
IPQoS Administration Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 816–4094–10
September 2002

Copyright 2002 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or service marks
of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2002 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, ou
marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des
marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques
SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

020618@4333

Contents

Preface 13

1 Introducing IPQoS (Overview) 17

IPQoS Basics 17
What Are Differentiated Services? 17
IPQoS Features 18
Where to Get More Information About Quality of Service 18

Providing Quality of Service With IPQoS 20
Implementing Service-Level Agreements 20
Assuring Quality of Service for an Individual Organization 20
Introducing the Quality-of-Service Policy 20

Improving Network Efficiency With IPQoS 21
What Is Bandwidth and How Does It Affect Network Traffic? 21
Using Classes of Service to Prioritize Traffic 22

Differentiated Services Model 23
Classifier (ipgpc) Overview 23
Meter (tokenmt and tswtclmt) Overview 24
Marker (dscpmk and dlcosmk) Overview 25
Flow Accounting (flowacct) Overview 25
Example—How Traffic Flows Through the IPQoS Modules 26

Traffic Forwarding on an IPQoS-Enabled Network 27
DS Codepoint (DSCP) 27
Per-Hop Behaviors 27

3

2 Planning for an IPQoS-Enabled Network (Tasks) 31

General IPQoS Configuration Planning (Task Map) 31
Planning the Diffserv Network Topology 32

Hardware Strategies for the Diffserv Network 32
IPQoS Network Topologies 33

Planning the Quality-of-Service Policy 35
QoS Policy Planning Aids 35
� How to Prepare a Network for IPQoS 37
� How to Define the Classes for Your QoS Policy 38
� How to Define Filters in the QoS Policy 40
� How to Plan Flow Control 42
� How to Plan Forwarding Behavior 44
� How to Plan for Flow Accounting 47

Introducing the IPQoS Configuration Example 48
Example—IPQoS Topology 48

3 Creating the IPQoS Configuration File (Tasks) 51

Defining a QoS Policy in the IPQoS Configuration File (Task Map) 51
Tools for Creating a QoS Policy 52

IPQoS Configuration File 53
Creating IPQoS Configuration Files for Web Servers 53

� How to Begin the IPQoS Configuration File and Define Traffic Classes 56
� How to Define Filters in the IPQoS Configuration File 58
� How to Define Traffic Forwarding in the IPQoS Configuration File 60
� How to Enable Accounting for a Class in the IPQoS Configuration File 63
� How to Create an IPQoS Configuration File for a Best-Effort Web Server 65

Creating an IPQoS Configuration File for an Application Server 68
� How to Configure the IPQoS Configuration File for an Applications Server
70
� How to Configure Forwarding for Application Traffic in the IPQoS
Configuration File 73
� How to Configure Flow Control in the IPQoS Configuration File 75

Providing Differentiated Services on a Router 79
� How to Configure a Router on an IPQoS-Enabled Network 79

4 Starting Up and Maintaining IPQoS (Tasks) 81

Administering IPQoS (Task Map) 81

4 IPQoS Administration Guide • September 2002

Activating an IPQoS Configuration 82

� How to Apply a New Configuration to the IPQoS Kernel Modules 82

� How to Ensure That the IPQoS Configuration Is Applied After Each Reboot
83

Enabling syslog Logging for IPQoS Messages 83

� How to Enable Logging of IPQoS Messages During Booting 84

Using IPQoS Error Messages 84

5 Using Flow Accounting and Statistics Gathering (Tasks) 89

Setting Up Flow Accounting (Task Map) 89

Recording Information About Flows 90

� How to Create a File for Flow-Accounting Data 90

� How to Get Instructions for Viewing a Flow-Accounting File 92

Gathering Statistical Information 93

Example—kstat Statistics for IPQoS 93

6 IPQoS in Depth (Reference) 95

IPQoS Architecture and the diffserv Model 95

Classifier Module 95

Meter Module 98

Marker Module 101

flowacct Module 105

IPQoS Configuration File 108

action Statement 109

Module Definitions 110

Class Clause 110

Filter Clause 111

Params Clause 111

ipqosconf Configuration Utility 112

Glossary 113

Index 115

Contents 5

6 IPQoS Administration Guide • September 2002

Tables

TABLE 2–1 IPQoS Configuration Planning (Task Map) 31

TABLE 2–2 QoS Organizational Template 36

TABLE 2–3 QoS Policy Planning (Task Map) 36

TABLE 2–4 Common IPQoS Selectors 40

TABLE 2–5 Example QoS Policy With Meters Defined 43

TABLE 3–1 Creating an IPQoS Configuration File (Task Map) 51

TABLE 3–2 Per-Hop Behaviors Configured for a Sample Network 80

TABLE 4–1 Configuring and Maintaining IPQoS (Task Map) 81

TABLE 4–2 IPQoS Error Messages 85

TABLE 5–1 Configuring Flow Accounting (Task Map) 89

TABLE 6–1 Filter Selectors for the IPQoS Classifier 96

TABLE 6–2 Assured Forwarding Codepoints 102

TABLE 6–3 801.D User Priority Values 104

TABLE 6–4 Attributes of a flowacct Record 107

TABLE 6–5 IPQoS Modules 110

7

8 IPQoS Administration Guide • September 2002

Figures

FIGURE 1–1 Traffic Flow Through the IPQoS Implementation of the Diffserv Model
26

FIGURE 1–2 Packet Forwarding Across Diffserv-Aware Network Hops 28

FIGURE 2–1 IPQoS Systems on a Network Segment 33

FIGURE 2–2 Network of IPQoS-Enabled Server Farms 34

FIGURE 2–3 Network Protected by an IPQoS-Enabled Firewall 34

FIGURE 2–4 IPQoS Example Topology 48

9

10 IPQoS Administration Guide • September 2002

Examples

EXAMPLE 3–1 Sample IPQoS Configuration File for a Premium Web Server 54

EXAMPLE 3–2 Sample Configuration for a Best-Effort Web Server 55

EXAMPLE 3–3 Sample Configuration for an Application Server 68

EXAMPLE 6–1 Color-Aware tokenmt Action for the IPQoS Configuration File 99

EXAMPLE 6–2 IPQoS Configuration File for a System With a VLAN Device 104

EXAMPLE 6–3 Syntax of the IPQoS Configuration File 108

11

12 IPQoS Administration Guide • September 2002

Preface

The IPQoS Administration Guide explains how to provide differentiated services on a
network through use of the IPQoS feature in the Solaris™ operating environment.
IPQoS enables you to provide different levels of service to network customers and to
manage network traffic.

