ToolTalk data from a machine that is not running a ToolTalk database server. To
redirect the host machine, you need to map the hostnames of the machines the
ToolTalk client is to access. On the machine running the ToolTalk client that is making
the database query:

1. Create a hostname_map file.

For example:

Map first host machine
oldhostname1 newhostname1

Map second host machine

oldhostname2 newhostname2

where oldhostname is the name of the machine the ToolTalk client needs to access and
newhostname is the name of a machine that is running the ToolTalk database server.

2. Store the file in the same location at which the ToolTalk Types databases are stored.

The map files have the same order of precedence as the ToolTalk Types databases (see
tt_type_comp(1).

Note – A file defined in the TT_HOSTNAME_MAP environment variable has a higher
precedence than the map in the user database.

Chapter 4 • Setting Up and Maintaining the ToolTalk Processes 51

The map file is read into a ToolTalk client when the client makes a tt_open call. For
detailed information on host redirection see hostname_map(4).

Redirecting the File System Partition
When you redirect a file system partition, a ToolTalk database can logically read and
write ToolTalk data from and to a read-only file system partition by physically
accessing a different file system partition. To redirect a file partition, you need to map
the partitions to where the ToolTalk database will write. On the machine running the
ToolTalk database server:

1. Create a partition_map file.

For example:

Map first partition
/cdrom /usr

Map second partition

/sr0/export/home /export/home

maps the read-only partition /cdrom to /usr, a read-write partition; and maps the
read-only partition /sr0/export/home to /export/home, a read-write partition.

2. Store the map file in the same location at which the system ToolTalk Types
databases are stored.

Note – A file partition defined in the TT_PARTITION_MAP environment variable has a
higher precedence than the file partition defined in this map file.

The map file is read when the ToolTalk database server is started, or when the
database server receives a USR2 signal. For detailed information on partition
redirection see partition_map(4).

52 ToolTalk User’s Guide • May 2002

CHAPTER 5

Maintaining Application Information

Applications that want to receive ToolTalk messages provide information to the
ToolTalk service that describes what kind of messages they want to receive. This
information, known as message patterns, is provided dynamically either by
applications as they run, or through ptype and otype files.

Installing Application Types
Installing application types is an occasional task; you only need to install type
information when new types are created, or when an application error condition
exists. Ptype and otype files are run through the ToolTalk type compiler at installation
time. tt_type_comp merges the information into the ToolTalk Types Database. The
application then tells the ToolTalk service to read the type information in the database.

To install an application’s ptype and otype files, follow these steps:

1. Run tt_type_comp on your type file.

% tt_type_comp your-file

tt_type_comp runs your-file through cpp, compiles the type definitions, and merges
the information into a ToolTalk Types table. Table 5–1 describes location of the
XDR-base format tables; Table 5–2 describes the location of the Classing Engine-base
format table.

Note – The Classing Engine interface exists for compatibility reasons only. The default
is XDR.

53

TABLE 5–1 XDR-base Format ToolTalk Types Tables

Database Uses XDR Table

user ~/.tt/types.xdr

system /etc/tt/types.xdr

desktop /usr/dt/appconfig/tttypes/types.xdr

network $OPENWINHOME/etc/tt/types.xdr

TABLE 5–2 Classing Engine-base Format ToolTalk Types Tables

Database Uses Classing Engine Table

user ~/.cetables/cetables

system /etc/cetables/cetables

network $OPENWINHOME/lib/cetables/cetables

There are four XDR databases. The $TTPATH environment variable determines which
three will be used. See tt_type_comp(1) for details about the format and priority of
$TTPATH entries.

By default, tt_type_comp uses the user database. To specify another database, use
the -d option. For example:

% tt_type_comp -d user|system|[network|desktop]your_file

Note – When you run tt_type_comp on your ptype or otype files, it first runs cpp
on the file and then checks the syntax before it places the data into the ToolTalk Types
Database format. If syntax errors are found, a message is displayed that indicates the
line number of the cpp file. To find the line, enter: cpp -P source-file temp-file and view
the temp-file to find the error on the line reported by tt_type_comp.

2. ttsession will reread the ToolTalk Types Database automatically.

To force ttsession to reread the ToolTalk Types Database, see the “Updating the
ToolTalk Service” on page 56.

54 ToolTalk User’s Guide • May 2002

Examining ToolTalk Type Information
You can examine all type information in a specified ToolTalk Types Database, only the
ptype information, or only the otype information. To specify the database you want to
examine, use the -d option and supply the name of the user, system, or network to
indicate the desired database. If the -d option is not used, tt_type_comp will use
the user database by default.

� To examine all the ToolTalk type information in a ToolTalk Types Database, enter
the following line

% tt_type_comp -d user|system|network -p

The type information will be printed out in source format.

� To list all ptypes in a ToolTalk Types Database, enter the following line:

% tt_type_comp -d user|system|network -P

The names of the ptypes will be printed out in source format.

� To list all otypes in a ToolTalk Types Database, enter the following line:

% tt_type_comp -d user|system|network -O

The names of the otypes will be printed out in source format.

Removing ToolTalk Type Information
You can remove both ptype and otype information from the ToolTalk Types Databases.

� Use tt_type_comp to remove type information. Enter the following line:

% tt_type_comp -d user|system|network -r type

For example, to remove a ptype called EditDemo from the ToolTalk Types network
database of a sample application, enter the line:

% tt_type_comp -d network -r EditDemo

After you remove type information, force any running ttsessions to reread the
ToolTalk Types Database again to bring the ToolTalk service up-to-date. See “Updating
the ToolTalk Service” on page 56 for more information.

Chapter 5 • Maintaining Application Information 55

Updating the ToolTalk Service
When you make changes to the ToolTalk Types Database with tt_type_comp(1), the
ToolTalk Service will automatically be notified to reread the types files. If you wish to
explicitly force a ToolTalk session that is already running to reread the databases, send
the ttsession process a SIGUSR2.

� To send the ttsession process a SIGUSR2:
1. Enter the ps command to find the process identifier (pid) of the ttsession process

% ps -ef | grep ttsession

2. Enter the kill command to send a SIGUSR2 signal to ttsession.

% kill -USR2 ttsession_pid

Process Type Errors
One or both of the following conditions exists if applications report the error:

Application is not an installed ptype.

1. The ToolTalk service has not been instructed by the application to reread the
recently updated type information in the ToolTalk Types Database. See “Updating
the ToolTalk Service” on page 56 for instructions on how to force the ToolTalk
service to reread type information from the ToolTalk Types Database.

2. The application’s ptypes and otypes have not been compiled and merged into the
ToolTalk Types Database. See “Installing Application Types” on page 53 for
instructions on how to compile and merge type information.

56 ToolTalk User’s Guide • May 2002

Using ttsnoop to Debug Messages and
Patterns
ttsnoop is a tool provided to create and send custom-constructed ToolTalk messages.
You can also use ttsnoop as a tool to selectively monitor any or all ToolTalk
messages. The ttsnoop program resides in the directory /usr/dt/bin/ttsnoop.
To start the program, enter the following command on the command line:

% /usr/dt/bin/ttsnoop [-t]

The -t option displays the ToolTalk API calls that are being used to construct a
particular pattern or message. Figure 5–1 shows the window that is displayed when
ttsnoop starts.

FIGURE 5–1 ttsnoop Display Window

� Start

Press this button to activate message reception. ttsnoop will display any incoming
messages which match the patterns you register.

� Stop

Press this button to stop receiving messages.

� Clear

Press this button to clear the window.

� About TTSnoop

Press this button to obtain general help for ttsnoop.

Chapter 5 • Maintaining Application Information 57

Note – To obtain help for individual buttons and settings, place the mouse over the
button or setting and press the F1 key or Help key on your keyboard. Your HELPPATH
environment variable must contain the directory that contains the TTSnoop .info
files.

� Display

Press this button to popup a panel of checkboxes to highlight specific ToolTalk
message components on the ttsnoop display subwindow.

� Messages

Press this button to popup a panel which enables you to create, store, and send
ToolTalk messages.

� Patterns

Press this button to popup a panel which allows you to compose and register ToolTalk
patterns.

� Send Messages

Press this button to send messages that were stored using the Messages popup.

Composing and Sending Messages
When you press the Messages button on the initial display window, the popup panel
shown in Figure 5–2 is displayed.

58 ToolTalk User’s Guide • May 2002

FIGURE 5–2 Popup Messages Panel

� Add Message

Press this button to store the current message settings. Once the messages are stored,
you can recall and send these messages using the Send Message button on the initial
display window.

� Edit Contexts

Press this button to add, change, and delete send message contexts. The popup
window displayed, shown in Figure 5–3, allows you to edit contexts to be sent with
your messages.

Chapter 5 • Maintaining Application Information 59

FIGURE 5–3 Editing Send Contexts

� Send Message

Press this button to send the newly created message.

Note – This button performs the same function as the Send Message button on the
main menu.

Composing and Registering Patterns
When you press the Patterns button on the initial display window, the popup panel
shown in Figure 5–4 is displayed.

60 ToolTalk User’s Guide • May 2002

FIGURE 5–4 Popup Patterns Panel

Press the Apply button to register your pattern. Once a pattern is registered, you can
use ttsnoop as a debugging tool to observe what messages are being sent by other
applications.

� Edit Receive Contexts

Press this button to add, change, and delete receive message contexts in patterns. The
popup window displayed, shown in Figure 5–5, allows you to edit contexts to be

Chapter 5 • Maintaining Application Information 61

registered with your patterns.

FIGURE 5–5 Editing Message Contexts in Patterns

Displaying Message Components
When you press the Display button on the initial display window, the popup panel of
checkboxes shown in Figure 5–6 displays.

FIGURE 5–6 Checkboxes to Display Message Component Values

62 ToolTalk User’s Guide • May 2002

When you select a checkbox, the specified ToolTalk message component is indicated
on a displayed message by an arrow (--->) to the left of the displayed message
component. Figure 5–7 shows the displayed message components.

FIGURE 5–7 Display of Message Components

Sending Pre-Created Messages
When you press the Send Message button on the initial display window, you can send
one the messages you created and stored using the Messages popup.

Receiving Messages
When you press the Start button on the initial display window, ttsnoop will display
any incoming messages which match the patterns you registered. Figure 5–8 is an
example of a displayed incoming message.

Chapter 5 • Maintaining Application Information 63

FIGURE 5–8 Incoming Message Displayed

Stop Receiving Messages
When you press the Stop button on the initial display window, ttsnoop will stop
receiving messages.

64 ToolTalk User’s Guide • May 2002

CHAPTER 6

Maintaining Files and Objects
Referenced in ToolTalk Messages

ToolTalk messages can reference files of interest or ToolTalk objects. The ToolTalk
service maintains information about files and objects, and needs to be informed of
changes to these files or objects.

The ToolTalk service provides wrapped shell commands to move, copy, and remove
files. These commands inform the ToolTalk service of any changes.

ToolTalk-Enhanced Shell Commands
The ToolTalk-enhanced shell commands described in Table 6–1 first invoke the
standard shell commands with which they are associated (for example, ttmv invokes
mv) and then update the ToolTalk service with the file changes. It is necessary to use
the ToolTalk-enhanced shell commands when working with files that contain ToolTalk
objects.

TABLE 6–1 ToolTalk-Enhanced Shell Commands

Command Definition Syntax

ttcp Copies files that contain objects. ttcp source-file destination-file

ttmv Renames files that contain objects. ttmv old new

ttrm Removes files that contain objects. ttrm file

65

TABLE 6–1 ToolTalk-Enhanced Shell Commands (Continued)
Command Definition Syntax

ttrmdir Removes empty directories that are associated with
ToolTalk objects.

You also use this command to create an object spec
for a directory; for example, if a directory is
mentioned in a file-scoped message. When an
object spec is created, the path name of a file or
directory is supplied.

ttrmdir directory

tttar Archives and de-archives files that contain ToolTalk
objects.

tttar c|t|x pathname1 pathname2

You can cause the ToolTalk-enhanced shell commands to be executed when the
standard shell commands are invoked. To do this, alias the ToolTalk-enhanced shell
commands in the shell startup file so that the enhanced commands appear as standard
shell commands.

ToolTalk-aware shell commands in .cshrc
alias mv ttmv
alias cp ttcp
alias rm ttrm
alias rmdir ttrmdir

alias tar tttar

Maintaining and Updating ToolTalk
Databases
Information about files and objects in the ToolTalk databases can become outdated if
the ToolTalk-enhanced shell commands are not used to copy, move, and remove them.
For example, you can remove a file old_file that contains ToolTalk objects from the file
system with the standard rm command. However, because the standard shell
command does not inform the ToolTalk service that old_file has been removed, the
information about the file and the individual objects remains in the ToolTalk database.

To remove the file and object information from the ToolTalk database, use the
command:

ttrm -L old_file

66 ToolTalk User’s Guide • May 2002

Displaying, Checking, and Repairing
Databases
Use the ToolTalk database utility ttdbck to display, check, or repair ToolTalk
databases. You also use the ttdbck utility for operations such as:

� Removing all ToolTalk objects of a given otype; for example, an otype that has been
de-installed

� Moving specific ToolTalk objects from one file to another

� Searching for all ToolTalk object that reference nonexistent files

Note – ToolTalk databases are typically accessible only to root; therefore, the ttdbck
utility is normally run as root.

Chapter 6 • Maintaining Files and Objects Referenced in ToolTalk Messages 67

68 ToolTalk User’s Guide • May 2002

CHAPTER 7

Participating in ToolTalk Sessions

This chapter provides instructions on how to participate in a ToolTalk session. It also
shows you how to manage storage of values passed in from the ToolTalk service and
how to handle errors that the ToolTalk service returns.

To use the ToolTalk service, your application calls ToolTalk functions from the ToolTalk
API library. To modify your application to use the ToolTalk service, you must first
include the ToolTalk API header file in your program. After you have initialized the
ToolTalk service and joined a session, you can join files and additional user sessions.
When your process is ready to quit, you unregister your message patterns and leave
your ToolTalk session.

Including the ToolTalk API Header File
To modify your application to use the ToolTalk service, first you must include the
ToolTalk API header file tt_c.h in your program. This file resides in the
/usr/dt/include/Tt/ directory.

The following code sample shows how a program includes this file.

#include <stdio.h>
#include <sys/param.h>
#include <sys/types.h>

#include <Tt/tt_c.h>

69

Registering with the ToolTalk Service
Before you can participate in ToolTalk sessions, you must register your process with
the ToolTalk service. You can either register in the ToolTalk session in which the
application was started (the initial session), or locate another session and register there.

The ToolTalk functions you need to register with the ToolTalk service are shown in
Table 7–1.

TABLE 7–1 Registering with the ToolTalk Service

Return Type ToolTalk Function Description

char * tt_open(void) Process identifier

int tt_fd(void) File descriptor

char * tt_X_session(const char
*xdisplay)

Return the session identifier of
the specified X display server.

Tt_status tt_default_session_set(const
char *sessid)

Sets the session to which
tt_open will connect.

Registering in the Initial Session
To initialize and register your process with the initial ToolTalk session, your
application needs to obtain a process identifier (procid). You can then obtain the file
descriptor (fd) that corresponds to the newly initialized ToolTalk process.

The following code sample first initializes and registers the sample program with the
ToolTalk service, and then obtains the corresponding file descriptor.

70 ToolTalk User’s Guide • May 2002

int ttfd;
char *my_procid;

/*
* Initialize ToolTalk, using the initial default session
*/

my_procid = tt_open();

/*
* obtain the file descriptor that will become active whenever
* ToolTalk has a message for this process.
*/

ttfd = tt_fd();

tt_open returns the procid for your process and sets it as the default procid; tt_fd
returns a file descriptor for your current procid that will become active when a
message arrives for your application.

Caution – Your application must call tt_open before other tt_ calls are made;
otherwise, errors may occur. However, there are a few exceptions:
tt_default_session_set and tt_X_session can be called before tt_open to
control to which sesion you connect. tt_feature_required and
tt_feature_enabled may be called when using ToolTalk in a Multi-Threaded
environment. The ToolTalk filename mapping API calls, tt_file_netfile,
tt_netfile_file, tt_host_file_netfile, and tt_host_netfile_file may
be called without ever calling tt_open.

When tt_open is the first call made to the ToolTalk service, it sets the initial session
as the default session. The default session identifier (sessid) is important to the delivery
of ToolTalk messages. The ToolTalk service automatically fills in the default sessid if an
application does not explicitly set the session message attribute. If the message is
scoped to TT_SESSION, the message will be delivered to all applications in the default
session that have registered interest in this type of message.

Registering in a Specified Session
To register in a session other than the initial session, your program must find the name
of the other session, set the new session as the default, and register with the ToolTalk
service.

The following code sample shows how to join an X session named somehost:0 that
is not your initial session.

Chapter 7 • Participating in ToolTalk Sessions 71

char *my_session;
char *my_procid;

my_session = tt_X_session(“somehost:0”);
tt_default_session_set(my_session);
my_procid = tt_open();

ttfd = tt_fd();

Note – The required calls must be in the specified order.

1. tt_X_session();

This call retrieves the name of the session associated with an X display server.
tt_X_session() takes the argument char *xdisplay_name

where xdisplay_name is the name of an X display server (in this example,
somehost:0).

2. tt_default_session_set();

This call sets the new session as the default session.

3. tt_open();

This call returns the procid for your process and sets it as the default procid.

4. tt_fd();

This call returns a file descriptor for your current procid.

Registering in Multiple Sessions
There may be cases when you want to send and receive your messages in different
sessions. To register in multiple sessions, your program must find the identifiers of the
sessions to which it wants to connect, set the new sessions, and register with the
ToolTalk service.

The following code sample shows how to connect procid to sessid1, and procid2 to
sessid2.

tt_default_session_set(sessid1);
my_procid1 = tt_open();
tt_default_session_set(sessid2);
my_procid2 = tt_open();

tt_fd2 = tt_fd();

You can then use tt_default_procid_set() to switch between the sessions.

72 ToolTalk User’s Guide • May 2002

Setting Up to Receive Messages
Before your application can receive messages from other applications, you must set up
your process to watch for arriving messages. When a message arrives for your
application, the file descriptor becomes active. The code you use to alert your
application that the file descriptor is active depends on how your application is
structured.

For example, a program that uses the XView notifier, through the xv_main_loop or
notify_start calls, can have a callback function invoked when the file descriptor
becomes active. The following code sample invokes notify_set_input_func with
the handle for the message object as a parameter.

/*
* Arrange for XView to call receive_tt_message when the
* ToolTalk file descriptor becomes active.
*/
notify_set_input_func(base_frame,

(Notify_func)receive_tt_message,

ttfd);

Table 7–2 describes various window toolkits and the call used to watch for arriving
messages.

TABLE 7–2 Code Used to Watch for Arriving Messages

Window Toolkits Code Used

XView notify_set_input_func()

X Window System Xt (Intrinsics) XtAddInput() or XtAddAppInput()

Other toolkits including Xlib structured
around select(2) or poll(2) system
calls

The file descriptor returned by tt_fd()

Note: Once the file descriptor is active and the
select call exits, use tt_message_receive() to
obtain a handle for the incoming message.

Chapter 7 • Participating in ToolTalk Sessions 73

Sending and Receiving Messages in the
Same Process
Normally, the receiver deletes the message when it has completed the requested
operation. However, the ToolTalk service uses the same message ID for both the
receiver and the requestor. When sending and receiving messages in the same process,
these features cause the message underneath the requestor to be deleted as well.

One workaround is to put a refcount on the message. To do this, use the
tt_message_user[_set]() function.

Another workaround is to destroy the message in the receiver only if the sender is not
the current procid; for example:

Tt_callback_action
my_pattern_callback(Tt_message m, Tt_pattern p)
{

/* normal message processing goes here */

if (0!=strcmp(tt_message_sender(m),tt_default_procid()) {
tt_message_destroy(m);

}
return TT_CALLBACK_PROCESSED;

}

Sending and Receiving Messages in a
Networked Environment
You can use the ToolTalk service in a networked environment; for example, you can
start a tool on a different machine or join a session that is running on a different
machine. To do so, invoke a ttsession with either the -c or -p option.

� The -c option will invoke the named program and place the right session id in its
TT_SESSION environment variable. For example, the command

ttsession -c dtterm

defines TT_SESSION in that cmdtool and any ToolTalk client you run with the
environment variable $TT_SESSION set to its value will join the session owned by
this ttsession.

74 ToolTalk User’s Guide • May 2002

� The -p option prints the session id to standard output. ttsession then forks into
the background to run that session.

To join the session, an application must either pass the session id to
tt_default_session_set or place the session id in the environment variable
TT_SESSION before it calls the tt_open function. tt_open will check the
environment variable TT_SESSION and join the indicated session (if it has a value).

Unregistering from the ToolTalk Service
When you want to stop interacting with the ToolTalk service and other ToolTalk
session participants, you must unregister your process before your application exits.

/*
* Before leaving, allow ToolTalk to clean up.
*/
tt_close();

exit(0);

}

tt_close returns Tt_status and closes the current default procid.

Using ToolTalk in a Multi-Threaded
Environment
This section describes how to use ToolTalk in a multi-threaded environment.

Initialization
Using the ToolTalk library with multi-threaded clients requires an initialization call
like the following call:

tt_feature_required(TT_FEATURE_MULTITHREADED);

Chapter 7 • Participating in ToolTalk Sessions 75

The call must be invoked before any other ToolTalk call is made. Attempts to call
tt_feature_required(TT_FEATURE_MULTITHREADED)after other ToolTalk API
calls have been made will result in a TT_ERR_TOOLATE error.

Libraries and other reusable modules that use ToolTalk might want to query the
ToolTalk library to determine if the invoking application has enabled the multi-thread
feature of ToolTalk. The tt_feature_enabled() API call was added for this
purpose. Top-level applications rarely need to use tt_feature_enabled() since the
application would know if it had already done the initialization.

ToolTalk procids and sessions
When a ToolTalk client calls tt_open() or tt_session_join(), the new procid or
session is the default for the thread (and not the entire process as would be the for a
non-multi-threaded ToolTalk client). A thread’s default procid and session, before any
calls to tt_open() or tt_session_join() are made, are initially the same as the
defaults for the creator of the thread. In addition to changing the defaults with
tt_open() or tt_session_join(), tt_thread_procid_set() and
tt_thread_session_set() can be used to switch to other defaults created
previously. The default procid and session values can be retrieved using
tt_thread_procid() and tt_thread_session(). The thread-specific procid and
session values are managed through the use of thread-specific storage. If no value has
yet been created in the thread, the default value for the entire ToolTalk process is the
fallback value.

Note – It is possible for the values returned by tt_default_procid() and
tt_thread_procid() (and similarly, tt_default_session() and
tt_thread_session()) to be different at any given time for some thread. This is so
because tt_default_procid_set() and tt_default_session_set() do not
affect the default values for a thread. They only affect the default values for the entire
ToolTalk process.

Using threads with ToolTalk enabled applications is a natural implementation
technique for programs that switch procids and sessions. These programs might, at
some point, want to easily determine which ToolTalk procid is associated with a
ToolTalk session. This was difficult to do in previous versions of ToolTalk.
tt_procid_session() has been provided to accomplish this. Although
tt_procid_session()does not depend on threads, it is useful for applications that
use threads with ToolTalk.

76 ToolTalk User’s Guide • May 2002

ToolTalk storage
tt_mark() and tt_release()affect storage allocated on a per-thread basis, not a
per-process basis. Therefore, one thread cannot use tt_release() to release storage
that was marked by another thread using tt_mark().

Common Problems
Using one thread to send a message and another to process a message is a common
technique. However, use care when destroying a message with
tt_message_destroy() when another thread might be examining and processing
the message contents. This typically results in a program crash when the receiving
thread tries to access storage that was freed by another thread. This is the same as
managing non-ToolTalk storage in multi-threaded applications, but easier to do using
the ToolTalk API.

Chapter 7 • Participating in ToolTalk Sessions 77

78 ToolTalk User’s Guide • May 2002

CHAPTER 8

Sending Messages

This chapter explains how messages are routed, and describes the ToolTalk message
attributes and algorithm. It also describes how to create messages, fill in message
contents, attach callbacks to requests, and send messages.

How the ToolTalk Service Routes
Messages
Applications can send two classes of ToolTalk messages, notices and requests. A notice
is informational, a way for an application to announce an event. Applications that
receive a notice absorb the message without returning results to the sender. A request
is a call for an action, with the results of the action recorded in the message, and the
message returned to the sender as a reply.

Sending Notices
When you send an informational message, the notice takes a one-way trip, as shown
in Figure 8–1.

Sender State=Sent State=SentToolTalk
Service

Handler &
Observers

FIGURE 8–1 Notice Routing

79

The sending process creates a message, fills in attribute values, and sends it. The
ToolTalk service matches message and pattern attribute values, then gives a copy of
the message to one handler and to all matching observers. File-scoped messages are
automatically transferred across session boundaries to processes that have declared
interest in the file.

Sending Requests
When you send a message that is a request, the request takes a round-trip from sender
to handler and back; copies of the message take a one-way trip to interested observers.
Figure 8–2 illustrates the request routing procedure.

Sender

State=Handled State=Sent

ToolTalk
Service Handler

State=Sent

Observers

Observers

State=Sent

or Failed

FIGURE 8–2 Request Routing

The ToolTalk service delivers a request to only one handler. The handler adds results
to the message and sends it back. Other processes can observe a request before or after
it is handled, or at both times; observers absorb a request without sending it back.

80 ToolTalk User’s Guide • May 2002

Sending Offers
Offers are messages similar to Requests. However, responses are not expected when
data are sent. Also, you can tell how many potential recipients there are for the
message at the time it is sent. You can also tell whether those recipients have accepted,
rejected, or “abstained” the message. Consequently, Offers is less general than Notices
and Requests.

Changes in State of Sent Message
To allow you to track the progress of a request you sent, you will receive a message
every time the request changes state. You will receive these state change messages
even if no patterns have been registered, or no message callbacks have been specified.

Message Attributes
ToolTalk messages contain attributes that store message information and provide
delivery information to the ToolTalk service. This delivery information is used to route
the messages to the appropriate receivers.

ToolTalk messages are simple structures that contain attributes for address, subject
(such as operation and arguments), and delivery information (such as class and scope.)
Each message contains attributes from Table 8–1.

TABLE 8–1 ToolTalk Message Attributes

Message Attribute Value Description
Who Can
Complete

Arguments arguments or results Specifies arguments used in the operation.
If the message is a reply, these arguments
contain the results of the operation.

Sender, receiver

Class TT_NOTICE, TT_REQUEST,
TT_OFFER

Specifies whether the recipient needs to
perform an operation.

Sender

File char *pathname Specifies the file involved in the
operation. If the scope of the message
does not require a file, the file is an
attribute only.

Sender, ToolTalk

Object char *objid Specifies the object involved in the
operation.

Sender, ToolTalk

Chapter 8 • Sending Messages 81

TABLE 8–1 ToolTalk Message Attributes (Continued)

Message Attribute Value Description
Who Can
Complete

Operation char *opname Specifies the name of operation to be
performed.

Sender

Otype char *otype Specifies the type of object involved in the
operation.

Sender, ToolTalk

Address TT_PROCEDURE, TT_OBJECT,
TT_HANDLER, TT_OTYPE

Specifies where the message should be
sent.

Sender

Handler char *procid Specifies the receiving process. Sender, ToolTalk

Handler_ptype char *ptype Specifies the type of receiving process. Sender, ToolTalk

Disposition TT_DISCARD, TT_QUEUE,
TT_START

TT_START+TT_QUEUE

Specifies what to do if the message cannot
be received by any running process.

Sender, ToolTalk

Scope TT_SESSION, TT_FILE,
TT_BOTH,
TT_FILE_IN_SESSION

Specifies the applications that will be
considered as potential recipients based
on their registered interest in a session or
file.

Sender, ToolTalk

Sender_ptype char *ptype Specifies the type of the sending process. Sender, ToolTalk

Session char *sessid Specifies the sending process’s session. Sender, ToolTalk

Status int status, char
*status_str

Specifies additional information about the
status of the message.

Receiver,
ToolTalk

Address Attribute
Messages addressed to other applications can be addressed to a particular process or
to any process that has registered a pattern that matches your message. When you
address a message to a process, you need to know the process identifier (procid) of the
other application. However, processes do not usually know each other’s procid; more
often, a sender does not care which process performs an operation (request message)
or learns of an event (notice message).

Scope Attributes
Applications that use the ToolTalk service to communicate usually have something in
common – the applications are running in the same session, or they are interested in
the same file or data. To register this interest, applications join sessions or files (or
both) with the ToolTalk service. This file and session information is used by the
ToolTalk service with the message patterns to determine which applications should
receive a message.

82 ToolTalk User’s Guide • May 2002

Note – The scope attributes are restricted to NFS and UFS files systems; file scoping
does not work across file systems (for example, a tmpfs file system.)

File Scope
When a message is scoped to a file, only those applications that have joined the file
(and match the remaining attributes) will receive the message. Applications that share
interest in a file do not have to be running in the same session.

