
Deployment Guide
iPlanet Directory Server
Version5.1
816-2672-10

February 2002

Copyright © 2002 Sun Microsystems, Inc. Some preexisting portions Copyright © 2001 Netscape Communications Corporation. All

rights reserved.

Sun, Sun Microsystems, the Sun logo, Solaris, SunTone, the SunTone Certified logo, iPlanet, and the iPlanet logo are trademarks or

registered trademarks of Sun Microsystems, Inc. in the United States and other countries. Netscape and the Netscape N logo are

registered trademarks of Netscape Communications Corporation in the U.S. and other countries. Other Netscape logos, product

names, and service names are also trademarks of Netscape Communications Corporation, which may be registered in other

countries.

UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.

Portions of the Software copyright © 1995 PEER Networks, Inc. All rights reserved. The Software contains the Taligent® Unicode

Collation™ Classes from Taligent, Inc. and IBM Corp. Portions of the Software copyright © 1992-1998 Regents of the University of

Michigan. All rights reserved.

Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms and Conditions

The product described in this document is distributed under licenses restricting its use, copying, distribution, and decompilation. No

part of the product or this document may be reproduced in any form by any means without prior written authorization of the

Sun-Netscape Alliance and its licensors, if any.

THIS DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND

WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE

OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE

LEGALLY INVALID.

__

Copyright © 2002 Sun Microsystems, Inc. Pour certaines parties préexistantes, Copyright © 2001 Netscape Communications Corp.

Tous droits réservés.

Sun, Sun Microsystems, le logo Sun, Solaris, SunTone, the SunTone Certified logo, iPlanet, et le logo iPlanet sont des marques de

fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et d’autre pays. Netscape et le logo Netscape N sont des

marques déposées de Netscape Communications Corporation aux Etats-Unis et d’autre pays. Les autres logos, les noms de produit,

et les noms de service de Netscape sont des marques déposées de Netscape Communications Corporation dans certains autres pays.

UNIX est une marque enregistree aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Certains composants du Logiciel sont copyright © 1995 PEER Networks ,Inc. Tous droits réservés. Ce Logiciel contient les modules

Taligent® Unicode Collation Classes™ provenant de Taligent, Inc. et IBM Corp. Certains composants du Logiciel sont copyright

© 1992-1998 Regents of the University of Michigan. Tous droits réservés.

Le produit décrit dans ce document est distribué selon des conditions de licence qui en restreignent l'utilisation, la copie, la

distribution et la décompilation. Aucune partie de ce produit ni de ce document ne peut être reproduite sous quelque forme ou par

quelque moyen que ce soit sans l’autorisation écrite préalable de l’Alliance Sun-Netscape et, le cas échéant, de ses bailleurs de licence.

CETTE DOCUMENTATION EST FOURNIE “EN L'ÉTAT”, ET TOUTES CONDITIONS EXPRESSES OU IMPLICITES, TOUTES

REPRÉSENTATIONS ET TOUTES GARANTIES, Y COMPRIS TOUTE GARANTIE IMPLICITE D'APTITUDE À LA VENTE, OU À

UN BUT PARTICULIER OU DE NON CONTREFAÇON SONT EXCLUES, EXCEPTÉ DANS LA MESURE OÙ DE TELLES

EXCLUSIONS SERAIENT CONTRAIRES À LA LOI.

Contents

About This Guide . 9

Purpose of This Guide . 9

Conventions Used in This Guide . 9

Related Information . 10

Chapter 1 Introduction to Directory Server . 13
What is a Directory Service? . 13

About Global Directory Services . 14

About LDAP . 15

Introduction to iPlanet Directory Server . 15

Overview of Directory Server Architecture . 16

Overview of the Server Front-End . 17

Server Plug-ins Overview . 17

Overview of the Basic Directory Tree . 17

Directory Server Data Storage . 19

About Directory Entries . 20

Distributing Directory Data . 20

Directory Design Overview . 21

Design Process Outline . 21

Deploying Your Directory . 23

Piloting Your Directory . 23

Putting Your Directory Into Production . 23

Other General Directory Resources . 23

Chapter 2 How to Plan Your Directory Data . 25
Introduction to Directory Data . 25

What Your Directory Might Include . 26

What Your Directory Should Not Include . 27

Defining Your Directory Needs . 27

Performing a Site Survey . 28
3

Identifying the Applications that Use Your Directory . 29

Identifying Data Sources . 30

Characterizing Your Directory Data . 31

Determining Level of Service . 32

Considering a Data Master . 32

Data Mastering for Replication . 33

Data Mastering Across Multiple Applications . 33

Determining Data Ownership . 34

Determining Data Access . 35

Documenting Your Site Survey . 37

Repeating the Site Survey . 38

Chapter 3 How to Design the Schema . 39
Schema Design Process Overview . 39

iPlanet Standard Schema . 40

Schema Format . 40

Standard Attributes . 41

Standard Object Classes . 43

Mapping Your Data to the Default Schema . 44

Viewing the Default Directory Schema . 44

Matching Data to Schema Elements . 45

Customizing the Schema . 46

When to Extend Your Schema . 47

Getting and Assigning Object Identifiers . 47

Naming Attributes and Object Classes . 48

Strategies for Defining New Object Classes . 48

Strategies for Defining New Attributes . 50

Deleting Schema Elements . 50

Creating Custom Schema Files . 51

Custom Schema Best Practices . 52

Maintaining Data Consistency . 53

Schema Checking . 54

Selecting Consistent Data Formats . 55

Maintaining Consistency in Replicated Schema . 55

Other Schema Resources . 56

Chapter 4 Designing the Directory Tree . 57
Introduction to the Directory Tree . 57

Designing Your Directory Tree . 58

Choosing a Suffix . 58

Suffix Naming Conventions . 59

Naming Multiple Suffixes . 60
4 iPlanet Directory Server Deployment Guide • February 2002

Creating Your Directory Tree Structure . 60

Branching Your Directory . 60

Identifying Branch Points . 62

Replication Considerations . 64

Access Control Considerations . 66

Naming Entries . 67

Naming Person Entries . 67

Naming Organization Entries . 69

Naming Other Kinds of Entries . 69

Grouping Directory Entries . 70

Static and Dynamic Groups . 70

Managed, Filtered, and Nested Roles . 71

Deciding Between Groups and Roles . 72

Class of Service . 73

Directory Tree Design Examples . 75

Directory Tree for an International Enterprise . 75

Directory Tree for an ISP . 76

Other Directory Tree Resources . 77

Chapter 5 Designing the Directory Topology . 79
Topology Overview . 79

Distributing Your Data . 80

About Using Multiple Databases . 81

About Suffixes . 82

About Knowledge References . 84

Using Referrals . 85

The Structure of an LDAP Referral . 85

About Default Referrals . 86

Smart Referrals . 87

Tips for Designing Smart Referrals . 89

Using Chaining . 90

Deciding Between Referrals and Chaining . 91

Usage Differences . 92

Evaluating Access Controls . 92

Using Indexes to Improve Database Performance . 95

Overview of Directory Index Types . 95

Evaluating the Costs of Indexing . 96

Chapter 6 Designing the Replication Process . 99
Introduction to Replication . 99

Replication Concepts . 100

Replica . 101
5

Supplier/Consumer . 101

Change Log . 103

Unit of Replication . 103

Replication Agreement . 103

Replication Identity . 104

Data Consistency . 105

Common Replication Scenarios . 106

Single-Master Replication . 106

Multi-Master Replication . 108

Cascading Replication . 109

Mixed Environments . 112

Defining a Replication Strategy . 114

Replication Survey . 115

Replication Resource Requirements . 115

Using Replication for High Availability . 116

Using Replication for Local Availability . 117

Using Replication for Load Balancing . 117

Example of Network Load Balancing . 118

Example of Load Balancing for Improved Performance . 120

Example Replication Strategy for a Small Site . 121

Example Replication Strategy for a Large Site . 121

Using Replication with other Directory Features . 122

Replication and Access Control . 122

Replication and Directory Server Plug-ins . 122

Replication and Database Links . 123

Schema Replication . 124

Chapter 7 Designing a Secure Directory . 127
About Security Threats . 127

Unauthorized Access . 128

Unauthorized Tampering . 128

Denial of Service . 129

Analyzing Your Security Needs . 129

Determining Access Rights . 130

Ensuring Data Privacy and Integrity . 130

Conducting Regular Audits . 131

Example Security Needs Analysis . 131

Overview of Security Methods . 132

Selecting Appropriate Authentication Methods . 133

Anonymous Access . 133

Simple Password . 134

Certificate-Based Authentication . 135

Simple Password Over TLS . 135
6 iPlanet Directory Server Deployment Guide • February 2002

Proxy Authorization . 136

Preventing Authentication by Account Inactivation . 137

Designing a Password Policy . 137

Password Policy Attributes . 137

Password Change After Reset . 138

User-Defined Passwords . 138

Password Expiration . 139

Expiration Warning . 139

Password Syntax Checking . 139

Password Length . 140

Password Minimum Age . 140

Password History . 140

Password Storage Scheme . 140

Designing a Password Policy in a Replicated Environment . 141

Designing an Account Lockout Policy . 142

Designing Access Control . 142

About the ACI Format . 143

Targets . 144

Permissions . 144

Bind Rules . 145

Setting Permissions . 146

The Precedence Rule . 147

Allowing or Denying Access . 147

When to Deny Access . 147

Where to Place Access Control Rules . 148

Using Filtered Access Control Rules . 148

Using ACIs: Some Hints and Tricks . 149

Securing Connections With SSL . 151

Other Security Resources . 152

Chapter 8 Directory Design Examples . 153
An Enterprise . 153

Data Design . 154

Schema Design . 154

Directory Tree Design . 155

Topology Design . 156

Database Topology . 157

Server Topology . 157

Replication Design . 159

Supplier Architecture . 159

Supplier Consumer Architecture . 160

Security Design . 161

Tuning and Optimizations . 162
7

Operations Decisions . 162

A Multinational Enterprise and its Extranet . 162

Data Design . 163

Schema Design . 164

Directory Tree Design . 164

Topology Design . 167

Database Topology . 167

Server Topology . 169

Replication Design . 171

Supplier Architecture . 172

Security Design . 175

Index . 193
8 iPlanet Directory Server Deployment Guide • February 2002

About This Guide

iPlanet Directory Server 5.1 is a powerful and scalable distributed directory server

based on the industry-standard Lightweight Directory Access Protocol (LDAP).

iPlanet Directory Server is the cornerstone for building a centralized and

distributed data repository that can be used in your intranet, over your extranet

with your trading partners, or over the public Internet to reach your customers.

For the latest information about new features and enhancements in this release of

iPlanet Directory Server, please see the online release notes at:

http://docs.iplanet.com/docs/manuals/directory.html

Purpose of This Guide
This guide provides you with a foundation for planning your directory. The

information provided here is intended for directory decision-makers, designers,

and administrators.

The first chapter of this guide introduces basic directory concepts. Most of the

remainder of the guide covers aspects of directory design, including schema

design, the directory tree, topology, replication, and security. The last chapter

provides sample deployment scenarios to help you plan simple deployments as

well as complex deployments designed to support millions of users distributed

worldwide.

Conventions Used in This Guide
This section explains the typographic conventions used in this book.
9

Related Information
Monospaced font - This typeface is used for literal text, such as the names of

attributes and object classes when they appear in text. It is also used for URLs,

filenames and examples.

Italic font - This typeface is used for emphasis, for new terms, and for text that you

must substitute for actual values, such as placeholders in path names.

This book uses the following format for paths and file names:

/var/ds5/slapd- serverID/...

serverID represents the server identifier you gave the server when you configured

it. For example, if you gave the name phonebook to your directory server, then the

actual path would be:

/var/ds5/slapd-phonebook/...

Related Information
For information on how to configure iPlanet Directory Server 5.1 for the Solaris 9

operating environment, see Solaris 9 System Administration Naming and Directory
Services: (DNS, NIS and LDAP), the chapter entitled “iPlanet Directory Server 5.1

Configuration.”

The document set for iPlanet Directory Server also contains the following guides:

iPlanet Directory Server Administrator’s Guide. Procedures for managing

directory contents and maintaining your directory server. Includes information on

configuring server-side plug-ins.

iPlanet Directory Server Configuration, Command, and File Reference.

Information about using the command-line scripts shipped with Directory Server.

iPlanet Schema Reference. Information about the LDAP schema shipped with

Directory Server and useful for client applications.

Other useful information can be found on the following Web sites:

• iPlanet product documentation online:

http://docs.iplanet.com/docs/manuals/

NOTE Notes, Cautions and Tips highlight important conditions or

limitations. Be sure to read this information before continuing.
10 iPlanet Directory Server Deployment Guide • February 2002

Related Information
• iPlanet product status:

http://www.iplanet.com/support/technical_resources/

• iPlanet Professional Services information:

http://www.iplanet.com/services/professional_services_3_3.html

• Sun Enterprise Services for Solaris patches and support:

http://www.sun.com/service/

• iPlanet developer information:

http://developer.iplanet.com/

• iPlanet learning solutions:

http://www.iplanet.com/learning/index.html

• iPlanet product data sheets:

http://www.iplanet.com/products/index.html
About This Guide 11

Related Information
12 iPlanet Directory Server Deployment Guide • February 2002

Chapter 1

Introduction to Directory Server

iPlanet Directory Server provides a centralized directory service for your intranet,

network, and extranet information. Directory Server integrates with existing

systems and acts as a centralized repository for the consolidation of employee,

customer, supplier, and partner information. You can extend Directory Server to

manage user profiles and preferences, as well as extranet user authentication.

This chapter describes the basic ideas you need to understand before designing

your directory. It includes the following sections:

• What is a Directory Service?

• Introduction to iPlanet Directory Server

• Directory Design Overview

• Other General Directory Resources

What is a Directory Service?
The term directory service means the collection of software, hardware, and

processes that store information about your enterprise, subscribers, or both and

make that information available to users. A directory service consists of at least one

instance of Directory Server and one or more directory client programs. Client

programs can access names, phone numbers, addresses, and other data stored in

the directory.

One common directory service is a Domain Name System (DNS) server. A DNS

server maps a computer host name to an IP address. Thus, all of the computing

resources (hosts) become clients of the DNS server. The mapping of host names

allows users of your computing resources to easily locate computers on your

network by remembering host names rather than numerical IP addresses.
13

What is a Directory Service?
However, the DNS server stores only two types of information: names and IP

addresses. A true directory service stores virtually unlimited types of information.

iPlanet Directory Server stores all of your information in a single,

network-accessible repository. The following are a few examples of the kinds of

information you might store in a directory:

• Physical device information, such as data about the printers in your

organization (where they reside, whether they are color or black and white,

their manufacturer, date of purchase, and serial number)

• Public employee information, such as name, email address, and department

• Private employee information, such as salary, government identification

numbers, home addresses, phone numbers, and pay grade

• Contract or account information, such as the name of a client, final delivery

date, bidding information, contract numbers, and project dates

iPlanet Directory Server serves the needs of a wide variety of applications. It also

provides a standard protocol and application programming interfaces (APIs) to

access the information it contains.

The following sections describe global directory services and the Lightweight

Directory Access Protocol (LDAP).

About Global Directory Services
iPlanet Directory Server provides global directory services, meaning it provides

information to a wide variety of applications. Until recently, many applications

came bundled with their own proprietary databases. While a proprietary database

can be convenient if you use only one application, multiple databases become an

administrative burden if the databases manage the same information.

For example, suppose your network supports three different proprietary email

systems, each system with its own proprietary directory service. If users change

their passwords in one directory, the changes are not automatically replicated in

the others. Managing multiple instances of the same information results in

increased hardware and personnel costs, a problem referred to as the n + 1

directory problem.
14 iPlanet Directory Server Deployment Guide • February 2002

Introduction to iPlanet Directory Server
A global directory service solves the n+1 directory problem by providing a single,

centralized repository of directory information that any application can access.

However, giving a wide variety of applications access to the directory requires a

network-based means of communicating between the applications and the

directory. iPlanet Directory Server uses LDAP (Lightweight Directory Access

Protocol) to give applications access to its global directory service.

About LDAP
LDAP provides a common language that client applications and servers use to

communicate with one another. LDAP is a “lightweight” version of the Directory

Access Protocol (DAP) used by the ISO X.500 standard. DAP gives any application

access to the directory via an extensible and robust information framework, but at

an expensive administrative cost. DAP uses a communications layer that is not the

Internet standard TCP/IP protocol and has complicated directory-naming

conventions.

LDAP preserves the best features of DAP while reducing administrative costs.

LDAP uses an open directory access protocol running over TCP/IP and uses

simplified encoding methods. It retains the X.500 standard data model and can

support millions of entries for a modest investment in hardware and network

infrastructure.

Introduction to iPlanet Directory Server
iPlanet Directory Server includes the directory itself, the server-side software that

implements the LDAP protocol, and a graphical user interface that allows

end-users to search and change entries in the directory. Other LDAP clients are

also available, including the directory managers in the iPlanet Console and the

Address Book feature in Netscape Communicator 4.x. In addition, you can

purchase other LDAP client programs or write your own using the LDAP client

SDK included with the iPlanet Directory Server product.

Without adding other LDAP client programs, Directory Server can provide the

foundation for your intranet or extranet. Every iPlanet server uses the directory as

a central repository for shared server information, such as employee, customer,

supplier, and partner data.
Chapter 1 Introduction to Directory Server 15

Introduction to iPlanet Directory Server
You can use Directory Server to manage extranet user-authentication, create access

control, set up user preferences, and centralize user management. In hosted

environments, partners, customers, and suppliers can manage their own portions

of the directory, reducing administrative costs.

When you install Directory Server, the following components are installed on your

machine:

• An LDAP server (Directory Server) with a plug-in interface

The name of this process is ns-slapd .

• iPlanet Administration Server

For more information about the Administration Server, go to

http://iplanet.com/products/iplanet_application/.

• iPlanet Console to manage the servers

For more information about the iPlanet Console, see the Console

documentation at http://docs.iplanet.com/docs/manuals/console.html.

• Command-line tools for starting and stopping the server, importing and

exporting data in the database, database reindexing, account inactivation and

deactivation, LDIF merges, and kernel tuning

For more information about the command-line tools, refer to the iPlanet
Directory Server Configuration, Command, and File Reference.

• An SNMP monitor

For more information about SNMP monitoring, refer to the iPlanet Directory
Server Administrator’s Guide.

This guide talks about the core Directory Server and the plug-ins it uses for doing

its work. The next sections describe Directory Server in more detail. The topics

discussed are:

• “Overview of Directory Server Architecture,” on page 16

• “Directory Server Data Storage,” on page 19

Overview of Directory Server Architecture
At installation, Directory Server contains the following:

• A server front-end responsible for network communications

• Plug-ins for server functions, such as access control and replication
16 iPlanet Directory Server Deployment Guide • February 2002

Introduction to iPlanet Directory Server
• A basic directory tree containing server-related data.

The following sections describe each component of the directory in more detail.

Overview of the Server Front-End
The server front-end of Directory Server manages communications with directory

client programs. Directory Server functions as a daemon. Multiple client programs

can speak to the server in LDAP. They can communicate using LDAP over TCP/IP.

The connection can also be protected with SSL/TLS, depending on whether the

client negotiates the use of Transport Layer Security (TLS) for the connection.

When communication takes place with TLS, the communication is usually

encrypted. In the future, when DNS security is present, TLS used in conjunction

with secured DNS will provide confirmation to client applications that they are

binding to the correct server. If clients have been issued certificates, TLS can be

used by iPlanet Directory Server to confirm that the client has the right to access

the server. TLS and its predecessor SSL are used throughout iPlanet Directory

Server products to perform other security activities such as message integrity

checks, digital signatures, and mutual authentication between servers.

Multiple clients can bind to the server at the same time over the same network

because the Directory Server is a multi-threaded application. As directory services

grow to include larger numbers of entries or larger numbers of clients spread out

geographically, they also include multiple Directory Servers placed in strategic

places around the network.

Server Plug-ins Overview
Directory Server relies on plug-ins. A plug-in is a way to add functionality to the

core server. For example, a database is a plug-in.

A plug-in can be disabled. When disabled, the plug-in’s configuration information

remains in the directory but its function is not used by the server. Depending upon

what you want your directory to do, you can choose to enable any of the plug-ins

provided with Directory Server.

iPlanet Professional Services can write custom plug-ins for your Directory Server

deployment. Contact iPlanet Professional Services for more information.

Overview of the Basic Directory Tree
The directory tree, also known as a directory information tree or DIT, mirrors the

tree model used by most file systems, with the tree’s root, or first entry, appearing

at the top of the hierarchy. At installation, Directory Server creates a default

directory tree.
Chapter 1 Introduction to Directory Server 17

Introduction to iPlanet Directory Server
The default directory tree appears as follows:

The root of the tree is called the root suffix. For information about naming the root

suffix, refer to “Choosing a Suffix,” on page 58.

At installation, the directory contains up to four subtrees under your root suffix:

• cn=config

This subtree contains information about the server’s internal configuration.

• o=NetscapeRoot

This subtree contains the configuration information of other iPlanet servers,

such as iPlanet Administration Server. The Administration Server takes care of

authentication and all actions that cannot be performed through LDAP (such

as starting or stopping).

• o=userRoot

During installation, a user database is created by default. Its default name is

o=userRoot .

You can build on the default directory tree to add any data relevant to your

directory installation. An example of a directory tree for siroe.com Corporation

follows:

NOTE When you install another instance of Directory Server, you can

specify that it does not contain the o=NetscapeRoot information,

that it uses the configuration directory (or the o=NetscapeRoot

subtree) present on another server.

root suffix

o=NetscapeRootcn=config o=userRoot
18 iPlanet Directory Server Deployment Guide • February 2002

Introduction to iPlanet Directory Server
For more information about directory trees, refer to Chapter 4, “Designing the

Directory Tree.”

Directory Server Data Storage
Your directory data is stored in an LDBM database. The LDBM database is

implemented as a plug-in that is automatically installed with the directory and is

enabled by default.

The database is the basic unit of storage, performance, replication, and indexing.

You can do operations like importing, exporting, backing up, restoring, and

indexing on the database.

By default, Directory Server uses a single database to contain the directory tree.

This database can manage millions of entries. The default database supports

advanced methods of backing up and restoring your data, so that your data is not

at risk.

You can choose to use multiple databases to support your Directory Server. You

can distribute your data across the databases, allowing the server to hold more

data than can be stored in a single database.

The following sections describe how a directory database stores data.

dc=siroe,dc=com

ou=people ou=groups ou=services

uid=bjensen uid=rsweeny

cn=Directory Administrators cn=Accounting Managers
Chapter 1 Introduction to Directory Server 19

Introduction to iPlanet Directory Server
About Directory Entries
LDIF (LDAP Data Interchange Format) is a standard text-based format for

describing directory entries. An entry is a group of lines in the LDIF file that

contains information about an object, such as a person in your organization or a

printer on your network. Information about the entry is represented in the LDIF

file by a set of attributes and their values. Each entry has an object class attribute

that specifies the kind of object the entry describes and defines the set of additional

attributes it contains. Each attribute describes a particular trait of an entry.

For example, an entry might have the object class organizationalPerson ,

indicating that the entry represents a person within a particular organization. This

object class allows the givenname and telephoneNumber attributes. The values

assigned to these attributes give the name and phone number of the person

represented by the entry.

iPlanet Directory Server also uses read-only attributes that are calculated by the

server. These attributes are called operational attributes. There are also some

operational attributes that can be set by the administrator, for access control and

other server functions.

Entries are stored in a hierarchical structure in the directory tree. In LDAP, you can

query an entry and request all entries below it in the directory tree. This subtree is

called the base distinguished name, or base DN. For example, if you make an

LDAP search request specifying a base DN of ou=people, dc=siroe,dc=com ,

then the search operation examines only the ou=people subtree in the

dc=siroe,dc=com directory tree.

However, all entries are not automatically returned in response to an LDAP search.

Entries of the ldapsubentry object class are not returned in response to normal

search requests. An ldapsubentry entry represents an administrative object, for

example the entries that are used internally by Directory Server to define a role or a

class of service. To receive these entries, clients need to search specifically for

entries of the ldapsubentry object class.

For more information about roles, see “Managed, Filtered, and Nested Roles,” on

page 71. For more information about class of service, see “Class of Service,” on

page 73.

Distributing Directory Data
When you store various parts of your tree in separate databases, your directory can

process client requests in parallel, improving performance. You can also store your

databases on different machines, to further improve performance.
20 iPlanet Directory Server Deployment Guide • February 2002

Directory Design Overview
To connect your distributed data, you can create a special entry in a subtree of your

directory. All LDAP operations attempted below this entry are sent to a remote

machine where the entry is actually stored. This method is called chaining.

Chaining is implemented in the server as a plug-in. The plug-in is enabled by

default. Using this plug-in, you create database links, special entries that point to

data stored remotely. When a client application requests data from a database link,

the database link retrieves the data from the remote database and returns it to the

client.

Directory Design Overview
The previous sections described directory services in general and the iPlanet

Directory Server in particular. Now it is time to consider the design of your own

directory service.

Planning your directory service before actual deployment is the most important

task to ensure the success of your directory. During your directory design you will

gather data about your directory requirements, such as environment and data

sources, your users, and the applications that will use your directory. With this

data, you can design a directory service that meets your needs.

However, keep in mind that the flexibility of iPlanet Directory Server allows you to

rework your design to meet unexpected or changing requirements, even after you

deploy Directory Server.

Design Process Outline
The remainder of this guide divides the design process into six steps:

• How to Plan Your Directory Data.

Your directory will contain data, such as user names, telephone numbers, and

group details. Chapter 2, “How to Plan Your Directory Data,” helps you

analyze the various sources of data in your organization and understand their

relationship with one another. It describes the types of data you might store in

your directory, and other tasks you need to perform to design the contents of

your Directory Server.
Chapter 1 Introduction to Directory Server 21

Directory Design Overview
• How to Design the Schema.

Your directory is designed to support one or more directory-enabled

applications. These applications have requirements of the data you store in

your directory, such as format requirements. Your directory schema

determines the characteristics of the data stored in your directory. Chapter 3,

“How to Design the Schema,” introduces the standard schema shipped with

iPlanet Directory Server, describes how to customize the schema, and provides

tips for maintaining consistent schema.

• Designing the Directory Tree.

Once you decide what data your directory contains, you need to organize and

reference that data. This is the purpose of the directory tree. In Chapter 4,

“Designing the Directory Tree,” the directory tree is introduced and you are

guided through the design of your data hierarchy. Sample directory tree

designs are also provided.

• Designing the Directory Topology.

Topology design involves determining how you divide your directory tree

among multiple physical Directory Servers and how these servers

communicate with one another. Chapter 5, “Designing the Directory

Topology,” describes the general principles behind topology design, discusses

using multiple databases, describes the mechanisms available for linking your

distributed data together, and explains how the directory itself keeps track of

distributed data.

• Designing the Replication Process.

With replication, multiple Directory Servers maintain the same directory data

to increase performance and provide fault tolerance. Chapter 6, “Designing the

Replication Process,” describes how replication works, what kinds of data you

can replicate, common replication scenarios, and tips for building a highly

available directory service.

• Designing a Secure Directory.

Finally, you need to plan how to protect the data in the directory and design

the other aspects of your service to meet the security requirements of your

users and applications. Chapter 7, “Designing a Secure Directory,” describes

common security threats, provides an overview of security methods, discusses

the steps in analyzing your security needs, and provides tips for designing

access controls and protecting the integrity of your directory data.
22 iPlanet Directory Server Deployment Guide • February 2002

Other General Directory Resources
Deploying Your Directory
After you have designed your directory service, you start the deployment phase.

The deployment phase consists of the following steps:

• Piloting Your Directory

• Putting Your Directory Into Production

Piloting Your Directory
The first step of the deployment phase is installing a server instance as a pilot and

testing whether your service can handle your user load. If the service is not

adequate as it is, adjust your design and pilot it again. Adjust your pilot design

until you have a robust service you can confidently introduce to your enterprise.

For a comprehensive overview of creating and implementing a directory pilot,

refer to Understanding and Deploying LDAP Directory Services (T. Howes, M. Smith,

G. Good, Macmillan Technical Publishing, 1999).

Putting Your Directory Into Production
Once you have piloted and tuned the service, you need to develop and execute a

plan for taking the directory service from a pilot to production. Create a

production plan that includes the following:

• An estimate of the resources you need

• A list of the tasks you must perform before installing servers

• A schedule of what needs to be accomplished and when

• A set of criteria for measuring the success of your deployment

For information on administering and maintaining your directory, refer to the

iPlanet Directory Server Administrator’s Guide.

Other General Directory Resources
For more information about directories, LDAP, and LDIF, take a look at the

following:

• RFC 2849: The LDAP Data Interchange Format (LDIF) Technical Specification

http://www.ietf.org/rfc/rfc2849.txt
Chapter 1 Introduction to Directory Server 23

Other General Directory Resources
• RFC 2251: Lightweight Directory Access Protocol (v3)

http://www.ietf.org/rfc/rfc2251.txt

• Understanding and Deploying LDAP Directory Services.
T. Howes, M. Smith, G. Good, Macmillan Technical Publishing, 1999.
24 iPlanet Directory Server Deployment Guide • February 2002

Chapter 2

How to Plan Your Directory Data

The data stored in your directory may include user names, email addresses,

telephone numbers, and information about groups users are in, or it may contain

other types of information. The type of data in your directory determines how you

structure the directory, to whom you allow access to the data, and how this access

is requested and granted.

This chapter describes the issues and strategies behind planning your directory’s

data. It includes the following sections:

• Introduction to Directory Data

• Defining Your Directory Needs

• Performing a Site Survey

Introduction to Directory Data
Some types of data are better suited to your directory than others. Ideal data for a

directory has some of the following characteristics:

• It is read more often than written.

Because the directory is tuned for read operations, write operations slow your

server’s performance down.

• It is expressible in attribute-data format (for example, surname=jensen).

• It is of interest to more than one audience.

For example, an employee’s name or the physical location of a printer can be of

interest to many people and applications.

• It will be accessed from more than one physical location.
25

Introduction to Directory Data
For example, an employee’s preference settings for a software application may

not seem to be appropriate for the directory because only a single instance of

the application needs access to the information. However, if the application is

capable of reading preferences from the directory and users might want to

interact with the application according to their preferences from different sites,

then it is very useful to include the preference information in the directory.

What Your Directory Might Include
Examples of data you can put in your directory are:

• Contact information, such as telephone numbers, physical addresses, and

email addresses.

• Descriptive information, such as an employee number, job title, manager or

administrator identification, and job-related interests.

• Organization contact information, such as a telephone number, physical

address, administrator identification, and business description.

• Device information, such as a printer’s physical location, type of printer, and

the number of pages per minute that the printer can produce.

• Contact and billing information for your corporation’s trading partners,

clients, and customers.

• Contract information, such as the customer’s name, due dates, job description,

and pricing information.

• Individual software preferences or software configuration information.

• Resource sites, such as pointers to web servers or the file system of a certain file

or application.

If you are going to use Directory Server for more than just server administration,

then you have to decide what other types of information you want to store in your

directory. For example, you might include some of the following types of

information:

• Contract or client account details

• Payroll data

• Physical device information

• Home contact information

• Office contact information for the various sites within your enterprise
26 iPlanet Directory Server Deployment Guide • February 2002

Defining Your Directory Needs
What Your Directory Should Not Include
Directory Server is excellent for managing large quantities of data that client

applications read and occasionally write, but it is not designed to handle large,

unstructured objects, such as images or other media. These objects should be

maintained in a file system. However, your directory can store pointers to these

kinds of applications through the use of FTP, HTTP, or other types of URL.

Because the directory works best for read operations, you should avoid placing

rapidly changing information in the directory. Reducing the number of write

operations occurring in your directory improves overall search performance.

