
Send comments about this
WDR™ Developer’s Guide

Creating System Management Applications
Part No. 816-1984-10
September 2002
Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054 U.S.A.
 document to: docfeedback@sun.com

Please
Recycle

Copyright 2002 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this product or
document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party
software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, AnswerBook2, docs.sun.com, and Solaris are trademarks, registered trademarks, or service marks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by
Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2002 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, CA 95054 Etats-Unis. Tous droits réservés.

Ce produit ou document est distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la décompilation. Aucune
partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans l’autorisation préalable et
écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de
caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, AnswerBook2, docs.sun.com, et Solaris sont des marques de fabrique ou des marques déposées, ou
marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et
sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant
les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique
pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence
couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux
licences écrites de Sun.

Achats fédéraux : logiciel commercial - Les utilisateurs gouvernementaux doivent respecter les conditions du contrat de licence standard.

LA DOCUMENTATION EST FOURNIE “EN L’ETAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFAÇON.

Contents

Preface xiii

Before You Read This Book xiii

How This Book Is Organized xiv

Using UNIX Commands xiv

Typographic Conventions xv

Shell Prompts xv

Related Documentation xvi

Accessing Sun Documentation Online xvi

Sun Welcomes Your Comments xvi

1. Introduction to WDR 1

Hardware Required for WDR 1

Hardware Required for MSP on Sun Fire 6800/4810/4800/3800 Systems 1

Software Required for WDR 2

Software Required for Sun Fire 15K and 12K Systems 2

Software Required for Sun Fire 3800, 4800, 4810, and 6800 Systems 2

About Web-Based Enterprise Management (WBEM) 2

Common Information Model (CIM) 3

Platform-Specific and Common MOF Files 4

Operations that WDR Performs 4
iii

Administrator Security Models 5

WDR Security 5

Sun Fire 6800, 4810, 4800, and 3800 System Groups 5

Sun Fire 15K and 12K System Groups 6

Solaris WBEM Services 7

CIM Object Manager (CIMOM) 8

WBEM Providers 8

Solaris WBEM Software Development Kit (SDK) 9

2. Using Solaris WBEM Services in WDR 11

Overview of Solaris WBEM Services 11

Layers of Solaris WBEM Services 12

Solaris WBEM Services Application Layer 12

Sun WBEM User Manager and SMC Users Tool 12

Solaris Management Console (SMC) WBEM Log Viewer 13

Managed Object Format (MOF) Compiler 13

The mofcomp Command 13

Compiling a MOF File 15

▼ How to Compile a MOF File 15

mofcomp Password Security Advisory 16

Solaris WBEM Services Management Layer 16

CIM Object Manager 16

Manually Starting and Stopping the CIM Object Manager 17

▼ To Start the CIM Object Manager 17

▼ To Stop the CIM Object Manager 18

Solaris WBEM Services Provider Layer 18

Solaris Providers 18

WBEM Security Services 19

Authentication 19
iv WDR Developer’s Guide • September 2002

Authorization 19

Replay Protection 19

Digital Signatures 20

Implementing Security 20

WBEM Access Control Lists 20

Sun WBEM User Manager 21

▼ To Start the Sun WBEM User Manager 21

▼ To Grant Default Access Rights to a User 22

▼ To Change a User’s Access Rights 22

▼ To Remove a User’s Access Rights 22

▼ To Set Access Rights for a Namespace 23

▼ To Remove Access Rights for a Namespace 23

Using APIs to Set Access Control 23

The Solaris_UserAcl Class 24

▼ Setting Access Control on a User 25

The Solaris_NamespaceAcl Class 26

▼ Setting Access Control on a Namespace 26

Solaris Management Console (SMC) Users Tool 27

▼ To Start SMC and the Users Tool 27

Solaris WBEM Logging Services 28

About Solaris WBEM Logging 28

Solaris WBEM Services Log Files 29

Solaris WBEM Services Log File Rules 29

Solaris WBEM Services Log File Format 30

Solaris WBEM Log Classes 30

Solaris_LogRecord Class 31

Solaris_LogService Class 31

Using the APIs to Enable Solaris WBEM Logging 32
Contents v

Writing Data to a Solaris WBEM Log File 32

▼ How to Create an Instance of Solaris_LogRecord to Write Data 32

Reading Data from a Solaris WBEM Log File 35

▼ How to Get an Instance of the Solaris_LogRecord Class and Read
Data 35

Setting Solaris WBEM Logging Properties 38

Solaris WBEM Log Viewer 39

▼ How to Start SMC and Solaris Log Viewer 39

3. Using Process Indications 41

The CIM Event Model 41

How Indications are Generated 42

How Subscriptions Are Created 43

Adding a CIM Listener 44

Adding a CIM Listener 44

Creating an Event Filter 44

▼ To Create an Event Filter 46

Creating an Event Handler 46

▼ Creating a CIM Event Handler 48

Binding an Event Filter to an Event Handler 48

4. Classes, Domains, Associations, and Indications in WDR 51

WDR CIM Class Hierarchy Diagram 52

CIM Attachment Point Classes 53

CIM Solaris_WDRAttachmentPoint Class 53

Position in the Class Hierarchy 53

Description 53

Direct Known Subclasses 54

CIM Solaris_WDRAttachmentPoint Class Properties 54

CIM Solaris_WDRAttachmentPoint Class Methods 56
vi WDR Developer’s Guide • September 2002

CIM Solaris_CHSystemBoard Class 57

Position in the Class Hierarchy 57

Description 57

Direct Known Subclasses 58

CIM Solaris_CHSystemBoard Class Properties 59

CIM Solaris_CHSystemBoard Class Methods 59

CIM Solaris_CHCPU Class 60

Position in the Class Hierarchy 60

Description 60

Direct Known Subclasses 60

CIM Solaris_CHCPU Class Properties 61

CIM Solaris_CHCPU Class Methods 61

CIM Solaris_CHMemory Class 61

Position in the Class Hierarchy 61

Description 61

Direct Known Subclasses 61

CIM Solaris_CHMemory Properties 62

CIM Solaris_CHMemory Class Methods 62

CIM Solaris_CHController Class 63

Position in the Class Hierarchy 63

Description 63

Direct Known Subclasses 63

CIM Solaris_CHController Class Properties 63

CIM Solaris_CHController Class Methods 63

CIM Slot Classes 64

CIM Solaris_WDRSlot Class 64

Position in the Class Hierarchy 64

Description 64
Contents vii

Direct Known Subclasses 64

CIM Solaris_WDRSlot Properties 65

CIM Solaris_WDRSlot Methods 65

CIM Solaris_XCSlot Class 66

Position in the Class Hierarchy 66

Description 66

Direct Known Subclasses 66

CIM Solaris_XCSlot Properties 67

CIM Solaris_XCSlot Methods 67

CIM Solaris_SGSlot Class 68

Position in the Class Hierarchy 68

Description 68

Direct Known Subclasses 68

CIM Solaris_SGSlot Properties 69

CIM Solaris_SGSlot Methods 70

CIM Solaris_WDRDomain Classes 70

CIM Solaris_WDRDomain Class 70

Description 70

Position in the Class Hierarchy 71

Direct Known CIM Subclasses 71

CIM Solaris_WDRDomain Class Properties 71

CIM Solaris_XCDomain Class 71

Description 71

Position in the Class Hierarchy 72

Direct Known CIM Subclasses 72

CIM Solaris_XCDomain Class Properties 73

CIM Solaris_SGDomain Class 75

Description 75
viii WDR Developer’s Guide • September 2002

Position in the Class Hierarchy 75

Direct Known CIM Subclasses 75

CIM Solaris_SGDomain Class Properties 76

WDR Schema Associations and Aggregations 77

CIM Solaris_DomainHasAttachmentPoints Aggregation 77

Description 77

CIM Solaris_DomainHasAttachmentPoints Aggregation Properties 78

CIM Solaris_DomainHasSlots Aggregation 78

Description 78

CIM Solaris_DomainHasSlots Aggregation Properties 79

Solaris_SlotHasSystemBoard Association 79

Description 79

CIM Solaris_SlotHasSystemBoard Association Properties 79

Solaris_SystemBoardHasProcessors Aggregation 80

Description 80

CIM Solaris_SystemBoardHasProcessors Aggregation Properties 80

Solaris_SystemBoardHasMemory Aggregation 80

Description 80

CIM Solaris_SystemBoardHasMemory Aggregation Properties 81

Solaris_SystemBoardHasControllers Aggregation 81

Description 81

CIM Solaris_SystemBoardHasControllers Aggregation Properties 82

CIM Process Indication Classes 82

The WDR Indication Class Hierarchy Diagram 83

Solaris_WDRIndication Class 83

Solaris_SGBoardPresenceChange Indication 84

Direct Known Subclasses 84

Solaris_SGBoardPresenceChange Properties 84
Contents ix

Solaris_SGDomainACLChange Indication 84

Direct Known Subclasses 84

Solaris_SGDomainACLChange Properties 85

Solaris_SGDomainStateChange Indication 85

Direct Known Subclasses 85

Solaris_SGDomainStateChange Properties 86

Solaris_SGSlotAssignmentChange Indication 86

Direct Known Subclasses 86

Solaris_SGSlotAssignmentChange Properties 87

Solaris_SGBoardStateChange Indication 87

Direct Known Subclasses 87

Solaris_SGBoardStateChange Properties 88

Solaris_SGSlotAvailabilityChange Indication 88

Direct Known Subclasses 88

Solaris_SGSlotAvailabilityChange Properties 89

Solaris_XCSystemBoardConfigChange Indication 89

Direct Known Subclasses 89

Solaris_XCSystemBoardConfigChange Properties 90

Solaris_XCEnvironmentalIndication Indication 90

Direct Known Subclasses 90

Solaris_XCEnvironmentalIndication Properties 90

Solaris_XCComponentRemove Indication 90

Solaris_XCComponentInsert Indication 91

Solaris_XCBoardPowerOn Indication 91

Solaris_XCBoardPowerOff Indication 91

Solaris_XCDomainIndication Indication 91

Direct Known Subclasses 91

Solaris_XCDomainIndication Properties 92
x WDR Developer’s Guide • September 2002

Solaris_XCDomainConfigChange Indication 92

Solaris_XCDomainUp Indication 92

Solaris_XCDomainDown Indication 92

Solaris_XCDomainStop Indication 93

Solaris_XCDomainStateChange Indication 93

Direct Known Subclasses 93

Solaris_XCDomainStateChange Properties 93

5. Programming Techniques in WDR 95

Caching System State Information 95

Working with an EventProvider 96

Indication Reader 96

Event Listener 98

Indication Subscription 98

Working with an InstanceProvider 103

Working with an AssociatorProvider 104

Working with a MethodProvider 105

Index 107
Contents xi

xii WDR Developer’s Guide • September 2002

Preface

This WDR Developer’s Guide is intended for use by systems administrators who want
to develop applications that perform DR operations remotely using WBEM, which is
an industry standard for Web-based enterprise management.

Developers can write WDR client applications in languages such as Java, using
software development kits (SDKs) such as the Sun WBEM SDK.

Before You Read This Book
This book is intended for the Sun Fire 15K, 12K, 6800, 4810, 4800, and 3800 system
platform administrator who has a working knowledge of UNIX® systems,
particularly those based on the Solaris™ operating environment. If you do not have
such knowledge, first read the Solaris user and system administrator books provided
with this system, and consider UNIX system administration training.
xiii

How This Book Is Organized
Chapter 1 “Introduction to DR” provides an overview of WDR, and describes the
kind of tasks that WDR enables you to perform.

Chapter 2 “Using Solaris WBEM Services in WDR” describes the different layers in
Solaris WBEM Services, which are included in the Solaris operating environment.

Chapter 3 “Using Process Indications” describes process indications, which are
notifications of system events to which each WDR client can subscribe.

Chapter 4 “Classes, Domains, Associations, Indications in WDR” introduces all the
classes, indications (of system events), and associations that WDR provides to the
developer. All methods and properties that the developer needs to use are described
in this chapter.

Chapter 5 “Programming Techniques in WDR” presents programming techniques
that the developer may find useful in creating WDR applications that simplify and
automate systems administration on Sun Fire 3800, 4800, 4810, 6800, 15K and 12K
systems.

Using UNIX Commands
This document does not contain information on basic UNIX® commands and
procedures such as shutting down the system, booting the system, and configuring
devices.

See one or more of the following for this information:

■ Solaris Handbook for Sun Peripherals

■ Online documentation for the Solaris™ operating environment

■ Other software documentation that you received with your system
xiv WDR Developer’s Guide • September 2002

Typographic Conventions

Shell Prompts

TABLE P-1

Typeface Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when
contrasted with on-screen
computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized

Command-line variable; replace
with a real name or value

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.

To delete a file, type rm filename.

TABLE P-2

Shell Prompt

C shell machine_name%

C shell superuser machine_name#

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #
Preface xv

Related Documentation

Accessing Sun Documentation Online
The docs.sun.comsm web site enables you to access Sun technical documentation
on the Web. You can browse the docs.sun.com archive or search for a specific book
title or subject at:

http://docs.sun.com

Sun Welcomes Your Comments
We are interested in improving our documentation and welcome your comments
and suggestions. You can email your comments to us at:

TABLE P-3

Application Title Part Number

WDR Installation WDR Installation Guide 816-4820

DR on Sun Fire 6800,
4810, 4800, and 3800
systems

Sun Fire 6800, 4810, 4800, and 3800
Systems Dynamic Reconfiguration User
Guide

806-6783

DR on Sun Fire 15K and
12K systems

Sun Fire 15K/12K Dynamic
Reconfiguration User Guide

816-5075

System-level security on
Sun Fire 15K and 12K
systems

System Management Services (SMS) 1.2
Administrator Guide for Sun Fire 15K/12K
Systems

816-5259

System-level security on
Sun Fire
6800/4810/4800/3800
systems

Sun Fire 6800/4810/4800/3800 Systems
Platform Administration Manual

805-7373

Solaris WBEM Services Solaris WBEM Services Administrator’s
Guide

806-6468
xvi WDR Developer’s Guide • September 2002

docfeedback@sun.com

Please include the part number (816-1984-10) of this document in the subject line of
your email.
Preface xvii

xviii WDR Developer’s Guide • September 2002

CHAPTER 1

Introduction to WDR

WDR (WBEM dynamic reconfiguration) provides an application program interface
(API) that software applications can use to perform dynamic reconfiguration (DR)
operations remotely on the following systems:

■ Sun Fire 3800
■ Sun Fire 4800
■ Sun Fire 4810
■ Sun Fire 6800
■ Sun Fire 15K
■ Sun Fire 12K

Software developers and systems administrators can use the WDR API to create
custom applications that remotely perform crucial system management functions
such as load balancing. WDR provides an alternative to the current, conventional
method of performing DR operations, which are achieved either on the Sun Fire
System Controller (SC) or on the Solaris domain (using the cfgadm system library).

Hardware Required for WDR
On Sun Fire 6800/4810/4800/3800 systems, WDR runs on an external host that is
referred to as the Midframe Service Processor (MSP). On Sun Fire 15K and 12K
systems, WDR runs on the System Controller (SC).

Hardware Required for MSP on Sun Fire
6800/4810/4800/3800 Systems
The minimum hardware requirements for an MSP are:

■ sun4u architecture
1

■ 8 GB disk space
■ 128 MB RAM
■ CD-ROM drive
■ SunSwift™ card or, ideally, a QuadFast Ethernet card

Software Required for WDR
WDR can be used on Sun Fire 3800/4800/4810/6800 and Sun Fire 15K/12K system
domains that run the Solaris 8 2/02 and Solaris 9 software. WDR is not bundled with
other software, such as the Solaris operating environment

Software Required for Sun Fire 15K and 12K
Systems
To enable WDR, both the WDR software and Solaris WBEM Services software must
be installed on the SC. Further, the System Management Services (SMS) version 1.2
software must be installed on the SC.

Software Required for Sun Fire 3800, 4800, 4810,
and 6800 Systems
To enable WDR, both the WDR software and Solaris WBEM Services software must
be installed on the MW.

About Web-Based Enterprise
Management (WBEM)
The WDR interface is based on the Web-based Enterprise Management (WBEM)
industry standard, which enables Web-based management of systems, networks, and
devices on a variety of platforms. WBEM was developed by members of the
Distributed Management Task Force (DMTF), who represent many industry leaders.

WBEM is comprised of three principal components:
2 WDR Developer’s Guide • September 2002

■ A method of modeling managed objects. WBEM uses the Common Information
Model (CIM) to create classes that represent managed objects. These classes have
properties that represent the attributes and states of managed objects; and
methods that represent operations that can be performed on managed objects.

■ A means of encoding CIM information so that it can be sent over the wire. WBEM
uses Extensible Markup Language (XML), a powerful and extensible subset of
SGML, to encode CIM classes.

■ A way of encapsulating XML operations for transmission over the wire. WBEM
uses XML/HTTP or RMI for sending operations that get information from, set the
properties of, and perform operations on, managed objects

To summarize: in WBEM, managed objects are represented as CIM classes,
properties, and methods; CIM operations are represented as either XML/HTTP or
RMI messages; and those messages are sent over the wire.

A comprehensive description of the WBEM standard is beyond the scope of this
document. However, complete information about WBEM is available from a variety
of sources, including the DMTF Web site at www.dmtf.org.

Common Information Model (CIM)
WDR is a Sun Fire system-specific extension of the CIM schema that is used to
represent:

■ Resources on Sun Fire systems that can be managed using DR,
■ Events that relate to DR or affect the state of the WDR model,
■ DR platform resources such as attachment points, which are represented by the

AttachmentPoint class and its subclasses,
■ The containers of DR platform resources, such as domains and slots,
■ Events that affect the existence and/or state of objects in the WDR schema,
■ Associations between objects in the WDR schema, and
■ DR operations themselves.

The architecture of the Sun Fire 3800/4800/4810/6800 systems differs significantly
from that of the Sun Fire 15K and 12K systems. WDR includes CIM schema that
reflect the architectures of all the different Sun Fire systems on which it is used.

Some of the objects in the CIM schema are common to all Sun Fire systems; other
objects are used only on the Sun Fire 3800/4800/4810/6800 systems; while other
objects are used only on the Sun Fire 15K and 12K systems.

The commonalities between the system architectures are captured in platform-
independent superclasses; the differences are captured in platform-specific subclasses
of those platform-independent superclasses.
Chapter 1 Introduction to WDR 3

Platform-Specific and Common MOF Files
The CIM schema used by WDR is expressed in three Managed Object Format (MOF)
files, which are ASCII text files that define all the objects that represent managed
resources on Sun Fire systems.

One MOF file, WDR_core1.0.mof, defines the common elements of all Sun Fire
systems. The other two MOF files define system-specific elements:

■ WDR_XC1.0.mof defines elements specific to Sun Fire 15K and 12K systems.
■ WDR_SG1.0.mof defines elements specific to the Sun Fire 6800/4810/4800/3800

systems.