File-based Scoping in Patterns

Table 8–2 describes the types of scopes that use files which you can use to scope
messages with patterns.

TABLE 8–2 Scoping a Message with Patterns to a File

Type of Scope Description

TT_FILE Scopes to the specified file only. You can set a session attribute on this type of
pattern to provide a file-in-session-like scoping but a tt_session_join call
will not update the session attribute of a pattern that is scoped to TT_FILE.

TT_BOTH Scopes to the union of interest in the file and the session. A pattern with only
this scope will match messages that are scoped to the file, or scoped to the
session, or scoped to both the file and the session.

TT_FILE_IN_SESSION Scopes to the intersection of interest in the file and the session. A pattern with
only this scope will only match messages that are scoped to both the file and
session.

To scope to the union of TT_FILE_IN_SESSION and TT_SESSION, add both scopes
to the same pattern, as shown in Example 8–1.

EXAMPLE 8–1 Scoping to Union of TT_FILE_IN_SESSION and TT_SESSION

tt_open();

Tt_pattern pat = tt_create_pattern();
tt_pattern_scope_add(pat, TT_FILE_IN_SESSION);
tt_pattern_scope_add(pat, TT_SESSION);
tt_pattern_file_add(pat, file);
tt_pattern_session_add(pat, tt_default_session());

tt_pattern_register(pat);

Chapter 8 • Sending Messages 83

File-based Scoping in Messages

Messages have the same types of file-based scoping mechanisms as patterns. Table 8–3
describes these scopes.

TABLE 8–3 Scoping Mechanisms for Messages

Type of Scope Description

TT_FILE Scopes the message to all clients that have registered interest in a file.

TT_BOTH Scopes the message to all clients that have registered interest in the message’s
session, the message’s file, or the message’s session and file.

TT_FILE_IN_SESSION Scopes the message to all clients that have registered interest in both the
message’s file and session.

TT_SESSION +
tt_message_file_set()

Scopes the message to every client that has registered interest in the message’s
session. When the message is received by a client whose pattern matches, the
receiving client can call tt_message_file to get the file name.

When a message is scoped to TT_FILE or TT_BOTH, the ToolTalk client library checks
the database server for all sessions that have clients that are interested in the file and
sends the message to all of the interested ToolTalk sessions. The ToolTalk sessions then
match the messages to the appropriate clients. The message sender is not required to
explicitly call to tt_file_join.

If a message that is scoped to TT_FILE_IN_SESSION or TT_SESSION contains a file,
the database server is not contacted and the message is sent only to clients that are
scoped to the message’s session.

Session Scope
When a message is scoped to a session, only those applications that have connected to
that session are considered as potential recipients.

EXAMPLE 8–2 Setting a Session

Tt_message m= tt_message_create();
tt_message_scope_set(m, TT_SESSION);

tt_message_file_set(m, file);

The first line creates message. The second line adds scope to message, and the last line
adds file attribute that does not affect message scope.

84 ToolTalk User’s Guide • May 2002

File-In-Session Scope
Applications can be very specific about the distribution of a message by specifying
TT_FILE_IN_SESSION for the message scope. Only those applications that have
joined both the file and the session indicated are considered potential recipients.

Applications can also scope a message to every client that has registered interest in the
message’s session by specifying TT_SESSION with tt_message_file_set for the
message scope. When the message is received by a client whose pattern matches, the
receiving client can get the file name by calling tt_message_file.

EXAMPLE 8–3 Setting a File

Tt_message m= tt_message_create();
tt_message_scope_set(m, TT_FILE_IN_SESSION);

tt_message_file_set(m, file);

The first line creates message. The second line adds scope. The third line adds file to
message scope.

Serialization of Structured Data
The ToolTalk service supports three types of data for message arguments: integers,
null-terminated strings, and byte strings.

To send any other data type in a ToolTalk message, the client must serialize the data
into a string or byte string and then deserialize it on receipt. The new XDR argument
API calls provided with the ToolTalk service now handles these serialization and
deserialization functions. The client only needs to provide an XDR routine and a
pointer to the data. After serializing the data into the internal buffer, the ToolTalk
service treats the data in the same manner as it treats a byte stream.

ToolTalk Message Delivery Algorithm
To help you further understand how the ToolTalk service determines message
recipients, this section describes the creation and delivery of both process-oriented
messages and object-oriented messages.

Chapter 8 • Sending Messages 85

Process-Oriented Message Delivery
For some process-oriented messages, the sending application knows the ptype or the
procid of the process that should handle the message. For other messages, the ToolTalk
service can determine the handler from the operation and arguments of the message.

1. Initialize.

The sender obtains a message handle and fills in the address, scope, and class attributes.
The sender fills in the operation and arguments attributes.
If the sender has declared only one ptype, the ToolTalk service fills in sender_ptype by
default; otherwise, the sender must fill it in.
If the scope is TT_FILE, the file name must be filled in or defaulted. If the scope is
TT_SESSION, the session name must be filled in or defaulted. If the scope is TT_BOTH
or TT_FILE_IN_SESSION, both the file name and session name must be filled in or
defaulted.

Note – The set of patterns checked for delivery depends on the scope of the message.
If the scope is TT_SESSION, only patterns for processes in the same session are
checked. If the scope is TT_FILE, patterns for all processes observing the file are
checked. If the scope is TT_FILE_IN_SESSION or TT_BOTH, both sets of processes
are checked.

The sender may fill in the handler_ptype if known. However, this greatly reduces
flexibility because it does not allow processes of one ptype to substitute for another.
Also, the disposition attribute must be specified by the sender in this case.

2. Dispatch to handler.

The ToolTalk service compares the address, scope, message class, operation, and argument
modes and types to all signatures in the Handle section of each ptype.
Only one ptype will usually contain a message pattern that matches the operation and
arguments and specifies a handle. If a handler ptype is found, then the ToolTalk
service fills in opnum, handler_ptype, and disposition from the ptype message pattern.
If the address is TT_HANDLER, the ToolTalk service looks for the specified procid and
adds the message to the handler’s message queue. TT_HANDLER messages cannot be
observed because no pattern matching is done.

3. Dispatch to observers.

The ToolTalk service compares the scope, class, operation, and argument types to all
message patterns in the Observe section of each ptype.
For all observe signatures that match the message and specify TT_QUEUE or
TT_START, the ToolTalk service attaches a record (called an “observe promise”) to the
message that specifies the ptype and the queue or start options. The ToolTalk service
then adds the ptype to its internal ObserverPtypeList.

86 ToolTalk User’s Guide • May 2002

4. Deliver to handler.

If a running process has a registered handler message pattern that matches the
message, the ToolTalk service delivers the message to the process; otherwise, the
ToolTalk service honors the disposition (start or queue) options.
If more than one process has registered a dynamic pattern that matches the handler
information, the more specific pattern (determined by counting the number of
non-wildcard matches) is given preference. If two patterns are equally specific, the
choice of handler is arbitrary.

5. Deliver to observers.

The ToolTalk service delivers the message to all running processes that have registered
Observer patterns that match the message. As each delivery is made, the ToolTalk
service checks off any observe promise for the ptype of the observer. After this process
is completed and there are observe promises left unfulfilled, the ToolTalk service
honors the start and queue options in the promises.

Example
In this example, a debugger uses an editor to display the source around a breakpoint
through ToolTalk messages.

The editor has the following Handle pattern in its ptype:

(HandlerPtype: TextEditor;
Op: ShowLine;
Scope: TT_SESSION;
Session: my_session_id;

File: /home/butterfly/astrid/src/ebe.c)

1. When the debugger reaches a breakpoint, it sends a message that contains the op
(ShowLine), argument (the line number), file (the file name), session (the current
session id), and scope (TT_SESSION) attributes.

2. The ToolTalk service matches this message against all registered patterns and finds
the pattern registered by the editor.

3. The ToolTalk service delivers the message to the editor.

4. The editor then scrolls to the line indicated in the argument.

Object-Oriented Message Delivery
Many messages handled by the ToolTalk service are directed at objects but are actually
delivered to the process that manages the object. The message signatures in an otype,
which include the ptype of the process that can handle each specific message, help the
ToolTalk service determine process to which it should deliver an object-oriented
message.

Chapter 8 • Sending Messages 87

1. Initialize.

The sender fills in the class, operation, arguments, and the target objid attributes.
The sender attribute is automatically filled in by the ToolTalk service. The sender can
either fill in the sender_ptype and session attributes or allow the ToolTalk service to fill
in the default values.
If the scope is TT_FILE, the file name must be filled in or defaulted. If the scope is
TT_SESSION, the session name must be filled in or defaulted. If the scope is TT_BOTH
or TT_FILE_IN_SESSION, both the file name and session name must be filled in or
defaulted.

Note – The set of patterns checked for delivery depends on the scope of the message.
If the scope is TT_SESSION, only patterns for processes in the same session are
checked. If the scope is TT_FILE, patterns for all processes observing the file are
checked. If the scope is TT_FILE_IN_SESSION or TT_BOTH, both sets of processes
are checked.

2. Resolve.

The ToolTalk service looks up the objid in the ToolTalk database and fills in the otype
and file attributes.

3. Dispatch to handler.

The ToolTalk service searches through the otype definitions for Handler message
patterns that match the message’s operation and arguments attributes. When a match is
found, the ToolTalk service fills in scope, opnum, handler_ptype, and disposition from the
otype message pattern.

4. Dispatch to object-oriented observers.

The ToolTalk service compares the message’s class, operation, and argument attributes
against all Observe message patterns of the otype. When a match is found, if the
message pattern specifies TT_QUEUE or TT_START, the ToolTalk service attaches a
record (called an “observe promise”) to the message that specifies the ptype and the
queue or start options.

5. Dispatch to procedural observers.

The ToolTalk service continues to match the message’s class, operation, and argument
attributes against all Observe message patterns of all ptypes. When a match is found,
if the signature specifies TT_QUEUE or TT_START, the ToolTalk service attaches an
observe promise record to the message, specifying the ptype and the queue or start
options.

6. Deliver to handler.

If a running process has a registered Handler pattern that matches the message, the
ToolTalk service delivers the message to the process; otherwise, the ToolTalk service
honors the disposition (queue or start) options.

88 ToolTalk User’s Guide • May 2002

If more than one process has registered a dynamic pattern that matches the handler
information, the more specific pattern (determined by counting the number of
non-wildcard matches) is given preference. If two patterns are equally specific, the
choice of handler is arbitrary.

7. Deliver to observers.

The ToolTalk service delivers the message to all running processes that have registered
Observer patterns that match the message. As each delivery is made, the ToolTalk
service checks off any observe promise for the ptype of the observer. After this process
is completed and there are observe promises left unfulfilled, the ToolTalk service
honors the disposition (queue or start) options in the promises.

Example
In this example, a hypothetical spreadsheet application named FinnogaCalc is
integrated with the ToolTalk service.

1. FinnogaCalc starts and registers with the ToolTalk service by declaring its ptype,
FinnogaCalc, and joining its default session.

2. FinnogaCalc loads a worksheet, hatsize.wks, and tells the ToolTalk service it is
observing the worksheet by joining the worksheet file.

3. A second instance of FinnogaCalc (called FinnogaCalc2) starts, loads a worksheet,
wardrobe.wks, and registers with the ToolTalk service in the same way.

4. The user assigns the value of cell B2 in hatsize.wks to also appear in cell C14 of
wardrobe.wks.

5. So that FinnogaCalc can send the value to FinnogaCalc2, FinnogaCalc2 creates an
object spec for cell C14 by calling a ToolTalk function. This object is identified by an
objid.

6. FinnogaCalc2 then gives this objid to FinnogaCalc (for example, through the
clipboard).

7. FinnogaCalc remembers that its cell B2 should appear in the object identified by
this objid and sends a message that contains the value.

8. ToolTalk routes the message. To deliver the message, the ToolTalk service:

a. Examines the spec associated with the objid and finds that the type of the objid
is FinnogaCalc_cell and that the corresponding object is in the file
wardrobe.wks.

b. Consults the otype definition for FinnogaCalc_cell. From the otype, the
ToolTalk service determines that this message is observed by processes of ptype
FinnogaCalc and that the scope of the message should be TT_FILE.

c. Matches the message against registered patterns and locates all processes of this
ptype that are observing the proper file. FinnogaCalc2 matches, but FinnogaCalc
does not.

d. Delivers the message to FinnogaCalc2.

Chapter 8 • Sending Messages 89

9. FinnogaCalc2 recognizes that the message contains an object that corresponds to
cell C14. FinnogaCalc2 updates the value in wardrobe.wks and displays the new
value.

Otype Addressing
Sometimes you may need to send an object-oriented message without knowing the
objid. To handle these cases, the ToolTalk service provides otype addressing. This
addressing mode requires the sender to specify the operation, arguments, scope, and
otype. The ToolTalk service looks in the specified otype definition for a message
pattern that matches the message’s operation and arguments to locate handling and
observing processes. The dispatch and delivery then proceed as in messages to specific
objects.

Modifying Applications to Send ToolTalk
Messages
To send ToolTalk messages, your application must perform several operations: it must
be able to create and complete ToolTalk messages; it must be able to add message
callback routines; and it must be able to send the completed message.

Creating Messages
The ToolTalk service provides three methods to create and complete messages:

1. General-purpose function

� tt_message_create()

2. Process-oriented notice and request functions

� tt_pnotice_create()

� tt_prequest_create()

3. Object-oriented notice and request functions

� tt_onotice_create()

� tt_orequest_create()

90 ToolTalk User’s Guide • May 2002

The process- and object-oriented notice and request functions make message creation
simpler for the common cases. They are functionally identical to strings of other
tt_message_create() and tt_message_ attribute__set() calls, but are easier to
write and read. Table 8–4 and Table 8–5 list the ToolTalk functions that are used to
create and complete message

TABLE 8–4 Functions Used to Create Messages

ToolTalk Function Description

tt_onotice_create(const char *objid, const char
*op)

Creates an object-oriented notice.

tt_orequest_create(const char *objid, const char
*op)

Creates an object-oriented request.

tt_pnotice_create(Tt_scope scope, const char *op) Creates a process-oriented notice.

tt_prequest_create(Tt_scope scope, const char
*op)

Creates a process-oriented request.

tt_message_create(void) Creates a message. This function is the
ToolTalk general purpose function to create
messages.

Note – The return type for all the create functions is Tt_message.

TABLE 8–5 Functions Used to Complete Messages

ToolTalk Function Description

tt_message_address_set(Tt_message m, Tt_address
p)

Sets addressing mode (for example,
point-to-point).

tt_message_arg_add(Tt_message m, Tt_mode n, const
char *vtype, const char *value)

Adds a null-terminated string argument.

tt_message_arg_bval_set(Tt_message m, int n,
const unsigned char *value, int len)

Sets an argument’s value to the specified byte
array.

tt_message_arg_ival_set(Tt_message m, int n, int
value)

Sets an argument’s value to the specified
integer.

tt_message_arg_val_set(Tt_message m, int n, const
char *value)

Sets an argument’s value to the specified
null-terminated string.

tt_message_barg_add(Tt_message m, Tt_mode n,
const char *vtype, const unsigned char *value, int
len)

Adds a byte array argument.

Chapter 8 • Sending Messages 91

TABLE 8–5 Functions Used to Complete Messages (Continued)
ToolTalk Function Description

tt_message_iarg_add(Tt_message m, Tt_mode n,
const char *vtype, int value)

Adds an integer argument.

tt_message_context_bval(Tt_message m, const char
*slotname, unsigned char **value, int *len);

Gets a context’s value to the specified byte
array.

tt_message_context_ival(Tt_message m, const char
*slotname, int *value);

Gets a context’s value to the specified integer.

tt_message_context_val(Tt_message m, const char
*slotname);

Gets a context’s value to the specified string.

tt_message_icontext_set(Tt_message m, const char
*slotname, int value);

Sets a context to the specified integer.

tt_message_bcontext_set(Tt_message m, const char
*slotname, unsigned char *value, int length);

Sets a context to the specified byte array.

tt_message_context_set(Tt_message m, const char
*slotname, const char *value);

Sets a context to the specified null-terminated
string.

tt_message_class_set(Tt_message m, Tt_class c) Sets the type of message (either notice or
request)

tt_message_file_set(Tt_message m, const char
*file)

Sets the file to which the message is scoped.

tt_message_handler_ptype_set(Tt_message m, const
char *ptid)

Sets the ptype that is to receive the message.

tt_message_handler_set(Tt_message m, const char
*procid)

Sets the procid that is to receive the message.

tt_message_object_set(Tt_message m, const char
*objid)

Sets the object that is to receive the message.

tt_message_op_set(Tt_message m, const char
*opname)

Sets the operation that is to receive the
message.

tt_message_otype_set(Tt_message m, const char
*otype)

Sets the object type that is to receive the
message.

tt_message_scope_set(Tt_message m, Tt_scope s) Sets the recipients who are to receive the
message (file, session, both).

tt_message_sender_ptype_set(Tt_message m, const
char *ptid)

Sets the ptype of the application that is
sending the message.

tt_message_session_set(Tt_message m, const char
*sessid)

Sets the session to which the message is
scoped.

tt_message_status_set(Tt_message m, int status) Sets the status of the message; this status is
seen by the receiving application.

92 ToolTalk User’s Guide • May 2002

TABLE 8–5 Functions Used to Complete Messages (Continued)
ToolTalk Function Description

tt_message_status_string_set(Tt_message m, const
char *status_str)

Sets the text that describes the status of the
message; this text is seen be the receiving
application.

tt_message_user_set(Tt_message m, int key, void
*v)

Sets a message that is internal to the sending
application. This internal message is opaque
data that is not seen by the receiving
application.

tt_message_abstainer(Tt_message m, int n) Returns the procid of the n’th abstainer of the
specified message.

tt_message_abstainers_count(Tt_message m) Returns a count of the procids that are
recorded in the TT_OFFER m as having
abstained from it.

tt_message_accepter(Tt_message m,int n) Returns the procid of the n’th accepter of the
specified message.

tt_message_accepters_count(Tt_message m) Returns a count of the procids that are
recorded in the TT_OFFER m as having
accepted it.

tt_message_rejecter(Tt_message m,int n) Returns the procid of the n’th rejector of the
specified message.

tt_message_rejecters_count(Tt_message m) Returns a count of the procids that are
recorded in the TT_OFFER m as having
rejected it.

Note – The return type for all the functions used to complete messages is Tt_status

Using the General-Purpose Function to Create ToolTalk
Messages
You can use the general-purpose function tt_message_create() to create and
complete ToolTalk messages. If you create a process- or object-oriented message with
tt_message_create(), use the tt_message_attribute_set() calls to set the
attributes.

Class
� Use TT_REQUEST for messages that return values or status. You will be informed

when the message is handled or queued, or when a process is started to handle the
request.

Chapter 8 • Sending Messages 93

� Use TT_NOTICEfor messages that only notify other processes of events.
� Use TT_OFFER for messages for which there are multiple intended recipients, and

for which you wish to determine how many of those recipients have accepted,
rejected, or abstained from participation in this message.

Address
� Use TT_PROCEDUREto send the message to any process that can perform this

operation with these arguments. Fill in op and args attributes of this message.

� Use TT_OTYPE to send the message to this type of object that can perform this
operation with these arguments. Fill in otype, op, and args attributes of the
message.

� Use TT_HANDLER to send the message to a specific process. Specify the handler
attribute value.

Usually, one process makes a general request, picks the handler attribute from the
reply, and directs further messages to that handler. If you specify the exact procid
of the handler, the ToolTalk service will deliver the message directly — no pattern
matching is done and no other applications can observe the message. This
point-to-point (PTP) message passing feature enables two processes to rendezvous
through broadcast message passing and then communicate explicitly with one
another.

Note – Offers can only be sent with address TT_PROCEDURE. Attempting to send an
Offer with any other address will generate an error of TT_ERR_ADDRESS.

� Use TT_OBJECT to send the message to a specific object that performs this
operation with these arguments. Fill in object, op, and args attributes of this
message.

Scope

Fill in the scope of the message delivery. Potential recipients could be joined to:

� TT_SESSION

� TT_FILE

� TT_BOTH

� TT_FILE_IN_SESSION

Depending on the scope, the ToolTalk service will add the default session or file, or
both to the message.

Note that Offers can only be sent in TT_SESSION scope.

94 ToolTalk User’s Guide • May 2002

Op

Fill in the operation that describes the notification or request that you are making. To
determine the operation name, consult the ptype definition for the target recipient or
the message protocol definition.

Args

Fill in any arguments specific to the operation. Use the function that best suits your
argument’s data type:

� tt_message_arg_add()

Adds an argument whose value is a zero-terminated character string.

� tt_message_barg_add()

Adds an argument whose value is a byte string.

� tt_message_iarg_add()

Adds an argument whose value is an integer.

For each argument you add (regardless of the value type), specify:

� Tt_mode

Specify TT_IN or TT_INOUT. TT_IN indicates that the argument is written by the
sender and can be read by the handler and any observers. TT_INOUT indicates that
the argument is written by the sender and the handler and can be read by all. If
you are sending a request that requires the handler to provide an argument in
return, use TT_INOUT.

� Value Type

The value type (vtype) describes the type of argument data that is to be added. The
ToolTalk service uses the vtype name when it compares a message to registered
patterns to determine a message’s recipients. The ToolTalk service does not use the
vtype to process a message or pattern argument value.

The vtype name helps the message receiver interpret data. For example, if a word
processor rendered a paragraph into a PostScript representation in memory, it
could call tt_message_arg_add with the following arguments:

tt_message_arg_add (m, “PostScript”, buf);

In this case, the ToolTalk service would assume buf pointed to a zero-terminated
string and send it.

Similarly, an application could send an enum value in a ToolTalk message; for
example, an element of Tt_status:

tt_message_iarg_add(m, “Tt_status”, (int) TT_OK);

The ToolTalk service sends the value as an integer but the Tt_status vtype tells
the recipient what the value means.

Chapter 8 • Sending Messages 95

Note – It is very important that senders and receivers define particular vtype names
so that a receiver does not attempt to retrieve a value that was stored in another
fashion; for example, a value stored as an integer but retrieved as a string.

Creating Process-Oriented Messages
You can easily create process-oriented notices and requests. To get a handle or opaque
pointer to a new message object for a procedural notice or request, use the
tt_pnotice_create or tt_prequest_create function. You can then use this
handle on succeeding calls to reference the message.

When you create a message with tt_pnotice_create or tt_prequest_create,
you must supply the following two attributes as arguments:

1. Scope

Fill in the scope of the message delivery. Potential recipients could be joined to:

� TT_SESSION

� TT_FILE

� TT_BOTH

� TT_FILE_IN_SESSION

Depending on the scope, the ToolTalk service fills in the default session or file (or
both).

2. Op

Fill in the operation that describes the notice or request you are making. To
determine the operation name, consult the ptype definition for the target process or
other protocol definition.

You use the tt_message_attribute_set calls to complete other message attributes
such as operation arguments.

Creating and Completing Object-Oriented Messages
You can easily create object-oriented notices and requests. To get a handle or opaque
pointer to a new message object for a object-oriented notice or request, use the
tt_onotice_create or tt_orequest_create function. You can then use this
handle on succeeding calls to reference the message.

When you create a message with tt_onotice_create or tt_orequest_create,
you must supply the following two attributes as arguments:

1. Objid

96 ToolTalk User’s Guide • May 2002

Fill in the unique object identifier.

2. Op

Fill in the operation that describes the notice or request you are making. To
determine the operation name, consult the ptype definition for the target process or
other protocol definition.

You use the tt_message_attribute_set calls to complete other message attributes
such as operation arguments.

Adding Message Callbacks
When a request contains a message callback routine, the callback routine is
automatically called when the reply is received to examine the results of the reply and
take appropriate actions.

Note – Callbacks are called in reverse order of registration (for example, the most
recently added callback is called first).

You use tt_message_callback_add to add the callback routine to your request.
When the reply comes back and the reply message has been processed through the
callback routine, the reply message must be destroyed before the callback function
returns TT_CALLBACK_PROCESSED. To destroy the reply message, use
tt_message_destroy, as illustrated in Example 8–4.

EXAMPLE 8–4 Destroying a Message

Tt_callback_action
sample_msg_callback(Tt_message m, Tt_pattern p)
{

... process the reply msg ...

tt_message_destroy(m);
return TT_CALLBACK_PROCESSED;

}

The following code sample is a callback routine, cntl_msg_callback, that examines
the state field of the reply and takes action if the state is started, handled, or failed.

Chapter 8 • Sending Messages 97

/*
* Default callback for all the ToolTalk messages we send.
*/

Tt_callback_action
cntl_msg_callback(m, p)

Tt_message m;
Tt_pattern p;

{
int mark;
char msg[255];
char *errstr;

mark = tt_mark();
switch (tt_message_state(m)) {

case TT_STARTED:
xv_set(cntl_ui_base_window, FRAME_LEFT_FOOTER,

"Starting editor...", NULL);
break;

case TT_HANDLED:
xv_set(cntl_ui_base_window, FRAME_LEFT_FOOTER, "", NULL);
break;

case TT_FAILED:
errstr = tt_message_status_string(m);
if (tt_pointer_error(errstr) == TT_OK && errstr) {
sprintf(msg,"%s failed: %s", tt_message_op(m), errstr);
} else if (tt_message_status(m) == TT_ERR_NO_MATCH) {
sprintf(msg,"%s failed: Couldn’t contact editor",

tt_message_op(m),
tt_status_message(tt_message_status(m)));

} else {
sprintf(msg,"%s failed: %s",

tt_message_op(m),
tt_status_message(tt_message_status(m)));

}
xv_set(cntl_ui_base_window, FRAME_LEFT_FOOTER, msg, NULL);
break;

default:
break;

}
/*
* no further action required for this message. Destroy it
* and return TT_CALLBACK_PROCESSED so no other callbacks will
* be run for the message.
*/
tt_message_destroy(m);
tt_release(mark);
return TT_CALLBACK_PROCESSED;

}

98 ToolTalk User’s Guide • May 2002

You can also add callbacks to static patterns by attaching a callback to the opnum of a
signature in a ptype. When a message is delivered because it matched a static pattern
with an opnum, the ToolTalk service checks for any callbacks attached to the opnum
and runs them.

� Use tt_otype_opnum_callback_add to attach the callback routine to the
opnum of an osignature.

� Use tt_ptype_opnum_callback_add to attach the callback routine to the
opnum of a psignature.

Sending a Message
When you have completed your message, use tt_message_send to send it.

If the ToolTalk service returns TT_WRN_STALE_OBJID, it has found a forwarding
pointer in the ToolTalk database that indicates the object mentioned in the message
has been moved. However, the ToolTalk service will send the message with the new
objid. You can then use tt_message_object to retrieve the new objid from the
message and put it into your internal data structure.

If you will not need the message in the future (for example, if the message was a
notice), you can use tt_message_destroy to delete the message and free storage
space.

Note – If you are expecting a reply to the message, do not destroy the message until
you have handled the reply.

Examples
Example 8–5 illustrates how to create and send a pnotice.

Chapter 8 • Sending Messages 99

EXAMPLE 8–5 Creating and Sending a Pnotice

/*
* Create and send a ToolTalk notice message
* ttsample1_value(in int <new value)
*/

msg_out = tt_pnotice_create(TT_SESSION, “ttsample1_value”);
tt_message_arg_add(msg_out, TT_IN, “integer”, NULL);
tt_message_arg_ival_set(msg_out, 0, (int)xv_get(slider,

PANEL_VALUE));
tt_message_send(msg_out);

/*
* Since this message is a notice, we don’t expect a reply, so
* there’s no reason to keep a handle for the message.
*/

tt_message_destroy(msg_out);

Example 8–6 illustrates how an orequest is created and sent when the callback routine
for cntl_ui_hilite_button is called.

EXAMPLE 8–6 Creating and Sending an Orequest

/*
* Notify callback function for ‘cntl_ui_hilite_button’.
*/
void
cntl_ui_hilite_button_handler(item, event)

Panel_item item;
Event *event;

{
Tt_message msg;

if (cntl_objid == (char *)0) {
xv_set(cntl_ui_base_window, FRAME_LEFT_FOOTER,
“No object id selected”, NULL);
return;

}
msg = tt_orequest_create(cntl_objid, “hilite_obj”);
tt_message_arg_add(msg, TT_IN, “string”, cntl_objid);
tt_message_callback_add(msg, cntl_msg_callback);
tt_message_send(msg);

}

100 ToolTalk User’s Guide • May 2002

CHAPTER 9

Dynamic Message Patterns

The dynamic method provides message pattern information while your application is
running. You create a message pattern and register it with the ToolTalk service. You
can add callback routines to dynamic message patterns that the ToolTalk service will
call when it matches a message to the pattern.

Defining Dynamic Messages
To create and register a dynamic message pattern, you allocate a new pattern object,
fill in the proper information, and register it. When you are done with the pattern (that
is, when you are no longer interested in messages that match it), either unregister or
destroy the pattern. You can register and unregister dynamic message patterns as
needed.

The ToolTalk functions used to create, register, and unregister dynamic message
patterns are listed in Table 9–1.