Defining Your Directory Needs
When you design your directory data, think not only of the data you currently

require but also what you may include in your directory in the future. Considering

the future needs of your directory during the design process influences how you

structure and distribute the data in your directory.

As you plan, consider these points:

• What do you want to put in your directory today? What immediate problem

do you hope to solve by deploying a directory? What are the immediate needs

of the directory-enabled application you use?

• What do you want to put in your directory in the near future? For example,

your enterprise might use an accounting package that does not currently

support LDAP, but that you know will be LDAP-enabled in the near future.

You should identify the data used by applications such as this and plan for the

migration of the data into the directory when the technology becomes

available.

• What do you think you might want to store in your directory in the future? For

example, if you are a hosting environment, perhaps future customers will have

different data requirements from your current customers. Maybe future

customers will want to use your directory to store JPEG images. While this is

the hardest case of all to consider, doing so may pay off in unexpected ways.

At a minimum, this kind of planning helps you identify data sources you

might otherwise not have considered.
Chapter 2 How to Plan Your Directory Data 27

Performing a Site Survey
Performing a Site Survey
A site survey is a formal method for discovering and characterizing the contents of

your directory. Budget plenty of time for performing a site survey, as data is the

key to your directory architecture.The site survey consists of the following tasks,

which are described briefly here and then in more detail:

• Identify the applications that use your directory.

Determine the directory-enabled applications you deploy and their data needs.

• Identify data sources.

Survey your enterprise and identify sources of data (such as PBX systems,

Human Resources databases, email systems, and so forth).

• Characterize the data your directory needs to contain.

Determine what objects should be present in your directory (for example

people or groups), and what attributes of these objects you need to maintain in

your directory (such as user name and passwords).

• Determine the level of service you need to provide.

Decide how available your directory data needs to be to client applications and

design your architecture accordingly. How available your directory needs to

be affects how you replicate data and configure chaining policies to connect

data stored on remote servers.

For more information about replication, refer to Chapter 6, “Designing the

Replication Process” on page 99. For more information on chaining, refer to

Chapter 5, “Designing the Directory Topology” on page 79.

• Identify a data master.

A data master contains the primary source for directory data. This data might

be mirrored to other servers for load balancing and recovery purposes. For

each piece of data, determine its data master.

• Determine data ownership.

For each piece of data, determine the person responsible for ensuring that the

data is up-to-date.

• Determine data access.
28 iPlanet Directory Server Deployment Guide • February 2002

Performing a Site Survey
If you import data from other sources, develop a strategy for both bulk imports

and incremental updates. As a part of this strategy, try to master data in a

single place, and limit the number of applications that can change the data.

Also, limit the number of people who write to any given piece of data. A

smaller group ensures data integrity while reducing your administrative

overhead.

• Document your site survey.

Because of the number of organizations that can be affected by the directory, it may

be helpful to create a directory deployment team that includes representatives

from each affected organization. This team performs the site survey.

Corporations generally have a human resources department, an accounting

and/or accounts receivable department, one or more manufacturing organizations,

one or more sales organizations, and one or more development organizations.

Including representatives from each of these organizations can help you perform

the survey. Furthermore, directly involving all the affected organizations can help

build acceptance for the migration from local data stores to a centralized directory.

Identifying the Applications that Use Your
Directory
Generally, the applications that access your directory and the data needs of these

applications drive the planning of your directory contents. Some of the common

applications that use your directory include:

• Directory browser applications, such as online telephone books. Decide what

information (such as email addresses, telephone numbers, and employee

name) your users need and make sure you include it in the directory.

• Email applications, especially email servers. All email servers require email

addresses, user names, and some routing information to be available in the

directory. Others, however, require more advanced information such as the

place on disk where a user’s mailbox is stored, vacation notification

information, and protocol information (IMAP versus POP, for example).

• Directory-enabled human resources applications. These require more personal

information such as government identification numbers, home addresses,

home telephone numbers, birth dates, salary, and job title.

When you examine the applications that will use your directory, look at the types

of information each application uses. The following table gives an example of

applications and the information used by each:
Chapter 2 How to Plan Your Directory Data 29

Performing a Site Survey
Once you identify the applications and information used by each application, you

can see that some types of data are used by more than one application. Doing this

kind of exercise during the data planning stage can help you avoid data

redundancy problems in your directory and see more clearly what data your

directory dependant applications require.

The final decision you make about the types of data you maintain in your directory

and when you start maintaining it, is affected by these factors:

• The data required by your various legacy applications and your user

population.

• The ability of your legacy applications to communicate with an LDAP

directory.

Identifying Data Sources
To identify all of the data that you want to include in your directory, you should

perform a survey of your existing data stores. Your survey should include the

following:

• Identify organizations that provide information.

Locate all the organizations that manage information essential to your

enterprise. Typically this includes your information services, human resources,

payroll, and accounting departments.

• Identify the tools and processes that are information sources.

Table 2-1 Application Data Needs

Application Class of Data Data

Phone book People Name, email address, phone number,

user ID, password, department number,

manager, mail stop

Web server People, groups User ID, password, group name, groups

members, group owner

Calendar server People, meeting

rooms

Name, user ID, cube number, conference

room name
30 iPlanet Directory Server Deployment Guide • February 2002

Performing a Site Survey
Some common sources for information are networking operating systems,

email systems, security systems, PBX (telephone switching) systems, and

human resources applications.

• Determine how centralizing each piece of data affects the management of data.

You may find that centralized data management requires new tools and new

processes. Sometimes centralization requires increasing staff in some

organizations while decreasing staff in others.

During your survey, you may come up with a matrix that resembles the following

table, identifying all of the information sources in your enterprise:

Characterizing Your Directory Data
All of the data you identify for inclusion in your directory can be characterized

according to the following general points:

• Format

• Size

• Number of occurrences in various applications

• Data owner

• Relationship to other directory data

You should study each piece of data you plan to include in your directory to

determine what characteristics it shares with the other pieces of data. This helps

save time during the schema design stage, described in more detail in Chapter 3,

“How to Design the Schema.”

Table 2-2 Information Sources

Data Source Class of Data Data

Human resources database People Name, address, phone

number, department number,

manager

Email system People, Groups Name, email address, user ID,

password, email preferences

Facilities system Facilities Building names, floor names,

cube numbers, access codes
Chapter 2 How to Plan Your Directory Data 31

Performing a Site Survey
For example, you can create a table that characterizes your directory data as

follows:

Determining Level of Service
The level of service you provide depends upon the expectations of the people who

rely on directory-enabled applications. To determine the level of service each

application expects, first determine how and when the application is used.

As your directory evolves, it may need to support a wide variety of service levels,

from production to mission critical. It can be difficult to raise the level of service

after your directory is deployed, so make sure your initial design can meet your

future needs.

For example, if you determine that you need to eliminate the risk of total failure,

you might consider using a multi-master configuration, in which several masters

exist for the same data. The next section discusses determining data masters in

more detail.

Considering a Data Master
The data master is the server that is the master source of data. Consider which

server will be the data master when your data resides in more than one physical

site. For example, when you use replication or use applications that cannot

communicate over LDAP, data may be spread over more than one site. If a piece of

data is present in more than one location, you need to decide which server has the

master copy and which server receives updates from this master copy.

Table 2-3 Directory Data Characteristics

Data Format Size Owner Related to

Employee Name Text string 128 characters Human

resources

User’s entry

Fax number Phone number 14 digits Facilities User’s entry

Email address Text Many character IS department User’s entry
32 iPlanet Directory Server Deployment Guide • February 2002

Performing a Site Survey
Data Mastering for Replication
iPlanet Directory Server allows you to contain master sources of information on

more than one server. If you use replication, decide which server is the master

source of a piece of data. iPlanet Directory Server supports multi-master

configurations, in which more than one server can be a masters source for the same

piece of data. For more information about replication and multi-master replication,

see “Designing the Replication Process,” on page 99.

In the simplest case, put a master source of all of your data on two Directory

Servers and then replicate that data to one or more consumer servers. Having two

master servers provides safe failover in the event that a server goes off-line. In

more complex cases, you may want to store the data in multiple databases, so that

the entries are mastered by a server close to the applications which will update or

search that data.

Data Mastering Across Multiple Applications
You also need to consider the master source of your data if you have applications

that communicate indirectly with the directory. Keep the processes for changing

data, and the places from which you can change data, as simple as possible. Once

you decide on a single site to master a piece of data, use the same site to master all

of the other data contained there. A single site simplifies troubleshooting if your

databases get out of sync across your enterprise.

Here are some ways you can implement data mastering:

• Master the data in both the directory and all applications that do not use the

directory.

Maintaining multiple masters does not require custom scripts for moving data

in and out of the directory and the other applications. However, if data

changes in one place, someone has to change it on all the other sites.

Maintaining master data in the directory and all applications not using the

directory can result in data being unsynchronized across your enterprise

(which is what your directory is supposed to prevent).

• Master the data in the directory and synchronize data with other applications

using iPlanet MetaDirectory.

Maintaining a data master that synchronizes with other applications makes the

most sense if you are using a variety of different directory and database

applications. Contact your iPlanet sale representative for more information

about iPlanet MetaDirectory, or go to the iPlanet website at

http://www.iplanet.com/.
Chapter 2 How to Plan Your Directory Data 33

Performing a Site Survey
• Master the data in some application other than the directory and then write

scripts, programs, or gateways to import that data into the directory.

Mastering data in non-directory applications makes the most sense if you can

identify one or two applications that you already use to master your data, and

you want to use your directory only for lookups (for example, for online

corporate telephone books).

How you maintain master copies of your data depends on your specific needs.

However, regardless of the how you maintain data masters, keep it simple and

consistent. For example, you should not attempt to master data in multiple sites,

then automatically exchange data between competing applications. Doing so leads

to a “last change wins” scenario and increases your administrative overhead.

For example, suppose you want to manage an employee’s home telephone

number. Both the LDAP directory and a human resources database store this

information.The human resources application is LDAP enabled, so you can write

an automatic application that transfers data from the LDAP directory to the human

resources database, and vice versa. However, if you attempt to master changes to

that employee’s telephone number in both the LDAP directory and the human

resources data, then the last place where the telephone number was changed

overwrites the information in the other database. This is acceptable as long as the

last application to write the data had the correct information. But if that

information was old or out of date (perhaps because, for example, the human

resources data was reloaded from a backup), then the correct telephone number in

the LDAP directory will be deleted.

Determining Data Ownership
Data ownership refers to the person or organization responsible for making sure the

data is up-to-date. During the data design, decide who can write data to the

directory. Some common strategies for deciding data ownership follow:

• Allow read-only access to the directory for everyone except a small group of

directory content managers.

• Allow individual users to manage some strategic subset of information for

themselves.

This subset of information might include their passwords, descriptive

information about themselves and their role within the organization, their

automobile license plate number, and contact information such as telephone

numbers or office numbers.
34 iPlanet Directory Server Deployment Guide • February 2002

Performing a Site Survey
• Allow a person’s manager to write to some strategic subset of that person’s

information, such as contact information or job title.

• Allow an organization’s administrator to create and manage entries for that

organization.

This approach makes your organization’s administrators your directory

content managers.

• Create roles that give groups of people read or write access privileges.

For example, you might create roles for human resources, finance, or

accounting. Allow each of these roles to have read access, write access, or both

to the data needed by the group, such as salary information, government

identification number (in the US, social security number), and home phone

numbers and address.

For more information about roles and grouping entries, refer to “Grouping

Directory Entries,” on page 70.

As you determine who can write to the data, you may find that multiple

individuals need to have write access to the same information. For example, you

will want an information systems (IS) or directory management group to have

write access to employee passwords. You may also want the employees themselves

to have write access to their own passwords. While you generally must give

multiple people write access to the same information, try to keep this group small

and easy to identify. Keeping the group small helps ensure your data’s integrity.

The iPlanet Delegated Administrator can be used to provide partitioned account

management and delegate administration responsibility for users to individuals in

different roles across the organization. For more information, contact your iPlanet

sales representative or go to the iPlanet Web site at http://www.iplanet.com.

For information on setting access control for your directory, see Chapter 7,

“Designing a Secure Directory,” on page 127.

Determining Data Access
After determining data ownership, decide who can read each piece of data. For

example, you may decide to store an employee’s home phone number in your

directory. This data may be useful for a number of organizations, including the

employee’s manager and human resources. You may want the employee to be able

to read this information for verification purposes. However, home contact

information can be considered sensitive. Therefore, you must determine if you

want this kind of data to be widely available across your enterprise.
Chapter 2 How to Plan Your Directory Data 35

Performing a Site Survey
For each piece of information that you store in your directory, you must decide the

following:

• Can the data be read anonymously?

The LDAP protocol supports anonymous access, and allows easy lookups for

common information such as office sites, email addresses, and business

telephone numbers. However, anonymous access gives anyone with access to

the directory access to the common information. Consequently, you should use

anonymous access sparingly.

• Can the data be read widely across your enterprise?

You can set up access control so that the client must log in to (or bind to) the

directory to read specific information. Unlike anonymous access, this form of

access control ensures that only members of your organization can view

directory information. It also allows you to capture login information in the

directory’s access log, so you have a record of who accessed the information.

For more information about access control, refer to “Designing Access

Control,” on page 142.

• Can you identify a group of people or applications that need to read the data?

Anyone who has write privileges to the data generally also needs read access

(with the exception of write access to passwords). You may also have data

specific to a particular organization or project group. Identifying these access

needs helps you determine what groups, roles, and access controls your

directory needs.

For information about groups and roles, see Chapter 4, “Designing the

Directory Tree” on page 57. For information about access controls, see Chapter

7, “Designing a Secure Directory,” on page 127.

As you make these decisions for each piece of directory data, you define a security

policy for your directory. Your decisions depend upon the nature of your site and

the kinds of security already available at your site. For example, if your site has a

firewall or no direct access to the Internet, you may feel freer to support

anonymous access than if you are placing your directory directly on the Internet.

In many countries, data protection laws govern how enterprises must maintain

personal information, and restrict who has access to the personal information. For

example, the laws may prohibit anonymous access to addresses and phone

numbers, or may require that users have the ability to view and correct information

in entries which represent them. Be sure to check with your organization’s legal

department to ensure that your directory deployment follows all necessary laws

for the countries in which your enterprise operates.
36 iPlanet Directory Server Deployment Guide • February 2002

Performing a Site Survey
The creation of a security policy and the way you implement it is described in

detail in Chapter 7, “Designing a Secure Directory,” on page 127.

Documenting Your Site Survey
Because of the complexity of data design, document the results of your site

surveys. During each step of the site survey we have suggested simple tables for

keeping track of your data. Consider building a master table that outlines your

decisions and outstanding concerns. You can build this table with the

word-processing package of your choice, or use a spreadsheet so that the table’s

contents can easily be sorted and searched.

A simple example of a table follows. The table identifies data ownership and data

access for each piece of data identified by the site survey.

Looking at the row representing the employee name data, we see the following:

• Owner

Human Resources owns this information and is therefore responsible for

updating and changing it.

• Master Server/Application

The PeopleSoft application manages employee name information.

• Self Read/Write

Data Name Owner Master
Server/Application

Self
Read/Write

Global Read HR
Writable

IS
Writable

Employee

name

HR People Soft Read-only Yes (anonymous) Yes Yes

User

password

IS Directory US-1 Read/Write No No Yes

Home

phone

number

HR People Soft Read/Write No Yes No

Employee

location

IS Directory US-1 Read-only Yes (must log in) No Yes

Officephone

number

Facilities Phone switch Read-only Yes (anonymous) No No
Chapter 2 How to Plan Your Directory Data 37

Performing a Site Survey
A person can read their own name, but not write (or change) it.

• Global Read

Employee names can be read anonymously by everyone with access to the

directory.

• HR Writable

Members of the human resources group can change, add, and delete employee

names in the directory.

• IS Writable

Members of the information services group can change, add, and delete

employee names in the directory.

Repeating the Site Survey
Finally, you may need to run more than one site survey, particularly if your

enterprise has offices in multiple cities or countries. You may find your

informational needs to be so complex that you have to allow several different

organizations to keep information at their local offices rather than at a single,

centralized site. In this case, each office that keeps a master copy of information

should run its own site survey. After the site survey process has been completed,

the results of each survey should be returned to a central team (probably consisting

of representatives from each office) for use in the design of the enterprise-wide

data schema model and directory tree.
38 iPlanet Directory Server Deployment Guide • February 2002

Chapter 3

How to Design the Schema

The site survey you conducted in Chapter 2 generated information abut the data

you plan to store in your directory. Next, you must decide how to represent the

data you store. Your directory schema describes the types of data you can store in

your directory. During schema design, you map each data element to an LDAP

attribute, and gather related elements into LDAP object classes. Well-designed

schema helps maintain the integrity of the data you store in your directory.

This chapter describes the directory schema and how to design schema for your

unique needs. This chapter contains the following sections:

• Schema Design Process Overview

• iPlanet Standard Schema

• Mapping Your Data to the Default Schema

• Customizing the Schema

• Maintaining Data Consistency

• Other Schema Resources

For information on replicating schema, refer to “Schema Replication,” on page 124.

Schema Design Process Overview
During schema design, you select and define the object classes and attributes used

to represent the entries stored by Directory Server. Schema design involves the

following steps:

• Choosing predefined schema elements to meet as many of your needs as

possible.
39

iPlanet Standard Schema
• Extending the standard Directory Server schema to define new elements to

meet your remaining needs.

• Planning for schema maintenance.

It is best to use existing schema elements defined in the standard schema provided

with Directory Server. Choosing standard schema elements helps ensure

compatibility with directory-enabled applications. In addition, as the schema is

based on the LDAP standard, you are assured it has been reviewed and agreed to

by a wide number of directory users.

iPlanet Standard Schema
Your directory schema maintains the integrity of the data stored in your directory

by imposing constraints on the size, range, and format of data values. You decide

what types of entries your directory contains (people, devices, organizations, and

so forth) and the attributes available to each entry.

The predefined schema included with Directory Server contains both the standard

LDAP schema as well as additional application-specific schema to support the

features of the server. While this schema meets most directory needs, you may

need to extend it with new object classes and attributes to accommodate the unique

needs of your directory. Refer to “Customizing the Schema” for information on

extending the schema.

The following sections describe the format, standard attributes, and object classes

included in the iPlanet standard schema.

Schema Format
Directory Server bases its schema format on version 3 of the LDAP protocol

(LDAPv3). This protocol requires directory servers to publish their schemas

through LDAP itself, allowing directory client applications to programmatically

retrieve the schema and adapt their behavior based on it. The global set of schema

for Directory Server can be found in the entry named cn=schema .
40 iPlanet Directory Server Deployment Guide • February 2002

iPlanet Standard Schema
The Directory Server schema differs slightly from the LDAPv3 schema, as it uses its

own proprietary object classes and attributes. In addition, it uses a private field in

the schema entries called X-ORIGIN , which describes where the schema entry was

defined originally. For example, if a schema entry is defined in the standard

LDAPv3 schema, the X-ORIGIN field refers to RFC 2252. If the entry is defined by

iPlanet for the Directory Server’s use, the X-ORIGIN field contains the value

iPlanet Directory Server .

For example, the standard person object class appears in the schema as follows:

objectclasses: (2.5.6.6 NAME 'person' DESC 'Standard Person Object
Class' SUP top MUST (objectlass $ sn $ cn) MAY (description $
seealso $ telephoneNumber $ userPassword) X-ORIGIN 'RFC 2252')

This schema entry states the object identifier, or OID, for the class (2.5.6.6), the

name of the object class (person), a description of the class (Standard Person

Object Class), then lists the required attributes (objectclass , sn , and cn) and

the allowed attributes (description , seealso , telephoneNumber , and

userPassword).

Standard Attributes
Attributes hold specific data elements such as a name or a fax number. Directory

Server represents data as attribute-data pairs, a descriptive attribute associated

with a specific piece of information. For example, the directory can store a piece of

data such as a person’s name in a pair with the standard attribute, in this case

commonName (cn). So, an entry for a person named Babs Jensen has the following

attribute-data pair:

cn: Babs Jensen

In fact, the entire entry is represented as a series of attribute-data pairs. The entire

entry for Babs Jensen might appear as follows:

dn: uid=bjensen, ou=people, dc=siroe,dc=com
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
cn: Babs Jensen
sn: Jensen
givenName: Babs
givenName: Barbara
mail: bjensen@siroe.com
Chapter 3 How to Design the Schema 41

iPlanet Standard Schema
Notice that the entry for Babs contains multiple values for some of the attributes.

The attribute givenName appears twice, each time with a unique value. The object

classes that appear in this example are explained in the next section, “Standard

Object Classes."

In the schema, each attribute definition contains the following information:

• A unique name

• An object identifier (OID) for the attribute

• A text description of the attribute

• The OID of the attribute syntax

• Indications of whether the attribute is single-valued or multi-valued, whether

the attribute is for the directory’s own use, the origin of the attribute, and any

additional matching rules associated with the attribute.

For example, the cn attribute definition appears in the schema as follows:

attributetypes: (2.5.4.3 NAME 'cn' DESC 'commonName Standard
Attribute' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)

The SYNTAX is the OID of the syntax for values of the attribute. The allowed

syntaxes for attributes have been renamed and expanded since versions 4.x of the

Directory Server. The following table describes the new name OIDs of all syntaxes:

Table 3-1 Attribute Syntax Definitions

Syntax and OID Definition

Binary (formerly bin)

1.3.6.1.4.1.1466.115.121.1.5

Indicates that values for this attribute are binary.

Boolean

1.3.6.1.4.1.1466.115.121.1.7

Indicates that this attribute has one of only two values: True
or False .

Country String

1.3.6.1.4.1.1466.115.121.1.11

Indicates that values for this attribute are limited to exactly

two printable string characters, for example fr .

DN (formerly dn)

1.3.6.1.4.1.1466.115.121.1.12

Indicates that values for this attribute are DNs (distinguished

names).

DirectoryString

(formerly cis)

1.3.6.1.4.1.1466.115.121.1.15

Indicates that values for this attribute are not case sensitive.

GeneralizedTime

1.3.6.1.4.1.1466.115.121.1.24

Indicates that values for this attribute are encoded as printable

strings. The time zone must be specified. It is strongly

recommended to use GMT.
42 iPlanet Directory Server Deployment Guide • February 2002

iPlanet Standard Schema
For more information about the LDAPv3 schema format, refer to the LDAPv3

Attribute Syntax Definitions document (RFC 2252).

Standard Object Classes
Object classes are used to group related information. Typically, an object class

represents a real object, such as a person or a fax machine. Before you can use an

object class and its attributes in your directory, it must be identified in the schema.

Your directory recognizes a standard list of object classes by default. See the iPlanet
Schema Reference for more information.

Each directory entry belongs to one or more object classes. Once you place an

object class identified in your schema on an entry, you are telling the directory

server that the entry can have a certain set of attribute values and must have

another, usually smaller, set of attribute values.

IA5String (formerly ces)

1.3.6.1.4.1.1466.115.121.1.26

Indicates that values for this attribute are case sensitive.

INTEGER (formerly int)

1.3.6.1.4.1.1466.115.121.1.27

Indicates that valid values for this attribute are numbers.

OctetString

1.3.6.1.4.1.1466.115.121.1.40

Same behavior as binary.

Postal Address

1.3.6.1.4.1.1466.115.121.1.41

Indicates that values for this attribute are encoded as

dstring[$ dstring]*

where each dstring component is encoded as a value with

DirectoryString syntax. Backslashes and dollar characters

within dstring must be quoted, so that they will not be

mistaken for line delimiters. Many servers limit the postal

address to 6 lines of up to thirty characters. For example:

1234 Main St.$Anytown, TX 12345$USA

TelephoneNumber

(formerly tel)

1.3.6.1.4.1.1466.115.121.1.50

Indicates that values for this attribute are in the form of

telephone numbers. It is recommended to use telephone

numbers in international form.

URI

1.3.6.1.4.1.250.1.57

Indicates that the values for this attribute are in the form of a

URL, introduced by a string such as http:// , https:// ,

ftp , LDAP. The URI has the same behavior as IA5String. See

RFC 2396.

Syntax and OID Definition
Chapter 3 How to Design the Schema 43

Mapping Your Data to the Default Schema
Object class definitions contain the following information:

• A unique name

• An object identifier (OID) that names the object

• A set of mandatory attributes

• A set of allowed attributes

For an example of a standard object class as it appears in the schema, refer to

“Schema Format,” on page 40.

As is the case for all of the iPlanet Directory Server’s schema, object classes are

defined and stored directly in Directory Server. This means that you can both

query and change your directory’s schema with standard LDAP operations.

Mapping Your Data to the Default Schema
The data you identified during your site survey, as described in “Performing a Site

Survey,” on page 28, must be mapped to the existing directory default schema.

This section describes how to view the existing default schema and provides a

method for mapping your data to the appropriate existing schema elements.

If you find elements in your schema that do not match the existing default schema,

you may need to create custom object classes and attributes. Refer to “Customizing

the Schema,” on page 46 for more information.therefore

Viewing the Default Directory Schema
The schema provided with iPlanet Directory Server 5.1 is described in a set of files

stored in the following directory:

/var/ds5/slapd- serverID/config/schema

This directory contains all of the common schema for the iPlanet products. The

LDAPv3 standard user and organization schema can be found in the 00core.ldif

file. The configuration schema used by earlier versions of the directory can be

found in the 50ns-directory.ldif file.

For more information about each object class and attribute found in directory, refer

to the iPlanet Schema Reference. For more information about the schema files and

directory configuration attributes, refer to iPlanet Directory Server Command and File
Reference.
44 iPlanet Directory Server Deployment Guide • February 2002

Mapping Your Data to the Default Schema
Matching Data to Schema Elements
The data you identified in your site survey now needs to be mapped to the existing

directory schema. This process involves the following steps:

• Identify the type of object the data describes.

Select an object that best matches the data described in your site survey.

Sometimes, a piece of data can describe multiple objects. You need to

determine if the difference needs to be noted in your directory schema. For

example, a telephone number can describe an employee’s telephone number

and a conference room’s telephone number. It is up to you to determine if these

different sorts of data need to be considered as different objects in your

directory schema.

• Select a similar object class from the default schema.

It is best to use the common object classes, such as groups, people, and

organizations.

• Select a similar attribute from the matching object class.

Select an attribute from within the matching object class that best matches the

piece of data you identified in your site survey.

• Identify the unmatched data from your site survey.

If there are some pieces of data that do not match the object classes and

attributes defined by the default directory schema, you will need to customize

the schema. See “Customizing the Schema,” on page 46 for more information.

For example, the following table maps directory schema elements to the data

identified during the site survey in Chapter 2:

Table 3-2 Data Mapped to Default Directory Schema

Data Owner Object Class Attribute

Employee name HR person cn(commonName)

User password IS person userPassword

Home phone number HR inetOrgPerson homePhone

Employee location IS inetOrgPerson localityName

Office phone number Facilities person telephoneNumber
Chapter 3 How to Design the Schema 45

Customizing the Schema
In the table, the employee name describes a person. In the default directory

schema, we found the person object class, which inherits from the top object class.

This object class allows several attributes, one of which is the cn or commonName

attribute, which describes the full name of the person. This attribute makes the best

match for containing the employee name data.

The user password also describes an aspect of the person object. In the list of

allowed attributes for the person object, we find userPassword .

The home phone number describes an aspect of a person, however we do not find

an appropriate attribute in the list associated with the person object class.

Analyzing the home phone number more specifically, we can say it describes an

aspect of a person in an organization’s enterprise network. This object corresponds

to the inetOrgPerson object class in the directory schema. The inetOrgPerson

object class inherits from the organizationPerson object class, which in turn

inherits from the person object class. Among the inetOrgPerson object’s allowed

attributes, we locate the homePhone attribute, which is appropriate for containing

the employee’s home telephone number.

Customizing the Schema
You can extend the standard schema if it proves to be too limited for your directory

needs. The Directory Server Console can help you manage the schema definition.

For more information, see the iPlanet Directory Server Administrator’s Guide.

Keep the following rules in mind when customizing your schema:

• Reuse existing schema elements whenever possible.

• Minimize the number of mandatory attributes you define for each object class.

• Do not define more than one object class or attribute for the same purpose.

• Keep the schema as simple as possible.

Your custom object classes and attributes are defined in the following file:

/var/ds5/slapd- serverID/config/schema/99user.ldif

NOTE When customizing the schema, do not modify, delete, or replace

any existing definitions of attributes or object classes in the

standard schema. Doing so can lead to compatibility problems with

other directories or other LDAP client applications.
46 iPlanet Directory Server Deployment Guide • February 2002

Customizing the Schema
The following sections describe customizing the directory schema in more detail:

• “When to Extend Your Schema,” on page 47

• “Getting and Assigning Object Identifiers,” on page 47

• “Naming Attributes and Object Classes,” on page 48

• “Strategies for Defining New Object Classes,” on page 48

• “Strategies for Defining New Attributes,” on page 50

• “Deleting Schema Elements,” on page 50

• “Creating Custom Schema Files,” on page 51

• “Custom Schema Best Practices,” on page 52

When to Extend Your Schema
While the object classes and attributes supplied with the Directory Server should

meet most of your needs, you may find that a given object class does not allow you

to store specialized information about your organization. Also, you may need to

extend your schema to support the object classes and attributes required by an

LDAP-enabled application’s unique data needs.

Getting and Assigning Object Identifiers
Each LDAP object class or attribute must be assigned a unique name and object

identifier (OID). When you define a schema, you need an OID unique to your

organization. One OID is enough to meet all of your schema needs. You simply

add another level of hierarchy to create new branches for your attributes and object

classes. Getting and assigning OIDs in your schema involves the following steps:

• Obtain an OID for your organization from the Internet Assigned Numbers

Authority (IANA) or a national organization.

In some countries, corporations already have OIDs assigned to them. If your

organization does not already have an OID, one can be obtained from IANA.

For more information, go to the IANA website at

http://www.iana.org/cgi-bin/enterprise.pl.
Chapter 3 How to Design the Schema 47

Customizing the Schema
• Create an OID registry so you can track OID assignments.

An OID registry is a list you maintain that gives the OIDs and descriptions of

the OIDs used in your directory schema. This ensures that no OID is ever used

for more than one purpose. You should then publish your OID registry with

your schema.

• Create branches in the OID tree to accommodate schema elements.

Create at least two branches under the OID branch or your directory schema,

using OID.1 for attributes and OID.2 for object classes. If you want to define

your own matching rules or controls, you can add new branches as needed

(OID.3 , for example).

Naming Attributes and Object Classes
When creating names for new attributes and object classes, make the name as

meaningful as possible. This makes your schema easier to use for Directory Server

administrators.

Avoid naming collisions between your schema elements and existing schema

elements by including a unique prefix on all of your elements. For example,

siroe.com Corporation might add the prefix siroe before each of their custom

schema elements. They might add a special object class called siroePerson to

identify siroe.com employees in their directory.

Strategies for Defining New Object Classes
There are two ways you can create new object classes:

• You can create many new object classes, one for each object class structure to

which you want to add an attribute.

• You can create a single object class that supports all of the attributes that you

create for your directory. You create this kind of an object class by defining it to

be an AUXILIARY kind of object class.

You may find it easiest to mix the two methods.

For example, suppose your site wants to create the attributes siroeDateOfBirth ,

siroePreferredOS , siroeBuildingFloor , and siroeVicePresident . You can

create several object classes that allow some subset of these attributes. You might

create an object class called siroePerson and have it allow siroeDateOfBirth
48 iPlanet Directory Server Deployment Guide • February 2002

Customizing the Schema
and siroePreferredOS . The parent of siroePerson would be inetOrgPerson .

You might then create an object class called siroeOrganization and have it allow

siroeBuildingFloor and siroeVicePresident . The parent of

siroeOrganization would be the organization object class.