Who Should Use This Book
This module assumes that you are a very experienced system administrator with an
extensive knowledge of TCP/IP concepts. You might be responsible for, or be familiar
with, router administration for your network. You should also be familiar with your
site’s network topology and corporate policies on network usage, and, possibly, on
network security.

How This Book Is Organized
The IPQoS Administration Guide contains the following chapters:

Chapter 1 provides basic information about the IPQoS feature and the diffserv
architecture on which IPQoS is based.

Chapter 2 contains tasks for planning the topology of an IPQoS-aware network. The
chapter also contains planning tasks for creating a quality-of-service policy for a
prospective IPQoS system.

Chapter 3 contains tasks for building an IPQoS configuration file that is based on the
quality-of-service policy.

13

Chapter 4 contains tasks for maintaining and tracking IPQoS.

Chapter 5 contains tasks for configuring the IPQoS flow accounting and displaying
IPQoS statistics with the kstat command.

Chapter 6 contains in-depth information about the IPQoS modules and the IPQoS
configuration file.

Related Books
The following books discuss the differentiated services architecture:

� Ferguson, Paul and Geoff Huston. Quality of Service. John Wiley & Sons, Inc., 1998.

� Kilkki, Kalevi. Differentiated Services for the Internet. Macmillan Technical Publishing,
1999.

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com.

Typographic Conventions
The following table describes the typographic changes used in this book.

14 IPQoS Administration Guide • September 2002

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; on-screen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace with
a real name or value

To delete a file, type rm
filename.

AaBbCc123 Book titles, new words, or terms, or
words to be emphasized

Read Chapter 6 in User’s Guide.

These are called class options.

You must be root to do this.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

Preface 15

16 IPQoS Administration Guide • September 2002

CHAPTER 1

Introducing IPQoS (Overview)

The IP quality-of-service (IPQoS) feature enables you to prioritize, control, and gather
accounting statistics. Using IPQoS, you can provide consistent levels of service to
users of your network, and manage traffic to avoid network congestion.

The following is a list of topics in this chapter:

� “IPQoS Basics” on page 17
� “Introducing the Quality-of-Service Policy” on page 20
� “Traffic Forwarding on an IPQoS-Enabled Network” on page 27
� “Differentiated Services Model” on page 23

IPQoS Basics
IPQoS enables the Differentiated Services (diffserv) architecture that is defined by the
Differentiated Services Working Group of the Internet Engineering Task Force (IETF).
In the Solaris™ 9, 9/02 operating environment, IPQoS is implemented at the IP level
of the TCP/IP protocol stack.

What Are Differentiated Services?
By enabling IPQoS, you can provide different levels of network service for selected
customers and selected applications. These differentiated services can be based on a
structure of service levels that your company offers to its customers. You can also
provide differentiated services that are based on the priorities set for applications or
users on your network.

Providing quality of service involves the following activities:

17

� Delegating levels of service to different groups, such as customers or departments
in an enterprise

� Prioritizing network services that are given to particular groups or applications
� Discovering and eliminating areas of network bottlenecks and other forms of

congestion
� Monitoring network performance and providing performance statistics
� Regulating bandwidth to and from network resources

IPQoS Features
IPQoS has the following features:

� Command-line tool for configuring the QoS policy
� Classifier that selects actions, which are based on filters that configure the QoS

policy of your organization
� Metering module that measures network traffic, in compliance with the diffserv

model
� Service differentiation that is based on the ability to mark a packet’s IP header with

forwarding information
� Flow-accounting module that gathers statistics for traffic flows
� Statistics gathering for traffic classes, through the UNIX® kstat command
� Support for SPARC™ architecture
� Support for IPv4 and IPv6 addressing
� Interoperability with IPsec
� Support for 802.1 D user priority markings for virtual local area networks (VLANs)

Where to Get More Information About Quality of
Service
You can find information on differentiated services and quality of service from print
and online sources.

Books
For more information on quality-of-service theory and practice, refer to the following
books:

� Ferguson, Paul and Geoff Huston. Quality of Service. John Wiley & Sons, Inc., 1998.
� Kilkki, Kalevi. Differentiated Services for the Internet. Macmillan Technical Publishing,

1999.

18 IPQoS Administration Guide • September 2002

Requests for Comments (RFCs)
IPQoS conforms to the specifications that are described in the following RFCs and
Internet drafts:

� RFC 2474, Definition of the Differentiated Services Field, which describes an
enhancement to the ToS or DS fields of the IPv4 and IPv6 packet headers to
support differentiated services.

� RFC 2475, An Architecture for Differentiated Services, which provides a detailed
description of the organization and modules of the diffserv architecture.

� RFC 2597, Assured Forwarding PHB Group, which describes how the assured
forwarding (AH) per-hop behavior works.

� RFC 2598, An Expedited Forwarding PHB, which describes how the expedited
forwarding (EF) per-hop behavior works.

� Internet-Draft, An Informal Management Model for Diffserv Routers, which presents a
model for implementing the diffserv architecture on routers.

Web Sites
The Differentiated Services Working Group of the IETF maintains a Web site with links
to diffserv Internet drafts at http://www.ietf.org/html.charters/diffserv-
charter.html.

Router manufacturers such as Cisco Systems and Juniper Networks provide
information on their corporate Web sites that describes how differentiated services are
implemented on their products.

Man Pages
The IPQoS distribution includes the following man pages.