In addition to providing a schema, the MOF file also provides the software
developer or systems administrator with a formal definition of the objects that
comprise the WDR CIM schema.

Note – For a formal definition of CIM, see Common Information Model, Implementing
the Object Model for Enterprise Management, Winston Bumpus et al., Wiley Computer
Publishing, copyright 2000, New York, ISBN 0-471-35342-6.

Operations that WDR Performs
WDR can perform the following dynamic reconfiguration operations remotely:

■ Add a system board (a CPU/memory board) to a domain that is running the
Solaris software. DR first connects the board electrically to the system, putting it
into a connected state. DR then configures the system board so that it is fully
available to all applications running in the domain; the board is put into the
configured state.

■ Move a system board from one domain to another domain, via an unconfigure
operation followed by a configure operation.

■ Remove a system board from a domain and make it available for use by other
domains.

■ List all attachment points that are currently available to domains on the system.
■ Display information about the current state of a specified system board, such as

its power status, availability, and domain assignment.
■ Retrieve the memory configuration of a configured system board.
■ Retrieve information about the impact on memory, such as memory drain

information, that is associated with detaching a configured system board.
4 WDR Developer’s Guide • September 2002

The functionality of WDR is the same as the underlying functionality of DR itself;
WDR adds no additional operations to DR. However, WDR does enhance DR by
providing information about domains and slots; associations between classes; and
event notification.

WDR is designed to perform DR operations efficiently, without any noticeable
degradation of performance.

Administrator Security Models
WDR enforces the administrator security models on Sun Fire 15K, 12K, 6800, 4810,
4800, and 3800 systems.

For complete information about implementing security at the Sun Fire
6800/4810/4800/3800 system level, see the Sun Fire 6800/4810/4800/3800 Systems
Platform Administration Manual (part number 805-7373).

For complete information about implementing security at the Sun Fire 15K/12K
system level, see the System Management Services (SMS) 1.2 Administrator Guide for
Sun Fire 15K/12K Systems (part number 816-5259).

In addition, security that is available through Solaris WBEM Services is described in
Chapter 2 “Using Solaris WBEM Services in WDR.”

WDR Security
The /etc/group file shows the groups to which the currently logged in user is
subscribed.

Sun Fire 6800, 4810, 4800, and 3800 System Groups

The /etc/group file, which shows group membership on a Sun Fire
6800/4810/4800/3800 system, can be edited manually.
Chapter 1 Introduction to WDR 5

The following table shows all the operations that users can perform based on their
group membership:

Sun Fire 15K and 12K System Groups

To modify the /etc/group file, which shows group membership on a Sun Fire15K
or 12K system, you run the /opt/SUNWSMS/bin/smsconfig script with arguments.
See the System Management Services (SMS) 1.2 Administrator Guide for Sun Fire
15K/12K Systems for more information.

The following table shows all the operations that users can perform based on their
group membership:

TABLE 1-1 Permitted Tasks Based on Group - Sun Fire 6800/4810/4800/3800

Group Tasks that the User Can Perform

None (all users) Enumerate domains and slots

spltadm Assign and unassign boards

spltop No special privileges

sdxadm Where x represent a domain, can:
• Enumerate attachment points in domain x.
• Enumerate all attachment points if the user is in the sdxadm

group in all domains.
• Change an attachment point state, assign, unassign, power-on,

and power-off a board that is in domain x’s ACL.

sdxop Where x represent a domain, can:
• Enumerate attachment points in domain x.
• Enumerate all attachment points if the user is in the sdxop group

in all domains.

TABLE 1-2 Permitted Tasks Based on Group - Sun Fire 15K and 12K

Group Tasks that the User Can Perform

platadmn Assign, unassign, power-on, and power-off boards
6 WDR Developer’s Guide • September 2002

Solaris WBEM Services
WDR is an extension of the Solaris WBEM Services software, which is included in
both the Solaris 8 2/02 and Solaris 9 operating environments. Solaris WBEM Services
software provides secure access and manipulation of management data, and enables
software developers to create client applications that manage system resources in the
Solaris environment.

Solaris WBEM Services software consists of components that function at three levels:

■ The Application Layer, where WBEM clients process and display data from
managed resources. Application Layer services includes the WBEM Workshop;
the WBEM User Manager, which allows administrators to add and remove
authorized WBEM users and set their access privileges; and the MOF compiler.

■ The Management Layer, where the CIM API (which forms the boundary between
the Application and Management Layers) enables the administrator to perform
operations such as viewing and creating classes and instances of managed
resources from the CIMOM. The CIMOM, the CIM Repository, and the Provider
interface all reside at the Management Layer.

■ The Provider Layer. At this layer resides the Solaris Provider, which provides the
CIMOM instances of managed resources in the Solaris operating environment,
and gets and sets information about managed resources. The Solaris Provider
forms the interface between CIMOM and managed system resources.

platoper No special privileges

dmnxadm Where x represent a domain, can:
• Enumerate attachment points in domain x.
• Enumerate all attachment points if the user is in the dmnxadm

group in all domains.
• Change an attachment point state, assign, unassign, power-on,

and power-off a board that is in domain x’s ACL.

dmnxrcfg Where x represent a domain, can:
• Enumerate attachment points in domain x.
• Enumerate all attachment points if the user is in the dmnxrcfg

group in all domains.
• Change an attachment point state, assign, unassign, power-on,

and power-off a board that is in domain x’s ACL.

TABLE 1-2 Permitted Tasks Based on Group - Sun Fire 15K and 12K

Group Tasks that the User Can Perform
Chapter 1 Introduction to WDR 7

Solaris WBEM Services components interact with the Solaris software and with the
system hardware. For more information about the Solaris WBEM Services software,
visit the Solaris WBEM Web site at www.sun.com/software/solaris/wbem.

Developers of load balancing and other system management applications can use
Solaris WBEM Services software to obtain information about the current level of
resource utilization on a Sun Fire system domain. WDR itself does not provide
system performance data.

CIM Object Manager (CIMOM)
The CIMOM manages CIM objects on a WBEM system. The CIMOM transfers
information between WBEM clients, the CIMOM Repository, and to managed
resources via providers. The CIMOM accepts connections from management
applications using the RMI protocol, and provides the following services to
connected clients:

■ Management services. The CIMOM checks the semantics and syntax of CIM data,
and distributes data between applications, the CIM Repository, and managed
resources.

■ Security services that enable administrators to control user access to CIM
information.

■ Logging services that consist of classes that developers can use to create
applications that dynamically record CIMOM event data to, and retrieve it from,
a log record.

■ XML services that convert XML data into CIM classes, which enables XML-based
WBEM clients to communicate with the CIMOM.

WBEM Providers
WDR contains several provider classes, which are expressed in the MOF files.
WBEM providers are classes that act as intermediaries between the CIMOM and
managed objects on a system. WBEM providers get information from, set
information on, and may perform operations on, managed devices. WBEM providers
forward retrieved information to the CIMOM, which is a part of the Solaris WBEM
Services software, for delivery to the requesting clients.

When the CIMOM receives a request for information that is not available in the
CIMOM Repository, it forwards the request to a provider. The provider receives
requests for information, and returns the information, using APIs.
8 WDR Developer’s Guide • September 2002

Solaris WBEM Software Development
Kit (SDK)
Developers of WDR applications can use the Solaris WBEM SDK. However, there is
no requirement to use the Solaris WBEM SDK because WDR uses a standard set of
protocols. For more information about the Solaris WBEM SDK visit the Sun
Developer Connection at:

www.sun.com/solaris/wbem
Chapter 1 Introduction to WDR 9

10 WDR Developer’s Guide • September 2002

CHAPTER 2

Using Solaris WBEM Services in
WDR

Overview of Solaris WBEM Services
Solaris WBEM Services provide the WDR application developer with a variety of
WBEM services on domains that are running either the Solaris 8 2/02 or Solaris 9
operating environment. Solaris WBEM Services, which are included with the Solaris
software, make it easier for developers to create applications that use WBEM to
manage systems running Solaris software.

This developer’s guide provides information about only those Solaris WBEM
Services with which a WDR application developer needs to become familiar.
Complete information about Solaris WBEM Services is available at the following
Web site:

http://www.sun.com/solaris/wbem

Solaris WBEM Services provide secure access to information about managed
resources, which in turn enable applications that use WDR to get information about,
and manage, system resources. A built-in Solaris Provider allows access to
information about managed resources such as hardware and software state
information, performance metrics, and other data that are needed by management
applications to perform load balancing and to respond to device failovers.

Solaris WBEM Services uses the Common Information Model (CIM) to create a
schema that represents managed objects in a system running Solaris software. CIM
objects are specified in a Managed Object Format (MOF) file, which is provided with
WDR and compiled when WDR is installed.
11

Layers of Solaris WBEM Services
Solaris WBEM Services is a software package that resides at three layers. At each
layer reside software components that are important to WDR application developers:

■ Application Layer
■ Management Layer
■ Provider Layer

Solaris WBEM Services Application
Layer
The following Solaris WBEM Services Application Layer software programs, which
are especially useful to WDR application developers, are described in detail in this
chapter:

■ Solaris Management Console (SMC) WBEM Log Viewer on page 13

■ Managed Object Format (MOF) Compiler on page 13

■ Sun WBEM User Manager on page 21

■ Solaris Management Console (SMC) Users Tool on page 27

Sun WBEM User Manager and SMC Users Tool
The Sun WBEM User Manager and SMC Users Tool applications enable systems
administrators to add and remove authorized users and to set their access privileges
to managed resources.

There are two separate mechanisms for administering security with domains
running the Solaris software: WBEM access control list (ACL) and Solaris role-based
access control (RBAC).

You use the WBEM User Manager to add users to existing access control lists (ACLs)
and to grant them either read or read-write access privileges.

You use the Users Tool in the Solaris Management Console (SMC) to add users, and
to grant user roles and privileges, using RBAC.

See the section “WBEM Security Services” on page 19 for more information about
administering WBEM security, including details of ACL- and RBAC-based system
security.
12 WDR Developer’s Guide • September 2002

Solaris Management Console (SMC) WBEM Log
Viewer
The SMC WBEM Log Viewer displays log files that include information such as the
names of users who issued logged commands, and the client computers on which
the logged commands were issued.

Solaris WBEM Services includes APIs to enable logging of system events. See the
section “Solaris WBEM Logging Services” on page 28 (and subsequent sections) for
complete information about log files; rules associated with log files; log file formats;,
classes that developers can use to record system events; and using APIs to enable
and use logging services.

Managed Object Format (MOF) Compiler
The MOF Compiler is used to compile MOF files, which are ASCII text files that
specify objects in a CIM schema that represent managed objects in a system running
Solaris software.

WDR includes three MOF files that define schema comprised of objects that
represent managed resources. One MOF file is used for all Sun Fire systems; another
is used only on Sun Fire 15K and 12K systems; and the third is used for Sun Fire
3800, 4800, 4810, or 6800 systems.

The MOF compiler reads statements in a MOF file that define classes and instances,
and then adds them to the CIM Object Manager Repository, which is a central
storage area for information about management data.

The mofcomp Command

To start the MOF compiler and compile a MOF file, use the mofcomp command:

/usr/sadm/bin/mofcomp [-help] [-v] [-sc] [-si] [-sq] [-version]
[-c cimom_hostname] [-u username] [-p password] filename
Chapter 2 Using Solaris WBEM Services in WDR 13

Where:

TABLE 2-1 Arguments to the mofcomp Command

Argument Description

-help Lists the arguments to the mofcomp command.

-v Runs the compiler in verbose mode, which displays all
compiler messages.

-sc Runs the compiler with the “set class” option, which updates
a class if it already exists and contains no instances, and
returns an error if the class does not already exist. If you do
not specify the -sc option, the compiler adds a CIM class to
the connected namespace, and returns an error if the class
already exists.

-si Runs the compiler with the “set instance” option, which
updates an instance if it already exists, and returns an error
message if it does not. If you do not specify the -si option,
the compiler adds a CIM instance to the connected
namespace, and returns an error if the instance already exists.

-sq Runs the compiler with the “set qualifier types” option,
which updates a qualifier if it already exists, and returns an
error message if it does not. If you do not specify the -sq
option, the compiler adds a CIM qualifier type to the
connected namespace, and returns an error if the qualifier
type already exists.

-version Displays the version number of the MOF compiler.

-c cimom_hostname Specifies a system that is running the CIM Object Manager.
14 WDR Developer’s Guide • September 2002

Compiling a MOF File

You can compile a MOF file whether its filename contains or does not contain a.mof
extension. The MOF files that describe the CIM and Solaris Schemas are located in
/usr/sadm/mof.

▼ How to Compile a MOF File

1. To run the MOF Compiler with no options, type the following:

mofcomp filename

For example,

mofcomp /usr/sadm/mof/Solaris_Application1.0.mof

The MOF file named Solaris_Application1.0.mof is compiled into the CIM
Object Manager Repository.

-u username Specifies the user name for connecting to the CIM Object
Manager. Use the -u username option for compilations that
require privileged access to the CIM Object Manager.

If you specify both -p and -u, you must type the password
on the command line, which can pose a security risk. A more
secure way to specify a password is to specify -u but not -p,
so that the compiler will prompt you for the password. See
the section “mofcomp Password Security Advisory” on
page 16 below.

-p password Specifies a password for connecting to the CIM Object
Manager. Use this option for compilations that require
privileged access to the CIM Object Manager.

If you specify both -p and -u, you must type the password
on the command line, which can pose a security risk. A more
secure way to specify a password is to specify -u but not -p,
so that the compiler will prompt you for the password. See
the section “mofcomp Password Security Advisory” on
page 16 below.

filename The name of the MOF file to be compiled.

TABLE 2-1 Arguments to the mofcomp Command

Argument Description
Chapter 2 Using Solaris WBEM Services in WDR 15

mofcomp Password Security Advisory

If you run the mofcomp command with the -p option, or with the -p and -u
options, and you include a password on the command line, another user can
subsequently run the ps command or the history command to display your
password. The system does not display a security warning.

Note – If you run a command that requires you to provide your password on the
command line, immediately change your password after running the command. This
will prevent another user from displaying your current password.

The following examples show unsafe (insecure) usage:

% mofcomp -p Log8Rif

% mofcomp -up molly Log8Rif

If you use the mofcomp command in either of the preceding ways, make sure to
change your password immediately after running the command.

Solaris WBEM Services Management
Layer
The Solaris WBEM Services Management Layer software program that is useful to
WDR application developers is the Common Information Model (CIM) Object
Manager.

CIM Object Manager
Solaris WBEM Services includes the CIM Object Manager, which manages objects in
a WBEM-enabled system. Each CIM object represents a managed system object, such
as a CPU, an I/O board, or an attachment point.

The CIM Object Manager first accepts connections to management applications
using either the RMI or XML/HTTP protocol; sets up a connection to the CIM Object
Repository; and then awaits requests from client applications for services, which
include:
16 WDR Developer’s Guide • September 2002

■ Management services that check the semantics and syntax of CIM data operations
to ensure that they comply with the latest CIM specification; and that distribute
management data between applications (such as WDR applications), the CIM
Repository, and managed resources.

■ Security services that authenticate user login requests and control access to
system resources.

■ Logging services that record system events

After WBEM clients are connected to a WBEM-enabled system, they can request
WBEM operations such as creating, viewing, and deleting CIM classes and instances;
retrieving the values of properties; and enumerating instances of classes, or classes
within a specified class hierarchy.

Manually Starting and Stopping the CIM Object Manager

Normally, the CIM Object Manager is started automatically during installation and
whenever you boot a domain by a utility called /etc/init.d/init.wbem. In
addition to the CIM Object Manager, the command starts the Solaris Management
Console (SMC); both run as a single process.

You should not need to start and stop the CIM Object Manager manually, but you
can do so if the need should arise. The init.wbem utility has the following syntax:

/etc/init.d/init.wbem start|stop|status

The start option starts the CIM Object Manager on the domain from which it is
invoked. The stop option stops the CIM Object Manager on the domain. The
status option gets the status of the CIM Object Manager on the domain.

▼ To Start the CIM Object Manager
1. Enter the following command at the system prompt to become a root user:

% su

2. At the root system prompt (#) type the root password for the domain when
prompted to do so.

3. Start the CIM Object Manager by typing the following command:

/etc/init.d/init.wbem start
Chapter 2 Using Solaris WBEM Services in WDR 17

▼ To Stop the CIM Object Manager
1. Enter the following command at the system prompt to become a root user:

% su

2. When prompted, enter the root password for the domain at the root system
prompt (#).

3. Stop the CIM Object Manager by entering the following command:

/etc/init.d/init.wbem stop

Solaris WBEM Services Provider Layer
The Solaris WBEM Services Provider Layer includes the Solaris Provider software
program, which is especially useful to WDR application developers.

Solaris Providers
A Solaris Provider is a class that communicates with managed objects. Providers
provide the CIM Object Manager with instances of managed resources on systems
running the Solaris operating environment, and retrieve and set information on
managed devices.

When a WDR application attempts to access CIM data about managed resources,
WBEM first validates the user login information on the domain. Users are granted
Read Only access by default. See the section “WBEM Security Services” on page 19
for more information about WBEM system security.

The CIM Object Manager uses object provider APIs to communicate with providers.
After an application requests dynamic data from the CIM Object Manager, the CIM
Object Manager responds via the provider APIs to pass the requested information to
the provider.

Providers can be either native providers, which are machine-specific, or they can be
written using the portable, machine-independent Java Native Interface (JNI), which
is part of the Java Development Kit (JDK).
18 WDR Developer’s Guide • September 2002

WBEM Security Services
There are three principal security features that protect CIM objects from intrusion on
a WBEM-enabled system:

■ Authentication

■ Authorization

■ Replay protection

Authentication
Authentication is the process of verifying the identity of a user, device, or other
entity in a Sun Fire system. Authentication is frequently used to give valid users
access to system resources; and to deny access to users who cannot be authenticated.

When a user logs in and enters a user name and password, the client uses the
password to generate an encrypted digest that the server verifies. When the user is
authenticated, the CIM Object Manager grants a MAC token and establishes a client
session. All subsequent operations occur within that secure client session, and
contain a MAC token that uses the session key that was negotiated during the
authentication process. (A MAC is a token parameter added to a remote call which
contains security information used to authenticate that message.)

Authorization
Authorization is the process of granting to a user, program, or process the right to
access system resources. Authorization occurs after authentication.

After the CIM Object Manager has authenticated the user’s identity, that identity can
be used to verify whether the user should be allowed to execute an application or
any of its related tasks. The CIM Object Manager supports capability-based
authorization, which allows a privileged user to assign read and write access to
other users. Such authorizations are added to existing Solaris user accounts.