Your new object classes would appear in LDAPv3 schema format as follows:

objectclasses: (2.16.840.1.17370.999.1.2.3 NAME 'siroePerson' DESC
'Siroe Person Object Class' SUP inetorgPerson MAY (siroeDateOfBirth

$ siroePreferredOS))

objectclasses: (2.16.840.1.17370.999.1.2.4 NAME
'siroeOrganization' DESC 'Organization Object Class' SUP
organization MAY (siroeBuildingFloor $ siroeVicePresident))

Alternatively, you can create a single object class that allows all of these attributes

and use it with any entry on which you want to use these attributes. The single

object class would appear as follows:

objectclasses: (2.16.840.1.17370.999.1.2.5 NAME 'siroeEntry' DESC
'Standard Entry Object Class' SUP top AUXILIARY MAY
(siroeDateOfBirth $ siroePreferredOS $ siroeBuildingFloor $
siroeVicePresident))

The new siroeEntry object class is marked AUXILIARY, meaning that it can be

used with any entry regardless of its structural object class.

Choose the strategy for defining new object classes that works for you. Consider

the following when deciding how to implement new object classes:

• Multiple object classes result in more schema elements to create and maintain.

Generally, the number of elements remains small and needs little maintenance.

However, you may find it easier to use a single object class if you plan to add

more than two or three object classes to your schema.

• Multiple object classes require a more careful and rigid data design.

Rigid data design forces you to consider the object class structure on which

every piece of data will be placed. Depending on your personal preferences,

you will find this to be either helpful or cumbersome.

NOTE The OID of the new object classes in the example is based on the

iPlanet OID prefix. To create your own new object classes, you

must get your own OID. For more information, refer to “Getting

and Assigning Object Identifiers,” on page 47.
Chapter 3 How to Design the Schema 49

Customizing the Schema
• Single object classes simplify data design when you have data that you want to

put on more than one type of object class structure.

For example, suppose you want preferredOS on both a person and a group

entry. You may want to create only a single object class to allow this attribute.

• Avoid required attributes for new object classes.

Requiring attributes can make your schema inflexible. When you create a new

object class, allow rather than require attributes.

After defining a new object class, you need to decide what attributes it allows and

requires and from what object class(es) it inherits.

Strategies for Defining New Attributes
Add new attributes and new object classes when the existing object classes do not

support all of the information you need to store in a directory entry.

Try to use standard attributes whenever possible. Search the attributes that already

exist in the default directory schema and use them in association with a new object

class. Create a new attribute if you cannot find a match in the default directory

schema.

For example, you may find that you want to store more information on a person

entry than the person , organizationalPerson , or inetOrgPerson object classes

support. If you want to store the birth dates in your directory, no attribute exists

within the standard iPlanet Directory Server schema. You can choose to create a

new attribute called dateOfBirth and allow this attribute to be used on entries

representing people by defining a new auxiliary class, siroePerson , which allows

this attribute.

Deleting Schema Elements
Do not delete the schema elements shipped with Directory Server. Unused schema

elements represent no operational or administrative overhead. However, by

deleting parts of the standard LDAP schema you may run into compatibility

problems with future installations of Directory Server and other directory-enabled

applications.
50 iPlanet Directory Server Deployment Guide • February 2002

Customizing the Schema
However, if you extend the schema and find you do not use the new elements, feel

free to delete the elements you don’t use. Before removing the object class

definitions from the schema, you need to modify each entry using the object class.

Otherwise, if you remove the definition first, you might not be able to modify the

entries that use the object class afterwards. Schema checks on modified entries will

also fail unless you remove the unknown object class values from the entry.

Creating Custom Schema Files
You can create custom schema files other than the 99user.ldif file provided with

Directory Server. However, your custom schema files should not be numerically or

alphabetically higher than 99user.ldif or the server could experience problems.

The 99user.ldif file contains attributes with the X-ORIGIN 'user defined' . If

you create a schema file called 99zzz.ldif , the next time you update the schema

using LDAP or the Directory Server Console, all of the attributes with an X-ORIGIN

value of 'user defined' will be written to 99zzz.ldif . The directory writes them

to 99zzz.ldif because the directory uses the highest sequenced file (numerically,

then alphabetically) for its internal schema management. The result is two LDIF

files that contain duplicate information, and some information in the 99zzz.ldif

file might be erased.

When naming custom schema files, name them as follows:

[00-99] yourname .ldif

The directory loads these schema files in alpha-numerical order, and thus numbers

are loaded first. For this reason, you should use a number scheme that is higher

than any directory standard schema defined. For example, siroe.com Corporation

creates a new schema file named 60siroecorp.ldif . If you name your schema file

something lower than the standard schema files, the server may encounter errors

when loading the schema. In addition, all standard attributes and object classes

will be loaded only after your custom schema elements have been loaded.

You should not use 'user defined' in the X-ORIGIN field of your custom schema

files as 'user defined' is used internally by the directory when schema is added

over LDAP. Use something more descriptive, such as 'siroe.com Corporation

defined' .

After you have created custom schema files, you can either:

• Manually copy these custom schema files to all of your servers, which requires

a restart of each server.
Chapter 3 How to Design the Schema 51

Customizing the Schema
• Allow the replication process to replicate this information to each of the

consumers for you.

If you do not copy these custom schema files to all of your servers, the schema

information will only be replicated to the consumer when changes are made to the

schema on the supplier using LDAP or the Directory Server Console.

When the schema definitions are then replicated to a consumer server where they

do not already exist, they will be stored in the 99user.ldif file. The directory does

not track where schema definitions are stored. Storing schema elements in the

99user.ldif file of consumers does not create a problem as long as you maintain

your schema on the master server only.

If you copy your custom schema files to each server, when changes are made to the

schema files, they must be copied again to each server. If you do not copy them

again, it is possible the changes will be replicated and stored in the 99user.ldif

file on the consumer. Having the changes in the 99user.ldif file may make

schema management difficult, as some attributes will appear in two separate

schema files on a consumer, once in the original custom schema file you copied

from the supplier and again in the 99user.ldif file after replication.

For more information about replicating schema, see “Schema Replication,” on

page 124.

Custom Schema Best Practices
Consider the following points when creating custom schema elements:

• If you manage your schema using LDAP or the Directory Server Console, add

all of your schema definitions to the 99user.ldif file to avoid possible

duplication of schema elements in multiple files. Schema elements added and

updated via LDAP are automatically written to the 99user.ldif file.

NOTE If you define custom schema files, for example 60siroecorp.ldif ,

and then update these schema elements using LDAP, the new

definitions will be written to the 99user.ldif file and not to your

custom schema file, thus overriding your original custom schema

definition. For example, changes to 60siroecorp.ldif will be

overwritten by the definitions stored in 99user.ldif .
52 iPlanet Directory Server Deployment Guide • February 2002

Maintaining Data Consistency
• If adding schema elements to the 99user.ldif manually, always use an

X-ORIGIN of value 'user defined' . If you use something other than 'user

defined' , when the server loads the schema from the 99user.ldif file, it will

add the 'user defined' value to the X-ORIGIN portion of the definition in

addition to what you have already specified for the X-ORIGIN . The result is that

attributes that are not 'user defined' will appear in the read-only section of

the Directory Server Console, and you will not be able to use the Console to

edit object classes that contain an X-ORIGIN other than 'user defined' .

Using an X-ORIGIN of value 'user defined' ensures that schema definitions

in the 99user.ldif file are not removed from the file by the directory. The

directory does not remove them because it relies on an X-ORIGIN of'user

defined' to tell it what elements should reside in the 99user.ldif file.

For example, you create a schema entry manually in 99user.ldif as follows:

attributetypes: (siroeContact-oid NAME 'siroeContact' DESC

'Siroe Corporate contact' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15

X-ORIGIN 'Siroe defined')

After the directory loads the schema entry, it appears as follows:

attributetypes: (siroeContact-oid NAME 'siroeContact' DESC

'Siroe Corporate contact' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15

X-ORIGIN ('Siroe defined' 'user defined'))

• When adding new schema elements, all attributes need to be defined before

they can be used in an object class. You can define attributes and object classes

in the same schema file.

• Each custom attribute or object class you create should be defined in only one

schema file. This prevents the server from overriding any previous definitions

when it loads the most recently created schema (as the server loads the schema

in numerical order first, then alphabetical order).

Maintaining Data Consistency
Maintaining data consistency within Directory Server aids LDAP client

applications in locating directory entries. For each type of information you store in

the directory, you should select the required object classes and attributes to

support that information, and always use the same ones. If you use schema objects

inconsistently, it becomes very difficult to locate information in your directory tree

efficiently.

You can maintain schema consistency in the following ways:
Chapter 3 How to Design the Schema 53

Maintaining Data Consistency
• Use schema checking to ensure attributes and object classes conform to the

schema rules.

• Select and apply a consistent data format.

The following sections describe in detail how to maintain consistency within your

schema.

Schema Checking
Schema checking ensures that all new or modified directory entries conform to the

schema rules. When the rules are violated, the directory rejects the requested

change.

By default, the directory enables schema checking. We do not recommend turning

it off. For information on turning schema checking on and off, see the iPlanet
Directory Server Administrator’s Guide.

With schema checking on, you must be attentive to required and allowed attributes

as defined by the object classes. Object class definitions usually contain at least one

required attribute, and one or more optional attributes. Optional attributes are

attributes that you are allowed, but not required, to add to the directory entry. If

you attempt to add an attribute to an entry that is neither required nor allowed

according to the entry’s object class definition, then Directory Server returns an

object class violation message.

For example, if you define an entry to use the organizationalPerson object class,

then the commonName (cn) and surname (sn) attributes are required for the entry

(you must specify values for these attributes when you create the entry). In

addition, there is a fairly long list of attributes that you can optionally use on the

entry. This list includes such descriptive attributes as telephoneNumber , uid ,

streetAddress , and userPassword .

NOTE Schema checking checks only that the proper attributes are present.

It does not verify whether attribute values are in the correct syntax

for the attribute.
54 iPlanet Directory Server Deployment Guide • February 2002

Maintaining Data Consistency
Selecting Consistent Data Formats
LDAP schema allows you to place any data that you want on any attribute value.

However, it is important to store data consistently in your directory tree by

selecting a format appropriate for your LDAP client applications and directory

users.

With the LDAP protocol and iPlanet Directory Server, you must represent data in

the data formats specified in RFC 2252.

In addition, the correct LDAP format for telephone numbers is defined in the

following ITU-T Recommendations documents:

• ITU-T Recommendation E.123.

Notation for national and international telephone numbers.

• ITU-T Recommendation E.163.

Numbering plan for the international telephone services.

For example, a US phone number would be formatted as follows:

+1 555 222 1717

The postalAddress attribute expects an attribute value in the form of a multiline

string that uses dollar signs ($) as line delimiters. A properly formatted directory

entry appears as follows:

postalAddress: 1206 Directory Drive$Pleasant View, MN$34200

Maintaining Consistency in Replicated Schema
When iPlanet Directory Server is used in a replicated environment, the schema

must be consistent throughout all of the directory servers that participate in

replication. The only way to guarantee this level of consistency is to make schema

modifications on a single master server.

When you make changes to your directory schema, the change is recorded in the

change log. During replication, the change log is scanned for changes, and any

changes made are replicated. Consider the following points for maintaining

consistent schema in a replicated environment:

• Do not modify the schema on a consumer server.
Chapter 3 How to Design the Schema 55

Other Schema Resources
If you modify the schema on a consumer server, it will be more recent than the

schema on the master server. Therefore, when the master sends replication

updates to the consumer, you will probably observe a number of replication

errors because the schema on the consumer cannot support the new data.

• Do not modify the schema on two master servers.

If you modify the schema on two master servers, the master that was most

recently updated will propagate its version of the schema to the consumer.

This means that the schema on the consumer will be inconsistent with the

schema on the other master.

• Always modify schema on a single master server, even in a multi-master

replication environment.

For more information on schema replication, refer to “Schema Replication,” on

page 124.

Other Schema Resources
Refer to the following links for more information about standard LDAPv3 schema:

• Internet Engineering Task Force (IETF)

http://www.ietf.org/

• Understanding and Deploying LDAP Directory Services.
T. Howes, M. Smith, G. Good, Macmillan Technical Publishing, 1999.

• RFC 2252: LDAPv3 Attribute Syntax Definitions

http://www.ietf.org/rfc/rfc2252.txt

• RFC 2256: Summary of the X.500 User Schema for Use with LDAPv3

http://www.ietf.org/rfc/rfc2256.txt

• RFC 2251: Lightweight Directory Access Protocol (v3)

http://www.ietf.org/rfc/rfc2251.txt
56 iPlanet Directory Server Deployment Guide • February 2002

Chapter 4

Designing the Directory Tree

Your directory tree provides a way to refer to the data stored by your directory.

The types of information you store in your directory, the physical nature of your

enterprise, the applications you use with your directory, and the types of

replication you use shape the design of your directory tree.

This chapter outlines the steps for designing your own directory tree. It includes

the following sections:

• Introduction to the Directory Tree

• Designing Your Directory Tree

• Grouping Directory Entries

• Directory Tree Design Examples

• Other Directory Tree Resources

Introduction to the Directory Tree
Your directory tree provides a means for your directory data to be named and

referred to by client applications. Your directory tree interacts closely with other

design decisions, including the choices available to you when you decide how to

distribute, replicate, or control access to your directory data. Taking the time to

design your directory tree well before deployment saves headaches later if you

find it inadequate after you have launched your directory.

A well-designed directory tree provides the following:

• Simplified directory data maintenance

• Flexibility in creating replication policies and access controls

• Support for the applications using your directory
57

Designing Your Directory Tree
• Simplified directory navigation for directory users

The structure of your directory tree follows the hierarchical LDAP model. Your

directory tree provides a way to organize your data, for example, by group, by

people, or by place. It also determines how you partition data across multiple

servers. For example, each database needs data to be partitioned at the suffix level.

Without the proper directory tree structure, you may not be able to spread your

data across multiple servers as you would like.

In addition, replication is constrained by what sort of directory tree structure you

use. You must carefully define partitions for replication to work. If you want to

replicate only portions of your directory tree, you need to take that into account

during the design process. If you plan to use access controls on branch points, that

is also a consideration in your directory tree design.

Designing Your Directory Tree
This section guides you through the major decisions you make during the directory

tree design process. The directory tree design process involves the following steps:

• Choosing a suffix to contain your data

• Determining the hierarchical relationship among data entries

• Naming the entries in your directory tree hierarchy

The following sections describe the directory tree design process in more detail.

Choosing a Suffix
The suffix is the name of the entry at the root of your tree, below which you store

your directory data. Your directory can contain more than one suffix. You may

choose to use multiple suffixes if you have two or more directory trees of

information that do not have a natural common root.

By default, the standard iPlanet Directory Server deployment contains multiple

suffixes, one for storing data and the others for data needed by internal directory

operations (such as configuration information and your directory schema). For

more information on these standard directory suffixes, see the iPlanet Directory
Server Administrator’s Guide.
58 iPlanet Directory Server Deployment Guide • February 2002

Designing Your Directory Tree
Suffix Naming Conventions
All entries in your directory should be located below a common base entry, the

root suffix. Consider the following recommendations for naming the root directory

suffix:

• Globally unique

• Static, so that it rarely changes, if ever

• Short, so that entries beneath it are easier to read on screen

• Easy for a person to type and remember

In a single enterprise environment, choose a directory suffix that aligns with a DNS

name or Internet domain name of your enterprise. For example, if your enterprise

owns the domain name of siroe.com , then you should use a directory suffix of:

dc=siroe,dc=com

The dc (domainComponent) attribute represents your suffix by breaking your

domain name into its component parts.

Normally, you can use any attribute that you like to name your root suffix.

However, for a hosting organization, we recommend that the root suffix contain

only the following attributes:

• c (countryName)

Contains the two-digit code representing the country name, as defined by ISO.

• l (localityName)

Identifies the county, city, or other geographical area where the entry is located

or which is associated with the entry.

• st

Identifies the state or province where the entry resides.

• o (organizationName)

Identifies the name of the organization to which the entry belongs.

The presence of these attributes allows for interoperability with subscriber

applications. For example, a hosting organization might use these attributes to

create the following root suffix for one of its clients, Company22:

o=Company222,st=Washington,c=US

Using an organization name followed by a country designation is typical of the

X.500 naming convention for suffixes.
Chapter 4 Designing the Directory Tree 59

Designing Your Directory Tree
Naming Multiple Suffixes
Each suffix that you use with your directory is a unique directory tree. There are

several ways that you can include multiple trees in your directory. The first is to

create multiple directory trees stored in separate databases served by Directory

Server. For example, you could create separate suffixes for the Company22 and the

Company44 and store them in separate databases as follows:

The databases could be stored on a single server or multiple servers depending

upon resource constraints.

Creating Your Directory Tree Structure
You need to decide whether to use a flat or hierarchical tree structure. As a general

rule, strive to make your directory tree as flat as possible. However, a certain

amount of hierarchy can be important later on when you partition data across

multiple databases, prepare replication, and set access controls.

The structure of your tree involves the following steps and considerations:

• “Branching Your Directory,” on page 60

• “Identifying Branch Points,” on page 62

• “Replication Considerations,” on page 64

• “Access Control Considerations,” on page 66

Branching Your Directory
Design your hierarchy to avoid problematic name changes. The flatter a namespace

is, the less likely the names are to change. The likelihood of a name changing is

roughly proportional to the number of components in the name that can

potentially change. The more hierarchical the directory tree, the more components

in the names, and the more likely the names are to change.

ou=people ou=groups ou=people ou=groups

Database 1

dc=Company44,dc=comdc=Company22,dc=com

Database 2
60 iPlanet Directory Server Deployment Guide • February 2002

Designing Your Directory Tree
Following are some guidelines for designing your directory tree hierarchy:

• Branch your tree to represent only the largest organizational subdivisions in

your enterprise.

Any such branch points should be limited to divisions (Corporate Information

Services, Customer Support, Sales and Professional Services, and so forth).

Make sure that the divisions you use to branch your directory tree are stable;

do not perform this kind of branching if your enterprise reorganizes

frequently.

• Use functional or generic names rather than actual organizational names for

your branch points.

Names change and you do not want to have to change your directory tree

every time your enterprise renames its divisions. Instead, use generic names

that represent the function of the organization (for example, use Engineering

instead of Widget Research and Development).

• If you have multiple organizations that perform similar functions, try creating

a single branch point for that function instead of branching based along

divisional lines.

For example, even if you have multiple marketing organizations, each of which

is responsible for a specific product line, create a single Marketing subtree. All

marketing entries then belong to that tree.

Following are specific guidelines for the enterprise and hosting environment.

Branching in an Enterprise Environment
Name changes can be avoided if you base your directory tree structure on

information that is not likely to change. For example, base the structure on types of

objects in the tree rather than organizations. Some of the objects you might use to

define your structure are:

• ou=people

• ou=groups

• ou=contracts

• ou=employees

• ou=services

A directory tree organized using these objects might appear as follows:
Chapter 4 Designing the Directory Tree 61

Designing Your Directory Tree
Branching in a Hosting Environment
For a hosting environment, create a tree that contains two entries of the object class

organization(o) and one entry of the organizationalUnit(ou) object class

beneath the root suffix. For example, the ISP I-Zed branches their directory as

follows:

Identifying Branch Points
As you decide how to branch your directory tree, you will need to decide what

attributes you will use to identify the branch points. Remember that a DN is a

unique string composed of attribute-data pairs. For example, the DN of an entry

for Barbara Jensen, an employee of siroe.com Corporation, appears as follows:

cn=Barbara Jensen,ou=people,dc=siroe,dc=com

Each attribute-data pair represents a branch point in your directory tree. For

example, the directory tree for the enterprise siroe.com Corporation appears as

follows:

dc=siroe,dc=com

ou=people ou=groups ou=services

o=i-zed,c=US

o=ISP o=internet ou=groups

ou=people ou=groups

cn=Barbara Jensen cn=Billie Holiday

dc=siroe,dc=com
62 iPlanet Directory Server Deployment Guide • February 2002

Designing Your Directory Tree
The directory tree for I-Zed, an internet host, appears as follows:

Beneath the root suffix entry, o=i-zed,c=US , the tree is split into three branches.

The ISP branch contains customer data and internal information for I-Zed. The

internet branch is the domain tree. The groups branch contains information about

the administrative groups.

There are some points to consider when choosing attributes for your branch points:

• Be consistent.

Some LDAP client applications may be confused if the distinguished name

(DN) format is inconsistent across your directory tree. That is, if l is

subordinate to o in one part of your directory tree, then make sure l is

subordinate to o in all other parts of your directory.

• Try to use only the traditional attributes (shown in Table 4-1).

Using traditional attributes increases the likelihood of retaining compatibility

with third-party LDAP client applications. Using the traditional attributes also

means that they will be known to the default directory schema, which makes it

easier to build entries for the branch DN.

Table 4-1 Traditional DN Branch Point Attributes

Attribute Name Definition

c A country name.

o An organization name. This attribute is typically used to

represent a large divisional branching such as a corporate

division, academic discipline (the humanities, the sciences),

subsidiary, or other major branching within the enterprise. You

should also use this attribute to represent a domain name as

discussed in “Suffix Naming Conventions,” on page 59.

o=i-zed,c=US

o=ISP o=internet ou=groups

o=customer o=i-zed
Chapter 4 Designing the Directory Tree 63

Designing Your Directory Tree
Replication Considerations
During directory tree design, consider which entries you are replicating. A natural

way to describe a set of entries to be replicated is to specify the distinguished name

(DN) at the top of a subtree and replicate all entries below it. This subtree also

corresponds to a database, a directory partition containing a portion of the

directory data.

For example, in an enterprise environment you can organize your directory tree so

that it corresponds to the network names in your enterprise. Network names tend

not to change, so the directory tree structure will be stable. Further, using network

names to create the top level branches of your directory tree is useful when you use

replication to tie together different directory servers.

For example, siroe.com Corporation has three primary networks known as

flightdeck.siroe.com , tickets.siroe.com , and hanger.siroe.com . They

initially branch their directory tree as follows:

ou An organizational unit. This attribute is typically used to

represent a smaller divisional branching of your enterprise than

an organization. Organizational units are generally subordinate

to the preceding organization.

st A state or province name.

l A locality, such as a city, country, office, or facility name.

dc A domain component as discussed in “Suffix Naming

Conventions,” on page 59.

NOTE A common mistake is to assume that you search your directory

based on the attributes used in the distinguished name. However,

the distinguished name is only a unique identifier for the directory

entry and cannot be searched against.

Instead, search for entries based on the attribute-data pairs stored

on the entry itself. Thus, if the distinguished name of an entry is

cn=Babs Jensen ,ou=People,dc=siroe,dc=com , then a search for

dc=siroe will not match that entry unless you have explicitly put

dc: sun as an attribute in that entry.

Table 4-1 Traditional DN Branch Point Attributes (Continued)

Attribute Name Definition
64 iPlanet Directory Server Deployment Guide • February 2002

Designing Your Directory Tree
After creating the initial structure of the tree, they create additional branches as

follows:

As another example, ISP i-zed.com branch their directory as follows:

After creating the initial structure of their directory tree, they create additional

branches as follows:

dc=siroe,dc=com

dc=flightdeck dc=tickets dc=hangar

ou=people

ou=groups ou=people ou=services

dc=siroe,dc=com

dc=flightdeck dc=tickets dc=hangar

ou=groups ou=people ou=services

ou=groups

o=i-zed,c=US

o=ISP o=internet ou=groups

o=customer o=internal
Chapter 4 Designing the Directory Tree 65

Designing Your Directory Tree
Both the enterprise and the hosting organization design their data hierarchies

based on information that is not likely to change often.

Access Control Considerations
Introducing hierarchy into your directory tree can be used to enable certain types

of access control. As with replication, it is easier to group together similar entries

and then administer them from a single branch.

You can also enable the distribution of administration through a hierarchical

directory tree. For example, if you want give an administrator from the marketing

department access to the marketing entries and an administrator from the sales

department access to the sales entries, you can do so through your directory tree

design.

You can set access controls based on the directory content rather than the directory

tree. The ACI filtered target mechanism lets you define a single access control rule

stating that a directory entry has access to all entries containing a particular

attribute value. For example, you could set an ACI filter that gives the sales

administrator access to all the entries containing the attribute ou=Sales .

However, ACI filters can be difficult to manage. You must decide which method of

access control is best suited to your directory: organizational branching in your

directory tree hierarchy, ACI filters, or a combination of the two.

o=i-zed,c=US

o=ISP o=internet ou=groups

o=customer o=i-zed

ou=groupsou=people ou=devices

ou=groupsou=people ou=devices

dc=com dc=net

dc=customer dc=i-zed
66 iPlanet Directory Server Deployment Guide • February 2002

Designing Your Directory Tree
Naming Entries
After designing the hierarchy of your directory tree, you need to decide which

attributes to use when naming the entries within the structure. Generally, names

are created by choosing one or more of the attribute values to form a relative

distinguished name (RDN). The RDN is the left-most DN attribute value. The

attributes you use depend on the type of entry you are naming.

Your entry names should adhere to the following rules:

• The attribute you select for naming should be unlikely to change.

• The name must be unique across your directory.

A unique name ensures that a DN can refer to at most one entry in your

directory.

When creating entries, define the RDN within the entry. By defining at least the

RDN within the entry, you can locate the entry more easily. This is because

searches are not performed against the actual DN but rather against the attribute

values stored in the entry itself.

Attribute names have a meaning, so try to use the attribute name that matches the

type of entry it represents. For example, do not use l (locality) to represent an

organization, or c (country) to represent an organizational unit.

The following sections provide tips on naming entries:

• Naming Person Entries

• Naming Organization Entries

• Naming Other Kinds of Entries

Naming Person Entries
The person entry’s name, the DN, must be unique. Traditionally, distinguished

names use the commonName, or cn , attribute to name their person entries. That is, an

entry for a person named Babs Jensen might have the distinguished name of:

cn=Babs Jensen,dc=siroe,dc=com

While allowing you to instantly recognize the person associated with the entry, it

might not be unique in an include people with identical names. This quickly leads

to a problem known as DN name collisions, multiple entries with the same

distinguished name.

You can avoid common name collisions by adding a unique identifier to the

common name. For example:
Chapter 4 Designing the Directory Tree 67

Designing Your Directory Tree
cn=Babs Jensen+employeeNumber=23,dc=siroe,dc=com

However, this can lead to awkward common names for large directories and can

be difficult to maintain.

A better method is to identify your person entries with some attribute other than

cn . Consider using one of the following attributes:

• uid

Use the uid (userID) attribute to specify some unique value of the person.

Possibilities include a user login ID or an employee number. A subscriber in a

hosting environment should be identified by the uid attribute.

• mail

Use the mail attribute to contain the value for the person’s email address. This

option can lead to awkward DNs that include duplicate attribute values (for

example: mail=bjensen@siroe.com, dc=siroe,dc=com), so you should use

this option only if you cannot find some unique value that you can use with the

uid attribute. For example, you would use the mail attribute instead of the uid

attribute if your enterprise does not assign employee numbers or user IDs for

temporary or contract employees.

• employeeNumber

For employees of the inetOrgPerson object class, consider using an employer

assigned attribute value such as employeeNumber .

Whatever you decide to use for an attribute-data pair for person entry RDNs, you

should make sure that they are unique, permanent values. Person entry RDNs

should also be readable. For example, uid=bjensen, dc=siroe,dc=com is

preferable to uid=b12r56A, dc=siroe,dc=com because recognizable DNs

simplify some directory tasks, such as changing directory entries based on their

distinguished names. Also, some directory client applications assume that the uid

and cn attributes use human-readable names.

Considerations for Person Entries in a Hosted Environment
If a person is a subscriber to a service, the entry should be of object class inetUser

and the entry should contain the uid attribute. The attribute must be unique within

a customer subtree.

If a person is part of the hosting organization, represent them as an inetOrgPerson

with the nsManagedPerson object class.

Placing Person Entries in the DIT
Here are some guidelines for placing people entries in your directory tree:
68 iPlanet Directory Server Deployment Guide • February 2002

Designing Your Directory Tree
• People in an enterprise should be located in the directory tree below the

organization’s entry.

• Subscribers to a hosting organization need to be below the ou=people branch

for the hosted organization.

Naming Organization Entries
The organization entry name, like other entry names, must be unique. Using the

legal name of the organization along with other attribute values helps ensure the

name is unique. For example, you might name an organization entry as follows:

o=Company22+st=Washington,o=ISP,c=US

You can also use trademarks, however they are not guaranteed to be unique.

In a hosting environment, you need to include the following attributes in the

organization’s entry:

• o (organizationName)

• objectClass with values of top , organization , and nsManagedDomain

Naming Other Kinds of Entries
Your directory will contain entries that represent many things, such as localities,

states, countries, devices, servers, network information, and other kinds of data.

For these types of entries, use the commonName(cn) attribute in the RDN if possible.

For example, if you are naming a group entry, name it as follows:

cn=allAdministrators,dc=siroe,dc=com

However, sometimes you need to name an entry whose object class does not

support the commonNameattribute. Instead, use an attribute that is supported by the

entry’s object class.

There does not have to be any correspondence between the attributes used for the

entry’s DN and the attributes actually used in the entry. However, having

identifying attributes visible in the DN simplifies the administration of your

directory tree.
Chapter 4 Designing the Directory Tree 69

Grouping Directory Entries
Grouping Directory Entries
Your directory tree organizes the information of your entries hierarchically. This

hierarchy is a grouping mechanism, though it is not well suited for associations

between dispersed entries, for often changing organizations, or for data that is

repeated in many entries. Groups and roles provide more flexible associations

between entries, and class of service simplifies the management of data that is

shared within branches of your directory.

These grouping mechanisms are described in the following sections:

• Static and Dynamic Groups

• Managed, Filtered, and Nested Roles

• Class of Service

Static and Dynamic Groups
A group is an entry that identifies the other entries that are its members. When you

know the name of a group, it is easy to retrieve all of its member entries.

• Static groups explicitly name their member entries. An entry which defines a

static group uses the groupOfNames or groupOfUniqueNames object class and

contains the DN of each member as a value of the member or uniqueMember

attribute, respectively. Static groups are suitable for groups with few members,

such as the group of directory administrators.

Static groups are not suitable for groups with thousands of members. We

recommend that you do not create static groups with more than 20,000

members, because they will have very poor performance. For groups of this

size and more, we recommend using dynamic groups or roles. If you must use

static groups in defining groups having more than 20,000 members, use groups

of groups rather than a single, large, static group.

• Dynamic groups specify a filter, and all entries that match are members of the

given group. These groups are dynamic because membership is defined every

time the filter is evaluated. The definition entry of a dynamic group belongs to

the groupOfURLs object class and contains one or more filters represented as

LDAP URL values of the memberURL attribute.
70 iPlanet Directory Server Deployment Guide • February 2002

Grouping Directory Entries
Both types of groups may identify members anywhere in the directory. We

recommend that the group definitions themselves be located under the ou=Groups

branch. This makes them easy to find, for example when defining access control

instructions (ACIs) that grant or restrict access when the bind credentials are

members of a group.

The advantage of groups is that they make it easy to find all of their members.

Static groups may simply be enumerated, and the filters in dynamic groups may

simply be evaluated. The disadvantage of groups is that given an arbitrary entry, it

is very difficult to name all the groups of which it is a member.

Managed, Filtered, and Nested Roles
Roles are a new entry grouping mechanism that automatically identifies all roles of

which any entry is a member. When you retrieve any entry in the directory, you

can immediately know the roles to which it belongs. This overcomes the main

disadvantage of the group mechanism.