TABLE 9–1 Functions for Creating, Updating, and Deleting Message Patterns

ToolTalk Function Description

tt_pattern_create(void) Create Pattern

tt_pattern_arg_add(Tt_pattern p, Tt_mode n, const char
*vtype, const char *value)

Add string arguments

tt_pattern_barg_add(Tt_pattern m, Tt_mode n, const char
*vtype, const unsigned char *value, int len)

Add byte array arguments

tt_pattern_iarg_add(Tt_pattern m, Tt_mode n, const char
*vtype, int value)

Add integer arguments

101

TABLE 9–1 Functions for Creating, Updating, and Deleting Message Patterns (Continued)
ToolTalk Function Description

tt_pattern_xarg_add(Tt_pattern m, Tt_mode n, const char
*vtype, xdrproc_t xdr_proc, void *value)

Adds an xdr argument to a byte
array

tt_pattern_bcontext_add(Tt_pattern p, const char
*slotname, const unsigned char *value, int length);

Add byte array contexts

tt_pattern_context_add(Tt_pattern p, const char *slotname,
const char *value);

Add string contexts

tt_pattern_icontext_add(Tt_pattern p, const char
*slotname, int value);

Add integer contexts

tt_pattern_address_add(Tt_pattern p, Tt_address d) Add address

tt_pattern_callback_add(Tt_pattern p,
Tt__message_callback_action f)

Add message callback

tt_pattern_category_set(Tt_pattern p, Tt_category c) Set category

tt_pattern_class_add(Tt_pattern p, Tt_class c) Add class

tt_pattern_disposition_add(Tt_pattern p, Tt_disposition r) Add disposition

tt_pattern_file_add(Tt_pattern p, const char *file) Add file

tt_pattern_object_add(Tt_pattern p, const char *objid) Add object

tt_pattern_op_add(Tt_pattern p, const char *opname) Add operation

tt_pattern_opnum_add(Tt_pattern p, int opnum) Add operation number

tt_pattern_otype_add(Tt_pattern p, const char *otype) Add object type

tt_pattern_scope_add(Tt_pattern p, Tt_scope s) Ad scope

tt_pattern_sender_add(Tt_pattern p, const char *procid) Add sending process identifier

tt_pattern_sender_ptype_add(Tt_pattern p, const char
*ptid)

Add sending process type

tt_pattern_session_add(Tt_pattern p, const char *sessid) Add session identifier

tt_pattern_state_add(Tt_pattern p, Tt_state s) Add state

tt_pattern_user_set(Tt_pattern p, int key, void *v) Set user

tt_pattern_register(Tt_pattern p) Register pattern

tt_pattern_unregister(Tt_pattern p) Unregister pattern

tt_pattern_destroy(Tt_pattern p) Destroy message pattern

102 ToolTalk User’s Guide • May 2002

Note – The return type for all functions except tt_pattern_create is Tt_status;
tt_pattern_create returns Tt_pattern.

Creating a Message Pattern
To create message patterns, use the tt_pattern_create function. You can use this
function to get a handle or opaque pointer to a new pattern object, and then use this
handle on succeeding calls to reference the pattern.

To fill in pattern information, use the tt_pattern_attribute_add and
tt_pattern_attribute_set calls. You can supply multiple values for each attribute
you add to a pattern. The pattern attribute matches a message attribute if any of the
values in the pattern match the value in the message. If no value is specified for an
attribute, the ToolTalk service assumes that you want any value to match. Some
attributes are set and, therefore, can only have one value.

Adding a Message Pattern Callback
To add a callback routine to your pattern, use the tt_pattern_callback_add
function.

Note – Callbacks are called in reverse order of registration (for example, the most
recently added callback is called first).

When the ToolTalk service matches a message, it automatically calls your callback
routine to examine the message and take appropriate actions. When a message that
matches a pattern with a callback is delivered to you, it is processed through the
callback routine. When the routine is finished, it returns TT_CALLBACK_PROCESSED
and the API objects involved in the operation are freed. You can then use
tt_message_destroy to destroy the message, which frees the storage used by the
message, as illustrated in the following code sample.

Chapter 9 • Dynamic Message Patterns 103

Tt_callback_action
sample_msg_callback(Tt_message m, Tt_pattern p)
{

... process the reply msg ...

tt_message_destroy(m);
return TT_CALLBACK_PROCESSED;

}

Registering a Message Pattern
To register the completed pattern, use the tt_pattern_register() function. After
you register your pattern, you join the sessions or files of interest.

The following code sample creates and registers a pattern.

/*
* Create and register a pattern so ToolTalk

* knows we are interested
* in “ttsample1_value” messages within

* the session we join.
*/

pat = tt_pattern_create();
tt_pattern_category_set(pat, TT_OBSERVE);
tt_pattern_scope_add(pat, TT_SESSION);
tt_pattern_op_add(pat, “ttsample1_value”);

tt_pattern_register(pat);

Deleting and Unregistering a Message Pattern

Note – If delivered messages that matched the deleted pattern have not been retrieved
by your application (for example, the messages might be queued), the ToolTalk service
does not destroy these messages.

To delete a message pattern, use the tt_pattern_destroy() function. This
function first unregisters the pattern and then destroys the pattern object.

To stop receiving messages that match a message pattern without destroying the
pattern object, use the tt_pattern_unregister() to unregister the pattern.

The ToolTalk service will automatically unregister and destroy all message pattern
objects when you call tt_close.

104 ToolTalk User’s Guide • May 2002

Updating Message Patterns with the
Current Session or File
To update your message patterns with the session or file in which you are currently
interested, join the session or file.

Joining the Default Session
When you join a session, the ToolTalk service updates your message pattern with the
sessid. For example, if you have declared a ptype or registered a message pattern that
specifies TT_SESSION or TT_FILE_IN_SESSION, use tt_session_join to join the
default session. The following code sample shows how to join the default session.

/*
* Join the default session
*/

tt_session_join(tt_default_session());

Table 9–2 lists the ToolTalk functions you use to join the session in which you are
interested.

TABLE 9–2 ToolTalk Functions for Joining Default Sessions

Return Type ToolTalk Function Description

char * tt_default_session(void) Return default session id

Tt_status tt_default_session_set(const char
*sessid)

Set default session

char * tt_initial_session(void) Return initial session id

Tt_status tt_session_join(const char *sessid) Join this session

Tt_status tt_session_quit(const char *sessid) Quit session

Once your patterns are updated, you will begin to receive messages scoped to the
session you joined.

Chapter 9 • Dynamic Message Patterns 105

Note – If you had previously joined a session and then registered a ptype or a new
message pattern, you must again join the same session or a new session to update
your pattern before you will receive messages that match your new pattern.

When you no longer want to receive messages that reference the default session, use
the tt_session_quit() function. This function removes the sessid from your
session-scoped message patterns.

Joining Multiple Sessions
When you join multiple sessions, you will automatically get responses to requests and
point-to-point messages but you will not get notices unless you explicitly join the new
session. The following code sample shows how to join the multiple sessions.

tt_default_session_set(new_session_identifier);
tt_open();

tt_session_join(new_session);

In order to effectively use multiple sessions, you must store the session ids of the
sessions in which you are interested in order to pass these identifiers to
tt_default_session_set prior to opening a new session with tt_open; that is,
you need to place the values (which ttsession stores in the environment variable
_SUN_TT_SESSION) in a file on the system so that other ToolTalk clients can access
the value of a session id contained in that file and use it to open the non-default
session. For example, you can store the session ids in a “well-known” file and then
send a file-scoped message (indicating this file) to all clients which have registered an
appropriate pattern. The client will then know to open the scoped-to file, read one or
more session ids from it, and use these session ids (with tt_open) to open a
non-default session. An alternative method is advertising the session ids by means of,
for example, a name service or a third-party database.

Note – How ttsession session ids are stored and passed to interested clients is
beyond the scope of the ToolTalk protocol and must be determined based on the
architecture of the system.

106 ToolTalk User’s Guide • May 2002

Joining Files of Interest
When you join a file, the ToolTalk service automatically adds the name of the file to
your file-scoped message patterns. For example, if you have declared a process type or
registered a message pattern that specifies TT_FILE or TT_FILE_IN_SESSION, use
the tt_file_join function() to join files of interested. Table 9–3 lists the
ToolTalk functions you use to express your interest in specific files.

TABLE 9–3 ToolTalk Functions for Joining Files of Interest

Return Type ToolTalk Function Description

char * tt_default_file(void) Join default file

Tt_status tt_default_file_set(const char *docid) Set default file

Tt_status tt_file_join(const char *filepath) Join this file

Tt_status tt_file_quit(const char *filepath) Quit file

When you no longer want to receive messages that reference the file, use the
tt_file_quit() function to remove the file name from your file-scoped message
patterns.

Chapter 9 • Dynamic Message Patterns 107

108 ToolTalk User’s Guide • May 2002

CHAPTER 10

Static Message Patterns

The static messaging method provides an easy way to specify the message pattern
information if you want to receive a defined set of messages.

Defining Static Messages
To use the static method, you define your process types and object types and compile
them with the ToolTalk type compiler, tt_type_comp. When you declare your
process type, the ToolTalk service creates message patterns based on that type. These
static message patterns remain in effect until you close communication with the
ToolTalk service.

Defining Process Types
Your application can still be considered a potential message receiver even when no
process is running the application. To do this, you provide message patterns and
instructions on how to start the application in a process type (ptype) file. These
instructions tell the ToolTalk service to perform one of the following actions when a
message is available for an application but the application is not running:

� Start the application and deliver the message
� Queue the message until the application is running
� Discard the message

To make the information available to the ToolTalk service, the ptype file is compiled
with the ToolTalk type compiler, tt_type_comp, at application installation time.

109

When an application registers a ptype with the ToolTalk service, the message patterns
listed in it are automatically registered, too.

Ptypes provide application information that the ToolTalk service can use when the
application is not running. This information is used to start your process if necessary
to receive a message or queue messages until the process starts.

A ptype begins with a process-type identifier (ptid). Following the ptid are:

1. An optional start string — The ToolTalk service will execute this command, if
necessary, to start a process running the program.

2. Signatures — Describes the TT_PROCEDURE-addressed messages that the program
wants to receive. Messages to be observed are described separately from messages
to be handled.

Signatures
Signatures describe the messages that the program wants to receive. A signature is
divided by an arrow (=>) into two parts. The first part of a signature specifies
matching attribute values. The more attribute values specified in a signature, the fewer
messages the signature will match. The second part of a signature specifies receiver
values that the ToolTalk service will copy into messages that match the first part of the
signature.

A ptype signature can contain values for disposition and operation numbers (opnum).
The ToolTalk service uses the disposition value (start, queue, or the default discard) to
determine what to do with a message that matches the signature when no process is
running the program. The opnum value is provided as a convenience to message
receivers. When two signatures have the same operation name but different
arguments, different opnums makes incoming messages easy to identify.

110 ToolTalk User’s Guide • May 2002

Creating a Ptype File
The following listing illustrates a ptype file.

#include "Sun_EditDemo_opnums.h"

ptype Sun_EditDemo {
/* setenv Sun_EditDemo_HOME to install dir for the demo */

start “${Sun_EditDemo_HOME}/edit”;
handle:
/* edit file named in message, start editor if necessary */
session Sun_EditDemo_edit(void)

=> start opnum=Sun_EditDemo_EDIT;

/* tell editor viewing file in message to save file */
session Sun_EditDemo_save(void)

=> opnum=Sun_EditDemo_SAVE;

/* save file named in message to new filename */
session Sun_EditDemo_save_as(in string new_filename)

=> opnum=Sun_EditDemo_SAVE_AS;

/* bring down editor viewing file in message */
session Sun_EditDemo_close(void)

=> opnum=Sun_EditDemo_CLOSE;

};

The following listing shows the syntax for a ptype file.

Chapter 10 • Static Message Patterns 111

ptype ::= ’ptype’ ptid ‘{’
property* [‘observe:’ psignature*]
[‘handle:’ psignature*]
[‘handle_push:’ psignature*]
[‘handle_rotate:’ psignature*]
‘}’ [‘;’]

property ::= property_id value ‘;’
property_id ::= ‘start’
value ::= string
ptid ::= identifier
psignature ::= [scope] op args [contextdcl]

[‘=>’
[‘start’][‘queue’]
[‘opnum=’number]]
‘;’

scope ::= ‘file’
| ‘session’
| ‘file_in_session’

args ::= ‘(‘ argspec {, argspec}* ‘)’
| ‘(void)’
| ‘()’

contextdcl ::= ‘context’ ‘(‘ identifier {, identifier}* ‘)’ ‘;’
argspec ::= mode type name
mode ::= ‘in’ | ‘out’ | ‘inout’
type ::= identifier

name ::= identifier

Property_id Information
ptid—process type identifier (ptid). Identifies the process type. A ptid must be unique
for every installation. Because this identifier cannot be changed after installation time,
each chosen name must be unique. For example, you can use a name that includes the
trademarked name of your product or company, such as Sun_EditDemo. The ptid
cannot exceed 32 characters and should not be one of the reserved identifiers: ptype,
otype, start, opnum, queue, file, session, observe, or handle.

start—start string for the process. If the ToolTalk service needs to start a process, it
executes this command; /bin/sh is used as the shell.

Before executing the command, the ToolTalk service defines TT_FILE as an
environment variable with the value of the file attribute of the message that started the
application. This command runs in the environment of ttsession, not in the
environment of the sender of the message that started the application, so any context
information must be carried by message arguments or contexts.

112 ToolTalk User’s Guide • May 2002

Psignature Matching Information
scope—this pattern attribute is matched against the scope attribute in messages.

op—operation name. This name is matched against the op attribute in messages.

Note – If you specify message signatures in both your ptype and otypes, use unique
operation names in each. For example, do not specify a display operation in both your
ptype and otype.

args—arguments for the operation. If the args list is void, the signature matches only
messages with no arguments. If the args list is empty (that is, “()”), the signature
matches without regard to the arguments.

contextdcl—context name. When a pattern with this named context is generated from
the signature, it contains an empty value list.

Psignature Actions Information
start—if the psignature matches a message and no running process of this ptype has a
pattern that matches the message, start a process of this ptype.

queue—if the psignature matches a message and no running process of this ptype has a
pattern that matches the message, queue the message until a process of this ptype
registers a pattern that matches it.

opnum—fill in the message’s opnum attribute with the specified number to enable you
to identify the signature that matched the message.

When the message matches the signature, the opnum from the signature is filled into
the message. Your application can then retrieve the opnum with the
tt_message_opnum call. By giving each signature a unique opnum, you can quickly
determine which signature matched the message.

You can attach a callback routine to the opnum with the
tt_ptype_opnum_callback_add call. When the message is matched, the ToolTalk
service will check for any callbacks attached to the opnum and, if any are found, run
them.

The Sun_EditDemo_opnums.h file defines symbolic definitions for all the opnums
used by edit.c, allowing both the edit.types file and edit.c file to share the
same definitions.

Chapter 10 • Static Message Patterns 113

Automatically Starting a Tool
The listing below is a simple example of a ptype declaration that causes the ToolTalk
service to automatically start a tool. The example code states:

If a message to display, edit, or compose is received and there is no current instance of
the tool running that can handle the message, start “/home/toone/tools/mytest” and
deliver the message.

Caution – This example causes the ToolTalk service to search indefinitely for a
handler.

ptype My_Test {
start "/home/toone/tools/mytest";
handle:

session Display (in Ascii text) => start;
session Edit (inout Ascii text) => start;
session Compose (out Ascii text) => start;

file Display (in Ascii file_name) => start;
file Edit (inout Ascii file_name) => start;
file Compose (out Ascii file_name) => start;

};

Defining Object Types
When a message is addressed to a specific object or a type of object, the ToolTalk
service must be able to determine to which application the message is to be delivered.
Applications provide this information in an object type (otype). An otype names the
ptype of the application that manages the object and describes message patterns that
pertain to the object.

These message patterns also contain instructions that tell the ToolTalk service what to
do if a message is available but the application is not running. In this case, ToolTalk
performs one of the following instructions:

� Start the application and deliver the message
� Queue the message until the application is running
� Discard the message

114 ToolTalk User’s Guide • May 2002

To make the information available to the ToolTalk service, the otype file is compiled
with the ToolTalk type compiler tt_type_comp at application installation time.
When an application that manages objects registers with the ToolTalk service, it
declares its ptype. When a ptype is registered, the ToolTalk service checks for otypes
that mention the ptype and registers the patterns found in these otypes.

The otype for your application provides addressing information that the ToolTalk
service uses when delivering object-oriented messages. The number of otypes you
have, and what they represent, depends on the nature of your application. For
example, a word processing application might have otypes for characters, words,
paragraphs, and documents; a diagram editing application might have otypes for
nodes, arcs, annotation boxes, and diagrams.

An otype begins with an object-type identifier (otid). Following the otid are:

1. An optional start string — ToolTalk will execute this command, if necessary, to
start a process running the program.

2. Signatures — Code that defines the messages that can be addressed to objects of
the type (that is, the operations that can be invoked on objects of the type).

Signatures
Signatures defines the messages that can be addressed to objects of the type. A
signature is divided by an arrow (=>) into two parts. The first part of a signature
define matching criteria for incoming messages. The second part of a signature defines
receiver values which the ToolTalk service adds to each message that matches the first
part of the signature. These values specify the ptid of the program that implements the
operation and the message’s scope and disposition.

Chapter 10 • Static Message Patterns 115

Creating Otype Files
The following listing shows the syntax for an otype file.

otype ::= obj_header ’{’ objbody* ’}’ [’;’]
obj_header ::= ’otype’ otid [’:’ otid+]
objbody ::= ‘observe:’ osignature*

| ‘handle:’ osignature*
‘handle_push:’ osignature*
‘handle_rotate:’ osignature*

osignature ::= op args [contextdcl] [rhs][inherit] ‘;’
rhs ::= [‘=>’ ptid [scope]]

[‘start’][‘queue’]
[‘opnum=’number]

inherit ::= ‘from’ otid
args ::= ‘(‘ argspec {, argspec}* ‘)’

| ‘(void)’
| ‘()’

contextdcl ::= ‘context’ ‘(‘ identifier {, identifier}* ‘)’ ‘;’
argspec ::= mode type name
mode ::= ‘in’ | ‘out’ | ‘inout’
type ::= identifier
name ::= identifier
otid ::= identifier

ptid ::= identifier

Obj_Header Information
otid—object type identifier (otid). Identifies the object type. An otid must be unique for
every installation. Because this identifier cannot be changed after installation time,
each chosen name must be unique. For example, begin with the ptid of the tool that
implements the otype. The otid is limited to 64 characters and should not be one of the
reserved identifiers: ptype, otype, start, opnum, queue, file, session, observe, or
handle.

Osignature Information
The object body portion of the otype definition is a list of osignatures for messages
about the object that your application wants to observe and handle.

op—operation name. This name is matched against the op attribute in messages.

116 ToolTalk User’s Guide • May 2002

Note – If you specify message signatures in both your ptype and otypes, use unique
operation names in each. For example, do not specify a display operation in both your
ptype and otype.

args—arguments for the operation. If the args list is void, the signature matches only
messages with no arguments. If the args list is empty (just “()”), the signature matches
messages without regard to the arguments.

contextdcl—context name. When a pattern with this named context is generated from
the signature, it contains an empty value list.

ptid—process type identifier for the application that manages this type of object.

opnum—fill in the message’s opnum attribute with the specified number to enable you
to identify the signature that matched the message.

When the message matches the signature, the opnum from the signature is filled into
the message. Your application can then retrieve the opnum with the
tt_message_opnum call. By giving each signature a unique opnum, you can quickly
determine which signature matched the message.

You can attach a callback routine to the opnum with the
tt_otype_opnum_callback_add call. When the message is matched, the ToolTalk
service will check for any callbacks attached to the opnum and, if any are found, run
them.

inherit—Otypes form an inheritance hierarchy in which operations can be inherited
from base types. The ToolTalk service requires the otype definer to explicitly name all
inherited operations and the otype from which to inherit. This explicit naming
prevents later changes (such as adding a new level to the hierarchy, or adding new
operations to base types) from unexpectedly affecting the behavior of an otype.

scope—this pattern attribute is matched against the scope attribute in messages. It
appears on the rightmost side of the arrow and is filled in by the ToolTalk service
during message dispatch. This means the definer of the otype can specify the
attributes instead of requiring the message sender to know how the message should
be delivered.

Osignature Actions Information
start—if the osignature matches a message and no running process of this otype has a
pattern that matches the message, start a process of this otype.

queue—if the osignature matches a message and no running process of this otype has a
pattern that matches the message, queue the message until a process of this otype
registers a pattern that matches it.

Chapter 10 • Static Message Patterns 117

The following listing illustrates an otype file.

#include "Sun_EditDemo_opnums.h"

otype Sun_EditDemo_object {
handle:
/* hilite object given by objid, starts an editor if necessary */
hilite_obj(in string objid)

=> Sun_EditDemo session start opnum=Sun_EditDemo_HILITE_OBJ;

};

The Sun_EditDemo_opnums.h file defines symbolic definitions for all the opnums
used by edit.c, allowing both the edit.types file and edit.c file to share the
same definitions.

Installing Type Information
The ToolTalk Types Database makes ptype and otype information available on the host
that executes the sending process, the host that executes the receiving process, and the
hosts that run the sessions to which the processes are joined.

� To start applications and to queue messages, the ptype definition must be placed
into the ToolTalk Types Database.

� To receive messages addressed to objects your application creates and manages, the
otype definitions must also be installed in the ToolTalk Types Database.

To place your type information into the ToolTalk Types Database and make it available
to the ToolTalk service, you compile your type files with the ToolTalk type compiler,
tt_type_comp. This compiler creates ToolTalk types definitions for your type
information and stores them in the ToolTalk Types Database. See Chapter 5 for
detailed information.

This version of the ToolTalk service provides a function to merge a compiled ToolTalk
type file into the currently running ttsession:

tt_session_types_load(current_session, compiled_types_file)

where current_session is the current default ToolTalk session and compiled_types_file is
the name of the compiled ToolTalk types file. This function adds new types and
replaces existing types of the same name; other existing types remain unchanged.

118 ToolTalk User’s Guide • May 2002

Caution – The action of tt_session_types_load() is controlled both by
arguments to ttsession(1) and by ttsession_file(4). Refer to those man pages
before using tt_session_types_load().

Checking for Existing Process Types
The ToolTalk service provides a simple function to test if a given ptype is already
registered in the current session.

tt_ptype_exists(const char *ptid)

where ptid is the identifier of the session to test for registration.

Declaring Process Type
Since type information is only specified once (when your application is installed), your
application needs to only declare its ptype each time it starts.

To declare your ptype, use tt_ptype_declare during your application’s ToolTalk
initialization routine. The ToolTalk service will create the message patterns listed in
your ptype and any otypes that reference the specified ptype.

The message patterns created when you declare your ptype exist in memory until
your application exits the ToolTalk session.

Note – The message patterns created when you declare your ptype information cannot
be unregistered with tt_pattern_unregister; however, you can unregister these
patterns with tt_ptype_undeclare.

The following listing illustrates how a ptype is registered during a program’s
initialization.

Chapter 10 • Static Message Patterns 119

/*
* Initialize our ToolTalk environment.
*/
int
edit_init_tt()
{

int mark;
char *procid = tt_open();
int ttfd;
void edit_receive_tt_message();

mark = tt_mark();

if (tt_pointer_error(procid) != TT_OK) {
return 0;

}
if (tt_ptype_declare(“Sun_EditDemo”) != TT_OK) {

fprintf(stderr,”Sun_EditDemo is not an installed ptype.\n”);
return 0;

}
ttfd = tt_fd();
tt_session_join(tt_default_session());
notify_set_input_func(edit_ui_base_window,

(Notify_func)edit_receive_tt_message,
ttfd);

/*
* Note that without tt_mark() and tt_release(), the above
* combination would leak storage -- tt_default_session() returns
* a copy owned by the application, but since we don’t assign the
* pointer to a variable we could not free it explicitly.
*/

tt_release(mark);
return 1;

}

Undeclaring Process Types
There may be cases when you need to retract a declared ptype; for example, in the
CASE environment:

� An installation sets up a compile server which declares itself willing to accept
compilation requests when it comes up. Once the server has accepted a request, it
changes state and will no longer accept new compilation requests.

120 ToolTalk User’s Guide • May 2002

� A generic encapsulation process declares itself as multiple ptypes and then
forwards requests to underlying tools. If an underlying tool exits, the generic
wrapper no longer wants to declare itself as the ptype associated with that tool.

To unregister a ptype, use tt_ptype_undeclare. This call reverses the effect of the
tt_ptype_declare call; that is, all patterns generated from the ptype are
unregistered and the process is removed from the session’s list of active processes with
this ptype. This call returns a status of TT_ERR_PTYPE if the named ptype was not
declared by the calling process.

Caution – One invocation of tt_type_undeclare will completely unregister the
ptype regardless of how many times the process has declared the ptype; that is,
multiple declarations of the ptype are the same as declaring it once.

Example 10–1 is an example of how to retract a a declared ptype.

EXAMPLE 10–1 Undeclaring a Ptype

/*

* Obtain procid
*/
tt_open();

/*

* Undeclared Ptype

*/

tt_ptype_undeclare(ptype);

Chapter 10 • Static Message Patterns 121

122 ToolTalk User’s Guide • May 2002

CHAPTER 11

Receiving Messages

This chapter describes how to retrieve messages delivered to your application and
how to handle the message once you have examined it. It also shows you how to send
replies to requests that you receive.

To retrieve and handle ToolTalk messages, your application must perform several
operations: it must be able to retrieve ToolTalk messages; it must be able to examine
messages; it must provide callback routines; it must be able to respond to requests;
and it must be able to destroy the message when it is no longer needed.

Retrieving Messages
When a message arrives for your process, the ToolTalk-supplied file descriptor
becomes active. When notified of the active state of the file descriptor, your process
must call tt_message_receive to get a handle for the incoming message.

Example 11–1 illustrates how to receive a message.

123

EXAMPLE 11–1 Receiving a Message

/*
* When a ToolTalk message is available, receive it; if it’s a
* ttsample1_value message, update the gauge with the new value.
*/
void
receive_tt_message()
{

Tt_message msg_in;
int mark;
int val_in;

msg_in = tt_message_receive();

/*
* It’s possible that the file descriptor would become active
* even though ToolTalk doesn’t really have a message for us.
* The returned message handle is NULL in this case.
*/

if (msg_in == NULL) return;

Handles for messages remain constant. For example, when a process sends a message,
both the message and any replies to the message have the same handle as the sent
message. Example 11–2 is an example of how you can check the message state for
TT_HANDLED.

EXAMPLE 11–2 Code Checking the Message State

Tt_message m, n;
m = tt_message_create();
...
tt_message_send(m);

... wait around for tt_fd to become active

n = tt_message_receive();
if (m == n) {

/* This is the reply to the message we sent */
if (TT_HANDLED == tt_message_state(m)) {

/* The receiver has handled the message so we can go
on */

...
}

} else {
/* This is a new message coming in */

)

124 ToolTalk User’s Guide • May 2002

Identifying and Processing Messages Easily
To easily identify and process messages received by you:

� Add a callback to a dynamic pattern with tt_pattern_callback_add. When
you retrieve the message, the ToolTalk service will invoke any message or pattern
callbacks. See Chapter 9 for more information on placing callbacks on patterns.

� Retrieve the message’s opnum if you are receiving messages that match your ptype
message patterns.

Recognizing and Handling Replies Easily
To easily recognize and handle replies to messages sent by you:

� Place specific callbacks on requests before you send them with
tt_message_callback_add. See Chapter 8 for more information on placing
callbacks on messages.

� Compare the handle of the message you sent with the message you just received.
The handles will be the same if the message is a reply.

� Add information meaningful to your application on the request with the
tt_message_user_set call.

Checking Message Status
When you receive a message, you must check its status. If the status is
TT_WRN_START_MESSAGE, you must either reply, reject, or fail the message even if
the message is a notice, or issue a tt_message_accept call. Programs started using
the ToolTalk service that receive a status of TT_WRN_START_MESSAGE should check
tt_message_uid() and tt_message_gid(). You may want to fail the request with
TT_DESKTOP_EACCES if the UNIX UID and/or GID do not agree with the request.
Similarly, applications already running may want to reject requests with
TT_DESKTOP_EACCES if there is UID or GID disagreement. This will cause serial
rejection of the message until either a matching-ID handler is found, or an autostarted
handler fails the request.

Chapter 11 • Receiving Messages 125

Examining Messages
When your process receives a message, you examine the message and take
appropriate action.

Before you start to retrieve values, obtain a mark on the ToolTalk API stack so that you
can release the information the ToolTalk service returns to you all at once. Example
11–3 allocates storage, examines message contents, and releases the storage.

EXAMPLE 11–3 Allocating, Examining, and Releasing Storage

/*
* Get a storage mark so we can easily free all the data
* ToolTalk returns to us.
*/

mark = tt_mark();

if (0==strcmp(“ttsample1_value”, tt_message_op(msg_in))) {
tt_message_arg_ival(msg_in, 0, &val_in);
xv_set(gauge, PANEL_VALUE, val_in, NULL);

}

tt_message_destroy(msg_in);
tt_release(mark);

return;

Table 11–1 lists the ToolTalk functions you use to examine the attributes of a message
you have received.