Replay Protection
Replay protection prevents an unauthorized client picking up and sending another
client’s message to the server by validating a session key.
Chapter 2 Using Solaris WBEM Services in WDR 19

A client cannot copy another client’s last message that was sent to the CIM Object
Manager. The CIM Object Manager uses a MAC for each message, based on the
session key that was negotiated during authentication, to guarantee that all
communications in the client-server session is indeed with the same client that
initiated the session and participated in client-server authentication.

The MAC is used to confirm that each message actually came from the client that
was originally authenticated for the session, and that the message was not being
replayed by another client. This type of mechanism is used in WBEM to verify RMI
messages. The session key that was negotiated during the user authentication
exchange is used to encrypt the security information in the message’s MAC token.

Digital Signatures
WBEM Security Services does not perform digital signing of messages.

Implementing Security
You use WBEM access control lists (ACLs) to administer security within the Solaris
operating environment.

WBEM Access Control Lists

ACL-based security is implemented using classes that are defined in the
Solaris_Acl1.0.mof file. ACL-based security, which is specific to Solaris WBEM
Services, provides a default authorization scheme for Solaris WBEM Services, and
applies to all CIM operations. Instances of these classes determine the default
authorizations that are assigned to WBEM users and/or namespaces.

To add users to existing ACLs and assign to them either read or read-write access
privileges, use the Sun WBEM User Manager, which is described in the section Sun
WBEM User Manager. The Sun WBEM User Manager is located at
/usr/sadm/bin/wbemadmin.

For more information, see the section “Sun WBEM User Manager” on page 21.
20 WDR Developer’s Guide • September 2002

Sun WBEM User Manager
The Sun WBEM User Manager allows privileged users to add and delete authorized
users and to set their access privileges to CIM objects on a WBEM-enabled system.
Each user must have a Solaris user account.

You can use the Sun WBEM User Manager to set access privileges on individual
namespaces or on a user/namespace combination. When you add a user and select a
namespace, the user has default read access to the CIM objects within the specified
namespace.

You can restrict access by all users to a namespace, and then grant individual users
read, read-write, or write access to that namespace.

You cannot set access rights to individual managed objects. However, you can set
access rights for all managed objects within a namespace and on a per-user basis.

If you log in as root, you can use the WBEM User Manager to set the following types
of access to CIM objects:

■ Read Only — Allows read-only access to objects within the CIM schema. Users
with Read Only privileges can retrieve instances and classes, but cannot create,
delete, nor modify CIM objects. The default user access.

■ Read/Write — Allows full read, write, and delete access to all CIM classes and
instances.

■ Write — Allows write and delete, but not read access to all CIM classes and
instances.

■ None — Allows no access to CIM classes and instances.

▼ To Start the Sun WBEM User Manager
1. Enter the following command on the command line as root:

/usr/sadm/bin/wbemadmin

The Sun WBEM User Manager is loaded, and the Login dialog is displayed. To use
context-sensitive help, click on fields in the dialog to display the Context Help panel.

2. In the Login dialog, enter the user name in the User Name field.

You must have Read access to the root\security namespace to log in. By default,
Solaris users have guest privileges, which grant them Read access to the default
namespaces. Users with Read access can view, but not change, user privileges.

To grant access rights to users, you must log in either as root or as a user with Write
access to the root\security namespace.
Chapter 2 Using Solaris WBEM Services in WDR 21

3. In the Login dialog, enter the password for the user account in the Password field.

4. Click OK.

The User Manager dialog is displayed. It contains a list of users and their access
rights to WBEM objects within the namespaces on the current domain.

▼ To Grant Default Access Rights to a User
1. Start the Sun WBEM User Manager.

2. Click Add in the Users Access portion of the User Manager dialog.

A dialog is displayed that lists all available namespaces on the domain.

3. Type the Solaris user’s account name in the User Name field.

4. Select a namespace from the list of available namespaces.

5. Click OK.

The user name is added to the list of users shown in the User Manager dialog.

6. Click OK to save the changes and close the User Manager dialog. Or, click Apply
to save the changes and leave the dialog open.

The user now has Read Only access to CIM objects in the selected namespaces.

▼ To Change a User’s Access Rights
1. Start the Sun WBEM User Manager.

2. Select the user from the list whose access rights you want to change.

3. To grant Read Only access to the user, click the Read check box. To grant the user
Write access, click the Write check box.

4. Click OK to save the changes and close the User Manager dialog. Or, click Apply
to save the changes and leave the dialog open.

▼ To Remove a User’s Access Rights
1. Start the Sun WBEM User Manager.

2. In the Users Access portion of the User Manager dialog, select the user from the
list whose access rights you want to remove.
22 WDR Developer’s Guide • September 2002

3. Click Delete to revoke the user’s access rights to the namespace.

A confirmation dialog prompts you to confirm that you want to revoke the user’s
access rights. Click OK to proceed.

4. Click OK to save the changes and close the User Manager dialog. Or, click Apply
to save the changes and leave the dialog open.

▼ To Set Access Rights for a Namespace
1. Start the Sun WBEM User Manager.

2. In the Namespace Access portion of the User Manager dialog, click Add.

A dialog is displayed that lists all the namespaces that are available in the domain.

3. Select the namespace for which you want to set access rights.

By default users have Read Only access to namespaces, and the Read check box is
checked. To allow Write access, click the Write check box. To allow Read/Write
access click both the Read and Write check boxes. To allow no access to the
namespace, make sure both the Read and Write check boxes are not checked.

4. Click OK to save the changes and close the User Manager dialog. Or, click Apply
to save the changes and leave the dialog open.

▼ To Remove Access Rights for a Namespace
1. Start the Sun WBEM User Manager.

2. In the Namespace Access portion of the User Manager dialog, select the
namespace whose access rights you want to remove and click Delete.

This removes access control from the namespace, and removes the namespace from
the list of namespaces displayed in the User Manager dialog box.

3. Click OK to save the changes and close the User Manager dialog. Or, click Apply
to save the changes and leave the dialog open.

Using APIs to Set Access Control
You can use the Sun WBEM SDK APIs to set access control on a namespace or on a
per-user basis. The following security classes are stored in the root\security
namespace:
Chapter 2 Using Solaris WBEM Services in WDR 23

■ Solaris_Acl - Base class for Solaris Access Control Lists (ACL). This class
defines the string property capability and sets its default value to “r” (read only).

■ Solaris_UserAcl - Represents the access control that a user has to the CIM
objects within the specified namespace.

■ Solaris_NamespaceAcl - Represents the access control on a namespace.

You can set access control on individual users to the CIM objects within a namespace
by creating an instance of the Solaris_UserACL class and then using the APIs to
change the access rights for that instance. Similarly, you can set access control on
namespaces by creating an instance of the Solaris_NameSpaceACL class and then
using APIs, such as the setInstance method, to set the access rights for that
instance.

An effective way to combine the use of these two classes is to first use the
Solaris_NameSpaceACL class to restrict access to all users to the objects in a
namespace. Then use the Solaris_UserACL class to grant selected users access to
the namespace.

Note – Access Control Lists (ACL) are governed by a standard being developed by
the DMTF. Although the Solaris ACL schema are currently CIM-compliant, they will
need to change when the DMTF finalizes the ACL standard. Programs you write
using the Solaris ACL schema classes are subject to that risk.

The Solaris_UserAcl Class
The Solaris_UserAcl class extends the Solaris_Acl base class, from which it
inherits the string property capability that has a default value of “r” (Read
Only).

You can set access privileges by setting the capability property of the
Solaris_UserAcl class to one of the following values:

TABLE 2-2 Settings of the capability Property

Access Right Description

r Read Only

rw Read/Write

w Write

none Only
24 WDR Developer’s Guide • September 2002

In addition to the capability property, the Solaris_UserAcl class defines the
following two key properties. Only one instance of the namespace-username ACL
pair can exist in a namespace.

▼ Setting Access Control on a User
1. Create an instance of the Solaris_UserAcl class, using code such as the following:

...

/* Create a namespace object initialized with root\security
(name of namespace) on the local host. */

CIMNameSpace cns = new CIMNameSpace("", "root\security");

// Connect to the root\security namespace as root.

cc = new CIMClient(cns, "root", "root_password");

// Get the Solaris_UserAcl class

cimclass = cc.getClass(new CIMObjectPath("Solaris_UserAcl");

// Create a new instance of the Solaris_UserAcl

class ci = cimclass.newInstance(); ...

2. Set the capability property to the desired access rights, using code such as the
following:

...

/* Change the access rights (capability) to read/write for
user Guest

on objects in the root\molly namespace.*/

ci.setProperty("capability", new CIMValue(new String("rw"));

ci.setProperty("nspace", new CIMValue(new String("root\
molly"));

ci.setProperty("username", new CIMValue(new String("guest"));

...

TABLE 2-3 Key Properties of the Solaris_UserAcl class

Property Data Type Purpose

nspace string Identifies the namespace to which this ACL applies.

username string Identifies the user to which this ACL applies.
Chapter 2 Using Solaris WBEM Services in WDR 25

3. Update the newly created instance using code such as the following:

...

// Pass the updated instance to the CIM Object Manager

cc.setInstance(new CIMObjectPath(), ci);

...

The Solaris_NamespaceAcl Class
The Solaris_NamespaceAcl class extends the Solaris_Acl base class, from
which it inherits the string property capability whose default value is ”r” (Read
Only for GUEST and all users). The Solaris_NamespaceAcl class defines the
following key property:

▼ Setting Access Control on a Namespace
1. Create an instance of the Solaris_namespaceACL class, using code such as the

following:

...

/* Create a namespace object initialized with root\security
(name of namespace) on the local host. */

CIMNameSpace cns = new CIMNameSpace("", "root\security");

// Connect to the root\security namespace as root.

cc = new CIMClient(cns, "root", "root_password");

// Get the Solaris_namespaceAcl class

cimclass = cc.getClass(new
CIMObjectPath("Solaris_namespaceAcl");

// Create a new instance of the Solaris_namespaceAcl

class ci = cimclass.newInstance();

...

Property Data Type Purpose

nspace string Identifies the namespace to which this ACL applies. Only
one instance of the namespace ACL can exist in a
namespace.
26 WDR Developer’s Guide • September 2002

2. Set the capability property to grant the desired access rights, using code such as
the following:

...

/* Create a namespace object initialized with root\security
(name of namespace) on the local host. */

CIMNameSpace cns = new CIMNameSpace("", "root\security");

// Connect to the root\security namespace as root.

cc = new CIMClient(cns, "root", "root_password");

// Get the Solaris_namespaceAcl class

cimclass = cc.getClass(new
CIMObjectPath("Solaris_namespaceAcl");

// Create a new instance of the Solaris_namespaceAcl

class ci = cimclass.newInstance();

...

3. Update the newly created instance, using code such as the following:

// Pass the updated instance to the CIM Object Manager

cc.setInstance(new CIMObjectPath(), ci);

Solaris Management Console (SMC)
Users Tool
The SMC Users tool lets you add users to existing roles and grant RBAC rights to
existing users. RBAC rights are managed in the Rights portion of the SMC Users
tool.

▼ To Start SMC and the Users Tool
1. Enter the following command to change to the location of the SMC invocation

command:

cd /usr/sbin

2. Type the following command to start the SMC:

smc
Chapter 2 Using Solaris WBEM Services in WDR 27

3. After the application is loaded and the user interface is displayed, double-click
“This Computer” (or single-click the expand/compress icon next to “This
Computer”) in the left-hand Navigation panel to expand the tree beneath “This
Computer.”

4. Double-click “System Configuration” (or single-click the expand/compress icon
next to “System Configuration”) in the left-hand Navigation panel to expand the
tree beneath “System Configuration.” The Users icon is displayed.

5. Click the Users icon to start the Users Tool.

Note – For more information about using the Solaris Management Console, see the
smc(1m) man page.

Solaris WBEM Logging Services
WBEM Logging services enable systems administrators to monitor system events
and to determine how they occurred.

About Solaris WBEM Logging
The logging service records all those actions that the service provider has been
programmed to return, and that are completed by Solaris WBEM Services
components. In addition, informational and error content can be recorded to a log.

For example, if a user disables a serial port, this information can be logged
automatically by a serial port provider. Or, if a system error or other failure occurs,
the administrator can check the log record to trace the cause of the occurrence.

All components, applications, and providers start logging automatically, in response
to events. For example, the CIM Object Manager automatically logs events after it is
installed and started.

You can set up logging for applications and providers that you develop for the
WBEM environment. For information, see the section “Using the APIs to Enable
Solaris WBEM Logging” on page 32.

You can view log data in the Solaris Management Console (SMC) Log Viewer to
debug the logging functionality that you have set up. For more information about
viewing log files, see the section “Solaris WBEM Log Viewer” on page 39, and the
smc(1m) man page.
28 WDR Developer’s Guide • September 2002

Solaris WBEM Services Log Files
When you set up an application or a provider to log events, its events are recorded
in log files. All log records are stored in the path: /var/sadm/wbem/log. Log files
use the following naming convention:

wbem_log.#

where # is a number appended to indicate the version of the log file.

A log file appended with a “.1” is the most recently-saved version, such as
wbem_log.1. A log file appended with a “.2” is the next oldest version, and so on.
All versions of the log file co-exist as an archive in /var/sadm/wbem/log.

Log files are renamed with a .1 file extension, and saved when one of the following
two conditions are met:

■ The current file reaches the file size limit specified by the
Solaris_LogServiceProperties class. Default values are set in the
wbemService.properties file.

For information about how the properties of the
Solaris_LogServiceProperties class control how a log file is used, see the
section “Solaris WBEM Services Log File Rules” on page 29.

■ The clearLog() method of the Solaris_LogService class is invoked on the
current log file.

For information about the Solaris_LogService class and its methods, see the
section “Solaris_LogService Class” on page 31.

Solaris WBEM Services Log File Rules
The Solaris_LogServiceProperties class is defined in
Solaris_Core1.0.mof. The Solaris_LogServiceProperties class has
properties that control the following attributes of a log file:

■ The directory where the log file is written
■ The name of the log file
■ The size allowed for a log file before it is renamed with a .1 file extension and

saved.
■ The number of log files you can have in the archive
■ The ability to write log data to SysLog, the default logging system of the Solaris

operating environment
Chapter 2 Using Solaris WBEM Services in WDR 29

To specify any of these attributes for an application that writes data to a log file,
create a new instance of the Solaris_LogServiceProperties class and set the
values of its associated properties. See the section “Setting Solaris WBEM Logging
Properties” on page 38 for detailed information about how to set property values of
the new instance.

Solaris WBEM Services Log File Format
The logging service provides three categories of log records: application, system, and
security. Log records may be informational, or may record data derived from errors
or warnings. A standard set of fields is defined for the data that can be presented in
logs; however, logs do not necessarily use all fields. For example, an informational
log may provide a brief message describing an event. An error log may provide a
more detailed message.

Some log data fields are required to identify data in the CIM Repository. These fields
are properties flagged with a read-only key qualifier in the Solaris_LogRecord
class. You cannot set the values of these fields. You can, however, set the values of
any of the following fields in your log files:

■ Category — The type of log record
■ Severity — The severity of conditions that caused data to be written to a log

file
■ AppName — The name of the application from which the data was obtained
■ UserName — The name of the individual who was using the application when

log data was generated
■ ClientMachineName — The name of the computer on which an incident

occurred that generated log data.
■ ServerMachineName —- The name of the server on which an incident occurred

that generated log data
■ SummaryMessage — A brief message describing the occurrence
■ DetailedMessage — A detailed message describing the occurrence
■ Data — Context information that applications and providers can present to

interpret a log message.

Solaris WBEM Log Classes
Solaris WBEM Logging Services uses two Solaris Schema classes:
Solaris_LogRecord and Solaris_LogService.
30 WDR Developer’s Guide • September 2002

Solaris_LogRecord Class
The Solaris_LogRecord class is defined in the Solaris_Core1.0.mof file to
model an entry in a log file. When an application or provider calls the
Solaris_LogRecord class in response to an event, the Solaris_LogRecord class
causes all data generated by the event to be written to a log file. To see the definition
of the Solaris_LogRecord class as part of the Solaris Provider, view the
Solaris_Core1.0.mof file in a text editor. The Solaris_Core1.0.mof file is
located in /usr/sadm/mof.

The Solaris_LogRecord class uses a vector of properties and key qualifiers to
specify attributes of the events, system, user, and application or provider that
generate data. Read-only qualifier values are generated transparently for use
between the application and the CIM Repository. For example, the value RecordID
uniquely identifies the log entry but is not displayed as part of the log format when
you view generated data.

You can set the values of writable qualifier values. For example, you can set the
qualifier values of properties such as ClientMachineName and
ServerMachineName, which identify the system on which an event occurs.

When the SysLogFlag property is set to true, then a detailed message of the log
record is automatically sent to the syslog daemon on UNIX systems.

Solaris_LogService Class
The Solaris_LogService class controls the operation of the logging service and
defines the ways in which log data is handled. This class has a set of methods that
an application can use to distribute data about a particular event to the CIM Object
Manager from the issuing application. The data becomes a trigger that generates a
response from the CIM Object Manager, such as a retrieval of data from the CIM
Repository.

The Solaris_LogService class uses the following methods:

■ clearLog — Renames, and saves a current log file or deletes a saved log file.
■ getNumRecords — Returns the number of records in a particular log file.
■ listLogFiles — Returns a list of all log files stored in /usr/sadm/wbem/log.
■ getCurrentLogFileName — Returns the name of the most recent log file.
■ getNumLogFiles — Returns the number of log files stored in

/usr/sadm/wbem/log.
■ getLogFileSize — Returns the size, in megabytes, of a particular log file.
■ getSyslogSwitch — Enables log data to be sent to SysLog, the logging service

of the Solaris operating environment.
■ getLogStorageName — Returns the name of the host computer or device where

log files are stored.
Chapter 2 Using Solaris WBEM Services in WDR 31

■ getLogFileDir — Returns the path and name of the directory where log files
are stored.

The Solaris_LogServiceProperties class lets you set logging properties. See
the section “Setting Solaris WBEM Logging Properties” on page 38.

You can view the definition of the Solaris_LogService class in the
Solaris_Core1.0.mof file, which is located in /usr/sadm/mof.