• Managed roles are the equivalent of static groups, except membership is

defined in each member entry and not in the role definition entry. The static

role definition entry only defines the scope of its effect, which is the entire

branch of its parent entry. Member of that role are entries in that branch that

name the DN of the role definition entry in their nsRoleDN attribute.

• Filtered roles are very similar to dynamic groups: they define a filter that

determines the members of the role. Like all roles, the scope of the filter is

defined by the location filtered role definition entry.

• A nested role list the definition entries of other roles and combines all the

members of their roles. In other words, if an entry is a member of a role that is

listed in a nested role definition, the entry is also a member of the nested role.

The role mechanism is very simple to use from the client perspective because the

directory server automatically computes all role membership. Every entry

belonging to a role will be given the nsRole virtual attribute whose values are the

DNs of all roles for which the entry is a member. The nsRole attribute is said to be

virtual because it is generated on-the-fly by the server and never actually stored in

the directory.

The nsRole attribute is read like any other attribute, and clients may use it to

enumerate all roles to which any entry belongs. Thus it is simple to determine

whether a given entry belongs to a particular role.
Chapter 4 Designing the Directory Tree 71

Grouping Directory Entries
Deciding Between Groups and Roles
The groups and roles mechanisms provide some overlapping functionality which

can lead to some ambiguity. Both methods of grouping entries have advantages

and disadvantages. However, the newer roles mechanism is designed provide

often needed functionality the most efficiently.

There are two general reasons to use a grouping mechanism:

• Clients need to find all members of a group/role.

This is what a group does most efficiently. It is more difficult to find all

members of a role, because the nsRole attribute is virtual and cannot be used

in a filter. However, a client can retrieve all entries in a branch and read the

value of the nsRole attribute to find all role members.

• Clients would like to know if an entry is a member of particular group/role.

By nature, this is a computation-intensive task. In addition, it is very complex

to implement based on groups. Roles were designed to solve this problem:

given the structure and scope of a role definition, the server can compute

membership much more efficiently than a client. Then, the client only needs to

read the values of the generated nsRole attribute to find membership in any

type of role.

We recommend the following designs, based on your needs:

• If you only need to enumerate members, use static groups. Your clients can

retrieve the static group definition and easily obtain the list of all member DNs.

• If you only need to find all members based on a filter, such as for designating

bind rules in ACIs, use dynamic groups. Filtered roles are equivalent to filtered

groups but will trigger the roles mechanism generate the virtual nsRole

attribute. If your client doesn’t need the nsRole value, defining only dynamic

groups will avoid the overhead of its computation.

• If your client needs to find all the membership information about a particular

entry, use roles. The server performs all computations, and the client only

needs to read the values of the nsRole attribute. In addition, all types of roles

appear in this attribute, allowing the client to process all roles uniformly.

• If you have sets of entries and wish to enumerate members of a given set and to

find all set membership of a given entry, use only roles. Overall, roles can do

both more efficiently and with simpler clients than is possible with groups.

Often, you can use the tree hierarchy to create sets of entries equivalent to

groups. This avoids the difficulty of enumerating members of a role and

maximizes the efficiency of the role-based design.
72 iPlanet Directory Server Deployment Guide • February 2002

Grouping Directory Entries
Because the choice of a grouping mechanism influences your server complexity

and determines how your client processes membership information, plan your

grouping mechanism carefully. Know which mechanism fits your needs and use it

efficiently. Finally, consider documenting this design choice so that administrators

can later maintain the policy consistently.

Class of Service
The class of service (CoS) mechanism allows you to share attributes between

entries in a way that is invisible to applications. Like the role mechanism, CoS

generates virtual attributes on the entries as they are retrieved. However, CoS does

not define membership but rather allows related entries share data for coherence

and space considerations.

For example, a directory may contain thousands of entries that all have the same

value for the facsimileTelephoneNumber attribute. Traditionally, to change the

fax number, you would need to update each entry individually, a large job for

administrators that runs the risk of not updating all entries. Using CoS, the fax

number stored in a single place, and the directory server automatically generates

the facsimileTelephoneNumber attribute on every concerned entry as it is

returned.

To client applications, a generated CoS attribute is retrieved just as any other

attribute. However, directory administrators now have only a single fax value to

manage. In addition, because there are less values actually stored in the directory,

the database uses less disk space. The CoS mechanism also allows entries to

override a generated value or to generate multiple values for the same attribute.

The CoS mechanism relies on two types of helper entries:

• The CoS definition entry names the attribute that will be generated and how to

determine its value. The location of the definition entry determines the scope of

the CoS deviations: all entries in the branch of the definition entry’s parent are

called target entries for the CoS definition.

When schema checking is turned on, the CoS attribute will be generated on all

target entries that allow that attribute. When schema checking is turned off, the

CoS attribute will be generated on all target entries.

• The CoS template entry contains the value that will be generated for the CoS

attribute. There may be several templates, each with a different value. The CoS

mechanism will select one of them based on the contents of the definition entry

and of the target entry.
Chapter 4 Designing the Directory Tree 73

Grouping Directory Entries
There are three types of CoS that differ in how the template, and thus the generated

value, is selected:

• Pointer CoS is the simplest: the definition entry gives the DN of a specific

template entry of the cosTemplate object class. All target entries will have the

same CoS attribute value, as defined by this template.

• Indirect CoS allows any entry in the directory to be a template and provide the

CoS value. The definition entry names a specifier attribute that is present in

target entries. This attribute must contain a DN, and its value gives the

template used for a given target.

For example, an indirect CoS that generates the departmentNumber attribute

may use an employee’s manager as the specifier. When retrieving a target

entry, the CoS mechanism will use the DN value of the manager attribute as the

template. It will then generate the departmentNumber attribute for the

employee using the same value as the manager’s department number.

Avoid overusing indirect CoS. Because templates may be arbitrary entries

anywhere in the directory tree, controlling access is much more difficult. Also,

avoid indirect CoS particularly where performance is critical.

• Classic CoS combines the pointer and indirect CoS behavior. The CoS

definition gives both a template base DN and the name of a specifier attribute.

The value of the specifier attribute in target entries is used to construct the DN

of the template entry as follows:

cn= specifierValue, baseDN

Classic CoS templates are entries of the cosTemplate object class to avoid the

performance issue associated with arbitrary indirect CoS templates. We

recommend keeping templates in the same place as the definition entries and

giving them meaningful names to simplify the administration of the CoS

mechanism.

The generated CoS attributes may be multivalued from several templates.

Specifiers may designate several template entries, or there may be several CoS

definitions for the same attribute. Alternatively, you may specify template

priorities so that only one value is generated from all chosen templates. For more

information, see the iPlanet Directory Server Administrator’s Guide.

Roles and the Classic CoS can be used together to provide role-based attributes.

These attributes appear on an entry because it possesses a particular role with an

associated class of service template. For example, you could use a role-based

attribute to set the server look through limit on an role-by-role basis.
74 iPlanet Directory Server Deployment Guide • February 2002

Directory Tree Design Examples
CoS functionality can be used recursively. In other words, iPlanet Directory Server

lets you generate attributes through CoS that depend on other attributes generated

through CoS. Complex CoS schemes may simplify client application access to

information and ease administration of repeated attributes, but they also increase

management complexity and degrade server performance. Avoid overly complex

CoS schemes, for example, many indirect CoS schemes can be redefined as classic

or pointer CoS.

Finally, avoid changing CoS definitions more often than necessary. Modifications

to CoS definitions do not take effect immediately, because the server caches CoS

information. Caching accelerates read access to generated attribute entries. When

changes to CoS information occur, the server must reconstruct the cache, a task that

takes some time, usually on the order of seconds. During cache reconstruction,

read operations may still access the old cached information, rather than the newly

modified information.

Directory Tree Design Examples
The following sections provide examples of directory trees designed to support a

flat hierarchy as well as several examples of more complicated hierarchies.

Directory Tree for an International Enterprise
To support an international enterprise, root your directory tree in your Internet

domain name and then branch your tree for each country where your enterprise

has operations immediately below that root point. In “Suffix Naming

Conventions,” on page 59, you are advised to avoid rooting your directory tree in a

country designator. This is especially true if your enterprise is international in

scope.

Because LDAP places no restrictions on the order of the attributes in your DNs,

you can use the c (countryName) attribute to represent each country branch as

follows:
Chapter 4 Designing the Directory Tree 75

Directory Tree Design Examples
However, some administrators feel that this is stylistically awkward, so instead

you could use the l (locality) attribute to represent different countries:

Directory Tree for an ISP
Internet service providers (ISPs) may support multiple enterprises with their

directories. If you are an ISP, consider each of your customers as a unique

enterprise and design their directory trees accordingly. For security reasons, each

account should be provided with a unique directory tree that has a unique suffix

and an independent security policy.

You can assign each customer a separate database, and store these databases on

separate servers. Placing each directory tree in its own database allows you to back

up and restore data for each directory tree without affecting your other customers.

In addition, partitioning helps reduce performance problems caused by disk

contention, and reduces the number of accounts potentially affected by a disk

outage.

dc=siroe,dc=com

c=us c=japan

ou=groups ou=people ou=services ou=groups ou=people ou=services

dc=siroe,dc=com

l=us l=japan

ou=groups ou=people ou=services ou=groups ou=people ou=services
76 iPlanet Directory Server Deployment Guide • February 2002

Other Directory Tree Resources
For example, the directory tree for I-Zed, an ISP, appears as follows:

Other Directory Tree Resources
Take a look at the following links for more information about designing your

directory tree:

• RFC 2247: Using Domains in LDAP/X.500 Distinguished Names

http://www.ietf.org/rfc/rfc2247.txt

• RFC 2253: LDAPv3, UTF-8 String Representation of Distinguished Names

http://www.ietf.org/rfc/rfc2253.txt

o=i-zed,c=US

o=ISP o=internet ou=groups

o=i-zed

ou=groupsou=people ou=devices

dc=com dc=net

dc=customer dc=i-zed

o=Company22.com

ou=groupsou=people ou=devices

o=Company44.com

ou=groupsou=people ou=devices
Chapter 4 Designing the Directory Tree 77

Other Directory Tree Resources
78 iPlanet Directory Server Deployment Guide • February 2002

Chapter 5

Designing the Directory Topology

In Chapter 4, “Designing the Directory Tree”, you designed how your directory

stores entries. Because Directory Server can store a large quantity of entries, you

may need to distribute your entries across more than one server. Your directory’s

topology describes how you divide your directory tree among multiple physical

Directory Servers and how these servers link with one another.

This chapter describes planning the topology of your directory. It contains the

following sections:

• Topology Overview

• Distributing Your Data

• About Knowledge References

• Using Indexes to Improve Database Performance

Topology Overview
You can design your deployment of iPlanet Directory Server to support a

distributed directory where the directory tree you designed in Chapter 4,

“Designing the Directory Tree” is spread across multiple physical Directory

Servers. The way you choose to divide your directory across servers helps you

accomplish the following:

• Achieve the best possible performance for your directory-enabled applications

• Increase the availability of your directory

• Improve the management of your directory
79

Distributing Your Data
The database is the basic unit you use for jobs such as replication, performing

backups, and restoring data. You can carve a single directory into manageable

chunks and assign them to separate databases. These databases can then be

distributed among a number of servers, reducing the work load for each server.

You can store more than one database on a single server. For example, one server

might contain three different databases.

When you divide your directory tree across several databases, each database

contains a portion of your directory tree, called a suffix. For example, you can use a

database to store the entries in the ou=people,dc=siroe,dc=com suffix, or branch,

of your directory tree.

When you divide your directory among several servers, each server is responsible

for only a part of the directory tree. The distributed directory works similarly to the

Domain Name Service (DNS), which assigns each portion of the DNS namespace to

a particular DNS server. Likewise, you can distribute your directory namespace

across servers while maintaining a directory that, from a client’s point of view,

appears to be a single directory tree.

The iPlanet Directory Server also provides knowledge references, mechanisms for

linking directory data stored in different databases. Directory Server includes two

types of knowledge references, referrals and chaining.

The remainder of this chapter describes databases and knowledge references,

explains the differences between the two types of knowledge references, and

describes how you can design indexes to improve the performance of your

databases.

Distributing Your Data
Distributing your data allows you to scale your directory across multiple servers

without physically containing those directory entries on each server in your

enterprise. A distributed directory can thus hold a much larger number of entries

than would be possible with a single server.

In addition, you can configure your directory to hide the distributing details from

the user. As far as users and applications are concerned, there is simply a single

directory that answers their directory queries.

The following sections describe the mechanics of data distribution in more detail:

• “About Using Multiple Databases,” on page 81

• “About Suffixes,” on page 82
80 iPlanet Directory Server Deployment Guide • February 2002

Distributing Your Data
About Using Multiple Databases
iPlanet Directory Server stores data in LDBM databases.The LDBM database is a

high-performance disk-based database. Each database consists of a set of large files

that contains all of the data assigned to it.

You can store different portions of your directory tree in different databases. For

example, your directory tree appears as follows:

You can store the data of the three suffixes in three separate databases as follows:

When you divide your directory tree among a number of databases, these

databases can then be distributed across multiple servers. For example, the three

databases you created to contain the three suffixes of your directory tree can be

stored on two servers as follows:

Server A contains databases one and two and server B contains database three.

dc=siroe,dc=com

ou=people ou=groups ou=services

DB 3

DB 2

DB 1

ou=people,dc=siroe,dc=com

ou=groups,dc=siroe,dc=com

ou=services,dc=siroe,dc=com

Server
A

Server
B

DB1 DB2 DB3
Chapter 5 Designing the Directory Topology 81

Distributing Your Data
Distributing databases across multiple servers reduces the amount of work each

server needs to do. Thus, the directory can be made to scale to a much larger

number of entries than would be possible with a single server.

In addition, iPlanet Directory Server supports adding databases dynamically,

meaning you can add new databases when your directory needs them without

taking your entire directory off-line.

About Suffixes
Each database contains the data within a suffix of your directory server. You can

create both root and sub suffixes to organize the contents of your directory tree. A

root suffix is the entry at the top of a tree. It can be the root of your directory tree or

part of a larger tree you have designed for your directory server.

A sub suffix is a branch underneath a root suffix. The data for root and sub suffixes

are contained by databases.

For example, you want to create suffixes to represent the distribution of your

directory data. The directory tree for siroe.com Corporation appears as follows:

siroe.com Corporation decides to split their directory tree across five different

databases as follows:

dc=siroe,dc=como=NetscapeRoot

ou=marketing ou=development

ou=partners

ou=testing
82 iPlanet Directory Server Deployment Guide • February 2002

Distributing Your Data
The suffixes that result contain entries for the following:

The o=NetscapeRoot and dc=siroe,dc=com suffixes are both root suffixes. The

other ou=testing,dc=siroe,dc=com suffix, the

ou=development,dc=siroe,dc=com suffix and the

ou=partners,ou=development,odc=siroe,dc=com suffix are all sub suffixes of

the dc=siroe,dc=com root suffix. The root suffix dc=siroe,dc=com contains the

data in the ou=marketing, branch of the original directory tree.

Your directory might contain more than one root suffix. For example, an ISP called

I-Zed might host several websites, one for siroe.com and one for company22.com.

The ISP would create two root suffixes, one corresponding to the

dc=siroe,dc=com naming context and one corresponding to the

dc=company22,dc=com naming context. The directory tree appears as follows:

dc=siroe,dc=com
o=NetscapeRoot

ou=marketing ou=development

ou=partners

ou=testing

ou=testing,dc=siroe,dc=com

ou=development,dc=siroe,dc=com

ou=partners,ou=development,dc=siroe,dc=com

o=NetscapeRoot

dc=siroe,dc=com
Chapter 5 Designing the Directory Topology 83

About Knowledge References
The dc=i-zed,dc=com entry represents a root suffix. The entry for each hosted ISP

is also a root suffix (o=siroe and o=company22). The ou=people and the

ou=groups branches are sub suffixes under each root suffix.

About Knowledge References
Once you have distributed your data over several databases, you need to define the

relationship between the distributed data. You do this using knowledge references,

pointers to directory information held in different databases. The iPlanet Directory

Server provides the following types of knowledge references to help you link your

distributed data into a single directory tree:

• Referrals

The server returns a piece of information to the client application indicating

that the client application needs to contact another server to fulfill the request.

• Chaining

The server contacts other servers on behalf of the client application and returns

the combined results to the client application after finishing the operation.

The following sections describe and compare these two types of knowledge

references in more detail.

dc=i-zed,dc=com

o=ISP o=internet ou=groups

o=siroe o=company22

ou=people ou=groups ou=people ou=groups
84 iPlanet Directory Server Deployment Guide • February 2002

About Knowledge References
Using Referrals
A referral is a piece of information returned by a server that tells a client

application the server to contact to proceed with an operation request. This

redirection mechanism occurs when a client application requests a directory entry

that does not exist on the local server.

Directory Server supports two types of referrals:

• A default referral

The directory returns a default referral when a client application presents a DN

for which the server does not have a matching suffix. Default referrals are

stored in the configuration file of the server. You can set a default referral for

the directory server and a separate default referral for each database.

The default referral you set for each database is done through the suffix

configuration information. When the suffix of the database is disabled, you can

configure the directory to return a default referral to client requests made to

that suffix. For more information about suffixes, refer to “About Suffixes,” on

page 82. For information on configuring suffixes, refer to iPlanet Directory
Server Administrator’s Guide.

• Smart referrals

Smart referrals are stored on entries within the directory itself. Smart referrals

point to Directory Servers that have knowledge of the subtree whose DN

matches the DN of the entry containing the smart referral.

All referrals are returned in the format of an LDAP uniform resource locator

(URL). The following sections describe the structure of an LDAP referral, and then

describe the two referral types supported by Directory Server.

The Structure of an LDAP Referral
An LDAP referral contains information in the format of an LDAP URL. An LDAP

URL contains the following information:

• The host name of the server to contact

• The port number of the server

• The base DN (for search operations) or target DN (for add, delete, and modify

operations).

For example, a client application searches dc=siroe,dc=com for entries with a

surname Jensen . A referral returns the following LDAP URL to the client

application:
Chapter 5 Designing the Directory Topology 85

About Knowledge References
ldap://europe.siroe.com:389/ou=people,l=europe,dc=siroe,dc=com

The referral tells the client application to contact the host europe.siroe.com on

port 389 and submit a search rooted at ou=people,l=europe,dc=siroe,dc=com .

The LDAP client application you use determines how a referral is handled. Some

client applications automatically retry the operation on the server to which they

have been referred. Other client applications simply return the referral information

to the user. Most LDAP client applications provided by iPlanet (such as the

command-line utilities) automatically follow the referral. The same bind

credentials you supply on the initial directory request are used to access the server.

Most client applications follow a limited number of referrals, or hops. The limit on

the number of referrals followed reduces the time a client application spends trying

to complete a directory lookup request and helps eliminate hung processes caused

by circular referral patterns.

About Default Referrals
Default referrals are returned to clients when the server or database contacted does

not contain the data requested.

The directory server determines whether a default referral should be returned by

comparing the DN of the requested directory object against the directory suffixes

supported by the local server. If the DN does not match the supported suffixes, the

directory server returns a default referral.

For example, a directory client requests the following directory entry:

uid=bjensen,ou=people,dc=siroe,dc=com

However, the server manages only entries stored under the

dc=europe,dc=siroe,dc=com suffix. The directory returns a referral to the client

that indicates which server to contact for entries stored in the dc=siroe,dc=com

suffix. The client then contacts the appropriate server and resubmits the original

request.

You configure the default referral to point to a Directory Server that has more

knowledge about the distribution of your directory. Default referrals for the server

are set by the nsslapd-referral attribute. Default referrals for each database in

your directory installation are set by the nsslapd-referral attribute in the

database entry in the configuration. These attribute values are stored in the

dse.ldif file.

For information on configuring default referrals, see the iPlanet Directory Server
Administrator’s Guide.
86 iPlanet Directory Server Deployment Guide • February 2002

About Knowledge References
Smart Referrals
Directory Server also allows you to configure your directory to use smart referrals.

Smart referrals allow you to associate a directory entry or directory tree to a specific

LDAP URL. Associating directory entries to specific LDAP URLs allows you to

refer requests to any of the following:

• Same namespace contained on a different server

• Different namespaces on a local server

• Different namespaces on the same server

Unlike default referrals, the smart referrals are stored within the directory itself.

For information on configuring and managing smart referrals, refer to the iPlanet
Directory Server Administrator’s Guide.

For example, the directory for the American office of siroe.com Corporation

contains the following directory branch point: ou=people,dc=siroe,dc=com .

You redirect all requests on this branch to the ou=people branch of the European

office of siroe.com Corporation by specifying a smart referral on the ou=people

entry itself. This smart referral appears as follows:

ldap://europe.siroe.com:389/ou=people,dc=siroe,dc=com

Any requests made to the people branch of the American directory are redirected

to the European directory. An illustration of this smart referral follows:

dc=siroe,dc=com

dc=siroe,dc=com

america.siroe.com

europe.siroe.com

ou=groups ou=people

ou=groups ou=people
Chapter 5 Designing the Directory Topology 87

About Knowledge References
You can use the same mechanism to redirect queries to a different server that uses a

different namespace. For example, an employee working in the Italian office of

siroe.com Corporation makes a request to the European directory for the phone

number of a siroe.com employee in America. The referral returned by the directory

follows:

ldap://europe.siroe.com:389/ou=US employees,dc=siroe,dc=com

The following diagram illustrates how the referral works:

Finally, if you serve multiple suffixes on the same server, you can redirect queries

from one namespace to another namespace served on the same machine. If you

want to redirect all queries on the local machine for o=siroe,c=us to

dc=siroe,dc=com , then you would put the following smart referral on the

o=siroe,c=us entry:

ldap:///dc=siroe,dc=com

The third slash in this LDAP URL indicates that the URL points to the same

Directory Server.

dc=siroe,dc=com

america.siroe.com

europe.siroe.com

ou=groups ou=people

dc=siroe,dc=com

ou=groups ou=people

ou=US employees

dc=siroe,dc=com

ou=people ou=groups

o=siroe,c=us
88 iPlanet Directory Server Deployment Guide • February 2002

About Knowledge References
For more information on LDAP URLS and on how to include smart URLs on

iPlanet Directory Server entries, see iPlanet Directory Server Administrator’s Guide.

Tips for Designing Smart Referrals
While simple to implement, consider the following points before using smart

referrals:

• Keep the design simple.

Deploying your directory using a complex web of referrals makes

administration difficult. Also, overusing smart referrals can lead to circular

referral patterns. For example, a referral points to an LDAP URL, this LDAP

URL in turn points to another LDAP URL, and so on until a referral

somewhere in the chain points back to the original server. The following

diagram depicts a circular referral pattern:

• Redirect at major branch points.

NOTE Creating a referral from one namespace to another works only for

clients whose searches are based at that distinguished name. Other

kinds of operations, such as searches below

ou=people,o=siroe,c=US , will not be performed correctly.

dc=siroe,dc=com

ou=groups ou=people

dc=siroe,dc=com

ou=groups ou=people

dc=siroe,dc=com

ou=groups ou=people

INCORRECT
Chapter 5 Designing the Directory Topology 89

About Knowledge References
Limit your referral usage to handle redirection at the suffix level of your

directory tree. Smart referrals allow you to redirect lookup requests for leaf

(non-branch) entries to different servers and DNs. As a result, you may be

tempted to use smart referrals as an aliasing mechanism, leading to a complex

and difficult to secure directory structure. By limiting referrals to the suffix or

major branch points of your directory tree, you can limit the number of

referrals that you have to manage, subsequently reducing your directory’s

administrative overhead.

• Consider the security implications.

Access control does not cross referral boundaries. Even if the server where the

request originated allows access to an entry, when a smart referral sends a

client request to another server, the client application may not be allowed

access.

Also, the client credentials need to be available on the server to which the client

is referred for client authentication to take place.

Using Chaining
Chaining is a method for relaying requests to another server. This method is

implemented through database links. A database link, as described in the section

titled “Distributing Your Data,” on page 80, contains no data. Instead, it redirects

client application requests to remote servers that contain the data.

During chaining, a server receives a request from a client application for data it

does not contain. Using the database link, the server then contacts other servers on

behalf of the client application and returns the results to the client application. This

operation is illustrated in the following diagram.

Client

Server

A

Server

B

Database link Database

request

forwarded request

result

result
90 iPlanet Directory Server Deployment Guide • February 2002

About Knowledge References
Each database link is associated to a remote server holding data. You can also

configure alternate remote servers containing replicas of the data for the database

link to use when there is a failure. For more information on configuring database

links, refer to the iPlanet Directory Server Administrator’s Guide.

Database links provide the following features:

• Invisible access to remote data.

Because the database link takes care of client requests, data distribution is

completely hidden from the client.

• Dynamic management.

You can add or remove a part of the directory from the system while the entire

system remains available to client applications. The database link can

temporarily return referrals to the application until entries have been

redistributed across the directory. You can also implement this functionality

through the suffix itself, which can return a referral rather than forwarding a

client application on to the database.

• Access control.

The database link impersonates the client application, providing the

appropriate authorization identity to the remote server. You can disable user

impersonation on the remote servers when access control evaluation is not

required. For more information on configuring database links, refer to the

iPlanet Directory Server Administrator’s Guide.

Deciding Between Referrals and Chaining
Both methods of linking your directory partitions have advantages and

disadvantages. The method, or combination of methods, you choose depends upon

the specific needs of your directory.

The major difference between the two knowledge references is the location of the

intelligence that knows how to locate the distributed information. In a chained

system, the intelligence is implemented in the servers. In a system that uses

referrals, the intelligence is implemented in the client application.

While chaining reduces client complexity, it does so at the cost of increased server

complexity. Chained servers must work with remote servers and send the results

to directory clients.
Chapter 5 Designing the Directory Topology 91

About Knowledge References
With referrals, the client must handle locating the referral and collating search

results. However, referrals offer more flexibility for the writers of client

applications and allow developers to provide better feedback to users about the

progress of a distributed directory operation.

The following sections describe some of the more specific differences between

referrals and chaining in greater detail.

Usage Differences
Some client applications do not support referrals. Chaining allows client

applications to communicate with a single server and still access the data stored on

many servers. Sometimes referrals do not work when a company’s network uses

proxies. For example, a client application has permissions to speak to only one

server inside a firewall. If they are referred to a different server, they will not be

able to contact it successfully.

Also, with referrals a client must authenticate, meaning that the servers to which

clients are being referred need to contain the client credentials. With chaining,

client authentication takes place only once. Clients do not need to authenticate

again on the servers to which their requests are chained.

Evaluating Access Controls
Chaining evaluates access controls differently from referrals. With referrals, an

entry for the client must exist on all of the target servers. With chaining, the client

entry does not need to be on all of the target servers.

For example, a client sends a search request to server A. The following diagram

illustrates the operation using referrals:

1

2

3

5

Server
A

Server
B

Client
4

client entry

client entry
6

92 iPlanet Directory Server Deployment Guide • February 2002

About Knowledge References
In the illustration above, the client application performs the following steps:

1. The client application first binds with Server A.

2. Server A contains an entry for the client that provides a user name and

password, so returns a bind acceptance message. In order for the referral to

work, the client entry must be present on Server A.

3. The client application sends the operation request to Server A.

4. However, Server A does not contain the information requested. Instead, Server

A returns a referral to the client application telling them to contact Server B.

5. The client application then sends a bind request to Server B. To bind

successfully, Server B must also contain an entry for the client application.

6. The bind is successful, and the client application can now resubmit its search

operation to Server B.

This approach requires Server B to have a replicated copy of the client’s entry from

Server A.

Chaining solves this problem. A search request would occur as follows on a

chained system:

In the illustration above, the following steps are performed:

1. The client application binds with Server A and Server A tries to confirm that

the user name and password are correct.

1

32

Client

Server
A

Server
B client entry

4

Chapter 5 Designing the Directory Topology 93

About Knowledge References
2. Server A does not contain an entry corresponding to the client application.

Instead, it contains a database link to Server B, which contains the actual entry

of the client. Server A sends a bind request to Server B.

3. Server B sends an acceptance response to Server A.

4. Server A then processes the client application’s request using the database link.

The database link contacts a remote data store located on Server B to process

the search operation.

In a chained system, the entry corresponding to the client application does not

need to be located on the same server as the data the client requests. For example, a

system could be set up as follows:

In this illustration, the following steps are performed:

1. The client application binds with Server A and Server A tries to confirm that

the user name and password are correct.

2. Server A does not contain an entry corresponding to the client application.

Instead, it contains a database link to Server B, which contains the actual entry

of the client. Server A sends a bind request to Server B.

3. Server B sends an acceptance response to Server A.

4. Server A then processes the client application’s request using another database

link. The database link contacts a remote data store located on Server C to

process the search operation.

However, database links do not support the following access controls:

1

32

Client

Server
A

Server
B client entry

Server

4

C

94 iPlanet Directory Server Deployment Guide • February 2002

Using Indexes to Improve Database Performance
• Controls that must access the content of the user entry are not supported when

the user entry is located on a different server. This includes access controls

based on groups, filters, and roles.

• Controls based on client IP addresses or DNS domains may be denied. This is

because the database link impersonates the client when it contacts remote

servers. If the remote database contains IP-based access controls, it will

evaluate them using the database link’s domain rather than the original client

domain.

Using Indexes to Improve Database Performance
Depending upon the size of your databases, searches performed by client

applications can take a lot of time and resources. In order to improve search

performance, you can use indexes.

Indexes are files stored in your directory databases. Separate index files are

maintained for each database in your directory. Each file is named according to the

attribute it indexes. The index file for a particular attribute can contain multiple

types of indexes, allowing you to maintain several types of index for each attribute.

For example, a file called cn.db3 contains all of the indexes for the common name

attribute.

Depending upon the types of applications using your directory, you will use

different types of index. Different applications may frequently search for a

particular attribute, or may search your directory in a different language, or may

require data in a particular format.

This section contains the following topics:

• Overview of Directory Index Types

• Evaluating the Costs of Indexing

Overview of Directory Index Types
The directory supports the following types of index:

• Presence index.

The presence index lists entries that possess a particular attribute, such as uid .

• Equality index.
Chapter 5 Designing the Directory Topology 95

Using Indexes to Improve Database Performance
The equality index lists entries that contain a specific attribute value, such as

cn=Babs Jensen .

• Approximate index.

The approximate index allows approximate (or “sounds-like”) searches. For

example, an entry contains the attribute value of cn=Babs L. Jensen . An

approximate search would return this value for searches again cn~=Babs

Jensen , cn~=Babs , and cn~=Jensen .

Note that approximate indexes work only for English names written in ASCII

characters.

• Substring index.

The substring index allows searches against substrings within entries. For

example, a search for cn=*derson would match common names containing

this string (such as Bill Anderson, Norma Henderson, and Steve Sanderson).

• International index.

The international index speeds searches for information in international

directories. You configure the index to apply a matching rule by associating a

locale (OID) with the attribute being indexed.

• Browsing Index

The browsing, or virtual list view (VLV), index speeds up the display of entries

in the Directory Server Console. You can create a browsing index on any

branch in your directory tree to improve the display performance.

Evaluating the Costs of Indexing
Indexes improve search performance in your directory databases, but at the

following costs:

• Indexes increase the time it takes to modify entries.

The more indexes you maintain, the longer it takes the directory to update the

database.

• Index files use disk space.

The more attributes you index, the more files you create. And, if you create

approximate and substring indexes for attributes that contain long strings,

these files can grow rapidly.

• Index files use memory.
96 iPlanet Directory Server Deployment Guide • February 2002

Using Indexes to Improve Database Performance
To run more efficiently, the directory places as many index files in memory as

possible. Index files use memory out of the pool available depending upon the

database cache size. A large number of index files requires a larger database

cache.

• Index files take time to create.