TABLE 11–1 Functions to Examine Message Attributes

Return Type ToolTalk Function Description

Tt_address tt_message_address(Tt_message m) The address of the message.

Tt_status tt_message_arg_bval(Tt_message m, int
n, unsigned char **value, int *len)

The argument value as a byte
array.

Tt_status tt_message_arg_ival(Tt_message m, int
n, int *value)

The argument value as an
integer.

Tt_status tt_message_arg_xval(Tt_message m, int
n, xdrproc_t xdr_proc, void *value)

The argument value as an xdr.

Tt_mode tt_message_arg_mode(Tt_message m, int
n)

The argument mode (in, out,
inout).

126 ToolTalk User’s Guide • May 2002

TABLE 11–1 Functions to Examine Message Attributes (Continued)
Return Type ToolTalk Function Description

char * tt_message_arg_type(Tt_message m, int
n)

The argument type.

char * tt_message_arg_val(Tt_message m, int
n)

The argument value as a string.

int tt_message_args_count(Tt_message m) The number of arguments.

Tt_class tt_message_class(Tt_message m) The type of message (notice or
request).

int tt_message_contexts_count(Tt_message
m);

The number of contexts.

char * tt_message_context_slotname(
Tt_message m, int n);

The name of a message’s nth
context.

Tt_disposition tt_message_disposition(Tt_message m) How to handle the message if
there is no receiving application
running.

char * tt_message_file(Tt_message m) The name of the file to which the
message is scoped.

gid_t tt_message_gid(Tt_message m) The group identifier of the
sending application.

char * tt_message_handler(Tt_message m) The procid of the handler.

char * tt_message_handler_ptype(Tt_message m) The ptype of the handler.

char * tt_message_object(Tt_message m) The object to which the message
was sent.

char * tt_message_op(Tt_message m) The operation name.

int tt_message_opnum(Tt_message m) The operation number.

char * tt_message_otype(Tt_message m) The object type to which the
message was sent.

Tt_pattern tt_message_pattern(Tt_message m) The pattern to which the message
is to be matched.

Tt_scope tt_message_scope(Tt_message m) Who is to receive the message
(FILE, SESSION, BOTH).

char * tt_message_sender(Tt_message m) The procid of the sending
application.

char * tt_message_sender_ptype(Tt_message m) The ptype of the sending
application.

Chapter 11 • Receiving Messages 127

TABLE 11–1 Functions to Examine Message Attributes (Continued)
Return Type ToolTalk Function Description

char * tt_message_session(Tt_message m) The session from which the
message was sent.

Tt_state tt_message_state(Tt_message m) The current state of the message.

int tt_message_status(Tt_message m) The current status of the
message.

char * tt_message_status_string(Tt_message m) Text describing the current status
of the message.

uid_t tt_message_uid(Tt_message m) The user identifier of the sending
application.

void * tt_message_user(Tt_message m, int key) Opaque data internal to the
application.

Callback Routines
You can tell the ToolTalk service to invoke a callback when a message arrives because
a pattern has been matched.

p = tt_pattern_create();
tt_pattern_op_add(p, "EDIT");
... other pattern attributes
tt_pattern_callback_add(p, do_edit_message);

tt_pattern_register(p);

Note – Callbacks are called in reverse order of registration (for example, the most
recently added callback is called first).

Figure 11–1 illustrates how the ToolTalk service invokes message and pattern callbacks
when tt_message_receive is called to retrieve a new message.

128 ToolTalk User’s Guide • May 2002

no

tt_message_receive()
gets new message

any more message
callbacks?

yes
call next message

callback
yes

Tt_CALLBACK_PROCESSED

no

yesyes

no

any more pattern
callbacks?

call next pattern
callback

did
callback return

Tt_CALLBACK_PROCESSED

return
message

return

NULL

did
callback return

FIGURE 11–1 How Callbacks Are Invoked

Callbacks for Messages Addressed to Handlers
After the ToolTalk service determines the receiver for a message addressed to a
handler, it matches the message against any patterns registered by the receiver.
(Messages explicitly addressed to handlers are point-to-point messages and do not use
pattern matching.)

� If the message does not match a pattern, the message is delivered in the normal
manner.

� If the message is matched to a pattern, any callbacks attached to the pattern are
run.

Attaching Callbacks to Static Patterns
Numeric tags (opnums) can be attached to each signature in a ptype when a static
pattern is created. A callback can now be attached to the opnum. When a message is
delivered because it matched a static pattern with an opnum, the ToolTalk service
checks for any callbacks attached to the opnum and, if any exists, runs them.

Chapter 11 • Receiving Messages 129

Handling Requests
When your process receives a request (class = TT_REQUEST), you must either reply to
the request, or reject or fail the request.

Replying to Requests
When you reply to a request, you need to:

1. Perform the requested operation.

2. Fill in any argument values with modes of TT_OUT or TT_INOUT.

3. Send the reply to the message.

Table 11–2 lists the ToolTalk functions you use to reply to requests.

TABLE 11–2 Functions to Reply to Requests

ToolTalk Function Description

tt_message_arg_mode(Tt_message m, int n) The argument mode (in, out,
inout). Return type is Tt_mode.

tt_message_arg_bval_set(Tt_message m, int n, const unsigned
char *value, int len)

Sets an argument’s value to the
specified byte array. Return type
is Tt_status.

tt_message_arg_ival_set(Tt_message m, int n, int value) Sets an argument’s value to the
specified integer. Return type is
Tt_status.

tt_message_arg_val_set(Tt_message m, int n, const char
*value)

Sets an argument’s value to the
specified string. Return type is
Tt_status.

tt_message_arg_xval_set(Tt_message m, int n, xdrproc_t
xdr_proc, void *value)

Return type is Tt_status.

tt_message_context_set(Tt_message m, const char *slotname,
const char *value);

Sets a context to the specified
string. Return type is
Tt_status.

tt_message_bcontext_set(Tt_message m, const char
*slotname, unsigned char *value, int length);

Sets a context to the specified byte
array. Return type is Tt_status.

130 ToolTalk User’s Guide • May 2002

TABLE 11–2 Functions to Reply to Requests (Continued)
ToolTalk Function Description

tt_message_icontext_set(Tt_message m, const char
*slotname, int value);

Sets a context to the specified
integer. Return type is
Tt_status.

tt_message_xcontext_set(Tt_message m, const char
*slotname, xdrproc_t xdr_proc, void *value)

Return type is Tt_status.

tt_message_reply(Tt_message m) Replies to message. Return type is
Tt_status.

Rejecting or Failing a Request
If you have examined the request and your application is not currently able to handle
the request, you can use the ToolTalk functions listed in Table 11–3 to reject or fail a
request.

TABLE 11–3 Rejecting or Failing Requests

ToolTalk Function Description

tt_message_reject(Tt_message m) Rejects message

tt_message_fail(Tt_message m) Fails message

tt_message_status_set(Tt_message m, int status) Sets the status of the message; this status is
seen by the receiving application.

tt_message_status_string_set(Tt_message m, const
char *status_str)

Sets the text that describes the status of the
message; this text is seen be the receiving
application.

The return type for these requests is Tt_status.

Rejecting a Request
If you have examined the request and your application is not currently able to perform
the operation but another application might be able to do so, use
tt_message_reject to reject the request.

When you reject a request, the ToolTalk service attempts to find another receiver to
handle it. If the ToolTalk service cannot find a handler that is currently running, it
examines the disposition attribute, and either queues the message or attempts to start
applications with ptypes that contain the appropriate message pattern.

Chapter 11 • Receiving Messages 131

Failing a Request
If you have examined the request and the requested operation cannot be performed by
you or any other process with the same ptype as yours, use tt_message_fail to
inform the ToolTalk service that the operation cannot be performed. The ToolTalk
service will inform the sender that the request failed.

To inform the sender of the reason the request failed, use tt_message_status_set
or tt_message_status_string_set before you call tt_message_fail.

Note – The status code you specify with tt_message_status_set must be greater
than TT_ERR_LAST.

Observing Offers
When your process receives an offer (class = TT_OFFER) in state TT_SENT, it must
eventually do one of five things:

1. Accept the offer by calling tt_message_accept() on the message. This will tell
the sending procid that the receiving procid has accepted the offer.

2. Reject the offer by calling tt_message_reject() on the message. This will tell
the sending procid that the receiving procid has rejected the offer.

3. Abstain from the offer by calling tt_message_destroy() on the message without
accepting or rejecting it first. This will tell the sending procid that the receiving
procid has abstained from the offer.

4. Abstain from the offer by calling tt_message_receive() again without
accepting or rejecting the offer first. This also will tell the sending procid that the
receiving procid has abstained from the offer.

5. Disconnect from the ToolTalk service by calling tt_close(), or by exiting
(normally or abnormally). In this case the ttsession process to which the client
process is connected will mark the client process as abstaining from the offer.

When the handler (if any) and all the observers have accepted, rejected, or abstained
from the message, the message state (Tt_state) will be set to TT_RETURNED.
Intermediate states on an offer that will not be seen on other message classes are
defined as:

1. TT_ACCEPTED—an Offer will enter this state whenever a receiver does a
tt_message_accept() on it.

2. TT_REJECTED—an Offer will enter this state whenever a receiver does a
tt_message_reject() on it.

132 ToolTalk User’s Guide • May 2002

3. TT_ABSTAINED—an Offer will enter this state whenever a receiver does choice 3,
4, or 5 above on it.

Destroying Messages
After you have processed a message and no longer need the information in the
message, use tt_message_destroy to delete the message and free storage space.

Chapter 11 • Receiving Messages 133

134 ToolTalk User’s Guide • May 2002

CHAPTER 12

Objects

This chapter describes how to create ToolTalk specs for objects your application creates
and manages. Before you can identify the type of objects, you need to define otypes
and store them in the ToolTalk Types Database. See Chapter 10 for more information
on otypes.

The ToolTalk service uses spec and otype information to determine object-oriented
message recipients.

Note – Programs coded to the ToolTalk object-oriented messaging interface are not
portable to CORBA-compliant systems without source changes.

Object-Oriented Messaging
Object-oriented messages are addressed to objects managed by applications. To use
object-oriented messaging, you need to be familiar with process-oriented messaging
concepts and the ToolTalk concept of object.

Object Data
Object data are stored in two parts as shown in Figure 12–1.

135

object

object spec

file object content

Managed by the ToolTalk service,
stored in the ToolTalk database

Managed by application,
stored in file

FIGURE 12–1 ToolTalk Object Data

One part is called the object content. The object content is managed by the application
that creates or manages the object and is typically a piece, or pieces, of an ordinary file:
a paragraph, a source code function, or a range of spreadsheet cells, for example.

The second part is called the object specification (spec). A spec contains standard
properties such as the type of object, the name of the file in which the object contents
are located, and the object owner. Applications can also add their own properties to a
spec, for example, the location of the object content within a file. Because applications
can store additional information in specs, you can identify data in existing files as
objects without changing the formats of the files. You can also create objects from
pieces of read-only files. Applications create and write specs to the ToolTalk database
managed by rpc.ttdbserverd.

Note – You cannot create objects in files that reside in a read-only file system. The
ToolTalk service must be able to create a database in the same file system that contains
the object.

A ToolTalk object is a portion of application data for which a ToolTalk spec has been
created.

Creating Object Specs
To instruct the ToolTalk service to deliver messages to your objects, you create a spec
that identifies the object and its otype. Table 12–1 lists the ToolTalk functions you use
to create and write object spec.

136 ToolTalk User’s Guide • May 2002

TABLE 12–1 Functions to Create

ToolTalk Function Description

tt_spec_create(const char *filepath) Creates spec. Return type is
char*.

tt_spec_prop_set(const char *objid, const char *propname,
const char *value)

Sets property to specified string
value. Return type is Tt_status.

tt_spec_prop_add(const char *objid, const char *propname,
const char *value)

Adds string property. Return type
is Tt_status.

tt_spec_bprop_add(const char *objid, const char *propname,
const unsigned char *value, int length)

Adds byte array property. Return
type is Tt_status.

tt_spec_bprop_set(const char *objid, const char *propname,
const unsigned char *value, int length)

Sets property to specified byte
array value. Return type is
Tt_status.

tt_spec_type_set(const char *objid, const char *otid) Sets object type of spec. Return
type is Tt_status.

tt_spec_write(const char *objid) Writes spec to database. Return
type is Tt_status.

To create an object spec in memory and obtain an objid for the object, use
tt_spec_create.

Assigning Otypes
To assign an otype for the object spec, use tt_spec_type_set. You must set the type
before the spec is written for the first time. It cannot be changed.

Note – If you create an object spec without assigning an otype or with an otype that is
unknown to the ToolTalk Types Database, messages addressed to the object cannot be
delivered. (The ToolTalk service does not verify that the otype you specified is known
to the ToolTalk Types Database.)

Determining Object Specification Properties
You can determine what properties you want associated with an object; you add these
properties to a spec. The ToolTalk service recognizes that it is not always possible to
store information in your own internal data; for example, the objid for objects in plain
ASCII text files. You can store the location of the objid in a spec property and then use
this location to identify where the object is in your tool’s internal data structures.

Chapter 12 • Objects 137

The spec properties are also a convenience for the user. A user may want to associate
properties (such as a comment or object name) with the object that they can view later.
Your application or another ToolTalk-based tool can search for and display these
properties for the user.

Storing Spec Properties
To store properties in a spec, use tt_spec_prop_set.

Adding Values to Properties
To add to the list of values associated with the property, use tt_spec_prop_add.

Writing Object Specs
After you set the otype and add properties to an object spec, use tt_spec_write to
make it a permanent ToolTalk item and visible to other applications. When you call
tt_spec_write, the ToolTalk service writes the spec into the ToolTalk database.

Updating Object Specs
To update existing object spec properties, use tt_spec_prop_set and
tt_spec_prop_add specifying the objid of the existing spec. Once the spec
properties are updated, use tt_spec_write to write the changes into the ToolTalk
database.

When you are updating an existing spec and the ToolTalk service returns
TT_WRN_STALE_OBJID when you call tt_spec_write, it has found a forwarding
pointer to the object in the ToolTalk database that indicates the object has been moved.
To obtain the new objid, create an object message that contains the old objid and send
it. The ToolTalk service will return the same status code, TT_WRN_STALE_OBJID, but
updates the message objid attribute to contain the new objid. Use
tt_message_object to retrieve the new objid from the message and put the new
objid into your internal data structure.

138 ToolTalk User’s Guide • May 2002

Maintaining Object Specs
The ToolTalk service provides the functions to examine, compare, query, and move
object specs. Table 12–2 lists the ToolTalk functions you use to maintain object specs.

TABLE 12–2 Functions to Maintain Object Specifications

Return Type ToolTalk Function Description

char * tt_spec_file(const char *objid) The name of the file on which the
spec is located.

char * tt_spec_type(const char *objid) The object type of the spec.

char * tt_spec_prop(const char *objid, const char
*propname, int i)

Retrieves the ith (zero-based)
property value as a string.

int tt_spec_prop_count(const char *objid, const
char *propname)

The number of values under this
property name.

Tt_status tt_spec_bprop(const char *objid, const char
*propname, int i, unsigned char **value, int
*length)

The number of byte array values
under this property name.

char * tt_spec_propname(const char *objid, int i) The name of the ith property.

int tt_spec_propnames_count(const char *objid) The number of properties located
on this spec.

char * tt_objid_objkey(const char *objid) The unique key of the spec id.

Tt_status tt_file_objects_query(const char *filepath,
Tt_filter_function filter, void *context,
void *accumulator)

Queries the database for object
specs

int tt_objid_equal(const char *objid1, const char
*objid2)

Checks whether two spec ids are
the same.

char * tt_spec_move(const char *objid, const char
*newfilepath)

Moves object spec to a new file.

Examining Spec Information
You can examine the following spec information with the specified ToolTalk functions:

� Path name of the file that contains the object: tt_spec_file
� Otype of this object: tt_spec_type
� Properties stored on the spec: tt_spec_prop or tt_spec_bprop

Chapter 12 • Objects 139

Comparing Object Specs
To compare two objids, use tt_objid_equal. tt_objid_equal returns a value of 1
even in the case where one objid is a forwarding pointer for the other.

Querying for Specific Specs in a File
Create a filter function to query for specific specs in a file and obtain the specs in
which you are interested.

Use tt_file_objects_query to find all the objects in the named file. As the
ToolTalk service finds each object, it calls your filter function, and passes it the objid of
the object and the two application-supplied pointers. Your filter function does some
computation and returns a Tt_filter_action value (TT_FILTER_CONTINUE or
TT_FILTER_STOP) to either continue the query, or to quit the search and return
immediately.

Example 12–1 illustrates how to obtain a list of specs.

140 ToolTalk User’s Guide • May 2002

EXAMPLE 12–1 Obtaining a List of Specifications

/*
* Called to update the scrolling list of objects for a file. Uses
* tt_file_objects_query to find all the ToolTalk objects.
*/
int
cntl_update_obj_panel()
{

static int list_item = 0;
char *file;
int i;

cntl_objid = (char *)0;

for (i = list_item; i >= 0; i--) {
xv_set(cntl_ui_olist, PANEL_LIST_DELETE, i, NULL);

}

list_item = 0;
file = (char *)xv_get(cntl_ui_file_field, PANEL_VALUE);
if (tt_file_objects_query(file,

(Tt_filter_function)cntl_gather_specs,
&list_item, NULL) != TT_OK) {

xv_set(cntl_ui_base_window, FRAME_LEFT_FOOTER,
“Couldn’t query objects for file”, NULL);

return 0;
}

return 1;

}

Within the tt_file_objects_query function, the application calls
cntl_gather_specs, a filter function that inserts objects into a scrolling list.
Example 12–2 illustrates how to insert the objid.

Chapter 12 • Objects 141

EXAMPLE 12–2 Inserting the objid

/*
* Function to insert the objid given into the scrolling lists of objects
* for a file. Used inside tt_file_objects_query as it iterates through
* all the ToolTalk objects in a file.
*/
Tt_filter_action
cntl_gather_specs(objid, list_count, acc)

char *objid;
void *list_count;
void *acc;

{
int *i = (int *)list_count;

xv_set(cntl_ui_olist, PANEL_LIST_INSERT, *i,
PANEL_LIST_STRING, *i, objid,
NULL);

*i = (*i + 1);

/* continue processing */
return TT_FILTER_CONTINUE;

}

Moving Object Specs
The objid contains a pointer to a particular file system where the spec information is
stored. To keep spec information as available as the object described by the spec, the
ToolTalk service stores the spec information on the same file system as the object.
Therefore, if the object moves, the spec must move, too.

Use tt_spec_move to notify the ToolTalk service when an object moves from one file
to another (for example, through a cut and paste operation).

� If a new objid is not required (because both the new and old files are in the same
file system), the ToolTalk service returns TT_WRN_SAME_OBJID.

� If the object moved to another file system, the ToolTalk service returns a new objid
for the object and leaves a forwarding pointer in the ToolTalk database from the old
objid to the new one.

When your process sends a message to an out-of-date objid (that is, one with a
forwarding pointer), tt_message_send returns a special status code,
TT_WRN_STALE_OBJID, and replaces the object attribute in the message with a new
objid that points to the same object in the new location.

142 ToolTalk User’s Guide • May 2002

Note – Update any internal data structures that reference the object with the new
objid.

Destroying Object Specs
Use tt_spec_destroy to immediately destroy an object’s spec.

Managing Object and File Information

Caution – Despite the efforts of the ToolTalk service and integrated applications,
object references can still be broken if you remove, move, or rename files with
standard operating system commands such as rm or mv. Broken references will result
in undeliverable messages.

Managing Files that Contain Object Data
To keep the ToolTalk database that services the disk partition where a file that contains
object data is stored up-to-date, use the ToolTalk functions to copy, move, or destroy
the file. Table 12–3 lists the ToolTalk functions you use to manage files that contain
object data.

TABLE 12–3 Functions to Copy, Move, or Remove Files that Contain Object Data

ToolTalk Function Description

tt_file_move(const char *oldfilepath, const char
*newfilepath)

Moves the file and the ToolTalk object data

tt_file_copy(const char *oldfilepath, const char
*newfilepath)

Copies the file and the ToolTalk object data

tt_file_destroy(const char *filepath) Removes the file and the ToolTalk object data

The return type for these functions is Tt_status.

Chapter 12 • Objects 143

Managing Files that Contain ToolTalk Information
The ToolTalk service provides ToolTalk-enhanced shell commands to copy, move, and
remove ToolTalk object and file information. Table 12–4 lists the ToolTalk-enhanced
shell commands that you and users of your application should use to copy, move, and
remove files referenced in messages and files that contain objects.

TABLE 12–4 ToolTalk-Wrapped Shell Commands

Command Description

ttcp Copies file to new location. Updates file and object location information in ToolTalk database.

ttmv Renames directory or files. Updates file and object location information in ToolTalk database.

ttrm Removes specified file. Removes file and object information from the ToolTalk database.

ttrmdir Removes empty directories (directories that contain no files) that have ToolTalk object specs
associated with them. (It is possible to create an object spec for a directory; when an object spec
is created, the path name of a file or directory is supplied.)

Removes object information from the ToolTalk database.

tttar Archives (or extracts) multiple files and object information into (or from) a single archive, called
a tarfile. Can also be used to only archive (or extract) ToolTalk file and object information into
(or from) a tarfile.

An Example of Object-Oriented
Messaging
You can run the edit_demo program for a demonstration of ToolTalk object-oriented
messaging. This demo consists of two programs – cntl and edit. The cntl program
uses the ToolTalk service to start an edit process with which to edit a specified file; the
edit program allows you to create ToolTalk objects and associate the objects with text
in the file. Once objects have been created and associated with text, you can use the
cntl program to query the file for the objects and to send messages to the objects.

The following example code creates an object for its user. It has been divided into two
parts. It creates the object spec, sets the otype, writes the spec to the ToolTalk database,
and wraps the user’s selection with C-style comments. The application also sends out
a procedure-addressed notice after it creates the new object to update other
applications who observe messages with the ToolTalk_EditDemo_new_object
operation. If other applications are displaying a list of objects in a file managed by
ToolTalk_EditDemo, they update their list after receiving this notice.

144 ToolTalk User’s Guide • May 2002

EXAMPLE 12–3 Object Creation Part 1

/*
* Make a ToolTalk spec out of the selected text in this textpane. Once
* the spec is successfully created and written to a database, wrap the
* text with C-style comments in order to delimit the object and send out
* a notification that an object has been created in this file.
*/
Menu_item
edit_ui_make_object(item, event)

Panel_item item;
Event *event;

{
int mark = tt_mark();

char *objid;
char *file;
char *sel;
Textsw_index first, last;
char obj_start_text[100];
char obj_end_text[100];
Tt_message msg;

if (! get_selection(edit_ui_xserver, edit_ui_textpane,
&sel, &first, &last)) {

xv_set(edit_ui_base_window, FRAME_LEFT_FOOTER,
“First select some text”, NULL);

tt_release(mark);
return item;

}
file = tt_default_file();

if (file == (char *)0) {
xv_set(edit_ui_base_window, FRAME_LEFT_FOOTER,

“Not editing any file”, NULL);
tt_release(mark);
return item;

}

Chapter 12 • Objects 145

EXAMPLE 12–4 Object Creation Part 2

/*
/* create a new spec */

objid = tt_spec_create(tt_default_file());
if (tt_pointer_error(objid) != TT_OK) {

xv_set(edit_ui_base_window, FRAME_LEFT_FOOTER,
“Couldn’t create object”, NULL);

tt_release(mark);
return item;

}

/* set its otype */

tt_spec_type_set(objid, “Sun_EditDemo_object”);
if (tt_spec_write(objid) != TT_OK) {

xv_set(edit_ui_base_window, FRAME_LEFT_FOOTER,
“Couldn’t write out object”, NULL);

tt_release(mark);
return item;

}

/* wrap spec’s contents (the selected text) with C-style */
/* comments. */

sprintf(obj_start_text,” /* begin_object(%s) */”, objid);
sprintf(obj_end_text,” /* end_object(%s) */”, objid);
(void)wrap_selection(edit_ui_xserver, edit_ui_textpane,

obj_start_text, obj_end_text);

/* now send out a notification that we’ve added a new object */

msg = tt_pnotice_create(TT_FILE_IN_SESSION,”Sun_EditDemo_new_object”);
tt_message_file_set(msg, file);
tt_message_send(msg);

tt_release(mark);
return item;

}

146 ToolTalk User’s Guide • May 2002

CHAPTER 13

Managing Information Storage

To simplify your application storage management, the ToolTalk service copies all
information your application provides to the ToolTalk service and also provides you
with a copy of the information it returns to your application.

Information Provided to the ToolTalk
Service
When you provide a pointer to the ToolTalk service, the information referenced by the
pointer is copied. You can then dispose of the information you provided; the ToolTalk
service will not use the pointer again to retrieve the information.

Information Provided by the ToolTalk
Service
The ToolTalk service provides an allocation stack in the ToolTalk API library to store
information it gives to you. For example, if you ask for the sessid of the default session
with tt_default_session, the ToolTalk service returns the address of the character
string in the allocation stack (a char * pointer) that contains the sessid. After you
retrieve the sessid, you can dispose of the character string to clean up the allocation
stack.

147

Note – Do not confuse the API allocation stack with your program’s runtime stack.
The API stack will not discard information until instructed to do so.

Calls Provided to Manage the Storage of
Information
The ToolTalk service provides the calls listed in Table 13–1 to manage the storage of
information in the ToolTalk API allocation stack:

TABLE 13–1 Managing ToolTalk Storage

Return Type ToolTalk Function Description

int tt_mark(void) Marks information returned by a series of
functions.

void tt_release(int mark) Frees information returned by a series of functions.

caddr_t tt_malloc(size_t s) Reserves a specified amount of storage in the
allocation stack for your use.

void tt_free(caddr_t p) Frees storage set aside by tt_malloc. This
function takes an address returned by the ToolTalk
API and frees the associated storage.

Marking and Releasing Information
The tt_mark() and tt_release() functions are a general mechanism to help you
easily manage information storage. The tt_mark() and tt_release() functions
are typically used at the beginning and end of a routine where the information
returned by the ToolTalk service is no longer necessary once the routine has ended.

Marking Information for Storage
To ask the ToolTalk service to mark the beginning of your storage space, use tt_mark.
The ToolTalk service returns a mark, an integer that represents a location on the API
stack. All the information that the ToolTalk service subsequently returns to you will be
stored in locations that come after the mark.

148 ToolTalk User’s Guide • May 2002

Releasing Information No Longer Needed
When you no longer need the information contained in your storage space, use
tt_release() and specify the mark that signifies the beginning of the information
you no longer need.

Example of Marking and Releasing Information
Example 13–1 calls tt_mark() at the beginning of a routine that examines the
information in a message. When the information examined in the routine is no longer
needed and the message has been destroyed, tt_release() is called with the mark
to free storage on the stack.

EXAMPLE 13–1 Getting a Storage Mark

/*
* Get a storage mark so we can easily free all the data
* ToolTalk returns to us.
*/

mark = tt_mark();

if (0==strcmp(“ttsample1_value”, tt_message_op(msg_in))) {
tt_message_arg_ival(msg_in, 0, &val_in);
xv_set(gauge, PANEL_VALUE, val_in, NULL);

}

tt_message_destroy(msg_in);
tt_release(mark);

return;

Allocating and Freeing Storage Space
The tt_malloc() and tt_free() functions are a general mechanism to help you
easily manage allotted storage allocation.

Allocating Storage Space
tt_malloc() reserves a specified amount of storage in the allocation stack for your
use. For example, you can use tt_malloc() to create a storage location and copy the
sessid of the default session into that location.

Chapter 13 • Managing Information Storage 149

Freeing Allocated Storage Space
To free storage of individual objects that the ToolTalk service provides you pointers to,
use tt_free(). For example, you can free up the space in the API allocation stack
that stores the sessid after you have examined the sessid. tt_free() takes an address
in the allocation stack (a char * pointer or an address returned from tt_malloc())
as an argument.

Special Case: Callback and Filter
Routines
The way that the ToolTalk service behaves toward information passed into filter
functions and callbacks is a special case. Callback and filter routines called by the
ToolTalk service are called with two kinds of arguments:

� Context arguments — the arguments you passed into the API call that triggered
the callback. These arguments point to items owned by your application.

� Pointers to API objects — the address of message or pattern attributes in storage.

The context arguments are passed from the ToolTalk service to your application. The
API objects referenced by pointers are freed by the ToolTalk service as soon as your
callback or filter function returns. If you want to keep any of these objects, you must
copy the objects before your function returns.

Note – The way that the ToolTalk service behaves toward information passed into
filter functions and callbacks is a special case. In all other instances, the ToolTalk
service stores the information in the API allocation stack until you free it.

