
KCMS Test Suite User’s Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 816–1329–10
May 2002



Copyright 2002 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or service marks
of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2002 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, ou
marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des
marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques
SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

020115@3062



Contents

Preface 9

1 KCMS Test Suite Overview 13

In This Chapter 13
What is the KCMS Test Suite? 13
How the Test Suite Works 14
Approach To Testing 14
Extending Testing For Your CMM 15

2 Running KCMS Test Scripts 17

In This Chapter 17
Getting Started 17

Packaging 17
Environment Variables 17
Required File Hierarchy 18
Initialization File 19
Creating An Alternate Initialization File 21

KCMS Test Script Commands 21
Script Command Format 22

Using kcmstest To Run Test Scripts 23
Starting the kcmstest Command 23
Status Codes 26

Using Automated Script Files To Run Test Scripts 27
Using auto-kcmstest 27
Using auto-kcmstest-root 27

3



Getting a Failure and Performance Report 28
Tips on Running the Automated Test Scripts 28

3 KCMS Test Suite Commands 31

In This Chapter 31
CONNECT: 32

CONNECT: Command Description 32
CONNECT: Command Syntax Example 32
CONNECT: Keywords and Values 32

CREATE: 34
CREATE: Command Description 34
CREATE: Command Syntax Example 34
CREATE: Keywords and Values 34

EVAL: 34
EVAL: Command Description 34
EVAL: Command Syntax Example 35
EVAL: Keywords and Values 35

FREE: 37
FREE: Command Description 37
FREE: Command Syntax Example 37
FREE: Keywords and Values 37

GETATTR: 37
GETATTR: Command Description 37
GETATTR: Command Syntax Example 38
GETATTR: Keywords and Values 38

LOAD: 38
LOAD: Command Description 38
LOAD: Command Syntax Example 39
LOAD: Keywords and Values 39

LOG: 41
LOG: Command Description 41
LOG: Command Syntax Example 41
LOG: Keywords and Values 41

MODIFYLH: 42
MODIFYLH: Command Description 42
MODIFYLH: Command Syntax Example 42
MODIFYLH: Keywords and Values 42

4 KCMS Test Suite User’s Guide • May 2002



OPTIMIZE: 44
OPTIMIZE: Command Description 44
OPTIMIZE: Command Syntax Example 44
OPTIMIZE: Keywords and Values 44

SAVE: 45
SAVE: Command Description 45
SAVE: Command Syntax Example 45
SAVE: Keywords and Values 46

SETATTR: 46
SETATTR: Command Description 46
SETATTR: Command Syntax Example 46
SETATTR: Keywords and Values 46

UPDATE: 47
UPDATE: Command Description 47
UPDATE: Command Syntax Example 47
UPDATE: Keywords and Values 48

4 KCMS Test Script Descriptions 49

In This Chapter 49
Test Script Categories 49
Cross-Category API Functions And Script Commands 50
For More Information on API Functions 51

Loading Profiles 51
Load All Now 51
Load Many 52
Load Hints Test 53

Connecting Profiles 54
Connect Profiles 54
Connect Many Profiles 55
Connect Error 56

Evaluating Profiles 56
Evaluate 56
Evaluate Gamut Range 57
Evaluate Many 58
Evaluate Layout 58
Evaluate Error 59

Optimizing Profiles 60

Contents 5



Speed Optimization 60

Size Optimization 60

Getting and Setting Attributes 61

Get/Set Attribute 61

Attribute Test 2 62

Lookup Tables 63

Updating Profiles 63

Update Scanner Profile 63

Update Monitor Profile 64

Enhancement Tests 65

IC_evalplus.scr 66

IC_gray.scr 66

IC_loadsol.scr 67

IC_pacbug.scr 67

IC_sun_update.scr 67

IC_updatewin.scr 68

IC_xdisplay.scr 68

IC_xprofile.scr 69

IC_xprofilehost.scr 69

IC_xprofilesav.scr 70

IC_xprofilesavremote.scr 70

IC_xprofilesavroot.scr 71

IC_xwindow.scr 71

IC_xwindowerr.scr 72

5 Setting Attributes 73

In This Chapter 73

6 Putting It All Together 87

In This Chapter 87

Development Environment Requirements 87

Creating Your CMM 87

Setting Up Your CMM 88

Creating Test Scripts 88

Installing Scripts and Profiles 89

Testing and Inspecting Results 89

Checking Status Codes 89

6 KCMS Test Suite User’s Guide • May 2002



A Status Codes 91

In This Appendix 91

Glossary 97

Index 99

Contents 7



8 KCMS Test Suite User’s Guide • May 2002



Preface

The KCMS Test Suite User’s Guide explains how to test a Kodak Color Management
System (KCMS™) color management module (CMM) to verify whether or not the
CMM adheres to the KCMS framework. This guide describes a suite of test scripts and
the testing facility the CMM developer can use to ensure that a CMM is
KCMS-framework compliant. It is a supplemental DDK book in the KCMS
documentation.

Who Should Use This Book
This guide is particularly useful if you are a CMM developer. It describes how you can
test whether the CMM you have written adheres to the KCMS framework. It is also a
reference to anyone interested in the development and use of the KCMS framework.

Typically you would use the test scripts described in this guide to test a CMM you
have written for adherence to the framework. This guide assumes you have installed
your CMM and its associated profiles. It describes the tests you get with the DDK and
how you run them. If you need to change scripts to meet special requirements of your
CMM, the guide explains how the script contents are organized. From this
information, you can determine what changes you can make. For details on how to
use the KCMS test suite in the development of your CMM, see Chapter 6.

Note – The KCMS test suite can only test the profile attributes it knows about. It is not
designed to test new attributes your CMM might add. For details on the supported
profile attributes, see the KCMS Application Developer’s Guide.

9



Before You Read This Book
Before you read this guide, you should be thoroughly versed in the KCMS framework
and in how to write or customize CMMs. This guide assumes that you have read the
KCMS Application Developer’s Guide.

In addition, you should have read the following books:

� KCMS CMM Developer’s Guide
� KCMS CMM Reference Manual

All assumptions of the readers of the above books apply to the reader of this guide. To
recapitulate key requirements, you should

� Understand C++ and C language
� Be familiar with Solaris dynamic loading technology and all of the associated

manual pages
� Understand color science concepts

You should also be familiar with the following manual pages:

� auto-kcmstest(1)
� auto-kcmstest-root(1)
� kcms_calibrate(1)
� kcms_configure(1)
� kcms_server(1)
� kcmstest(1)
� kcms-testreport(1)

See the on-line SUNWrdm packages for information on bugs and issues, engineering
news, and patches. For Solaris installation bugs and for late breaking bugs, news, and
patch information, see the Solaris 9 Installation Guide.

For SPARC™ systems, consult the updates your hardware manufacturer may have
provided.

How This Book Is Organized
This guide is organized as follows:

10 KCMS Test Suite User’s Guide • May 2002



Chapter 1 summarizes the KCMS test suite. The chapter provides an overview of how
the test suite works, it presents the test suite directory hierarchy, and it explains the
approach used to test the KCMS framework so that you know what you can expect
from the tests.

Chapter 2 gets you started using the kcmstest utility, identifies each of the test script
commands, and provides the basic script command format. It also describes
automated scripts that run several tests once and suggests a scenario for their use.

Chapter 3 provides the syntax and a description of each script command keyword.

Chapter 4 summarizes the functionality of each test script provided with the DDK.

Chapter 5 provides an annotated script example showing how to set each supported
attribute.

Chapter 6 threads together the procedure for using this test suite. The chapter
provides references to the relevant documentation on developing and testing KCMS
CMMs.

Appendix A associates status code values and strings.

Glossary is a list of words and phrases found in this book along with their definitions.

Related Books
The following is a list of recommended books that can help you accomplish the tasks
described in this guide:

� International Color Consortium (ICC) Profile Format Specification (located on-line in
/opt/SUNWsdk/kcms/doc/icc.ps). For the most current version of the ICC
specification, see the web site at http://www.color.org.

� White papers on color science provided with the KCMS product.

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com.

Preface 11



Typographic Conventions
The following table describes the typographic changes used in this book.

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; on-screen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace with
a real name or value

To delete a file, type rm
filename.

AaBbCc123 Book titles, new words, or terms, or
words to be emphasized.

Read Chapter 6 in User’s Guide.

These are called class options.

You must be root to do this.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

12 KCMS Test Suite User’s Guide • May 2002



CHAPTER 1

KCMS Test Suite Overview

In This Chapter
This chapter explains what the KCMS test suite is, summarizes how it works, and
provides the testing approach so you know what to expect from the tests. For
information on the KCMS development environment, see “Development Environment
Requirements” on page 87.

What is the KCMS Test Suite?
The KCMS test suite is a set of scripts that test the KCMS “C” application program
interface (API). The KCMS “C” API is described in detail in the KCMS Application
Developer’s Guide.

In addition to enhancement scripts that support new features and fix bugs, the KCMS
test suite includes one or more scripts that correspond to each of the following KCMS
functions:

� KcsLoadProfile()
� KcsConnectProfile()
� KcsEvaluateProfile()
� KcsOptimizeProfile()
� KcsModifyLoadHints()
� KcsSaveProfile()
� KcsGetAttribute()
� KcsSetAttribute()
� KcsUpdateProfile()

13



All the KCMS test scripts contain commands. In general, a script command corresponds
to each KCMS “C”API function call. The test scripts organize the commands to be
executed according to the guidelines in the KCMS Application Developer’s Guide. A few
commands that accept variable-length input vary slightly from the API structure. See
Chapter 5 for details on these exceptions.

All the test scripts in each functional category perform operations to confirm that
subsequent KCMS API functions such as connecting profiles and evaluating the results
can be performed. At the conclusion of each test, the profile(s) are freed.

Some additional commands in the KCMS test suite facilitate scripting and reading of a
log file that contains the test results.

How the Test Suite Works
You use kcmstest, a script-driven utility that you run from a command shell, to test
your CMM for KCMS framework interaction. kcmstest is supported on SPARC™
and x86 platforms.

kcmstest interprets each script command, and the corresponding KCMS framework
function call is performed. Then the next script command is read and again the
appropriate framework function call is made. Any data or information that needs to be
maintained to make the sequence of function calls coherent is provided by kcmstest.

Various options to kcmstest allow you to run one to several test scripts. As each test
script command executes, information about it is displayed to the command shell
window and to a log file. If at any time during execution of a KCMS framework
function call an unexpected status is returned, the test is immediately aborted.

Approach To Testing
The KCMS test scripts are organized to focus on a specific function call and exercise it
through the range of its parameters. Because some functions depend upon the
successful completion of previous functions, by necessity, a given test consists of
several different API function calls.

To absolutely verify that a profile is loaded successfully would require examining
internal framework variables for specific values. Such an approach to testing the API is
too intrusive to be effective. The KCMS test scripts, instead, rely on the status returned
from each of the KCMS API functions along with some inferred conclusions about the

14 KCMS Test Suite User’s Guide • May 2002



results of functions yet to be executed. For example, the status returned from
connecting two profiles is one indication that a connection succeeded. Following this,
the new complete profile can be used in a call to KcsEvaluate() and the status
returned from the evaluation can be used as another indication of the success of the
connection. This assumes that the evaluation has no errors associated with it. If you
want to further verify the connection, you can examine the image resulting from the
call to KcsEvaluate() and compare it to some expected output.

In the above testing scenario, subsequent framework calls are used to verify an initial
call, and conclusions about the initial call are drawn from the results of subsequent
calls.

The ultimate goal of using the KCMS framework is to evaluate the results of applying
color correction to images. The test images are organized in TIFF file format. To
preserve system resources, many of the test scripts do not save the resulting TIFF
image (however, you have the option to save the image). The main test concern is to
demonstrate that the evaluation completes successfully for a given profile.

The scripts described in this guide do not focus on the color quality of the images
tested. In a few cases, the color-managed image can be displayed for verification
purposes, however the primary focus of the tests is to demonstrate the software color
quality. In most cases, you must visually inspect an image to verify it.

Extending Testing For Your CMM
The existing profiles use the default CMM provided with KCMS. To extend this testing
for your own CMM and resulting profiles, you may choose to replace profile names in
some of the tests with your own similar profiles. (That is, replace a monitor profile
with your own monitor profile, a scanner profile with your scanner profile, and printer
profile with your printer profile.) The CMM Id in the profile will cause your CMM to
be loaded for the resulting tests. Instead of modifying existing scripts for your profiles,
you may choose to create new ones. In the same manner as profiles, data for updating
your profiles may be replaced with your own data, and images may be replaced with
your own TIFF file images.

Chapter 1 • KCMS Test Suite Overview 15



16 KCMS Test Suite User’s Guide • May 2002



CHAPTER 2

Running KCMS Test Scripts

In This Chapter
This chapter explains the basic information you need to run the KCMS test scripts. It
describes the file hierarchy of the testing environment, introduces you to the script
commands, and shows the basic script command format. Finally it provides two
methods of running the test scripts: one using the kcmstest command and a second,
using automated script files.

Getting Started

Packaging
To run the KCMS test suite, you first must install the Solaris operating system. It
includes the KCMS Software Development Kit (SDK) package, which contains the
KCMS “C” API functions.

The KCMS test suite is a packaged in the KCMS Driver Development Kit (DDK).
When you package add the DDK, the test suite files are installed in the
/opt/SUNWddk/kcms/kcmstest directory.

Environment Variables
To run the scripts, you need to know about two environment variables: KCMSROOT
and KCMS_PROFILES.

17



KCMSROOT specifies the path to the top of the kcmstest directory.

KCMS_PROFILES specifies the path to the kcmstest/profiles directory. See Figure
2–1.

Prior to running test scripts using the kcmstest command, you set these variables
from the command line, for example

%setenv KCMSROOTpath

where path is the path to the kcmstest directory.

Alternately, if you run the automated script files, you set the variables at the time you
run the scripts. See “Using Automated Script Files To Run Test Scripts” on page 27
for details.