Although index files will save time during searches, maintaining unnecessary

indexes can waste time. Be certain to maintain only the files needed by the

client applications using your directory.
Chapter 5 Designing the Directory Topology 97

Using Indexes to Improve Database Performance
98 iPlanet Directory Server Deployment Guide • February 2002

Chapter 6

Designing the Replication Process

Replicating your directory contents increases the availability and performance of

your directory. In Chapter 4 and Chapter 5, you made decisions about the design

of your directory tree and your directory topology. This chapter addresses the

physical and geographical location of your data, and specifically, how to use

replication to ensure that your data is available when and where you need it.

This chapter discusses uses for replication and offers advice on designing a

replication strategy for your directory environment. It contains the following

sections:

• Introduction to Replication

• Common Replication Scenarios

• Defining a Replication Strategy

• Using Replication with other Directory Features

Introduction to Replication
Replication is the mechanism that automatically copies directory data from one

Directory Server to another. Using replication, you can copy any directory tree or

subtree (stored in its own database) between servers. The Directory Server that

holds the master copy of the information, will automatically copy any updates to

all replicas.

Replication enables you to provide a highly available directory service, and to

geographically distribute your data. In practical terms, replication brings the

following benefits:

• Fault tolerance/Failover
99

Introduction to Replication
By replicating directory trees to multiple servers, you can ensure your

directory is available even if some hardware, software, or network problem

prevents your directory client applications from accessing a particular

Directory Server. Your clients are referred to another directory server for read

and write operations. Note that to support write failover you must have a

multi-master replication environment.

• Load balancing

By replicating your directory tree across servers, you can reduce the access

load on any given machine, thereby improving server response time.

• Higher performance and reduced response times

By replicating directory entries to a location close to your users, you can vastly

improve directory response times.

• Local data management

Replication allows you to own and manage data locally while sharing it with

other Directory Servers across your enterprise.

Before defining a replication strategy for your directory information, you should

understand how replication works. This section describes:

• “Replication Concepts,” on page 100

• “Data Consistency,” on page 105

Replication Concepts
When you consider replication, you always start by making the following

fundamental decisions:

• What information you want to replicate.

• Which server or servers hold the master copy, or supplier replica, of that

information.

• Which server or servers hold the read-only copy, or consumer replica, of the

information.

• What should happen when a consumer replica receives modification requests

from client applications, that is, which server should it refer the request to.
100 iPlanet Directory Server Deployment Guide • February 2002

Introduction to Replication
These decisions cannot be made effectively without an understanding of how the

Directory Server handles these concepts. For example, when you decide what

information you want to replicate, you need to know what is the smallest

replication unit that the Directory Server can handle. The following sections

contain definitions of concepts used by the Directory Server. This provides a

framework for thinking about the global decisions you need to make.

Replica
A database that participates in replication is defined as a replica. There are several

kinds of replicas:

• Master replica: a read-write database that contains a master copy of the

directory data. A master replica can process update requests from directory

clients.

• Consumer replica: a read-only database that contains a copy of the information

held in the master replica. A consumer replica can process search requests

from directory clients but refers update requests to the master replica.

• Hub replica: a read-only database just like a consumer replica. The difference is

that it is stored on a Directory Server that acts as a hub supplier.

You can configure a Directory Server to manage several databases. Each database

can have a different role in replication. For example, you could have a Directory

Server that stores the dc=engineering,dc=siroe,dc=com suffix in a master

replica, and the dc=sales,dc=siroe,dc=com suffix in a consumer replica.

Supplier/Consumer
A server that manages a master replica that it replicates to other servers is called a

supplier server or master server. A server that manages a consumer replica that is

updated by a different server is called a consumer server.

It is convenient to talk about the role of a server as a supplier or a consumer, even

though it is not always accurate because a server can be both a supplier and a

consumer. This is true in the following cases:

• When the Directory Server manages a combination of master replicas and

consumer replicas;

• When the Directory Server acts as a hub supplier, that is, it receives updates

from a master server and replicates the changes to consumer servers. For more

information, refer to “Cascading Replication,” on page 109.
Chapter 6 Designing the Replication Process 101

Introduction to Replication
• In multi-master replication, when a master replica is mastered on two different

Directory Servers, each Directory Server acts as a supplier and a consumer of

the other Directory Server. For more information, refer to “Multi-Master

Replication,” on page 108.

In iPlanet Directory Server 5.1, replication is always initiated by the supplier

server, never by the consumer. This operation is called supplier-initiated

replication. It allows you to configure a supplier server to push data to one or more

consumer servers.

Earlier versions of the iPlanet Directory Server allowed consumer-initiated

replication where you could configure consumer servers to pull data from a

supplier server. This is replaced, in iPlanet Directory Server 5.1, by a procedure in

which the consumer can prompt the supplier to send updates.

For any particular replica, the supplier server must:

• Respond to read, add and modify requests from directory clients.

• Maintain state information and a change log for the replica.

• Initiate replication to consumer servers.

The supplier server is always responsible for recording the changes made to

the supplier replicas that it manages. It makes sure that any changes are

replicated to consumer servers.

A consumer server must:

• Respond to read requests.

• Refer add and modify requests to the supplier server for the replica.

Any time a request to add, delete, or change an entry is received by a consumer

server, the request is referred to the supplier for the replica. The supplier

server performs the request, then replicates the change.

In the special case of cascading replication, the hub supplier must:

• Respond to read requests.

• Refer add and modify requests to the supplier server for the replica.

• Initiate replication to consumer servers.

For more information on cascading replication, refer to “Cascading Replication,”

on page 109.
102 iPlanet Directory Server Deployment Guide • February 2002

Introduction to Replication
Change Log
Every supplier server maintains a change log. A change log is a record that describes

the modifications that have occurred on a supplier replica. The supplier server then

replays these modifications to the replicas stored on consumer servers, or to other

masters in the case of multi-master replication.

When an entry is modified, added or deleted, a change record describing the LDAP

operation that was performed is recorded in the change log.

In earlier versions of Directory Server, the change log was accessible over LDAP.

Now, however, it is intended only for internal use by the server. If you have

applications that need to read the change log, you need to use the Retro Change

Log Plug-in for backward compatibility. For more information, refer to iPlanet
Directory Server Administrator’s Guide.

Unit of Replication
In iPlanet Directory Server 5.1, the smallest unit of replication is a database. This

means that you can replicate an entire database, but not a subtree within a

database. Therefore, when you create your directory tree, you must take your

replication plans into consideration. For more information on how to set up your

directory tree, refer to Chapter 5, “Designing the Directory Topology.”

The replication mechanism also requires that one database correspond to one

suffix. This means that you cannot replicate a suffix (or namespace) that is

distributed over two or more databases using custom distribution logic.

Replication Agreement
Directory Servers use replication agreements to define replication. A replication

agreement describes replication between one supplier and one consumer. The

agreement is configured on the supplier server. It identifies:

• The database to replicate

• The consumer server to which the data is pushed

• The times during which replication can occur

• The DN and credentials the supplier server must use to bind on the consumer,

called the Replication Manager entry or supplier bind DN (for more

information, refer to “Replication Identity,” on page 104)

• How the connection is secured (SSL, client authentication)
Chapter 6 Designing the Replication Process 103

Introduction to Replication
Replication Identity
When replication occurs between two servers, the consumer server authenticates

the supplier when it binds to send replication updates. This authentication process

requires that the entry used by the supplier to bind to the consumer is stored on the

consumer server. This entry is called the Replication Manager entry, or supplier

bind DN.

The Replication Manager entry, or any entry you create to fulfill that role, must

meet the following criteria:

• You must have at least one on every server that manages consumer replicas (or

hub replicas).

• This entry must not be part of the replicated data for security reasons.

When you configure replication between two servers, you must identify the

Replication Manager (supplier bind DN) on both servers:

• On the consumer server or hub supplier, when you configure the consumer

replica or hub replica, you must specify this entry as the one authorized to

perform replication updates.

• On the supplier server, when you configure the replication agreement, you

must specify the DN of this entry in the replication agreement.

NOTE This entry has a special user profile that bypasses all access control

rules defined on the consumer server.

NOTE In the Directory Server Console, this Replication Manager entry is

referred to as the supplier bind DN, which may be misleading as the

entry does not actually exist on the supplier server. It is called the

supplier bind DN because it is the entry that must be present on the

consumer so that it can authenticate the supplier when it binds to

provide replication updates to the consumer.
104 iPlanet Directory Server Deployment Guide • February 2002

Introduction to Replication
Data Consistency
Consistency refers to how closely the contents of replicated databases match each

other at a given point in time. When you set up replication between two servers,

part of the configuration is to schedule updates. With iPlanet Directory Server 5.1,

it is always the supplier server that determines when consumer servers need to be

updated, and initiates replication.

Directory Server offers the option of keeping replicas always synchronized, or of

scheduling updates for a particular time of day, or day in the week. The advantage

of keeping replicas always in sync is obviously that it provides better data

consistency. The cost is the network traffic resulting from the frequent update

operations. This solution is the best in cases where:

• You have a reliable high-speed connection between servers

• The client requests serviced by your directory are mainly search, read, and

compare operations, with relatively few add and modify operations.

In cases where you can afford to have looser consistency in data, you can choose

the frequency of updates that best suits your needs or lowers the effect on network

traffic. This solution is the best in cases where:

• You have unreliable or intermittently available network connections (such as a

dial-up connection to synchronize replicas).

• The client requests serviced by your directory are mainly add and modify

operations.

• You need to reduce the communication costs.

In the case of multi-master replication, the replicas on each master are said to be

loosely consistent because at any given time, there can be differences in the data

stored on each master. This is true even when you have selected to always keep

replicas in sync, because:

• There is a latency in the propagation of replication updates between masters.

• The master that serviced the add or modify operation does not wait for the

second master to validate it before returning an “operation successful”

message to the client.
Chapter 6 Designing the Replication Process 105

Common Replication Scenarios
Common Replication Scenarios
You need to decide how the updates flow from server to server and how the

servers interact when propagating replication updates. There are three basic

scenarios:

• Single-Master Replication

• Multi-Master Replication

• Cascading Replication

The following sections describe these methods and provide strategies for deciding

the method that is most appropriate for your environment. You can also combine

these basic scenarios to build the replication topology that best suits your needs.

Single-Master Replication
In the most basic replication configuration, a master server copies a supplier

replica directly to one or more consumer servers. In this configuration, all directory

modifications occur on the supplier replica on the supplier server, and the

consumer servers contain read-only copies of the data.

The supplier server maintains a change log that records all the changes made to the

master replica. The supplier server also stores the replication agreement.

The consumer server stores the entry corresponding to the supplier bind DN, so

that the consumer can authenticate the supplier when the supplier binds to send

replication updates.

The supplier server must propagate all modifications to the consumer replicas.

Figure 6-1 on page 107 shows this simple configuration.
106 iPlanet Directory Server Deployment Guide • February 2002

Common Replication Scenarios
Figure 6-1 Single-Master Replication

Although Figure 6-1 shows just one consumer server, the supplier server can

replicate to several consumer servers. The total number of consumer servers that a

single supplier server can manage depends on the speed of your network and the

total number of entries that are modified on a daily basis. However, you can

reasonably expect a supplier server to maintain several consumer servers.

Server A

ou=people,dc=siroe,dc=com

supplier
replica

change log

replication
agreement

Server B

ou=people,dc=siroe,dc=com

consumer
replica

Replication Referral

supplier
bind DN
Chapter 6 Designing the Replication Process 107

Common Replication Scenarios
Multi-Master Replication
Multi-master configurations have the following advantages:

• Automatic write failover when one supplier is inaccessible

• Updates are made on a local supplier in a geographically distributed

environment

In a multi-master replication environment, master copies of the same information

exist on two servers. This means that data can be updated simultaneously in two

different locations. The changes that occur on each server are replicated to the

other. This means that each server plays both roles of supplier and consumer.

When the same data is modified on both servers, there is a conflict resolution

procedure to determine which change is kept. The Directory Server considers the

valid change to be the most recent one.

Although two separate servers can have master copies of the same data, within the

scope of a single replication agreement, there is only one supplier server and one

consumer. So, to create a multi-master environment between two supplier servers

that share responsibility for the same data, you need to create more than one

replication agreement.The following figure shows this configuration:

Figure 6-2 Multi-Master Replication Configuration (Two Masters)

In this illustration, Supplier A and Supplier B each hold a supplier replica of the

same data.

The number of masters or suppliers you can have in any replication environment is

limited to two. However, the number of consumer servers that hold consumer

replicas is not limited. Figure 6-3 on page 109 shows the replication traffic in an

environment with two master servers, and two consumer servers. This figure

shows that the consumers can be updated by both masters. The master servers

ensure that the changes do not collide.

supplierA.siroe.com supplierB.siroe.com

Agreement 1

Agreement 2
108 iPlanet Directory Server Deployment Guide • February 2002

Common Replication Scenarios
Figure 6-3 Replication Traffic in a Multi-Master Environment

Cascading Replication
Cascading replication is very useful in the following cases:

• When you need to balance heavy traffic loads: for example, because your

supplier servers need to handle all update traffic, it would put them under a

very heavy load to support all replication traffic to consumers as well. You can

offload replication traffic to a hub server that can service replication updates to

a large number of consumers.

• To reduce connection costs by using a local hub supplier in geographically

distributed environments.

• To increase performance of your directory service: if you direct all client

applications performing read operations to the consumers, and all those

performing update operations to the supplier, you can remove all of the

indexes (except system indexes) from your hub server. This will dramatically

increase the speed of replication between the supplier and the hub server.

ou=people,dc=siroe,dc=com

Supplier replica

ou=people,dc=siroe,dc=com

on Server A

Consumer replica
on Server C

Consumer replica
on Server D

Supplier B

Consumer C

ou=people,dc=siroe,dc=com

Consumer D

ou=people,dc=siroe,dc=com

Supplier A Supplier replica
on Server B

Replication traffic
Chapter 6 Designing the Replication Process 109

Common Replication Scenarios
In a cascading replication scenario, a hub supplier receives updates from a supplier

server, and replays those updates on consumer servers. The hub supplier is a

hybrid: it holds a read-only copy of the data, like a typical consumer server and it

maintains a change log like a typical supplier server.

Hub suppliers pass on copies of the master data as they are received from the

original master. For the same reason, when a hub supplier receives an add or

modify request from a directory client, it refers the client to the master server.

This cascading replication scenario is illustrated in Figure 6-4:

Figure 6-4 Cascading Replication Scenario

A similar scenario is illustrated in Figure 6-5 from a different perspective. It shows

how the servers are configured (replication agreements, change logs, referrals).

dc=siroe,dc=com

ou=groups
dc=siroe,dc=com

ou=people ou=gr

dc=siroe,dc=com

ou=people ou=groups

supplier

hub

consumer
110 iPlanet Directory Server Deployment Guide • February 2002

Common Replication Scenarios
Figure 6-5 Server Configuration in Cascading Replication

Server A: Supplier

Supplier
Replica

change log

Hub
Supplier B

Replication
agreement

Server B: Hub Supplier

Hub
Replica

change log

Consumer D

Replication
agreement

Server C: Consumer

Consumer
Replica

Server D: Consumer

Consumer
Replica

Consumer C

Replication
agreement

supplier
bind DN

supplier
bind DN

supplier
bind DN

Replication

Replication

Referral

ReferralReferral

Replication
Chapter 6 Designing the Replication Process 111

Common Replication Scenarios
Mixed Environments
You can combine any of the scenarios outlined in the previous sections to best fit

your needs. For example, you could combine a multi-master configuration with a

cascading configuration to produce something similar to the scenario illustrated in

Figure 6-6 on page 113.
112 iPlanet Directory Server Deployment Guide • February 2002

Common Replication Scenarios
Figure 6-6 Combined Multi-Master and Cascading Replication

ou=people,dc=siroe,dc=com

Supplier replica

ou=people,dc=siroe,dc=com

on Server A

Supplier B

Consumer

ou=people,dc=siroe,dc=com

Supplier A Supplier replica
on Server B

Replication traffic

ou=people,dc=siroe,dc=com

Hub Suppliers
Consumer

Supplier

ou=people,dc=siroe,dc=com

Consumer

Supplier

ou=people,dc=siroe,dc=com

Consumer

ou=people,dc=siroe,dc=com

Consumer

ou=people,dc=siroe,dc=com

Consumer
Chapter 6 Designing the Replication Process 113

Defining a Replication Strategy
Defining a Replication Strategy
The replication strategy that you define is determined by the service you want to

provide:

• If high availability is your primary concern, you should create a data center

with multiple directory servers on a single site. You can use single-master

replication to provide read-failover, and multi-master replication to provide

write-failover. How to configure replication for high availability is described in

“Using Replication for High Availability,” on page 116.

• If local availability is your primary concern, you should use replication to

geographically distribute data to directory servers in local offices around the

world. You can decide to hold a master copy of all information in a single

location, such as the company headquarters, or to let local sites manage the

parts of the DIT that are relevant for them. The type of replication

configuration to set up is described in “Using Replication for Local

Availability,” on page 117.

• In all cases, you probably want to balance the load of requests serviced by your

directory servers, and avoid network congestion. Strategies for load balancing

your directory servers and your network are provided in “Using Replication

for Load Balancing,” on page 117.

To determine your replication strategy, start by performing a survey of your

network, your users, your applications, and how they use the directory service you

can provide. For guidelines on performing this survey, refer to “Replication

Survey.”

Once you understand your replication strategy, you can start deploying your

directory. This is a case where deploying your service in stages will pay large

dividends. By placing your directory into production in stages, you can get a better

sense of the loads that your enterprise places on your directory. Unless you can

base your load analysis on an already operating directory, be prepared to alter

your directory as you develop a better understanding of how your directory is

used.

The following sections describe in more detail the factors affecting your replication

strategy:

• “Replication Survey,” on page 115

• “Replication Resource Requirements,” on page 115

• “Using Replication for High Availability,” on page 116

• “Using Replication for Local Availability,” on page 117
114 iPlanet Directory Server Deployment Guide • February 2002

Defining a Replication Strategy
• “Using Replication for Load Balancing,” on page 117

• “Example Replication Strategy for a Small Site,” on page 121

• “Example Replication Strategy for a Large Site,” on page 121

Replication Survey
The type of information you need to gather from your survey to help you define

your replication strategy includes:

• Quality of the LANs and WANs connecting different buildings or remote sites,

and the amount of available bandwidth.

• Physical location of users, how many users are at each site, what is their

activity.

For example, a site that manages human resource databases or financial

information is likely to put a heavier load on your directory than a site

containing engineering staff that uses the directory for simple telephone book

purposes.

• The number of applications that access the directory, and relative percentage of

read/search/compare operations to write operations.

For example, if your messaging server uses the directory, you need to know

how many operations it performs for each email message it handles. Other

products that rely on the directory are typically products such as

authentication applications, or meta-directory applications. For each one you

must find out the type and frequency of operations that are performed in the

directory.

• The number and size of the entries stored in the directory.

Replication Resource Requirements
Using replication requires more resources. Consider the following resource

requirements when defining your replication strategy:

• Disk usage.

On supplier servers, the change log is written after each update operation.

Supplier servers receiving many updabhubcon2supplier server, if a supplier

contains multiple replicated databases the change log will be used more

frequently, and the disk usage will be even higher.
Chapter 6 Designing the Replication Process 115

Defining a Replication Strategy
• Server threads.

Each replication agreement consumes one server thread. So, the number of

threads available to client applications is reduced, possibly affecting the server

performance for the client applications.

• File descriptors.

The number of file descriptors available to the server is reduced by the change

log (one file descriptor) and each replication agreement (one file descriptor per

agreement).

Using Replication for High Availability
Use replication to prevent the loss of a single server from causing your directory to

become unavailable. At a minimum you should replicate the local directory tree to

at least one backup server.

Some directory architects argue that you should replicate three times per physical

location for maximum data reliability. How much you use replication for fault

tolerance is up to you, but you should base this decision on the quality of the

hardware and networks used by your directory. Unreliable hardware needs more

backup servers.

If you need to guarantee write-failover for all your directory clients, you should

use a multi-master replication scenario. If read-failover is sufficient, you can use

single-master replication.

LDAP client applications can usually be configured to search only one LDAP

server. That is, unless you have written a custom client application to rotate

through LDAP servers located at different DNS hostnames, you can only configure

your LDAP client application to look at a single DNS hostname for a Directory

Server. Therefore, you will probably need to use either DNS round robins or

network sorts to provide fail-over to your backup Directory Servers. For

information on setting up and using DNS round robins or network sorts, see your

DNS documentation.

Alternatively, you can use the iPlanet Directory Access Router product. For more

information on iPlanet Directory Access Router, go to http://www.iplanet.com.

NOTE You should not use replication as a replacement for a regular data

backup policy. For information on backing up your directory data,

refer to the iPlanet Directory Server Administrator’s Guide.
116 iPlanet Directory Server Deployment Guide • February 2002

Defining a Replication Strategy
Using Replication for Local Availability
Your need to replicate for local availability is determined by the quality of your

network as well as the activities of your site. In addition, you should carefully

consider the nature of the data contained in your directory and the consequences to

your enterprise in the event that the data becomes temporarily unavailable. The

more mission critical this data is, the less tolerant you can be of outages caused by

poor network connections.

You should use replication for local availability for the following reasons:

• You need a local master copy of the data.

This is an important strategy for large, multinational enterprises that need to

maintain directory information of interest only to the employees in a specific

country. Having a local master copy of the data is also important to any

enterprise where interoffice politics dictate that data be controlled at a

divisional or organizational level.

• You are using unreliable or intermittently available network connections.

Intermittent network connections can occur if you are using unreliable WANs,

such as often occurs in international networks.

• Your networks periodically experience extremely heavy loads that may cause

the performance of your directory to be severely reduced.

For example, enterprises with aging networks may experience these conditions

during normal business hours.

Using Replication for Load Balancing
Replication can balance the load on your Directory Servers in several ways:

• By spreading your user’s search activities across several servers.

• By dedicating servers to read-only activities (writes occur only on the supplier

server).

• By dedicating special servers to specific tasks, such as supporting mail server

activities.
Chapter 6 Designing the Replication Process 117

Defining a Replication Strategy
One of the more important reasons to replicate directory data is to balance the

work load of your network. When possible, you should move data to servers that

can be accessed using a reasonably fast and reliable network connection. The most

important considerations are the speed and reliability of the network connection

between your server and your directory users.

Directory entries generally average around one KB in size. Therefore, every

directory lookup adds about one KB to your network load. If your directory users

perform around ten directory lookups per day, then for every directory user you

will see an increased network load of around 10,000 bytes per day. Given a slow,

heavily loaded, or unreliable WAN, you may need to replicate your directory tree

to a local server.

You must carefully consider whether the benefit of locally available data is worth

the cost of the increased network load because of replication. For example, if you

are replicating an entire directory tree to a remote site, you are potentially adding a

large strain on your network in comparison to the traffic caused by your users’

directory lookups. This is especially true if your directory tree changes frequently,

yet you have only a few users at the remote site performing a few directory

lookups per day.

For example, consider that your directory tree on average includes in excess of

1,000,000 entries and that it is not unusual for about ten percent of those entries to

change every day. If your average directory entry is only one KB in size, this means

you could be increasing your network load by 100 MB per day. However, if your

remote site has only a few employees, say 100, and they are performing an average

of ten directory lookups a day, then the network load caused by their directory

access is only one MB per day.

Given the difference in loads caused by replication versus that caused by normal

directory usage, you may decide that replication for network load-balancing

purposes is not desirable. On the other hand, you may find that the benefits of

locally available directory data far outweigh any considerations you may have

regarding network loads.

A good compromise between making data available to local sites without

overloading the network is to use scheduled replication. For more information on

data consistency and replication schedules, refer to “Data Consistency,” on

page 105.

Example of Network Load Balancing
Suppose your enterprise has offices in two cities. Each office has specific subtrees

that they manage as follows:
118 iPlanet Directory Server Deployment Guide • February 2002

Defining a Replication Strategy
Each office contains a high-speed network, but you are using a dial-up connection

to network between the two cities. To balance your network load:

• Select one server in each office to be the master server for the locally managed

data.

Replicate locally managed data from that server to the corresponding master

server in the remote office.

• Replicate the directory tree on each master server (including data supplied

from the remote office) to at least one local Directory Server to ensure

availability of the directory data. You can use multi-master replication for the

suffix managed locally, and cascading replication for the suffix that receives a

master copy of the data from a remote server.

Los Angeles

dc=siroe,dc=com

l=LA

ou=people

dc=siroe,dc=com

l=NY

ou=people

NewYork

dc=siroe,dc=com

l=NY

ou=people ou=people

NewYork

dc=siroe,dc=com

l=NY

ou=people

Los Angeles

l=LA

NewYork

dc=siroe,dc=com

l=NY

ou=people

Los Angeles

l=LA

ou=people

dc=siroe,dc=com

l=NY

ou=people

l=LA

ou=people

l=LA

ou=people
Chapter 6 Designing the Replication Process 119

Defining a Replication Strategy
Example of Load Balancing for Improved Performance
Suppose that your directory must include 1,500,000 entries in support of 1,000,000

users, and that each user performs ten directory lookups a day. Also assume that

you are using a messaging server that handles 25,000,000 mail messages a day, and

that performs five directory lookups for every mail message that it handles.

Therefore, you can expect 125,000,000 directory lookups per day just as a result of

mail. Your total combined traffic is, therefore, 135,000,000 directory lookups per

day.

Assuming an eight-hour business day, and that your 1,000,000 directory users are

clustered in four time zones, your business day (or peak usage) across four time

zones is 12 hours long. Therefore you must support 135,000,000 directory lookups

in a 12-hour day. This equates to 3,125 lookups per second (135,000,000 /

(60*60*12)). That is:

Now, assume that you are using a combination of CPU and RAM with your

Directory Servers that allows you to support 500 reads per second. Simple division

indicates that you need at least six or seven Directory Servers to support this load.

However, for enterprises with 1,000,000 directory users, you should add more

Directory Servers for local availability purposes.

You could, therefore, replicate as follows:

• Place two Directory Servers in a multi-master configuration in one city to

handle all write traffic.

This configuration assumes that you want a single point of control for all

directory data.

• Use these supplier servers to replicate to one or more hub suppliers.

1,000,000 users 10 lookups per user = 10,000,000 reads/day

25,000,000 messages 5 lookups per message = 125,000,000 reads/day

Total reads/day = 135,000,000

12-hour day includes

43,200 seconds

Total reads/second = 3,125
120 iPlanet Directory Server Deployment Guide • February 2002

Defining a Replication Strategy
The read, search and compare requests serviced by your directory should be

targeted at the consumer servers, thereby freeing the master servers to handle

write requests. For a definition of a hub supplier, refer to “Cascading

Replication,” on page 109.

• Use the hub supplier to replicate to local sites throughout the enterprise.

Replicating to local sites helps balance the work load of your servers and your

WANs, as well as ensuring high availability of directory data. Assume that you

want to replicate to four sites around the country. You then have four

consumers of each hub supplier.

• At each site, replicate at least once to ensure high availability, at least for read

operations.

Use DNS sort to ensure that local users always find a local Directory Server

they can use for directory lookups.

Example Replication Strategy for a Small Site
Suppose your entire enterprise is contained within a single building. This building

has a very fast (100 MB per second) and lightly used network. The network is very

stable and you are reasonably confident of the reliability of your server hardware

and OS platforms. Also, you are sure that a single server’s performance will easily

handle your site’s load.

In this case, you should replicate at least once to ensure availability in the event

that your primary server is shut down for maintenance or hardware upgrades.

Also, set up a DNS round robin to improve LDAP connection performance in the

event that one of your Directory Servers becomes unavailable. Alternatively, use an

LDAP proxy such as iPlanet Directory Access Router. For more information on

iPlanet Directory Access Router, go to http://www.iplanet.com.

Example Replication Strategy for a Large Site
Suppose your entire enterprise is contained within two buildings. Each building

has a very fast (100 MB per second) and lightly used network. The network is very

stable and you are reasonably confident of the reliability of your server hardware

and OS platforms. Also, you are sure that a single server’s performance will easily

handle the load placed on a server within each building.

Also assume that you have slow (ISDN) connections between the buildings, and

that this connection is very busy during normal business hours.
Chapter 6 Designing the Replication Process 121

Using Replication with other Directory Features
Your replication strategy follows:

• Choose a single server in one of the two buildings to contain a master copy of

your directory data.

This server should be placed in the building that contains the largest number of

people responsible for the master copy of the directory data. Call this Building

A.

• Replicate at least once within Building A for high availability of directory data.

Use a multi-master replication configuration if you need to ensure

write-failover.

• Create two replicas in the second building (Building B).

• If there is no need for close consistency between the supplier and consumer

server, schedule replication so that it occurs only during off peak hours.

Using Replication with other Directory Features
Replication interacts with other iPlanet Directory Server features to provide

advanced replication features. The following sections describe feature interactions

to help you better design your replication strategy.

Replication and Access Control
The directory stores ACIs as attributes of entries. This means that the ACI is

replicated along with other directory content. This is important because Directory

Server evaluates ACIs locally.

For more information about designing access control for your directory, refer to

Chapter 7, “Designing a Secure Directory,” on page 127.

Replication and Directory Server Plug-ins
You can use replication with most of the plug-ins delivered with iPlanet Directory

Server. There are some exceptions and limitations in the case of multi-master

replication with the following plug-ins:

• Attribute uniqueness plug-in

• Referential integrity plug-in
122 iPlanet Directory Server Deployment Guide • February 2002

Using Replication with other Directory Features
You cannot use multi-master replication with the attribute uniqueness plug-in at

all, because this plug-in can validate only attribute values on the same server, and

not on both servers in the multi-master set.

You can use the referential integrity plug-in with multi-master replication

providing that this plug-in is enabled on just one master in the multi-master set.

This ensures that referential integrity updates are made on just one of the master

servers, and propagated to the other.

Replication and Database Links
When you distribute entries using chaining, the server containing the database link

points to a remote server that contains the actual data. In this environment, you

cannot replicate the database link itself. You can, however, replicate the database

that contains the actual data on the remote server.

You must not use the replication process as a backup for database links. You must

backup database links manually. For more information about chaining and entry

distribution, refer to Chapter 5, “Designing the Directory Topology,” on page 79.

Figure 6-7 Replicating Chained Databases

NOTE By default, these plug-ins are disabled. You need to use the

Directory Server Console or the command line to enable them.

Replica

Replica

BE Instance 1 BE Instance 2

ou=marketing

dc=siroe,dc=com

ou=sales

BE Multiplexor
Chapter 6 Designing the Replication Process 123

Using Replication with other Directory Features
Schema Replication
When iPlanet Directory Server is used in a replicated environment, the schema

must be consistent across all of the directory servers that participate in replication.

If the schema is not consistent across servers, the replication process is likely to

generate many errors.

The best way to guarantee schema consistency is to make schema modifications on

a single master server, even in the case of a multi-master replication environment.

Schema replication happens automatically. If replication has been configured

between a supplier and a consumer, schema replication will happen by default.

The logic used by iPlanet Directory Server for schema replication is the same in

every replication scenario, and can be described as follows:

1. Before pushing data to consumer servers, the supplier server checks whether

its own version of the schema is in sync with the version of the schema held on

consumer servers.

2. If the schema entries on both supplier and consumers are the same, the

replication operation proceeds.

3. If the version of the schema on the supplier server is more recent than the

version stored on the consumer, the supplier server replicates its schema to the

consumer before proceeding with the data replication.

If you make schema modifications on two master servers in a multi-master set, the

consumers will contain replicated data from the two masters, each with different

schema. Whichever master was updated last will “win” and its schema will be

propagated to the consumer. In this situation, the schema on the consumers is

always different from one of the masters. To avoid this, always make sure you

make schema modifications on one master only.