Callback Routines
One of the features of the ToolTalk service is callback support for messages, patterns,
and filters. Callbacks are routines in your program that ToolTalk calls when a
particular message arrives (message callback) or when a message matches a particular
pattern you registered (pattern callback).

To tell the ToolTalk service about these callbacks, add the callback to a message or
pattern before you send the message or register the pattern.

150 ToolTalk User’s Guide • May 2002

Filter Routines
When you call file query functions such as tt_file_objects_query(), you point
to a filter routine that the ToolTalk service calls as it returns items from the query. For
example, you could use filter routine used by the ToolTalk file query function to find a
specific object. The tt_file_objects_query() function returns all the objects in a
file and runs the objects through a filter routine that you provide. Once your filter
routine finds the specified object, you can use tt_malloc() to create a storage
location and copy the object into the location. When your filter function returns, the
ToolTalk service will free all storage used by the objects in the file but the object you
stored with the tt_malloc() call will be available for further use.

Chapter 13 • Managing Information Storage 151

152 ToolTalk User’s Guide • May 2002

CHAPTER 14

Handling Errors

The ToolTalk service returns error status in the function’s return value rather than in a
global variable. ToolTalk functions return one of these error values:

� Tt_status
� int
� char* or opaque handle

Each return type is handled differently to determine if an error occurred. For example,
the return value for tt_default_session_set is a Tt_status code. If the
ToolTalk service sets the default session to the specified sessid:

� Without a problem — the Tt_status code returned is TT_OK.
� With a problem — the Tt_status code returned is TT_ERR_SESSION. This status

code informs you that the sessid you passed was not valid.

Retrieving ToolTalk Error Status
You can use the ToolTalk error handling functions shown in Table 14–1 to retrieve
error values.

TABLE 14–1 Retrieving ToolTalk Error Status

ToolTalk Function Description

tt_pointer_error(char * return_val) Returns an error encoded in a pointer.

tt_pointer_error((void *) (p)) Returns an error encoded in a pointer cast to
VOID * .

tt_int_error(int return_val) Returns an error encoded in an integer.

The return type for these function is Tt_status.

153

Checking ToolTalk Error Status
You can use the ToolTalk error macro shown in Table 14–2 to check error values.

TABLE 14–2 ToolTalk Error Macros

Return Type ToolTalk Macro Expands to

Tt_status tt_is_err(status_code) (TT_WRN_LAST < (status_code))

Returned Value Status
The following sections describe the return value status of functions with natural return
values and functions with no natural return value.

Functions with Natural Return Values
If a ToolTalk function has a natural return value such as a pointer or an integer, a
special error value is returned instead of the real value.

Functions with No Natural Return Values
If a ToolTalk function does not have a natural return value, the return value is an
element of Tt_status enum.

To see if there is an error, use the ToolTalk macro tt_is_err, which returns an
integer.

� If the return value is 0, the Tt_status enum is either TT_OK or a warning.

� If the return value is 1, the Tt_status enum is an error.

If there is an error, you can use the tt_status_message function to obtain the
character string that explains the Tt_status code, as shown in Example 14–1.

154 ToolTalk User’s Guide • May 2002

EXAMPLE 14–1 Obtaining an Error Explanation

char *spec_id, my_application_name;
Tt_status tterr;

tterr = tt_spec_write(spec_id);
if (tt_is_err(tterr)) {

fprintf(stderr, “%s: %s\n”, my_application_name,
tt_status_message(tterr));

}

Returned Pointer Status
If an error occurs during a ToolTalk function that returns a pointer, the ToolTalk
service provides an address within the ToolTalk API library that indicates the
appropriate Tt_status code. To check whether the pointer is valid, you can use the
ToolTalk macro tt_ptr_error. If the pointer is an error value, you can use
tt_status_message to get the Tt_status character string.

Example 14–2 checks the pointer and retrieves and prints the Tt_status character
string if an error value is found.

Chapter 14 • Handling Errors 155

EXAMPLE 14–2 Retrieving a Returned Pointer Status

char *old_spec_id, new_file, new_spec_id, my_application_name;
Tt_status tterr;

new_spec_id = tt_spec_move(old_spec_id, new_file);
tterr = tt_ptr_error(new_spec_id);
switch (tterr) {

case TT_OK:
/*
* Replace old_spec_id with new_spec_id in my internal
* data structures.
*/
update_my_spec_ids(old_spec_id, new_spec_id);
break;
case TT_WRN_SAME_OBJID:
/*
* The spec must have stayed in the same filesystem,
* since ToolTalk is reusing the spec id. Do nothing.
*/
break;
case TT_ERR_FILE:
case TT_ERR_ACCESS:
default:
fprintf(stderr, “%s: %s\n”, my_application_name,

tt_status_message(tterr));
break;

}

Returned Integer Status
If an error occurs during a ToolTalk function that returns an integer, the return value is
out-of-bounds. The tt_int_error function returns a status of TT_OK if the value is
not out-of-bounds.

To check if a value is out-of-bounds, you can use the tt_is_err macro to determine
if an error or a warning occurred.

To retrieve the character string for a Tt_status code, you can use
tt_status_message.

Example 14–3 checks a returned integer.

156 ToolTalk User’s Guide • May 2002

EXAMPLE 14–3 Checking a Returned Integer

Tt_message msg;
int num_args;
Tt_status tterr;
char *my_application_name;

num_args = tt_message_args_count(msg);
tterr = tt_int_error(num_args);
if (tt_is_err(tterr)) {

fprintf(stderr, “%s: %s\n”, my_application_name,
tt_status_message(tterr));

}

Broken Connections
The ToolTalk service provides a function to notify processes if your tool exits
unexpectedly. When you include the tt_message_send_on_exit call, the ToolTalk
service queues the message internally until one of two events happen:

1. Your process calls tt_close.

In this case, the ToolTalk service deletes the message from its queue.

2. The connection between the ttsession server and your process is broken; for
example, the application crashed.

In this case, the ToolTalk service matches the queued message to a pattern and
delivers it in the same manner as if your had sent the message normally before
exiting.

Your process can also send a normal message on a normal termination by calling
tt_message_send before it calls tt_close. In this case, if your process sends its
normal termination message but crashes before it calls tt_close, the ToolTalk service
will deliver both the normal termination message and the
tt_message_send_on_exit message to interested processes.

Error Propagation
ToolTalk functions that accept pointers always check the pointer passed in and return
TT_ERR_POINTER if the pointer is an error value. This check allows you to combine
calls in reasonable ways without checking the value of the pointer for every single call.

Chapter 14 • Handling Errors 157

In Example 14–4, a message is created, filled in, and sent. If tt_message_create
fails, an error object is assigned to m, and all the tt_message_xxx_set and
tt_message_send calls fail. To detect the error without checking between each call,
you only need to check the return code from tt_message_send.

EXAMPLE 14–4 Error Checking

Tt_message m;

m=tt_message_create();
tt_message_op_set(m,”OP”);
tt_message_address_set(m,TT_PROCEDURE);
tt_message_scope_set(m,TT_SESSION);
tt_message_class_set(m,TT_NOTICE);
tt_rc=tt_message_send(m);

if (tt_rc!=TT_OK)...

158 ToolTalk User’s Guide • May 2002

APPENDIX A

Migrating from the Classing Engine to
the ToolTalk Types Database

Note – In versions 1.1 and compatible of the ToolTalk service, ttsession will not
read its types from the Classing Engine (CE) database; and the ToolTalk types
compiler tt_type_comp will not merge types into the CE database.

This appendix describes how to migrate your existing ToolTalk-aware application
from the CE database to the ToolTalk Types database.

The ttce2xdr Script
The ToolTalk service provides a script called ttce2xdr to convert ToolTalk types
stored in the CE database (which was the default database used by versions 1.0.x of
the ToolTalk service) to the XDR-format database, which is the database used by
versions 1.1 and compatible of the ToolTalk service.

Converting the User Database
The first time a ToolTalk 1.1 and compatible versions, ttsession is started, the user
type database is automatically converted from the CE database to the new ToolTalk
Types database. However, you can manually convert the current user database with
the command:

159

ttce2xdr [-xnh] -d user

Table A–1 describes the options for the ttce2xdr script.

TABLE A–1 ttce2xdr Script Options

Option Description

-x Displays the underlying commands executed by ttce2xdr.

-n Displays the underlying commands that ttce2xdr can execute.

-h Describes the options for ttce2xdr.

-d Specifies the database to be converted: user, system, or network.

The types are read from the CE database

~/.cetables/cetables

and written to the new ToolTalk Types database

~/.tt/types.xdr

Converting the System Database
A system CE database is the per-machine database. You will need to run the
ttce2xdr script on each machine on which you have ToolTalk types. To determine
whether there are any ToolTalk types in the system CE database, enter the following
command on the command line:

tt_type_comp -Epd system

No output is generated if there are no ToolTalk types in the system CE database.

Note – You must be logged in as root to run the ttce2xdr script for the system CE
databases.

To run the ttce2xdr script for the system CE database, enter the following
commands on the command line:

160 ToolTalk User’s Guide • May 2002

ttce2xdr [-xnh] -d system

Table A–2 describes the options for the ttce2xdr script.

TABLE A–2 ttce2xdr Script Options

Option Description

-x Displays the underlying commands executed by ttce2xdr.

-n Displays the underlying commands that ttce2xdr can execute.

-h Describes the options for ttce2xdr.

-d Specifies the database to be converted: user, system, or network.

The types are read from the CE database

/etc/cetables/cetables

and written to the new ToolTalk Types database

/etc/tt/types.xdr

Converting the Network Database
A network CE database is the per-OW-installation database. You need to convert each
network CE database that has ToolTalk types other than those shipped with the
OpenWindows Version 3 product.

Note – You must be logged in as root to run the ttce2xdr script for the network CE
databases.

To convert a network-wide database, enter the following command on the command
line:

ttce2xdr [-xnh] -d network [OPENWINHOME-from [OPENWINHOME-to]]

Table A–3 describes the options for the ttce2xdr script.

Appendix A • Migrating from the Classing Engine to the ToolTalk Types Database 161

TABLE A–3 ttce2xdr Script Options

Option Description

-x Displays the underlying commands executed by ttce2xdr.

-n Displays the underlying commands that ttce2xdr can execute.

-h Describes the options for ttce2xdr.

-d Specifies the database to be converted: user, system, or network.

OPENWINHOME-from Reads the types from the databases under this directory. If OPENWINHOME-to is set,
the types are written to the databases under that specified directory; otherwise, the
current value of the environment variable OPENWINHOME is used to locate the
databases to which the types are written.

OPENWINHOME-to Writes the types to the databases under this directory. If OPENWINHOME-from is set,
the types are read from the databases under that specified directory; otherwise, the
current value of the environment variable OPENWINHOME is used to locate the
databases from which the types are read.

The types are read from the CE database

$OPENWINHOME/lib/cetables/cetables

and written to the new ToolTalk Types database

$OPENWINHOME/etc/tt/types.xdr

To move ToolTalk types other than the ones shipped with the OpenWindows Version 3
product from the network CE database to the network XDR database, enter the
following command on the command line:

ttce2xdr -d network old_OPENWINHOME new_OPENWINHOME

where old_OPENWINHOME is the OpenWindow installation that holds the old
network CE database and new_OPENWINHOME is the OpenWindow installation in
which to update the ToolTalk XDR database.

162 ToolTalk User’s Guide • May 2002

APPENDIX B

A Simple Demonstration of How the
ToolTalk Service Works

This appendix presents a simple demonstration to show you how the ToolTalk service
can enable your application to communicate with other applications.

Inter-Application Communication Made
Easy
The ToolTalk service provides you with a complete set of functions for application
integration. Using the functionality provided with the ToolTalk service, existing
applications can be made to “speak” to each other.

The demonstration of the ToolTalk service is simple: while using a simple text editor,
you can ask an interface for selecting font names to change the font displayed in the
loaded file. The ToolTalk demo consists of two applications from X11R4:

� Xedit – a simple text editor for X

� Xfontsel – a point-and-click interface for selecting X11 font names

This chapter outlines the simple steps to modify these two applications so that they
can inter-operate; “Adding ToolTalk Code to the Demonstration Applications”
on page 167 shows how the ToolTalk code is incorporated into the source code files.

163

Adding Inter-Operability Functionality
Before the tools are able to inter-operate, you need to make modifications to the .c
and Makefiles for each of the applications; and to the header file for the Xedit
application. You also need to create a new file to declare the ToolTalk process type
(ptype) for the Xfontsel application.

Use any standard editor, such as vi, to make these modifications and to create the
ptype file.

Modifying the Xedit Application
To modify the Xedit application so that it will be able to communicate with the
Xfontsel application, you need to modify the following files:

� the xedit.h file
� the xedit.c file
� the commands.c file
� the Makefile

For the ToolTalk demonstration, Xedit needs to know about the ToolTalk header file.
Xedit also needs to know about the new ToolTalk commands in the xedit.c file.
These changes are made to the xedit.h file, as shown with commented explanations in
Example B–1.

Next, you need to add code to the Xedit.c file to set the ToolTalk session, make a
button for the font change function, and to allow Xedit to receive and process ToolTalk
messages. These changes to the file are shown with commented explanations in
Example B–2.

Now add code to the commands.c file so that Xedit can tell the Xfontsel application to
send a reply when the font change has been completed, or to notify it if the operation
failed. You also need to add code that tells Xfontsel what operation Xedit wants
performed. These changes to the file are shown with commented explanations in
Example B–3.

The final modification you need to make to the Xedit program is to change the
Makefile so that it uses the ToolTalk libraries. To do this, add the -ltt option as
follows:

LOCAL_LIBRARIES = -ltt $(XAWLIB) $(XMULIB) $(XTOOLLIB) $(XLIB)

164 ToolTalk User’s Guide • May 2002

After you have made the indicated changes to the Xedit files, compile the Xedit
program.

Modifying the Xfontsel Application
To modify the Xfontsel application so that it will be able to communicate with the
Xedit application, you need to modify the following files:

� the Xfontsel.c file
� the Makefile

You also need to create a new file to declare the ToolTalk ptype for the Xfontsel
application.

For the ToolTalk demonstration, Xfontsel needs to know:

� where to find the ToolTalk header file

� how to handle a ToolTalk message when it receives one

� how to process an error caused by a ToolTalk message

� how to behave when the apply button is activated for the new change fonts
command

Xfontsel also needs to display an apply button and a command box to make the font
change. In addition, you need to add code to tell Xfontsel when to send a ToolTalk
callback message, and how to join the ToolTalk session. These modifications are made
in the Xfontsel.c file, as shown in Example B–4 with commented explanations.

Next, modify the Makefile for the Xfontsel program so that it uses the ToolTalk
libraries. To do this, add the -ltt option to the as follows:

LOCAL_LIBRARIES = -ltt $(XAWLIB) $(XMULIB) $(XTOOLLIB) $(XLIB)

The ToolTalk types mechanism is designed to help the ToolTalk service route
messages. You first define a process type (ptype), and then compile the ptype with the
ToolTalk type compiler, tt_type_comp. For the ToolTalk demonstration, you need to
create a ptype file for the Xfontsel application, as shown in the following listing..

Note – directory_name is the pathname to the directory in which the modified Xfontsel
files reside.

Appendix B • A Simple Demonstration of How the ToolTalk Service Works 165

ptype xfontsel { /* Process type identifier */
start “/directory_name/xfontsel”; /* Start string */

handle: /* Receiving process */
/* A signature is divided
* into two parts by the => as follows:
* Part 1 specifies how the message is to be matched;
* Part 2 specifies what is to be taken when
* a match occurs.
*/

session GetFontName(out string fontname) => start;

}

When your tool declares a ptype, the message patterns listed in it are automatically
registered; the ToolTalk service then matches messages it receives to these registered
patterns. These static message patterns remain in effect until the tool closes
communication with the ToolTalk service.

After you have created the ptype file, you need to install the ptype. To do this, run the
ToolTalk type compiler as follows:

machine_name% tt_type_comp xfontsel.ptype

where xfontsel.ptype is the name of your ptype file.

After you have made the indicated changes to the Xfontsel files, created a ptype file,
and installed the pytpe, compile the Xfontsel program.

We Have Tool Communication!
You are now ready to see how the ToolTalk technology works.

1. Start the Xedit application.

To start Xedit, enter the command as follows:

machine_name% xedit

166 ToolTalk User’s Guide • May 2002

A screen similar to the one shown in Figure B–1 is displayed.

FIGURE B–1 The Xedit Screen

2. Load a file.

The file you loaded is displayed in the xedit screen.

3. Change the displayed font.

a. Click in the ‘changefont’ button on the Xedit screen.

The xfontsel screen is displayed.

b. Select the new font on the Xfontsel screen.

c. Click in the ‘apply’ button on the Xfontsel screen.

The xedit screen showing the font change is displayed.

Adding ToolTalk Code to the
Demonstration Applications
This section illustrates how ToolTalk code was added to the Xedit and Xfontsel
applications.

� The ellipses (. . .) indicate code has been skipped. The code examples only show a
few lines of the code preceding and following the inserted ToolTalk lines of code.

� The actual ToolTalk code that you need to add to the files is shown in bold type; for
example:

#include <desktop/tt_c.h>

/* ToolTalk header */

Adding ToolTalk Code to the Xedit Files
The changes made to the Xedit files are described in “Modifying the Xedit
Application” on page 164.

Appendix B • A Simple Demonstration of How the ToolTalk Service Works 167

EXAMPLE B–1 Modify the Xedit.h File

/*
* rcs_id[] = “$XConsortium: xedit.h,v 1.18 89/07/21 19:52:58 kit Exp $”;
*/

...

#include <X11/Xaw/Viewport.h>
#include <X11/Xaw/Cardinals.h>

/*
* For the ToolTalk demonstration, add the following include line.
*/
#include <desktop/tt_c.h>
/* ToolTalk header */

extern struct _app_resources {
Boolean enableBackups;
char *backupNamePrefix;
char *backupNameSuffix;

...

/* externals in xedit.c */

extern void Feep();
/*
* For the ToolTalk demonstration, add the following externals.
*/
extern void processToolTalkMessage(); /* Process ToolTalk message */
extern void dieFromToolTalkError();

/* Fail if error occurs */
extern Display *CurDpy;
/* Display */

...

/* externs in commands.c */

...

extern void DoChangeFont();

/* Change font */

EXAMPLE B–2 Modified Xedit.c File

#if (!defined(lint) && !defined(SABER)) \
static char Xrcsid[] = “$XConsortium: \
xedit.c,v 1.23 89/12/07 \
19:19:17 kit Exp $”;
#endif /* lint && SABER */

...

void main(argc, argv)

168 ToolTalk User’s Guide • May 2002

EXAMPLE B–2 Modified Xedit.c File (Continued)

int argc;
char **argv;
{
Widget top;
String filename = NULL;
static void makeButtonsAndBoxes();

/*
* For the ToolTalk demonstration,
add the following lines:

*/
int ttmark;
/* ToolTalk mark */
int ttfd;
/* ToolTalk file descriptor */
char *procid;
/* Process identifier */
Tt_status ttrc;
/* ToolTalk status */

top = XtInitialize(“xedit”, \
“Xedit”, NULL, 0, &argc, argv);

...

XtRealizeWidget(top);
XDefineCursor(XtDisplay(top),XtWindow(top), \
XCreateFontCursor(XtDisplay(top), \
XC_left_ptr));
/*
* For the ToolTalk demonstration,
* add the following lines
* to make the top of stack the ToolTalk
* session and set
* it to be the default session.
*/
ttmark = tt_mark();
ttrc = tt_default_session_set(

/* set the default session .. */
tt_X_session(

/* .. to the X session for .. */
DisplayString(

/* .. the X server displaying ..*/
XtDisplay(top))));
/* .. our top window... */

/*
* Fail if no default session

*/
dieFromToolTalkError(\
“tt_default_session_set”,ttrc);
procid = tt_open();

/* Initialize ToolTalk */
/*

Appendix B • A Simple Demonstration of How the ToolTalk Service Works 169

EXAMPLE B–2 Modified Xedit.c File (Continued)

* Fail if no process identifier
*/

dieFromToolTalkError(“tt_open” \
,tt_ptr_error(procid));
ttfd = tt_fd();

/* ToolTalk file descriptor */
/*
* Fail if no file descriptor
*/

dieFromToolTalkError(“tt_fd”, \
tt_int_error(ttfd));

/*
* Activate file descriptor
*/

XtAddInput(ttfd, (XtPointer)XtInputReadMask, \
processToolTalkMessage, 0);

XtMainLoop();
}

...

MakeCommandButton(b_row, “load”, DoLoad);
/*
* For the ToolTalk demonstration, add the
* next line to make
* a button for the font change command:
*/
MakeCommandButton(b_row, “changefont”, \
DoChangeFont);
filenamewindow = MakeStringBox(b_row, \
“filename”, filename);
}
XtCreateManagedWidget(“bc_label”,
labelWidgetClass, outer, NULL, ZERO);

...

void Feep()
{
XBell(CurDpy, 0);
/*
* For the ToolTalk demonstration, add the
* following lines to receive and
* process an incoming message:
*/
}

void processToolTalkMessage()
/* Process ToolTalk message */

{
int ttmark;

170 ToolTalk User’s Guide • May 2002

EXAMPLE B–2 Modified Xedit.c File (Continued)

/* ToolTalk mark */
Tt_message incoming;

/* Incoming message */

ttmark = tt_mark();
/* ToolTalk mark */

incoming = tt_message_receive();
/* Receive incoming message */

/*
* The callback should process the

* message, so we should never
* get a message returned.
*/
if (incoming == 0) return;

/* Return incoming message */

if (tt_is_err(tt_ptr_error(incoming))) {
dieFromToolTalkError(“tt_message_receive”,

tt_ptr_error(incoming));
}

/*
* This is not a message we recognize.

* If it is a request, or a notice that
* caused us to start, fail it.

*/

if (tt_message_class(incoming) == TT_REQUEST ||
tt_message_status(incoming) ==

TT_WRN_START_MESSAGE) {
tt_message_fail(incoming);

}
tt_message_destroy(incoming);

/* Destroy message */
tt_release(ttmark);

/* Free space */
}

void dieFromToolTalkError(procname, errid)
char *procname;
Tt_status errid;

/* Fail if error occurs */
{

/*
* Don’t die on warnings or TT_OK.
*/

if (tt_is_err(errid)) {
fprintf(stderr,”%s returned ToolTalk

error: %s\n”,
procname, tt_status_message(errid));

exit(1);

Appendix B • A Simple Demonstration of How the ToolTalk Service Works 171

EXAMPLE B–2 Modified Xedit.c File (Continued)

}

}

EXAMPLE B–3 Modified commands.c File

#if (!defined(lint) && !defined(SABER))
static char Xrcsid[] = “$XConsortium:
commands.c,v 1.27 89/12/10

17:08:26 rws Exp $”;
#endif /* lint && SABER */

...

#ifdef USG
int rename (from, to)
char *from, *to;
{
(void) unlink (to);
if (link (from, to) == 0) {
unlink (from);
return 0;
} else {
return -1;
}
}
#endif

/*
* For the ToolTalk demonstration, add the
* following lines to have Xfontsel
* send a callback that the operation has either
* completed or failed:
*/
static Tt_callback_action FinishChangeFont(m,p)/* ToolTalk message callback */
Tt_message m;

/* ToolTalk message */
Tt_pattern p;

/* ToolTalk pattern */
{

static XFontStruct *fs;
/* Font structure */

int ttmark;
/* ToolTalk mark */

ttmark = tt_mark();
/* ToolTalk mark */

/*
* If operation fails, notify user
*/

if (TT_FAILED==tt_message_state(m)) {
XeditPrintf(“Font change failed\n”);
tt_message_destroy(m);

/* Destroy message */

172 ToolTalk User’s Guide • May 2002

EXAMPLE B–3 Modified commands.c File (Continued)

} else if (TT_HANDLED==tt_message_state(m)) {
XFontStruct *newfs;
/* Try to load the new font */
newfs =

XLoadQueryFont(CurDpy,tt_message_arg_val(m,0));
/* If the new font is OK, and there is an

* old font,
* unload the old font. Then use the new font
*/
if (newfs) {

if (fs) {
XUnloadFont(CurDpy, fs->fid);

}
XtVaSetValues(textwindow, XtNfont, newfs, 0);
fs = newfs;

}
tt_message_destroy(m);

/* Destroy message */
}
tt_release(ttmark);

/* Release mark */
/*
* Process callback to notify sender

* operation completed
*/

return TT_CALLBACK_PROCESSED;
}

void
DoChangeFont()
/* Change font */
{

Tt_message m;
/* ToolTalk message */

Tt_status ttrc;
/* ToolTalk status */

/*
* Create request
*/

m = tt_prequest_create(TT_SESSION,
“GetFontName”);

/*
* Add arguments to message
*/

tt_message_arg_add(m,TT_OUT,”string”,
(char *)NULL);

/*
* Add callback to notify when change

* complete
*/

tt_message_callback_add(m,FinishChangeFont);
/*

Appendix B • A Simple Demonstration of How the ToolTalk Service Works 173

EXAMPLE B–3 Modified commands.c File (Continued)

* Send message
*/

ttrc = tt_message_send(m);
/*
* Fail if error occurs
*/

dieFromToolTalkError(“tt_message_send”,ttrc);
}

void DoSave()

{

Adding ToolTalk Code to the Xfontsel Files
The changes made to the Xfontsel files are described in “Modifying the Xfontsel
Application” on page 165.

EXAMPLE B–4 Modified Xfontsel.c File

#ifndef lint
static char Xrcsid[] = “$XConsortium:
xfontsel.c,v 1.16 89/12/12 14:10:48 rws
Exp $”;
#endif

...

#include <X11/Xaw/Viewport.h>
#include <X11/Xmu/Atoms.h>

/*
* For the ToolTalk demonstration, add the
* following line to include
* the ToolTalk header file:
*/
#include <desktop/tt_c.h>
/* ToolTalk header file */

#define MIN_APP_DEFAULTS_VERSION 1

...

void SetCurrentFont();
Boolean IsXLFDFontName();

/*
* For the ToolTalk demonstration, add the
* following lines to tell

174 ToolTalk User’s Guide • May 2002

EXAMPLE B–4 Modified Xfontsel.c File (Continued)

* Xfontsel how to handle a ToolTalk message:
*/
void dieFromToolTalkError();
/* Fail if error occurs */
void processToolTalkMessage();
/* Process ToolTalk message */
void ReplyToMessage();

/* Reply to ToolTalk message */
Tt_message replymsg;

typedef void (*XtProc)();

...

int matchingFontCount;
static Boolean anyDisabled = False;
Widget ownButton;
/*
* For the ToolTalk demonstration, add the
* next line to add
* the apply button to change the font:
*/
Widget applyButton;

/* Add apply button */
Widget fieldBox;
/*
* For the ToolTalk demonstration, add
* the next line to add
* a command box to make the font change:
*/
Widget commandBox;

/* Make commandBox global */
Widget countLabel;

...

void main(argc, argv)
unsigned int argc;
char **argv;
{
Widget topLevel, pane;

/*
* For the ToolTalk demonstration,
* add the following lines:
*/
int ttmark, ttfd;

/* ToolTalk mark, ToolTalk file descriptor */
char *procid;

/* Process identifier */
Tt_status ttrc;

/* ToolTalk status */

Appendix B • A Simple Demonstration of How the ToolTalk Service Works 175

EXAMPLE B–4 Modified Xfontsel.c File (Continued)

topLevel = XtInitialize(NULL,
“XFontSel”, options, XtNumber(options),

&argc, argv);

...

pane = XtCreateManagedWidget(“pane”
,panedWidgetClass,topLevel,NZ);
{
/*
* For the ToolTalk demonstration,
* make the command box widget
* global; change the line
* Widget commandBox,
* fieldBox, currentFontName, viewPort;
* as follows:
*/

Widget
/* commandBox, fieldBox, currentFontName,*/ viewPort;

commandBox = XtCreateManagedWidget(“commandBox
”,formWidgetClass,pane,NZ);

{

...

ownButton =
XtCreateManagedWidget(“ownButton”

,toggleWidgetClass,commandBox,NZ);
/*
* For the ToolTalk demonstration, add the
* following lines to create
* an apply button for the font change:
*/

applyButton =
XtVaCreateManagedWidget(“applyButton”,

commandWidgetClass,
commandBox,
XtNlabel, “apply”,
XtNfromHoriz, ownButton,
XtNleft, XtChainLeft,
XtNright, XtChainLeft,
0);

countLabel =
XtCreateManagedWidget(“countLabel”

,labelWidgetClass,commandBox,NZ);

XtAddCallback(quitButton, XtNcallback, Quit,
NULL);

XtAddCallback(ownButton,XtNcallback,
OwnSelection,(XtPointer)True);

/*

176 ToolTalk User’s Guide • May 2002

EXAMPLE B–4 Modified Xfontsel.c File (Continued)

* For the ToolTalk demonstration, add the
* following line to notify
* Xedit when the apply button has been pressed:
*/

XtAddCallback(applyButton,
XtNcallback,ReplyToMessage, NULL);
}

fieldBox = XtCreateManagedWidget(“fieldBox”,
boxWidgetClass, pane, NZ);

...