Using the APIs to Enable Solaris WBEM
Logging
Currently, you can view log file content in Log Viewer. However, you can develop
your own log viewer if you prefer to view log files in a customized manner. You can
use the logging application programming interfaces (APIs) to develop a log viewer.
The APIs enable you to:

■ Write data from an application to a log file
■ Read data from a log file to your log viewer
■ Set logging properties that specify how logging is handled

Writing Data to a Solaris WBEM Log File
Enabling an application to write data to a log file involves the following main tasks:

■ Creating a new instance of the Solaris_LogRecord class
■ Specifying the properties that will be written to the log file and setting values for

the property qualifiers
■ Setting the new instance and properties to print

▼ How to Create an Instance of
Solaris_LogRecord to Write Data

1. Import all the necessary Java classes. The minimum classes are:

import java.rmi.*;

import com.sun.wbem.client.CIMClient;

import com.sun.wbem.cim.CIMInstance;

import com.sun.wbem.cim.CIMValue;
32 WDR Developer’s Guide • September 2002

import com.sun.wbem.cim.CIMProperty;

import com.sun.wbem.cim.CIMNameSpace;

import com.sun.wbem.cim.CIMObjectPath;

import com.sun.wbem.cim.CIMClass;

import com.sun.wbem.cim.CIMException;

import com.sun.wbem.solarisprovider.*;

import java.util.*;

2. Declare the public class CreateLog and create instances of the following classes:
CIMClient, CIMObjectPath, and CIMNameSpace:

public class CreateLog {

public static void main(String args[]) throws CIMException {

if (args.length != 3) {

System.out.println("Usage: CreateLog host username password");

System.exit(1);

}

CIMClient cc = null;

CIMObjectPath cop = null;

try {

CIMNameSpace cns = new CIMNameSpace(args[0]);

cc = new CIMClient(cns, args[1], args[2]);

3. Specify the vector of properties to be returned. Set values for the properties of the
qualifiers.

Vector keys = new Vector();

CIMProperty logsvcKey;

logsvcKey = new CIMProperty("category");

logsvcKey.setValue(new CIMValue(new Integer(2)));

keys.addElement(logsvcKey);

logsvcKey = new CIMProperty("severity");

logsvcKey.setValue(new CIMValue(new Integer(2)));

keys.addElement(logsvcKey);

logsvcKey = new CIMProperty("AppName");

logsvcKey.setValue(new CIMValue("SomeApp"));

keys.addElement(logsvcKey);

logsvcKey = new CIMProperty("UserName");

logsvcKey.setValue(new CIMValue("molly"));

keys.addElement(logsvcKey);
Chapter 2 Using Solaris WBEM Services in WDR 33

logsvcKey = new CIMProperty("ClientMachineName");

logsvcKey.setValue(new CIMValue("dragonfly"));

keys.addElement(logsvcKey);

logsvcKey = new CIMProperty("ServerMachineName");

logsvcKey.setValue(new CIMValue("spider"));

keys.addElement(logsvcKey);

logsvcKey = new CIMProperty("SummaryMessage");

logsvcKey.setValue(new CIMValue("brief_description"));

keys.addElement(logsvcKey);

logsvcKey = new CIMProperty("DetailedMessage");

logsvcKey.setValue(new CIMValue("detailed_description"));

keys.addElement(logsvcKey);

logsvcKey = new CIMProperty("data");

logsvcKey.setValue(new CIMValue("0xfe 0x45 0xae 0xda"));

keys.addElement(logsvcKey);

logsvcKey = new CIMProperty("SyslogFlag");

logsvcKey.setValue(new CIMValue(new Boolean(true)));

keys.addElement(logsvcKey);

4. Declare the new instance of the CIMObjectPath class for the log record.

CIMObjectPath logreccop = new CIMObjectPath("Solaris_LogRecord",
keys);

5. Declare the new instance of Solaris_LogRecord. Set the vector of properties to
write to a file.

CIMInstance ci = new CIMInstance();

ci.setClassName("Solaris_LogRecord");

ci.setProperties(keys);

//System.out.println(ci.toString());

cc.setInstance(logreccop,ci);

}

catch (Exception e) {

System.out.println("Exception: "+e);

e.printStackTrace();

}

6. Close the session after data has been written to the log file.

// close session.

if(cc != null) {
34 WDR Developer’s Guide • September 2002

cc.close();

}

Reading Data from a Solaris WBEM Log File
Enabling an application to read data from a log file to a log viewer involves the
following tasks:

■ Enumerating instances of the Solaris_LogRecord class
■ Getting the desired instance
■ Printing properties of the instance to an output device, typically a user interface

for the log viewer

▼ How to Get an Instance of the
Solaris_LogRecord Class and Read Data

1. .Import all the necessary Java classes. The classes listed below are the minimum
required:

import java.rmi.*;

import com.sun.wbem.client.CIMClient;

import com.sun.wbem.cim.CIMInstance;

import com.sun.wbem.cim.CIMValue;

import com.sun.wbem.cim.CIMProperty;

import com.sun.wbem.cim.CIMNameSpace;

import com.sun.wbem.cim.CIMObjectPath;

import com.sun.wbem.cim.CIMClass;

import com.sun.wbem.cim.CIMException;

import com.sun.wbem.solarisprovider.*;

import java.util.*;

import java.util.Enumeration;

2. Declare the class ReadLog.

public class ReadLog

{

public static void main(String args[]) throws

CIMException

{

Chapter 2 Using Solaris WBEM Services in WDR 35

if (args.length != 3)

{

System.out.println("Usage: ReadLog host username password");

System.exit(1);

}

3. Set the CIMClient, CIMObjectPath, and CIMNameSpace values of the ReadLog
class.

CIMClient cc = null;

CIMObjectPath cop = null;

try { CIMNameSpace cns = new CIMNameSpace(args[0]);

cc = new CIMClient(cns, args[1], args[2]);

cop = new CIMObjectPath("Solaris_LogRecord");

4. .Enumerate the instances of Solaris_LogRecord.

Enumeration e = cc.enumInstances(cop, true);

for (; e.hasMoreElements();) {

5. Send the property values to an output device.

System.out.println("---------------------------------");

CIMObjectPath op = (CIMObjectPath)e.nextElement();

CIMInstance ci = cc.getInstance(op);

System.out.println("Record ID : " +

(((Long)ci.getProperty("RecordID").getValue().getValue()).longVal
ue()));

System.out.println("Log filename : " +
((String)ci.getProperty("FileName").getValue().getValue()));

int categ = 0
(((Integer)ci.getProperty("category").getValue().getValue()).intV
alue());

if (categ == 0)

System.out.println("Category : Application Log");

else if (categ == 1)

System.out.println("Category : Security Log");

else if (categ == 2)

System.out.println("Category : System Log");

int severity =
(((Integer)ci.getProperty("severity").getValue().getValue()).intV
alue());
36 WDR Developer’s Guide • September 2002

if (severity == 0)

System.out.println("Severity : Informational");

else if (severity == 1)

System.out.println("Severity : Warning Log!");

else if (severity == 2)

System.out.println("Severity : Error!!");

System.out.println("Log Record written by :" +
((String)ci.getProperty("AppName").getValue().getValue()));

System.out.println("User : " +
((String)ci.getProperty("UserName").getValue().getValue()));

System.out.println("Client Machine : " +
((String)ci.getProperty("ClientMachineName").getValue().getValue(
)));

System.out.println("Server Machine : " +
((String)ci.getProperty("ServerMachineName").getValue().getValue())
);

System.out.println("Summary Message : " +
((String)ci.getProperty("SummaryMessage").getValue().getValue())
);

System.out.println("Detailed Message : " +
((String)ci.getProperty("DetailedMessage").getValue().getValue()
));

System.out.println("Additional data : " +
((String)ci.getProperty("data").getValue().getValue()));

boolean syslogflag =
((Boolean)ci.getProperty("syslogflag").getValue().getValue()).
booleanValue();

if (syslogflag == true) {

System.out.println("Record was written to syslog as well");

} else {

System.out.println("Record was not written to syslog");

}

System.out.println("---------------------------------");

6. Return an error message to the user if an error condition occurs.

...

catch (Exception e) {

System.out.println("Exception: "+e);

e.printStackTrace(); }

...
Chapter 2 Using Solaris WBEM Services in WDR 37

7. Close the session when the data has been read from the file.

// close session.

if(cc != null) {

cc.close();

}

}

}

Setting Solaris WBEM Logging Properties
You can create an instance of the Solaris_LogServiceProperties class and set
property values for the instance to control how your application or provider handles
logging. The following code example shows how to set logging properties.
Properties are stored in the /var/sadm/lib/wbem/WbemServices.properties
file.

public class SetProps {

public static void main(String args[]) throws CIMException {

if (args.length != 3) {

System.out.println("Usage: SetProps host username password");

System.exit(1);

}

CIMClient cc = null;

try {

CIMNameSpace cns = new CIMNameSpace(args[0]);

cc = new CIMClient(cns, args[1], args[2]);

CIMObjectPath logpropcop = new
CIMObjectPath("Solaris_LogServiceProperties");

Enumeration e = cc.enumInstances(logpropcop, true);

for (; e.hasMoreElements();) {

CIMObjectPath op = (CIMObjectPath)e.nextElement();

CIMInstance ci = cc.getInstance(op);

ci.setProperty("Directory", new CIMValue("/tmp/bar1/"));

ci.setProperty("FileSize", new CIMValue("10"));

ci.setProperty("NumFiles", new CIMValue("2"));

ci.setProperty("SyslogSwitch", new CIMValue("off"));

cc.setInstance(logpropcop,ci);

}

38 WDR Developer’s Guide • September 2002

}

catch (Exception e) {

System.out.println("Exception: "+e);

e.printStackTrace();

}

// close session.

if(cc != null) {

cc.close();

}

}

Solaris WBEM Log Viewer
You can view all details of a log record in the Solaris Management Console (SMC)
Log Viewer, an application that provides a graphical user interface for viewing
recorded data. For more information on the SMC, see the man page smc(1M).

After you have created a log record, you can start the SMC and then its Log Viewer.

▼ How to Start SMC and Solaris Log Viewer
1. Change to the location of the SMC invocation command by typing the following:

cd /usr/sbin

2. Start SMC by typing the following command:

smc

3. In the Navigation panel, double-click This Computer (or single-click the
expand/compress icon next to it) to expand the tree beneath it. Double-click
System Status and the Log Viewer icon will be displayed.

4. Click the Log Viewer icon to start the application.
Chapter 2 Using Solaris WBEM Services in WDR 39

40 WDR Developer’s Guide • September 2002

CHAPTER 3

Using Process Indications

This chapter describes CIM process indications; how they are used to communicate
the occurrence of events; and the classes that enable clients to subscribe to receive
CIM process indications. This chapter includes the following topics:

■ “The CIM Event Model” on page 41
■ “How Indications are Generated” on page 42
■ “How Subscriptions Are Created” on page 43
■ “Adding a CIM Listener” on page 44
■ “Creating an Event Filter” on page 44
■ “Creating an Event Handler” on page 46
■ “Binding an Event Filter to an Event Handler” on page 48

For more information about process indication classes, see Chapter 4, “Classes,
Domains, Associations, and Indications in WDR.”

Note – For more in-depth information on the CIM Event Model, see the Distributed
Management Task Force white paper at
http://www.dmtf.org/education/whitepapers.php.

The CIM Event Model

Tip – The CIM Event API is located at
/usr/sadm/lib/wbem/doc/javax/wbem/client/CIMEvent.html.

An event is a real-world occurrence. A process indication is an object that is created as
a result of the occurrence of an event. It is important to distinguish between the
event; and the process indication, which is a notification of the event. In CIM, events
are not published; process indications are published.
41

A process indication is a subtype of a class that has an association with zero or more
triggers (descriptions of changes in data that result from events) that can create
instances of the class Indication. The WBEM implementation does not have an
explicitly defined object that represents a trigger. Triggers are implied either by the
operations on basic objects of the system (create, delete, and modify on classes,
instances, and namespaces) or by events in the managed environment. When an
event takes place, the WBEM provider generates a process indication that something
happened in the system.

For example, with a Service class, when the service stops and a trigger is engaged,
it results in a process indication that serves as notification that the service stopped.

You can view the related CIM classes in the Solaris WBEM Services schema at
/usr/sadm/lib/wbem/doc/mofhtml/index.html. The class is structured as
follows:
■ Root class: CIM_Indication

■ Superclass: CIM_ClassIndication

■ Subclasses: CIM_ClassCreation
■ CIM_ClassDeletion
■ CIM_ClassModification

■ Superclass: CIM_InstIndication

■ Subclasses: CIM_InstCreation
■ CIM_InstDeletion
■ CIM_InstMethodRecall
■ CIM_InstRead

■ Superclass: CIM_ProcessIndication

The CIM_ProcessIndication superclass resides at the top of the “The WDR
Indication Class Hierarchy Diagram” on page 83.

How Indications are Generated
CIM events can be classified as either life cycle events or process events. A life cycle
event is a built-in (intrinsic) CIM event that occurs in response to a change to data in
which a class or class instance is created, modified, or deleted. A process event is a
user-defined (extrinsic) event that is not described by a life cycle event.

Administrators can change the event polling interval and the default polling
behavior of the CIM Object Manager by editing the properties in the
cimom.properties file. For instructions on editing the cimom.properties file,
see the Solaris WBEM Services Administrator’s Guide (part number 806-6468-10).
42 WDR Developer’s Guide • September 2002

Event providers generate indications in response to requests made by the CIM
Object Manager. The CIM Object Manager analyzes subscription requests and uses
the EventProvider interface to contact the appropriate provider, requesting that it
generate the appropriate indications. When the provider generates the indication,
the CIM Object Manager routes the indication to the destinations specified by the
CIM_IndicationHandler instances. These instances are created by the
subscribers.

How Subscriptions Are Created
A client application can subscribe to be notified of CIM events. A subscription is a
declaration of interest in one or more streams of indications.

An application that subscribes for indications of CIM events describes:

■ The events in which it is interested.
■ The action that the CIM Object Manager must take when each event occurs.

The occurrence of an event is represented as an instance of one of the subclasses of
the CIM_Indication class. An indication is generated only when a client
subscribes for the event.

To create a subscription, specify an instance of the CIMListener interface and
create instances of the following subclasses of the CIM_Indication class:

CIM_IndicationFilter — Defines the criteria for generating an indication and
which data should be returned in the indication.

CIM_IndicationHandler — Describes how to process and handle an indication.
May include a destination and a protocol for delivering indications.

CIM_IndicationSubscription — An association that binds an event filter with
an event handler.

An application can create one or more event filters with one or more event handlers.
Event indications are not delivered until the application creates the event
subscription.
Chapter 3 Using Process Indications 43

Adding a CIM Listener
To register for indications of CIM events, add an instance of the CIMListener
interface. The CIM Object Manager generates indications for CIM events that are
specified by the event filter when a client subscription is created.

The CIMListener interface must implement the indicationOccured method
which takes the argument CIMEvent. This method is invoked when an indication is
available for delivery.

Adding a CIM Listener
Use code such as the following to add a CIM listener:

// Connect to the CIM Object Manager

cc = new CIMClient();

// Register the CIM Listener

cc.addCIMListener(new CIMListener() {

public void indicationOccured(CIMEvent e) {

}

});

Creating an Event Filter
Event filters describe the types of events to be delivered and the conditions under
which they are delivered. An application creates an event filter by creating an
instance of the CIM_IndicationFilter class and defining values for its
properties. Event filters belong to a namespace. Each event filter works only on
events that belong to the namespace to which the filter also belongs.
44 WDR Developer’s Guide • September 2002

The CIM_IndicationFilter class has string properties that an application can set
to identify the filter uniquely, specify a query string, and set the query language
used to parse the query string, as shown in the following table. Currently, only the
WBEM Query Language is supported.

TABLE 3-1 Properties in the CIM_IndicationFilter Class

Property Description Required/Optional

SystemCreationClassName The name of the system on
which the creation class for
the filter resides, or to
which it applies

Optional. The default for
this key property is the
CIMSystem.Creation
ClassName

SystemName The name of the system on
which the filter resides, or
to which it applies

Optional. The default for
this key property is the
name of the system on
which the CIM Object
Manager is running.

CreationClassName The name of the class or
subclass that was used to
create the filter

Optional. The CIM Object
Manager assigns
CIM_IndicationFilter
as the default for this key
property.

Name The unique name of the
filter

Optional. The CIM Object
Manager assigns a unique
name.

SourceNamespace The path to a local
namespace where the CIM
indications originate

Optional. The default is
null.

Query A query expression that
defines the conditions
under which indications are
generated. Currently, only
Level 1 WBEM Query
Language expressions are
supported. To learn how to
construct WQL query
expressions, see the section
“Querying” in the Sun
WBEM SDK Developer’s
Guide (part number 806-
6831-10).

Required

QueryLanguage The language in which the
query expression is written.

Required. The default is
WQL (WBEM Query
Language).
Chapter 3 Using Process Indications 45

▼ To Create an Event Filter
1. Create an instance of the CIM_IndicationFilter Class, using code such as the

following:

CIMClass cimfilter = cc.getClass

(new CIMObjectPath(‘‘CIM_IndicationFilter’’), true, true,
true, null);CIMInstance ci = cimfilter.newInstance();

2. Specify the name of the event filter, using code such as the following:

Name = ‘‘filter_all_new_solarisdiskdrives’’;

3. Create a WQL string to identify event indications to be returned, using code such
as the following:

String filterString = ‘‘SELECT *

FROM CIM_InstCreation WHERE sourceInstance is
ISA Solaris_DiskDrive’’

4. Set property values in the cimfilter instance to identify the name of the filter,
the filter string that selects CIM events, and the query language used to parse the
query string, using code such as the following.

Note – Currently, only the WBEM Query Language can be used to parse query
strings.

ci.setProperty(‘‘Name’’;, new
CIMValue("filter_all_new_solarisdiskdrives”));

ci.setProperty("Query", new CIMValue(filterString));
ci.setProperty("QueryLanguage", new CIMValue("WQL");)

5. Create an instance from the cimfilter instance and store it in the CIM Object
Manager Repository, using code such as the following:

CIMObjectPath filter = cc.createInstance(new CIMObjectPath(),
ci);

Creating an Event Handler
The Solaris Event MOF extends the CIM_IndicationHandler class by creating the
Solaris_JAVARXMIDelivery class to handle delivery of indications of CIM
events to client applications using the RMI protocol. RMI clients must instantiate the
Solaris_JAVAXRMIDelivery class to set up an RMI delivery location. Clients can
use only RMI to receive events; HTTP is not supported.
46 WDR Developer’s Guide • September 2002

An application sets the properties in the CIM_IndicationHandler class to
uniquely name the handler and identify the UID of its owner.

TABLE 3-2 Properties in the CIM_IndicationHandler Class

Property Description Required/Optional

SystemCreationClassName The name of the system on
which the creation class for
the handler resides, or to
which it applies

Optional. Set by the CIM
Object Manager.

SystemName The name of the system on
which the handler resides,
or to which it applies

Optional. The default for
this key property is the
name of the system on
which the CIM Object
Manager is running.

CreationClassName The name of the class or
subclass that was used to
create the handler

Optional. The CIM Object
Manager assigns the
appropriate class as the
default for this key
property.

Name The unique name of the
handler

Required. The client
application must assign a
unique name.

Owner The name of the entity that
created, or that maintains,
this handler. The provider
can check this value to
determine whether to
authorize a handler to
receive an indication.