� ipqosconf(1m), which is the command for setting up the IPQoS configuration file

� ipqos(7ipp), which describes the IPQoS implementation of the diffserv
architectural model

� ipgpc(7ipp), which describes the IPQoS implementation of a diffserv classifier

� tokenmt(7ipp), which describes the IPQoS tokenmt meter module

� tswtclmt(7ipp), which describes the IPQoS tswtclmt meter module

� dscpmk(7ipp), which describes the DSCP marker module

� dlcosmk(7ipp), which describes the IPQoS 802.1D user priority marker module

� flowacct(7ipp), which describes the IPQoS flow-accounting module

� acctadm(1m), which is the command that configures the Solaris extended
accounting facilities and now includes IPQoS extensions

Chapter 1 • Introducing IPQoS (Overview) 19

Providing Quality of Service With IPQoS
IPQoS features enable Internet service providers (ISPs) and application service
providers (ASPs) to offer different levels of network service to customers. These same
features enable individual companies and educational institutions to prioritize
services for internal organizations or for major applications.

Implementing Service-Level Agreements
If your organization is an ISP or ASP, you can base your IPQoS configuration on the
service-level agreement (SLA) that your company offers to its customers. In an SLA, a
service provider guarantees to a customer a certain level of network service that is
based on a price structure. For example, a premium-priced SLA might ensure that the
customer receives highest priority for all types of network traffic 24 hours per day.
Conversely, a medium-priced SLA might guarantee that the customer receives high
priority for email only during business hours and medium priority for all other traffic
24 hours a day.

Assuring Quality of Service for an Individual
Organization
If your organization is an enterprise or an institution, you can also provide quality-of-
service features for your network. You can guarantee that traffic from a particular
group or from a certain application is assured a higher or lower degree of service.

Introducing the Quality-of-Service Policy
You implement quality of service by defining a quality-of-service (QoS) policy. The QoS
policy defines various network attributes, such as customers’ or applications’
priorities, and actions for handling different categories of traffic. You implement your
organization’s QoS policy in an IPQoS configuration file. This file configures the IPQoS
modules that reside in the Solaris 9, 9/02 kernel. A host with an applied IPQoS policy
is considered an IPQoS-enabled system.

Your QoS policy typically defines the following:

� Discrete groups of network traffic that are called classes of service.

� Metrics for regulating the amount of network traffic for each class. These metrics
govern the traffic-measuring process that is called metering.

20 IPQoS Administration Guide • September 2002

� Actions that an IPQoS system and a diffserv router must apply to a packet flow.
This action is called a per-hop behavior (PHB).

� Any statistics gathering that your organization requires for a class of service, for
example, traffic that is generated by a customer or particular application.

When packets pass to your network, the IPQoS-enabled system evaluates the packet
headers. The action that the IPQoS system takes is determined by your QoS policy.

Tasks for designing the QoS policy are in “Planning the Quality-of-Service Policy”
on page 35.

Improving Network Efficiency With
IPQoS
IPQoS contains features that can help you make network performance more efficient as
you implement quality of service. When computer networks expand, the need also
increases for managing network traffic that is generated by increasing numbers of
users and more powerful processors. Some symptoms of an overused network include
lost data and traffic congestion that results in slow response times.

In the past, system administrators handled network traffic problems by adding more
bandwidth. Often the level of traffic on the links varied widely. With IPQoS, you can
manage traffic on the existing network and help assess where, and whether, expansion
is necessary.

For example, for an enterprise or institution, you must maintain an efficient network to
avoid traffic bottlenecks. You must also assure that a group or application does not
consume more than its allotted bandwidth. Moreover, for an ISP or ASP, you must
manage network performance to ensure that customers receive the amount of network
service for which they have paid.

What Is Bandwidth and How Does It Affect
Network Traffic?
You can use IPQoS to regulate network bandwidth, the maximum amount of data that a
fully used network link or device can transfer. Your QoS policy should prioritize the
use of bandwidth to provide quality of service to customers or users. The IPQoS
metering modules enable you to measure and control bandwidth allocation among the
various traffic classes on an IPQoS-enabled host.

Before you can effectively manage traffic on your network, you must answer these
questions about bandwidth usage:

Chapter 1 • Introducing IPQoS (Overview) 21

� What are the traffic problem areas for your local network?

� What must you do to achieve optimum use of available bandwidth?

� What are your site’s critical applications, which must be given highest priority?

� Which applications are sensitive to congestion?

� What are your less-critical applications, which can be given a lower priority?

Using Classes of Service to Prioritize Traffic
To implement quality of service, you analyze network traffic to determine any broad
groupings into which the traffic can be divided. Then you organize the various
groupings into classes of service that have individual characteristics and priorities.
These classes form the basic categories on which you base the QoS policy for your
organization. The classes of service represent the traffic groups that you want to
control.

For example, a provider might offer platinum, gold, silver, and bronze levels of
service, available at a sliding price structure. A platinum SLA might guarantee top
priority to incoming traffic that is destined for a web site that the ISP hosts for the
customer. Thus, incoming traffic to the customer’s web site could be one traffic class.

For an enterprise, you could create classes of service that are based on department
requirements or based on the preponderance of a particular application in the network
traffic. Here are a few examples of traffic classes for an enterprise:

� Popular applications such as email and outgoing FTP to a particular server, each of
which could constitute a class. Because employees constantly use these
applications, your QoS policy might guarantee them a small amount of bandwidth
and a lower priority.

� An order-entry database that needs to run 24 hours a day. Depending on the
importance of the database application to the enterprise, you might give the
database a large amount of bandwidth and a high priority.

� A department that performs critical or sensitive work, such as the payroll
department. The importance of the department to the organization would
determine the priority and amount of bandwidth you would give to such a
department.

� Incoming calls to a company’s external Web site. You might give this class a
moderate amount of bandwidth that runs at low priority.

22 IPQoS Administration Guide • September 2002

Differentiated Services Model
IPQoS includes the following modules, which are part of the differentiated services
(diffserv) architecture that is defined in RFC 2475.

� Classifier
� Meter
� Marker

IPQoS adds the following enhancements to the diffserv model:

� Flow-accounting module
� 802.1D datagram marker

This section introduces the diffserv modules as they are used by IPQoS. You need to
know about these modules, their names, and their uses to set up the QoS policy. For
detailed information about each module, refer to “IPQoS Architecture and the diffserv
Model” on page 95.