{
int f;
for (f = 0; f < FIELD_COUNT; f++)

currentFont.value_index[f] = -1;
}

/*
* For the ToolTalk demonstration,
* add the following lines
* to make the top of stack the ToolTalk
* session and set
* it to be the default session.
*/
ttmark = tt_mark();
ttrc = tt_default_session_set(

/* set the default session .. */
tt_X_session(

/* .. to the X session for .. */
DisplayString(

/* .. the X server displaying ..*/
XtDisplay(top))));

/* .. our top window... */
/*
* Fail if no default session
*/

dieFromToolTalkError(“tt_default_session_set”
,ttrc);
procid = tt_open();

/*
* Fail if no proces identifier
*/

dieFromToolTalkError(“tt_open”
,tt_ptr_error(procid));
ttfd = tt_fd();

/*
* Fail if no ToolTalk file descriptor
*/

dieFromToolTalkError(“tt_fd”
,tt_int_error(ttfd));
ttrc = tt_ptype_declare(“xfontsel”);

Appendix B • A Simple Demonstration of How the ToolTalk Service Works 177

EXAMPLE B–4 Modified Xfontsel.c File (Continued)

/*
* Fail if ptype not declared
*/

dieFromToolTalkError(“tt_ptype_declare”
,tt_int_error(ttfd));
ttrc = tt_session_join(tt_default_session());

/*
* Fail if unable to join session
*/

dieFromToolTalkError(“tt_session_join”,ttrc);
/*
* Add input
*/

XtAddInput(ttfd, (XtPointer)XtInputReadMask,
processToolTalkMessage, 0);

XtAppMainLoop(appCtx);

tt_close();
/* End ToolTalk session */

tt_release(ttmark);
/* Free space */

}

...
Boolean field_bits[FIELD_COUNT];
int max_field;
if (*fontName == DELIM) field++;

/*
*
* For the ToolTalk demonstration,
* use the standard routines
* instead of BSD; change the line
* bzero(field_bits, sizeof(field_bits));
* to read as follows:
*
*/

memset(field_bits, 0, sizeof(field_bits));
if (Matches(pattern, fontName++, field_bits,

&max_field)) {

...

XtDisownSelection(w, XA_PRIMARY, time);
XtSetSensitive(currentFontName, False);

}

/*
* For the ToolTalk Demonstration,
* add the following lines:
*/
}

178 ToolTalk User’s Guide • May 2002

EXAMPLE B–4 Modified Xfontsel.c File (Continued)

void dieFromToolTalkError(procname, errid) /* Fail if error occurs */
char *procname;

/* Process name */
Tt_status errid;

/* Error identifier */
{

/*
* Don’t die on warnings or TT_OK.
*/

if (tt_is_err(errid)) {
fprintf(stderr,”%s returned ToolTalk error:

%s\n”,
procname, tt_status_message(errid));

exit(1);
}

}

void processToolTalkMessage()
/* Process message */

{
int ttmark;

/* ToolTalk mark */
Tt_message incoming;

/* Incoming message */

ttmark = tt_mark();

incoming = tt_message_receive();
/* Receive message */
/*
* It’s possible that the file descriptor

* may become active but
* there’s not actually a ToolTalk message

* for us.
*/
if (incoming == 0) return;

if (tt_is_err(tt_ptr_error(incoming))) {
dieFromToolTalkError(“tt_message_receive”,

tt_ptr_error(incoming));
}

if (0==strcmp(tt_message_op(incoming),”
GetFontName”)) {

/*
* This is the message we expected.

* If we’re already
* busy, reject it. Otherwise activate

* the “apply” button.
*/
if (replymsg) {

tt_message_reject(incoming);

Appendix B • A Simple Demonstration of How the ToolTalk Service Works 179

EXAMPLE B–4 Modified Xfontsel.c File (Continued)

tt_message_destroy(incoming);
tt_release(ttmark);
return;

}
XtVaSetValues(applyButton, XtNsensitive,

TRUE, 0);
replymsg = incoming;
tt_release(ttmark);
return;

}

/*
* This is not a message we recognize.
* If it’s a request, or a notice that

* caused us to start, fail it.
*/

if (tt_message_class(incoming) == TT_REQUEST ||
tt_message_status(incoming) ==

TT_WRN_START_MESSAGE) {
tt_message_fail(incoming);

}
tt_message_destroy(incoming);
tt_release(ttmark);

}

/*
* Called when the Apply button is pressed.
* Replies to the outstanding
* message and turn off the Apply button.
*/

/* ARGSUSED */
void ReplyToMessage(w, msg, wdata)
Widget w;
caddr_t msg;
caddr_t wdata;
{

tt_message_arg_val_set(replymsg, 0,
currentFontNameString);

tt_message_reply(replymsg);
tt_message_destroy(replymsg);
replymsg = 0;
XtVaSetValues(applyButton, XtNsensitive, FALSE,

0);

}

180 ToolTalk User’s Guide • May 2002

APPENDIX C

The ToolTalk Standard Message Sets

Standard message sets help developers to develop applications that will automatically
integrate with applications developed by others that follow the same message
protocols. Extensive work has been done with leading software suppliers and
end-users to define standard message sets. The ToolTalk Standard Message Sets are
higher-level interfaces of the ToolTalk API that provide common definitions and
conventions to easily achieve control and data integration between applications.

See the ToolTalk Reference Guide for a complete description of the standard ToolTalk
message sets.

The ToolTalk Desktop Services Message
Set
In order to achieve basic desktop integration, applications need to support a basic set
of messages to enable inter-application control. The ToolTalk Desktop Services Message
Set is the common message set that provides this functionality for all applications. A
powerful messaging protocol that benefits both developers and users of desktop
applications, the ToolTalk Desktop Services Message Set allows applications to easily
interact with other desktop applications. Using the ToolTalk Desktop Services Message
Set, applications can communicate with each other in a transparent manner, both
locally and over networks.

181

Why the ToolTalk Desktop Services Message Set
was Developed
In order to provide integrated control of applications, certain basic features are needed
to launch, halt, control display appearance, and pass information regarding input and
output data. All applications need to have these facilities so that other applications in
the toolset can inter-change basic control information. This kind of functionality
enables the development of smart desktops and integrated smart toolsets. Groups of
applications can now call upon each other to perform tasks and to interact as one
solution environment for the end-user.

Key Benefits of the ToolTalk Desktop Services
Message Set
The ToolTalk Desktop Services Message Set offers developers two key benefits:

1. Allows basic control of applications without direct intervention from the user.
Routine or common procedures may be automated for the convenience of the user.

2. Allows tool specialization through a common set of interactions. All ToolTalk
aware applications can perform these functions.

The ToolTalk Document and Media
Exchange Message Set
Multimedia is an important emerging technology. While the base of multimedia-aware
applications has expanded, no single vendor provides a completely integrated
solution which meets the complex needs of today’s market. The ToolTalk Document and
Media Exchange™ Message Set is a genuine breakthrough in multimedia technologies. A
powerful messaging protocol designed to benefit both developers and users of
multimedia technologies, the ToolTalk Document and Media Exchange Message Set
allows applications to easily share each others multimedia functionality. Using the
ToolTalk Document and Media Exchange Message Set, multimedia applications can
communicate with each other in a transparent manner, both locally and over
networks, regardless of data formats, compression technology, and other technical
issues which has previously confined the use of this technology.

182 ToolTalk User’s Guide • May 2002

ToolTalk Document and Media Exchange Message
Set Development History
While a few vendors have established inter-operability alliances, the range of possible
end-user solutions as been restricted. The ToolTalk Document and Media Exchange
Message Set allows any application to share a set of multimedia functions with any
other application in a transparent manner.

This document contains specifications that have been developed by an alliance of
designers from key independent multimedia hardware and software vendors, and Sun
Microsystems®. Applications that use these simple protocols can quickly and easily
create a ToolTalk interface to an array of multimedia services without concern for a
particular service provider. Entire groups of applications can now plug-and-play
together, integrating sound, video, graphics, telephony, and other media sources into
new and exciting applications. The term plug-and-play means that any tool can be
replaced by any other tool that follows the same protocol. That is, any tool that follows
a given ToolTalk protocol can be placed (plugged) into your computing environment
and perform (play) those functions indicated by the protocol. Tools can be mixed and
matched, without modification and without having any specific built-in knowledge of
each other. For example, you could create a word processing application that
integrates a piece of video into a composition and have the video played by another
application.

The ToolTalk Document and Media Exchange Message Set is an efficient set of generic
message definitions that provide media control and data exchange. The protocol
consists of editor messages for media players, editors, and users.

Key Benefits of the ToolTalk Document and Media
Exchange Message Set
The ToolTalk Document and Media Exchange Message Set offers developers two key
benefits:

1. Ease of multimedia integration to new and existing software.

Adding multimedia functionality to any application is now vastly simplified. The
ToolTalk Document and Media Exchange Message Set allows you to use other
developers’ multimedia technologies, thus reducing your development time and
expenses while increasing your system functionality.

2. Creates a framework that extends the range of end-user solutions.

By facilitating application inter-operability, the ToolTalk Document and Media
Exchange Message Set allows end-users and other developers to create new
vertical solutions. These solutions, in turn, create new opportunities for your
products by opening markets that were previously beyond their scope.

Appendix C • The ToolTalk Standard Message Sets 183

General ToolTalk Message Definitions
and Conventions
In the ToolTalk messages there are terms used with specific ToolTalk definitions. This
section defines these terms and conventions used in the ToolTalk message man pages.

TABLE C–1 Document and Media Exchange Message Set Descriptions

Type of Information Description

header A single line that describes the message in the following format:

MsgName(Tt_class)

where MsgName is the name of the message and Tt_class is either Request or Notice.

name The name of the message and a one-line description of the message.

description An explanation of the operation (event) that the message requests (announces).

synopsis A representation of the message in the ToolTalk types-file syntax (similar to the syntax
understood by the ToolTalk type compiler tt_type_comp) in the following format:

<fileAttrib> <opName> (<requiredArgs> [<optionalArgs>]);

A synopsis entry is given for each interesting variant of the message.

<fileAttrib> - An indication of whether the file attribute of the message can/should be
set.

<opName> - The name of the operation or event is called the “op name” (or “op”). It is
important that different tools not use the same opName to mean different things.
Therefore, unless a message is a standard one, its opName should be made unique. A
good way to do this is to prefix it with: <Company><Product> e.g.,

“Acme_Hoarktool_My_Frammistat”.

<requiredArgs>, <optionalArgs> - The arguments that must always be included in the
message. A particular argument is described in the following format:

<mode> <vtype> <argument name>

where mode is one of “in”, ”out”, or “inout”, vtype is a programmer-defined string that
describes what kind of data a message argument contains; and argument name is the
name of the argument.

The ToolTalk service uses vtypes to match sent message instances with registered
message patterns. By convention, a vtype maps to a single, well-known data type.

184 ToolTalk User’s Guide • May 2002

TABLE C–1 Document and Media Exchange Message Set Descriptions (Continued)
Type of Information Description

required arguments The arguments that must always be in the message.

<vtype> <argumentName>

A description of a particular argument.

A ‘vtype’ is a programmer-defined string that describes what kind of data a message
argument contains. ToolTalk uses vtypes for the sole purpose of matching sent message
instances with registered message patterns.

Every vtype should by convention map to a single, well-known data type. The data
type of a ToolTalk argument is either integer, string, or bytes. The data type of a
message or pattern argument is determined by which ToolTalk API function is used to
set its value.

The argument name is merely a comment hinting to human readers at the semantics of
the argument, much like a parameter name in a C typedef.

optional arguments The extra arguments that may be included in a message. Unless otherwise noted, any
combination of the optional arguments, in any order, may be appended to the message
after the required arguments.

description An explanation of the operation that the request entreats, or the event that the notice
announces.

errors A list of the error codes that can be set by the handler of the request (or the sender of
the notice).

Edict—An edict is a notice that looks like a request. If a request returns no data (or if
the sender does not care about the returned data), it can sometimes be useful to
broadcast that request to a set of tools. Since the message is a notice, no data is
returned, no replies are received, and the sender is not told if any tool gets the
message.

Handler—The handler is the distinguished recipient procid of a request. This procid is
responsible for completing the indicated operation.

Notice—A notice is a message that announces an event. Zero or more tools may receive
a given notice. The sender does not know whether any tools receive its notice. A notice
cannot be replied to.

Procid—A procid is a principal that can send and receive ToolTalk messages. A procid
is an identity, created and handed over by the ToolTalk service on demand (via
tt_open), that a process must assume in order to send and receive messages. A single
process can use multiple procids; and a single procid can be used by a group of
cooperating processes.

Appendix C • The ToolTalk Standard Message Sets 185

Request—A request is a message that asks an operation to be performed. A request has
a distinguished recipient, called a handler, who is responsible for completing the
indicated operation. A handler may fail, reject, or reply to a request. Any number of
handlers may reject a request but ultimately only one handler can fail it or reply to it.
If no running handler can be found to accept a request, the ToolTalk service can
automatically start a handler. If no willing handler can be found, or if a handler fails
the request, then the request is returned to the sender in the ‘failed’ state.

Errors
A Tt_status code can be read from a reply via tt_message_status. This status
defaults to TT_OK, or can be set by the handler via tt_message_status_set. In
extraordinary circumstances (such as no matching handler) the ToolTalk service itself
sets the message status.

In addition to the Tt_status values defined by the ToolTalk API, the overview
reference page for each set of messages lists the error conditions defined for that set of
messages. For each error condition, the overview reference page provides

� Its name

� Its integer value

� A string in the “C” locale that explains the error condition

Since the ToolTalk Inter-Client Conventions (TICC) are a binary message interface,
the integer and string are part of that binary interface; the name is not.

� The string may be used as a key in the
SUNW_TOOLTALK_INTERCLIENTCONVENTIONS domain to retrieve a localized
explanation of the error condition. See dgettext(3).

� The integer values of these status codes begin at 1537 (TT_ERR_APPFIRST + 1).
The first 151 codes correspond to the system error list defined in intro(2).

A standard programming interface for these conventions that binds the name to the
integer value does not yet exist.

The ToolTalk service allows an arbitrary status string to be included in any reply.
Since a standard localized string can be derived for each status code, this status
string may be used as a free-form elucidation of the status. For example, if a
request is failed with TT_DESKTOP_EPROTO, the status string could be set to “The
vtype of argument 2 was ‘string’; expected ‘integer’”. Handling tools should try to
compose the status string in the locale of the requestor. See the Get_Locale
request.

186 ToolTalk User’s Guide • May 2002

General ToolTalk Development
Guidelines and Conventions
Sun Microsystems, Inc. encourages open protocols. A protocol is open largely to the
extent that it contains anonymous message (that is, messages that are sent without
knowledge of who is to receive them). This section provides guidelines to help you
independently develop applications that will successfully interact with any other
application that supports the message protocol. These guideline and principles help
ensure that two independently-developed applications will be able to initiate and
maintain conventions; and, thus, interact with each other. By following these
guidelines, you will enable users of your application to better control and customize
their environment.

When you write a ToolTalk application, you need to follow these principles:

1. Always make requests anonymous.

2. Let tools be started as needed.

3. Reply to a request only when the requested operation has been completed.

4. Avoid statefulness whenever possible.

5. Declare one ptype for each role a tool can play.

Always Make Anonymous Requests
To design your application to be completely open, you want the requests to be
completely anonymous. That is, the requesting process has no knowledge of which
tool instance — or even which tool type — will perform the requested operation. If the
requests are sent to a specific process, you unnecessarily restrict how users or potential
message recipients can utilize their resources. If the requests are sent to a specific tool
type, you unnecessarily restrict the other kinds of tools that can interact with your
tool.

You want your message to describe the operation being requested or the event being
reported. You do not want your message to describe the process that should receive
the message. The less specific knowledge each tool encodes about the tools with which
it will interact, the more flexible the overall system is for the user.

For more information about open protocols, see “Designing and Writing a ToolTalk
Procedural Protocol” (Sun Part Number 801-3592-01).

Appendix C • The ToolTalk Standard Message Sets 187

Let Tools Be Started as Needed
To design your protocol to be completely open, you want the system to start tools only
as needed. When you let a new tool instance be started only as needed, you provide
the user with more flexibility and more efficient use of resources such as CPU, screen
real estate, and swap space. The ToolTalk service has several features that assume the
responsibility of determining when to start a new tool instance:

� The ToolTalk service allows messages and type signatures to have “start”
reliability. Start reliability means that if no eligible recipient of a message is running
(or willing to accept the request), the ToolTalk service will start an instance of the
type of tool which is statically registered to handle or observe that message.

� The ToolTalk service allows each process type (ptype) to specify the maximum
number of its instances that may be started in a given session.

� The ToolTalk service offers each request to all eligible running handlers before it
starts a new tool instance. An eligible handler can accept or reject a request based
on its own criteria (such as its ability to take on a new task; whether or not it has
unsaved changes; idle time; iconic state; or whether or not the user has indicated
that the tool is free to accept new work).

Reply When Operation has been Completed
To design your application to be completely open, you want to notify the sending
process that its requested operation has been performed. However, the operation
invoked by a request sometimes takes a relatively long time to complete compared to
the very brief time it takes to send the message. Since the sending process is expecting
a reply, your tool can respond in two ways:

1. It can reply immediately that it has received the request and then convey the actual
results of the completed operation in a later message.

2. It can withhold the reply until the operation has been completed.

We recommend the second policy because ToolTalk messaging is entirely
asynchronous: neither a tool (nor the session it is in) is blocked because it has one
or more requests outstanding.

Avoid Statefulness Whenever Possible
To design your application to be open, you want each message to make sense by itself
whenever possible. When a protocol is stateless, the messages in it avoid dependency
on any previous messages or on some state in the assumed recipient.

188 ToolTalk User’s Guide • May 2002

Declare One Process Type per Role
A ToolTalk protocol is expressed in terms of the roles that each tool plays (that is, the
kinds of tasks each tool is assigned to perform). A ToolTalk ptype essentially instructs
the ToolTalk service how to handle any messages in which a tool is interested that are
sent when that tool is not running. To design your protocol to be open, you want to
declare one ptype for each role in your protocol. When you declare only one ptype per
role in your protocol, you provide users with the flexibility to interchange tools as
their needs require. For example, a user may want a sophisticated sound-authoring
tool for recording but also prefers a simple audio tool to perform the playback.

Thus, you will sometimes want to include only one message signature per ptype.
When you include more than one message signature in the same ptype, you are
requiring that any program that can handle one message can handle the other
messages. For example, a ptype “UWriteIt” can include the two message signatures
“Display“ and “Edit” because it is expected that any tool that understands the
UWriteIt document format can perform both of these operations.

Developing ToolTalk Applications
Developing ToolTalk aware-applications is a design process. You can enable your
application to send and receive ToolTalk messages in a simple three-step process:

1. Determine how your application is to interact with other applications, and with
users.

2. Select messages and define their use within the context of your application

3. Integrate ToolTalk calls and messages into your code.

Note – A demonstration of how your can easily add ToolTalk capability to your
existing applications has been integrated with the ToolTalk software product. This
demonstration is described in the paper entitled Tool Inter-Operability: A Hands On
Demonstration (Sun Part Number 801-3593-01) and is part of the ToolTalk
information pack available from Sun or your local Sun Sales office.

� Define how the tools will work together and what operations must be performed.

A clear understanding of what types of communications your application will require
is a critical factor in successful application integration. The best approach to analyze
this issue is to define scenarios that represent how your application will be used. From
these scenarios you will be able to determine what interaction needs to take place and
what information needs to be exchanged. Detailed scenarios that show exactly what
information and status is being passed will greatly help you integrate messaging into
your application.

Appendix C • The ToolTalk Standard Message Sets 189

� Select the appropriate messages that accomplish these tasks.

Once you have determined how your applications will interact with other applications
and users, you must determine the specific messages needed to accomplish the
required tasks.

First, look at the standard message sets available from industry groups such as Soft,
ANSI, X3H6, and CFI. Use of these messages is strongly recommended for two
reasons.

1. The standard messages provide your application with a well-known and
documented interface. This interface allows other developers to independently
develop applications that can interface with your work. In addition, it provides an
interface around which your customers can build integrated systems.

2. The standard message sets provide your application with the “universal
plug-and-play” capability. This capability allows you to provide your customers
with the flexibility to use multiple applications to provide a service. By giving your
customers a choice of applications to use, they can pick the best tool for a
particular job and you are not forced to offer features that you feel your product
does not need.

If the standard message sets do not support your design, then you will need to
develop custom messages.

If you use non-standard message, please contact the Document and Media
Exchange Messaging Alliance at media_exchange@Sun.COM so we can consider
adding your new messages to the standard message sets.

� Integrate ToolTalk calls and messages into your application.

Once you have completed the design aspect, you are ready to add the ToolTalk
capabilities into your application.

First, you need to include the ToolTalk header file in all files that will use ToolTalk API
calls. You will also need to register and initialize the patterns that control the sending
and receiving functions. For detail information about registering and initializing
patterns, see the book entitled “The ToolTalk Service: An Inter-Operability Solution.”
(The book is available in bookstores, and directly from Prentice Hall.)

Next, add the ability to send ToolTalk messages to your code. Based on the knowledge
gained from designing the scenarios, it is very straight forward to determine what
routines need to send what messages, and what the arguments for each message
should be.

Once the ToolTalk service is initialized, your application uses the ToolTalk API calls to
create and fill in messages to be sent to other applications.

� If your applications uses a windowing system, you only need to add the calls to
activate the ToolTalk service in the event polling loop.

190 ToolTalk User’s Guide • May 2002

� If your application does not already use a polling loop, you need to create a simple
loop that periodically checks for messages. For detailed information, see the book
entitled “The ToolTalk Service: An Inter-Operability Solution.” (The book is
available in bookstores, and directly from Prentice Hall.)

Messaging Alliances
Send questions, comments, and requests for information to the Desktop Services
Messaging Alliance at ToolTalk_desktop_services@sun.com.

Send questions, comments, and requests for information to the Document and Media
Exchange Messaging Alliance at media_exchange@Sun.Com.

Appendix C • The ToolTalk Standard Message Sets 191

192 ToolTalk User’s Guide • May 2002

APPENDIX D

Frequently Asked Questions

This appendix contains answers to the following questions about the ToolTalk service:

� “What is the ToolTalk service?” on page 195
� “Is the ToolTalk Service the Sun implementation of the Common Object Request

Broker Architecture (CORBA)?” on page 195
� “What files are part of the ToolTalk service?” on page 196
� “Where is the initial X-based ttsession started?” on page 197
� “Where is rpc.ttdbserverd started?” on page 197
� “Where are the ToolTalk type databases stored?” on page 197
� “Do I need X Windows to use the ToolTalk service?” on page 198
� “Can I use the ToolTalk service with MIT X?” on page 198
� “Where is the session id of the X-session?” on page 198
� “How does tt_open connect to a ttsession?” on page 199
� “After calling tt_open, when does a session actually begin?” on page 199
� “If another session is attached, does the first session get killed?” on page 200
� “How can processes on different machines communicate using the ToolTalk

service?” on page 200
� “What is the purpose of tt_default_session_set?” on page 202
� “How can a process connect to more than one session?” on page 202
� “Can you start a ttsession with a known session id?” on page 202
� “What information does a session id contain?” on page 203
� “Is there a standard way to announce that a new program has joined a session?”

on page 203
� “Where is my message going?” on page 203
� “What is the basic flow of a message?” on page 204
� “What happens when a message arrives to my application?” on page 205
� “How can I differentiate between messages?” on page 206
� “Can a process send a request to itself?” on page 207
� “Can I pass my own data to a function registered by

tt_message_callback_add?” on page 208
� “How can I send arbitrary data in a message?” on page 208
� “Can I transfer files with the ToolTalk service?” on page 208

193

� “How are memory (byte) ordering issues handled by the ToolTalk service?”
on page 209

� “Can I re-use messages?” on page 209
� “What happens when I destroy a message?” on page 209
� “Can I have more than one handler per message?” on page 209
� “Can I run more than one handler of a given ptype?” on page 210
� “What value is disposition in a message?” on page 211
� “What are the message status elements?” on page 211
� “When should I use tt_free?” on page 211
� “What does the ptype represent?” on page 211
� “Why are my new types not recognized?” on page 212
� “Is ptype information used if a process of that ptype already exists?” on page 212
� “Can the ptype definition be modified to always start an instance (whether or not

one is already running)?” on page 212
� “What does tt_ptype_declare do?” on page 212
� “What is TT_TOKEN?” on page 213
� “When are my patterns active?” on page 213
� “Must I register patterns to get replies?” on page 213
� “How can I observe requests?” on page 213
� “How do I match to attribute values in static patterns?” on page 213
� “Why am I unable to wildcard a pattern for TT_HANDLER?” on page 214
� “Can I set a pattern to watch for any file scoped message?” on page 214
� “Is file scope in static patterns the same as file_in_session scope?”

on page 214
� “What is the difference between arg_add, barg_add, and iarg_add?”

on page 215
� “What is the type or vtype in a message argument?” on page 215
� “How do I use contexts?” on page 215
� “How does ttsession check for matches?” on page 215
� “How many kinds of scope does the ToolTalk service have?” on page 216
� “What are the TT_DB directories, and what is the difference between the types

database and the TT_DB directories?” on page 217
� “What should the tt_db databases contain?” on page 217
� “What does rpc.ttdbserverd do?” on page 217
� “Do ttsession and rpc.ttdbserverd ever communicate?” on page 218
� “What message bandwidth can be supported?” on page 218
� “Is there a limit to the message size or the number of arguments?” on page 218
� “What is the most time efficient method to send a message?” on page 218
� “What network overhead is involved?” on page 218
� “Does the ToolTalk service use load balancing to handle requests?” on page 219
� “What resources are required by a ToolTalk application?” on page 219
� “What happens if the ttsession exits unexpectedly?” on page 219
� “What happens if rpc.ttdbserverd exits unexpectedly?” on page 220
� “What happens if a host or a link is down?” on page 220
� “What does tt_close do?” on page 220
� “Is message delivery guaranteed on a network?” on page 221
� “Is there a temporal sequence of message delivery?” on page 221
� “What is unix, xauth, and des?” on page 221

194 ToolTalk User’s Guide • May 2002

� “Can my applications hide messages from each other?” on page 221
� “Is there protection against interception or imitation?” on page 222
� “Where are queued messages stored and how secure is the storage?” on page 222
� “Is the ToolTalk service C2 qualified?” on page 222
� “How can I trace my message’s progress?” on page 222
� “How can I isolate my debugging tool from all the other tools using the ToolTalk

service?” on page 222
� “Can I use the ToolTalk service with C++?” on page 223
� “Should I qualify my filenames?” on page 223
� “Can you tell me about ToolTalk objects?” on page 224
� “Is there a ToolTalk news group?” on page 224

Questions
The following frequently asked questions contain additional information about
ToolTalk services.

What is the ToolTalk service?
The ToolTalk service enables independent applications to communicate with each
other without having direct knowledge of each other. Applications create and send
ToolTalk messages to communicate with each other. The ToolTalk service receives
these messages, determines the recipients, and then delivers the messages to the
appropriate applications.

Is the ToolTalk Service the Sun implementation of
the Common Object Request Broker Architecture
(CORBA)?
No. The ToolTalk service is not the Sun CORBA-compliant Object Request Broker
(ROB). The ToolTalk service was designed and shipped in 1991 — before the Object
Management Group (OMG) CORBA specification was defined.

The Sun CORBA-compliant ORB is the Distributed Object Management Facility
(DOMF), which is part of the Sun Project DOE product. Sun is publicly committed to
support the ToolTalk API running on the DOMF when the DOMF becomes generally
available as part of Solaris. Applications that use the ToolTalk messaging service today
will transition to the distributed object environment of the future.

Appendix D • Frequently Asked Questions 195

What files are part of the ToolTalk service?
The ToolTalk files are found in the /usr/dt/bin, lib, and include/Tt, directories,
as well as in /usr/openwin/bin, lib, include/desktop, and man directories. The
reason for this is historical. ToolTalk existed before the Common Desktop Environment
(CDE) and was shipped with Solaris in the /usr/openwin directory structure. When
CDE was released, ToolTalk was visible from the /usr/dt directory structure using
symbolic links, but was still actually installed in /usr/openwin. On a Solaris 2.5 or
compatible system that has CDE installed, you will find that the ToolTalk files in
/usr/dt are symbolic links to /usr/openwin. On a Solaris 2.4 or compatible system
with CDE installed, you will find two different complete versions of ToolTalk installed:
one in /usr/dt and one in /usr/openwin. However, only the ToolTalk in /usr/dt
will work with CDE.

Table D–1 describes the files.