Optional. The default
value is the Solaris user
name of the user who is
creating the instance.
Chapter 3 Using Process Indications 47

▼ Creating a CIM Event Handler
To create a CIM event handler, use code such as the following:

// Create an instance of the Solaris_RMIDelivery class.
CIMClass rmidelivery = cc.getClass(new CIMObjectPath

(‘‘Solaris_RMIDelivery’’;), false, true, true, null);

CIMInstance ci = rmidelivery.newInstance();

//Create a new instance (delivery) from
//the rmidelivery instance.
CIMObjectPath delivery = cc.createInstance(new
CIMObjectPath(), ci);

Binding an Event Filter to an Event
Handler
An application binds an event filter to an event handler by creating an instance of
the CIM_IndicationSubscription class. When a
CIM_IndicationSubscription is created, indications for the events specified by
the event filter are delivered.

The following example code creates a subscription (filterdelivery) and defines
the filter property to the filter object that was created in “Creating an Event
Filter” on page 44, and defines the handler property to the delivery object
created in “Creating a CIM Event Handler” on page 48:

CIMClass filterdelivery = cc.getClass(new
CIMObjectPath(‘’CIM_IndicationSubscription’’),
true, true, true, null);

ci = filterdelivery.newInstance():

//Create a property called “filter” that refers to the filter
//instance.
ci.setProperty("filter", new CIMValue(filter));

//Create a property called handler that refers to the delivery
//instance.
ci.setProperty("handler", new CIMValue(delivery));
48 WDR Developer’s Guide • September 2002

CIMObjectPath indsub = cc.createInstance(new CIMObjectPath(),
ci);
Chapter 3 Using Process Indications 49

50 WDR Developer’s Guide • September 2002

CHAPTER 4

Classes, Domains, Associations, and
Indications in WDR

This chapter contains the following five sections:

■ “CIM Attachment Point Classes” on page 53
■ “CIM Slot Classes” on page 64
■ “CIM Solaris_WDRDomain Classes” on page 70
■ “WDR Schema Associations and Aggregations” on page 77
■ “CIM Process Indication Classes” on page 82
51

WDR CIM Class Hierarchy Diagram

CIM_CollectionOfMSEs CIM_LogicalElement

CIM_LogicalElement

Solaris_WDRDomain

Solaris_WDRAttachmentPoint

Solaris_XCDomain

Solaris_WDRSlot

Solaris_XCSlot Solaris_SGSlot

Solaris_CHCPU

Solaris_CHSystemBoard

Solaris_CHController

Solaris_CHMemory

Solaris_SGDomain

Solaris_DomainHasAttachmentPoints

Solaris_SystemBoardHasProcessors

S
ol

ar
is

_D
om

ai
nh

as
S

lo
ts

Solaris_SlotHasSystemBoard

Solaris_SystemBoardHasMemory

Solaris_SystemBoardHasControllers

• Id

• BoardRelationship
• KeySwitchPosition
• State

• ActiveEthernetBoard
• AdminGroup
• BoardRelationship
• KeySwitchPosition
• ReconfigGroup
• State

• Busy
• ClassName
• Condition
• DomainID
• LogicalID
• MiscInfo
• OccupantState
• PhysicalID
• ReceptacleState
• StatusTime
• Type

• Configure()
• Connect()
• Disconnect()
• Test()
• Unconfigure()

• Deleted
• Interleaved
• Permanent
• PhysicalAddress
• Remaining
• Size
• Source
• Target
• Unconfigurable

• Device
• Referenced

• ECache
• ID
• Speed

• Empty
• LogocalID

• Assign()
• Unassign()

• AssignedDomain
• AssignmentState
• BoardType
• PowerState
• TestState

• AssignedDomain
• AssignmentState
• BoardType
• PowerState
• TestState

• Assigned
• PoweredOn

• Assign()
• PowerOff()
• PowerOn()
• Unassign()

Properties

Legend

Methods
Children/Parent class

Association
52 WDR Developer’s Guide • September 2002

CIM Attachment Point Classes
Attachment point classes provide logical elements that represent attachment points
in Sun Fire 15K, 12K, 6800, 4810, 4800, or 3800 systems. An attachment point is an
interface to a physical location in Sun Fire 15K, 12K, 6800, 4810, 4800, or 3800
systems where you can use WDR to configure system boards, CPUs, and memory
modules in domains that are running the Solaris operating environment. An
attachment point is comprised of a receptacle and an occupant. When you insert an
occupant into a receptacle or remove it from a receptacle, the attachment point’s
state changes.

Note – For more information about attachment points, refer to the cfgadm(1M)
man page (all Sun Fire models) and the cfgadm_sbd(1M) man page (Sun Fire 15K
and 12K only).

Attachment point classes are similar to Slot classes insofar as they represent physical
locations in Sun Fire 15K, 12K, 6800, 4810, 4800, or 3800 systems where you can use
WDR. (See the section “CIM Slot Classes” on page 64.) However, Slot classes provide
logical elements that represent only system board and I/O boards, and not CPUs,
memory, and I/O controllers. Slots are a type of attachment point whose scope is
limited only to boards.

CIM Solaris_WDRAttachmentPoint Class

Position in the Class Hierarchy

CIM_LogicalElement

|

+--Solaris_WDRAttachmentPoint

Description

Represents the core Configuration Administration (cfgadm) information. This
information is gathered using the libcfgadm library on domains.
Chapter 4 Classes, Domains, Associations, and Indications in WDR 53

Direct Known Subclasses

CIM Solaris_CHCPU Class, CIM Solaris_CHSystemBoard Class, CIM
Solaris_CHController Class, and CIM Solaris_CHMemory Class

CIM Solaris_WDRAttachmentPoint Class Properties

Note – For more information about attachment points, refer to the cfgadm(1M) man
page (all Sun Fire systems), and the cfgadm_sbd(1M) man page (Sun Fire 15K and
12K only).

TABLE 4-1 CIM Solaris_WDRAttachmentPoint Properties

Property Data Type Description

ClassName string The class of attachment point. For example, “sbd” represents a
system board.

Busy uint32 Indicates whether the attachment point is currently in a state
transition.

Condition uint32 The condition of the attachment point. Possible values: Unknown,
OK, Failing, Failed, and Unusable

LogicalID string The logical identifier of the attachment point

PhysicalID string The physical identifier of the attachment point. For example:
/devices/pseudo/dr@0::SB6

DomainID uint32 The domain to which this attachment point is assigned or available.
On Sun Fire 15K systems, domains are numbered between 0 and 17.
On Sun Fire 12K systems, domains are numbered between 0 and 8.
On Sun Fire 3800, 4800, and 4810 systems, domains are numbered 0
and 1 (maximum two domains). On Sun Fire 6800 systems, domains
are numbered between 0 and 3 (maximum four domains).

OccupantState uint32 The occupant state of the attachment point. Possible values: None,
Configured, and Unconfigured

ReceptacleState uint32 The receptacle state of the attachment point. Possible values: None,
Empty, Disconnected, and Connected

Type string The type of the attachment point. Either cpun, pcin, or memn,
where n is the number of the component.
54 WDR Developer’s Guide • September 2002

MiscInfo string Driver-specific information that the driver sets. A list of name-value
pairs. Depends on the value of the Type property.

For example, if the Type property is cpun, the MiscInfo property
contains is populated with the following information: the Processor
ID, the Processor speed, and the Ecache memory size in MB.

StatusTime datetime The date and time of the latest status change to the attachment
point, in the following format:

yyyymmddhhmmss.mmmmmmsutc

Where:
yyyy represents the year,
mm represents the month,
dd represents the day,
hh represents the hour,
mm represents the minutes,
ss represents the seconds,

TABLE 4-1 CIM Solaris_WDRAttachmentPoint Properties
Chapter 4 Classes, Domains, Associations, and Indications in WDR 55

CIM Solaris_WDRAttachmentPoint Class Methods

TABLE 4-2 CIM Solaris_WDRAttachmentPoint Methods

Name Return Value Description

Configure sint32 Configures the attachment point into a Solaris domain.

Has the following parameters:
force — boolean
hardwareOpts — string
retries — uint32 retries
retryDelay — uint32

Returns the following:
error — string

Unconfigure sint32 Removes the resources of the attachment point from the Solaris
domain in which it is currently configured.

Has the following parameters:
force — boolean
hardwareOpts — string
retries — uint32 retries
retryDelay — uint32

Returns the following:
error — string

Connect sint32 Changes the receptacle state to connected.

Has the following parameters:
force — boolean
hardwareOpts — string
retries — uint32 retries
retryDelay — uint32

Returns the following:
error — string
56 WDR Developer’s Guide • September 2002

CIM Solaris_CHSystemBoard Class

Position in the Class Hierarchy

CIM_LogicalElement

|

+--Solaris_WDRAttachmentPoint

|

+--Solaris_CHSystemBoard

Description

Represents a logical element that models the UltraSPARC-III generation of system
boards that support the functionality of Dynamic Reconfiguration Model 2.0.

Disconnect sint32 Disables normal communication to or from the occupant in a
receptacle.

Has the following parameters:
force — boolean
hardwareOpts — string
retries — uint32 retries
retryDelay — uint32

Returns the following:
error — string

Test sint32 Tests the condition of the attachment point.

Has the following parameters:
verbose — boolean
hardwareOpts — string

Returns the following:
error — string

TABLE 4-2 CIM Solaris_WDRAttachmentPoint Methods
Chapter 4 Classes, Domains, Associations, and Indications in WDR 57

As illustrated in the “WDR CIM Class Hierarchy Diagram” on page 52, the CIM
Solaris_CHSystemBoard class has association relationships with the following
CIM classes: Solaris_CHMemory, Solaris_CHController, Solaris_WDRSlot
and Solaris_CHCPU.

Direct Known Subclasses

None
58 WDR Developer’s Guide • September 2002

CIM Solaris_CHSystemBoard Class Properties

CIM Solaris_CHSystemBoard Class Methods

TABLE 4-3 CIM Solaris_CHSystemBoard Properties

Name Data Type Description

Assigned boolean Indicates that the board is assigned to a Solaris domain.

PoweredOn boolean Indicates that the board is powered-on.

TABLE 4-4 CIM Solaris_CH_SystemBoard Methods

Name Return Value Description

Assign sint32 Assigns the board to a specified Solaris domain.

Has the following parameters:
force — boolean
hardwareOpts — string

Returns the following:
error — string

PowerOn sint32 Powers-on the board.

Has the following parameters:
force — boolean
hardwareOpts — string

Returns the following:
error — string

PowerOff sint32 Powers-off the board.

Has the following parameters:
force — boolean
hardwareOpts — string

Returns the following:
error — string
Chapter 4 Classes, Domains, Associations, and Indications in WDR 59

CIM Solaris_CHCPU Class

Position in the Class Hierarchy

CIM_LogicalElement

|

+--Solaris_WDRAttachmentPoint

|

+--Solaris_CHCPU

Description

A logical element that represents a processor on a system board. There can be as
many as four processors per system board on an UltraSPARC-III generation system
board. Because the processor is physically attached to a CPU socket on a system
board, and because DR operations such as configure and unconfigure can be
performed on the attachment point, the CIM Solaris_CHCPU class is derived from
the CIM Solaris_WDRAttachmentPoint class.

As illustrated in the “WDR CIM Class Hierarchy Diagram” on page 52, the CIM
Solaris_CHCPU class has an aggregation relationship with the CIM
Solaris_CHSystemBoard class.

Direct Known Subclasses

None

Unassign sint32 Unassigns the board from the domain to which it is currently
assigned.

Has the following parameters:
force — boolean
hardwareOpts — string

Returns the following:
error — string

TABLE 4-4 CIM Solaris_CH_SystemBoard Methods
60 WDR Developer’s Guide • September 2002

CIM Solaris_CHCPU Class Properties

CIM Solaris_CHCPU Class Methods

None

CIM Solaris_CHMemory Class

Position in the Class Hierarchy

CIM_LogicalElement

|

+--Solaris_WDRAttachmentPoint

|

+--Solaris_CHMemory

Description

A logical element that describes the memory information for a system board. There
is a one-to-one relationship between instances of the Solaris_CHSystemBoard
and Solaris_CHMemory CIM classes. Furthermore, because memory is an
attachment point on the system board, the CIM Solaris_CHMemory class is
derived from the CIM Solaris_WDRAttachmentPoint class.

Direct Known Subclasses

None

TABLE 4-5 Solaris_CHCPU Properties

Name Data Type Description

ID uint32 A unique identifier for the processor

Speed uint32 The clock speed of the processor in MHz

ECache uint32 The size of the ECache memory in MB.
Chapter 4 Classes, Domains, Associations, and Indications in WDR 61

CIM Solaris_CHMemory Properties

CIM Solaris_CHMemory Class Methods

None

TABLE 4-6 CIM Solaris_CHMemory Properties

Name Data Type Description

Deleted uint32 While a memory drain is in progress, the Deleted property stores
the amount of memory that has already been deleted. Otherwise the
Deleted property is null.

Interleaved boolean True if the board is participating in interleaving with other boards.

Permanent uint32 Stores the number of non-pageable memory pages in the board’s
memory, in kilobytes.

PhysicalAddress uint64 The base physical address of memory on the board

Remaining uint32 When a memory drain is in progress, the Remaining property stores
the amount of remaining memory that needs to be drained, in
megabytes. Otherwise the Remaining property is null.

Size uint32 The size of memory on the board in megabytes

Source string The name of the copy-rename source attachment point. When there
is no copy-rename operation, the Source property is null.

Target string The name of the copy-rename target attachment point. When there
is no copy-rename operation, the Target property is null.

Unconfigurable boolean True if the operating system has been configured to disallow this
memory from being unconfigured.
62 WDR Developer’s Guide • September 2002

CIM Solaris_CHController Class

Position in the Class Hierarchy

CIM_LogicalElement

|

+--Solaris_WDRAttachmentPoint

|

+--Solaris_CHController

Description

A logical CIM element that models the I/O controller attachment points on an I/O
board.

Direct Known Subclasses

None

CIM Solaris_CHController Class Properties

CIM Solaris_CHController Class Methods

None

TABLE 4-7 Solaris_CHController Properties

Name Data Type Description

Device string The physical path of the I/O component in the /devices path

Referenced boolean True if the I/O component is referenced.
Chapter 4 Classes, Domains, Associations, and Indications in WDR 63

CIM Slot Classes
The CIM Slot classes model system board slots on Sun Fire 15K, 12K, 3800, 4800,
4810, and 6800 systems. The slots can be empty or occupied. Like attachment points,
slots can be assigned to, and unassigned from, domains. However, unlike
attachment points, slots can exist independent of any domain, and they always exist.

Note – Classes whose names contain “XC” are used with Sun Fire™ 15K and 12K
systems. Classes whose names contain “SG” are used with Sun Fire 6800, 4810, 4800,
and 3800 systems.

CIM Solaris_WDRSlot Class

Position in the Class Hierarchy

CIM_LogicalElement

|

+--Solaris_WDRSlot

The abstract CIM Solaris_WDRSlot class models a platform-independent slot.

Description

A logical CIM element that provides a superclass to those logical CIM elements that
model the slots in a Sun Fire 15K, 12K, 6800, 4810, 4800, or 3800 chassis. A slot can
contain either a system board or an I/O board.

As illustrated in the “WDR CIM Class Hierarchy Diagram” on page 52, the
Solaris_WDRSlot class has association relationships with the following CIM
classes: Solaris_CHSystemBoard and Solaris_WDRDomain.

Direct Known Subclasses

CIM Solaris_XCSlot Class and CIM Solaris_SGSlot Class
64 WDR Developer’s Guide • September 2002

CIM Solaris_WDRSlot Properties

CIM Solaris_WDRSlot Methods

TABLE 4-8 CIM Solaris_WDRSlot Properties

Name Data Type Description

LogicalID string The logical name of the slot.

On a Sun Fire 15K system there are 18 expanders, and each can hold
one system board and one I/O board. System board slots are
represented as SB0, SB1, ... SB17, and I/O board slots are
represented as IO0, IO1, ... IO17.

On a Sun Fire 12K system there are 9 expanders, and each can hold
one system board and one I/O board. System board slots are
represented as SB0, SB1, ... SB8, and I/O board slots are represented
as IO0, IO1, ... IO8.

On a Sun Fire 6800, 4810, 4800, or 3800 system there can be up to 6
system boards, whose slots are represented as SB0, SB1, ... SB5; and
up to 4 I/O boards, whose slots are represented as IB6, IB7, IB8, and
IB9.

Empty boolean Indicates whether this slot contains a board. A value of NULL
indicates that the state of the slot is unknown.

If the Empty property is True, then the following properties of the
CIM Solaris_XCSlot Class and the CIM Solaris_SGSlot
Class are NULL: AssignmentState, BoardType, PowerState,
and TestState.

TABLE 4-9 CIM Solaris_WDRSlot Methods

Name Return Value Description

Assign sint32 Assigns the slot to the specified domain.

Has the following parameter:
Assign — uint32

Returns the following value:
error — string
Chapter 4 Classes, Domains, Associations, and Indications in WDR 65

CIM Solaris_XCSlot Class

Position in the Class Hierarchy

CIM_LogicalElement

|

+--Solaris_WDRSlot

|

+--Solaris_XCSlot

Description

A logical CIM element that models the slots on a Sun Fire 15K or 12K system. A slot
can contain either a system board or an I/O board.

On a Sun Fire 15K system there are 18 expanders, and each can hold one system
board and one I/O board. System board slots are represented as SB0, SB1, ... SB17,
and I/O board slots are represented as IO0 (zero), IO1, IO2, ... IO17.

On a Sun Fire 12K system there are 9 expanders, and each can hold one system
board and one I/O board. System board slots are represented as SB0, SB1, ... SB8,
and I/O board slots are represented as IO0 (zero), IO1, IO2, ... IO8.

Direct Known Subclasses

None

Unassign sint32 Unassigns a board from a domain. No board in the slot can be
active (i.e., connected or configured) in the domain.

Has the following parameter:
Assign — uint32

Returns the following value:
error — string

TABLE 4-9 CIM Solaris_WDRSlot Methods
66 WDR Developer’s Guide • September 2002

CIM Solaris_XCSlot Properties

CIM Solaris_XCSlot Methods

None

TABLE 4-10 CIM Solaris_XCSlot Properties

Name Data Type Description

AssignedDomain sint32 The domain to which this slot is assigned, if the value of its
AssignmentState property is Assigned. The numeric Values -1
through 18 represent the following in the ValueMap:: None, A, B, C,
D, E, F, G, H, I, J, K, L, M, N, O, N, P, Q, and R.

AssignmentState uint32 The current assignment state of the slot. The Values 0 through 3
represent the following in the ValueMap: Unknown, Free,
Assigned, and Active.

Always NULL is the Empty property (inherited from the
Solaris_WDRSlot class) is True.

BoardType uint32 The type of board that resides in the slot, if known. The Values 0
through 8 represent the following items in the ValueMap: CPU, WIB,
HPCI, CPCI, MCPU, WPCI, SPCI, HPCIX, and Unknown. Note:
Unknown is not equal to Empty.

Always NULL is the Empty property (inherited from the
Solaris_WDRSlot class) is True.