NOTE If the version of the schema on the supplier server is older than the

version stored on the consumer, you will probably witness a lot of

errors during replication because the schema on the consumer

cannot support the new data.
124 iPlanet Directory Server Deployment Guide • February 2002

Using Replication with other Directory Features
Changes made to custom schema files are only replicated if the schema is updated

using LDAP or the Directory Server Console. These custom schema files should be

copied to each server in order to maintain the information in the same schema file

on all servers. For more information, refer to “Creating Custom Schema Files,” on

page 51.

For more information on schema design, refer to Chapter 3, “How to Design the

Schema.”

NOTE You must never update the schema on a consumer server because

the supplier server is unable to resolve the conflicts that will occur

and replication will fail.

Schema should be maintained on a master supplier server in a

replicated topology. If using the standard 99user.ldif file, these

changes will be replicated to all consumers. When using custom

schema files, ensure that these files are copied to all servers after

making changes on the master supplier. After copying files, the

server must be restarted. Refer to “Creating Custom Schema Files,”

on page 51 for more information.
Chapter 6 Designing the Replication Process 125

Using Replication with other Directory Features
126 iPlanet Directory Server Deployment Guide • February 2002

Chapter 7

Designing a Secure Directory

How you secure the data in Directory Server affects all of the previous design

areas. Your security design needs to protect the data contained by your directory

and meet the security and privacy needs of your users and applications.

This chapter describes how to analyze your security needs and explains how to

design your directory to meet these needs. It includes the following sections:

• About Security Threats

• Analyzing Your Security Needs

• Overview of Security Methods

• Selecting Appropriate Authentication Methods

• Preventing Authentication by Account Inactivation

• Designing a Password Policy

• Designing Access Control

• Securing Connections With SSL

• Other Security Resources

About Security Threats
There are many potential threats to the security of your directory. Understanding

the most common threats helps you plan your overall security design. The most

typical threats to directory security fall into the following three categories:

• Unauthorized Access

• Unauthorized Tampering
127

About Security Threats
• Denial of Service

The remainder of this section provides a brief overview of the most common

security threats to assist you with designing your directory’s security policies.

Unauthorized Access
While it may seem simple to protect your directory from unauthorized access, the

problem can in fact be more complicated. There are several opportunities along the

path of directory information delivery for an unauthorized client to gain access to

data.

For example, an unauthorized client can use another client’s credentials to access

the data. This is particularly likely when your directory uses unprotected

passwords. Or an unauthorized client can eavesdrop on the information

exchanged between a legitimate client and Directory Server.

Unauthorized access can occur from inside your company, or if your company is

connected to an extranet or to the Internet, from outside.

The scenarios described here are just a few examples of how an unauthorized client

might access your directory data.

The authentication methods, password policies, and access control mechanisms

provided by the iPlanet Directory Server offer efficient ways of preventing

unauthorized access. Refer to “Selecting Appropriate Authentication Methods,” on

page 133, “Designing a Password Policy,” on page 137, and “Designing Access

Control,” on page 142, for more information about these topics.

Unauthorized Tampering
If intruders gain access to your directory or intercept communications between

Directory Server and a client application, they have the potential to modify (or

tamper with) your directory data. Your directory is rendered useless if the data can

no longer be trusted by clients, or if the directory itself cannot trust the

modifications and queries it receives from clients.

For example, if your directory cannot detect tampering, an attacker could change a

client’s request to the server (or not forward it) and change the server’s response to

the client. SSL and similar technologies can solve this problem by signing

information at either end of the connection. For more information about using SSL

with iPlanet Directory Server, refer to “Securing Connections With SSL,” on

page 151.
128 iPlanet Directory Server Deployment Guide • February 2002

Analyzing Your Security Needs
Denial of Service
With a denial of service attack, the attacker’s goal is to prevent the directory from

providing service to its clients. For example, an attacker might simply use the

system’s resources to prevent them from being used by someone else.

iPlanet Directory Server offers a way of preventing denial of service attacks by

setting limits on the resources allocated to a particular bind DN. For more

information about setting resource limits based on the user’s bind DN, refer to

“User Account Management” in the iPlanet Directory Server Administrator’s Guide.

Analyzing Your Security Needs
You need to analyze your environment and users to determine your specific

security needs. When you performed your site survey in Chapter 3, “Directory

Data Design,” you made some basic decisions about who can read and write the

individual pieces of data in your directory. This information now forms the basis of

your security design.

The way you implement security is also dependent on how you use the directory to

support your business. A directory that serves an intranet does not require the

same security measures as a directory that supports an extranet, or e-commerce

applications that are open to the Internet.

If your directory serves an intranet only, your concerns are:

• To provide users and applications with access to the information they need to

perform their jobs

• To protect sensitive data regarding employees or your business from general

access

If your directory serves an extranet, or supports e-commerce applications over the

Internet, in addition to the previous points, your concerns are:

• To offer your customers a guarantee of privacy

• To guarantee information integrity

This section contains the following information about analyzing your security

needs:

• “Determining Access Rights,” on page 130

• “Ensuring Data Privacy and Integrity,” on page 130
Chapter 7 Designing a Secure Directory 129

Analyzing Your Security Needs
• “Conducting Regular Audits,” on page 131

• “Example Security Needs Analysis,” on page 131

Determining Access Rights
When you perform your data analysis, you decide what information your users,

groups, partners, customers, and applications need to access.

You may grant access rights in two ways:

• Grant all categories of users as many rights as possible while still protecting

your sensitive data.

If you choose this open method, you must concentrate on determining what

data is sensitive or critical to your business

• Grant each category of users the minimum access they require to do their jobs.

If you choose this restrictive method, you must spend some time

understanding the information needs of each category of user inside, and

possibly outside of your organization.

No matter how you decide to grant access rights, you should create a simple table

that lists the categories of users in your organization and the access rights you

grant to each. You may also want to create a table that lists the sensitive data held

in the directory, and for each piece of data, the steps taken to protect it.

For information about checking the identity of users, refer to “Selecting

Appropriate Authentication Methods,” on page 133. For information about

restricting access to directory information, refer to “Designing Access Control,” on

page 142.

Ensuring Data Privacy and Integrity
When you are using the directory to support exchanges with business partners

over an extranet, or to support e-commerce applications with customers on the

Internet, you must ensure the privacy and the integrity of the data exchanged.

You can do this in several ways:

• By encrypting data transfers

• By using certificates to sign data transfers
130 iPlanet Directory Server Deployment Guide • February 2002

Analyzing Your Security Needs
For information about encryption methods provided in the iPlanet Directory

Server, refer to “Password Storage Scheme,” on page 140. For information about

signing data, refer to “Securing Connections With SSL,” on page 151.

Conducting Regular Audits
As an extra security measure, you should conduct regular audits to verify the

efficiency of your overall security policy. You can do this by examining the log files

and the information recorded by the SNMP agents.

For more information about SNMP, refer to iPlanet Directory Server Administrator’s
Guide.

Example Security Needs Analysis
The examples provided in this section illustrate how the imaginary ISP company

siroe.com analyzes its security needs.

siroe.com’s business is to offer web hosting and internet access. Part of siroe.com’s

activity is to host the directories of client companies. It also provides internet access

to a number of individual subscribers.

Therefore, siroe.com has three main categories of information in its directory:

• siroe.com internal information

• Information belonging to corporate customers

• Information pertaining to individual subscribers

siroe.com needs the following access controls:

• Provide access to the directory administrators of Company22 and Company33

to their own directory information.

• Implement Company22’s and Company33’s own access control policies for

their directory information.

• Implement a standard access control policy for all individual clients who use

siroe.com for internet access from their homes.

• Deny access to siroe.com’s corporate directory to all outsiders.

• Grant read access to siroe.com’s directory of subscribers to the world.
Chapter 7 Designing a Secure Directory 131

Overview of Security Methods
Overview of Security Methods
iPlanet Directory Server offers a number of methods that you can use to design an

overall security policy that is adapted to your needs. Your security policy should

be strong enough to prevent sensitive information from being modified or

retrieved by unauthorized users while simple enough to administer easily. A

complex security policy can lead to mistakes that either prevent people from

accessing information that you want them to access or, worse, allow people to

modify or retrieve directory information that you do not want them to access.

iPlanet Directory Server provides the following security methods:

• Authentication

A means for one party verifies another’s identity. For example, a client gives a

password to Directory Server during an LDAP bind operation.

• Password policies

Defines the criteria that a password must satisfy to be considered valid, for

example, age, length, and syntax.

• Encryption

Protects the privacy of information. When data is encrypted, it is scrambled in

a way that only the recipient can understand.

• Access control

Tailors the access rights granted to different directory users, and provides a

means of specifying required credentials or bind attributes.

• Account inactivation

Disables a user account, group of accounts or an entire domain so that all

authentication attempts are automatically rejected.

• Signing with SSL

Maintains the integrity of information. If information is signed, the recipient

can determine that it was not tampered with during transit.

• Auditing

Allows you to determine if the security of your directory has been

compromised. For example, you can audit the log files maintained by your

directory.
132 iPlanet Directory Server Deployment Guide • February 2002

Selecting Appropriate Authentication Methods
These tools for maintaining security can be used in combination in your security

design. You can also use other features of the directory such as replication and data

distribution to support your security design.

Selecting Appropriate Authentication Methods
A basic decision you need to make regarding your security policy is how users

access the directory. Will you allow anonymous access, or will you require every

person who uses your directory to bind to the directory?

iPlanet Directory Server provides the following methods for authentication:

• Anonymous Access

• Simple Password

• Certificate-Based Authentication

• Simple Password Over TLS

• Proxy Authorization

The directory uses the same authentication mechanism for all users, whether they

are people or LDAP-aware applications.

For information about preventing authentication by a client or group of clients, see

“Preventing Authentication by Account Inactivation,” on page 137.

Anonymous Access
Anonymous access provides the easiest form of access to your directory. It makes

data available to any user of your directory, whether they have authenticated or

not.

However, anonymous access does not allow you to track who is performing what

kinds of searches; only that someone is performing searches. When you allow

anonymous access, anyone who connects to your directory can access the data.

Therefore, if you attempt to block a specific user or group of users from seeing

some kinds of directory data, but you have allowed anonymous access to that data,

then those users can still access the data simply by binding to the directory

anonymously.
Chapter 7 Designing a Secure Directory 133

Selecting Appropriate Authentication Methods
You can restrict the privileges of anonymous access. Usually directory

administrators only allow anonymous access for read, search, and compare

privileges (not for write, add, delete, or selfwrite). Often, administrators limit

access to a subset of attributes that contain general information such as names,

telephone numbers, and email addresses. Anonymous access should never be

allowed for more sensitive data such as government identification numbers (social

security numbers in the US), home telephone numbers and addresses, and salary

information.

If a user attempts to bind with an entry that does not contain a user password

attribute, Directory Server either:

• Grants anonymous access if the user does not attempt to provide a password

• Denies access if the user provides any non-null string for the password

For example, consider the following ldapsearch command:

% ldapsearch -D “cn=joe” -w secretpwd -b “siroe.com” cn=joe

Although the directory allows anonymous access for read, Joe cannot access his

own entry because it does not contain a password that matches the one he

provided in the ldapsearch command.

Simple Password
If you have not set up anonymous access, you must authenticate to the directory

before you can access the directory contents. With simple password authentication,

a client authenticates to the server by sending a simple, reusable password.

For example, a client authenticates to the directory via a bind operation in which it

provides a distinguished name and a set of credentials. The server locates the entry

in the directory that corresponds to the client DN and checks whether the

password given by the client matches the value stored with the entry. If it does, the

server authenticates the client. If it does not, the authentication operation fails and

the client receives an error message.

The bind DN often corresponds to the entry of a person. However, some directory

administrators find it useful to bind as an organizational entry rather than as a

person. The directory requires the entry used to bind to be of an object class that

allows the userPassword attribute. This ensures that the directory recognizes the

bind DN and password.

Most LDAP clients hide the bind DN from the user because users may find the long

strings of DN characters hard to remember. When a client attempts to hide the bind

DN from the user, it uses a bind algorithm such as the following:
134 iPlanet Directory Server Deployment Guide • February 2002

Selecting Appropriate Authentication Methods
1. The user enters a unique identifier such as a user ID (for example, fchen).

2. The LDAP client application searches the directory for that identifier and

returns the associated distinguished name (such as

uid=fchen,ou=people,dc=siroe,dc=com).

3. The LDAP client application binds to the directory using the retrieved

distinguished name and the password supplied by the user.

Simple password authentication offers an easy way of authenticating users, but it is

best to restrict its use to your organization’s intranet. It does not offer the level of

security required for transmissions between business partners over an extranet, or

for transmissions with customers out on the Internet.

Certificate-Based Authentication
An alternate form of directory authentication involves using security certificates to

bind to the directory. The directory prompts your users for a password when they

first access it. However, rather than matching a password stored in the directory,

the password opens the user’s certificate database.

If the user supplies the correct password, the directory client application obtains

authentication information from the certificate database. The client application and

the directory then use this information to identify the user by mapping the user’s

certificate to a directory DN. The directory allows or denies access based on the

directory DN identified during this authentication process.

For more information about certificates and SSL, see Managing Servers with iPlanet
Console.

Simple Password Over TLS
When a secure connection is established between Directory Server and a client

application using SSL or the Start TLS operation, the server can demand an extra

level of authentication by requesting a password. In such cases, the password is not

passed in clear over the wire.

NOTE The drawback of simple password authentication is that the

password is sent in clear text over the wire. If a rogue user is

listening, this can compromise the security of your directory

because that person can impersonate an authorized user.
Chapter 7 Designing a Secure Directory 135

Selecting Appropriate Authentication Methods
For more information about SSL, refer to “Securing Connections With SSL,” on

page 151. For information about the Start TLS operation, refer to the iPlanet
Directory Server Administrator’s Guide.

Proxy Authorization
The proxy authorization method is a special form of authentication: a user that

binds to the directory using its own identity is granted through proxy

authorization the rights of another user.

For example, using proxy authorization, directory administrators can request

access to the directory by assuming the identity of a regular user. They bind to the

directory using their own credentials, but for purposes of access control evaluation,

are granted the rights of the regular user. This assumed identity is called the proxy
user, and the DN of that user, the proxy DN.

To configure the directory to allow proxy requests:

• You must grant the administrators the right to proxy as other users

• You must grant your regular users normal access rights as defined in your

access control policy.

The proxy mechanism is very powerful. One of its main advantages is that you can

enable an LDAP application to use a single thread with a single bind to service

multiple users making requests against the Directory Server. Instead of having to

bind and authenticate for each user, the client application binds to the Directory

Server and uses proxy rights.

The proxy DN is specified in the LDAP operation submitted by the client

application.

NOTE You can grant proxy rights to all users of the directory except the

Directory Manager. You should exercise great care when granting

proxy rights because you grant the right to specify any DN (except

the Directory Manager DN) as the proxy DN.
136 iPlanet Directory Server Deployment Guide • February 2002

Preventing Authentication by Account Inactivation
Preventing Authentication by Account Inactivation
You can temporarily inactivate a user account or a set of accounts. Once

inactivated, a user cannot bind to the directory, and the authentication operation

fails.

Account inactivation is implemented through the operational attribute

nsAccountLock . When an entry contains the nsAccountLock attribute with a value

of true , the server rejects the bind.

You use the same procedures for inactivating users and roles. However,

inactivating a role means that you inactivate all of the members of that role and not

the role entry itself. For more information about roles, refer to “Managed, Filtered,

and Nested Roles,” on page 71.

Designing a Password Policy
A password policy is a set of rules that govern how passwords are used in a given

system. The password policy mechanism provided by Directory Server allows you

to dictate such things as how short a password must be and whether users can

reuse passwords. When users attempt to bind to the directory, the directory

compares the password with the value in the password attribute of the user’s

directory entry to make sure they match. Directory Server also uses the rules

defined by the password policy to ensure that the password is valid before

allowing the user to bind to the directory.

Password Policy Attributes
This section describes the attributes you set to create a password policy for your

server. The attributes are described in the following sections:

• User-Defined Passwords

• Password Change After Reset

• Password Expiration

• Expiration Warning

• Password Syntax Checking

• Password Length

• Password Minimum Age
Chapter 7 Designing a Secure Directory 137

Designing a Password Policy
• Password History

• Password Storage Scheme

Password Change After Reset
The Directory Server password policy lets you decide whether users must change

their passwords after the first login or after the password is reset by the

administrator.

Often the initial passwords set by the administrator follow some sort of

convention, such as the user’s initials, user ID, or the company name. Once the

convention is discovered, it is usually the first value tried by a hacker trying to

break in. In this case, it is a good idea to require users to change their passwords

after such a change. If you configure this option for your password policy, users

are required to change their password even if user-defined passwords are disabled.

(See “User-Defined Passwords,” on page 138 for information.)

If you choose not to allow users to change their own passwords, administrator

assigned passwords should not follow any obvious convention and should be

difficult to discover.

By default, users do not need to change their passwords after reset.

User-Defined Passwords
You can set up your password policy to either allow or not allow users to change

their own passwords. A good password is the key to a strong password policy.

Good passwords do not use trivial words—that is, any word that can be found in a

dictionary, names of pets or children, birthdays, user IDs, or any other information

about the user that can be easily discovered (or stored in the directory itself).

Also, a good password should contain a combination of letters, numbers, and

special characters. Often, however, users simply use passwords that are easy to

remember. This is why some enterprises choose to set passwords for users that

meet the criteria of a “good” password, and do not allow the users to change the

passwords.

However, assigning passwords to users takes a substantial amount of an

administrator’s time. In addition, by providing passwords for users rather than

letting them come up with passwords that are meaningful to them and therefore

more easily remembered, you run the risk that the users will write their passwords

down somewhere where they can be discovered.

By default, user-defined passwords are allowed.
138 iPlanet Directory Server Deployment Guide • February 2002

Designing a Password Policy
Password Expiration
You can set your password policy so that users can use the same passwords

indefinitely. Or, you can set your policy so that passwords expire after a given

time. In general, the longer a password is in use, the more likely it is to be

discovered. On the other hand, if passwords expire too often, users may have

trouble remembering them and resort to writing their passwords down. A

common policy is to have passwords expire every 30 to 90 days.

The server remembers the password expiration even if you turn the password

expiration feature off. This means that if you turn the password expiration option

back on, passwords are valid only for the duration you set before you last disabled

the feature. For example, suppose you set up passwords to expire every 90 days

and then decided to disable password expiration. When you decide to re-enable

password expiration, the default password expiration duration is 90 days because

that is what you had it set to before you disabled the feature.

By default, user passwords never expire.

Expiration Warning
If you choose to set your password policy so that user passwords expire after a

given number of days, it is a good idea to send users a warning before their

passwords expire. You can set your policy so that users are sent a warning 1 to

24,855 days before their passwords expire. The Directory Server displays the

warning when the user binds to the server. If password expiration is turned on, by

default, a warning is sent (via LDAP message) to the user one day before the user’s

password expires, provided the user’s client application supports this feature.

Password Syntax Checking
The password policy establishes some syntax guidelines for password strings, such

as the minimum password length guideline. The password syntax-checking

mechanism ensures that the password strings conform to the password syntax

guidelines established by the password policy. Also, the password syntax-checking

mechanism also ensures that the password is not a “trivial” word. A trivial word is

any value stored in the uid , cn , sn , givenName , ou , or mail attribute of the user’s

entry.

By default, password syntax checking is turned off.
Chapter 7 Designing a Secure Directory 139

Designing a Password Policy
Password Length
The Directory Server allows you to specify a minimum length for user passwords.

In general, shorter passwords are easier to crack. You can require passwords that

are from 2 to 512 characters. A good length for passwords is 8 characters. This is

long enough to be difficult to crack, but short enough so that users can remember

the password without writing it down.

By default, no minimum password length is set.

Password Minimum Age
You can configure the Directory Server to not allow users to change their

passwords for time you specify. You can use this feature in conjunction with the

passwordHistory attribute to discourage users from reusing old passwords.

Setting the password minimum age (passwordMinAge) attribute to 2 days, for

example, prevents users from repeatedly changing their password during a single

session to cycle through the password history and reuse an old password once it is

removed from the history list. You can specify any number from 0 to 24,855 days. A

value of zero (0) indicates that the user can change the password immediately.

Password History
You can set up the Directory Server to store from 2 to 24 passwords in history, or,

you can disable password history, thus allowing users to reuse passwords.

If you set up your password policy to enable password history, the directory stores

a specific number of old passwords. If a user attempts to reuse one of the

passwords the Directory Server has stored, the directory rejects the password. This

feature prevents users from reusing a couple of passwords that are easy to

remember.

The passwords remain in history even if you turn the history feature off. This

means that if you turn the password history option back on, users cannot reuse the

passwords that were in the history before you disabled password history.

The server does not maintain a password history by default.

Password Storage Scheme
The password storage scheme specifies the type of encryption used to store

Directory Server passwords within the directory. You can specify:

• Clear text (no encryption)

• Secure Hash Algorithm (SHA)
140 iPlanet Directory Server Deployment Guide • February 2002

Designing a Password Policy
• Salted Secure Hash Algorithm (SSHA). This encryption method is the default.

• UNIX crypt algorithm

Although passwords stored in the directory can be protected through the use of

access control information (ACI) instructions, it is still not a good idea to store

cleartext passwords in the directory. The crypt algorithm provides compatibility

with UNIX passwords. SSHA is the most secure of the choices.

Designing a Password Policy in a Replicated
Environment
Password and account lockout policies are enforced in a replicated environment as

follows:

• Password policies are enforced on the data master.

• Account lockout is enforced on all servers participating in replication.

Some of the password policy information in your directory is replicated. The

replicated attributes are:

• passwordMinAge and passwordMaxAge

• passwordExp

• passwordWarning

However, the configuration information is kept locally and is not replicated. This

information includes the password syntax and the history of password

modifications. Account lockout counters are not replicated either.

When configuring a password policy in a replicated environment, consider the

following points:

• All replicas issue warnings of an impending password expiration. This

information is kept locally on each server, so if a user binds to several replicas

in turn, the user receives the same warning several times. In addition, if the

user changes the password, it may take time for this information to be updated

on the consumer replicas. If a user changes a password and then immediately

rebinds, the bind may fail until the consumer replica registers the changes

made to the master replica.

• You want the same bind behavior to occur on all servers, including masters

and replicas. Make sure you create the same password policy configuration

information on each server.
Chapter 7 Designing a Secure Directory 141

Designing Access Control
• Account lockout counters may not work as expected in a multi-master

environment.

• Entries that are created for replication (for example, the server identities) need

to have passwords that never expire. To make sure that these special users

have passwords that do not expire, add the passwordExpirationTime

attribute to the entry and give it a value of 20380119031407Z (the top of the

valid range).

Designing an Account Lockout Policy
Once you have established a password policy for your directory, you can protect

your user passwords from potential threats by configuring an account lockout

policy.

The lockout policy works in conjunction with the password policy to provide

further security. You can set up your password policy so that a specific user is

locked out of the directory after a given number of failed attempts to bind.

The account lockout feature protects against hackers who try to break into the

directory by repeatedly trying to guess a user’s password. Account lockout

counters are local to a directory server. This feature is not designed as a global

lockout from your directory service, which means that even in a replicated

environment, account lockout counters are not replicated.

Designing Access Control
Once you decide on one or more authentication schemes to establish the identity of

directory clients, you need to decide how to use the schemes to protect information

contained in your directory. Access control allows you to specify that certain

clients have access to particular information, while other clients do not.

You specify access control using one or more access control list (ACL). Your

directory’s ACLs consist of a series of one or more access control information (ACI)

statements that either allow or deny permissions (such as read, write, search) and

compare to specified entries and their attributes.

Using the ACL, you can set permissions for the following:

• The entire directory

• A particular subtree of the directory

• Specific entries in the directory
142 iPlanet Directory Server Deployment Guide • February 2002

Designing Access Control
• A specific set of entry attributes

• Any entry that matches a given LDAP search filter

In addition, you can set permissions for a specific user, for all users belonging to a

specific group, or for all users of the directory. You can also define access for a

network location such as an IP address or a DNS name.

About the ACI Format
When designing your security policy, it is helpful to understand how ACIs are

represented in your directory. It is also helpful to understand what permissions

you can set in your directory. This section gives you a brief overview of the ACI

mechanism. For a complete description of the ACI format, see the iPlanet Directory
Server Administrator’s Guide.

Directory ACIs take the following general form:

target permission bind_rule

The ACI variables are defined below:

• target

Specifies the entry (usually a subtree) the ACI targets, the attribute it targets, or

both. The target identifies the directory element that the ACI applies to. An ACI

can target only one entry, but it can target multiple attributes. In addition, the

target can contain an LDAP search filter. This allows you to set permissions for

widely scattered entries that contain common attribute values.

• permission

Identifies the actual permission being set by this ACI. The permission says that

the ACI allows or denies a specific type of directory access, such as read or

search, to the specified target.

• bind_rule

Identifies the bind DN or network location to which the permission applies.

The bind rule may also specify an LDAP filter, and if that filter is evaluated to

be true for the binding client application, then the ACI applies to the client

application.

So, ACIs are expressed as follows:

“For the directory object target, allow or deny permission if the bind_rule is true.”
Chapter 7 Designing a Secure Directory 143

Designing Access Control
permission and bind_rule are set as a pair, and you can have multiple permission
bind_rule pairs for every target. This allows you to efficiently set multiple access

controls for any given target. For example:

target(permission bind_rule)(permission bind_rule)...

For example, you can set a permission that allows anyone binding as Babs Jensen

to write to Babs Jensen’s telephone number. The bind rule in this permission is the

part that states “if you bind as Babs Jensen.” The target is Babs Jensen’s phone

number, and the permission is write access.

Targets
You must decide what entry is targeted by every ACI you create in your directory.

If you target a directory entry that is a directory branch point, then that branch

point, as well as all of its child entries, is included in the scope of the permission. If

you do not explicitly specify a target entry for the ACI, then the ACI is targeted to

the directory entry that contains the ACI statement. Also, the default set of

attributes targeted by the ACI is any attribute available in the targeted entry’s

object class structure.

For every ACI, you can target only one entry or only those entries that match a

single LDAP search filter.

In addition to targeting entries, you can also target attributes on the entry. This

allows you to set a permission that applies to only a subset of attribute values. You

can target sets of attributes by explicitly naming those attributes that are targeted,

or by explicitly naming the attributes that are not targeted by the ACI. Use the

latter case if you want to set a permission for all but a few attributes allowed by an

object class structure.

Permissions
You allow or deny permissions. In general, you should avoid denying permissions

for the reasons explained in “Allowing or Denying Access,” on page 147.

You can allow or deny the following permissions:

• Read

Indicates whether directory data may be read.

• Write

Indicates whether directory data may be changed or created. This permission

also allows directory data to be deleted, but not the entry itself. To delete an

entire entry, the user must have delete permissions.
144 iPlanet Directory Server Deployment Guide • February 2002

Designing Access Control
• Search

Indicates whether the directory data can be searched. This differs from the

Read permission in that Read allows directory data to be viewed if it is

returned as part of a search operation. For example, if you allow searching for

common names and read for a person’s room number, then the room number

can be returned as part of the common name search, but the room number

cannot, itself, be searched for. This would prevent people from searching your

directory to see who occupies a particular room.

• Compare

Indicates whether the data may be used in comparison operations. Compare

implies the ability to search, but actual directory information is not returned

from the search. Instead, a simple Boolean value is returned that indicates

whether the compared values match. This is used to match userPassword

attribute values during directory authentication.

• Selfwrite

Used only for group management. This permission allows users to add or

delete themselves from a group. Selfwrite works with proxy authorization: it

grants the right to add or remove the proxy DN from a group entry (not the

DN of the bound user).

• Add

Indicates whether child entries can be created. This permission allows a user to

create child entries beneath the targeted entry.

• Delete

Indicates whether an entry can be deleted. This permission allows a user to

delete the targeted entry.

• Proxy

Indicates that the user can use any other DN (except Directory Manager) to

access the directory with the rights of this DN.

Bind Rules
The bind rule usually indicates the bind DN subject to the permission. It can also

specify bind attributes such as time of day or IP address.

Bind rules allow you to easily express that the ACI applies only to a user’s own

entry. You can use this to allow users to update their own entries without running

the risk of a user updating another user’s entry.
Chapter 7 Designing a Secure Directory 145

Designing Access Control
Using bind rules, you can indicate that the ACI is applicable:

• Only if the bind operation is arriving from a specific IP address or DNS

hostname. This is often used to force all directory updates to occur from a

given machine or network domain.

• If the person binds anonymously. Setting a permission for anonymous bind

means that the permission also applies to anyone who binds to the directory.

• For anyone who successfully binds to the directory. This allows general access

while preventing anonymous access.

• Only if the client has bound as the immediate parent of the entry.

• Only if the entry that the person has bound as meets a specific LDAP search

criteria.

The following keywords are provided to help you express these kinds of access

more easily:

• Parent

If the bind DN is the immediate parent entry, then the bind rule is true. This

allows you to grant specific permissions that, for example, allow a directory

branch point to manage its immediate child entries.

• Self

If the bind DN is the same as the entry requesting access, then the bind rule is

true. For example, you can grant specific permission that allows individuals to

update their own entries.

• All

The bind rule is true for anyone who has successfully bound to the directory.

• Anyone

The bind rule is true for everyone. This keyword is what allows or denies

anonymous access.

Setting Permissions
By default all users are denied access rights of any kind. The exception to this is the

directory manager. For this reason, you must set some ACIs for your directory if

you want your users to be able to access your directory.
146 iPlanet Directory Server Deployment Guide • February 2002

Designing Access Control
The following sections describe the access control mechanism provided by your

Directory Server. For information about how to set ACIs in your directory, see the

iPlanet Directory Server Administrator’s Guide.

The Precedence Rule
When a user attempts any kind of access to a directory entry, Directory Server

examines the access control set in the directory. To determine access, Directory

Server applies the Precedence Rule. The rule states that when two conflicting

permissions exist, the permission that denies access always takes precedence over

the permission that grants access.

For example, if you deny write permission at the directory’s root level, and you

make that permission applicable to everyone accessing the directory, then no user

can write to the directory regardless of any other permissions that you may allow.

To allow a specific user write permissions to the directory, you have to restrict the

scope of the original deny-for-write so that it does not include that user. Then you

have to create an additional allow-for-write permission for the user in question.

Allowing or Denying Access
You can explicitly allow or deny access to your directory tree. Be careful of

explicitly denying access to the directory. Because of the precedence rule, if the

directory finds rules explicitly forbidding access, the directory will forbid access

regardless of any conflicting permissions that may grant access.

Limit the scope of your allow access rules to include only the smallest possible

subset of users or client applications. For example, you can set permissions that

allow users to write to any attribute on their directory entry, but then deny all users

except members of the Directory Administrators group the privilege of writing to

the uid attribute. Alternatively, you can write two access rules that allow write

access in the following ways:

• Create one rule that allows write privileges to every attribute except the uid

attribute. This rule should apply to everyone.

• Create one rule that allows write privileges to the uid attribute. This rule

should apply only to members of the Directory Administrators group.

By providing only allow privileges, you avoid the need to set an explicit deny

privilege.

When to Deny Access
You rarely need to set an explicit deny. However, you may find an explicit deny

useful in the following circumstances:
Chapter 7 Designing a Secure Directory 147

Designing Access Control
• You have a large directory tree with a complicated ACL spread across it.

For security reasons, you find that you suddenly need to deny access to a

particular user, group, or physical location. Rather than take the time to

carefully examine your existing ACL to understand how to appropriately

restrict the allow permissions, you may want to temporarily set the explicit

deny until you have time to do this analysis. If your ACL has become this

complicated, then, in the long run, the deny ACI only adds to your

administrative burden. As soon as possible, rework your ACL to avoid the

explicit deny and simplify your overall access control scheme.

• You want to restrict access control based on a day of the week or an hour of the

day.