Required File Hierarchy
Figure 2–1 shows the required directory structure you need to run test scripts. When
you package add the test suite, the kcmstest directory contains the structure shown
in the figure.

kcmstest - contains the kcmstest executable, source files, and make files

script - contains test scripts executed during testing

profiles - location of the profiles used for testing

data - location of characterization data, calibration data, and so forth

images - contains images required for testing and receives resulting output images

log - is the directory to which log files are written

FIGURE 2–1 kcmstest File Hierarchy

kcmstest Directory
The kcmstest directory is at the top of the test suite hierarchy in Figure 2–1. It
contains the executables necessary to run the test suite.

18 KCMS Test Suite User’s Guide • May 2002



The initialization file icc.ini in this directory lists the all the default test scripts that
are packaged with the test suite. See “Initialization File” on page 19 for details on the
contents of this file.

Significant Directories
Four directories shown in Figure 2–1 are of particular significance. These are

� script
� profiles
� data
� log

The script directory contains the test scripts to be executed. By default, this
directory includes all the test scripts listed in icc.ini. You can run a subset of the
scripts, or specify an alternate initialization file when you run the kcmstest
command. See “Using kcmstest To Run Test Scripts” on page 23 for details. If you
have written customized versions of scripts to test your CMM, you must install them
in this directory.

The profiles directory contains a default set of profiles used with the default test
scripts. You can install the profiles used by your CMM into this directory. Note that
this is a separate installation from the one you do to make your CMM profiles
available to the KCMS framework. For details, see Chapter 6.

The data directory contains measurement and calibration data.

The log directory contains output. This directory initially is empty. It holds the results
of running test scripts.

Images
The images directory contains images resulting from running the test suite and test
TIFF images.

Initialization File
The default initialization file icc.ini is shown in Example 2–1.

EXAMPLE 2–1 Initialization file icc.ini

[Verbose]
[ProfilePath]
profiles/
[ImagePath]
images/

Chapter 2 • Running KCMS Test Scripts 19



EXAMPLE 2–1 Initialization file icc.ini (Continued)

[DataPath]
data/
[NumberOfTests]
30
[Tests]
IC_lhints.scr
IC_conerr.scr
IC_lana.scr
IC_eval.scr
IC_lmany.scr
IC_optspeed.scr
IC_connect.scr
IC_evalmany.scr
IC_attr1.scr
IC_attr2.scr
IC_layouts.scr
IC_conmany.scr
IC_optsize.scr
IC_evalerr.scr
IC_update1.scr
IC_update2.scr
IC_xprofile.scr
IC_xprofilehost.scr
IC_xprofilesav.scr
IC_xprofilesavremote.scr
IC_xwindow.scr
IC_xwindowerr.scr
IC_xdisplay.scr
IC_evalplus.scr
IC_pacbug.scr
IC_loadsol.scr
IC_sun_update.scr
IC_gray.scr
IC_gamut.scr

IC_lut.scr

Note – The icc.ini file does not include the tests, IC_xprofilesavroot.scr and
IC_updatewin.scr, which must be run as root. To run
IC_xprofilesavremote.scr, you need to change the DISPLAY environment
variable. See the comments in the automated test scripts (auto-kcmstest and
auto-kcmstest-root) for details.

The icc.ini file contains the path to the profiles, images, and data required to run
the test scripts. In addition, it lists the number of test scripts following the
[NumberOfTests] field, and it lists the filename of each test script.

20 KCMS Test Suite User’s Guide • May 2002



If your CMM requires a different set of test scripts, you can create an alternate
initialization file. Say, for example, you edited several of the scripts to test special
features of your CMM. In such a case you need to install the scripts you plan to test
with in the script directory. To add to the existing initialization file, you also must
create an alternate file that reflects test script changes. See “Creating An Alternate
Initialization File” on page 21 for details.

Creating An Alternate Initialization File
You can create an alternate initialization file if, for example, you customized scripts for
your CMM.

To create the file (see Example 2–1),

1. Use a text editor to save a copy of icc.ini under a new filename, for example
alternate.ini.

2. Add (or remove) test script name(s) in the file list.

3. Change the value immediately following the [NumberOfTests] field to update the
number of tests.

KCMS Test Script Commands
In general, a KCMS test script command corresponds to each of the KCMS “C” API
functions. Additionally, there are some commands that are necessary to facilitate
scripting and reading the test results log. See Chapter 3 for a detailed description of
each command. Table 2–1 lists each of the script commands and the KCMS “C” API
function to which it corresponds.

TABLE 2–1 Test Script Commands and “C” API Functions

Test Script Command KCMS “C” API Function

CONNECT: KcsConnectProfile()

CREATE: KcsCreateProfile()

EVAL: KcsEvaluate()

FREE: KcsFreeProfile()

GETATTR: KcsGetAttribute()

Chapter 2 • Running KCMS Test Scripts 21



TABLE 2–1 Test Script Commands and “C” API Functions (Continued)
Test Script Command KCMS “C” API Function

LOAD: KcsLoadProfile()

LOG: No specific function. It writes to a log file.

MODIFYLH: KcsModifyLoadHints()

OPTIMIZE: KcsOptimizeProfile()

SAVE: KcsSaveProfile()

SETATTR: KcsSetAttribute()

UPDATE: KcsUpdateProfile()

Script Command Format
A single script command consists of the command name (including the colon),
followed by one or more keyword/value pairs. A keyword is separated from its value
by an equal sign (=). Each keyword/value pair ends with a semicolon (;).

The basic script command format is shown below:

COMMAND_NAME:keyword=value; keyword=value;

You can free-format test scripts. That is, you can insert any whitespace character into
any script command.

Example 2–2 shows an actual test script that demonstrates some of the script
commands and their associated keywords and values.

EXAMPLE 2–2 Sample Test Script Showing Commands

LOAD:Reference=scanner; Profile=mtk600zs.inp; Handling=File;
LoadHint=AllNow;
LOAD:Reference=monitor; Profile=sony16.mon; Handling=File;
LoadHint=AllNow;
CONNECT:NAME=scan-mon;

Count=2;
Reference=scanner;
Reference=monitor;
Operation=FORWARD;

EVAL:Reference=scan-mon;
SourcePixLayout=RGBInterLeaved;
DestPixLayout=RGBInterLeaved;
Callbacks=;
ImageIn=rhg_mtek600;
ImageOut=rhg_mon.tst;
Operation=Forward;

FREE:Reference=scanner;
FREE:Reference=monitor;

22 KCMS Test Suite User’s Guide • May 2002



EXAMPLE 2–2 Sample Test Script Showing Commands (Continued)

FREE:Reference=scan-mon;

Using kcmstest To Run Test Scripts
The kcmstest command is a test script interpreter that reads test scripts and
performs the KCMS “C” API function calls based upon the commands in the test
script.

To run test scripts with this command, you use the procedure described below. For
details on kcmstest, see the manual page.

Starting the kcmstest Command

Note – Be sure to set the KCMSROOT environment variable before using the kcmstest
command. See “Environment Variables” on page 17 for details.

The simplest way to start kcmstest is to type the following from a command shell
and press Return.

%kcmstest

You are prompted with the following message:

Enter the script name to be executed or “quit” to exit

Script Name(s)?

You can enter the name of a script, for example IC_attrl.scr. Alternately, you can
enter all, which executes all the scripts listed in icc.ini.

Note – You must perform a few tasks manually to be able to run all the test scripts
when you enter all. See the contents of the auto-kcmstest script for details.

When you run individual test scripts, an output log file is generated for each script.
When you run all the scripts listed in icc.ini, a single log file is generated. See
“Recording Test Script Results To a Log File” on page 25 for details.

Chapter 2 • Running KCMS Test Scripts 23



Note – Use the test script auto-kcmstest to run the entire icc.ini test list. (See
“Using Automated Script Files To Run Test Scripts” on page 27.) The script creates
certain setup files automatically.

Command Line Options -i, -h, -s
From the command line, you can enter various options to the kcmstest command.
Three frequently used options are -i, -h, and -s.

To specify your own initialization file, you can enter its name on the command line
preceded by the -i option, for example

%kcmstest -i

optional.ini

See “Creating An Alternate Initialization File” on page 21 for details on alternate
initialization files.

You can use the -s option to specify a script name (or all) and the -h option, to
specify an alternate legal remote host name for scripts that test remote host access. The
-h option attempts to pull a profile from the default directories on the remote host. Be
sure that host has these directories and profiles.

The following example specifies the alternate initialization file alternate.ini, the
script IC_attrl.scr, and the alternate host name dusk:

%kcmstest -i

alternate.ini -s IC_attrl.scr -h dusk

The example below defaults to using the icc.ini file:

%kcmstest -s

all

In this example, if any of the scripts in the icc.ini file access a remote host, the host
name will be NULL and the scripts will fail.

Script Display
As each of the test script commands is executed, information about the command that
is currently being interpreted is displayed to the command shell window as well as
written to a log file in the kcmstest/log directory.

24 KCMS Test Suite User’s Guide • May 2002



Recording Test Script Results To a Log File
For each script file executed, results are recorded in a log file. All the log files can be
found in the kcmstest/log directory. The log file name is the name of the script file,
with the .scr file extension replaced by the .log extension. If, for example, the test
script name is IC_eval.scr, the log file name is IC_eval.log.

One exception to this naming scheme is if you enter all as the test script name. See
“Starting the kcmstest Command” on page 23 for details on this entry. In this case,
the log file name is testall.log.

Two versions of a log file may exist at any given time: the current and the previous
version. The previous version has its extension changed to .bak.

Example 2–3 is the log file output created from the test script shown in Example 2–2.

EXAMPLE 2–3 Log File Output

Parsing a KcsLoadProfile Command
Profile Reference = scanner
Profile File Name = kcmsEKls3510.inp
Profile Handling = By File
Profile Load Hint = LoadWhenNeeded;
Profile Load Hint = UnLoadwhenNeeded;
Profile Operation Hint = Image;
Load Hint = 2024000
Thu Jul 25 08:16:07 1996

Completed KcsLoadProfile command, status = 0
Thu Jul 25 08:16:07 1996

Parsing a KcsLoadProfile Command
Profile Reference = printer
Profile File Name = kcmsEKsunnws.out
Profile Handling = By File
Profile Load Hint = LoadWhenNeeded;
Profile Load Hint = UnLoadwhenNeeded;
Profile Operation Hint = Image;
Load Hint = 2024000
Thu Jul 25 08:16:07 1996

Completed KcsLoadProfile command, status = 0
Thu Jul 25 08:16:07 1996

Parsing a KcsConnectProfiles Command
Profile Reference = scan-print
Number of Profiles in Connect = 2
Profile Reference = scanner
Profile Reference = printer
Operation Hint = 20001
Thu Jul 25 08:16:07 1996

Completed KcsConnectProfiles command, status = 0
Thu Jul 25 08:16:08 1996

Chapter 2 • Running KCMS Test Scripts 25



EXAMPLE 2–3 Log File Output (Continued)

Parsing a KcsEvaluate Command
Profile Reference = scan-print
Source Layout = RGBInterLeaved;
Destination Layout = RGBInterLeaved;
Input Image Name = macbeth_1550.tif
Output Image Name = None
Operation Hint = 20001
Thu Jul 25 08:16:08 1996

Completed KcsEvaluate command, status = 0
364800.000000 pixels processed in 0.621338 seconds.
The processing rate = 587120.062500 pixels/second.

Parsing a Free Profile command
Profile reference =scanner

Completed KcsFreeProfile command, status = 0

Parsing a Free Profile command
Profile reference = printer

Completed KcsFreeProfile command, status = 0

Parsing a Free Profile command
Profile reference = scan-print

Completed KcsFreeProfile command, status = 0

Status Codes
If at any time during script execution, a KCMS framework API function call returns
with an unexpected status code, the test is immediately aborted. For a list of all the
status codes strings and their values, see Appendix A.

Note – It may be your intention to have a status code returned that indicates an error
because you deliberately set up a script to test an error condition. The script
commands provide the optional keyword XStatus, which allows you to do this. For
details, see the script command descriptions in Chapter 3. Also see “Checking Status
Codes” on page 89.

26 KCMS Test Suite User’s Guide • May 2002



Using Automated Script Files To Run
Test Scripts
The kcmstest directory includes two automated scripts: auto-kcmstest and
auto-kcmstest-root.

Note – See “Tips on Running the Automated Test Scripts” on page 28 before using
this testing method.

Using auto-kcmstest
The auto-kcmstest script allows you to run the complete test suite in icc.ini,
including scripts in the icc.ini file list that access a remote host. This script is
located in the kcmstest directory.

Note – You may need to edit the script to change path information.

To run this script, do not set the environment variable KCMSROOT with the setenv
command. Instead, provide two arguments: the KCMSROOT environment variable as
the first argument and the remote host name as the second, for example

%auto-kcmstest

/opt/SUNWddk/kcms dusk

In this example, /opt/SUNWddk/kcms is the KCMSROOT environment variable and
dusk is the remote host name. Note that if you are in the directory where
auto-kcmstest() is located, only the host argument is needed, for example

%auto-kcmstest

dusk

Using auto-kcmstest-root
Certain test scripts require that you be root to run them. You would use these tests if,
for example, you wanted to create an X Window System profile in a root-owned
directory. To run these scripts, a second automated script called
auto-kcmstest-root is provided.

To run the auto-kcmstest-root script,

Chapter 2 • Running KCMS Test Scripts 27



1. Become superuser.

%su

2. Provide one argument: the KCMSROOT environment variable, for example

#./auto-kcmstest-root /opt/SUNWddk/kcms

Note that if you are in the directory containing auto-kcmstest-root, no argument
is required.

Getting a Failure and Performance Report
After you have run the complete test suite using auto-kcmstest and
auto-kcmstest-root, you can get an automated failure and performance report by
running the kcms-testreport command. This command takes two arguments: the
name of the test log and the report title. Very likely, you would redirect output to a file
of the same name as the report title, for example

%kcms-testreport

log/testall.log my_test_1 > my_test_2

In this example, my_test_1 is the report title and my_test_2 is the output filename.