PowerState uint32 The power state of the board. The Values 0 through 3 represent the
following items in the ValueMap: Off, On, Unknown, or Minimal.

Always NULL is the Empty property (inherited from the
Solaris_WDRSlot class) is True.

TestState uint32 The test state of the board. The numeric Values 0 through 4
represent the following in the ValueMap: Unknown, iPOST,
Passed, Degraded, or Failed.

Always NULL is the Empty property (inherited from the
Solaris_WDRSlot class) is True.
Chapter 4 Classes, Domains, Associations, and Indications in WDR 67

CIM Solaris_SGSlot Class

Position in the Class Hierarchy

CIM_LogicalElement

|

+--Solaris_WDRSlot

|

+--Solaris_SGSlot

Description

A logical CIM element that models the slots on a Sun Fire 6800, 4810, 4800, or 3800
system.

Note – On a Sun Fire 6800, 4810, 4800, or 3800 system there can be up to 6 system
boards, whose slots are represented as SB0, SB1, ... SB5; and up to 4 I/O boards,
whose slots are represented as IB6, IB7, IB8, and IB9.

Direct Known Subclasses

None
68 WDR Developer’s Guide • September 2002

CIM Solaris_SGSlot Properties

TABLE 4-11 CIM Solaris_SGSlot Properties

Name Data Type Description

AssignedDomain sint32 The domain to which this slot is assigned, if the value of the slot’s
AssignmentState property is Assigned. The Values 1 through 5
represent the following items in the ValueMap:
• None
• A
• B
• C
• D

AssignmentState uint32 The current assignment state of the slot. The Values 1 through 4
represent the following in the ValueMap:
• Unknown
• Free
• Assigned
• Active

BoardType uint32 The type of board that resides in the slot if known. The Values 1
through 11 represent the following items in the ValueMap:
• Unknown
• Empty
• CPU
• IO
• CPUWIB
• IOWIB
• SC
• L2
• Fan
• Power Supply
• Logic Analyzer

PowerState uint32 The power state of the board. The Values 1 through 4 represent the
following items in the ValueMap:
• Unknown
• On
• Off
• Failed
Chapter 4 Classes, Domains, Associations, and Indications in WDR 69

CIM Solaris_SGSlot Methods

None

CIM Solaris_WDRDomain Classes
The CIM Solaris domain classes represent domains on Sun Fire systems that are
running the Solaris operating environment.

CIM Solaris_WDRDomain Class

Description

The CIM Solaris_WDRDomain class is an abstract superclass that describes domain
information on all Sun Fire systems (the 15K, 12K 6800, 4810, 4800, and 3800
systems).

As illustrated in the“WDR CIM Class Hierarchy Diagram” on page 52, the CIM
Solaris_WDRDomain class has an association relationship with the
Solaris_WDRSlot class and an aggregation relationship with the
Solaris_WDRAttachmentPoint class.

TestState uint32 The test state of the board. The Values 1 through 8 represent the
following items in the ValueMap:
• Unknown
• Not Tested
• Passed
• Failed
• Under Test
• Start Test
• Degraded
• Unusable

TABLE 4-11 CIM Solaris_SGSlot Properties
70 WDR Developer’s Guide • September 2002

Position in the Class Hierarchy

CIM_CollectionOfMSEs

|

+--Solaris_WDRDomain

Direct Known CIM Subclasses

CIM Solaris_SGDomain Class and CIM Solaris_XCDomain Class

Note – CIM domain classes whose names contain “XC” are used with Sun Fire™
15K and 12K systems. CIM domain classes whose names contain “SG” are used with
Sun Fire 6800, 4810, 4800, and 3800 systems.

CIM Solaris_WDRDomain Class Properties

CIM Solaris_XCDomain Class

Description

The CIM Solaris_XCDomain class, which is a subclass of the CIM
Solaris_WDRDomain class, describes domain information on Sun Fire 15K and 12K
systems. It contains several CIM properties that contain information that is specific
to Sun Fire 15K and 12K systems.

TABLE 4-12 CIM Solaris_WDRDomain Properties

Name Data Type Description

Id uint32 Identifies the domain uniquely.
Chapter 4 Classes, Domains, Associations, and Indications in WDR 71

Position in the Class Hierarchy

CIM_CollectionOfMSEs

|

+--Solaris_WDRDomain

|

+--Solaris_XCDomain

Direct Known CIM Subclasses

None
72 WDR Developer’s Guide • September 2002

CIM Solaris_XCDomain Class Properties

TABLE 4-13 CIM Solaris_XCDomain Properties

Name Data Type Description

ActiveEthernetBoard string The I/O board that hosts the active Ethernet connection for the
internal system controller (SC) network.

AdminGroup string The name of the UNIX group that is assigned to the Domain
Administrator group

BoardRelationship[] sint32 An array of values, one for each board, that indicates the status of
the board within the domain. Each position in the array’s BitMap
represents the status of one board; each number in the ValueMap
represents one of the following Values:
• Not Available
• Available
• Assigned
• Active

Numbers 1 through 18 in the array’s BitMap represent the status of
each system board (SB0 through SB17). Numbers 19 through 36 in
the array’s BitMap represent the status of each I/O board (IO0
through IO17).

KeyswitchPosition uint32 Indicates the status of the domain. Each of the Values 0 through 5
represents an item in the ValueMap, which indicates the status of
the domain:
• On
• Standby
• Off
• Diag
• Secure
• Unknown

ReconfigGroup string The name of the UNIX group that is assigned to the Domain
Reconfiguration role.
Chapter 4 Classes, Domains, Associations, and Indications in WDR 73

State uint32 The current state of the domain. Each number, 0 through 36, in the
ValueMap represents one of the following Values, which indicate
the current state of the domain:
• Unknown
• Powered Off
• Keyswitch Standby
• Running Domain POST
• Running Board POST
• Layout OBP
• Loading OBP
• OBP Booting
• OBP Running
• OBP Callback
• OBP Loading Solaris
• OBP Booting Solaris
• OBP Domain Exited
• OBP Failed
• OBP in Sync Callback
• OBP Exited
• OBP Error Reset
• OBP Domain Halt
• OBP Environmental Domain Halt
• OBP Booting Solaris Failed
• OBP Loading Solaris Failed
• OBP Debug
• OS Running Solaris
• OS Quiesce in Progress
• OS Quiesced
• OS Resume in Progress
• OS Panic
• OS Panic Debug
• OS Panic Continue
• OS Panic Dump
• OS Halt
• OS Panic Exit
• OS Environmental Exit
• OS Debug
• OS Exit
• Domain Down
• Domain In Recovery

TABLE 4-13 CIM Solaris_XCDomain Properties
74 WDR Developer’s Guide • September 2002

CIM Solaris_SGDomain Class

Description

The CIM Solaris_SGDomain class, which is a subclass of the CIM
Solaris_WDRDomain class, describes domain information on Sun Fire 6800, 4810,
4800, and 3800 systems. It contains several CIM properties that contain information
that is specific to Sun Fire 6800, 4810, 4800, and 3800 systems.

Position in the Class Hierarchy

CIM_CollectionOfMSEs

|

+--Solaris_WDRDomain

|

+--Solaris_SGDomain

Direct Known CIM Subclasses

None
Chapter 4 Classes, Domains, Associations, and Indications in WDR 75

CIM Solaris_SGDomain Class Properties

TABLE 4-14 CIM Solaris_SGDomain Properties

Name Data Type Description

BoardRelationship[] sint32 An array of values, one for each board, that indicates the status of
the board in the domain. For each position in the array BitMap,
ValueMap items 0 through 4 represents the following board status
values:
• Nonexistent Slot
• Not Available
• Available
• Assigned
• Active

On a Sun Fire 6800 system, the BitMap values 1 through 10
represent all boards. BitMap values 1 through 6 relate to system
boards 0 through 5 (SB0 through SB5). BitMap values 7 through 10
relate to I/O boards, IB6 through IB9.

On Sun Fire 4810, 4800, and 3800 systems, only five slots are
available, for three CPU boards and two I/O boards. Therefore, the
BitMap values 4, 5, and 6 (for SB3, SB4, and SB5), and BitMap
values 9 and 10 (for IB8 and IB9), are always 0 (Nonexistent Slot).

KeyswitchPosition uint32 Indicates the status of the domain. The Values 1 through 16
represent the following items in the ValueMap:
• Unknown
• Off
• Standby
• On
• Diag
• Secure
• Off To Standby
• Off To On
• Off To Diag
• Off To Secure
• Standby To Off
• Active To Off
• Active To Standby
• Reboot To On
• Reboot To Diag
• Reboot To Secure
76 WDR Developer’s Guide • September 2002

WDR Schema Associations and
Aggregations
A CIM association is a special class that relates one WDR class or instance to
another. Associations can be one-to-one relationships or aggregations.

WDR aggregations relate one WDR class or instance to many other classes or
instances.

CIM Solaris_DomainHasAttachmentPoints
Aggregation

Description

A domain is said to have an attachment point if that attachment point is either
available to the domain (and appears in the domain’s ACL) or is assigned to the
domain. Only domains that are running can have attachment points.

State uint32 The current state of the domain. The ValueMap items 1 through 14
represent the following values:
• Unknown
• Running POST
• Standby
• Active
• Powered Off
• Domain Idle
• Running OBP
• Booting
• Running Solaris
• Halted
• Reset
• Panic
• Debugger
• Hang Detected

TABLE 4-14 CIM Solaris_SGDomain Properties
Chapter 4 Classes, Domains, Associations, and Indications in WDR 77

The Solaris_DomainHasAttachmentPoints aggregation relates sub-instances of
the Solaris_WDRDomain class to the sub-instances of the
Solaris_WDRAttachmentPoint class that are available or assigned to the
domain.

The Solaris_DomainHasAttachmentPoints aggregation is a composition
association where the domain is composed of one or more attachment points. The
parent of the Solaris_DomainHasAttachmentPoints aggregation is a sun-
instance of the Solaris_WDRDomain class. The child of the
Solaris_DomainHasAttachmentPoints aggregation is a sub-instance of the
Solaris_WDRAttachmentPoint class. The
Solaris_DomainHasAttachmentPoints aggregation is a one-to-many
relationship, where multiple attachment points can be available or assigned to a
single domain.

CIM Solaris_DomainHasAttachmentPoints Aggregation
Properties

CIM Solaris_DomainHasSlots Aggregation

Description

One of the characteristics of a domain is that it contains zero or more slots. A slot
can be assigned to a domain regardless of whether it is occupied by a system board.
Consequently, the Solaris_DomainHasSlots aggregation relates the binding
between the CIM Solaris_WDRDomain and CIM Solaris_WDRSlot classes.

The Solaris_DomainHasSlots aggregation is a composition association, where
the domain is composed of one or more slots.

TABLE 4-15 CIM Solaris_DomainHasAttachmentPoints Aggregation Properties

Name Data Type Description

Collection REF Solaris_WDRDomain References the parent in the relationship.

Member REF Solaris_WDRAttachmentPoint References a child in the relationship.
78 WDR Developer’s Guide • September 2002

The parent of the Solaris_DomainHasSlots aggregation is an instance of the
Solaris_XCDomain class, and the child is an instance of the Solaris_WDRSlot
class. The Solaris_DomainHasSlots aggregation is a one-to-many relationship,
where multiple slots can be assigned to a single domain. However, a single slot
cannot reside in multiple domains at one time.

CIM Solaris_DomainHasSlots Aggregation Properties

Solaris_SlotHasSystemBoard Association

Description

A slot can contain a board regardless of whether the slot is assigned to a domain.
The CIM Solaris_SlotHasSystemBoard association relates an instance of the
CIM Solaris_WDRSlot class to an instance of the CIM Solaris_SystemBoard
class that corresponds to the board in the slot.

The CIM Solaris_SlotHasSystemBoard is a composition association, and an
instance of the CIM Solaris_WDRSlot class can be composed of zero or one
instance of the CIM Solaris_SystemBoard class.

CIM Solaris_SlotHasSystemBoard Association Properties

TABLE 4-16 CIM Solaris_DomainHasSlots Aggregation Properties

Name Data Type Description

Collection REF Solaris_WDRDomain References the parent in the relationship.

Member REF Solaris_WDRSlot References a child in the relationship.

TABLE 4-17 CIM Solaris_SlotHasSystemBoard Association Properties

Name Data Type Description

Antecedent REF Solaris_WDRSlot References the parent in the relationship.

Dependent REF Solaris_CHSystemBoard References the child in the relationship.
Chapter 4 Classes, Domains, Associations, and Indications in WDR 79

Solaris_SystemBoardHasProcessors Aggregation

Description

A system board is a large circuit board that contains processors, a memory module,
and I/O modules. The CIM Solaris_SystemBoardHasProcessors aggregation
describes the relationship between an instance of the Solaris_CHSystemBoard
class and an instance of the Solaris_CHCPU class; it relates a system board with the
processors that it contains.

The aggregation is a one-to-many relationship where a board can contain between
zero and four processors.

CIM Solaris_SystemBoardHasProcessors Aggregation
Properties

Solaris_SystemBoardHasMemory Aggregation

Description
A system board is a large circuit board that contains processors, a memory module,
and I/O modules. The CIM Solaris_SystemBoardHasMemory aggregation
relates an instance of the Solaris_CHSystemBoard class with an instance of the
Solaris_CHMemory class; it relates a board with the memory that it contains.

The Solaris_CHMemory class is a collection of information that describes memory
on a system board. For a given system board, there is a maximum of one instance of
the Solaris_CHMemory class.

TABLE 4-18 CIM Solaris_SystemBoardHasProcessors Aggregation Properties

Name Data Type Description

GroupComponent REF Solaris_CHSystemBoard References the parent in the relationship.

PartComponent REF Solaris_CHCPU References a child in the relationship.
80 WDR Developer’s Guide • September 2002

CIM Solaris_SystemBoardHasMemory Aggregation
Properties

Solaris_SystemBoardHasControllers Aggregation

Description
In addition to processors and memory modules, a system board can have I/O
modules such as disk and network controllers. The CIM
Solaris_SystemBoardHasControllers aggregation relates a system board to
the controllers that it contains.

Solaris_SystemBoardHasControllers is a one-to-many relationship where
one system board can contain multiple I/O devices.

TABLE 4-19 CIM Solaris_SystemBoardHasMemory Aggregation Properties

Name Data Type Description

GroupComponent REF Solaris_CHSystemBoard References the parent in the relationship.

PartComponent REF Solaris_CHMemory References a child in the relationship.
Chapter 4 Classes, Domains, Associations, and Indications in WDR 81

CIM Solaris_SystemBoardHasControllers Aggregation
Properties

CIM Process Indication Classes
CIM process indications are subclasses of the CIM_Processindication class.
They are used by WDR to forward notifications of events on Sun Fire 15K, 12K, 6800,
4810, 4800, and 3800 systems to client applications. Process indications are discussed
fully in Chapter 3, “Using Process Indications.”

Process indications on Sun Fire 6800, 4810, 4800, and 3800 systems are derived from
selected SNMP traps that are received from the System Controller (SC).

Process indications on Sun Fire 15K and 12K systems are derived from selected
events that are generated by the system event facility, sysevent, on the Sun Fire
15K and Sun Fire 12K SC.

Note – Process indication classes whose names contain “XC” are used with Sun
Fire™ 15K and 12K systems. Classes whose names contain “SG” are used with Sun
Fire 6800, 4810, 4800, and 3800 systems.

TABLE 4-20 CIM Solaris_SystemBoardHasControllers Aggregation Properties

Name Data Type Description

GroupComponent REF Solaris_CHSystemBoard References the parent in the relationship.

PartComponent REF Solaris_CHController References a child in the relationship.
82 WDR Developer’s Guide • September 2002

The WDR Indication Class Hierarchy
Diagram

Solaris_WDRIndication Class
The Solaris_WDRIndication class is an abstract class from which all process
indication classes are derived on all Sun Fire systems. The
Solaris_WDRIndication class adds no properties to its base class.

CIM_ProcessIndication

Solaris_WDRIndication

Solaris_SGBoardPresenceChange

• BoardType
• ChassisSerialNumber
• LogicalID

Solaris_SGSlotAssignmentChange

• AssignedDomain
• AssignmentState
• ChassisSerialNumber
• LogicalID

Solaris_SGBoardStateChange

• ChassisSerialNumber
• LogicalID
• PowerState
• TestState

Solaris_SGDomainStateChange

• DomainID
• KeySwitchPosition
• State

Solaris_XCDomainStateChange

• Signature
• State
• SubState

Solaris_XCDomainconfigChange

Solaris_XCBoardPowerOn

Solaris_XCBoardPowerOff

Solaris_XCComponentRemove

Solaris_XCComponentInsert

Solaris_SGSlotAvailabilityChange

• AssignedDomain
• AssignmentState
• LogicalID

Solaris_XCDomainIndication

• DomainID

Solaris_XCSystemBoardconfigChange

• DomainID

Solaris_XCEnvironmentalIndication

• ComponentID
• FRUID

Solaris_XCDomainStop

Solaris_XCDomainDown

Solaris_XCDomainUp

Solaris_SGDomainAclChange

• AvailableBoards
• DomainID

Properties

Legend

Methods
Chapter 4 Classes, Domains, Associations, and Indications in WDR 83

Solaris_SGBoardPresenceChange Indication
This process indication, which is used on Sun Fire 6800, 4810, 4800, and 3800
systems, notifies a client that a CPU or an I/O board has become present or absent
from a slot.

Direct Known Subclasses

None

Solaris_SGBoardPresenceChange Properties

Solaris_SGDomainACLChange Indication
This process indication, which is used on Sun Fire 6800, 4810, 4800, and 3800
systems, notifies the client that the Available Component List (ACL) has changed.

Direct Known Subclasses

None

TABLE 4-21 Solaris_SGBoardPresenceChange Properties

Name Data Type Description

LogicalID string The logical name of the slot. On a Sun Fire 6800, 4810, 4800, or
3800 system there can be up to 6 system boards, whose slots are
represented as SB0, SB1, ... SB5; and up to 4 I/O boards, whose
slots are represented as IB6, IB7, IB8, and IB9.

ChassisSerialNumber string The serial number of the chassis, which is an 8-digit hexadecimal
string, such as 10483D99.

BoardType uint32 The type of board that occupies the slot is it is not empty. Possible
values: Unknown, Empty, CPU, IO, CPUWIB, IOWIB, SC, L2, Fan,
Power Supply, or Logic Analyzer. Currently, only boards of
type CPU and IO are reported.
84 WDR Developer’s Guide • September 2002

Solaris_SGDomainACLChange Properties

Solaris_SGDomainStateChange Indication
This process indication, which is used on Sun Fire 6800, 4810, 4800, and 3800
systems, notifies the client that a domain goes up or down; that a domain self-test
fails; or that the keyswitch state of a domain has changed.

Direct Known Subclasses

None

TABLE 4-22 Solaris_SGDomainACLChange Properties

Name Data Type Description

DomainID uint32 The domain to which the board was assigned, or from which it was
unassigned. Possible values: A, B, C, or D.