TABLE D–1 ToolTalk Files

File Name Description

ttsession Communicates on the network to deliver messages.

rpc.ttdbserverd Stores and manages ToolTalk object specs and information on
files referenced in ToolTalk messages.

ttcp, ttmv, ttrm,
ttrmdir, tttar

Standard operating system shell commands. These commands
inform the ToolTalk service when files that contain ToolTalk
objects or files that are the subject of ToolTalk messages are
copied, moved, or removed.

tttrace, ttsnoop tttrace is analogous to truss(1). It enables you to trace either
the messags-passing and pattern matching occuring in a given
ttsession, or it can be used to provide a per-program trace of
all calls into the ToolTalk API. ttnsoop is a Motif-based
program that provides the message and pattern tracing
functionality of tttrace with the added ability to create and
send messages easily, and register patterns, both as a debugging
or tutoring aid.

ttdbck Database check and recovery tool for the ToolTalk databases.

tt_type_comp Compiles the ptype and otype files, and automatically installs
them in the ToolTalk Types database.

ttce2xdr Converts ToolTalk type data from the Classing Engine database
format to the XDR database format.

libtt.a, libtt.so, and
tt_c.h, tttk.h

Application programming interface (API) libraries and header
file that contain the ToolTalk functions used by applications to
send and receive messages.

196 ToolTalk User’s Guide • May 2002

Where is the initial X-based ttsession started?
The first call to tt_open automatically starts ttsession if no ttsession is
running. However, the /usr/dt/bin/Xsession file contains an entry such as the
following, which will start a ttsession at login time automatically if you are using
/usr/dt/bin/dtlogin:

Start ttsession here.

dtstart_ttsession="$DT_BINPATH/ttsession"

Where is rpc.ttdbserverd started?
The /etc/inet/inetd.conf file contains an entry similar to the following:

Sun ToolTalk Database Server
100083/1 tli rpc/tcp wait root /usr/dt/bin/rpc.ttdbserverd

/usr/dt/binrpc.ttdbserverd

Where are the ToolTalk type databases stored?
The environment variable TTPATH tells the ToolTalk service where the ToolTalk Types
databases reside. The format of this variable is:

userDB[:systemDB[:networkDB]]

Note – The type files are read in reverse order of TTPATH.

This environment variable also tells the ToolTalk service where to search for database
server redirection files. The default locations are listed in Table D–2.

TABLE D–2 Default Locations of ToolTalk Types Database

Database Location

user ~/.tt

Appendix D • Frequently Asked Questions 197

TABLE D–2 Default Locations of ToolTalk Types Database (Continued)
Database Location

system /etc/tt

network $OPENWINHOME/etc/tt, or,
/usr/dt/appconfig/tttypes.

Do I need X Windows to use the ToolTalk service?
The ToolTalk service does not use X messages or protocols to deliver messages. The
ToolTalk service is only associated with X Windows if you run an X session.

When you run an X session, the session name is advertised as a property (named
TT_SESSION) on the root window of the X server. Every process which names that X
server as its display gets that X session as its default session. Since the X session is
defined to be the group of processes displaying on a particular X display, you do need
to run X Windows by definition but not because the ToolTalk service requires you to
use it.

If there is no X server running at all (for example, you are running a session that
consists entirely of character-mode applications running on a dumb terminal), use a
process tree session. When you run a process tree session, the session name is advertised
in the environment variable TT_SESSION. This session is the default session for every
process in the tree of processes descending from the process that set the environment
variable.

Can I use the ToolTalk service with MIT X?
Yes. However, the LD_LIBRARY_PATH must point to /usr/dt/lib for the
libtt.so file.

Where is the session id of the X-session?
To get this identifier, enter the following command:

xprop -root | grep TT_SESSION

198 ToolTalk User’s Guide • May 2002

Note – An X session is a session that advertises its session id on the TT_SESSION
property of root window.

How does tt_open connect to a ttsession?
After some internal initialization, tt_open tries to find a ttsession.

1. tt_open checks whether the environment variable TT_SESSION is set.

If this environment variable is set, it uses the value as the id of the ttsession.

If this environment variable is not set, it checks to see if the DISPLAY environment
variable is set.

� If this environment variable is set, it uses the value as the id of the ttsession.
� If this environment variable is not set, it checks to see if the TT_SESSION

property on root X window (of the machine running the display) is set.

In the event that none of these environment variables are set, it will start a
ttsession itself.

2. tt_open ’pings’ the ttsession to make sure it is active.

3. tt_open checks the environment variable TT_TOKEN to determine whether the
client was started from a ‘start’ command for the ptype.

Once the start ptype is determined, tt creates a procid.

4. tt_open creates a TCP/IP socket on the client side to which ttsession connects.

Activity on the socket is noticed via the socket’s associated file descriptor. ttsession
only uses this channel to notify the client of incoming messages.

Note – Call tt_close on this file descriptor; do not call the close function. If you
call the close function on the file descriptors returned by tt_fd, your file descriptor
count will rise upon successive tt_open and close calls.

1. tt_open refreshes the database hostname redirection map.

After calling tt_open, when does a session
actually begin?
If the default session is an X session and there is no ttsession running, libtt starts
one; otherwise, the ttsession must be started first in order to get the session name.

Appendix D • Frequently Asked Questions 199

If another session is attached, does the first session
get killed?
No. The first session will still be running.

How can processes on different machines
communicate using the ToolTalk service?
There are two ways in which processes on different machines can communicate using
the ToolTalk service.

1. They can connect to the same session.

2. They can scope to a file that is NFS mounted on the machines involved.

Connecting to the Same Session
To connect the processes to the same session, you first need to determine a common
interest for the processes (for example, a scheme that associates a session name with
the common interest of the processes) and then you need to determine how to
propagate the session name to all of the processes. The ToolTalk service does not
provide a mechanism to distribute the session address (other than the possible
advertisement of a session id on the TT_SESSION property of the root windows of X
servers).

To get a session name, you can use the command

ttsession -p

which forks off a new session and prints its name to stdout; or you can the command:

ttsession -c

which sets the environment variable $TT_SESSION to the session id.

You then need to use some mechanism to put that session name in a place where the
other processes can find it. Some examples of where you can place the session name
are:

� a shared file
� a .plan file

200 ToolTalk User’s Guide • May 2002

� a mail message
� a separate RPC call of your own design
� NIS

For example, one approach using a well-known file in a NFS-exported file system
can be done as follows:

1. Start ttsession with the following command:

ttsession -p >/home/foo/sessionaddress

2. Ensure that the clients use the session address from the file; for example, wrap
the clients in a shell script which reads the session address and sets
SUN_TT_SESSION as follows:

#!/bin/csh
setenv TT_SESSION ‘cat /home/foo/sessionaddress‘

exec client-program

Alternately, the processes can use the session name in the
tt_default_session_set call to connect to that session.

You could also send messages in the ttsession associated with a particular X server to
advertise the newly-created ttsessions.

Scoping to a NFS-mounted File
File scoping is when a process registers a file scope pattern. The name of that session is
placed on a list in rpc.ttdbserverd that is associated with the registered file. When
a file-scoped message is sent, the ToolTalk service retrieves the list of sessions for the
file and forwards the message to each of the sessions on the rpc.ttdbserverd list
for that file.

Note – To scope to a file that is NFS-mounted on the machines involved requires a file
system to be NFS mounted on all the systems and rpc.ttdbserverd to be run on
the NFS server.

Appendix D • Frequently Asked Questions 201

What is the purpose of
tt_default_session_set?
tt_default_session_set determines the ttsession to which a call to tt_open will
connect.

How can a process connect to more than one
session?
Table D–3 describes several default variables that are used when communicating with
the ToolTalk service.

TABLE D–3 Some Default Variables

Variable Description

procid Set by tt_open. This variable identifies the client to ttsession.

ptype Set by tt_ptype_declare.

file Set when you join a file. If no file is set in the message, the file attribute is set to the default file.

If you use the API functions for getting and setting the procid, your application can
switch between multiple sessions. For example,

connect to session 1
store the default procid in filename
connect to session 2,
store the default procid filename
restore associated default procid

interact with particular_session

Note – The default file and ptype are part of the current default procid. Changing the
default procid also changes the default file and ptype to the default file and ptype
associated with that procid.

Can you start a ttsession with a known session
id?
No. You have to get the session id from the ToolTalk service.

202 ToolTalk User’s Guide • May 2002

What information does a session id contain?
The session id consists of a number of fields, including:

� Version of address format
� Unix pid of process
� RPC Transient Program Number
� Unused version (compatibility holdover)
� Authorization level
� User id
� Host IP address
� RPC version

Caution – The format of a session id is a private interface. Do not write ToolTalk
clients that depend on the format of a session id.

Is there a standard way to announce that a new
program has joined a session?
Broadcast a notice message to notify interested processes when a new process joins a
session. To observe notice messages, a process that want to be notified if a new process
joins a session must register patterns to observe these notices.

Note – The Desktop Services "Started" message was developed for this purpose.

Where is my message going?
Use the -t (trace mode) at start-up to observe how ttsession processes each message
you send. You can also toggle the trace mode on and off by sending ttsession a USR1
signal; for example:

kill -USR1 <ttsession_pid>

Alternatively, you can use the ttsnoop and/or tttrace utilities to monitor a message.

Appendix D • Frequently Asked Questions 203

What is the basic flow of a message?
There are two types of message flow:

� Session-Scoped

� File-Scoped

Session-Scoped Message Flow
The basic flow of a session-scoped message is as follows:

1. The client builds request message and calls tt_message_send.

2. ttsession finds a handler.

The environment variable TT_TOKEN is set by ttsession when it starts the handler.

3. The handler starts up and calls tt_open and tt_fd to establish communication to
ttsession.

4. The handler declares its ptype to ttsession.

5. ttsession changes all the static patterns for the ptype into dynamic patterns.

At this point, the patterns are not active because the handler has not yet joined the
session.

6. The handler joins session, activating patterns.

7. ttsession notifies the handler that a message is queued.

8. The handler notices activity on the file descriptor and calls tt_message_receive
to retrieve the message.

If the message returned by tt_message_receive has the status
TT_WRN_START_MESSAGE, the ToolTalk service started the process to deliver the
message. In this case, messages for the ptype are blocked until the process either
replies, rejects, or fails the message (even if it is a notice), or calls
tt_message_accept.

9. The handler performs the requested operation.

10. The handler returns a reply to request.

11. ttsession notifies the client that a (reply) message for it is in the queue.

The client’s file descriptor is activated.

Note – The client actually receives a message every time its request message
changes state.

12. The client calls tt_message_receive to retrieve the result.

204 ToolTalk User’s Guide • May 2002

File-Scoped Message Flow
The basic flow of a file-scoped message is as follows:

1. A file-scoped pattern is registered.

libtt notifies the database server about the file and the session in which it is
registering the pattern.

2. libtt checks with the database server to find all the sessions that have clients
who have registered interest in the specified file.

� For notices, it communicates with all these sessions directly.

� For requests, it notifies its session about the message and the list of other
sessions involved.

3. The sessions communicate amongst each other to find a handler.

What happens when a message arrives to my
application?
When a message arrives to your application, the following occurs:

1. The file descriptor becomes active.

2. The Xt main loop breaks out of its select and calls the function registered by the
XtAppAddInput call.

3. The registered function calls tt_message_receive.

The message is read in and any callbacks associated with the message are run.

4. The message callback returns.

� If the message callback returns TT_CALLBACK_PROCESSED,
tt_message_receive returns a value of null to the input callback.

� If the message callback returns TT_CALLBACK_CONTINUE, a Tt_message
handle for the message is returned.

5. The input callback continues with any other processing.

For example, the following input callback:

Appendix D • Frequently Asked Questions 205

input_callback(...)
{

Tt_message m;
printf ("input callback entered\n");
m = tt_message_receive();
printf ("input callback exiting, message handle is %d\n",

(int)m);

}

and the following message callback:

message_callback(...)
{

printf("message callback entered\n");
return TT_CALLBACK_PROCESSED;

}

results in the following output:

input callback entered
message callback entered

input callback exiting, message handle is 0

How can I differentiate between messages?
You can differentiate between messages as follows:

� Each message has an identifier that uniquely identifies the message across all
running ttsessions.

� You can use the tt_message_user call to include information on a user cell to
associate the message to the application’s internal state.

� Message handles remain the same. For example, Example D–1 tells you whether
the message you received is the same as the message you sent.

206 ToolTalk User’s Guide • May 2002

EXAMPLE D–1 Differentiating Between Messages

Tt_message m, n;
m = tt_message_create();
...
tt_message_send(m);

... wait around for tt_fd to become active

n = tt_message_receive();
if (m == n) {
// this is a reply to the message we sent

if (TT_HANDLED == tt_message_state(m)) {
// the receiver has handled the message, so we can go on
....

}
} else {

// this is some new message coming in

}

Can a process send a request to itself?
Yes. A process can send a request that gets handled by itself. A typical pattern for this
type of request is:

{ ...
tt_message_arg_val_set(m, 1, "answer");
tt_message_reply(m);
tt_message_destroy(m);
return TT_CALLBACK_PROCESSED;

}

However, in the case where the handler and the sender are the same process, the
message has already been destroyed when the reply comes back (to the same process).
Any messages (such as callbacks or user data) attached to the message by the sender
are also destroyed. To avoid this situation, do not destroy the message; for example:

{ ...
if (0!=strcmp(tt_message_sender(m),tt_default_procid())) {

tt_message_destroy(m);

}

Appendix D • Frequently Asked Questions 207

Can I pass my own data to a function registered by
tt_message_callback_add?
To pass your own data to a function registered by tt_message_callback_add, use
the user data cells on the message; for example:

x = tt_message_create();
tt_message_callback_add(x,my_callback);
tt_message_user_set(x, 1, (void *)my_data);

....

Tt_callback_action
Tt_message_callback(Tt_message m, Tt_pattern p)
{

struct my_data_t *my_data;
my data = (struct my_data_t *)tt_message_user(m, 1);

...

}

Note – User data can only be seen in the client where the data is sent.

How can I send arbitrary data in a message?
The ToolTalk service does not provide a built-in way to send structs; it only provides a
way to send strings, ints, and byte arrays. To send structs, use an XDR routine to turn
the struct into a byte array and put the bytes in the message. To deserialize, use the
same XDR routine.

Can I transfer files with the ToolTalk service?
No, not directly. You can however:

� Place the file data in a message argument.

The ToolTalk service copies the message data from the application into the library,
from the library to ttsession, from ttsession to the receiver’s library, and then out of
the library when the receiver gets the argument value.If the data is large, this
method can be very slow and use up a large amount of memory.

� Place the file name in a message argument.

208 ToolTalk User’s Guide • May 2002

This method assumes that every receiver mounts the file, and mounts it at the
same mount point.

� Place the file name in the tt_message_file attribute.

This method also assumes that every receiver mounts the file; however, the
ToolTalk service will resolve any mount point differences.

How are memory (byte) ordering issues handled
by the ToolTalk service?
The ToolTalk service allows you to place ints, strings, and byte vectors into messages.
An XDR routine ensures that these data types are correct for each client. If you have
data that is not one of these three data types, you must serialize the data into a byte
vector before you place it into a message.

Can I re-use messages?
No. Messages cannot be sent multiple times with different arguments. They must be
iteratively created, sent, and then destroyed.

What happens when I destroy a message?
When you destroy a message, you destroy the handle but not the underlying message.
The underlying message is destroyed only when ToolTalk is done with it and all the
external handles are destroyed. For example, if you destroy a handle to a message
immediately after you send it, you will get a new handle when the reply comes back.

However, once you destroy a message, the ToolTalk service will not show it to you
again under any circumstances. For example, if you register a pattern to observe a
request you send and then destroy the message when your pattern matches it, you
will not see the message when it is in state "handled" (that is, when it is a reply).

Can I have more than one handler per message?
No, not currently. If you want multiple processes, you can use notices; or you can use
message rejection to force the ToolTalk service to deliver the request to all the possible
handlers — however, each of these handlers must actually perform some kind of
operation.

Appendix D • Frequently Asked Questions 209

Can I run more than one handler of a given ptype?
Yes, you can run more than one handler of a given ptype. However, the ToolTalk
service does not have a concept of load balancing; that is, the ToolTalk service will
choose one of the handlers and deliver additional matching messages to the chosen
handler only. There are several ways to force the ToolTalk service to deliver messages
to other handlers:

1. Use tt_message_reject.

If a message comes in and a process does not want to handle it because the process
is busy, the process can reject the message. The ToolTalk service will then try the
next possible handler (and apply the disposition options when it runs out of
registered handlers.)

This method requires the process to be in an event loop; that is, it must call
tt_message_receive when the tt_fd is active. However, if the process is in a
heavy computational loop, this method fails.

2. Unregister the pattern when busy. For example:

m = tt_message_receive();
if (m is the message that causes us to go busy) {

tt_pattern_unregister(p);

}

The ToolTalk service will not route matching messages to the process when the pattern
is not registered. When you want the process to receive messages again, re-register the
pattern.

Note – This method causes a race condition. For example, a second message could be
sent and routed to the process in the time between the first tt_message_receive
call and the tt_pattern_unregister call.

1. A combination of Methods 1 and 2.

You can use a combination of the first two techniques in the following manner:

get the message
unregister the pattern
loop, calling tt_message_receive until it returns 0; reject
all the returned messages
handle the message
re-register the pattern

repeat

210 ToolTalk User’s Guide • May 2002

Note – This method assumes that the process only registers one pattern.

What value is disposition in a message?
Message disposition can override the disposition specified in the static type definition.
If the message specifies the handler ptype and the message does not match any of the
static signatures, the disposition set in the message will be the one followed. For
example, if the disposition in the message is TT_START and the ptype specifies a
start-string, an instance will be started.

What are the message status elements?
The ToolTalk service does not use message_status_string. This message
component is for use by the applications. The ToolTalk service only sets the message
status if a problem occurs with message delivery; otherwise, this message component
is set and read in an application-dependent manner.

When should I use tt_free?
libtt maintains an internal storage stack from which you receive data buffers. When
you call a ToolTalk API routine, any char * or void * returned points to a copy that
you are responsible for freeing.

Use the mark and release functions to free allocated buffers during a sequence of
operations. However, the release call frees everything allocated since the corresponding
mark call. If you want to store certain data that was returned by the ToolTalk service,
make a copy of the data before you do any operations that may free it.

What does the ptype represent?
Ptypes are programmer-defined strings that name tool kinds. (You can roughly
translate ptype as process type.) Each ptype can be associated with a set of patterns that
describe the messages in which that particular ptype is interested and a string for the
ToolTalk service to invoke when an instance of that ptype needs to be started.

The main purpose of ptypes is to allow tools to express interest in messages even
when no instance of the tool is actually running in the scope in which the message is
sent. If a tool is able to perform a message’s requested operation, or wants to be
notified when a particular message is sent, it indicates this instruction in its ptype and
ToolTalk will start the tool when necessary. Since the ptypes database can also be
modified by the system administrator or user, the mechanism allows the site’s or
user’s favorite tool be designated as the tool to handle a particular message.

Appendix D • Frequently Asked Questions 211

Why are my new types not recognized?
ttsession reads the types database on start-up, on receipt of a USR1 signal, or when
notified by a special ToolTalk message that the types databases have changed.
Normally there is no need to manually update a ttsession to reread the types files.
However, if you wish to force a running ttsession to reread the types databases,
you may do so by sending it the USR2 signal; for example:

kill -USR2 <ttsession pid>

Is ptype information used if a process of that ptype
already exists?
The ToolTalk service always looks for one handler and any number of observers for
every message. In this case, even though the ToolTalk service finds a handler running,
it will still look through the ptypes for any observe patterns that match the message. If
a ptype with an observe pattern that matches does exist and there is no process of that
ptype currently running, the ToolTalk service will start a new process or queue the
message (as specified in the ptype pattern or in the message).

Can the ptype definition be modified to always
start an instance (whether or not one is already
running)?
No. Messages to a ptype are blocked during start-up until the ptype either replies to
the message, or issues a tt_message_accept call. However, the implementation of
the ptype can include tt_message_reject for any request it gets that do not have a
status of TT_WRN_START_MESSAGE. All requests will then be delivered to (and
rejected by) all running instances of the ptype before a new one gets started. This
method will be slow if many of these ptypes are running at the same time, or if the
message contains a large amount of data. Alternatively, you could use
tt_message_accept, which basically unblocks messages to the ptype.

What does tt_ptype_declare do?
When you declare the ptype, your static patterns exist in ttsession memory. When a
ptype is registered by an application, the ToolTalk service also checks for otypes that
mention the ptype and registers the patterns found in these otypes. To activate the
static patterns, your application must call the appropriate join functions.

212 ToolTalk User’s Guide • May 2002

Note – Multiple declarations by an application of the same ptype are ignored.

What is TT_TOKEN?
When processing message that requires an application to be started, the ToolTalk
service sets this environment variable in the child process. When the application starts
and performs tt_open, this information is passed back to the ToolTalk service to
inform it that the application coming up is the one started or delegated to handle the
message.

When are my patterns active?
A pattern must be registered with the session in which it wants to be active. Patterns
can be active for more than one file (for a given procid); the file part of the pattern will
match any of the listed files.

Note – Contexts are not scopes. A pattern that is joined to contexts but not joined to
any file or session cannot match any message.

Must I register patterns to get replies?
No. You do not need to register patterns to get replies. However, if you do register a
pattern that matches a reply, the reply will come through your event loop twice: once
because it matched a pattern, and again because it is a reply.

How can I observe requests?
Observers can observe requests if the pattern matches and the message is not
point-to-point (that is, TT_HANDLER). If your observer pattern is not matching any
requests, you can run ttsession in trace mode to find out why.

How do I match to attribute values in static
patterns?
The ToolTalk static pattern (that is, types database) mechanism does not allow you to
match patterns by attribute values. You can match by file scope or argument vtype but
you cannot by match by the particular filename or by argument value.

Appendix D • Frequently Asked Questions 213

Note – This restriction also applies for matching on contexts in static patterns.

Why am I unable to wildcard a pattern for
TT_HANDLER?
You cannot wildcard patterns for TT_HANDLER-addressed messages because these
messages are not pattern matched.

Can I set a pattern to watch for any file scoped
message?
No. Not specifying a file name when you use file scoping is virtually the same as
specifying that you want to match to file-scoped messages about every file in the
universe.

Note – A session attribute may be set on a file-scoped pattern to emulate
file-in-session scoping; however, a tt_session_join call will not update the session
attribute of a pattern that is scoped as TT_FILE.

Is file scope in static patterns the same as
file_in_session scope?
No, these scopes have different purposes.

For example, assume all sessions currently have the same static patterns and at least
one pattern P that will match a message M (which you will be sending). No session
has any clients that have registered interest in the file foo.bar.

You are connected to session A and issue a file-scoped message M for file foo.bar.
Since no client of any session has previously expressed any interest in this file, session
A is the only file that will get the message. (The message will match against static
pattern P in session A.) Once the ptype is started, the pattern actually becomes scoped
to file (within that session) and session A will honor all the promises.

However, if all sessions do not have the same static patterns, the results are different.
For example, session B could have an extra pattern P’ that is file-scoped and that
should match message M. When message M is sent in session A, the dbserver will not
send the message to session B if no client of session B has previously expressed

214 ToolTalk User’s Guide • May 2002

interest in the file foo.bar. However, if a client of session B has previously expressed
interest in the file foo.bar, then the dbserver would know that at least one client in
that session was interested in the file foo.bar and would send also the message to
session B.

What is the difference between arg_add,
barg_add, and iarg_add?
The barg_add and iarg_add calls are basically an arg_add call followed by a set of
the value.

What is the type or vtype in a message argument?
The type or vtype (which is short for value type) in a message argument indicates the
semantic domain in which the argument’s value has meaning and is determined by
your application.

Vtypes are analogous to typedefs in C. Every vtype, by convention, corresponds to
only one of the three possible data types for argument values.

The vtype mechanism allows you to declare two values as the same type; for example,
you could declare both the vtype messageID and the vtype bufferID as C strings with
different semantics for each: some operations are valid on messageID only, some
operations are valid on bufferID only, and some operations are valid on both vtypes.
The pattern-matching mechanism makes sure that a request with a bufferID string does
not get matched to a pattern for an operation that is only valid on messageID strings.

How do I use contexts?
You can use contexts to restrict matching. To restrict matching, a message must have
the same contexts, or a superset of the contexts, in order to possibly match. Also, if the
name of a context slot begins with a dollar sign ($) character (for example, $ISV) and
the message causes an application to be started, the environment variable for the
started application will be set to whatever value is indicated in the context slot.

How does ttsession check for matches?
Table D–4 describes the various ways ttsession checks for matches.

Appendix D • Frequently Asked Questions 215

TABLE D–4 How ttsession Checks for Matches

Mechanism Description Match?

TT_HANDLER This type of addressing is “point-to-point” delivery — the message is passed
directly to the receiver. You cannot monitor point-to-point messages because
registered patterns are never checked.

No matching
required.

TT_PROCEDURE Scans list of static signatures (sig) that have same operation (op) and collects
lists of observers and potential handlers.

If the sig has no arguments and no contexts

If sig prototype (number, type and mode of args) have different values

If the sig contexts are a subset of the contexts in the message

Saves information for any static observers that require queuing.

Scans through dynamic patterns and adds to lists of observers and potential
handlers. To form the lists, ttsession first uses the patterns with operations,
then the patterns without operations.

Checks reliability, states, class, address, handler, handler ptype, scope, object,
otype, sender, sender_ptype, args, contexts.

Delivers to observers first (because a handler can change state).

Delivers to handler with best match — if more than one handler equally
“best” matches, the handler is arbitrarily chosen.

=> Match

=> No Match

=> Match

TT_OBJECT &
TT_OTYPE

Checks whether the otype argument is filled in

If sig has a different otype

If sig has no otype & scope is different

Otherwise, matches in the same manner as for TT_PROCEDURE matching.

=> No Match

=> No Match

How many kinds of scope does the ToolTalk
service have?
Currently, the ToolTalk service has only two kinds of scope: session scope and file
scope.

Note – X session is sometimes referred to as a scope; however, the X session is really a
session scope.

216 ToolTalk User’s Guide • May 2002

What are the TT_DB directories, and what is the
difference between the types database and the
TT_DB directories?
The ToolTalk types databases store the static ptype and otype definitions. These
definitions declare the messages to which applications and objects respond. The
ToolTalk types compiler modifies the types database when you add or change static
type definitions. Upon starting, ttsession reads in these type files.

The TT_DB database is created by rpc.ttdbserverd. The tt_db directories contain
the associations between files in this partition and the sessions with patterns interested
in these files. It also contains all the object spec information for files in this partition.

What should the tt_db databases contain?
The tt_db databases currently contain the following ten files:

access_table.ind
access_table.rec
file_object_map.ind
file_object_map.rec
file_table.ind
file_table.rec
file_table.var
property_table.ind
property_table.rec
property_table.var

The permissions for these files are set to -rw-r--r-- .

What does rpc.ttdbserverd do?
The ToolTalk database server daemon performs three major functional duties:

1. It stores the ToolTalk session IDs of sessions with clients that have joined a file
using the tt_file_join call.

2. It stores file-scoped messages that are queued because the message disposition is
TT_QUEUED and a handler that can handle the message has not yet been started.

3. It stores ToolTalk objects specs.

4. It responds to requests into the ToolTalk filename mapping API.

Appendix D • Frequently Asked Questions 217

Do ttsession and rpc.ttdbserverd ever
communicate?
No.

What message bandwidth can be supported?
About 100 small messages per second. Performance mainly depends on how many
recipients each message has; that is, notices that do not match any pattern are the
cheapest while messages that match many observers are the most expensive.

Is there a limit to the message size or the number
of arguments?
No. However, while there is no designed limitation to the size of a ToolTalk message
or the number of arguments ToolTalk does copy the data several times (both from one
area in the client’s address space to another area, and across the RPC connection to
and from the server). For example, a megabyte of data in a ToolTalk message would be
copied at least 4 times:

� From your storage to the ToolTalk library’s storage
� From the ToolTalk library to the ToolTalk server
� From the ToolTalk server to the receiver’s library
� From the receiver’s library to the final resting place.

If there are processes observing the message, even more copying will take place. In
addition, no other messages for this session can be delivered during the copy time
because the ttsession process is single-threaded. Therefore, if you plan to send really
big chunks of data very often, you probably want to consider using a non-ToolTalk
way to pass the data.

What is the most time efficient method to send a
message?
Directly to process (that is, addressing the message using TT_HANDLER) is faster than
procedural messages that match only one receiver.

What network overhead is involved?
The ToolTalk service does not use hardware broadcast or multicast. The message is
sent directly to the ttsession process for the session (whether across the network or
not). When a pattern is registered, it also is sent directly to the ttsession process. The

218 ToolTalk User’s Guide • May 2002

ttsession process matches the message against all the patterns and sends the message
directly to only the processes that registered patterns that match the message — if no
process on another machine is interested in a message, that machine does not need to
wake up and look at it.

Does the ToolTalk service use load balancing to
handle requests?
No, the ToolTalk service is not a load-distribution mechanism. If two processes with
identical patterns are registered, the ToolTalk service arbitrarily chooses one of process
and delivers all matched messages to it. You can do load distribution if you unregister
the pattern while the process is busy and reject any messages that may have been
received before the pattern was unregistered.