Classifier (ipgpc) Overview
In the diffserv model, the classifier selects packets from a network traffic flow—a group
of packets with identical information in the following IP header fields.

� Source address
� Destination address
� Source port
� Destination port
� Protocol number

In IPQoS, these fields are referred to as the 5–tuple.

The IPQoS classifier module is named ipgpc. ipgpc arranges traffic flows into classes
that are based on characteristics you configure in the IPQoS configuration file.

For detailed information about ipgpc, refer to “Classifier Module” on page 95.

Classes
A class is a group of network flows that share similar characteristics. For example, an
ISP might define classes to represent the different service levels that are offered to
customers. An ASP might define SLAs that give different levels of service to various
applications. For an ASP’s QoS policy, a class might include outgoing FTP traffic that is
bound for a particular destination IP address. Outgoing traffic from a company’s
external Web site might also be defined as a class.

Chapter 1 • Introducing IPQoS (Overview) 23

Grouping traffic into classes is a major part of planning your QoS policy. When you
create classes by using the ipqosconf utility, you are actually configuring the ipgpc
classifier.

For information on how to define classes, see “How to Define the Classes for Your QoS
Policy” on page 38.

Filters
Filters are sets of rules that contain parameters which are called selectors. Each filter
must point to a class. IPQoS matches packets against the selectors of each filter to
determine if the packet belongs to the filter’s class. You can filter on a packet by using
a variety of selectors, for example the IPQoS 5–tuple and other common parameters:

� Source and destination addresses
� Source and destination port numbers
� Protocol numbers
� User IDs
� Project IDs
� Differentiated services codepoint (DSCP)
� Interface index

For example, a simple filter might include the destination port with the value of 80.
The ipgpc classifier then selects all packets that are bound for destination port 80
(HTTP) and handles the packets as directed in the QoS policy.

For information on creating filters, see “How to Define Filters in the QoS Policy”
on page 40.

Meter (tokenmt and tswtclmt) Overview
In the diffserv model, the meter tracks the transmission rate of traffic flows on a
per-class basis. The meter evaluates how much the actual rate of the flow conforms to
the configured rates in order to determine the appropriate outcome. Based on the
traffic flow’s outcome, the meter selects a subsequent action. Subsequent actions might
include to send the packet to another action or to return the packet to the network
without further processing.

The IPQoS meters determine whether a network flow conforms to the transmission
rate that is defined for its class in the QoS policy. IPQoS includes two metering
modules:

� tokenmt, which uses a two-token bucket metering scheme
� tswtclmt, which uses a time-sliding window metering scheme

Both metering modules recognize three outcomes: red, yellow, and green. You define
the actions to be taken for each outcome in the parameters red action_name,
yellow action_name, and green action_name.

24 IPQoS Administration Guide • September 2002

In addition, you can configure tokenmt to be color aware. A color-aware metering
instance uses the packet’s size, DSCP, traffic rate, and configured parameters to
determine the outcome. The meter uses the DSCP to map the packet to a green, yellow
or red outcome.

For information on defining parameters for the meters, refer to “How to Plan Flow
Control” on page 42.

Marker (dscpmk and dlcosmk) Overview
In the diffserv model, the marker marks a packet with a value that reflects a forwarding
behavior. Marking is the process of placing a value in the packet’s header to indicate
how to forward the packet to the network. IPQoS contains two marker modules:

� dscpmk, which marks the DS field in an IP packet header with a numeric value
called the DS codepoint, or DSCP. A diffserv-aware router can then use the DS
codepoint to apply the appropriate forwarding behavior to the packet.

� dlcosmk, which marks the virtual local area network (VLAN) tag of an Ethernet
frame header with a numeric value called the user priority. The user priority
indicates the class of service (CoS), which defines the appropriate forwarding
behavior to be applied to the datagram.

dlcosmk is an IPQoS addition that is not part of the diffserv model, as designed.

For information on implementing a marker strategy for the QoS policy, see “How to
Plan Forwarding Behavior” on page 44.

Flow Accounting (flowacct) Overview
IPQoS adds the flowacct accounting module to the diffserv model. You can use
flowacct to take statistics on traffic flows, and bill customers in agreement with their
SLAs. Flow accounting is also useful for capacity planning and system monitoring.

flowacct works with the acctadm command to create an accounting log file. A basic
log includes the IPQoS 5–tuple and two additional attributes, as shown in the
following list:

� Source address
� Source port
� Destination address
� Destination port
� Protocol number
� Number of packets
� Number of bytes

You can also gather statistics on other attributes, as described in “Recording
Information About Flows” on page 90 and the flowacct(7ipp) and acctadm(1m)
man pages.

Chapter 1 • Introducing IPQoS (Overview) 25

For information on planning a flow-accounting strategy, see “How to Plan for Flow
Accounting” on page 47.

Example—How Traffic Flows Through the IPQoS
Modules
The next figure shows a path that incoming traffic might take as it traverses some of
the IPQoS modules.

Meters
(tokenmt,
tswtclmt)

Classifier
(ipgpc)

Incoming
traffic

Yes

No

No

Flow
accounting
(flowacct)

Marker
(dscpmk)

Outgoing
traffic

Yes

Metered?

Accounting?

FIGURE 1–1 Traffic Flow Through the IPQoS Implementation of the Diffserv Model

The figure illustrates a common traffic flow sequence¸ on an IPQoS-enabled machine:

1. The classifier selects from the packet stream all packets that match the filtering
criteria in the system’s QoS policy.

2. The selected packets are then evaluated for the next action to be taken on them.

3. The classifier sends to the marker any traffic that does not require flow control.

4. Traffic to be flow-controlled is sent to the meter.

26 IPQoS Administration Guide • September 2002

5. The meter enforces the configured rate and assigns a traffic conformance value to
the flow-controlled packets.

6. The flow-controlled packets are then evaluated to determine if any packets require
accounting.

7. The meter sends to the marker any traffic that does not require flow accounting.

8. The flow-accounting module gathers statistics on received packets. The module
then sends the packets to the marker.

9. The marker assigns a DS codepoint to the packet header. This DSCP indicates the
per-hop behavior that a diffserv-aware system must apply to the packet.