Tips on Running the Automated Test Scripts
The following is a suggested sequence for running a complete test suite using the
automated script files:

1. Run the auto-kcmstest script, for example

%auto-kcmstest

/opt/SUNWddk/kcms dusk

2. Become root, for example

%su

3. Run the auto-kcmstest-root script, for example

#./auto-kcmstest-root

/opt/SUNWddk/kcms

4. Run kcms-testreport and redirect output to a file, for example

#kcms_testreport

log/testall.log my_test_1 > my_test_2

28 KCMS Test Suite User’s Guide • May 2002



Note – auto-kcmstest-root must be run after auto-kcmstest because it
appends its resulting logs to the auto-kcmstest log file.

You may want to redirect the automated-test-script output to a file, as it is quite
lengthy.

Chapter 2 • Running KCMS Test Scripts 29



30 KCMS Test Suite User’s Guide • May 2002



CHAPTER 3

KCMS Test Suite Commands

In This Chapter
This chapter alphabetically presents each of the kcmstest test script commands. For
each command, the chapter provides a summary description, the command syntax,
and a detailed description of each keyword. Generally, all of the command keywords
must be used for a command to execute successfully. The text indicates when certain
keywords do not need to be used.

Table 3–1 lists each of the test script commands and the KCMS “C” API function call to
which it corresponds.

TABLE 3–1 Test Script Commands and “C” API Functions

Test Script Command KCMS “C” API Function

CONNECT: KcsConnectProfile()

CREATE: KcsCreateProfile()

EVAL: KcsEvaluate()

FREE: KcsFreeProfile()

GETATTR: KcsGetAttribute()

LOAD: KcsLoadProfile()

LOG: No specific function. It writes to a log file.

MODIFYLH: KcsModifyLoadHints()

OPTIMIZE: KcsOptimizeProfile()

SAVE: KcsSaveProfile()

31



TABLE 3–1 Test Script Commands and “C” API Functions (Continued)
Test Script Command KCMS “C” API Function

SETATTR: KcsSetAttribute()

UPDATE: KcsUpdateProfile()

CONNECT:

CONNECT: Command Description
CONNECT: functionality corresponds to the KcsConnectProfile() call. When this
command is command is interpreted, the KcsConnectProfile() function is
executed and the status is reported back from the kcmstest command display to the
test log.

CONNECT: Command Syntax Example
CONNECT:NAME=reverse; Count=2; Reference=monitor;
Reference=scanner; Operation=Forward;

CONNECT: Keywords and Values
Table 3–2 presents the CONNECT: command keywords and their descriptions.

TABLE 3–2 CONNECT: Command Keywords

Keyword Description

Name= Is the reference name that will be assigned to the new profile if the
CONNECT:command completes successfully.

Reference= Is the name that was assigned when the profiles were loaded or
created.

Count= Is the number of profiles that will be used in the connection.
Currently two profiles are used to connect forward and reverse
profiles. Three profiles are used to connect simulate profiles.

32 KCMS Test Suite User’s Guide • May 2002



TABLE 3–2 CONNECT: Command Keywords (Continued)
Keyword Description

Operation= Defines the operation load hint that will be used to connect the new
profile. This keyword has the operation and content hint values
shown in Table 3–3. It indicates what transforms in the profiles will
be loaded and connected in the final (complete) profile. An
Operation= keyword can appear more than once in a single script
command. Multiple operations are logically OR’d together.

XStatus= The default expected status is KcsSuccess. If the script command
is expected to complete successfully, the XStatus= keyword is not
required. In cases where a script command is expected to return a
non- success status, the XStatus= is followed by the
corresponding expected, non-success status in hexadecimal format.

Table 3–3 shows the acceptable values for the Operation= keyword.

TABLE 3–3 CONNECT: Command Operation= Keyword Values

Value Load Hint Set

Forward; KcsOpForward

Reverse; KcsOpReverse

Simulate; KcsOpSimulate

Gamut; KcsOpGamutTest

OpsAll; KcsOpAll

ContUnkn; KcsContUnknown

Graphics; KcsContGraphics

Image; KcsContImage

ColorMtrc; KcsContColorimetric

ContAll; KcsContAll

Chapter 3 • KCMS Test Suite Commands 33



CREATE:

CREATE: Command Description
CREATE: functionality corresponds to the KcsCreateProfile() call. When this
command is interpreted, the KcsCreateProfile() function is executed and the
status is reported back from the kcmstest command display to the test log. The
CREATE: command creates a generic profile with the default CMM Id.

CREATE: Command Syntax Example
CREATE:Reference=umax;

CREATE: Keywords and Values
Table 3–4 presents the CREATE: command keywords and their descriptions.

TABLE 3–4 CREATE: Command Keywords

Keyword Description

Reference= Is the name that this profile will be referred to in subsequent script
commands. In the context of the test script, it is the profile name.

XStatus= The default expected status is KcsSuccess. If the script command
is expected to complete successfully, the XStatus keyword is not
required. In cases where a script command is expected to return a
non-success status, the keyword is followed by the corresponding
expected, non-success status in hexadecimal format.

EVAL:

EVAL: Command Description
EVAL: functionality corresponds to the KcsEvaluate() call. When this command is
interpreted, the KcsEvaluate() function is executed and the status is reported back
from the kcmstest command display to the test log.

34 KCMS Test Suite User’s Guide • May 2002



EVAL: Command Syntax Example
EVAL:Reference=forward; SourcePixLayout=RGBInterLeaved;
DestPixLayout=RGBInterLeaved; Callbacks=; ImageIn=test;
ImageOut=None; Operation=Forward;

EVAL: Keywords and Values
Table 3–5 presents the EVAL: command keywords and their descriptions.

TABLE 3–5 EVAL: Command Keywords

Keyword Description

Reference= Is the name that was assigned when the profiles were connected.

SourcePixLayout= Sets the pixel layout structure and, if necessary, restructures the
input data. This keyword has one of the following values:

RGBInterLeaved (also called component- or pixel-interleaved)

RGBPlanar

RGBRowInterleaved (also called planar- or band-interleaved)

(For details on these values, see the description of the
KcsPixelLayout structure in the SDK manual KCMS Application
Developer’s Guide)

DestPixLayout= Sets the pixel layout structure. This keyword has one of the
following values:

RGBInterLeaved

RGBPlanar

RGBRowInterleaved

ImageIn= Is the image file name that will be processed in the EVAL:
command. The image file must be located in the
kcmstest/images directory. Only images stored in the TIFF file
format can be processed by kcmstest at this time.

ImageOut= Is the image file name that will be output from the EVAL:
command. The image file will be located in the kcmstest/images
directory. Only TIFF image file format can be output by kcmstest
at this time. In the event that no image output is required, specify
None for the image name. Note that TIFF files can use up your disk
space very quickly. Be sure to remove them after inspection. Specify
NULL if you do not want to save the output image.

Chapter 3 • KCMS Test Suite Commands 35



TABLE 3–5 EVAL: Command Keywords (Continued)
Keyword Description

Operation= Defines the operation load hint that will be used to evaluate the
data. This keyword has the operation and content hint values listed
inTable 3–6. In the table, the keyword value is followed by the
corresponding value set in the Operations parameter passed to
the KcsEvaluate() function. Only one direction and one content
operation hint can appear in a single EVAL: script command, and
the complete profile that is evaluated must include the matching
operation hint (transform). If, for example, you connect profiles
requesting the Reverse operation, and you evaluate the resulting
profile requesting the Forward operation, you will get an error.

Callbacks= Causes kcmstest to perform a KcsSetCallback() call.
Callbacks are registered in the log file.

XStatus= The default expected status is KcsSuccess. If the script command
is expected to complete successfully, the XStatus= keyword is not
required. In cases where a script command is expected to return a
non-success status, the keyword is followed by the corresponding
expected, non-success status in hexadecimal format.

Table 3–6 presents the acceptable values for the EVAL: command Operation=
keyword.

TABLE 3–6 EVAL: Command Operation= Keyword Values

Value Value Set

Forward; KcsOpForward

Reverse; KcsOpReverse

Simulate; KcsOpSimilate

Gamut; KcsOpGamutTest

ContUnkn; KcsContUnknown

Graphics; KcsContGraphics

Image; KcsContImage

ColorMtrc; KcsContColorimetric

Note – The EVAL: command also produces pixel evaluation speeds, in terms of 24-bit
pixels per second, for the log file.

36 KCMS Test Suite User’s Guide • May 2002



FREE:

FREE: Command Description
FREE: functionality corresponds to the KcsFreeProfile() call. When this
command is interpreted, the KcsFreeProfile() function is executed and the status
is reported back from the kcmstest command display to the test log.

FREE: Command Syntax Example
FREE:Reference=scanner;

FREE: Keywords and Values
Table 3–7 presents the FREE: command keywords and their descriptions.

TABLE 3–7 FREE: Command Keywords

Keyword Description

Reference= Is the name that was assigned to the profile either when it was
loaded or created using the CONNECT: or CREATE: command. If
the file was loaded with the LOAD: or CREATE: command, the file
is closed.

XStatus= The default expected status is KcsSuccess. If the script command
is expected to complete successfully, the XStatus= keyword is not
required. In cases where a script command is expected to return a
non-success status, the keyword is followed by the corresponding
expected, non-success status in hexadecimal format.

GETATTR:

GETATTR: Command Description
GETATTR: functionality corresponds to the KcsGetAttribute() call. When this
command is interpreted, the KcsGetAttribute() function is executed and the
status is reported back from the kcmstest command display to the test log.

Chapter 3 • KCMS Test Suite Commands 37



GETATTR: Command Syntax Example
GETATTR:Reference=testscanner; Attribute
Tag=icSigMediaWhitePointTag;

GETATTR: Keywords and Values

Note – If all the attributes for a given profile are required, set the keyword
Attribute Tag to the value All. This will cause kcmstest to retrieve and display
all the attributes and values.

Table 3–8 presents the GETATTR: command keywords and their descriptions.

TABLE 3–8 GETTATTR: Command Keywords

Keyword Description

Reference= Is the name that was assigned when the profiles were loaded,
created, or connected.

Attribute Tag= Is the name of the attribute that is to be manipulated by this
command. For a list of all the attribute names, see Chapter 5,
“KCMS Profile Attributes,” in the KCMS Application Developer’s
Guide. The section entitled “List of All Attributes” lists all the
attribute names you can use as values for this keyword.

XStatus= The default expected status is KcsSuccess. If the script command
is expected to complete successfully, the XStatus= keyword is not
required. In cases where a script command is expected to return a
non-success status, the keyword is followed by the corresponding
expected, non-success status in hexadecimal format.

LOAD:

LOAD: Command Description
LOAD: functionality corresponds to the KcsLoadProfile() call. When this
command is interpreted, the KcsLoadProfile() function is executed and the status
is reported back from the kcmstest command display to the test log.

38 KCMS Test Suite User’s Guide • May 2002



LOAD: Command Syntax Example
LOAD:Reference=scanner; Profile=clc500fs.inp; Handling=File;
LoadHint=AllNow;

LOAD: Keywords and Values
Table 3–9 presents the LOAD: command keywords and their descriptions.

TABLE 3–9 LOAD: Command Keywords

Keyword Description

Reference= Is the name that this profile will be referred to in subsequent script
commands. In the context of the test script, it is the profile name.

Profile= Is the file name of the profile. All profiles must be located in the
kcmstest/profiles directory. This keyword may name a
pre-made profile or a profile that is created as part of the test script.

Handling= Describes how the profile will be handled. This keyword has the
values listed in Table 3–10.

LoadHint= Defines the load hint that will be used to load the profile. This
keyword has the values listed in Table 3–11. In the table, the
keyword value is followed by the corresponding value set in the
loadHints parameter passed to the KcsLoadProfile()
function. A LoadHint= keyword can appear more than once in a
single script command. Multiple load hints are logically OR’d
together.

Operation= Defines the operation load hint that will be used to load the profile.
This keyword has the operation and content hint values listed in
Table 3–12. In the table, the keyword is followed by the
corresponding value set in the loadHints parameter passed to the
KcsLoadProfile() function. An Operation= keyword can
appear more than once in a single script command. Multiple
operations are logically OR’d together.

KcsDisplay= Is the X Window System display (display:screen) number in the
form of 0.0, 0.1, and so forth. Use this keyword for multiheaded
systems.

KcsHost= Is the host name of the workstation from which a profile is to be
read. You must have the kcms_server(1) daemon running to
access another host through the network.

Chapter 3 • KCMS Test Suite Commands 39



TABLE 3–9 LOAD: Command Keywords (Continued)
Keyword Description

XStatus= The default expected status is KcsSuccess. If the script command
is expected to complete successfully, the XStatus= keyword is not
required. In cases where a script command is expected to return a
non-success status, the keyword is followed by the corresponding
expected, non-success status in hexadecimal format.

Table 3–10 presents the LOAD: command Handling= keyword values.

TABLE 3–10 LOAD: Command Handling= Keyword Values

Value Description

File Sets Desc.type = KcsFileProfile

KcsSolarisFile Sets Desc.type = KcsSolarisProfile

KcsWindow Sets Desc.type = KcsWindowProfile

Memory Sets Desc.type = KcsMemoryProfile

Table 3–11 presents the LOAD: command LoadHint= keyword values.