AvailableBoards[] boolean The list of slots that are available to the domain that is identified by
the DomainID property. Possible values: SB0, SB1, SB2, SB3, SB4,
SB5, IB6, IB7, IB8, and IB9.
Chapter 4 Classes, Domains, Associations, and Indications in WDR 85

Solaris_SGDomainStateChange Properties

Solaris_SGSlotAssignmentChange Indication
This process indication, which is used on Sun Fire 6800, 4810, 4800, and 3800
systems, notifies the client that a slot has been assigned to, or unassigned from, a
domain.

Direct Known Subclasses

None

TABLE 4-23 Solaris_SGDomainStateChange Properties

Name Data Type Description

DomainID uint32 The domain whose state has changed. Possible values: A, B, C, or D.

KeyswitchPosition uint32 Identifies the keyswitch position of the virtual keyswitch. Possible
values: Unknown, Off, Standby, On, Diag, Secure, Off To
Standby, Off To On, Off To Diag, Off To Secure, Standby
To Off, Active To Off, Active To Standby, Reboot To
On, Reboot To Diag, and Reboot To Secure.

State uint32 The current state of the domain. Possible values: Unknown,
Running Post, Standby, Active, Powered Off, Domain
Idle, Running OBP, Booting, Running Solaris, Halted,
Reset, Panic, Debugger, or Hang Detected.
86 WDR Developer’s Guide • September 2002

Solaris_SGSlotAssignmentChange Properties

Solaris_SGBoardStateChange Indication
This process indication, which is used on Sun Fire 6800, 4810, 4800, and 3800
systems, notifies the client that a board self-test has completed, or that a board was
powered-on or powered-off.

Direct Known Subclasses

None

TABLE 4-24 Solaris_SGSlotAssignmentChange Properties

Name Data Type Description

LogicalID string The logical name of the slot. On a Sun Fire 6800, 4810, 4800, or
3800 system there can be up to 6 system boards, whose slots are
represented as SB0, SB1, ... SB5; and up to 4 I/O boards, whose
slots are represented as IB6, IB7, IB8, and IB9.

ChassisSerialNumber string The serial number of the chassis, which is an 8-digit hexadecimal
string such as 10483D99.

AssignedDomain sint32 The domain to which the slot is assigned, if it is assigned. Possible
values: A, B, C, or D, or None.

AssignmentState uint32 The current assignment state of the slot. Possible values:
Unknown, Free, Assigned, or Active.
Chapter 4 Classes, Domains, Associations, and Indications in WDR 87

Solaris_SGBoardStateChange Properties

Solaris_SGSlotAvailabilityChange Indication
This process indication, which is used on Sun Fire 6800, 4810, 4800, and 3800
systems, notifies the client that the slot’s availability has changed.

Direct Known Subclasses

None

TABLE 4-25 Solaris_SGBoardStateChange Properties

Name Data Type Description

LogicalID string The logical name of the slot. On a Sun Fire 6800, 4810, 4800, or
3800 system there can be up to 6 system boards, whose slots are
represented as SB0, SB1, ... SB5; and up to 4 I/O boards, whose
slots are represented as IB6, IB7, IB8, and IB9.

ChassisSerialNumber string The serial number of the chassis, which is an 8-digit hexadecimal
string such as 10483D99.

PowerState uint32 The power status of the board. Possible values: Unknown, On, Off,
or Failed.

TestState uint32 The test status of the board. Possible values: Unknown, Not
Tested, Passed, Failed, Under Test, Start Test, Degraded, or
Unusable.
88 WDR Developer’s Guide • September 2002

Solaris_SGSlotAvailabilityChange Properties

Solaris_XCSystemBoardConfigChange Indication
This process indication, which is used only on Sun Fire 15K and 12K systems,
notifies the client that one or more Sun Fire 15K/12K domain configuration
properties has changed for a specific domain.

Direct Known Subclasses

None

TABLE 4-26 Solaris_SGSlotAvailabilityChange Properties

Name Data Type Description

LogicalID string The logical name of the slot. On a Sun Fire 6800, 4810, 4800, or 3800
system there can be up to 6 system boards, whose slots are
represented as SB0, SB1, ... SB5; and up to 4 I/O boards, whose slots
are represented as IB6, IB7, IB8, and IB9.

AssignedDomain sint32 The domain to which the slot was assigned, and from which it is
now unassigned; or the domain to which the slot has been assigned.
Possible values: A, B, C, or D.

AssignmentState uint32 The current assignment state of the slot. Possible values: Unknown,
Free, Assigned, or Active.
Chapter 4 Classes, Domains, Associations, and Indications in WDR 89

Solaris_XCSystemBoardConfigChange Properties

Solaris_XCEnvironmentalIndication Indication
An abstract class that serves as a common ancestor to all environmental indications
on Sun Fire 15K and 12K systems.

Direct Known Subclasses

None

Solaris_XCEnvironmentalIndication Properties

The Solaris_XCEnvironmentalIndication class adds the following properties
to its base class:

Solaris_XCComponentRemove Indication
Derived from the Solaris_XCEnvironmentalIndication abstract class, this
class notifies a client that a specific hot-pluggable component has been removed
from its slot on a Sun Fire 15K or 12K system.

This class adds no properties to its base class and has no direct known subclasses.

TABLE 4-27 Solaris_XCSystemBoardConfigChange Properties

Name Data Type Description

LogicalID string Identifies the system board whose configuration data has
changed.

TABLE 4-28 Solaris_XCEnvironmentalIndication Properties

Name Data Type Description

ComponentID string The component that is experiencing the environmental event

FRUID uint32 If the component is a system board, contains the corresponding
Field Replaceable Unit identifier; otherwise NULL.
90 WDR Developer’s Guide • September 2002

Solaris_XCComponentInsert Indication
Derived from the Solaris_XCEnvironmentalIndication abstract class, this
class notifies a client that a specific hot-pluggable component has been inserted into
its slot on a Sun Fire 15K or 12K system.

This class adds no properties to its base class and has no direct known subclasses.

Solaris_XCBoardPowerOn Indication
Derived from the Solaris_XCEnvironmentalIndication abstract class, this
class notifies a client that a system board has been powered-on in a Sun Fire 15K or
12K system.

This class adds no properties to its base class and has no direct known subclasses.

Solaris_XCBoardPowerOff Indication
Derived from the Solaris_XCEnvironmentalIndication abstract class, this
class notifies a client that a system board has been powered-off in a Sun Fire 15K or
12K system.

This class adds no properties to its base class and has no direct known subclasses.

Solaris_XCDomainIndication Indication
Derived from the Solaris_XCEnvironmentalIndication abstract class, this
abstract class that serves as a common ancestor to all domain indications on Sun Fire
15K and 12K systems.

Direct Known Subclasses

None
Chapter 4 Classes, Domains, Associations, and Indications in WDR 91

Solaris_XCDomainIndication Properties

The Solaris_XCDomainIndication class adds the following property to its base
class:

Solaris_XCDomainConfigChange Indication
Derived from the Solaris_XCDomainIndication abstract class, this class notifies
a client that one or more configuration properties have been changed in a specific
domain on a Sun Fire 15K or 12K system.

This class adds no properties to its base class and has no direct known subclasses.

Solaris_XCDomainUp Indication
Derived from the Solaris_XCDomainIndication abstract class, this class notifies
a client that a specific domain has gone up on a Sun Fire 15K or 12K system. A
domain goes up when the keyswitch is set to On; or after the domain monitoring
daemon, DSMD, is re-started and finds that the IOSRAM that is assigned to the
domain is accessible.

This class adds no properties to its base class and has no direct known subclasses.

Solaris_XCDomainDown Indication
Derived from the Solaris_XCDomainIndication abstract class, this class notifies
a client that a specific domain has gone down on a Sun Fire 15K or 12K system. A
domain goes down when the keyswitch is set to Off or Standby.

This class adds no properties to its base class and has no direct known subclasses.

TABLE 4-29 Solaris_XCDomainIndication Properties

Name Data Type Description

DomainID uint32 Identifies the domain that is experiencing the event.
92 WDR Developer’s Guide • September 2002

Solaris_XCDomainStop Indication
Derived from the Solaris_XCDomainIndication abstract class, this class notifies
a client that a specific domain on a Sun Fire 15K or 12K system has begun a
hardware state dump. A hardware state dump occurs when a non-recoverable
hardware failure causes the domain to write its state information to a dump file.

This class adds no properties to its base class and has no direct known subclasses.

Solaris_XCDomainStateChange Indication
Derived from the Solaris_XCDomainIndication abstract class, this indication
notifies the client that the state of a specific domain on a Sun Fire 15K or 12K system
has changed.

Direct Known Subclasses

None

Solaris_XCDomainStateChange Properties

The Solaris_XCDomainStateChange class adds the following property to its
base class:

TABLE 4-30 Solaris_XCDomainStateChange Properties

Name Data Type Description

Signature uint32 The Signature, State, and SubState properties combine to
describe the current state of the domain.

State uint32 The Signature, State, and SubState properties combine to
describe the current state of the domain.

SubState uint32 The Signature, State, and SubState properties combine to
describe the current state of the domain.
Chapter 4 Classes, Domains, Associations, and Indications in WDR 93

94 WDR Developer’s Guide • September 2002

CHAPTER 5

Programming Techniques in WDR

This chapter provides code examples that illustrate techniques for performing tasks
using WDR. However, these examples are not intended for use in production WDR
applications.

The code examples demonstrate how you work with providers:

■ EventProvider
■ InstanceProvider
■ AssociatorProvider
■ MethodProvider

Caching System State Information
An important consideration when developing client applications for WDR is that
there are two fundamentally different possible approaches to ensure that the client
has a knowledge of the current state of the domains, attachment points and slots of
the managed platform: polling and using cache.

The client can periodically poll for the status of domains, attachment points and
slots, by enumerating the instances of the corresponding WDR classes. This
approach is not recommended, since the time taken to execute an operation using
WDR is dependent on the system state and workload, and can be variable. This will
adversely affect the performance of both the System Controller (SC) and the client
application.

A better approach is for the client to maintain a current cache of the domain,
attachment point and slot status, and use the WDR Process Indications to indicate
when updates to the client’s cache of status information are necessary. See the
section “CIM Process Indication Classes” on page 82 for more information.
95

Working with an EventProvider
The following example demonstrates how to create an EventProvider.

Indication Reader
The following code shows how to subscribe to, and to read, WDR event indications:

/* Standard java packages */

import java.io.*;

/* Solaris WBEM packages */

import com.sun.wbem.cim.*;

import com.sun.wbem.client.*;

import com.sun.wbem.security.*;

public class IndicationReader

{

public static void main(String args[]) throws CIMException

{

if (args.length != 3) {

System.out.println("Usage: java IndicationReader " +
"<hostname> <username> <password>");

System.exit(1);

}

String hostName = args[0];

UserPrincipal userName = new UserPrincipal(args[1]);

PasswordCredential passWord = new PasswordCredential(args[2]);

CIMNameSpace nameSpace = new CIMNameSpace();

nameSpace.setHost(hostName);

// Read all WDR Indications.

final String filter = "SELECT * FROM Solaris_WDRIndication";

IndicationSubscription subscription = null;

try

{

// creates a CIMClient adding CIMListener to it.
96 WDR Developer’s Guide • September 2002

CIMClient cc = new CIMClient(nameSpace, userName,
passWord);

cc.addCIMListener(new EventListener());

// subscribes to WDR Indications and waits

subscription = new IndicationSubscription(cc, filter);

System.out.println("Waiting for Indications...");

waitForQuit();

}

catch (Exception e) {

e.printStackTrace();

}

finally {

if (subscription != null) {

subscription.remove();

}

}

System.exit(0);

}

/*

* Exit when user types ’quit’

*/

private static void waitForQuit() throws IOException

{

BufferedReader stdin =

new BufferedReader(new InputStreamReader(System.in));

String line = null;

do {

System.out.println("Type 'quit' followed by <CR> to exit");

System.out.print("IR> ");

line = stdin.readLine();

} while (! line.startsWith("quit"));

}

}

Chapter 5 Programming Techniques in WDR 97

Event Listener
The following code inplements the CIMListener interface so that it can listen for
CIM events. To register for indications of CIM events, the client must add an
instance of CIMListener.

/* WBEM libraries */

import com.sun.wbem.client.*;

public class EventListener implements CIMListener

{

public EventListener()

{

}

/**

* Prints indication of an event when the indication is available

* for delivery.

*/

public void indicationOccured(CIMEvent e)

{

System.out.println("Received " + e.getIndication());

}

}

Indication Subscription
The IndicationSubscription class enables clients to subscribe to be notified of CIM
events. It binds an event filter to an event handler.

/* Standard Java packages */

import java.util.*;

/* Standard WBEM packages */

import com.sun.wbem.cim.*;

import com.sun.wbem.client.*;

import com.sun.wbem.security.UserPrincipal;

import com.sun.wbem.security.PasswordCredential;
98 WDR Developer’s Guide • September 2002

public class IndicationSubscription

{

static protected int m_FilterCnt = 0;

protected CIMClient m_Client;

protected CIMObjectPath m_Filter;

protected CIMObjectPath m_Handler;

protected CIMObjectPath m_Subscription;

final String subscriptionClassName =
"CIM_IndicationSubscription";

final String filterClassName = "CIM_IndicationFilter";

final String deliveryClassName = "Solaris_RMIDelivery";

/**

* Force construction through another constructor that is public.

 */

protected IndicationSubscription() {

m_Client = null;

m_Filter = null;

m_Handler = null;

m_Subscription = null;

}

/**

* Construct an IndicationSubscription that subscribed for
Indications as expressed by the specified filterExp. Three

* CIM objects are created in the CIM repository as a

* side-effect of calling this method, a CIM_IndicationFilter,

* a CIM_IndicationHandler, and a CIM_IndicationSubscription.

* These can be removed by calling the remove method.

*

* @param cc a CIMClient instance

* @param filterExp The query string on which to filter
Indications

* @exception CIMException

*/

public IndicationSubscription(CIMClient cc, String filterExp)
Chapter 5 Programming Techniques in WDR 99

throws CIMException

{

m_Client = cc;

m_Filter = createFilter(filterExp);

m_Handler = createHandler();

m_Subscription = createSubscription();

}

/**

* Removes the otherwise persistant filter, handler and
* subscription CIM objects from the CIM repository.

* @exception CIMException if an attempt is made to delete a

* non-existent CIM object.

*/

public void remove() throws CIMException {

if (m_Subscription != null) {

m_Subscription.setNameSpace("");

m_Client.deleteInstance(m_Subscription);

m_Subscription = null;

}

if (m_Handler != null) {

m_Handler.setNameSpace("");

m_Client.deleteInstance(m_Handler);

m_Handler = null;

}

if (m_Filter != null) {

m_Filter.setNameSpace("");

m_Client.deleteInstance(m_Filter);

m_Filter = null;

}

}

/**

* Create an IndicationFilter of the specified name and with the

* specified filterExp as the query string. Register the filter
* by creating its instance in the repository. Only one filter
* may exist per IndicationSubscription object.

*

100 WDR Developer’s Guide • September 2002

* @param filterExp The query string on which to filter
* Indications

* @return CIMObjectPath of the filter.

* @exception CIMException

*/

protected CIMObjectPath createFilter(String filterExp) throws
CIMException

{

CIMClass filterClass =

m_Client.getClass(new CIMObjectPath(filterClassName),

false, true, true, null);

CIMInstance ci = filterClass.newInstance();

ci.setProperty("Name", new CIMValue(generateFilterName()));

ci.setProperty("Query", new CIMValue(filterExp));

ci.setProperty("QueryLanguage", new CIMValue("WQL"));

CIMObjectPath op = m_Client.createInstance(new
CIMObjectPath(), ci);

return (op);

}

/**

* Generate a unique filter name for this Java VM.

*

* @return Name of the filter.

*/

protected String generateFilterName()

{

String filterName = "WDRFilter"+ m_FilterCnt;

m_FilterCnt = (m_FilterCnt + 1) % Integer.MAX_VALUE;

return (filterName);

}

/**

* Create an indication handler.

* Register the handler by creating its instance in the repository.
Chapter 5 Programming Techniques in WDR 101

*

* @return CIMObjectPath of the handler.

*/

protected CIMObjectPath createHandler() throws CIMException

{

CIMClass deliveryClass =

m_Client.getClass(new CIMObjectPath(deliveryClassName),

 false, true, true, null);

CIMInstance ci = deliveryClass.newInstance();

CIMObjectPath op = m_Client.createInstance(new
CIMObjectPath(), ci);

return (op);

}

/**

* Create an indication subscription that binds filter to handler.

* Register the subscription by creating its instance in the
repository.

*

* @return CIMObjectPath of subscription.

*/

protected CIMObjectPath createSubscription() throws CIMException

{

final String subscriptionClassName =
"CIM_IndicationSubscription";

CIMClass subscriptionClass =

m_Client.getClass(new CIMObjectPath(subscriptionClassName),
false, true, false, null);

CIMInstance ci = subscriptionClass.newInstance();

ci.setProperty("Filter", new CIMValue(m_Filter));

ci.setProperty("Handler", new CIMValue(m_Handler));

m_Client.createInstance(new CIMObjectPath(), ci);

// we are looking for the subscription’s reference because
102 WDR Developer’s Guide • September 2002

// createInstance() returns a null reference for the
subscription.

CIMObjectPath cop =

new CIMObjectPath(subscriptionClassName,
ci.getKeyValuePairs());

return (cop);

}

}

Working with an InstanceProvider
The following code samples assume that a CIMClient object called m_Client has
already been created and is available for use.

The first code sample gets all instances of the Solaris_XCDomain class using the
enumerateInstanceNames and getInstance methods:

// gets path to all instances

CIMObjectPath cop = new CIMObjectPath("Solaris_XCDomain");

Enumeration e = m_Client.enumerateInstanceNames(cop);

// gets instances from the instances’ paths

while (e.hasMoreElements()) {

cop = (CIMObjectPath) e.nextElement();

CIMInstance ci = m_Client.getInstance(cop, true, false, false,
null);

System.out.println(ci.toString());

}

The second code sample demonstrates how to invoke the enumerateInstances
method:

CIMObjectPath cop = new CIMObjectPath("Solaris_XCDomain");

Enumeration e = m_Client.enumerateInstances(cop, true, false, false,
null);

while (e.hasMoreElements()) {

CIMInstance ci = (CIMInstance) e.nextElement();

System.out.println(ci.toString());
Chapter 5 Programming Techniques in WDR 103

}

Working with an AssociatorProvider
The following code samples assume that a CIMClient object called m_Client has
been created and is available for use.

The first example gets each instance of the Solaris_CHCPU class that is associated
with an instance of the Solaris_CHSystemBoard class via the
Solaris_SystemBoardHasProcessors association:

// sbCOP is a CIMObjectPath of a system board.