Traffic Forwarding on an IPQoS-Enabled
Network
This section introduces the elements that are involved in forwarding packets on an
IPQoS-enabled network. An IPQoS-enabled system handles any packets on the
network stream with the system’s IP address as the destination. The IPQoS system
then applies its QoS policy to the packet to establish differentiated services.

DS Codepoint (DSCP)
The DS codepoint defines in the packet header the action that any diffserv-aware
system should take on a marked packet. The diffserv architecture defines a set of DS
codepoints and corresponding actions, or forwarding behaviors, for the IPQoS-enabled
system and router to use. The IPQoS-enabled system marks the precedence bits of the
DS field in the packet header with the DSCP. When a router receives a packet with a
DSCP value, the router applies the forwarding behavior associated with that DSCP as
the packet is released onto the network.

Note – The dlcosmk meter does not use the DSCP. Rather, dclosmk marks Ethernet
frame headers with a CoS value. If you plan to configure IPQoS on a network that
uses VLAN devices, refer to “Marker Module” on page 101.

Per-Hop Behaviors
In diffserv terminology, the forwarding behavior that is assigned to a DSCP is called
the per-hop behavior (PHB).The PHB defines the forwarding precedence a marked
packet receives in relation to other traffic on the diffserv-aware system. This
precedence ultimately determines whether the IPQoS-enabled system or diffserv

Chapter 1 • Introducing IPQoS (Overview) 27

router forwards or drops the marked packet. For a forwarded packet, each diffserv
router that the packet encounters en route to its destination applies the same PHB. The
exception is if another diffserv system changes the DSCP. For more information on
PHBs, refer to “Using the dscpmk Marker for Forwarding Packets” on page 101.

The goal of a PHB is to provide a specified amount of network resources to a class of
traffic on the contiguous network. You can achieve this goal in the QoS policy by
defining DS codepoints that indicate the precedence levels for traffic classes when they
leave the IPQoS-enabled system. Precedences range from high-precedence/low-drop
probability to low-precedence/high-drop probability.

For example, your QoS policy can assign to one class of traffic a DSCP that guarantees
a low-drop PHB. This traffic class then receives a low-drop precedence PHB from any
diffserv-aware router, which guarantees bandwidth to packets of this class. You can
add to the QoS policy other DSCPs that assign varying levels of precedence to other
traffic classes. The lower-precedence packets are given bandwidth by diffserv systems
in agreement with the priorities that are indicated in the packets’ DSCPs.

IPQoS supports two types of forwarding behaviors, which are defined in the diffserv
architecture, expedited forwarding and assured forwarding.

Expedited Forwarding (EF)
The expedited forwarding (EF) per-hop behavior assures that any traffic class with EF’s
related DSCP is given highest priority and is not queued. EF provides low loss,
latency, and jitter. The recommended DS codepoint for EF is 101110. A packet that is
marked with 101110 receives guaranteed low-drop precedence as the packet traverses
diffserv-aware networks en route to its destination. Use the EF DSCP when assigning
priority to customers or applications with a premium SLA.

Assured Forwarding (AF)
The assured forwarding (AF) per-hop behavior provides four different forwarding
classes that you can assign to a packet. Each forwarding class provides three drop
precedences, as shown in Table 6–2.

The various AF codepoints provide the ability to assign different levels of services to
customers and applications. In the QoS policy you can prioritize traffic and services on
your network when you plan the QoS policy. You can then assign different AF levels to
the prioritized traffic.

Packet Forwarding in a Diffserv Environment
The following figure shows part of an intranet at a company with a partially
diffserv-enabled environment. In this scenario, all hosts on networks 10.10.0.0 and
10.14.0.0 are IPQoS-enabled, and the local routers on both networks are diffserv-aware.
However, the interim networks are not configured for diffserv.

28 IPQoS Administration Guide • September 2002

10.10.0.0
network

010100

Packet
ToS
field

ipqos1
10.10.75.14

AF22 PHB

10.12.0.0
network

10.13.0.0
network

10.14.0.0
network

diffrouter1

genrouter

diffrouter2

ipqos2
10.14.60.2

FIGURE 1–2 Packet Forwarding Across Diffserv-Aware Network Hops

The next steps trace the flow of the packet that is shown in the previous figure. The
steps begin with the progress of a packet that originates at host ipqos1 and continues
through several hops to ipqos2.

1. The user on ipqos1 runs the ftp command to access host ipqos2, three hops
away.

2. ipqos-1 applies its QoS policy to the resulting packet flow and successfully
classifies the ftp traffic.

The system administrator has created a class for all outgoing ftp traffic that
originates on the local network 10.10.0.0. Traffic for the ftp class is assigned the
AF22 per-hop behavior: class two, medium-drop precedence. A traffic flow rate of
2Mbits per second is configured for the ftp class.

3. ipqos-1 meters the ftp flow to determine if it exceeds the committed rate of 2
Mbits per second.

4. The marker on ipqos1 marks the DS fields in the outgoing ftp packets with the
010100 DSCP, corresponding to the AF22 PHB.

5. The router diffrouter1 receives the ftp packets and checks the DSCP. If
diffrouter1 is congested, it drops the packets that are marked with AF22.

6. ftp traffic is forwarded to the next hop in agreement with the per-hop behavior
that is configured for AF22 in diffrouter1’s files.

Chapter 1 • Introducing IPQoS (Overview) 29

7. The ftp traffic traverses network 10.12.0.0 to genrouter, which is not diffserv-
aware. As a result, the traffic receives “best-effort” forwarding behavior.

8. genrouter passes the ftp traffic to network 10.13.0.0, where the traffic is received
by diffrouter2.

9. diffrouter2 is diffserv-aware. Therefore, the router forwards the ftp packets to
the network in agreement with the PHB that is defined in the router policy for
AF22 packets.