TABLE 3–11 LOAD: Command LoadHint= Keyword Values

Value Load Hint Set

AllNow KcsLoadAllNow

AllWhen KcsLoadAllWhenNeeded

LoadAttr KcsLoadAttributeNow

MinMem KcsLoadMinimalMemory

PurgeMem KcsPurgeMemoryNow

LoadWhenNever KcsLoadNever

LoadWhenNow KcsLoadNow

LoadWhenNeeded KcsLoadWhenNeeded

LoadWhenIdle KcsLoadWhenIdle

UnloadWhenNow KcsUnloadNow

UnloadWhenFree KcsUnloadWhenFreed

UnloadWhenNeeded KcsUnloadWhenNeeded

UnloadAfter KcsUnloadAfterUse

40 KCMS Test Suite User’s Guide • May 2002



TABLE 3–11 LOAD: Command LoadHint= Keyword Values (Continued)
Value Load Hint Set

WhatAttr KcsAttributes

WhatAll KcsAll

WhatEffects KcsEffect

Table 3–12 presents the LOAD: command Operation= keyword values.

TABLE 3–12 LOAD: Command Operation= Keyword Values

Value Load Hint Set

OpsAll KcsOpAll

ContUnkn KcsContUnknown

Graphics KcsContGraphics

Image KcsContImage

ColorMtrc KcsContColorimetric

ContAll KcsContAll

LOG:

LOG: Command Description
LOG: writes a string to the log file to facilitate reading test results. This command does
not correspond to a KCMS function call.

LOG: Command Syntax Example
LOG:Connect Test-Connect profiles varying the number of;
LOG:profiles.;

LOG: Keywords and Values
None.

Chapter 3 • KCMS Test Suite Commands 41



MODIFYLH:

MODIFYLH: Command Description
MODIFYLH: functionality corresponds to the KcsModifyLoadHints() call. When
this command is interpreted, the KcsModifyLoadHints() function is executed and
the status is reported back from the kcmstest command display to the test log. This
command is commonly used when a profile has previously been loaded for attributes
only. It allows the rest of the profile to be loaded.

MODIFYLH: Command Syntax Example
MODIFYLH:Reference=connected; LoadHint=LoadAllNow;

MODIFYLH: Keywords and Values
Table 3–13 presents the MODIFYLH: command keywords and their descriptions.

TABLE 3–13 MODIFYLH: Command Keywords

Keyword Description

Reference= Is the name that was assigned when the profiles were loaded,
created, or connected.

LoadHint= Defines the load hint that will be used to load the profile. This
keyword has the values shown in Table 3–14. In the table, the
keyword value is followed by the corresponding value set in the
loadHints parameter passed to the KcsLoadProfile()
functionn. A LoadHint= keyword can appear more than once in a
single script file. Multiple load hints are logically OR’d together.

Operation= Defines the operation load hint that will be used to connect the new
profile. This keyword has the operation and content hint values
shown in Table 3–15. In the table, the keyword value is followed by
the corresponding value set in the loadHints parameter passed to
the KcsLoadProfile() function. An Operation= keyword can
appear more than once in a single script command. Multiple load
hints are logically OR’d together.

42 KCMS Test Suite User’s Guide • May 2002



TABLE 3–13 MODIFYLH: Command Keywords (Continued)
Keyword Description

XStatus= The default expected status is KcsSuccess. If the script command
is expected to complete successfully, the XStatus= keyword is not
required. In cases where a script command is expected to return a
non-success status, the keyword is followed by the corresponding
expected, non-success status in hexadecimal format.

Table 3–14 presents the MODIFYLH: command LoadHint= keyword values.

TABLE 3–14 MODIFYLH: Command LoadHint= Keyword Values

Value Load Hint Set

AllNow KcsLoadAllNow

AllWhen KcsLoadAllWhenNeeded

LoadAttr KcsLoadAttributeNow

MinMem KcsLoadMinimalMemory

PurgeMem KcsPurgeMemoryNow

LoadWhenNever KcsLoadNever

LoadWhenNow KcsLoadNow

LoadWhenNeeded KcsLoadWhenNeeded

LoadWhenIdle KcsLoadWhenIdle

UnloadWhenNow KcsUnloadNow

UnloadWhenFree KcsUnloadWhenFreed

UnloadWhenNeeded KcsUnloadWhenNeeded

UnloadAfter KcsUnloadAfterUse

WhatAttr KcsAttributes

WhatAll KcsAll

WhatEffects KcsEffect

Table 3–15 presents the MODIFYLH: command Operation= keyword values.

TABLE 3–15 MODIFYLH: Command Operation=Keyword Values

Value Load Hint Set

OpsAll KcsOpAll

Chapter 3 • KCMS Test Suite Commands 43



TABLE 3–15 MODIFYLH: Command Operation=Keyword Values (Continued)
Value Load Hint Set

ContUnkn KcsContUnknown

Graphics KcsContGraphics

Image KcsContImage

ColorMtrc KcsContColorimetric

ContAll KcsContAll

OPTIMIZE:

OPTIMIZE: Command Description
OPTIMIZE: functionality corresponds to the KcsOptimizeProfile() call. When
this command is interpreted, the KcsOptimizeProfile() function is executed and
the status is reported back from the -kcmstest command display to the test log.

OPTIMIZE: Command Syntax Example
OPTIMIZE:Reference=simulate; Optimization=Speed;

OPTIMIZE: Keywords and Values
Table 3–16 presents the OPTIMIZE: command keywords and their descriptions.

TABLE 3–16 OPTIMIZE: Command Keyword Values

Keyword Description

Reference= Is the name that was assigned when the profiles were loaded,
created, or connected.

44 KCMS Test Suite User’s Guide • May 2002



TABLE 3–16 OPTIMIZE: Command Keyword Values (Continued)
Keyword Description

Optimization= Sets the optimization type. This keyword has the values shown in
Table 3–17. In the table, the keyword value is followed by the
corresponding value set in the optimizationType parameter
passed to the KcsOptimizeProfile() function. Multiple
optimizations are logically OR’d together.

Callbacks= Causes kcmstest to call the KcsSetCallback() function.
Callbacks are registered in the log file.

XStatus= The default expected status is KcsSuccess. If the script command
is expected to complete successfully, the XStatus= keyword is not
required. In cases where a script command is expected to return a
non- success status, the XStatus= is followed by the
corresponding expected, non-success status in hexadecimal format.

Table 3–17 presents the OPTIMIZE: command Optimization= keyword values.

TABLE 3–17 OPTIMIZE: Command Optimization= Keyword Values

Value Optimization Type Set

None KcsOptNone

Accuracy KcsOptAccuracy

Speed KcsOptSpeed

Size KcsOptSize

SAVE:

SAVE: Command Description
SAVE: functionality corresponds to the KcsSaveProfile() call. When this
command is interpreted, theKcsSaveProfile() function is executed and the status
is reported back from the kcmstest command display to the test log.

SAVE: Command Syntax Example
SAVE:Reference=connected; File Name=modlhtst.pro;

Chapter 3 • KCMS Test Suite Commands 45



SAVE: Keywords and Values
Table 3–18 presents the SAVE: command keywords and their descriptions.

TABLE 3–18 SAVE: Command Keywords

Keyword Description

Reference= Is the name that was assigned when the profiles were loaded or
created, via the CONNECT: command.

File Name= Is the name of the file to which the profile is saved.

XStatus= The default expected status is KcsSuccess. If the script command
is expected to complete successfully, the XStatus= keyword is not
required. In cases where a script command is expected to return a
non- success status, the XStatus= is followed by the
corresponding expected, non-success status in hexadecimal format.

SETATTR:

SETATTR: Command Description
SETATTR: functionality corresponds to the KcsSetAttribute() call. When this
command is interpreted, the KcsSetAttribute() function is executed and the
status is reported back from the kcmstest command display to the test log.

See Chapter 5 for a test script example showing how to set each supported attribute.

SETATTR: Command Syntax Example
SETATTR:Reference=scanner; Attribute Tag=icSigCopyrightTag;
Attribute Value=SUN MICROSYSTEMS 1996;

SETATTR: Keywords and Values
Table 3–19 presents the SETATTR: command keywords and their descriptions.

46 KCMS Test Suite User’s Guide • May 2002



TABLE 3–19 SETATTR: Command Keywords

Keyword Description

Reference= Is the name that was assigned when the profiles were loaded,
created, or connected.

Attribute Tag= Is the name of the attribute that is to be manipulated by this
command. For a list of all the attribute names and examples of how
to set values for them, see Chapter 5.

Attribute Value= Is the value to be applied to the attribute identified in the
Attribute Tag= keyword. If the attribute type is a string, insert
the string after the command and follow it with a semi-colon. If the
attribute type is an integer or a float value, enter the corresponding
string value into the script and follow it with a semi-colon. If more
than one value is required, separate the values with commas (,).
Finally, if the attribute type is an enumerated type, see Chapter 5,
“KCMS Profile Attributes,” in the KCMS Application Developer’s
Guide for a description of the enumerated types. See Chapter 5 in
this guide, for examples of setting attributes.

XStatus= The default expected status is KcsSuccess. If the script command
is expected to complete successfully, the XStatus= keyword is not
required. In cases where a script command is expected to return a
non- success status, the XStatus= is followed by the
corresponding expected, non-success status in hexadecimal format.

Count= Is the count of data values (of type AttributeType=, where
appropriate) found after the Attribute Value= keyword when
creating a new attribute for an ICC profile.

UPDATE:

UPDATE: Command Description
UPDATE: functionality corresponds to the KcsUpdateProfile() call. When this
command is interpreted the KcsUpdateProfile() function is executed, and the
status is reported back from the kcmstest command display to the test log.

UPDATE: Command Syntax Example
UPDATE:Reference=umax; Profile Type=Scan; Operation=Both;
CharInDataFile=umax_char.aim; CharOutDataFile=umax_char.mea;
CalInDataFile=umax_cal.aim; CalOutDataFile=umax_cal.meas;

Chapter 3 • KCMS Test Suite Commands 47



UPDATE: Keywords and Values
Table 3–20 presents the UPDATE: command keywords and their descriptions.

TABLE 3–20 UPDATE: Command Keywords

Keyword Description

Reference= Is the name that was assigned when the profiles were loaded or
created, with the CONNECT: or CREATE: command.

Profile Type= Is the type of profile that is being updated. The acceptable types are

Print

Scan

Mon

Effect

Currently only scanner and monitor profiles can be updated.

Operation= Is the type of operation that is being attempted during the update.
The acceptable operations are

Characterization

Calibration

Both

CalInDataFile= Is the data file name of the calibration input data. It is assumed that
the file is in the kcmstest/data directory.

CalOutDataFile= Is the data file name of the calibration output data. It is assumed
that the file is in the kcmstest/data directory.

CharInDataFile= Is the data file name of the characterization input data. It is
assumed that the file is in the kcmstest/data directory. This
value can be NULL.

CharOutDataFile= Is the data file name of the characterization output data. It is
assumed that the file is in the kcmstest/data directory. This
value can be NULL.

XStatus= The default expected status is KcsSuccess. If the script command
is expected to complete successfully, the XStatus= keyword is not
required. In cases where a script command is expected to return a
non- success status, the XStatus= is followed by the
corresponding expected, non-success status in hexadecimal format.

48 KCMS Test Suite User’s Guide • May 2002



CHAPTER 4

KCMS Test Script Descriptions

In This Chapter
This chapter describes each test script in the KCMS test suite. The chapter groups the
test scripts into the categories listed in Table 4–1 and presents them in the order shown
(that is, loading profiles is presented first, connecting profiles second, and so forth).

Test Script Categories
Table 4–1 shows the KCMS API function name and the corresponding script command
name that is used by the kcmstest utility. When describing a function being
performed, this chapter uses the test script command name.

TABLE 4–1 Test Script Categories

Category KCMS “C” API Function Script Command

Loading profiles KcsLoadProfile() LOAD:

Connecting profiles KcsConnectProfile() CONNECT:

Evaluating profiles KcsEvaluateProfile() EVAL:

Optimizing profiles KcsOptimizeProfile() OPTIMIZE:

Modifying load hints KcsModifyLoadHints() See “Cross-Category API
Functions And Script
Commands” on page 50.

49



TABLE 4–1 Test Script Categories (Continued)
Category KCMS “C” API Function Script Command

Saving profiles KcsSaveProfile() See “Cross-Category API
Functions And Script
Commands” on page 50.

Getting attributes

Setting attributes

KcsGetAttribute()

KcsSetAttribute()

GETATTR:

SETATTR:

Updating profiles KcsUpdateProfile() UPDATE:

Freeing profiles KcsFreeProfile() See “Cross-Category API
Functions And Script
Commands” on page 50.

Enhancements No particular function; tests
new features and bug fixes

Cross-Category API Functions And Script
Commands
The KcsAvailable(), KcsCreateProfile(), KcsFreeProfile(),
KcsModifyLoadHints(), KcsSaveProfile(), and KcsSetCallback()
functions in the KCMS framework API are not addressed directly as a testing category
in a single script. Each of these functions is exercised in the course of performing
normal testing.

� KcsCreateProfile() (CREATE: command) is called to generate an empty
profile that can be used by subsequent script commands such as GETATTR:,
SETATTR:, and UPDATE:.

� KcsFreeProfile() (FREE: command) is called in each test script where a profile
is loaded, connected, or created. This is the expectation of the KCMS framework.

� KcsModifyLoadHints()(MODIFYLH: command) typically is called to load the
rest of a profile previously loaded for attributes only. It is called in the
IC_lhints.scr script.

� KcsSaveProfile() (SAVE: command) is performed and tested in several of the
script categories listed in Table 4–2.

� KcsSetCallback() is called in the EVAL:, UPDATE:, and OPTIMIZE: script
commands whose operation is expected to take an extended period of time.

In addition, the LOG: command is not associated with a particular KCMS API
function. Instead it serves to show comment data in the test scripts.

50 KCMS Test Suite User’s Guide • May 2002



TABLE 4–2 Testing the SAVE: Command

Category Script Name

Connecting Profiles IC_conerr.scr

Getting and Setting
Attributes

IC_attr1.scr

Updating Profiles IC_update1.scr, IC_update2.scr

Enhancements IC_gray.scr, IC_pacbug.scr, IC_sun_update.scr,
IC_updatewin.scr, IC_xprofilesav.scr,
IC_xprofilesavremote.scr, IC_xprofilesavroot.scr

For More Information on API Functions
This chapter summarizes the testing of the KCMS API functions. Operation of a
function is described only where it is necessary to describe the associated testing. For a
detailed function descriptions, see the KCMS SDK manual KCMS Application
Developer’s Guide.