String assocClass = "Solaris_SystemBoardHasProcessor";

String resultClass = "Solaris_CHCPU";

String role = "SystemBoard";

String resultRole = "Processor";

boolean includeQualifiers = true;

boolean includeClassOrigin = true;

String[] cpuProperty = null;

Enumeration e = m_Client.associators(sbCOP, assocClass, resultClass,
role, resultRole, includeQualifiers, includeClassOrigin,
cpuProperty);

while (e.hasMoreElements()) {

CIMInstance ci = (CIMInstance) e.nextElement();

System.out.println(ci.toString());

}

The second example enumerates association objects that refer to an instance of the
SolarisCHSystemBoard class and to instances of the Solaris_CHCPU class:

// cop is CIMObjectPath of the Solaris_CHSystemBoard instance

String resultClass = "Solaris_SystemBoardHasProcessors"

String role = "SystemBoard";

String includeQualifiers = true;

String includeClassOrigin = true;

String[] propertyList = "Processor";
104 WDR Developer’s Guide • September 2002

Enumeration e = m_Client.references(cop, resultClass, role,
includeQualifiers, includeClassOrigin, propertyList);

while (e.hasMoreElements()) {

CIMInstance assoc = (CIMInstance) e.nextElement();

System.out.println(assoc.toString());

}

Working with a MethodProvider
The following code samples assume that a CIMClient object called m_Client has
been created and is available for use.

The first example configures a single processor and prints out to the standard output
any error messages that may occur during the configuration process:

// cop is CIMObjectPath of the processor

String method = "configure";

Vector inParams = new Vector(4);

Vector outParams = new Vector(2);

inParams.add(CIMValue.FALSE); /* force */

inParams.add(new CIMValue(new String(""))); /* hwOptions */

inParams.add(new CIMValue(new Integer(3))); /* 3 retries */

inParams.add(new CIMValue(new Integer(5))); /* 5s delay */

CIMValue returnVal = m_Client.invokeMethod(cop, method, inParams,
outParams);

int status = ((Integer)(returnVal.getValue())).intValue();

if (status != 0 && outParams.size() != 0) {

Object obj = ((CIMValue)(outParams.elementAt(0))).getValue();

String error = (String) obj;

if (error != null) {

System.out.println(error);

}

}

The second code sample assigns a system board to a domain and prints to the
standard output any error messages that may occur during the assignment process:
Chapter 5 Programming Techniques in WDR 105

// cop is the CIMObjectPath of a system board

String method = "Assign";

Vector inParams = new Vector(1);

Vector outParams = new Vector(2);

inParams.add(new CIMValue(new Integer(domainID))); /* domainID

CIMValue returnVal = m_Client.invokeMethod(cop, method, inParams,
outParams);

int status = ((Integer)(returnVal.getValue())).intValue();

if (status != 0 && outParams.size() != 0) {

Object obj = ((CIMValue)(outParams.elementAt(0))).getValue();

String error = (String) obj;

if (error != null) {

System.out.println(error);

}

}

106 WDR Developer’s Guide • September 2002

Index
A
ACL (Access Control List)

Solaris_UserAcl class and, 24
WBEM, 12, 20

ACLs, 84
aggregations, 77, 78, 80, 81
APIs

using to set access control, 23
application program interface (API)

WBEM DR, 1
associations, 77, 79
AssociatorProvider

creating
example, 95, 104

attachment points
classes, 53

CIM Solaris_AttachmentPoint class, 53
CIM Solaris_CHController class, 63
CIM Solaris_CHCPU class, 60
CIM Solaris_CHMemory class, 61
CIM Solaris_CHSystemBoard class, 57

listing all in a domain, 4
Available Component List (ACL), 84

B
boards, 79, 80, 81, 84, 87, 89, 90, 91, 92, 93

C
CIM (Common Information Model (CIM)

listeners
adding, 44

CIM (Common Information Model), 3, 8, 11
aggregations, 77, 78, 80, 81
associations, 77, 79
attachment point classes, 53

CIM Solaris_CHController class, 63
CIM Solaris_CHCPU class, 60
CIM Solaris_CHMemory class, 61
CIM Solaris_CHSystemBoard class, 57
CIM Solaris_WDRAttachmentPoint class, 53

class hierarchy diagram, 52
classes

CIM_IndicationSubscription class, 48
domain classes, 70

Solaris_SGDomain class, 75
Solaris_WDRDomain class, 70
Solaris_XCDomain class, 71

event model, 41
indication classes

CIM_IndicationFilter class, 44
CIM_IndicationHandler class, 46

indications
generating, 42

slot classes, 64
Solaris_SGSlot class, 68
Solaris_WDRSlot class, 64
Solaris_XCSlot class, 66

CIMOM (CIM Object Manager), 8
classes

aggregations, 77
107

Solaris_DomainHasSlots Aggregation, 78
Solaris_SystemBoardHasControllers

Aggregation, 81
Solaris_SystemBoardHasMemory

Aggregation, 80
Solaris_SystemBoardHasProcessors

Aggregation, 80
associations, 77

Solaris_SlotHasSystemBoard Association, 79
attachment point, 53

CIM Solaris_CHController class, 63
CIM Solaris_CHCPU class, 60
CIM Solaris_CHMemory class, 61
CIM Solaris_CHSystemBoard class, 57
CIM Solaris_WDRAttachmentPoint class, 53

domain, 70
Solaris_SGDomain class, 75
Solaris_WDRDomain class, 70
Solaris_XCDomain class, 71

indication
Solaris_SGBoardPresenceChange

indication, 84
Solaris_SGBoardStatusChange indication, 87
Solaris_SGDomainACLChange indication, 84
Solaris_SGDomainStateChange indication, 85
Solaris_SGSlotAssignmentChange

indication, 86
Solaris_SGSlotAvailabilityChange

indication, 88
Solaris_XCBoardPowerOff indication, 91
Solaris_XCBoardPowerOn indication, 91
Solaris_XCComponentInsert indication, 91
Solaris_XCComponentRemove indication, 90
Solaris_XCDomainConfigChange

indication, 92
Solaris_XCDomainDown indication, 92
Solaris_XCDomainIndication indication, 91
Solaris_XCDomainStateChange

indication, 93
Solaris_XCDomainStop indication, 93
Solaris_XCDomainUp indication, 92
Solaris_XCEnvironmentalIndication

indication, 90
Solaris_XCSystemBoardConfigChange

indication, 89
slot, 64

Solaris_SGSlot class, 68
Solaris_WDRSlot class, 64
Solaris_XCSlot class, 66

Solaris indication, 83
Common Information Model (CIM)

process indications, 82
components

available, 84
controllers, 81

D
development tools

types used to develop WBEM DR clients, xiii
domains, 78, 84, 85

classes, 70
Solaris_SGDomain class, 75
Solaris_WDRDomain class, 70
Solaris_XCDomain class, 71

DTMF (Distributed Management Task Force), 2, 3

E
EventProvider

creating
example, 95

events, 41, 82
filters

binding to an event handler, 48
creating, 44

handlers
creating, 46

listening for, 44
subscribing to receive, 43

F
filters

event
binding to an event handler, 48
creating, 44

H
handlers

event
binding to an event filter, 48
108 WDR Developer’s Guide • September 2002

creating, 46

I
indication classes

CIM_IndicationFilter class, 44
CIM_IndicationHandler class, 46
CIM_IndicationSubscription class, 48

indications, 41, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93
generating, 42
hierarchy of classes, 83

InstanceProvider
creating

example, 95, 103

L
listeners

CIM
adding, 44

logging services, 28, 29, 30, 31
reading data from log files, 35
setting properties, 38
Solaris WBEM Log Viewer, 39

starting, 39
writing data to log files, 32

M
Managed Object Format (MOF)

compiling files, 15
memory, 80
memory configuration

retrieving information about, 4
MethodProvider

creating
example, 95, 105

Midframe Service Processor (MSP), 1
MOF (Managed Object Format (MOF)

files, 4
MOF (Managed Object Format)

and CIM objects, 11
compiler, 12, 13
mofcomp command, 13

mofcomp command, 13

arguments to, 14
MSP, 1

N
namespaces

setting access control on, 26

P
process indications, 41
processors, 80
programming techniques, 95

R
Remote Method Invocation (RMI), 8
RMI (Remote Method Invocation), 8

S
security, 12

changing a user’s access rights, 22
granting access rights to a user, 22
on Sun Fire 15K/12K and 6800/4810/4800/3800

systems, 5
removing access rights for a namespace, 23
removing access rights from a user, 22
setting access control, 23
setting access control on a namespace, 26
setting access control on a user, 25
setting access rights for a namespace, 23
Solaris_NamespaceAcl class and, 26

slots, 78, 79, 86, 88
classes, 64

Solaris_SGSlot class, 68
Solaris_Slot class, 64
Solaris_XCSlot class, 66

SMC (Solaris Management Console)
WBEM Log Viewer, 12, 13

SMC (Solaris Management Console) User’s
Tool, 27

SMC (Solaris Management Console) Users Tool, 12
Solaris
Index 109

indication class hierarchy, 83
Solaris RBAC (role-based access control), 12
Solaris WBEM log files

reading data from, 35
Solaris WBEM Log Viewer, 39

starting, 39
Solaris WBEM logging classes, 30

Solaris_LogRecord class, 31
Solaris_LogService class, 31

Solaris WBEM logging properties
setting, 38

Solaris WBEM Logging Services, 28
Solaris WBEM SDK (software development kit), 9
Solaris WBEM Services, 7

layers of, 12
log files, 29

format, 30
rules, 29

overview, 11
web site, 11

Solaris_LogRecord class
creating an instance of, 32
getting an instance of, 35
reading data from an instance of, 35

Solaris_LogServiceProperties class, 38
Solaris_NamespaceAcl class

and security, 26
Solaris_UserAcl class, 24

using to set access control on a user, 25
subscriptions

to events, 43
Sun Fire systems

models that support WBEM DR, 1
Sun WBEM User Manager, 12, 21

starting, 21
system architecture

differences between platforms, 3
system boards

adding to a domain, 4
displaying information about, 4
moving between domains, 4
removing from a domain, 4

U
UNIX commands

using, xiv

W
WBEM

ACL (access Control List), 12, 20
providers, 8

WBEM (Web-based Enterprise Management)
components, 2

WBEM DR
Sun Fire systems that support, 1

WDR (WBEM dynamic reconfiguration)
operations perfomed by, 4
software required for, 2
systems that support, 1
110 WDR Developer’s Guide • September 2002

	Contents
	Preface
	Introduction to WDR
	Hardware Required for WDR
	Hardware Required for MSP on Sun Fire 6800/4810/4800/3800 Systems

	Software Required for WDR
	Software Required for Sun Fire 15K and 12K Systems
	Software Required for Sun Fire 3800, 4800, 4810, and 6800 Systems

	About Web-Based Enterprise Management (WBEM)
	Common Information Model (CIM)
	Platform-Specific and Common MOF Files

	Operations that WDR Performs
	Administrator Security Models
	WDR Security
	Sun Fire 6800, 4810, 4800, and 3800 System Groups
	Sun Fire 15K and 12K System Groups

	Solaris WBEM Services
	CIM Object Manager (CIMOM)
	WBEM Providers
	Solaris WBEM Software Development Kit (SDK)

	Using Solaris WBEM Services in WDR
	Overview of Solaris WBEM Services
	Layers of Solaris WBEM Services

	Solaris WBEM Services Application Layer
	Sun WBEM User Manager and SMC Users Tool
	Solaris Management Console (SMC) WBEM Log Viewer
	Managed Object Format (MOF) Compiler
	The mofcomp Command
	Compiling a MOF File
	How to Compile a MOF File
	mofcomp Password Security Advisory

	Solaris WBEM Services Management Layer
	CIM Object Manager
	Manually Starting and Stopping the CIM Object Manager

	To Start the CIM Object Manager
	To Stop the CIM Object Manager

	Solaris WBEM Services Provider Layer
	Solaris Providers

	WBEM Security Services
	Authentication
	Authorization
	Replay Protection
	Digital Signatures
	Implementing Security
	WBEM Access Control Lists

	Sun WBEM User Manager
	To Start the Sun WBEM User Manager
	To Grant Default Access Rights to a User
	To Change a User’s Access Rights
	To Remove a User’s Access Rights
	To Set Access Rights for a Namespace
	To Remove Access Rights for a Namespace

	Using APIs to Set Access Control
	The Solaris_UserAcl Class
	Setting Access Control on a User
	The Solaris_NamespaceAcl Class
	Setting Access Control on a Namespace

	Solaris Management Console (SMC) Users Tool
	To Start SMC and the Users Tool

	Solaris WBEM Logging Services
	About Solaris WBEM Logging

	Solaris WBEM Services Log Files
	Solaris WBEM Services Log File Rules
	Solaris WBEM Services Log File Format

	Solaris WBEM Log Classes
	Solaris_LogRecord Class
	Solaris_LogService Class

	Using the APIs to Enable Solaris WBEM Logging
	Writing Data to a Solaris WBEM Log File
	How to Create an Instance of Solaris_LogRecord to Write Data
	Reading Data from a Solaris WBEM Log File
	How to Get an Instance of the Solaris_LogRecord Class and Read Data
	Setting Solaris WBEM Logging Properties

	Solaris WBEM Log Viewer
	How to Start SMC and Solaris Log Viewer

	Using Process Indications
	The CIM Event Model
	How Indications are Generated
	How Subscriptions Are Created
	Adding a CIM Listener
	Adding a CIM Listener

	Creating an Event Filter
	To Create an Event Filter

	Creating an Event Handler
	Creating a CIM Event Handler

	Binding an Event Filter to an Event Handler

	Classes, Domains, Associations, and Indications in WDR
	WDR CIM Class Hierarchy Diagram
	CIM Attachment Point Classes
	CIM Solaris_WDRAttachmentPoint Class
	Position in the Class Hierarchy
	Description
	Direct Known Subclasses
	CIM Solaris_WDRAttachmentPoint Class Properties
	CIM Solaris_WDRAttachmentPoint Class Methods

	CIM Solaris_CHSystemBoard Class
	Position in the Class Hierarchy
	Description
	Direct Known Subclasses
	CIM Solaris_CHSystemBoard Class Properties
	CIM Solaris_CHSystemBoard Class Methods

	CIM Solaris_CHCPU Class
	Position in the Class Hierarchy
	Description
	Direct Known Subclasses
	CIM Solaris_CHCPU Class Properties
	CIM Solaris_CHCPU Class Methods

	CIM Solaris_CHMemory Class
	Position in the Class Hierarchy
	Description
	Direct Known Subclasses
	CIM Solaris_CHMemory Properties
	CIM Solaris_CHMemory Class Methods

	CIM Solaris_CHController Class
	Position in the Class Hierarchy
	Description
	Direct Known Subclasses
	CIM Solaris_CHController Class Properties
	CIM Solaris_CHController Class Methods

	CIM Slot Classes
	CIM Solaris_WDRSlot Class
	Position in the Class Hierarchy
	Description
	Direct Known Subclasses
	CIM Solaris_WDRSlot Properties
	CIM Solaris_WDRSlot Methods

	CIM Solaris_XCSlot Class
	Position in the Class Hierarchy
	Description
	Direct Known Subclasses
	CIM Solaris_XCSlot Properties
	CIM Solaris_XCSlot Methods

	CIM Solaris_SGSlot Class
	Position in the Class Hierarchy
	Description
	Direct Known Subclasses
	CIM Solaris_SGSlot Properties
	CIM Solaris_SGSlot Methods

	CIM Solaris_WDRDomain Classes
	CIM Solaris_WDRDomain Class
	Description
	Position in the Class Hierarchy
	Direct Known CIM Subclasses
	CIM Solaris_WDRDomain Class Properties

	CIM Solaris_XCDomain Class
	Description
	Position in the Class Hierarchy
	Direct Known CIM Subclasses
	CIM Solaris_XCDomain Class Properties

	CIM Solaris_SGDomain Class
	Description
	Position in the Class Hierarchy
	Direct Known CIM Subclasses
	CIM Solaris_SGDomain Class Properties

	WDR Schema Associations and Aggregations
	CIM Solaris_DomainHasAttachmentPoints Aggregation
	Description
	CIM Solaris_DomainHasAttachmentPoints Aggregation Properties

	CIM Solaris_DomainHasSlots Aggregation
	Description
	CIM Solaris_DomainHasSlots Aggregation Properties

	Solaris_SlotHasSystemBoard Association
	Description
	CIM Solaris_SlotHasSystemBoard Association Properties

	Solaris_SystemBoardHasProcessors Aggregation
	Description
	CIM Solaris_SystemBoardHasProcessors Aggregation Properties

	Solaris_SystemBoardHasMemory Aggregation
	Description
	CIM Solaris_SystemBoardHasMemory Aggregation Properties

	Solaris_SystemBoardHasControllers Aggregation
	Description
	CIM Solaris_SystemBoardHasControllers Aggregation Properties

	CIM Process Indication Classes
	The WDR Indication Class Hierarchy Diagram
	Solaris_WDRIndication Class
	Solaris_SGBoardPresenceChange Indication
	Direct Known Subclasses
	Solaris_SGBoardPresenceChange Properties

	Solaris_SGDomainACLChange Indication
	Direct Known Subclasses
	Solaris_SGDomainACLChange Properties

	Solaris_SGDomainStateChange Indication
	Direct Known Subclasses
	Solaris_SGDomainStateChange Properties

	Solaris_SGSlotAssignmentChange Indication
	Direct Known Subclasses
	Solaris_SGSlotAssignmentChange Properties

	Solaris_SGBoardStateChange Indication
	Direct Known Subclasses
	Solaris_SGBoardStateChange Properties

	Solaris_SGSlotAvailabilityChange Indication
	Direct Known Subclasses
	Solaris_SGSlotAvailabilityChange Properties

	Solaris_XCSystemBoardConfigChange Indication
	Direct Known Subclasses
	Solaris_XCSystemBoardConfigChange Properties

	Solaris_XCEnvironmentalIndication Indication
	Direct Known Subclasses
	Solaris_XCEnvironmentalIndication Properties

	Solaris_XCComponentRemove Indication
	Solaris_XCComponentInsert Indication
	Solaris_XCBoardPowerOn Indication
	Solaris_XCBoardPowerOff Indication
	Solaris_XCDomainIndication Indication
	Direct Known Subclasses
	Solaris_XCDomainIndication Properties

	Solaris_XCDomainConfigChange Indication
	Solaris_XCDomainUp Indication
	Solaris_XCDomainDown Indication
	Solaris_XCDomainStop Indication
	Solaris_XCDomainStateChange Indication
	Direct Known Subclasses
	Solaris_XCDomainStateChange Properties

	Programming Techniques in WDR
	Caching System State Information
	Working with an EventProvider
	Indication Reader
	Event Listener
	Indication Subscription

	Working with an InstanceProvider
	Working with an AssociatorProvider
	Working with a MethodProvider

	Index