For example, you can deny all writing activities from Sunday at 11:00 p.m.

(2300) to Monday at 1:00 a.m. (0100). From an administrative point of view, it

may be easier to manage an ACI that explicitly restricts time-based access of

this kind than to search through the directory for all the allow for write ACIs

and restrict their scopes in this time frame.

• You want to restrict privileges when you are delegating directory

administration authority to multiple people.

If you are allowing a person or group of people to manage some part of the

directory tree, but you want to make sure that they do not modify some aspect

of the tree, use an explicit deny. For example, if you want to make sure the Mail

Administrators do not allow write access to the common name attribute, then

set an ACI that explicitly denies write access to the common name attribute.

Where to Place Access Control Rules
Access control rules can be placed on any entry in the directory. Often

administrators place access control rules on entries of type country ,

organization , organizationalUnit , inetOrgPerson , or group .

To simplify your ACL administration, group your rules as much as possible. Since

a rule generally applies to its target entry and to all that entry’s children, it is best to

place access control rules on root points in the directory or on directory branch

points, rather than to scatter them across individual leaf (such as person) entries.

Using Filtered Access Control Rules
One of the more powerful features of the Directory Server ACI model is the ability

to use LDAP search filters to set access control. LDAP search filters allow you to set

access to any directory entry that matches a defined set of criteria.
148 iPlanet Directory Server Deployment Guide • February 2002

Designing Access Control
For example, you could allow read access for any entry that contains an

organizationalUnit attribute that is set to Marketing.

Filtered access control rules let you use predefine levels of access. For example,

suppose your directory contains home address and telephone number information.

Some people want to publish this information, while others want to be “unlisted.”

You can handle this situation by doing the following:

• Create an attribute on every user’s directory entry called

publishHomeContactInfo .

• Set an access control rule that grants read access to the homePhone and

homePostalAddress attributes only for entries whose

publishHomeContactInfo attribute is set to TRUE (meaning enabled). Use an

LDAP search filter to express the target for this rule.

• Allow your directory users to change the value of their own

publishHomeContactInfo attribute to either TRUE or FALSE. In this way, the

directory user can decide whether this information is publicly available.

For more information about using LDAP search filters, and on using LDAP search

filters with ACIs, see the iPlanet Directory Server Administrator’s Guide.

Using ACIs: Some Hints and Tricks
The following are some ideas that you should keep in mind when you implement

your security policy. They can help to lower the administrative burden of

managing your directory security model and improve your directory’s

performance characteristics.

Some of the following hints have already been described earlier in this chapter.

They are included here to provide you with a complete list.

• Minimize the number of ACIs in your directory.

Although Directory Server can evaluate over 50,000 ACIs, it is difficult to

manage a large number of ACI statements. A large number of ACIs makes it

hard for you to determine immediately the directory object available to

particular clients.

iPlanet Directory Server 5.1 provides a new feature that minimizes the number

of ACIs in the directory by using macros. Macros are placeholders that are

used to represent a DN, or a portion of a DN, in an ACI. You can use the macro

to represent a DN in the target portion of the ACI, or in the bind rule portion,

or both. For more information on macro ACIs, refer to “Managing Access

Control” in the iPlanet Directory Server Administrator’s Guide.
Chapter 7 Designing a Secure Directory 149

Designing Access Control
• Balance allow and deny permissions.

Although the default rule is to deny access to any user who has not been

specifically granted access, you might find that you can save on the number of

ACIs by using one ACI allowing access close to the root of the tree, and a small

number of deny ACIs close to the leaf entries. This scenario can avoid the use

of multiple allow ACIs close to the leaf entries.

• Identify the smallest set of attributes on any given ACI.

This means that if you are allowing or restricting access to a subset of attributes

on an object, determine whether the smallest list is the set of attributes that are

allowed or the set of attributes that are denied. Then express your ACI so that

you are managing the smallest list.

For example, the people object class contains dozens of attributes. If you want

to allow a user to update just one or two of these attributes, then write your

ACI so that it allows write access for just those few attributes. If, however, you

want to allow a user to update all but one or two attributes, then create the ACI

so that it allows write access for everything but a few named attributes.

• Use LDAP search filters cautiously.

Because search filters do not directly name the object that you are managing

access for, their use can result in unexpected surprises, especially as your

directory becomes more complex. If you are using search filters in ACIs, run an

ldapsearch operation using the same filter to make sure you know what the

results of the changes mean to your directory.

• Do not duplicate ACIs in differing parts of your directory tree.

Watch out for overlapping ACIs. For example, if you have an ACI at your

directory root point that allows a group write access to the commonName and

givenName attributes and another ACI that allows the same group write access

for just the commonName attribute, then consider reworking your ACIs so that

only one control grants the write access for the group.

As your directory grows more complicated, it becomes increasingly easy to

accidentally overlap ACIs in this manner. By avoiding ACI overlap, you make

your security management easier while potentially reducing the total number

of ACIs contained in your directory.

• Name your ACIs.

While naming ACIs is optional, giving each ACI a short, meaningful name

helps you to manage your security model, especially when examining your

ACIs from the Directory console.
150 iPlanet Directory Server Deployment Guide • February 2002

Securing Connections With SSL
• Use standard attributes in user entries to determine access rights.

As far as possible, use information that is already part of standard user entries

to define access rights. If you need to create special attributes, consider creating

them as part of a role or Class of Service (CoS) definition. For more information

on roles and CoS, refer to “Grouping Directory Entries,” on page 70.

• Group your ACIs as closely together as possible within your directory.

Try to limit ACI placement to your directory root point and to major directory

branch points. Grouping ACIs helps you manage your total list of ACIs, and

also helps you keep the total number of ACIs in your directory to a minimum.

• Avoid using double negatives, such as deny write if the bind DN is not equal

to cn=Joe .

Although this syntax is perfectly acceptable to the server, it is confusing for a

human administrator.

Securing Connections With SSL
After designing your authentication scheme for identified users and your access

control scheme for protecting information in your directory, you need to design a

way to protect the integrity of the information passed among servers and client

applications.

To provide secure communications over the network you can use the LDAP

protocol over the Secure Sockets Layer (SSL).

SSL can be used in conjunction with the RC2 and RC4 encryption algorithms from

RSA. The encryption method selected for a particular connection is the result of a

negotiation between the client application and Directory Server.

SSL can also be used in conjuction with CRAM-MD5, which is a hashing

mechanism that guarantees that information has not been modified during

transmission.

Directory Server can have SSL-secured connections and non SSL connections

simultaneously.

For information about enabling SSL, refer to the iPlanet Directory Server
Administrator’s Guide.
Chapter 7 Designing a Secure Directory 151

Other Security Resources
Other Security Resources
For more information about designing a secure directory, take a look at the

following:

• iPlanet Security Developer Central

http://developer.iplanet.com/tech/security/

• Understanding and Deploying LDAP Directory Services.
T. Howes, M. Smith, G. Good, Macmillan Technical Publishing, 1999.

• SecurityFocus.com

http://www.securityfocus.com/

• Computer Emergency Response Team (CERT) Coordination Center

http://www.cert.org/

• CERT Security Improvement Modules

http://www.cert.org/security-improvement/
152 iPlanet Directory Server Deployment Guide • February 2002

Chapter 8

Directory Design Examples

How you design your directory depends upon the size and nature of your

enterprise. This chapter provides examples of how a directory can be applied

within a variety of different settings. You can use these examples as a starting point

for developing your own directory deployment plan.

This chapter contains the following example directory designs:

• An Enterprise

• A Multinational Enterprise and its Extranet

An Enterprise
siroe.com Corporation, an automobile parts manufacturer, is a small company that

consists of 500 employees. siroe.com decides to deploy Directory Server to support

the directory-enabled applications it uses. siroe.com’s directory design process

involves the following steps:

• “Data Design,” on page 154

• “Schema Design,” on page 154

• “Directory Tree Design,” on page 155

• “Topology Design,” on page 156

• “Replication Design,” on page 159

• “Security Design,” on page 161

• “Tuning and Optimizations,” on page 162

• “Operations Decisions,” on page 162
153

An Enterprise
Data Design
siroe.com first decides upon the type of data it will store in the directory. To do

this, siroe.com creates a deployment team that performs a site survey to determine

how the directory will be used. The deployment team determines the following:

• siroe.com’s directory maintains user and group information to support an

iPlanet server-based intranet deployed throughout the organization. Most of

siroe.com’s user and group information will be centrally managed by a group

of directory administrators. However, siroe.com also wants email information

to be managed by a separate group of mail administrators.

• siroe.com’s directory will be used by iPlanet Messaging Server, iPlanet Web

Server, iPlanet Calendar Server, a human resources application, and a white

pages application.

• iPlanet Messaging Server does exact searches on attributes such as the uid ,

mailServerName , and mailAddress attributes. To improve database

performance, siroe.com will maintain indexes for these attributes to support

searches by iPlanet Messaging Server.

For more information on using indexes, refer to “Using Indexes to Improve

Database Performance,” on page 95.

• The white pages application will frequently search for user names and phone

numbers. The directory will therefore need to be able to handle lots of

substring, wildcard, and sounds-like searches which return large sets of

results. siroe.com decides to maintain approximate and substring indexes for

the dn , sn , and givenName attributes

• siroe.com plans to support public key infrastructure (PKI) applications in the

future, such as s/mime email, so needs to be prepared to store the public key

certificates of users in the directory.

Schema Design
siroe.com’s deployment team decides to use the inetOrgPerson object class to

represent the entries in the directory. This object class is appealing because it

allows the userCertificate and uid(userID) attributes, both of which are

needed by the applications supported by siroe.com’s directory.

siroe.com also wants to customize the default directory schema. siroe.com creates

the siroePerson object class to represent employees of siroe.com Corporation. It

derives this object class from the inetOrgPerson object class.
154 iPlanet Directory Server Deployment Guide • February 2002

An Enterprise
The siroePerson object class allows one attribute, the siroeID attribute. This

attribute contains the special employee number assigned to each siroe.com

employee.

In the future, siroe.com can add new attributes to the siroePerson object class as

needed.

Directory Tree Design
siroe.com creates a directory tree as follows:

• The root of the directory tree is siroe.com’s internet domain name:

dc=siroe,dc=com .

• The directory tree has four branch points: ou=people , ou=groups , ou=roles

and ou=resources .

• All of siroe.com’s people entries are created under the ou=people branch.

The people entries are all members of the person , organizationalPerson ,

inetOrgPerson , and siroePerson object classes. The uid attribute uniquely

identifies each entry’s DN. For example, siroe.com contains entries for Babs

Jensen (uid=bjensen) and Emily Stanton (uid=estanton).

• siroe.com creates three roles, one for each department in siroe.com: sales,

marketing, and accounting.

Each person entry contains a role attribute which identifies the department to

which the person belongs. siroe.com can now create ACIs based upon these

roles. For more information about roles, refer to “Managed, Filtered, and

Nested Roles,” on page 71.

• Two group branches are created under the ou=groups branch.

The first group, cn=administrators , contains entries for the directory

administrators that manage the directory contents.

Mail administrators use the second group, cn=messaging admin , to manage

mail accounts. This group corresponds to the administrators group used by

iPlanet Messaging Server. siroe.com makes sure that the group it configures for

Messaging Server is different from the group it creates for Directory Server.

• Two branches are created under the ou=resources branch, one for conference

rooms (ou=conference rooms) and one for offices (ou=offices).
Chapter 8 Directory Design Examples 155

An Enterprise
• siroe.com creates a class of service (CoS) that provides values for the

mailquota attribute depending upon whether or not an entry belongs to the

administrative group.

This CoS gives administrators a mail quota of 500 MB while ordinary siroe.com

employees have a mail quota of 100 MB. For more information about CoS, refer

to “Class of Service,” on page 73.

The following diagram illustrates the directory tree resulting from the design steps

listed above:

Figure 8-1 Directory Tree for siroe.com Corporation

Topology Design
Next, siroe.com designs both its database and server topologies. The following

sections describe each topology in detail.

dc=siroe,dc=com

ou=people ou=groups

cn=admins cn=messaging

ou=resources

ou=officesou=conference

rooms

uid=bjensen uid=estanton

ou=roles

cn=marketing
admin

cn=sales

cn=accounting
156 iPlanet Directory Server Deployment Guide • February 2002

An Enterprise
Database Topology
siroe.com designs a database topology in which the people branch is stored in one

database (DB1), the groups branch is stored in another database (DB2), and the

resources branch, roles branch, and the root suffix information are stored in a third

database (DB3). The database topology for siroe.com’s directory looks as follows:

Figure 8-2 Database Topology for siroe.com Corporation

Server Topology
Each of the two supplier servers updates all three consumer servers in siroe.com’s

deployment of directory server. These consumers supply data to one iPlanet

Messaging Server and to the other Unified User Management products using

iPlanet Data Access Router (iDAR).

For more information about the iPlanet Unified User Management products, refer

to http://www.iplanet.com/products/.

The siroe.com server topology follows:

dc=siroe,dc=com

ou=people ou=groups ou=resources

DB1 DB2

DB3

ou=roles
Chapter 8 Directory Design Examples 157

An Enterprise
Figure 8-3 Server Topology for siroe.com Corporation

supplier2.ldap.siroe.com

Supplier 1

consumer1.ldap.siroe.com

Consumer 1

consumer3.ldap.siroe.com

Consumer 3

iPlanet Messaging

supplier2.ldap.siroe.com

Supplier 2

consumer2.ldap.siroe.com

Consumer 2

Server

iDAR 1 iDAR 2

idar1.ldap.siroe.com idar2.ldap.siroe.com

iPlanet
Calendar

Local Director

Server

Legend:
Client Requests
Replication

backup

iPlanet
Delegated Admin

Server

iPlanet
Web

Server
158 iPlanet Directory Server Deployment Guide • February 2002

An Enterprise
Modify requests from the iPlanet servers (such as the Calendar Server or the

Delegated Admin Server) are routed by iDAR to the appropriate consumer server.

The consumer server uses smart referrals to route the request to the supplier server

responsible for the master copy of the piece of data being modified.

Replication Design
siroe.com decides to use a multi-master replication design to ensure the high

availability of its directory data. For more information about multi-master

replication, refer to “Multi-Master Replication,” on page 108.

The following sections provide more details about the supplier server architecture

and the supplier-consumer server topology.

Supplier Architecture
siroe.com uses two supplier servers in a multi-master replication architecture. The

suppliers update one another so that the directory data remains consistent. The

supplier architecture works as follows:

Figure 8-4 Supplier Architecture for siroe.com Corporation

dc=siroe,dc=com

ou=people ou=groups ou=resources

DB1 DB2

DB3

Supplier 1

ou=roles

dc=siroe,dc=com

ou=people ou=groups ou=resources

DB1 DB2

DB3

Supplier 2

ou=roles
Chapter 8 Directory Design Examples 159

An Enterprise
Supplier Consumer Architecture
The following diagram describes how the supplier servers replicate to each

consumer in the siroe.com deployment of the directory:

Figure 8-5 Supplier/Consumer Architecture for siroe.com Corporation

Each of the three consumer servers is updated by the two supplier servers as

shown in Figure 8-5. This ensures that the consumers will not be affected if there is

a failure in one of the supplier servers.

DB1 DB2

DB3

DB1 DB2

DB3

Supplier 1

Consumer 1

dc=siroe,dc=com

ou=people ou=groups ou=resources ou=roles

dc=siroe,dc=com

ou=people ou=groups ou=resourcesou=roles

Supplier

Consumer
replica

Legend

replica

DB1 DB2

DB3

Supplier 2

dc=siroe,dc=com

ou=people ou=groups ou=resources ou=roles
160 iPlanet Directory Server Deployment Guide • February 2002

An Enterprise
Security Design
siroe.com decides on the following security design to protect its directory data:

• siroe.com creates an ACI that allows employees to modify their own entries.

Users can modify all attributes except the uid , manager and department

attributes.

• To protect the privacy of employee data, siroe.com develops an ACI that

allows only the employee and an employee’s manager to see the employee’s

home address and phone number.

• siroe.com creates an ACI at the root of the directory tree that grants the two

administrator groups the appropriate directory permissions.

The directory administrators group needs full access to the directory. The

messaging administrators group needs write and delete access to the

mailRecipient and mailGroup object classes, the attributes contained on

those object classes, as well as the mail attribute. siroe.com also grants the

messaging administrators group write , delete , and add permissions to the

group subdirectory for creation of mail groups.

• A general access control is created at the root of the directory tree that allows

anonymous access for read, search, and compare access.

This ACI denies anonymous users access to password information.

• To protect the server from denial of service attacks and inappropriate use,

siroe.com sets resource limits based on the DN used by directory clients to

bind.

siroe.com allows anonymous users to receive 100 entries at a time in response

to search requests, administrator users to receive 1,000 entries, and system

administrators to receive an unlimited number of entries. For more

information about setting resource limits based on the bind DN, refer to “User

Account Management” in the iPlanet Directory Server Administrator’s Guide.

• siroe.com creates a password policy where passwords must be at least 8

characters in length and expire after 90 days.

For more information about password policies, refer to “Designing a Password

Policy,” on page 137.

• siroe.com creates an ACI that gives members of the accounting role access to

all payroll information.
Chapter 8 Directory Design Examples 161

A Multinational Enterprise and its Extranet
Tuning and Optimizations
siroe.com optimizes its deployment of directory by doing the following:

• Running the /usr/sbin/directoryserver idsktune utility

This utility provides an easy and reliable way of checking the patch levels and

the kernel and network settings for your system.

• Optimizing the entry and database caches

siroe.com sets the entry cache to 2000 entries, and the database cache to 250 MB

to ensure that all of the indexes fit into RAM, optimizing server performance.

Operations Decisions
siroe.com makes the following decisions regarding the day-to-day operation of its

directory:

• Back up the databases every night and write the backups to tape once a week.

• Use SNMP to monitor the server status.

For more information about SNMP, refer to the iPlanet Directory Server
Administrator’s Guide.

• Auto-rotate the access logs.

• Monitor the error log to see if the server is performing as expected.

• Monitor the access log to screen for searches that should be indexed.

For more information about the access, error, and audit logs, refer to “Monitoring

Server and Database Activity” in the iPlanet Directory Server Administrator’s Guide.

A Multinational Enterprise and its Extranet
This example builds a directory infrastructure for siroe.com International.

siroe.com Corporation from the previous example has grown into a large,

multinational company. This example builds on the directory structure created in

the last example for siroe.com Corporation, expanding the directory design to meet

its new needs.
162 iPlanet Directory Server Deployment Guide • February 2002

A Multinational Enterprise and its Extranet
siroe.com has grown into an organization dispersed over three main geographic

locations: the US, Europe, and Asia. siroe.com now has more than 20,000

employees, all of which live and work in the countries where the siroe.com offices

are located. siroe.com decides to launch a company-wide LDAP directory to

improve internal communication, to make it easier to develop and deploy web

applications, and to increase security and privacy.

Designing a directory tree for an international corporation involves determining

how to logically collect directory entries, how to support data management, and

how to support replication on a global scale.

In addition, siroe.com wants to create an extranet for use by its parts suppliers and

trading partners. An extranet is an extension of an enterprise’s intranet to external

clients.

The following sections describe the steps in the process of deploying a

multinational directory service and extranet for siroe.com International:

• “Data Design,” on page 163

• “Schema Design,” on page 164

• “Directory Tree Design,” on page 164

• “Topology Design,” on page 167

• “Replication Design,” on page 171

• “Security Design,” on page 175

Data Design
siroe.com International creates a deployment team to perform a site survey. The

deployment team determines the following from the site survey:

• iPlanet Messaging Server is used to provide electronic mail routing, delivery,

and reading services for most of siroe.com’s sites. Enterprise server is used to

provide document publishing services. All servers run on the Solaris UNIX

operating system.

• siroe.com needs to allow data to be managed locally. For example, the

European site will be responsible for managing the Europe branch of the

directory. This also means that Europe will be responsible for the master copy

of its data.

• Because of the geographic distribution of siroe.com’s offices, the directory

needs to be available to users and applications 24 hours a day.
Chapter 8 Directory Design Examples 163

A Multinational Enterprise and its Extranet
• Many of the data elements need to accommodate data values of several

different languages and character sets.

The deployment team also determines the following about the data design of the

extranet:

• Suppliers will need to log in to siroe.com’s directory to manage their contracts

with siroe.com. Suppliers will depend upon data elements used for

authentication, such as name and user password.

• siroe.com’s partners will use the directory as a way to look up the email

addresses and phone numbers of people in the partner network.

Schema Design
siroe.com builds upon its original schema design by adding schema elements to

support the extranet. siroe.com adds two new objects, the siroeSupplier object

class and the siroePartner object class.

The siroeSupplier object class allows one attribute, the siroeSupplierID

attribute. This attribute contains the unique ID assigned by siroe.com International

to each auto part supplier it works with.

The siroePartner object class allows one attribute, the siroePartnerID attribute.

This attribute contains the unique ID assigned by siroe.com International to each

trade partner.

For information about customizing the default directory schema, refer to

“Customizing the Schema,” on page 46.

Directory Tree Design
siroe.com creates a directory tree as follows:

• The directory tree is rooted in the suffix dc=com. Under this suffix, siroe.com

creates two branches. One branch, dc=siroeCorp,dc=com , contains data

internal to siroe.com International. The other branch, dc=siroeNet,dc=com ,

contains data for the extranet.

• The directory tree for the intranet (under dc=siroeCorp,dc=com) has three

main branches, each corresponding to one of the regions where siroe.com has

offices. These branches are identified using the l(locality) attribute.
164 iPlanet Directory Server Deployment Guide • February 2002

A Multinational Enterprise and its Extranet
• Each main branch under dc=siroeCorp,dc=com mimics the original directory

tree design of siroe.com Corporation. Under each locality, siroe.com creates an

ou=people , an ou=groups , an ou=roles , and an ou=resources branch. See

“Directory Tree for siroe.com Corporation,” on page 156 for more information

about this directory tree design.

• Under the dc=siroeNet,dc=com branch, siroe.com creates three branches. One

branch for suppliers (o=suppliers), one branch for partners (o=partners),

and one branch for groups (ou=groups).

• The ou=groups branch of the extranet contains entries for the administrators of

the extranet as well as mailing lists that partners subscribe to for up-to-date

information on auto part manufacturing.

The basic directory tree that results appears as follows:

Figure 8-6 Basic Directory Tree for siroe.com International

The directory tree for the siroe.com intranet appears as follows:

dc=siroeCorp,dc=com dc=siroeNet,dc=com

dc=com

l=Asial=Europel=US ou=groupso=partnerso=suppliers
Chapter 8 Directory Design Examples 165

A Multinational Enterprise and its Extranet
Figure 8-7 Directory Tree for siroe.com International’s Intranet

The entry for the l=Asia entry appears in LDIF as follows:

dn: l=Asia,dc=siroeCorp,dc=com
objectclass: top
objectclass: locality
l: Asia
description: includes all sites in Asia

The directory tree for siroe.com’s extranet appears as follows:

dc=siroeCorp,dc=com

ou=people ou=groups ou=roles ou=resources ou=people ou=groups ou=roles ou=resources

dc=com

ou=people ou=groups ou=roles ou=resources

l=US l=Europe l=Asia
166 iPlanet Directory Server Deployment Guide • February 2002

A Multinational Enterprise and its Extranet
Figure 8-8 Directory Tree for siroe.com International’s Extranet

Topology Design
Next, siroe.com designs both its database and server topologies. The following

sections describe each topology in more detail.

Database Topology
The following diagram illustrates the database topology of one of siroe.com’s main

localities, Europe:

dc=siroeNet,dc=com

o=company22 o=company33

dc=com

o=company44 o=company55

o=suppliers o=partners ou=groups

cn=admins cn=maillists

ou=people ou=groups ou=people ou=groups
Chapter 8 Directory Design Examples 167

A Multinational Enterprise and its Extranet
Figure 8-9 Database Topology for siroe.com Europe

The database links point to databases stored locally in each country. For example,

operation requests received by the siroe.com Europe server for the data under the

l=US branch are chained by a database link to a database on a server in Austin,

Texas. For more information about database links and chaining, refer to “Using

Chaining,” on page 90.

The master copy of the data for dc=siroeCorp,dc=com and the root entry, dc=com,

is kept in the Europe, as shown by the box in Figure 8-9.

The data center in Europe contains the master copies of the data for the extranet.

The extranet data is stored in three databases, one for each of the main branches.

The following figures shows the database topology for the extranet:

DBLink1 DBLink2DB

Database

Database
Link

Legend

dc=siroeCorp,dc=com

dc=com

l=US l=Europe l=Asia
168 iPlanet Directory Server Deployment Guide • February 2002

A Multinational Enterprise and its Extranet
Figure 8-10 Database Topology for siroe.com International’s Extranet

As illustrated in Figure 8-10, the master copy of the data for o=suppliers is stored

in database one, the master copy of the data for o=partners is stored in database

two, and the master copy of the data for ou=groups is stored in database three.

Server Topology
siroe.com develops two server topologies, one for the corporate intranet and one

for the partner extranet.

For the intranet, siroe.com decides to have a master database for each major

locality. This means it has three data centers, each containing two supplier servers,

two hub servers, and three consumer servers.

The architecture of siroe.com Europe’s data center appears as follows:

dc=siroeNet,dc=com

dc=com

o=suppliers o=partners ou=groups

DB1 DB2 DB3
Chapter 8 Directory Design Examples 169

A Multinational Enterprise and its Extranet
Figure 8-11 Server Topology for siroe.com Europe

siroe.com’s extranet data is mastered in Europe. This data is replicated to two

consumer servers in the US data center and two consumer servers in the Asia data

center. In all, siroe.com requires ten servers to support the extranet.

Supplier 1

Consumer 1 Consumer 3

Supplier 2

Consumer 2

SMTP In SMTP Out

iDAR

Hub Server 1 Hub Server 2

MMP

Legend:
Client Requests
Replication
170 iPlanet Directory Server Deployment Guide • February 2002

A Multinational Enterprise and its Extranet
The server architecture of siroe.com’s extranet appears as follows in the siroe.com

Europe data center:

Figure 8-12 Server Topology for siroe.com International’s Extranet

The hub servers replicate the data to two consumer servers in the siroe.com Europe

data center, two consumer servers in the siroe.com US data center, and two

consumer servers in the siroe.com Asia data center.

Replication Design
siroe.com considers the following when designing replication for its directory:

• Data will be managed locally.

Supplier 1

Consumer 1

Supplier 2

Consumer 2

Hub Server 1 Hub Server 2

siroe.com US

Consumer 1 Consumer 2

Siroe Europe Data Center

Consumer 1 Consumer 2

siroe.com Asia
Chapter 8 Directory Design Examples 171

A Multinational Enterprise and its Extranet
• Quality of network connections varies from site to site.

• Database links will be used to connect data on remote servers.

• Hub servers that contain read-only copies of the data will be used to replicate

data to consumer servers.

The hub servers are located near important directory-enabled applications such as

a mail server or a web server.

Hub servers remove the burden of replication from the supplier servers, so the

suppliers can concentrate on doing write operations. In the future, as siroe.com

expands and needs to add more consumer servers, the additional consumers do

not affect the performance of the suppliers.

For more information about hub servers, refer to “Cascading Replication,” on

page 109.

Supplier Architecture
For the siroe.com intranet, each locality keeps the master copy of its data and uses

database links to chain to the data of other localities. For the master copy of its data,

each locality uses a multi-master replication architecture. For example, the supplier

architecture for Europe, which includes the dc=siroeCorp,dc=com and dc=com

information, appears as follows:
172 iPlanet Directory Server Deployment Guide • February 2002

A Multinational Enterprise and its Extranet
Figure 8-13 Supplier Architecture for siroe.com Europe

Each locality contains two suppliers, which share master copies of the data for that

site. Each locality is therefore responsible for the master copy of its own data.

Using a multi-master architecture ensures the availability of the data and helps

balance the load of work managed by each supplier server.

To reduce the risk of total failure, siroe.com Corporation uses multiple master

directory servers at each site.

The following diagram illustrates the interaction between the two supplier servers

in Europe and the two supplier servers in the US:

DBLink1 DBLink2DB1

dc=siroeCorp,dc=com

dc=com

l=US l=Europe l=Asia

DBLink1 DBLink2DB1

dc=siroeCorp,dc=com

dc=com

l=US l=Europe l=Asia
Chapter 8 Directory Design Examples 173

A Multinational Enterprise and its Extranet
Figure 8-14 Supplier/Supplier Architecture for siroe.com Europe and siroe.com US

The same relationship as that illustrated in Figure 8-14 exists between siroe.com US

and siroe.com Asia, and between siroe.com Europe and siroe.com Asia.

DBLink1 DBLink2DB

dc=siroeCorp,dc=com

dc=com

l=US l=Europe l=Asia

DBLink1 DBLink2DB

dc=siroeCorp,dc=com

dc=com

l=US l=Europe l=Asia

Europe Supplier 1 Europe Supplier 2

Siroe Europe Supplier Servers

DB DBLink2DBLink3

dc=siroeCorp,dc=com

dc=com

l=US l=Europe l=Asia

DB DBLink2DBLink3

dc=siroeCorp,dc=com

dc=com

l=US l=Europe l=Asia

US Supplier 1 US Supplier 2

Siroe US Supplier Servers

Legend:
Replication
Chaining
174 iPlanet Directory Server Deployment Guide • February 2002

A Multinational Enterprise and its Extranet
Security Design
siroe.com International builds upon its previous security design, adding the

following access controls to support its new multinational intranet:

• siroe.com adds general ACIs to the root of the intranet, creating more

restrictive ACIs in each country and the branches beneath each country.

• siroe.com decides to use macro ACIs to minimize the number of ACIs in the

directory.

siroe.com uses a macro to represent a DN in the target or bind rule portion of

the ACI. When the directory gets an incoming LDAP operation, the ACI

macros are matched against the resource targeted by the LDAP operation. If

there is a match, the macro is replaced by the value of the DN of the targeted

resource.

For more information about macro ACIs, refer to the iPlanet Directory Server
Administrator’s Guide.

siroe.com adds the following access controls to support its extranet:

• siroe.com decides to use certificate-based authentication for all extranet

activities. When people log in to the extranet, they need a digital certificate.

The directory is used to store the certificates. Because the directory stores the

certificates, users can send encrypted email by looking up public keys stored in

the directory.

• siroe.com creates an ACI that forbids anonymous access to the extranet. This

protects the extranet from denial of service attacks.

• siroe.com wants updates to the directory data to come only from a siroe.com

hosted application. This means that partners and suppliers using the extranet

can only use the tools provided by siroe.com. Restricting extranet users to

siroe.com’s preferred tools allows siroe.com administrators to use the audit

logs to track the use of the directory, and limits the types of problems that can

be introduced by extranet users outside of siroe.com International.

• siroe.com will use iDAR to add additional security. For more information

about iDAR, go to http://www.iplanet.com/.
Chapter 8 Directory Design Examples 175

A Multinational Enterprise and its Extranet
176 iPlanet Directory Server Deployment Guide • February 2002

Glossary

access control instruction See ACI.

ACI Access Control Instruction. An instruction that grants or denies permissions

to entries in the directory.

access control list See ACL.

ACL Access control list. The mechanism for controlling access to your directory.

access rights In the context of access control, specify the level of access granted or

denied. Access rights are related to the type of operation that can be performed on

the directory. The following rights can be granted or denied: read, write, add,

delete, search, compare, selfwrite, proxy and all.

account inactivation Disables a user account, group of accounts, or an entire

domain so that all authentication attempts are automatically rejected.

All IDs Threshold A size limit which is globally applied to every index key

managed by the server. When the size of an individual ID list reaches this limit, the

server replaces that ID list with an All IDs token.