Note – Many of the images resulting from EVAL: calls are not saved. This is only to
limit the amount of disk space used by the test suite. See “EVAL: Keywords and
Values” on page 35 (ImageOut= keyword) for details on how to save the resulting
image.

Loading Profiles

Load All Now

Script Name

IC_lana.scr

Concept

IC_lana.scr loads an arbitrarily large number of profiles and verifies that profiles
can be connected and an image evaluated.

Chapter 4 • KCMS Test Script Descriptions 51



Description

This script demonstrates that the KCMS framework can load and maintain several
profiles in memory at the same time. The load hint specified in each of the load
commands is AllNow. (See Table 3–11 for the LOAD: command LoadHint= keyword
values and the corresponding load hints.) The type of profiles loaded varies (monitor,
printer, scanner, color space). The script first loads all the profiles, after which it
performs some simple operations such as CONNECT: and EVAL: to demonstrate that
the framework can operate under these conditions. Then all the profiles are freed from
memory with the FREE: command.

Verification

Each command is expected to return a successful status. Examine the test images
output by the EVAL: command. Do not make color quality evaluations unless you
have the appropriate devices to do so.

Load Many

Script Name

IC_lmany.scr

Concept

IC_lmany.scr performs many loads but with few profiles in memory at any one
time. It confirms that subsequent profile-related operations can be performed
successfully.

Description

This script demonstrates that the KCMS framework can load many profiles in
succession while the framework continues to operate without error. The type of
profiles loaded vary (monitor, printer, scanner, color space), and the profiles are loaded
with the AllNow load hint. (See Table 3–11 for the LOAD: command LoadHint=
keyword values and the corresponding load hints.) In general, the script simply loads
the profiles and immediately frees them. After loading and freeing 100 profiles, it
loads more profiles, connects them, and evaluates some images. Then it frees the
profiles with the FREE: command.

Verification

Each command is expected to return a successful status. Examine the test images
output by the EVAL: command. Do not make color quality evaluations unless you
have the appropriate devices to do so.

52 KCMS Test Suite User’s Guide • May 2002



Load Hints Test

Script Name

IC_lhints.scr

Concept

IC_lhints.scr loads profiles, varying the load hints applied. It performs
subsequent operations, verifying that all parts of a profile required for an operation
get automatically loaded if they were not specified in the load hints.

Description

This script demonstrates that the KCMS framework can perform a LOAD: command
with a variety of load hints applied. The script performs additional functions to verify
the automatic loading of profiles. For example, when a profile is loaded specifying
attributes only, it is expected that a CONNECT: command can complete successfully
without having to manually load the remainder of the profile. The type of profiles
loaded vary (monitor, printer, scanner, color space). The load hints are broken down
into categories similar to the ones in the KCMS Application Developer’s Guide (that is,
what, how, when, and where to load and unload a profile). The script mixes these
various load hint categories and loads several profiles. After these operations are
completed all the profiles are freed from memory.

Note – The operation load hints forward, reverse, simulate, and gamut have no effect
in the LOAD: command. Unless attributes only is specified, all available
transformations are loaded. Even if attributes only is specified,
KcsConnectProfiles()automatically loads all the transformations. This is
provided, however, for CMM developers who provide these capabilities in their
CMMs.

The script performs the following operation sequence:

1. It loads scanner and monitor profiles specifying various load hints. It attempts to
connect the profiles.

2. It loads scanner and printer profiles, specifying load when needed, unload when
needed, and the image content hint settings. It attempts to connect the profiles,
specifying the forward transformation. It verifies that the profile can be connected.

3. It loads monitor and printer profiles, specifying the graphics content hint. It
connects the profiles, specifying forward and graphics. It evaluates an image using
this complete transformation and verifies success.

Chapter 4 • KCMS Test Script Descriptions 53



4. It loads scanner and monitor profiles, specifying the content unknown hint. It
connects the profiles, specifying forward and unknown. It evaluates using this
complete transformation and verifies success.

5. It loads a PhotoCD profile, specifying attributes only. It gets all the profile
attributes.

6. It loads scanner, monitor, and printer profiles, specifying the content unknown
hint. It creates complete transformations for each of the following paths and
evaluates using these transformations:

a. scanner ->printer (forward)
b. printer -> monitor reverse)
c. monitor->printer->monitor (simulate)

To save disk space, it does not output the images resulting from the EVAL:
commands. This can be changed if you have enough disk space on your system. See
“EVAL: Keywords and Values” on page 35 (ImageOut= keyword) for details on how
to save the resulting image.

Note – To date, profiles with an image, graphics, or a content unknown hint are not
available. Since image, graphics, and colorimetric content hints execute the same code
anyway, these tests should complete successfully. This is provided, however, for CMM
developers who provide this functionality in their CMMs.

Verification

All commands are expected to return successfully.

Connecting Profiles

Connect Profiles

Script Name

IC_connect.scr

Concept

IC_connect.scr connects various types of device profiles into complete profiles. It
evaluates using the complete profiles.

54 KCMS Test Suite User’s Guide • May 2002



Description

This script demonstrates that the KCMS framework can connect a variety of profiles in
a variety of ways. It loads profiles of the following types: scanner, monitor, and
printer. After the profiles are loaded, the script makes a variety of connections with the
CONNECT: command.

Initially the script works with scanner and monitor profiles, creating complete profiles,
one for each of the following transformation types: forward, reverse, and gamut. It
evaluates using the profiles containing the forward transformations.

Next it loads monitor and printer profiles and creates complete profiles including
forward, reverse, and simulate transformations. It creates additional profiles that not
only contain these transformations but have image content hints specified as well.
Then it evaluates using the forward and simulate profiles. To save disk space, outputs
are not saved.

Finally the script works with scanner and printer profiles.

At various points, the script evaluates the connected profiles to verify that the new
profile can be used to process image data. Additionally, it varies the content of the
connected profile (image, content unknown, and so forth).

Verification

Each command is expected to return successfully.

Connect Many Profiles

Script Name

IC_conmany.scr

Concept

IC_conmany.scr performs many CONNECT: commands. It confirms that subsequent
framework operations can be performed successfully.

Description

This script demonstrates that the KCMS framework can connect many profiles in
succession while the framework continues to operate without error. The script loads a
variety of profiles (monitor, printer, scanner, Photo CD), and connects them with a
variety of operation and content hints. On the profiles loaded, it performs 20 connect
calls. With the 20 connected profiles in memory, it evaluates the complete profiles. It
does not save the color-managed images. After the operations are completed, it frees
the profiles from memory.

Chapter 4 • KCMS Test Script Descriptions 55



Verification

Each command is expected to return successfully.

Connect Error

Script Name

IC_conerr.scr

Concept

IC_conerr.scr attempts to connect various types of device profiles into complete
profiles, testing the error handling capabilities of the CONNECT: command.

Description

This script demonstrates that the KCMS framework can perform the CONNECT:
command under a variety of error conditions and return the correct status. The script
performs the CONNECT: command with the following error conditions:

� It attempts to connect a profile that only has its attributes loaded.
� It attempts to create a simulate profile with only two profiles provided.

Verification

Commands that are expected to fail will have the expected failure status provided as
part of the CONNECT: script command.

Evaluating Profiles

Evaluate

Script Name

IC_eval.scr

56 KCMS Test Suite User’s Guide • May 2002



Concept

IC_eval.scr performs several EVAL: commands on different image types
(computer-generated graphics, scanned images). The resolution of the images varies
from 72 dpi to 200 dpi. It saves the TIFF file outputs of the evaluate tests to allow for
subjective evaluation of color quality.

Note – Subjective evaluation of the images requires the following devices: Apple 13”
monitor, Kodak XL 7720 printer, Kodak ColorEdge 1550 copier-printer. Images used in
this test are scanned on a Microtek 600ZS scanner.

Description

This script demonstrates that the KCMS framework can successfully perform the
EVAL: command under varying input and output conditions. First several profiles are
loaded, and the CONNECT: command is used to create forward, reverse, and simulate
test profiles. Test images are evaluated through each of the profiles that were
previously connected. After these operations are completed, all the profiles are freed
from memory with the FREE: command.

Verification

Each command in this script is expected to return successfully. As a post-test exercise,
you should generate and examine each of the images output from the EVAL:
command as an additional verification that the evaluate tests completed successfully.

Evaluate Gamut Range

Script Name

IC_gamut.scr

Concept

IC_gamut.scr checks the color gamut of an image it evaluates.

Description

This script demonstrates that the KCMS framework can successfully perform the
EVAL: command and check the color gamut. First the script loads two profiles and
connects them to create a resulting profile. It then evaluates the image through the
resulting profile, requesting that the color gamut be checked. Since not all devices can
represent the same number or range of colors, gamut testing can indicate how many of
the image’s colors are reproducible on the output device.

Chapter 4 • KCMS Test Script Descriptions 57



Verification

The number of pixels that are out of gamut (that is, their colors are not reproducible) is
printed. The output image is not saved but instead is represented by 0’s and FF’s. Each
0 represents an in-gamut pixel and each FF, an out-of-gamut pixel.

Evaluate Many

Script Name

IC_evalmany.scr

Concept

IC_evalmany.scr evaluates many images, processing over 100 MB of image data.

Description

This script demonstrates that the KCMS framework can successfully perform the
EVAL: command repetitively. First the script loads several profiles, and the CONNECT:
command is called to create forward, reverse, and simulate profiles. In all, this test
performs 25 EVAL: calls, constituting the processing of over 100 MB of image data.
The script does not save the resulting evaluated image.

For details on how to save the image, see “EVAL: Keywords and Values” on page 35
(ImageOut= keyword). Be sure you have enough disk space to do so.

Verification

Each command is expected to return successfully.

Evaluate Layout

Script Name

IC_layouts.scr

Concept

IC_layouts.scr evaluates images with the organization of the image data varied.
The image organizations tested are: RGB row interleaved, RGB interleaved, and RGB
planar. kcmstest is responsible for organizing the image data in the specified format.

58 KCMS Test Suite User’s Guide • May 2002



The script processes graphic images and saves the output for later evaluation. In all
cases, the output images should be saved in RGB interleaved image organization so
they can be examined after the test is completed.

Description

This script demonstrates that the KCMS framework can successfully perform the
EVAL: command under varying input and output conditions. First the script loads
several profiles and uses the CONNECT: command is to create forward, simulate test,
and reverse profiles. Test images are passed through these profiles, exercising various
image organizations specified for the input image. After these operations are
completed, all the profiles are freed from memory.

Verification

Each command is expected to return successfully. As a post-test exercise, you can
examine each of the images output from the EVAL: command as additional
verification that the evaluate layout tests completed successfully.

Evaluate Error

Script Name

IC_evalerr.scr

Concept

IC_evalerr.scr attempts to create test conditions that cause the EVAL: command
to return various errors.

Description

This script demonstrates that the KCMS framework can perform a CONNECT:
command under a variety of error conditions and return the appropriate error status.
The script performs the CONNECT: command with the following error conditions:

� It attempts to evaluate using a profile that is not complete.
� It attempts to evaluate an image, specifying a transformation that is not part of the

complete profile provided in the EVAL: command.
� It attempts to evaluate an image, specifying a content hint that is not part of the

complete profile provided in the EVAL: command.

Chapter 4 • KCMS Test Script Descriptions 59



Verification

Commands that are expected to fail will have the expected failure status provided as
part of the EVAL: script command.

Optimizing Profiles

Speed Optimization

Script Name

IC_optspeed.scr

Concept

IC_optspeed.scr evaluates test images using complete profiles it creates with
forward, reverse, and simulate transformations. It optimizes the profiles for speed and
again evaluates the images.

Description

This script demonstrates that the KCMS framework can create complete profiles with
forward, reverse, and simulate transformations and can optimize them for speed. The
script loads a scanner, monitor, and printer profile and creates three connected profiles
with the forward, reverse, and simulate operations. It evaluates each connected profile
and records the time required to perform each evaluation in the log file. Then it
optimizes the connected profiles for speed and repeats evaluations. The time required
to perform each evaluation is again recorded to the log file. The script does not save
the color-managed images.

Verification

Each of the commands performed in this test is expected to complete successfully. The
optimized profiles are expected to reduce the time required to evaluate the image.

Size Optimization

Script Name

IC_optsize.scr

60 KCMS Test Suite User’s Guide • May 2002



Concept

IC_optsize.scr creates complete profiles that have forward, reverse, and simulate
transformations and gets the profile sizes. It optimizes the complete profiles for size.
Then it gets the new profile sizes. The profiles are written to the log file.

Description

This test script demonstrates that the KCMS framework can create complete profiles
with forward, reverse, and simulate transformations and can optimize them for size. It
uses scanner, color space, and printer profiles to test the OPTIMIZE: command for
size. It creates complete profiles, specifying the forward, reverse, and simulate
transformations. Using the GETATTR: command, it gets the size of the complete
profiles. Once this is done, it uses the OPTIMIZE: command to optimize an image for
size. Again the script gets the size of each of the completed profiles.

Verification

Each of the commands performed is expected to complete successfully. The optimized
profile sizes are expected to be reduced from the original sizes.

Getting and Setting Attributes

Get/Set Attribute

Script Name

IC_attr1.scr

Concept

IC_attr1.scr sets attributes for a variety of device profiles, which it saves and frees
from memory. Then it reloads the profiles and verifies that the attributes were
correctly set. It varies the attributes that it sets and gets.

Description

This script demonstrates that the KCMS framework can perform SETATTR:
commands for scanner, printer, and monitor profiles and verify that the attributes
were correctly set. Prior to operating on each profile type, the script uses the

Chapter 4 • KCMS Test Script Descriptions 61



GETATTR: command to retrieve all the attributes for that profile. After setting the
attributes with the SETATTR: command, the script saves and then frees each profile
from memory. Then it reloads the profile and performs a GETATTR: command on the
attributes previously set. You should examine the log file to verify that:

� Only the profile attributes modified with the previously executed SETATTR:
commands have been modified.