10. ipqos2 receives the ftp traffic and prompts the user on ipqos1 for a user name
and password.

30 IPQoS Administration Guide • September 2002

CHAPTER 2

Planning for an IPQoS-Enabled
Network (Tasks)

You can configure IPQoS on any system that runs the Solaris 9, 9/02 operating
environment. The IPQoS system then works along with diffserv-aware routers to
provide differentiated services and traffic management on an intranet.

This chapter contains planning tasks for adding IPQoS-enabled systems onto a
diffserv-aware network. The following topics are covered.

� “General IPQoS Configuration Planning (Task Map)” on page 31
� “Planning the Diffserv Network Topology” on page 32
� “Planning the Quality-of-Service Policy” on page 35
� “Introducing the IPQoS Configuration Example” on page 48

General IPQoS Configuration Planning
(Task Map)
Implementing differentiated services, including IPQoS, on a network requires
extensive planning. You must consider not only the position and function of each
IPQoS-enabled system, but also the systems’ relationship to the router on the local
network. The following table lists the major planning tasks for implementing IPQoS
on your network.

TABLE 2–1 IPQoS Configuration Planning (Task Map)

Task Description For Instructions

1. Plan a diffserv network
topology that incorporates
IPQoS-enabled systems.

Learn about the various diffserv
network topologies and determine
the best solution for your site.

“Planning the Diffserv Network Topology”
on page 32.

31

TABLE 2–1 IPQoS Configuration Planning (Task Map) (Continued)
Task Description For Instructions

2. Plan the different types of
services to be offered by the
IPQoS systems.

Organize the types of services that
the network provides into
service-level agreements.

“Planning the Quality-of-Service Policy”
on page 35.

3. Plan the QoS policy for each
IPQoS system.

Decide on the classes, metering,
and accounting features that are
needed to implement each SLA.

“Planning the Quality-of-Service Policy”
on page 35.

4. If applicable, plan the policy
for the diffserv router.

Decide any scheduling and
queuing policies for the diffserv
router that is used with the IPQoS
systems.

Refer to router documentation for queuing
and scheduling policies.

Planning the Diffserv Network Topology
To provide differentiated services for your network, you need at least one IPQoS-
enabled system and a diffserv-aware router. You can expand this basic scenario in a
variety of ways, as explained in this section.

Hardware Strategies for the Diffserv Network
Typically, customers run IPQoS on servers and server consolidations, such as the Sun
Enterprise™ 10000 server. Conversely, you can also run IPQoS on desktop systems
such as UltraSPARC systems, depending on the needs of your network. The following
list describes possible systems for IPQoS configuration.

� Solaris systems that offer various services, such as Web servers and database
servers

� Applications servers that offer email, FTP, or other popular network applications
� Web cache servers or proxy servers
� Network of IPQoS-enabled server farms that are managed by diffserv-aware load

balancers
� Firewalls that manage traffic for a single heterogeneous network
� IPQoS systems that are part of a virtual LAN

You might introduce IPQoS systems into a network topology with already functioning
diffserv-aware routers. If your router does not currently offer diffserv, consider the
diffserv solutions that are offered by Cisco Systems, Juniper Networks, and other
router manufacturers. If the local router does not implement diffserv, then the router
passes marked packets on to the next hop without evaluating the marks.

32 IPQoS Administration Guide • September 2002

IPQoS Network Topologies
This section contains diagrams that illustrate IPQoS strategies for various network
needs.

IPQoS on Individual Hosts
The following figure shows a single network of IPQoS-enabled systems.

Switch

diffserv
router

FTP
server

Oracle
database

server

Web
server

IPQoS-enabled
Solaris systems

Other
systems

FIGURE 2–1 IPQoS Systems on a Network Segment

The network that is shown in the previous figure is but one segment of a corporate
intranet. By enabling IPQoS on the application servers and web servers, you can
control the rate at which each IPQoS system releases outgoing traffic onto the network
stream. If you make the router diffserv-aware, you can further control incoming and
outgoing traffic.

The examples in this guide use the IPQoS on an individual host scenario. For the
example topology that is used throughout the guide, see Figure 2–4.

IPQoS on a Network of Server Farms
The following figure shows a network with several heterogeneous server farms.

Chapter 2 • Planning for an IPQoS-Enabled Network (Tasks) 33

In such a topology, the router is diffserv-aware, and therefore able to queue and rate
both incoming and outgoing traffic. The load balancer is also diffserv-aware, and the
server farms are IPQoS-enabled. The load balancer can provide additional filtering
beyond the router by using selectors such as userID and projectID, which are included
in the application data.

Load
balancer

Router

IPQoS-enabled
Solaris system

Server farms

FIGURE 2–2 Network of IPQoS-Enabled Server Farms

This scenario provides flow control and traffic forwarding to manage congestion on
the local network. The topology also prevents outgoing traffic from the server farms
from overloading other portions of the intranet.

IPQoS on a Firewall
The following figure shows a segment of a corporate network that is secured from
other segments by a firewall.

34 IPQoS Administration Guide • September 2002

Firewall

diffserv
router

IPQoS-enabled
Solaris system

PC PC

Solaris
system

Other
hosts

FIGURE 2–3 Network Protected by an IPQoS-Enabled Firewall

In this scenario, traffic flows into a diffserv-aware router where it is filtered and
queued. All incoming traffic that is forwarded by the router then travels into the
IPQoS-enabled firewall. In order to use IPQoS, the firewall must not bypass the IP
forwarding stack.

The firewall’s security policy determines whether incoming traffic is permitted to enter
or depart the internal network. The QoS policy controls the service levels for incoming
traffic that has passed the firewall. Depending on the QoS policy, outgoing traffic can
also be marked with a forwarding behavior.

Planning the Quality-of-Service Policy
When you plan the quality-of-service policy, you must review, classify, and then
prioritize the services that your network provides. You must also assess the amount of
available bandwidth to determine the rate at which each traffic class is released onto
the network.

QoS Policy Planning Aids
Gather information for planning the QoS policy in a format that includes the
information that you need for the IPQoS configuration file. For example, you can use
the following template to list the major information to be used in the IPQoS
configuration file.