What resources are required by a ToolTalk
application?
Coarse numbers indicate that several 100K of working set for a sending client,
ttsession, and a receiving client is required to process messages. ToolTalk memory
requirements do not grow over time, as long as clients process messages in a timely
manner.

What happens if the ttsession exits
unexpectedly?
When ttsession crashes, the tt_fd becomes active and most ToolTalk API calls will
return the TT_ERR_NOMP error message

No Message Passer

Most applications assume this message means that something has happened to
ttsession and will stop sending or receiving ToolTalk messages. Possible recovery from
this situation may include:

� Recognize the TT_ERR_NOMP situation
� Call tt_close to clean up the connection from its end
� Reinitialize the ToolTalk service
� Call the sequence:

tt_open, tt_default_session_join, tt_fd

Appendix D • Frequently Asked Questions 219

� Re-register all patterns and re-declare ptypes

Note – You may need to manipulate the setting of the environment variable
TT_SESSION and the value of the TT_SESSION property of the root X window (if it
exists) when you restart a crashed ttsession to take over where the last one left off.
Also, you must inform other participants of the crashed session of the restarted session
and the new session id so that they can recover.

When ttsession crashes, you will not be able to recover the following:

� Patterns registered by procids in the crashed session
� Outstanding requests from procids in the crashed session
� Messages that were passed the tt_message_send_on_exit call by procids in

the crashed session
� Session props
� Session-queued messages

What happens if rpc.ttdbserverd exits
unexpectedly?
If rpc.ttdbserverd exits unexpectedly, inetd will start a new one to replace it.
Data may be temporarily unavailable but no data will be lost. However, one or more
API calls may return TT_ERR_DBAVAIL; if the call returns TT_OK, the dbserver will
update the ToolTalk databases appropriately either immediately or when a new
dbserver reads the crash recovery log.

What happens if a host or a link is down?
When TCP notices that a host or a link is down, the TCP connection breaks. When a
process connection to ttsession breaks, ttsession behaves as if the process exited. All
the patterns are cleaned up, and the process will receive the error message
TT_ERR_NOMP if it attempts to send or receive messages.

What does tt_close do?
When you call tt_close, ttsession only closes the current procid. If the current procid is
the last procid to close, it cleans up all the ToolTalk structures created since the tt_open
call was made. You must call tt_close on the file descriptor returned by tt_fd;
otherwise, your file descriptor count will rise upon successive tt_open and close
calls.

220 ToolTalk User’s Guide • May 2002

Is message delivery guaranteed on a network?
Yes, delivery is reliable because messages are sent using RPC on TCP/IP.

Is there a temporal sequence of message delivery?
Between a given sender and receiver, message sequence is preserved; that is, if process
A first sends message M1 and then later sends message M2 and both messages are
received by process B, process B will receive message M1 before it receives message
M2. However, there are two special exceptions:

1. If process B receives message M1 and then rejects it, message M1 is redispatched to
process C. In the meantime, (while process B is deciding whether to reply or reject
message M1), the ToolTalk service continues its message delivery. These
subsequent messages can appear to "pass" the first request.

2. If process B’s messages are queued, it will receive its queued messages when it
declares a ptype that contains the pattern which caused the queuing. However,
process B may not actually receive its queued messages (in this case, message M1)
until it has already received subsequent messages from process A.

What is unix, xauth, and des?
These are the three kinds of authentication:

� unix tells you the uid of the entity that is making an rpc call on you. The dbserver
enforces security on each RPC call and uses this kind of authentication by default.

� xauth uses a read-protected file in your home directory to control access to your X
display (and, thus, to your ttsession).

� des uses the Data Encryption Standard (DES) to ensure that processes who talk to
ttsession are really who they say they are.

Can my applications hide messages from each
other?
No. The ToolTalk service intentionally does not provide a mechanism that allows one
application lock out other applications from seeing its messages.

Appendix D • Frequently Asked Questions 221

Is there protection against interception or
imitation?
No. The “plug-and-play” concept of the ToolTalk service allows applications to install
and deinstall tools of choice that best perform a particular task. If application B
responds better to protocol X than does application A, protocol X should be allowed to
deinstall application A and install application B.

Where are queued messages stored and how secure
is the storage?
File-scoped queued messages are stored in a database on the same filesystem as the
file to which they are scoped. The database is readable to the super-user only, and the
ToolTalk database server (running as root) only gives the messages to processes owned
by a user with read access on the file.

Session-scoped queued messages are stored in the address space of the ttsession that
manages the session. ttsession only gives the messages to a process that has satisfied
the authentication mode in which the ttsession is running.

Is the ToolTalk service C2 qualified?
No.

How can I trace my message’s progress?
To trace your message’s progress, turn on the trace output of the ttsession involved.
The easiest way to do this is by using the tttrace application, but you can also send a
SIGUSR1 signal to a running ttsession process by using the following command:

kill -USR1 <unix_pid_of_the_ttsession_process>

How can I isolate my debugging tool from all the
other tools using the ToolTalk service?
To isolate your debugging tool, use the "process tree session" mode. This mode places
the session name in an environment variable to find the ttsession process. To use this
mode, do the following:

222 ToolTalk User’s Guide • May 2002

1. Start a new process tree session with trace mode turned on.

% ttsession -t -c $SHELL
*
* ttsession (version 1.3, library 1.3)
*
ttsession: starting

%

ttsession starts, sets the environment variable, and forks the given command
($SHELL). You are now running in a subshell. All the commands run from this
subshell will use the ttsession started from the command line. You can check the value
of the TT_SESSION environment variable for the session id of this new ttsession.

2. Inside the subshell, run the test programs:

% ./my_receiver &
[1] 4532
% ./my_sender &

.. and look at the output of the ttsession trace.

3. Exit the subshell after testing.

If you start any tool that uses the ToolTalk service in the subshell, it uses the process
tree ttsession, not the X-session ttsession, which will produce undefined results.

Can I use the ToolTalk service with C++?
Yes. The ToolTalk API header file is set up to deal with C++. When you use C++,
tt_c.h declares all the API calls as extern C.

Should I qualify my filenames?
No. The ToolTalk service does not allow explicit hostname qualification of pathnames.
If you use a filename that contains a colon (:) symbol, the ToolTalk service searches for
a filename that contains the colon symbol. The tt_message_file and
tt_default_file calls return the realpath of the specified file as it appears on the
machine on which you invoked the call. The ToolTalk service ensures that

1. If two clients file-scope to the same file on different machines, they can talk to each
other without regard to how the two files are actually mounted on each machine.

2. A locally-valid, canonical pathname is returned back to you.

Appendix D • Frequently Asked Questions 223

Can you tell me about ToolTalk objects?
ToolTalk objects are somewhat different from what you normally encounter in typical
object-oriented languages.

Otypes and inheritance are for implementation only. Two specs can be of the same
otype but have different properties — they only share the operations as defined by the
signatures in the otype declaration. For each signature in the otype declaration, a
ptype must be designated. The designated ptype (process-type) is the ’execution
engine’ for this operation on an object of this otype. The file part of a spec is similar to
a required property: every spec must have a file name; however, that file does not
need to exist. The filename part of the spec performs several functions, including:

1. Allows you to specify the host and partition on which the spec will be stored.

2. Provides a grouping mechanism for objects.

3. Allows the ToolTalk-enhanced standard operating commands (such as the ttmv
command) to keep the database’s view of the world consistent with the real world.

Is there a ToolTalk news group?
Yes. The ToolTalk news group is alt.soft-sys.tooltalk. You may also find the group
comp.unix.cde useful, since the Common Desktop Environment makes significant use
of ToolTalk for integration of new applications, launching of application programs,
and so on.

224 ToolTalk User’s Guide • May 2002

Glossary

CAD Computer-aided design.

CASE Computer-aided software engineering.

Category Attributes of a pattern that indicate whether the application wants to
handle requests that match the pattern or only observe the requests.

Classing Engine (CE) Identifies the characteristics of desktop objects; that is, it stores
attributes such as print method, icons, and file opening commands of
desktop objects.

Classing Engine tables The types database read by the OpenWindows Classing Engine.

contexts Associates arbitrary pairs (that is, <name. value> pairs) with ToolTalk
messages and patterns.

dynamic message
patterns

Provides message pattern information while your application is
running.

fail a request Inform a sending application that the requested operation cannot be
performed.

fd File descriptor.

file A container for data that is of interest to applications.

libtt The ToolTalk application programming interface (API) library.

handle a message To perform the operation requested by the sending application; to send
a ToolTalk reply to a request.

initial session The ToolTalk session in which the application was started.

mark An integer that represents a location on the API stack.

message A structure that the ToolTalk service delivers to processes. A ToolTalk
message consists of an operation name, a vector of type arguments, a
status value or string pair, and ancillary addressing information.

225

message callback A client function. The ToolTalk service invokes this function to report
information about the specified message back to the sending
application; for example, the message failed or the message caused a
tool to start.

message pattern Defines the information your application wants to receive.

message protocol A message protocol is a set of ToolTalk messages that describe
operations the applications agree to perform.

notice A notice is informational, a way for an application to announce an
event.

object content Object content is managed by the application that creates or manages
the object and is typically a piece, or pieces, of an ordinary file: a
paragraph, a source code function, or a range of spreadsheet cells.

object files Files that contain object information. Applications can query for objects
in a file and perform operations on batches of objects.

object-oriented
messages

Messages addressed to objects managed by applications.

object specification
(spec)

An object specification (known as a spec) contains standard properties
such as the type of object, the name of the file in which the object
contents are located, and the object owner.

object type (otype) The object type (otype) for your application provides addressing
information that the ToolTalk service uses when delivering
object-oriented messages.

object type identifier
(otid)

Identifies the object type.

observe a message To only view a message without performing any operation that may be
requested.

observe promise Guarantees that the ToolTalk service will deliver a copy of each
matching message to ptypes with an observer signature of start or
queue disposition. The ToolTalk service will deliver the message either
to a running instance of the ptype, by starting an instance, or by
queueing the message for the ptype.

opaque pointer A value that has meaning only when passed through a particular
interface.

package A group of components that together create some software. A package
contains the executables that comprise the software, but also includes
information files and scripts. Software is installed in the form of
packages.

pattern callback A client function. The ToolTalk service invokes this function when a
message is received that matches the specified pattern.

226 ToolTalk User’s Guide • May 2002

process One execution of an application, tool, or program that uses the
ToolTalk service.

process-oriented
messages

Messages addressed to processes.

procid The process identifier.

ptid The process type identifier.

ptype The process type.

reject a request Tells the ToolTalk service that the receiving application is unable to
perform the requested operation and that the message should be given
to another tool.

request A request is a call for an action. The results of the action are recorded
in the message, and the message is returned to the sender as a reply.

rpc.ttdbserverd The ToolTalk database server process.

scope The attribute of a message or pattern that determines how widely the
ToolTalk service looks for matching messages or patterns.

sessid Identifies the session.

session A group of processes that are related either by the same desktop or the
same process tree.

signatures A pattern in a ptype or otype. A signature can contain values for
disposition and operation numbers.

� Ptype signatures (psignatures) describe the procedural messages
that the program wants to receive.

� Otype signatures (osignatures) define the messages that can be
addressed to objects of the type.

spec See object specification.

static message patterns Provides an easy way to specify the message pattern information if
you want to receive a defined set of messages.

tool manager A program used to coordinate the development tools in the
environment.

ToolTalk Types
Database

The database that stores ToolTalk type information.

ttdbck Check and repair utility for the ToolTalk database.

ttsession The ToolTalk communication process.

tt_type_comp The ToolTalk type compiler.

wrapped shell
commands

ToolTalk-enhanced shell commands. These commands safely perform
common file operations on ToolTalk files.

Glossary 227

xdr format tables The types database read when ttsession is invoked.

228 ToolTalk User’s Guide • May 2002

Index

Numbers and Symbols
$OPENWINHOME/li, 198
$OPENWINHOME/lib/openwin-sys, 197

A
accessing ToolTalk data from machines not

running a ToolTalk database server, 51
accessing ToolTalk databases, 67
adding a message pattern callback, 103
adding callbacks to static patterns, 99
adding files to scoped patterns, 39
adding inter-operability functionality, 164
adding ToolTalk code, 167

Xedit files, 167
Xfontsel files, 174

adding values to spec properties, 138
address attribute, 94
address attributes, 82
addressing

otype, 90
addressing messages, methods of, 25
algorithm

object-oriented message delivery, 87
process-oriented message delivery, 86

allocating storage space, 149
allocation stack, 147
alt.soft-sys.tooltalk, 224
API header file, including in program, 69
application programming interface (API), 26
application types, installing, 53
architecture, 27

arg_add call, 215
args attribute, 95
assigning otype, for specs, 137
attributes

address, 82, 94
arg, 95
class, 93
op, 95
scope, 82, 94
setting, 93

attributes, of message patterns, 33

B
background jobs, 30
barg_add call, 215
batch sessions, 30
broken references, 143

C
C2 qualification, 222
callback routines, 150

invoking, 128
callback routines, adding to message

patterns, 103
callbacks, attached to static patterns, 129
callbacks, for handlers, 129
calls provided to manage information

storage, 148
CASE Interoperability Message Sets, 21

229

CEPATH, 46
changing ToolTalk-enhanced shell

commands, 66
checking ToolTalk databases, 31
checking ToolTalk error status, 154
class attribute, 93
close function, 199
communication process, 27
comparing objids, 140
components of the ToolTalk service, 27
computational loops, 210
connecting processes to the same session, 200
context arguments, 150
context slots, used to create environment

variables, 48
contextdcl, 113, 117
contexts, defined, 40
contexts, to restrict matching, 215
convert ToolTalk type data, 44
converting ToolTalk types, script for, 159
cp command, 30
cpp command, 53
creating a ptype file, 111
creating dynamic message patterns, 103
creating general messages, 93
creating messages, 90
creating object-oriented messages, 96
creating otype files, 116
creating process-oriented messages, 96
creating specs, 137

D
database

check and recovery tool, 44
records, 27

database server
installing ToolTalk, 48
process, 27
redirecting, 51
redirecting file system partitions, 52
redirecting host machines, 51

database server redirection files, 197
database utility ttdbck, 67
databases

accessing ToolTalk, 67
check and repair utility, ttdbck, 31

databases (continued)
displaying, checking, and repairing of
ToolTalk, 67
maintaining ToolTalk, 30

debugging, with ttsnoop, 57
default session

joining, 105
quitting, 106

delete message, 99
deleting message patterns

message patterns
deleting, 104

deleting messages, 133
demonstration, 163
demostration programs

edit_demo, 31, 144
ttsample1, 31

des, 221
deserializing structured data, 85
Desktop Services

Started, 203
Desktop Services Message Set, 18
destroying message patterns

automatically, 104
destroying messages, 133
destroying specs, 143
determinging spec properties, 137
determining who receive messages, 25
DISPLAY, 46, 199
disposition attributes, 41
Document and Media Exchange Message

Set, 20
dynamic message patterns, 101

creating, 103
dynamic method, 33

E
edit_demo, 31, 144
environment variables, 45

CEPATH, 46
created from message contexts, 48
DISPLAY, 46
_SUN_TT_ARG_TRACE_WIDTH, 45
_SUN_TT_FILE, 45
_SUN_TT_HOSTNAME_MAP, 45, 51
_SUN_TT_PARTIITON_MAP, 45

230 ToolTalk User’s Guide • May 2002

environment variables (continued)
_SUN_TT_PARTITION_MAP, 52
_SUN_TT_SESSION, 29, 46, 74
_SUN_TT_TOKEN, 46
SUN_TTSESSION_CMD, 45
TMPDIR, 47
TTPATH, 46

error handling functions, 153
error macros, 154
error propagation, 157
error status, 153

checking, 154
retrieving, 153

error value, 154
errors, process type, 56
/etc/inet/inetd.conf, 197
event loop, 210
examining messages, 126
examining spec information, 139
examining type information, 55

F
failed connection, causes of, 49
failing requests, 132
features, of the ToolTalk service, 150
features, of ToolTalk, 24
file, 202

ToolTalk concept of, 26
file-in-session scope, 85
file information

managing, 144
file query functions, 151
file scope, 83
file-scoped message flow, 205
file-scoped messages, queued, 222
file scoping, restrictions, 26
file scoping, restrictions to, 36
filename mapping functions, 23
files

hostname_map, 51
maintaining ToolTalk, 30
managing with object data, 143
object type, 114
partition_map, 52
XDR format, 28

files of interest
joining, 107
quitting, 107

filter routines, 151
free storage space, 99
freeing allocated storage space, 150
functions

tt_message_user, 74
functions with natural return values, 154
functions without natural return values, 154

H
handling replies easily, 125
handling requests, 130, 132
header file, 44
help on how to invoke ttsession, 28
hostname_map file, 51
hostname qualification of pathnames,

explicit, 223
how applications use ToolTalk messages, 23
how the ToolTalk technology works, 166

I
iarg_add call, 215
identifying data in existing files, 136
identifying messages easily, 125
information provided by the ToolTalk

service, 147
information provided to the ToolTalk

service, 147
informing sender of failed request, 132
initial session, 70
initializing your process, 70
installing application types, 53
installing the ToolTalk database server

from a remote machine, 49
from the Solaris distribution cd, 50

installing theToolTalk database server, 48
installing type information, 118
invoking callback routines, 128

Index 231

J
joining default sessions, 105
joining files of interest, 107
joining multiple sessions, 106

K
kill command, 56

L
LD_LIBRARY_PATH, 198
li, 196
libtt, 27, 199, 211
libtt.a, 196
libtt.s, 196
libtt.so, 198
load balancing, 210

M
maintaining specs, 139
maintaining ToolTalk files and databases, 30
managing files that contain object data, 143
managing object and file information, 144
manually starting a session, 28
mapping functions

filename, 23
marking information for storage, 148
marking the ToolTalk API stack, 126
merging compiled ToolTalk type files into

running ttsession, 118
merging type information, 118
message

delete, 99
message attributes, 81
message attributes, comparing to pattern

attributes, 35
message callback, 150
message callbacks, 128
message callbacks, adding, 97
message delivery

object-oriented algorithm, 87
process-oriented algorithm, 86

message paterns
unregistering, 104

message pattern attributes, 33
message patterns, 24, 33

adding callbacks to, 103
automatically unregistering and

destroying, 104
minimum specifications, 34
static, 109
updating, 105

message protocol, 26
message_status_string, 211
messages

completing, 90
creating, 90
creating general-purpose, 93
deleting, 133
determining recipients of, 24
examining, 126
handling, 24
identifying and processing easily, 125
methods of addressing, 25
object-oriented, 25
observing, 24
process-oriented, 25
receiving, 24
sending, 23, 99

messages, retrieving, 123
MIT X, 198
modifying applications, 164

xedit, 164
xfontsel, 165

modifying applications to send messages, 90
modifying makefile, 165
modifying your application to use the ToolTalk

service, 26
moving objects between file systems, 142
moving objects between files, 142
multi-threaded environment, 23
multiple processes, 209
multiple sessions

storing session ids of sessions, 106
multiple sessions, joining, 106
mv command, 30, 65

232 ToolTalk User’s Guide • May 2002

N
network types database, converting, 161
networked envirnoments, 74
news group, ToolTalk, 224
notice, 79
notifying processes if tool exits

unexpectedly, 157

O
object content, 136
object data, 135
object information

managing, 144
object-oriented message delivery, 87
object-oriented messages, 25, 135

creating, 96
object specification (spec), 136
object type (otype), 114
objects

moving between file systems, 142
moving between files, 142
ToolTalk, 136

objects, ToolTalk, 224
objid

comparing, 140
obtaining, 137
obtaining new, 138
retrieving new, 138

obtaining new objid, 138
obtaining objid, 137
OMG-compliant systems, 25, 135
op attribute, 95
otype

assigning for specs, 137
otype addressing, 90
otype file, 114
otype files

creating, 116
header information, 116
signature information, 116

otype files, installing, 53
otype signature, 115
otypes, examining information, 55

P
partition_map file, 52
pattern argument, 40
pattern attributes, comparing to message

attributes, 35
pattern callback, 150
pattern callbacks, 128
point-to-point (PTP) message passing

feature, 94
point-to-point messages, 129
pointers, to API objects, 150
process

communication, 27
database server, 27

process identifier (procid), 70
process-oriented message delivery, 86
process-oriented messages, 25

creating, 96
process type, declaring, 119
process type (ptype), 109
process type errors, 56
processing messages easily, 125
procid, 70, 202

closing default, 75
setting default, 71

Project DOE, 195
ps command, 56
ptype, 202
ptype, installing, 166
ptype file, creating, 165
ptype files

creating, 111
property information, 112
registering, 110
registering with ToolTalk, 119
signature information, 113
unregistering with ToolTalk, 121

ptype files, installing, 53
ptype signature, 110
ptypes, check for existing, 119
ptypes, examining information, 55
ptypes, multiple, 121
ptypes, undeclaring, 121

Q
quitting default session, 106

Index 233

quitting files of interest, 107

R
read in the types from database, 29
read-only file systems, 136
read-only files, creating objects of pieces

of, 136
reading

hostname_map files, 52
partition_map files, 52

reading ToolTalk data from read-only file
system partitions, 51

realpath, 223
receiving ToolTalk messages, 24
recipients, 23
recognizing replies easily, 125
records database, 27
redirecting file system partitions, 52
redirecting host machines, 51
redirecting the ToolTalk database server, 51
register file scope patterns, 201
registering

in a specified session, 71
in the initial session, 70
with the ToolTalk service, 70

registering in multiple sessions, 72
registering ptypes, 110
rejecting requests, 131
removing type information, 55
repairing ToolTalk databases, 31
replies

recognizing and handling easily, 125
replying to requests, 130
request, 79
requests

failing, 132
handling, 130, 132
informing sender of failed, 132
rejecting, 131
replying to, 130

reread types file, 29
rereading type information, 56
retrieving new obji, 99
retrieving new objid, 138
retrieving ToolTalk error status, 153

return value
natural, 154
no natural, 154

returned integer, status, 156
returned pointer, status, 155
returned value, status, 154
reverting to previous versions of the ToolTalk

database, 50
rm command, 30, 66
routines

callback, 150
filter, 151

rpc.ttdbserverd, 27, 136, 196
running the new ToolTalk database server, 50
runtime stack, 148

S
same process, sending and receiving messages

in, 74
scenarios illustrating the ToolTalk service in

use, 18
scope, to union of TT_FILE_IN_SESSION and

TT_SESSION, 83
scope attribute, 94
scope attributes, 82

file, 83
file-in-session, 85
session, 84

scopes, that use files, 83
scopes, types of, 36
scoping messages to every client with registered

interest, 85
scoping to file in session, 37
scoping to file only, 37
scoping to files and sessions, 38
scoping to session only, 36
senders, 23
sending messages, 99

modifying applications, 90
sending notices, 79
sending requests, 80
sending ToolTalk messages, 23
serializing structured data, 85
server authentication level, 28
session, ToolTalk concept of, 25
session identifier (sessid), 26

234 ToolTalk User’s Guide • May 2002

session identifiers, multiple for one session, 28
session scope, 84
session-scoped message flow, 204
session-scoped messages, queued, 222
sessions bound to a character terminal, 30
tt_message_user() function, 74
setting attributes, 93
setting up to receive messages, 73
share/include/desktop, 196
shell commands

standard
cp, 30
mv, 30, 65
rm, 30, 66

ToolTalk-enhanced, 30, 43, 65, 144
changing, 66
ttmv, 65

shell commands, ToolTalk-enhanced
ttcp, 65, 144
ttmv, 65, 144
ttrm, 65, 144
ttrmdir, 66, 144
tttar, 66, 144

shell scripts
ttrsh, 47

signals, to which ttsession responds, 29
signatures

otype, 115
ptype, 110

SIGUSR1 signal, 29
SIGUSR2 signal, 29
silent operation, 29
spec, 136
spec, destroying an object, 143
specs

adding values to properties, 138
assigning otype, 137
creating, 137
destroying, 143
determining properties, 137
examining information, 139
maintaining, 139
moving objects, 142
querying for objects, 140
storing properties, 138
updating, 138
updating existing properties, 138
writing into ToolTalk database, 138

start a process tree session, 29
start process tree sessions, 29
starting a session manually, 28
starting a ToolTalk session, 28
starting programs on remote hosts, 47
state change messages, 81
static message patterns, 109
static method, 33
static patterns

adding callbacks, 99
attaching callbacks, 129

storing
hostname_map files, 51
partition_map files, 52

storing spec properties, 138
_SUN_TT_ARG_TRACE_WIDTH, 45
_SUN_TT_FILE, 45
_SUN_TT_HOSTNAME_MAP, 45, 51
_SUN_TT_PARTITION_MAP, 45, 52
_SUN_TT_SESSION, 29, 46, 74, 198
SUN_TT_SESSION, 29, 201
_SUN_TT_TOKEN, 46, 199
_sun_tt_token, 213
SUN_TTSESSION_CMD, 45
switching between multiple sessions, 202
system types database, converting, 160

T
-t option, of ttsnoop, 57
-t option, 203
TMPDIR environment variable, 47
ToolTalk database server

reverting to previous versions, 50
running new, 50

ToolTalk-enhanced shell commands, 144
ToolTalk message sets

Desktop, 18
Document and Media Exchange, 20

ToolTalk messages, 23
ToolTalk object, 136
ToolTalk service, 17
ToolTalk type compiler tt_type_comp, 115
ToolTalk types databases, moving, 162
trace mode, 29, 203, 213, 222
trace mode, toggling, 29
TT_BOTH, 38

Index 235

tt_c.h, 196
TT_CALLBACK_CONTINUE, 205
TT_CALLBACK_PROCESSED, 205
tt_close, 75, 104, 199
tt_default_file, 223
tt_default_session_set, 72, 202
tt_fd, 71
TT_FILE, 37
TT_FILE_IN_SESSION, 37
tt_file_join, 107
tt_file_objects_query, 140, 151
tt_file_quit, 107
TT_HANDLED, 124
tt_int_error, 156
tt_is_err, 154, 156
tt_message__set, 93
tt_message_accept, 125, 212
tt_message_callback_add, 97, 125, 208
tt_message_create, 93
tt_message_destroy, 97, 99, 133
tt_message_fail, 132
tt_message_file, 84, 223
tt_message_file attribute, 209
tt_message_file_set, 85
tt_message_object, 99, 138
tt_message_receive, 123, 128, 205, 210
tt_message_reject, 131, 210, 212
tt_message_send, 142
tt_message_send_on_exit, 157
tt_message_status_set, 132
tt_message_status_string_set, 132
tt_message_user call, 206
tt_message_user_set, 125
tt_objid_equal, 140
tt_onotice_create, 96
tt_open, 71, 197, 213
tt_orequest_create, 96
tt_pattern_add, 103
tt_pattern_callback_add, 103, 125
tt_pattern_create, 103
tt_pattern_destroy, 104
tt_pattern_register, 104
tt_pattern_set, 103
tt_pattern_unregister, 104, 119, 210
tt_pnotice_create, 96
tt_pointer_error, 155
tt_prequest_create, 96
tt_ptype_declare, 119

tt_ptype_undeclare, 119, 121
TT_SESSION, 36
tt_session_join, 105
tt_session_quit, 106
tt_spec_bprop, 139
tt_spec_create, 137
tt_spec_destroy, 143
tt_spec_file, 139
tt_spec_move, 142
tt_spec_prop, 139
tt_spec_prop_add, 138
tt_spec_prop_set, 138
tt_spec_type, 139
tt_spec_type_set, 137
tt_spec_write, 138
Tt_status, 75
tt_status_message, 154
tt_type_comp, 53, 109, 115, 196
TT_WRN_STALE_OBJID, 99
TT_WRN_START_MESSAGE, 125, 212
ttce2xdr, 196
ttce2xdr script, 159
ttcp, 65, 144, 196
ttdbck, 67, 196
ttdbck utility, 31
ttmv, 65, 144, 196
ttmv command, 65, 224
TTPATH, 46, 197
ttrm, 65, 144, 196
ttrmdir, 66, 144, 196
ttrsh shell script, 47
ttsample1, 31
ttsession, 27, 43, 196
ttsession parameters, 28
ttsnoop, debugging with, 57
ttsnoop utility, 203
tttar, 66, 144, 196
type compiler, 44
type compiler tt_type_comp, 109
type information

examining, 55
examining all types, 55
installing, 118
merging, 118
removing, 55

types file, rereading, 29
types of scopes, 36

236 ToolTalk User’s Guide • May 2002

U
unix, 221
unregistering a message pattern, 104
unregistering message patterns

automatically, 104
update existing spec properties, 138
updating existing specs, 138
updating message patterns, 105
updating the ToolTalk service, 56
user data cells, 208
user type database, converting, 159
/usr/openwin/bin, 196
USR1 signal, 203

V
-v option, 45
version number, 29
version string, 45

W
wildcarding patterns, 214
writing specs, into ToolTalk database, 138
writing ToolTalk data to read-only file system

partitions, 51

X
X Window System, establishing a session

under, 30
xauth, 221
XDR format file, 28
Xedit, 163
Xfontsel, 163
XtAppAddInput call, 205

Index 237

238 ToolTalk User’s Guide • May 2002