� The modified attributes reflect the values defined in the SETATTR:command.

Verification

All the commands performed in this test are expected to complete successfully.
Additionally, the profile attributes are expected to be modified to the values specified
in the SETATTR: commands.

Attribute Test 2

Script Name

IC_attr2.scr

Concept

IC_attr2.scr creates a new profile and sets a variety of attributes. It gets the
attributes and verifies that they have been properly set. It saves the profile, frees it,
reloads the saved profile, and again gets the attributes.

Description

This script demonstrates that the KCMS framework can set the attributes of a profile it
creates. After it creates the profile, it uses the SETATTR: command to set the
attributes. Then it uses the GETATTR: command to get all the attributes it set. The
script saves the profile and frees it from memory. Then it reloads the profile and again
gets the attributes it set.

Verification

All the commands performed in this test are expected to be successfully completed.
You should examine the log file to verify that:

� Only the profile attributes modified via the previously executed SETATTR:
commands have been modified.

62 KCMS Test Suite User’s Guide • May 2002



� The modified attributes reflect the values defined in the SETATTR: command.

Lookup Tables

Script Name

IC_lut.scr

Concept

IC_lut.scr uses data files in the data directory to set a lookup table (LUT)
structure in the profile and to get the LUT from the profile.

Description

This script demonstrates that the KCMS framework can support both 8-bit and 16-bit
LUTs. Not all profiles use the LUT technology within the profile, so not all profiles will
have LUTs. See the KCMS Application Developer’s Guide for more information on the
types of LUTs.

The SETATTR: command takes the name of the data file in the data directory
containing the LUT structure of values.

The GETATTR: command prints out the LUTs. The data can be very large—75,000
values. Once the LUTs are set, the profile must be saved before they are actually
written into and accessed by the GETATTR: command.

Verification

Examine the log to verify that the LUT values printed out match the LUT values in the
data files.

Updating Profiles

Update Scanner Profile

Script Name

IC_update1.scr

Chapter 4 • KCMS Test Script Descriptions 63



Concept

IC_update1.scr creates and updates a scanner profile with HP Scanjet calibration
and characterization data. It connects the scanner profile with a monitor profile to
create a complete profile. The complete profile is then used to evaluate an image. The
resulting image is saved for post-test subjective evaluation.

Description

This script demonstrates that the KCMS framework can create and update a scanner
profile with calibration and characterization data. The data used will not necessarily
match your scanner.

The test script verifies that, after the profile is updated, it can be connected to a
monitor profile and the resulting profile used to evaluate images.

The script creates a scanner profile and sets several attributes after which it performs
the UPDATE: command. Then it saves the updated profile and connects it to a monitor
profile. It evaluates the test image using this complete profile. Then it frees the profiles
from memory.

Verification

All the commands listed in this test are expected to complete successfully. You need to
subjectively evaluate the image resulting from the EVAL: command.

Update Monitor Profile

Script Name

IC_update2.scr

Concept

IC_update2.scr creates and updates a monitor profile with calibration data.
Monitor profiles in this test contain no characterization data; however the SETATTR:
command must set the monitor white point and the CIEXYZ chromaticity for the red,
green, and blue phosphors.

The monitor white point and chromaticity for the red, green, and blue phosphors of
ICC profiles are defined in CIEXYZ color space. After the profile is created, it is
connected with a printer profile to create a complete profile.

64 KCMS Test Suite User’s Guide • May 2002



Note – The scanner profile will have been previously verified. The complete profile is
then used to evaluate the image. The resulting image is saved for post-test subjective
evaluation.

Description

This script demonstrates that the KCMS framework can create and update a monitor
profile with calibration data. It uses the Sony 16” monitor profile distributed with the
KCMS product and updates it with the appropriate monitor calibration data. The
resulting data may not match your system characteristics.

The test script examines monitor profile updating. It loads the monitor profile and
performs the appropriate SETATTR: commands. It then performs the UPDATE:
command. It saves the updated profile and frees it from memory. It reloads the profile
and connects it to a printer profile. Using this complete profile, it evaluates the test
image.

Verification

All the commands in this test are expected to completed successfully. You need to
subjectively evaluate the image resulting from the EVAL: command.

Enhancement Tests
The scripts listed below are described alphabetically by script name. These scripts test
value-added features and bug fixes to the KCMS framework.

� IC_evalplus.scr
� IC_gray.scr
� IC_loadsol.scr
� IC_pacbug.scr
� IC_sun_update.scr
� IC_updatewin.scr
� IC_xdisplay.scr
� IC_xprofile.scr
� IC_xprofilehost.scr
� IC_xprofilesav.scr
� IC_xprofilesavremote.scr
� IC_xprofilesavroot.scr
� IC_xwindow.scr

Chapter 4 • KCMS Test Script Descriptions 65



� IC_xwindowerr.scr

IC_evalplus.scr

Concept

IC_evalplus.scr connects configured X Window System visual profiles to scanner
and printer profiles and evaluates the profiles in the same manner as generic profiles.

Description

This script is similar to IC_eval.scr (see “Evaluate” on page 56) with one exception:
the monitor profile used is a configured/calibrated X Window System visual profile
for the current frame buffer. This test should succeed if the system has been previously
configured using the kcms_configure(1) or kcms_calibrate(1) command.
After evaluation, the script frees the profiles from memory.

Verification

All the commands listed in this script are expected to complete successfully.

IC_gray.scr

Concept

IC_gray.scr creates a gray profile and sets attributes.

Description

This script demonstrates that the KCMS framework can create a gray device color
profile and set several attributes. It performs the following sequence of events first on
a display profile and then on an input profile.

It uses the CREATE: command to create the new profile and sets several attributes
with the SETATTR: command. Then it uses the GETATTR: command to get the
attributes to verify that they are properly set. It saves the profile and frees it from
memory. Then it reloads the profile and again verifies the attributes.

Verification

All the commands are expected to complete successfully.

66 KCMS Test Suite User’s Guide • May 2002



IC_loadsol.scr

Concept

IC_loadsol.scr loads and frees 100 59

Solaris file-type profiles without memory problems.

Description

This script demonstrates that the KCMS framework successfully can load and free 100
Solaris™ file-type profiles. The script actually verifies a previous fix of an error that
caused file descriptors to overflow because of improper file closings in the library.

Verification

All the commands in this script are expected to complete successfully.

IC_pacbug.scr

Concept

IC_pacbug.scr verifies a bug in the CONNECT: command.

Description

This script tests scanner and monitor profile connects. It tests a previous bug in the
system.

Verification

All the commands complete as expected.

IC_sun_update.scr

Concept

IC_sun_update.scr verifies a bug in the UPDATE: command.

Chapter 4 • KCMS Test Script Descriptions 67



Description

This script demonstrates that the KCMS framework can update a monitor profile
several times. It loads, updates, and saves a monitor profile to a different name three
times and frees the updated profiles. Then the script reloads each of the saved monitor
profiles and a scanner profile. It connects each monitor profile to the scanner profile,
specifying the forward transformation operation and evaluates the results. Finally, the
script frees all the profiles from memory.

Verification

All the commands are expected to complete successfully.

IC_updatewin.scr

Concept

IC_updatewin.scr updates a profile several times in a row.

Note – This script must be run as root.

Description

This script demonstrates that the KCMS framework can update an X Window System
profile several times—saving and freeing the profile each time.

Verification

All the commands are expected to complete successfully.

IC_xdisplay.scr

Concept

IC_xdisplay.scr recognizes a display number when accessing a remote host.

68 KCMS Test Suite User’s Guide • May 2002



Description

This script demonstrates that the KCMS framework can recognize a display number
when accessing a remote host. It requests a Solaris file profile from display 0.0 of a
remote host that has a single display. It loads a local X Window System profile and sets
an attribute to verify that the host is reset properly. Then it frees the profiles from
memory.

Note – The kcms_server(1) daemon must be running on the remote most. If it is
not running, type kcms_server in a command shell as root on the remote host.

Verification

All the commands in this test are expected to complete successfully provided the
kcms_server(1) daemon is running.

IC_xprofile.scr

Concept

IC_xprofile.scr tests ways of finding profiles.

Description

IC_xprofile.scr sets the environment variable KCMS_PROFILES to a directory
containing a profile called junk1.pro, which should be a copy of an existing profile
copied to this directory prior to running the test. It essentially tests the ability of the
library to use KCMS_PROFILES to find profiles.

Verification

All the commands in this test are expected to complete successfully.

IC_xprofilehost.scr

Concept

IC_xprofilehost.scr tests local and remote hosts.

Chapter 4 • KCMS Test Script Descriptions 69



Description

This script finds a profile remotely and sets the KCMS host to a remote server. It tests
the local host using the Internet name instead of the keyword local and sets the
KCMS host to the local machine.

Verification

All the commands in this test are expected to complete successfully.

IC_xprofilesav.scr

Concept

IC_xprofilesav.scr saves an X Window System profile.

Description

This script attempts to save X Window System profiles in /etc/openwin/devdata
without being root.

Verification

The test should fail with Xstatus 4011 (KCS_IO_WRITE), because it does not have
write permissions.

IC_xprofilesavremote.scr

Concept

IC_xprofilesavremote.scr tests writing to a remote host.

Description

This script sets the DISPLAY environment variable to a KCMS remote host. Then it
attempts to save an X Window System profile remotely.

Verification

The test should fail with XStatus 4302(KCS_X11_PROFILE_RO), because it does
not have write permissions.

70 KCMS Test Suite User’s Guide • May 2002



IC_xprofilesavroot.scr

Concept

IC_xprofilesavroot.scr saves an X Window System profile.

Note – This script must be run as root.

Description

This script saves an X Window System profile in
/etc/openwin/devdata/profiles.

Verification

All the commands in this test are expected to complete successfully.

IC_xwindow.scr

Concept

IC_xwindow.scr:

� Automatically accesses a profile that has been previously configured for the current
frame buffer using the kcms_configure(1) or kcms_calibrate(1)
commands

� Accesses a Solaris profile across the network

Description

This script demonstrates that the KCMS framework can access profiles locally and
across the network. First it loads the default X Window System profile from the local
host. Then it loads a Solaris profile from another host machine. Finally it frees the
profiles from memory.

Note – The kcms_server(1) daemon must be running on the remote most. If it is
not running, type kcms_server in a command shell as root on the remote host.

Chapter 4 • KCMS Test Script Descriptions 71



Verification

All the commands are expected to complete successfully, provided the
kcms_server(1) daemon is running on the current machine.

IC_xwindowerr.scr

Concept

IC_xwindowerr.scr captures errors and reports KcsStatus class extensions.

Description

This script tests Solaris file error cases. An invalid host name is requested in three
LOAD: commands, and invalid profiles are requested from the valid local host in three
other LOAD: commands.

Verification

All the LOAD: commands should fail because of an attempt to access an invalid host
name or profile name.

72 KCMS Test Suite User’s Guide • May 2002



CHAPTER 5

Setting Attributes

In This Chapter
This chapter provides a script example showing how to use the SETATTR: command
to set attributes. The chapter includes an example for each supported attribute.
Examples are presented alphabetically by attribute name. In most cases, the values
exactly match the fields in the icHeader structure. Those that don’t are indicated.

icSigHeaderTag

Attribute
Tag=icSigHeaderTag; Attribute Value=KCMS,2,icSigOutputClass,icSigRgbData,

icSigLabData,95,7,27,17,30,15,acsp,icSigSolaris,

1,prnt,test,0,0,0,0.964188,1.0,0.82489;

Attribute value= are values that exactly match the fields in the icHeader
structure. See the icHeader structure in icc.h.

icSigAToB0Tag

You set and get each of the following attributes in the same manner:

� icSigAToB0Tag
� icSigAToB1Tag
� icSigAToB2Tag

73



Attribute
Tag=attribute_name Attribute

Value=file_name

Attribute Tag= is icSigAToB0Tag, icSigAToB1Tag, or icSigAToB2Tag.

Attribute Value= is the name of a file containing data in the structure of an
ic_lut8Type or ic_lut16Type. See the the icc.h header file for a description of
each of these structures.

icSigBlueColorantTag

Attribute
Tag=icSigBlueColorantTag; Attribute

Value=29.41,12.37,151.21;

Attribute Value= are floating point X, Y, and Z values.

icSigBlueTRCTag

Attribute
Tag=icSigBlueTRCTag; Count=4; Attribute

Value=0,30000,45000,65535;

Count= is the number of values to be supplied.

Attribute Value= are 2-byte values.

icSigBToA0Tag

You set and get each of the following attributes in the same manner:

� icSigBToA0Tag
� icSigBToA1Tag
� icSigBToA2Tag

74 KCMS Test Suite User’s Guide • May 2002



Attribute
Tag=attribute_name Attribute

Value=file_name

Attribute Tag= is icSigBToA0Tag, icSigBToA1Tag, or icSigBToA2Tag.

Attribute Value= is the name of a file containing data in the structure of an
ic_lut8Type or ic_lut16Type. See the the icc.h header file for a description of
each of these structures.

icSigCalibrationDateTimeTag

Attribute
Tag=icSigCalibrationDateTimeTag; Attribute

Value=1995,6,27,16,34,0;

Attribute Value= are the following values:

1. Year
2. Month
3. Day
4. Hour
5. Minutes
6. Seconds

icSigCharTargetTag

Attribute
Tag=icSigCharTargetTag; Attribute

Value=IT8.7/2;

Attribute Value= is the ASCII string.

Chapter 5 • Setting Attributes 75



icSigCopyrightTag

Attribute
Tag=icSigCopyrightTag; Attribute Value=No Copy

right;

Attribute Value= is the ASCII string.

icSigDeviceMfgDescTag

Attribute
Tag=icSigDeviceMfgDescTag; Count=50; Attribute Value=55,56,QA

Test;

Count= is the number of characters in the ASCII string description. It must be greater
than or equal to the actual number of characters plus a terminating NULL byte.