Chapter 2 • Planning for an IPQoS-Enabled Network (Tasks) 35

TABLE 2–2 QoS Organizational Template

Class Priority Filters Selectors Rate Forwarding? Accounting?

Class 1 1 Filter 1

Filter 3

Selector 1

Selector 2

Meter rates,
depending on
meter type

Marker drop
precedence

Requires
flow-
accounting
statistics

Filter 2 Selector 1

Selector 2

Class 2 2 Filter 1 Selector 1

Selector 2

Meter rates,
depending on
meter type

Marker drop
precedence

Requires
flow-
accounting
statistics

Filter 2 Selector 1

Selector 2

You can divide each major category to further define the QoS policy. The subsequent
sections explain how to obtain information for the categories that are shown in the
template.

The next task map lists the major tasks for planning a QoS policy.

TABLE 2–3 QoS Policy Planning (Task Map)

Task Description For Instructions

1. Design your
network topology to
support IPQoS.

Identify the hosts and
routers on your
network to provide
differentiated services.

“How to Prepare a Network for IPQoS”
on page 37

2. Define the classes
into which services on
your network must be
divided.

Examine the types of
services and SLAs that
are offered by your
site, and determine the
discrete traffic classes
into which these
services fall.

“How to Define the Classes for Your QoS
Policy” on page 38

3. Define filters for the
classes.

Determine the best
ways of separating
traffic of a particular
class from the network
traffic flow.

“How to Define Filters in the QoS Policy”
on page 40

36 IPQoS Administration Guide • September 2002

TABLE 2–3 QoS Policy Planning (Task Map) (Continued)
Task Description For Instructions

4. Define flow-control
rates for measuring
traffic as it leaves the
IPQoS system.

Determine acceptable
flow rates for each
class of traffic.

“How to Plan Flow Control” on page 42

5. Define DS
codepoints or user
priority values to be
used in the QoS policy.

Plan a scheme to
determine the
forwarding behavior
that is assigned to a
traffic flow when the
flow is handled by the
router or switch.

“How to Plan Forwarding Behavior”
on page 44

6. If applicable, set up
a statistics-monitoring
plan for traffic flows on
the network.

Evaluate the traffic
classes to determine
which traffic flows
must be monitored for
accounting or
statistical purposes.

“How to Plan for Flow Accounting”
on page 47

Note – The rest of this section explains how to plan the QoS policy of an IPQoS-
enabled system. To plan the QoS policy for the diffserv router, refer to router
documentation and the router manufacturers’ Web sites.

� How to Prepare a Network for IPQoS
The following procedure lists general planning tasks to do before you create the QoS
policy.

1. Review your network topology and plan a strategy that uses IPQoS systems and
diffserv routers.

For topology examples, see “Planning the Diffserv Network Topology” on page 32.

2. Identify the hosts in the topology that require IPQoS or that might become good
candidates for IPQoS service.

3. Determine which IPQoS-enabled systems could use the same QoS policy.

For example, if you plan to enable IPQoS on all hosts on the network, identify any
hosts that could use the same QoS policy. Each IPQoS-enabled system must have a
local QoS policy, which is implemented in its IPQoS configuration file. However, you
can create one IPQoS configuration file to be used by a range of systems. You can then
copy the configuration file to every system with the same QoS requirements.

Chapter 2 • Planning for an IPQoS-Enabled Network (Tasks) 37

4. Review and perform any planning tasks that are required by the diffserv router on
your network.

Refer to the router documentation and router manufacturer’s Web site for details.

� How to Define the Classes for Your QoS Policy
The first step in defining the QoS policy is organizing traffic flows into classes. You do
not need to create classes for every type of traffic on a diffserv network. Moreover,
depending on your network topology, you might have to create different QoS policies
for each IPQoS-enabled system.

Note – For an overview of classes, see “Classes” on page 23.

The next procedure assumes that you have determined which systems on your
network are to be IPQoS-enabled, as identified in “How to Prepare a Network for
IPQoS” on page 37.

1. Create a table for organizing the QoS policy.

For suggestions, refer to Table 2–2.

2. Perform the remaining steps for every QoS policy that is on your network.

3. Define the classes to be used in the QoS policy.

The following questions are a guideline for analyzing network traffic for possible class
definitions.

� Does your company offer service-level agreements to customers?

If yes, then evaluate the relative priority levels of the SLAs that your company
offers to customers. The same applications might be offered to customers who are
guaranteed different priority levels.

For example, your company might offer web site hosting to each customer, which
indicates that you need to define a class for each customer web site. Moreover, one
SLA might provide a premium web site as one service level, while another SLA
offers a “best-effort” personal web site to discount customers. This factor indicates
not only different web site classes but also potentially different per-hop behaviors
that are assigned to the web site classes.

� Does the IPQoS system offer popular applications that might need flow control?

You can improve network performance by enabling IPQoS on servers that offer
popular applications that generate a lot of traffic. Common examples are electronic
mail, network news, and FTP. Consider creating separate classes for incoming and
outgoing traffic for each service type, where applicable. For example, you might
create a mail-in class and a mail-out class to the QoS policy for a mail server.

38 IPQoS Administration Guide • September 2002

� Does your network run certain applications that require highest-priority
forwarding behaviors?

Any critical applications that require the highest-priority forwarding behaviors
must be given special treatment by the router. Typical examples are streaming
video and streaming audio.

Define incoming classes and outgoing classes for these high-priority applications.
Then add the classes to the QoS policies of both the IPQoS-enabled system that
serves the applications and the diffserv router.

� Does your network experience traffic flows that must be controlled because they
consume large amounts of bandwidth?

Use netstat, snoop, and other network monitoring utilities to discover the types
of traffic that are causing problems on the network. Review the classes you have
created thus far, and then create new classes for any undefined problem traffic
category. If you have already defined classes for a category of problem traffic, then
define rates for the meter to control the problem traffic.