All IDs token A mechanism which causes the server to assume that all directory

entries match the index key. In effect, the All IDs token causes the server to behave

as if no index was available for the search request.

anonymous access When granted, allows anyone to access directory information

without providing credentials, and regardless of the conditions of the bind.

approximate index Allows for efficient approximate or “sounds-like” searches.
177

attribute Holds descriptive information about an entry. Attributes have a label

and a value. Each attribute also follows a standard syntax for the type of

information that can be stored as the attribute value.

attribute list A list of required and optional attributes for a given entry type or

object class.

authenticating directory server In pass-through authentication (PTA), the

authenticating directory server is the directory server that contains the

authentication credentials of the requesting client. The PTA-enabled host sends

PTA requests it receives from clients to the host.

authentication (1) Process of proving the identity of the client user to the

Directory Server. Users must provide a bind DN and either the corresponding

password or certificate in order to be granted access to the directory. Directory

Server allows the user to perform functions or access files and directories based on

the permissions granted to that user by the directory administrator.

(2) Allows a client to make sure they are connected to a secure server, preventing

another computer from impersonating the server or attempting to appear secure

when it is not.

authentication certificate Digital file that is not transferable and not forgeable

and is issued by a third party. Authentication certificates are sent from server to

client or client to server in order to verify and authenticate the other party.

base DN Base distinguished name. A search operation is performed on the base

DN, the DN of the entry and all entries below it in the directory tree.

base distinguished name See base DN.

bind DN Distinguished name used to authenticate to Directory Server when

performing an operation.

bind distinguished name See bind DN.

bind rule In the context of access control, the bind rule specifies the credentials

and conditions that a particular user or client must satisfy in order to get access to

directory information.

branch entry An entry that represents the top of a subtree in the directory.
178 iPlanet Directory Server Deployment Guide • February 2002

browser Software, such as Netscape Navigator, used to request and view World

Wide Web material stored as HTML files. The browser uses the HTTP protocol to

communicate with the host server.

browsing index Otherwise known as the virtual view index, speeds up the

display of entries in the Directory Server Console. Browsing indexes can be created

on any branchpoint in the directory tree to improve display performance.

CA See Certificate Authority.

cascading replication In a cascading replication scenario, one server, often called

the hub supplier acts both as a consumer and a supplier for a particular replica. It

holds a read-only replica and maintains a change log. It receives updates from the

supplier server that holds the master copy of the data, and in turn supplies those

updates to the consumer.

certificate A collection of data that associates the public keys of a network user

with their DN in the directory. The certificate is stored in within the directory as

user object attributes.

Certificate Authority Company or organization that sells and issues

authentication certificates. You may purchase an authentication certificate from a

Certification Authority that you trust. Also known as a CA.

chaining A method for relaying requests to another server. Results for the

request are collected, compiled and then returned to the client.

change log A change log is record that describes the modifications that have

occurred on a replica. The supplier server then replays these modifications on the

replicas stored on consumer servers, or on other masters, in the case of

multi-master replication.

character type Distinguishes alphabetic characters from numeric or other

characters and the mapping of upper-case to lower-case letters.

ciphertext Encrypted information that cannot be read by anyone without the

proper key to decrypt the information.

CIR See consumer-initiated replication.

class definition Specifies the information needed to create an instance of a

particular object and determines how the object works in relation to other objects in

the directory.
Glossary 179

class of service See CoS.

classic CoS A classic CoS identifies the template entry by both its DN and the

value of one of the target entry’s attributes.

client See LDAP client.

code page An internal table used by a locale in the context of the

internationalization plug-in that the operating system uses to relate keyboard keys

to character font screen displays.

collation order Provides language and cultural-specific information about how

the characters of a given language are to be sorted. This information might include

the sequence of letters in the alphabet or how to compare letters with accents to

letters without accents.

consumer Server containing replicated directory trees or subtrees from a supplier

server.

consumer replica A replica that refers all add and modify operations to master

replicas. A server can hold any number of consumer replicas.

consumer-initiated replication Replication configuration where consumer

servers pull directory data from supplier servers.

consumer server In the context of replication, a server that holds a replica that is

copied from a different server is called a consumer for that replica.

CoS Class of Service. A method for sharing attributes between entries in a way

that is invisible to applications.

CoS definition entry Identifies the type of CoS you are using. It is stored as an

LDAP subentry below the branch it affects.

CoS template entry Contains a list of the shared attribute values.

daemon A background process on a Unix machine that is responsible for a

particular system task. Daemon processes do not need human intervention to

continue functioning.

DAP Directory Access Protocol. The ISO X.500 standard protocol that provides

client access to the directory.
180 iPlanet Directory Server Deployment Guide • February 2002

data master The server that is the master source of a particular piece of data.

database link An implementation of chaining. The database link behaves like a

database but has no persistent storage. Instead, it points to data stored remotely.

default index One of a set of default indexes created per database instance.

Default indexes can be modified, although care should be taken before removing

them, as certain plug-ins may depend on them.

definition entry See CoS definition entry.

Directory Access Protocol See DAP.

directory tree The logical representation of the information stored in the

directory. It mirrors the tree model used by most file systems, with the tree’s root

point appearing at the top of the hierarchy. Also known as DIT.

Directory Manager The privileged database administrator, comparable to the

root user in UNIX. Access control does not apply to the directory manager.

Directory Server Console An LDAP client application that provides a graphic

user interface to browse, configure, and manage the contents of your directory. It is

a component of the iPlanet Directory Server product.

directory service A database application designed to manage descriptive,

attribute-based information about people and resources within an organization.

distinguished name String representation of an entry’s name and location in an

LDAP directory.

DIT See directory tree.

DN see distinguished name.

DM See Directory Manager.

DNS Domain Name System. The system used by machines on a network to

associate standard IP addresses (such as 198.93.93.10) with hostnames (such as

www.iPlanet.com). Machines normally get the IP address for a hostname from a

DNS server, or they look it up in tables maintained on their systems.
Glossary 181

DNS alias A DNS alias is a hostname that the DNS server knows points to a

different host—specifically a DNS CNAME record. Machines always have one real

name, but they can have one or more aliases. For example, an alias such as

www.[yourdomain].[domain] might point to a real machine called

realthing.[yourdomain].[domain] where the server currently exists.

entry A group of lines in the LDIF file that contains information about an object.

entry distribution Method of distributing directory entries across more than one

server in order to scale to support large numbers of entries.

entry ID list Each index that the directory uses is composed of a table of index

keys and matching entry ID lists. The entry ID list is used by the directory to build

a list of candidate entries that may match the client application’s search request.

equality index Allows you to search efficiently for entries containing a specific

attribute value.

file extension The section of a filename after the period or dot (.) that typically

defines the type of file (for example, .GIF and .HTML). In the filename index.html

the file extension is html .

file type The format of a given file. For example, graphics files are often saved in

GIF format, while a text file is usually saved as ASCII text format. File types are

usually identified by the file extension (for example, .GIF or .HTML).

filter A constraint applied to a directory query that restricts the information

returned.

filtered role Allows you to assign entries to the role depending upon the

attribute contained by each entry. You do this by specifying an LDAP filter. Entries

that match the filter are said to possess the role.

general access When granted, indicates that all authenticated users can access

directory information.

hostname A name for a machine in the form machine.domain.dom, which is

translated into an IP address. For example, www.iPlanet.com is the machine www

in the subdomain iPlanet and com domain.
182 iPlanet Directory Server Deployment Guide • February 2002

HTML Hypertext Markup Language. The formatting language used for

documents on the World Wide Web. HTML files are plain text files with formatting

codes that tell browsers such as Netscape Navigator how to display text, position

graphics and form items, and display links to other pages.

HTTP Hypertext Transfer Protocol. The method for exchanging information

between HTTP servers and clients.

HTTPD An abbreviation for the HTTP daemon or service, a program that serves

information using the HTTP protocol. The daemon or service is often called an

httpd.

HTTP-NG The next generation of Hypertext Transfer Protocol.

HTTPS A secure version of HTTP, implemented using the Secure Sockets Layer,

SSL.

hub supplier In the context of replication, a server that holds a replica that is

copied from a different server, and in turn replicates it to a third server. See also

cascading replication.

index key Each index that the directory uses is composed of a table of index keys

and matching entry ID lists.

indirect CoS An indirect CoS identifies the template entry using the value of one

of the target entry’s attributes.

international index Speeds up searches for information in international

directories.

International Standards Organization See ISO.

IP address Internet Protocol address. A set of numbers, separated by dots, that

specifies the actual location of a machine on the Internet (for example,

198.93.93.10).

ISO International Standards Organization

knowledge reference Pointers to directory information stored in different

databases.

LDAP Lightweight Directory Access Protocol. Directory service protocol

designed to run over TCP/IP and across multiple platforms.
Glossary 183

LDAPv3 Version 3 of the LDAP protocol, upon which Directory Server bases its

schema format

LDAP client Software used to request and view LDAP entries from an LDAP

Directory Server. See also browser.

LDAP Data Interchange Format See LDIF.

LDAP URL Provides the means of locating directory servers using DNS and then

completing the query via LDAP. A sample LDAP URL is

ldap://ldap.iplanet.com

LDBM database A high-performance, disk-based database consisting of a set of

large files that contain all of the data assigned to it. The primary data store in

Directory Server.

LDIF LDAP Data Interchange Format. Format used to represent Directory Server

entries in text form.

leaf entry An entry under which there are no other entries. A leaf entry cannot be

a branch point in a directory tree.

Lightweight Directory Access Protocol See LDAP.

locale Identifies the collation order, character type, monetary format and time /

date format used to present data for users of a specific region, culture, and/or

custom. This includes information on how data of a given language is interpreted,

stored, or collated. The locale also indicates which code page should be used to

represent a given language.

managed object A standard value which the SNMP agent can access and send to

the NMS. Each managed object is identified with an official name and a numeric

identifier expressed in dot-notation.

managed role Allow you to create an explicit enumerated list of members.

management information base See MIB.

mapping tree A data structure that associates the names of suffixes (subtrees)

with databases.

master agent See SNMP master agent.
184 iPlanet Directory Server Deployment Guide • February 2002

matching rule Provides guidelines for how the server compares strings during a

search operation. In an international search, the matching rule tells the server what

collation order and operator to use.

MD5 A message digest algorithm by RSA Data Security, Inc., which can be used

to produce a short digest of data, that is unique with high probability, and is

mathematically extremely hard to produce a piece of data that will produce the

same message digest.

MD5 signature A message digest produced by the MD5 algorithm.

MIB Management Information Base. All data, or any portion thereof, associated

with the SNMP network. We can think of the MIB as a database which contains the

definitions of all SNMP managed objects. The MIB has a tree like hierarchy, where

the top level contains the most general information about the network and lower

levels deal with specific, separate network areas.

MIB namespace Management Information namespace. The means for directory

data to be named and referenced. Also called the directory tree.

monetary format Specifies the monetary symbol used by a specific region,

whether the symbol goes before or after its value, and how monetary units are

represented.

multi-master replication An advanced replication scenario in which two servers

each hold a copy of the same read-write replica. Each server maintains a change log

for the replica. Modifications made on one server are automatically replicated to

the other server. In case of conflict, a time stamp is used to determine which server

holds the most recent version.

multiplexor The server containing the database link that communicates with the

remote server.

n + 1 directory problem The problem of managing multiple instances of the

same information in different directories, resulting in increased hardware and

personnel costs.

name collisions Multiple entries with the same distinguished name.

nested role Allows you to create roles that contain other roles.
Glossary 185

network management application Network Management Station component

that graphically displays information about SNMP managed devices (which device

is up or down, which and how many error messages were received, etc.).

network management station See NMS.

NIS Network Information Service. A system of programs and data files that Unix

machines use to collect, collate, and share specific information about machines,

users, file systems, and network parameters throughout a network of computers.

NMS Network Management Station. Powerful workstation with one or more

network management applications installed.

ns-slapd iPlanet’s LDAP Directory Server daemon or service that is responsible

for all actions of the Directory Server. See also slapd.

object class Defines an entry type in the directory by defining which attributes

are contained in the entry.

object identifier A string, usually of decimal numbers, that uniquely identifies a

schema element, such as an object class or an attribute, in an object-oriented

system. Object identifiers are assigned by ANSI, IETF or similar organizations.

OID See object identifier.

operational attribute An operational attribute contains information used

internally by the directory to keep track of modifications and subtree properties.

Operational attributes are not returned in response to a search unless explicitly

requested.

parent access When granted, indicates that users have access to entries below

their own in the directory tree, that is, if the bind DN is the parent of the targeted

entry.

pass-through authentication See PTA.

pass-through subtree In pass-through authentication, the PTA directory server

will pass through bind requests to the authenticating directory server from all

clients whose DN is contained in this subtree.

password file A file on Unix machines that stores Unix user login names,

passwords, and user ID numbers. It is also known as /etc/passwd , because of

where it is kept.
186 iPlanet Directory Server Deployment Guide • February 2002

password policy A set of rules that govern how passwords are used in a given

directory.

permission In the context of access control, the permission states whether access

to the directory information is granted or denied, and the level of access that is

granted or denied. See access rights.

PDU Protocol Data Unit. Encoded messages which form the basis of data

exchanges between SNMP devices.

pointer CoS A pointer CoS identifies the template entry using the template DN

only.

presence index Allows you to search for entries that contain a specific indexed

attribute.

protocol A set of rules that describes how devices on a network exchange

information.

protocol data unit See PDU.

proxy authorization A special form of authentication where a user binds to the

directory with its own identity but is granted the access rights of another user. This

other user is referred to as the proxy user, and its DN the proxy DN.

proxy DN Used with proxied authentication. The proxy DN is the DN of an entry

that has access permissions to the target on which the client application is

attempting to perform an operation.

PTA Pass-through authentication. Mechanism by which one directory server

consults another to check bind credentials.

PTA directory server In pass-through authentication (PTA), the PTA directory

server is the server that sends (passes through) bind requests it receives to the

authenticating directory server.

PTA LDAP URL In pass-through authentication, the URL that defines the

authenticating directory server, pass-through subtree(s) and optional parameters.

RAM Random access memory. The physical semiconductor-based memory in a

computer. Information stored in RAM is lost when the computer is shut down.
Glossary 187

RDN Relative distinguished name. The name of the actual entry itself, before the

entry’s ancestors have been appended to the string to form the full distinguished

name.

referential integrity Mechanism that ensures that relationships between related

entries are maintained within the directory.

referral (1) When a server receives a search or update request from an LDAP

client that it cannot process, it usually sends a pointer back to the client to the

LDAP server that can process the request.

(2) In the context of replication, when a consumer replica receives an update

request, it forwards it to the server that holds the corresponding master replica.

This forwarding process is called a referral.

replica A database that participates in replication. See also consumer replica and

supplier replica.

relative distinguished name See RDN.

replication Act of copying directory trees or subtrees from supplier servers to

consumer servers.

replication agreement Set of configuration parameters that are stored on the

supplier server and identify the databases to replicate, the consumer servers to

which the data is pushed, the times during which replication can occur, the DN

and credentials used by the supplier to bind to the consumer, and how the

connection is secured.

RFC Request For Comments. Procedures or standards documents submitted to

the Internet community. People can send comments on the technologies before

they become accepted standards.

role An entry grouping mechanism. Each role has members, which are the entries

that possess the role.

role-based attributes Attributes that appear on an entry because it possesses a

particular role within an associated CoS template.

root The most privileged user available on Unix machines. The root user has

complete access privileges to all files on the machine.

root suffix The parent of one or more sub suffixes. A directory tree can contain

more than one root suffix.
188 iPlanet Directory Server Deployment Guide • February 2002

schema Definitions describing what types of information can be stored as entries

in the directory. When information that does not match the schema is stored in the

directory, clients attempting to access the directory may be unable to display the

proper results.

schema checking Ensures that entries added or modified in the directory

conform to the defined schema. Schema checking is on by default and users will

receive an error if they try to save an entry that does not conform to the schema.

Secure Sockets Layer See SSL.

self access When granted, indicates that users have access to their own entries,

that is, if the bind DN matches the targeted entry.

server daemon The server daemon is a process that, once running, listens for and

accepts requests from clients.

server root A directory on the server machine dedicated to holding the server

program and configuration, maintenance, and information files.

Server Selector Interface that allows you select and configure servers using a

browser.

SIE Server Instance Entry.

Simple Network Management Protocol See SNMP.

single-master replication The most basic replication scenario in which two

servers each hold a copy of the same read-write replicas to consumer servers. In a

single-master replication scenario, the supplier server maintains a change log.

SIR See supplier-initiated replication.

slapd LDAP Directory Server daemon or service that is responsible for most

functions of a directory except replication. See also ns-slapd.

SNMP Simple Network Management Protocol. Used to monitor and manage

application processes running on the servers, by exchanging data about network

activity.

SNMP master agent Software that exchanges information between the various

subagents and the NMS.
Glossary 189

SNMP subagent Software that gathers information about the managed device

and passes the information to the master agent.

SSL Secure Sockets Layer. A software library establishing a secure connection

between two parties (client and server) used to implement HTTPS, the secure

version of HTTP.

standard index Indexes that are maintained by default.

sub suffix A branch underneath a root suffix.

subagent See SNMP subagent.

substring index Allows for efficient searching against substrings within entries.

Substring indexes are limited to a minimum of two characters for each entry.

suffix The name of the entry at the top of the directory tree, below which data is

stored. Multiple suffixes are possible within the same directory. Each database only

has one suffix.

superuser The most privileged user available on Unix machines (also called

root). The superuser has complete access privileges to all files on the machine.

supplier Server containing the master copy of directory trees or subtrees that are

replicated to consumer servers.

supplier-initiated replication Replication configuration where supplier servers

replicate directory data to consumer servers.

supplier replica A replica that contains a master copy of directory information

and can be updated. A server can hold any number of master replicas.

supplier server In the context of replication, a server that holds a replica that is

copied to a different server is called a supplier for that replica.

symmetric encryption Encryption that uses the same key for both encrypting

and decrypting. DES is an example of a symmetric encryption algorithm.

system index Cannot be deleted or modified as it is essential to Directory Server

operations.

target In the context of access control, the target identifies the directory

information to which a particular ACI applies.
190 iPlanet Directory Server Deployment Guide • February 2002

target entry The entries within the scope of a CoS.

TCP/IP Transmission Control Protocol/Internet Protocol. The main network

protocol for the Internet and for enterprise (company) networks.

template entry See CoS template entry.

time / date format Indicates the customary formatting for times and dates in a

specific region.

TLS Transport Layer Security. The new standard for secure socket layers, a

public key based protocol.

topology The way a directory tree is divided among physical servers and how

these servers link with one another.

Transport Layer Security See TLS.

uid A unique number associated with each user on a Unix system.

URL Uniform Resource Locator. The addressing system used by the server and

the client to request documents. It is often called a location. The format of a URL is

[protocol]://[machine:port]/[document] . The port number is necessary only on

selected servers, and it is often assigned by the server, freeing the user from having

to place it in the URL.

virtual list view index Otherwise known as a browsing index, speeds up the

display of entries in the Directory Server Console. Virtual list view indexes can be

created on any branchpoint in the directory tree to improve display performance.

X.500 standard The set of ISO/ITU-T documents outlining the recommended

information model, object classes and attributes used by directory server

implementation.
Glossary 191

192 iPlanet Directory Server Deployment Guide • February 2002

Index

A
access

anonymous 133

determining general types of 133

precedence rule 147

access control

password protection and 141

access control information (ACI) 142

bind rules 143, 144, 145

filtered rules 148

format 143–146

permission 143

target 143, 144

usage advice 149

where to place 148

access rights

granting 130

account inactivation 137

account lockout 142

ACI instruction

password protection and 141

ACI. See access control information

allow permissions 147

anonymous access 133

for read 36

overview 133

applications 29

approximate index 96

attribute

defining in schema 50

operational 20

required and allowed 54

values 55

attribute-data pair 25, 41

audits, for security 131

authentication methods 133

anonymous access 133

certificate-based 135

proxy authorization 136

simple password 134

over TLS 135

B
bind rules 143, 144, 145

branch point

DN attributes 62, 64

for international trees 75

for replication and referrals 64

network names 64

browsing index 96

C
c attribute 75

cascading replication 110

certificate-based authentication 135

chaining 90–91

compared to referrals 91
193

database links 90

change log 103

checking password syntax 139

class of service (CoS) 73

classic CoS 74

indirect CoS 74

pointer CoS 74

classic CoS 74

clients

bind algorithm 134

cn attribute 41, 54, 67

commonName attribute 41, 54, 67, 69

consumer server 101, 102

role 102

CoS. See class of service.

country attribute 75, 148

custom schema files 51

D
data access 35

data management

replication example 118

data master 32

for replication 33

data ownership 34

data privacy 130

database 19

chaining 81

LDBM 81

multiple 81

database link 90

default permissions 146

default referrals 86

deleting schema 50

deleting schema elements 50

deny permissions 147

directory applications 29

browsers 29

email 29

directory data

access 35

examples of 26

mastering 32

ownership 34

planning 25

representation 41

directory design

overview 21–22

directory service 13–15

global 15

iPlanet solution 15

LDAP 15

directory tree

access control considerations 66

branch point

DN attributes 62, 64

for international trees 75

for replication and referrals 64

network names 64

branching 60

creating structure 60

default 17

design

choosing a suffix 58

creating structure 60

naming entries 60

examples

international enterprise 75

ISP 76

replication considerations 64

distinguished name

name collision 67

DIT. See directory tree

DNS 13

dynamic groups 70

E
email applications 29

encryption

password 140

Salted SHA 141

SHA 140

enterprise deployment example 153
194 iPlanet Directory Server Deployment Guide • February 2002

entries 20

naming 67

non-person 69

organization 69

person 67

entry distribution 80

multiple databases 81

suffixes 82

equality index 95

example

deployment

extranet 162

examples

deployment

enterprise 153

multinational enterprise 162

replication

large sites 121

load balancing server traffic 120

local data management 118

small sites 121

expiration of passwords

overview 139

warning message 139

extending the schema 47

F
filtered access control rules 148

filtered roles 71

G
global directory services 15

group attribute 148

groups

dynamic 70

static 70

H
high availability 116, 117

hub supplier 101, 102, 110

role 102

I
illegal strings, passwords 139

index

approximate 96

browsing 96

equality 95

international 96

presence 95

substring 96

indirect CoS 74

inetOrgPerson attribute 148

international index 96

iPlanet Directory Server 13

architecture 16–21

database 19

K
knowledge references 84

chaining 90

referrals 85

L
LDAP, See Lightweight Directory Access Protocol

LDAP referrals 85

LDAPv3 schema 40

LDBM database 19

length, password 140

Lightweight Directory Access Protocol (LDAP) 15

directory services 15

load balancing
Index 195

the network 118

M
mail attribute 68

managed roles 71

master server 102

role 102

minimum length of passwords 140

multi-master replication 108

multinational enterprise deployment 162

multiple databases 81

N
name collision 67

naming entries 67

organization 69

people 67

nested roles 71

network names, branching to reflect 64

network, load balancing 118

O
object class

defining in schema 48

standard 44

object identifier. See OID.

OID

getting and assigning 47

organization attribute 148

organizationalPerson object class 54

organizationalUnit attribute 148

P
password

simple

over TLS 135

password policies

attributes 137

change after reset 138

design 137

expiration warning 139

overview 137

password expiration 139

password history 140

password length 140

password storage scheme 140

overview 140

replication of 141

syntax checking 139

user defined passwords 138

password storage scheme

configuring 140

passwords

changing after reset 138

encryption of 140

expiration 139

expiration warning 139

history 140

illegal strings 139

minimum length 140

reusing 140

simple 134

syntax checking 139

user defined 138

performance

replication 109

permissions 146

allow 147

bind rules 143, 144, 145

default 146

deny 147

on ACIs 143

precedence rule 147

person entries 67

pointer CoS 74

precedence rule 147

presence index 95
196 iPlanet Directory Server Deployment Guide • February 2002

proxy authentication 136

proxy authorization 136

proxy DN 136

R
read-only replica 101

read-write replica 101

referrals 85–90

branching to support 64

compared to chaining 91

default 86

LDAP 85

smart referrals 87

replica

read-only 101

read-write 101

replication 99–124

access control 122

branching to support 64

cascading 110

change log 103

consumer server 101, 102

consumer-initiated 102

data consistency 105

data master 33

database links 123

examples

large sites 121

load balancing server traffic 120

local data management 118

small sites 121

high availability 117

hub server 110

hub supplier 101, 102

load balancing

the network 118

local availability 117

master server 102

overview 99

password policies 141

performance 109

replication manager 104

resource requirements 115

schema 124

server plug-ins 122

single-master 106

site survey 115

strategy 114

supplier bind DN 104

supplier server 101, 102

supplier-initiated 102

replication manager 104

reusing passwords 140

roles 71–73

compared to groups 72

filtered 71

managed 71

nested 71

root suffix 82

S
Salted SHA encryption 141

schema 39–56

adding new attributes 50

assigning OIDs 47

best practices 52

checking 54

consistency 53–55

custom files 51

deleting elements 50

extending 47

iPlanet standard 40–44

LDAPv3 40

naming attributes 48

naming elements 48

naming object classes 48

object class strategies 48

schema replication 124

secure sockets layer 135

security

conducting audits 131

security methods

overview 132

security policy 36

security threats 127
Index 197

denial of service 129

unauthorized access 128

unauthorized tampering 128

server database 19

SHA encryption 140

simple password 134

single-master replication

defined 106

site survey 28

characterizing data 31

identifying applications 29

identifying data sources 30

network capabilities 115

smart referral 87

sn attribute 54

standard object classes 44

standard schema 40–44

Start TLS 135

static groups 70

streetAddress attribute 54

sub suffix 82

substring index 96

suffix

naming conventions 59

root suffix 82

sub suffix 82

supplier bind DN 104

supplier server 101, 102

role 102

surname attribute 54

syntax

password 139

T
telephoneNumber attribute 54

topology

overview 79

trivial words 139

U
uid attribute 54, 68

user authentication 134

user defined passwords 138

userPassword attribute 54

V
virtual list view index 96

W
warning, password expiration 139
198 iPlanet Directory Server Deployment Guide • February 2002

	Deployment Guide
	Purpose of This Guide
	Conventions Used in This Guide
	Related Information
	Chapter�1
	Introduction to Directory Server
	What is a Directory Service?
	About Global Directory Services
	About LDAP

	Introduction to iPlanet Directory Server
	Overview of Directory Server Architecture
	Overview of the Server Front-End
	Server Plug-ins Overview
	Overview of the Basic Directory Tree

	Directory Server Data Storage
	About Directory Entries
	Distributing Directory Data

	Directory Design Overview
	Design Process Outline
	Deploying Your Directory
	Piloting Your Directory
	Putting Your Directory Into Production

	Other General Directory Resources

	Chapter�2
	How to Plan Your Directory Data
	Introduction to Directory Data
	What Your Directory Might Include
	What Your Directory Should Not Include

	Defining Your Directory Needs
	Performing a Site Survey
	Identifying the Applications that Use Your Directory
	Identifying Data Sources
	Characterizing Your Directory Data
	Determining Level of Service
	Considering a Data Master
	Data Mastering for Replication
	Data Mastering Across Multiple Applications

	Determining Data Ownership
	Determining Data Access
	Documenting Your Site Survey
	Repeating the Site Survey

	Chapter�3
	How to Design the Schema
	Schema Design Process Overview
	iPlanet Standard Schema
	Schema Format
	Standard Attributes
	Standard Object Classes

	Mapping Your Data to the Default Schema
	Viewing the Default Directory Schema
	Matching Data to Schema Elements

	Customizing the Schema
	When to Extend Your Schema
	Getting and Assigning Object Identifiers
	Naming Attributes and Object Classes
	Strategies for Defining New Object Classes
	Strategies for Defining New Attributes
	Deleting Schema Elements
	Creating Custom Schema Files
	Custom Schema Best Practices

	Maintaining Data Consistency
	Schema Checking
	Selecting Consistent Data Formats
	Maintaining Consistency in Replicated Schema

	Other Schema Resources

	Chapter�4
	Designing the Directory Tree
	Introduction to the Directory Tree
	Designing Your Directory Tree
	Choosing a Suffix
	Suffix Naming Conventions
	Naming Multiple Suffixes

	Creating Your Directory Tree Structure
	Branching Your Directory
	Identifying Branch Points
	Replication Considerations
	Access Control Considerations

	Naming Entries
	Naming Person Entries
	Naming Organization Entries
	Naming Other Kinds of Entries

	Grouping Directory Entries
	Static and Dynamic Groups
	Managed, Filtered, and Nested Roles
	Deciding Between Groups and Roles
	Class of Service

	Directory Tree Design Examples
	Directory Tree for an International Enterprise
	Directory Tree for an ISP

	Other Directory Tree Resources

	Chapter�5
	Designing the Directory Topology
	Topology Overview
	Distributing Your Data
	About Using Multiple Databases
	About Suffixes

	About Knowledge References
	Using Referrals
	The Structure of an LDAP Referral
	About Default Referrals
	Smart Referrals
	Tips for Designing Smart Referrals

	Using Chaining
	Deciding Between Referrals and Chaining
	Usage Differences
	Evaluating Access Controls

	Using Indexes to Improve Database Performance
	Overview of Directory Index Types
	Evaluating the Costs of Indexing

	Chapter�6
	Designing the Replication Process
	Introduction to Replication
	Replication Concepts
	Replica
	Supplier/Consumer
	Change Log
	Unit of Replication
	Replication Agreement
	Replication Identity

	Data Consistency

	Common Replication Scenarios
	Single-Master Replication
	Multi-Master Replication
	Cascading Replication
	Mixed Environments

	Defining a Replication Strategy
	Replication Survey
	Replication Resource Requirements
	Using Replication for High Availability
	Using Replication for Local Availability
	Using Replication for Load Balancing
	Example of Network Load Balancing
	Example of Load Balancing for Improved Performance

	Example Replication Strategy for a Small Site
	Example Replication Strategy for a Large Site

	Using Replication with other Directory Features
	Replication and Access Control
	Replication and Directory Server Plug-ins
	Replication and Database Links
	Schema Replication

	Chapter�7
	Designing a Secure Directory
	About Security Threats
	Unauthorized Access
	Unauthorized Tampering
	Denial of Service

	Analyzing Your Security Needs
	Determining Access Rights
	Ensuring Data Privacy and Integrity
	Conducting Regular Audits
	Example Security Needs Analysis

	Overview of Security Methods
	Selecting Appropriate Authentication Methods
	Anonymous Access
	Simple Password
	Certificate-Based Authentication
	Simple Password Over TLS
	Proxy Authorization

	Preventing Authentication by Account Inactivation
	Designing a Password Policy
	Password Policy Attributes
	Password Change After Reset
	User-Defined Passwords
	Password Expiration
	Expiration Warning
	Password Syntax Checking
	Password Length
	Password Minimum Age
	Password History
	Password Storage Scheme

	Designing a Password Policy in a Replicated Environment
	Designing an Account Lockout Policy

	Designing Access Control
	About the ACI Format
	Targets
	Permissions
	Bind Rules

	Setting Permissions
	The Precedence Rule
	Allowing or Denying Access
	When to Deny Access
	Where to Place Access Control Rules
	Using Filtered Access Control Rules

	Using ACIs: Some Hints and Tricks

	Securing Connections With SSL
	Other Security Resources

	Chapter�8
	Directory Design Examples
	An Enterprise
	Data Design
	Schema Design
	Directory Tree Design
	Topology Design
	Database Topology
	Server Topology

	Replication Design
	Supplier Architecture
	Supplier Consumer Architecture

	Security Design
	Tuning and Optimizations
	Operations Decisions

	A Multinational Enterprise and its Extranet
	Data Design
	Schema Design
	Directory Tree Design
	Topology Design
	Database Topology
	Server Topology

	Replication Design
	Supplier Architecture

	Security Design

	Index