Attribute Value= are Unicode description length (optional), Scriptcode description
length (optional), and ASCII string description.

icSigDeviceModeDescTag

Attribute
Tag=icSigDeviceModelDescTag; Count=50; Attribute Value=55,56,All icc

attributes;

Count= is the number of characters in the ASCII string description. It must be greater
than or equal to the actual number of characters plus a terminating NULL byte.

Attribute Value= are Unicode description length (optional), Scriptcode description
length (optional), and ASCII string description.

76 KCMS Test Suite User’s Guide • May 2002



icSigGamutTag

Attribute
Tag= icSigGamutTag Attribute

Value=file_name

Attribute Value= is the name of a file containing data in the structure of an
ic_lut8Type or ic_lut16Type. See the the icc.h header file for a description of
each of these structures.

icSigGrayTRCTag

Attribute
Tag=icSigGrayTRCTag; Count=9; Attribute

Value=0,8191,16383,24575,32767,40959,49151,57343,65535;

Count= is the number of values to be supplied.

Attribute Value= are 2-byte values.

icSigGreenColorantTag

Attribute
Tag=icSigGreenColorantTag; Attribute

Value=46.40,100.0,22.20;

Attribute Value= are floating point X, Y, and Z values.

Chapter 5 • Setting Attributes 77



icSigGreenTRCTag

Attribute
Tag=icSigGreenTRCTag; Count=4; Attribute

Value=0,21512,43024,65535;

Count= is the number of values to be supplied.

Attribute Value= are 2-byte values.

icSigLuminanceTag

Attribute
Tag=icSigLuminanceTag; Attribute

Value=38.668,40.0,32.996;

Attribute Value= are floating point X, Y, and Z values.

icSigMeasurementTag

Attribute
Tag=icSigMeasurementTag; Attribute Value=icStdObs1931TwoDegrees,1.0,1.0,1.0,

icGeometry045or450,icFlare0,icIlluminantD50;

Attribute Value= are values that exactly match fields in the icMeasurement
structure. See the icMeasurement structure in icc.h.

icSigMediaBlackPointTag

Attribute
Tag=icSigMediaBlackPointTag; Attribute

Value=0.056,0.12,0.003;

Attribute Value= are floating point X, Y, and Z values.

78 KCMS Test Suite User’s Guide • May 2002



icSigMediaWhitePointTag

Attribute
Tag=icSigMediaWhitePointTag; Attribute

Value=0.964188,1.0,0.82489;

Attribute Value= are floating point X, Y, and Z values.

isSigNamedColor2Tag

Attribute
Tag=icSigNamedColor2Tag; Count=2; Attribute Value=3, 135, light, ish, Green,

100, 20, 20, 120, 83, 75, Red, 20, 100, 20, 75, 120,

83;

Count= is the number of colors.

Attribute Value= are the following values:

1. Number of channels associated with this profile’s output color space
2. Vender-supplied flag
3. Prefix
4. Suffix
5. Count*(Color Name, PCS Coords(3), DevCoord*(Num of Channels))

For details, see icSigNamedColor2Tag in icc.h.

icSigPreview0Tag

You set and get each of the following attributes in the same manner:

� icSigPreview0Tag
� icSigPreview1Tag
� icSigPreview2Tag

Chapter 5 • Setting Attributes 79



Attribute
Tag=attribute_name Attribute

Value=file_name

Attribute Tag= is icSigPreview0Tag, icSigPreview1Tag, or
icSigPreview2Tag.

Attribute Value= is the name of a file containing data in the structure of an
ic_lut8Type or ic_lut16Type. See the the icc.h header file for a description of
each of these structures.

icSigProfileDescriptionTag

Attribute
Tag=icSigProfileDescriptionTag; Count=50; Attribute Value=55,56,This is a

profile description;

Count= is the number of characters in the ASCII string description. It must be greater
than or equal to the actual number of characters plus a terminating NULL byte.

Attribute Value= are Unicode description length (optional), Scriptcode description
length (optional), and ASCII string description.

icSigProfileSequenceTag

Note – This attribute is read only via the GETATTR: command and can’t be modified
by the SETATTR: command.

icSigPs2CRD0Tag

Attribute
Tag=icSigPs2CRD0Tag; Count=30; Attribute Value=0, This is the Ps2CRD0

tag;

Count= is the number of characters in the ASCII string.

80 KCMS Test Suite User’s Guide • May 2002



Attribute Value= are data type (0 = ASCII, 1 = binary) and ASCII string. (The
script test only supports ASCII.)

icSigPs2CRD1Tag

Attribute
Tag=icSigPs2CRD1Tag; Count=30; Attribute Value=0, This is the Ps2CRD1

tag;

Count= is the number of characters in the ASCII string.

Attribute Value= are data type (0 = ASCII, 1 = binary) and ASCII string. (The
script test only supports ASCII.)

icSigPs2CRD2Tag

Attribute
Tag=icSigPs2CRD2Tag; Count=30; Attribute Value=0, This is the Ps2CRD2

tag;

Count= is the number of characters in the ASCII string.

Attribute Value= are data type (0 = ASCII, 1 = binary) and ASCII string. (The
script test only supports ASCII.)

icSigPs2CRD3Tag

Attribute
Tag=icSigPs2CRD3Tag; Count=30; Attribute Value=0, This is the Ps2CRD3

tag;

Count= is the number of characters in the ASCII string.

Attribute Value= are data type (0 = ASCII, 1 = binary) and ASCII string. (The
script test only supports ASCII.)

Chapter 5 • Setting Attributes 81



icSigPs2CSATag

Attribute
Tag=icSigPs2CSATag; Count=30; Attribute Value=0, This is the Ps2CSA

tag;

Count= is the number of characters in the ASCII string.

Attribute Value= are data type (0 = ASCII, 1 = binary) and ASCII string. (The
script test only supports ASCII.)

icSigPs2RenderingIntentTag

Attribute
Tag=icSigPs2RenderingIntentTag; Count=40; Attribute Value=0, This is the

Ps2RenderingIntent tag;

Count= is the number of characters in the ASCII string.

Attribute Value= are data type (0 = ASCII, 1 = binary) and ASCII string. (The
script test only supports ASCII.)

icSigRedColorantTag

Attribute
Tag=icSigRedColorantTag; Attribute

Value=99.05,54.26,4.69;

Attribute Value= are floating point X, Y, and Z values.

82 KCMS Test Suite User’s Guide • May 2002



icSigRedTRCTag

Attribute
Tag=icSigRedTRCTag; Count=4; Attribute

Value=0,20000,40000,65535;

Count= is the number of values to be supplied.

Attribute Value= are 2-byte values.

icSigScreeningDescTag

Attribute
Tag=icSigScreeningDescTag; Count=32; Attribute Value=60,70,This is a screening

description;

Count= is the number of characters in the ASCII string description. It must be greater
than or equal to the actual number of characters plus a terminating NULL byte.

Attribute Value= are Unicode description length (optional), Scriptcode description
length (optional), and ASCII string description.

icSigScreeningTag

Attribute
Tag=icSigScreeningTag;Count=3; Attribute Value=0,3,10000, 20000,

icSpotShapeRound,30000,40000,

icSpotShapeRound,50000,60000,icSpotShapeRound;

Attribute Value= are the following values (repeat for the number of channels):

1. screening flag
2. number of channels
3. freq
4. screen angle
5. spot shape

For details, see icSigScreeningTag in icc.h.

Chapter 5 • Setting Attributes 83



icSigTechnologyTag

Attribute
Tag=icSigTechnologyTag; Attribute

Value=icSigCRTDisplay;

Attribute Value= is an enumerated type from the ICC header file. See the
icTechnology structure in icc.h.

icSigUcrBgTag

Attribute
Tag=icSigUcrBgTag;Count=40; Attribute Value=2,2,100,4,300,400,500,600,End of

UcrTag;

Count= is the number of characters in the ASCII string.

Attribute Value= are the following values:

1. Number of values in the sine ucr curve
2. The 2-byte ucr values
3. Number of values in the bg curve
4. The 2-byte bg curve values
5. ASCII string

icSigViewingCondDescTag

Attribute
Tag=icSigViewingCondDescTag; Count=32; Attribute Value=60,70,This is a viewing

description;

Count= is the number of characters in the ASCII string description. It must be greater
than or equal to the actual number of characters plus a terminating NULL byte.

Attribute Value= are Unicode description length (optional), Scriptcode description
length (optional), and ASCII string description.

84 KCMS Test Suite User’s Guide • May 2002



icSigViewingConditionsTag

Attribute
Tag=icSigViewingConditionsTag; Attribute

Value=1.0,.8976,1.198,.756,.5,.034,icIlluminantD50;

Attribute Value= are values that exactly match fields in the
icViewingCondition structure. See the icViewingCondition structure in
icc.h.

Chapter 5 • Setting Attributes 85



86 KCMS Test Suite User’s Guide • May 2002



CHAPTER 6

Putting It All Together

In This Chapter
This chapter threads together all the steps involved in using the KCMS test suite with
your CMM. The chapter refers you to the appropriate KCMS documentation for
details.

Development Environment
Requirements
The KCMS packages are automatically placed in a protected directory when you load
them with the pkgadd(3) command. Copy the packages to a writable directory for
development use.

To compile programs, you must use version 4.2 of the Sun™ Visual Workshop™ C++
compiler, which is included with Sun Visual Workshop C++ 3.0.

Creating Your CMM
The KCMS CMM Developer’s Guide and the KCMS CMM Reference Manual are your
primary sources of information on how to create a CMM.

87



Setting Up Your CMM
Guidelines for setting up your CMM are described in detail in the KCMS CMM
Developer’s Guide. To set up your CMM,

1. Name your CMM according to the guidelines in Chapter 2, “CMM: A Runtime
Derivative,” in the KCMS CMM Developer’s Guide. The section entitled
“Configuration Requirements” explains what you need to know to load your CMM
dynamically, including how to name it and how to update the OWconfig file.

2. Install your CMM according to the guidelines in the same chapter and section
referenced in step 1.

3. Create and name the profile(s) for your CMM according to the guidelines in
Chapter 2, “CMM: A Runtime Derivative,” in the KCMS CMM Developer’s Guide.
The section entitled “Profiles” describes the ICC profile format and explains how to
name profiles.

4. Install the profile so the KCMS framework can find it by following the guidelines
in the same chapter and section referenced in step 3. Also install those profiles you
want to use in the test suite in the kcmstest/profiles directory (see “Installing
Scripts and Profiles” on page 89) or create a link to them.

Creating Test Scripts
If the test scripts that are packaged with the KCMS DDK are not adequate to test
specific features of your custom CMM, you may decide to edit them. If you make any
changes (change the names of, add, or delete scripts from the list in icc.ini file or
customize the contents of scripts), you may need to create an alternate initialization
file or run selected scripts. For details, see Chapter 2 in this guide.

The test scripts you create must follow the guidelines for using KCMS functions as
described in the SDK manual KCMS Application Developer’s Guide. For example, to
evaluate profiles used by your CMM, your script first must connect profiles. Prior to
connecting profiles, it must create or load profiles. Keep in mind that the test suite can
only test attributes it knows about. If your profiles use new attributes, the test scripts
cannot test them. For examples of how to set attribute values, see Chapter 5.

88 KCMS Test Suite User’s Guide • May 2002



Installing Scripts and Profiles
So that the kcmstest command can find them, you must install all test scripts in the
kcmstest/script directory. Install all profiles you want to use in the test suite in
the kcmstest/profiles directory. (See “Required File Hierarchy” on page 18 for a
description of the KCMS test suite directory hierarchy.) Note that this profile
installation is a separate installation from the one to set up your CMM (described in
“Setting Up Your CMM” on page 88.)

Note – You may choose to install links to the location of your profiles.

Testing and Inspecting Results
Follow the guidelines for running the test scripts described in Chapter 2. If you just
plan to run a few scripts, you can use the kcms_qatest command with command
options. See “Using kcmstest To Run Test Scripts” on page 23 in Chapter 2.
Alternately, if you plan to run a large batch of scripts, the chapter suggests that you
use the automated test scripts to do so. See “Using Automated Script Files To Run Test
Scripts” on page 27 in Chapter 2.

Checking Status Codes
When you have run the scripts, inspect the log file(s).

In Chapter 2, “Running KCMS Test Scripts,” Example 2–3 shows the log file output for
the script shown in Example 2–2 in that same chapter. Status codes return the value 0
if a command completes successfully. Some scripts, however, expect an error to be
returned. You can use the XStatus keyword to test for error conditions you expect to
occur.

The IC_evalerr.scr test script, for example, creates test conditions in which the
EVAL: command generates errors. The EVAL: command includes the optional
keyword XStatus for reporting expected errors. Code example 5-1 is an excerpt from
the IC_evalerr.scr script. The example shows two EVAL: commands that will
generate errors because of incorrect or missing information. In each case, XStatus is
set to the value 4024 (“KCS_PROF_NO_DATA_SUPPORT_4_REQUEST”)

See Appendix A for a list of all the status strings and their values. You also can find
status codes and strings in the header file kcsstats.h. For additional information on
the meaning of status codes, see Chapter 6, “Warnings and Error Messages,” in the
SDK manual KCMS Application Developer’s Guide.

EXAMPLE 6–1 Using XStatus to Report Expected Errors

LOG:Attempt to evaluate with a profile that does not have the
correct transform;

Chapter 6 • Putting It All Together 89



EXAMPLE 6–1 Using XStatus to Report Expected Errors (Continued)

EVAL:Reference=forward;
SourcePixLayout=RGBInterLeaved;
DestPixLayout=RGBInterLeaved;
ImageIn=macbeth_1550.tif;
ImageOut=None;
Operation=Reverse;
XStatus=4024;

LOG:Attempt to evaluate an image with a content not available in
the profile;
EVAL:Reference=simulate;

SourcePixLayout=RGBInterLeaved;
DestPixLayout=RGBInterLeaved;
ImageIn=macbeth_1550.tif;
ImageOut=None;
Operation=Image;
Operation=Reverse;

XStatus=4024;

90 KCMS Test Suite User’s Guide • May 2002



APPENDIX A

Status Codes

In This Appendix
Table A–1 lists all the KCMS “C” API status code strings and their associated values.
For additional information on the status codes, see the header file kcsstats.h and
the KCMS SDK manual KCMS Application Developer’s Guide.

Note – I/O errors occur normally when you do not have enough swap space to
continue.

TABLE A–1 Status Code Strings and Their Values

String Value

Successful Status

KCS_SUCCESS 0x0000

Warning Status

KCS_WARNINGS_START 0x1000

KCS_OPERATION_CANCELLED 0x1001

KCS_TRUNCATED 0x1002

KCS_SPEC_CMM_NOT_FOUND 0x1003

KCS_CANNOT_OPTIMIZE 0x1004

KCS_CANNOT_DEOPTIMIZE 0x1005

KCS_ATTR_LARGE_CT_SUPPLIED 0x1006

91



TABLE A–1 Status Code Strings and Their Values (Continued)
String Value

Failure Status--General

KCS_ERRORS_START 0x4000

Failure Status--Memory

KCS_MEM_ALLOC_ERR 0x4006

KCS_MEM_ADDRESS_ERR 0x4007

Failure Status--Operating System

KCS_OS_ERROR 0x4008

I/O Errors

KCS_IO_READ 0x4010

KCS_IO_WRITE 0x4011

KCS_IO_SEEK 0x4012

KCS_IO_UNKNOWN_TYPE_ERROR 0x4013

Profile

KCS_PROF_ID_BAD 0x4020

KCS_PROF_FORMAT_BAD 0x4021

KCS_PROF_CT_EXCEEDS_PROF_LIST 0x4022

KCS_PROF_INCOMPLETE 0x4023

KCS_PROF_NO_DATA_SUPPORT_FOR_REQUEST 0x4024

KCS_PROF_REQ_ATTRS_INCOMPLETE 0x4025

Attributes

KCS_ATTR_NAME_OUT_OF_RANGE 0x4030

KCS_ATTR_TYPE_UNKNOWN 0x4031

KCS_ATTR_LOAD_FORMAT_INCORRECT 0x4032

KCS_ATTR_LOAD_FLOAT_ERR 0x4033

KCS_ATTR_LOAD_INT_ERR 0x4034

KCS_ATTR_DATE_TIME_FORMAT 0x4035

KCS_ATTR_CT_ZERO_OR_NEG 0x4036

KCS_ATTR_READ_ONLY 0x4037

92 KCMS Test Suite User’s Guide • May 2002



TABLE A–1 Status Code Strings and Their Values (Continued)
String Value

KCS_ATTR_TYPE_NOT_SIMPLE 0x4038

Connection

KCS_CONNECT_FAILED 0x4040

KCS_CONNECT_PRECISION_UNACCEPTABLE 0x4041

KCS_CONNECT_OPT_FORCED_DATA_LOSS 0x4042

KCS_CONNECT_PROFILES_CT_ERR 0x4043

KCS_CONNECT_QUANT_MISMATCH 0x4044

KCS_CONNECT_UNIMP_OP 0x4045

KCS_NOT_AVAILABLE 0x4054

Validation

KCS_MISMATCHED_WHITEPOINTS 0x4060

KCS_MISMATCHED_BLACKPOINTS 0x4061

KCS_MISMATCHED_COLORSPACES 0x4062

KCS_MISMATCHED_DIMENSIONS 0x4063

KCS_MISMATCHED_VERSIONS 0x4064

Layout

KCS_LAYOUT_INVALID 0X4070

KCS_LAYOUT_UNSUPPORTED 0X4071

KCS_LAYOUT_MISMATCH 0X4072

Evaluation

KCS_EVAL_TOO_MANY_CHANNELS 0x4080

KCS_EVAL_BUFFER_OVERFLOW 0x4081

KCS_EVAL_ONLY_ONE_OP_ALLOWED 0x4082

Characterization/Calibration

KCS_CC_UPDATE_NEEDS_MORE_DATA 0x4090

KCS_CC_UPDATE_INVALID_DATA 0x4091

KCS_CC_INCORRECT_COLOR_SPACE 0x4092

KCS_CC_NUM_COMPS_OUT_OF_RANGE 0x4093

Appendix A • Status Codes 93



TABLE A–1 Status Code Strings and Their Values (Continued)
String Value

KCS_CC_TOO_FEW_MEASUREMENTS 0x4094

KCS_CC_TABLE_DATA_BAD 0x4095

KCS_CC_INCORRECT_DEV_TYPE 0x4096

KCS_CC_INCORRECT_ATTR_CLASS 0x4097

KCS_CC_CANNOT_CALL_DEV_TYPE 0x4098

KCS_CC_CANNOT_CHAR_DEV_TYPE 0x4099

KCS_CC_INPUT_NOT_RAMP 0x409A

Color Management Module

KCS_CMM_UNKNOWN_TECHNOLOGY 0x4100

KCS_COMP_MGR_FAILURE 0x4101

KCS_CMM_UNKNOWN_RUNTIME_TYPE 0x4102

KCS_CMM_UNSUPPORTED_OP 0x4103

KCS_CMM_RTLOAD_FAILED 0x4104

KCS_CMM_MAJOR_VERSION_MISMATCH 0x4105

KCS_MINOR_VERSION_MISMATCH 0x4106

Unimplemented Features

KCS_UNIMP_NESTED_CONNECTIONS 0x4110

KCS_UNIMP_TOO_MANY_PROFILES 0x4111

KCS_UNIMP_ILLEGAL_TECHNOLOGY 0x4112

Internal

KCS_INTERNAL_CLASS_CORRUPTED 0x4120

KCS_INTERNAL_DATA_CORRUPTED 0x4121

KCS_PUBLIC_ERRORS_END 0x6FFF

Internal Kodak Errors

KCS_KODAK_PRIVATE_ERRORS_END 0x7FFE

User Statistics

KCS_USER_STATUS 0xA000

KCS_USER_STATUS_END 0xFF00

94 KCMS Test Suite User’s Guide • May 2002



TABLE A–1 Status Code Strings and Their Values (Continued)
String Value

KCS_STATUS_END KcsForceAlign

Appendix A • Status Codes 95



96 KCMS Test Suite User’s Guide • May 2002



Glossary

CMM Color management module.

icc.ini File that lists the all the default test scripts packaged with the test
suite.

KCMS_PROFILES Environment variable that specifies the path to the
kcmstest/profiles directory.

KCMSROOT Environment variable that specifies the path to the top of the
kcmstest directory.

kcmstest A test script interpreter that reads test scripts and performs the KCMS
“C” API function calls based upon the commands in the scripts.

load hints Indicate what, how, when, and where to load and unload a profile.

operation load hints These are the forward, reverse, simulate, and gamut load hints.

Xstatus An optional script command keyword that can be used to return an
error deliberately generated to test an error condition.

97



98 KCMS Test Suite User’s Guide • May 2002



Index

A
accessing remote hosts, 24, 39, 70
alternate initialization file, 21, 24, 88
attribute names, profile, 38, 47
attributes, using new, 88
auto-kcmstest, 23, 27
auto-kcmstest-root, 27

B
band-interleaved, 35
bug fixes, 65

C
calibration data, 65
callbacks, 36, 45
channels, 79, 83
characteristics, 65
checking status codes, 89
class extensions, KcsStatus, 72
CMM

guidelines for creating, 88
Id, 34
installing, 88
naming, 88

color-managed images, 55
color space, 79
command line options, kcmstest, 24
compiling programs, 87
complete profiles, 55, 60, 65

CONNECT:, 21, 32, 49, 56
content hint, 36, 55
CREATE:, 21, 34, 50

D
development environment requirements, 13,

87
device color profiles, 66
device profiles, 54, 61
discarding output images, 35, 51, 54
disk space, conserving, 51
disk space, saving, 54, 58
display:screen, 39

E
enumerated types, 47
environment variables

DISPLAY, 20
KCMS_PROFILES, 17, 69
KCMSROOT, 17, 23, 27

equal sign, 22
error conditions, testing, 26
EVAL:, 21, 34, 36, 49, 57

F
features, value-added, 65
floating point values, 77, 79, 82

99



format, script command, 22
FREE:, 21, 37, 50
free-formatting, 22

G
GETATTR:, 21, 37, 50, 80
getting automated failure and performance

reports, 28

H
host name, 72

I
icc.h, 73, 78, 83, 85
icc.ini

changing contents, 88
contents, 19

icHeader, 73
icMeasurement, 78
icSigBlueColorantTag, 74
icSigBlueTRCTag, 74
icSigBToA0Tag, 74
icSigBToA1Tag, 74
icSigBToA2Tag, 74
icSigCalibrationDateTimeTag, 75
icSigCharTargetTag, 75
icSigCopyrightTag, 76
icSigDeviceMfgDescTag, 76
icSigDeviceModeDescTag, 76
icSigGamutTag, 77
icSigGrayTRCTag, 77
icSigGreenColorantTag, 77
icSigGreenTRCTag, 78
icSigHeaderTag, 73
icSigLuminanceTag, 78
icSigMeasurementTag, 78
icSigMediaBlackPointTag, 78
icSigMediaWhitePointTag, 79
icSigPreview0Tag, 79
icSigPreview1Tag, 79
icSigPreview2Tag, 79
icSigProfileDescriptionTag, 80

icSigProfileSequenceTag, 80
icSigPs2CRD0Tag, 80
icSigPs2CRD1Tag, 81
icSigPs2CRD2Tag, 81
icSigPs2CRD3Tag, 81
icSigPs2CSATag, 82
icSigPs2RenderingIntentTag, 82
icSigRedColorantTag, 82
icSigRedTRCTag, 83
icSigScreeningDescTag, 83
icSigScreeningTag, 83
icSigTechnologyTag, 84
icSigViewingCondDescTag, 84
icSigViewingConditionsTag, 85
images, TIFF file, 15, 19
initialization file, 19
initialization file, alternate, 21, 24, 88
installing CMMs, 88
installing links, 89
installing profiles, 88
installing test scripts, 89
interpreter, 23
isSigNamedColor2Tag, 79

K
kcms_calibrate(1), 66, 71
kcms_configure(1), 66, 71
KCMS packages, using, 87
KCMS_PROFILES, 17
kcms_qatest, 89
kcms_server(1) daemon, 39, 69, 71
kcms-testreport, 28
KCMSROOT, 17, 27
kcmstest, 23, 59, 89
kcmstest, running, 23, 26
kcmstest command, 34
KCS_IO_WRITE, 70
KcsAvailable(), 50
KcsConnectProfile(), 21, 49
KcsConnectProfiles(), 53
KcsCreateProfile(), 21, 50
KcsEvaluate(), 15, 21
KcsEvaluateProfile(), 49
KcsFreeProfile(), 21, 50
KcsGetAttribute(), 21, 50
KcsLoadProfile(), 22, 49

100 KCMS Test Suite User’s Guide • May 2002



KcsModifyLoadHints(), 22, 49
KcsOptimizeProfile(), 22, 49
KcsPixelLayout structure, 35
KcsSaveProfile(), 22, 50
KcsSetAttribute(), 22, 50
KcsSetCallback(), 50
kcsstats.h, 89
KcsUpdateProfile(), 22, 50
keyword, 22

L
LOAD:, 22, 38, 41, 49
load hint, 36, 39, 42
LOG:, 22, 41, 50
log file, 23, 34, 36, 41, 44, 89
log file output, 25
log file versions, 25
lookup tables, 63

M
modifying test scripts, 15
MODIFYLH:, 22, 42, 44, 50
multiheaded systems, 39

N
naming CMMs, 88

O
operation hint, 36
operation load hint, 39, 42
OPTIMIZE:, 22, 44, 49
options, kcmstest command, 14, 24
output images, discarding, 35, 54

P
pixel layout structure, 35
planar-interleaved, 35
preserving system resources, 15

profile attribute names, 38, 47
profiles

complete, 55, 60, 65
creating and naming, 88
device, 54, 61
device color, 66
installing, 88
optimizing for size, 61
optimizing for speed, 60
Solaris, 71
Solaris file, 67, 69

R
redirecting output, 28
reporting expected errors, 89
return status, 15
running script batches, 89
running test scripts

all scripts in icc.ini, 23
images, 19
required directory structure, 18
results, 19
running individual scripts, 23
tips on using automated scripts, 28

S
sample test script, 22
sample test script output, 25
SAVE:, 22, 45, 50
saving output image, 58
script command format, 22
script commands

and corresponding API functions, 21, 31
name, 22

Scriptcode, 76, 80, 83
semicolon, 22
SETATTR:, 22, 46, 50, 73, 80
Solaris file profile, 67, 69
Solaris profiles, 71
status, 15
status codes, 26, 89, 91, 95
status codes, checking, 89
system resources, preserving, 15

Index 101



T
test scripts

connecting profiles, 54, 56
enhancement tests, 65, 72
evaluating profiles, 56, 60
functional categories, 49
getting and setting attributes, 61, 63
loading profiles, 51, 54
modifying, 15
optimizing profiles, 60
sample, 22
updating profiles, 63, 65

test suite directory, 89
testing approach, 14
testing bugs, 67
testing error conditions, 26, 89
testing load hints, 53
TIFF, 35, 57
TIFF file images, 15, 19
transformations, 54
transformations, loading, 53

U
Unicode, 76, 80, 83
UPDATE:, 22, 47, 50
using KCMS packages, 87
using new attributes, 88

V
value-added features, 65
variables, environment, 17

W
whitespace characters, 22
write permissions, 70

X
XStatus, 26, 89

102 KCMS Test Suite User’s Guide • May 2002