Create classes for the problem traffic on every IPQoS-enabled system on the
network. Each IPQoS system can then handle any problem traffic it receives by
limiting the rate at which the traffic flow is released onto the network. Be sure also
to define these problem classes in the QoS policy on the diffserv router. The router
can then queue and schedule the problem flows as configured in its QoS policy.

� Do you need to obtain statistics on certain types of traffic?

A quick review of an SLA can indicate which types of customer traffic require
accounting. If your site does offer SLAs, you probably have already created classes
for traffic that requires accounting. You might also define classes to add statistics
taking to traffic flows that you are monitoring or to which you are restricting access
for security purposes.

4. List the classes you have defined in the organizational table.

5. Assign a priority level to each class.

For example, have priority level 1 represent the highest-priority class, and assign
descending-level priorities to the remaining classes. The priority level you assign is for
organizational purposes only and is not actually used by IPQoS. Moreover, you can
assign the same priority to more than one class, if appropriate for your QoS policy.
For information about the importance of prioritizing classes, refer to the next section.

6. When you finish defining classes, you next define filters for each class, as explained
in “How to Define Filters in the QoS Policy” on page 40.

Prioritizing the Classes
As you create classes, it quickly becomes apparent which classes have highest priority,
medium priority, and best-effort priority. Prioritizing the classes becomes particularly
important when you assign per-hop behaviors to outgoing traffic, as explained in
“How to Plan Forwarding Behavior” on page 44.

Chapter 2 • Planning for an IPQoS-Enabled Network (Tasks) 39

In addition to assigning a PHB to a class, you can also define a priority selector in a
filter for the class. The priority selector is active on the IPQoS-enabled host only.
Suppose several classes with equal rates and identical DSCPs sometimes compete for
bandwidth as they leave the IPQoS system. The priority selector in each class can
further order the level of service that is given to the otherwise identically valued
classes.

� How to Define Filters in the QoS Policy
You create filters to identify packet flows as members of a particular class. Each filter
contains selectors, which define the criteria for evaluating a packet flow. The
IPQoS-enabled system then uses the criteria in the selectors to extract packets from a
traffic flow and associate them with a class. (For an introduction to filters, see “Filters”
on page 24.)

Before you can perform the next steps, you should have completed the procedure
“How to Define the Classes for Your QoS Policy” on page 38.

1. Create at least one filter for each class in the QoS organizational table that you
created in “How to Define the Classes for Your QoS Policy” on page 38.

Consider creating separate filters for incoming and outgoing traffic for each class,
where applicable. For example, add an ftp-in filter and an ftp-out filter to the
QoS policy of an IPQoS-enabled FTP server. Then you can define an appropriate
direction selector in addition to the basic selectors.

2. Define at least one selector for each filter in a class.

The following table lists the most commonly used selectors. The first five selectors
represent the IPQoS 5–tuple, which the IPQoS system uses to identify packets as
members of a flow. For a complete list of selectors, see Table 6–1.

Note – Be judicious in your choice of selectors. Use only as many selectors as you
need to extract packets for a class. The more selectors you define, the greater the
impact on IPQoS performance.

TABLE 2–4 Common IPQoS Selectors

Name Definition

saddr Source address.

daddr Destination address.

sport Source port number. You can use a well-known port number, as
defined in /etc/services, or user-defined port number.

40 IPQoS Administration Guide • September 2002

TABLE 2–4 Common IPQoS Selectors (Continued)
Name Definition

dport Destination port number.

protocol IP protocol number or protocol name that is assigned to the traffic
flow type in /etc/protocols.

ip_version Addressing style to use. Use either V4 or V6. V4 is the default.

dsfield Contents of the DS field, that is, the DS codepoint. Use this selector
for extracting incoming packets that are already marked with a
particular DSCP.

priority Priority level that is assigned to the class. For more information, see
“Prioritizing the Classes” on page 39.

user Either the UNIX userID or user name that is used when the
upper-level application is executed.

projid Project ID that is used when the upper-level application is executed.

direction Direction of traffic flow. Value is either LOCAL_IN, LOCAL_OUT,
FWD_IN, or FWD_OUT.

Use the template that was introduced in Table 2–2 to fill in filters for the classes you
defined.

Class Priority Filters Selectors

ftp-traffic 4 ftp-out saddr 10.190.17.44

daddr 10.100.10.53

sport 21

direction LOCAL_OUT

Where to Go From Here

Task For Information

Define a flow-control scheme “How to Plan Flow Control” on page 42

Define forwarding behaviors for flows as they
return to the network stream

“How to Plan Forwarding Behavior”
on page 44

Plan for flow accounting of certain types of
traffic

“How to Plan for Flow Accounting”
on page 47

Chapter 2 • Planning for an IPQoS-Enabled Network (Tasks) 41

Task For Information

Add more classes to the QoS policy “How to Define the Classes for Your QoS
Policy” on page 38

Add more filters to the QoS policy “How to Define Filters in the QoS Policy”
on page 40

� How to Plan Flow Control
Flow control involves measuring traffic flow for a class and then releasing packets
onto the network at a defined rate. When you plan flow control, you define
parameters to be used by the IPQoS metering module. The meter determines the rate
at which traffic is released onto the network. For an introduction to the meter, see
“Meter (tokenmt and tswtclmt) Overview” on page 24.

The next procedure assumes that you have defined filters and selectors, as described
in “How to Define Filters in the QoS Policy” on page 40.

1. Determine the maximum bandwidth for your network.

2. Review any SLAs that are supported on your network to identify customers and the
type of service that is guaranteed to each customer.

Because the SLA guarantees a certain level of service to a customer, you might need to
meter certain traffic classes that are generated by the customer.

3. Review the list of classes that you created in “How to Define the Classes for Your
QoS Policy” on page 38.

Determine if any classes other than those that are associated with SLAs need to be
metered.
Suppose the IPQoS system runs an application that generates a high level of traffic.
After you classify the application’s traffic, meter the flows to control the rate at which
the packets of the flow return to the network.

Note – Not all classes need to be metered. Remember this guideline as you review
your list of classes.

4. Refine your list of classes to be metered by determining which filters in the class
select traffic that needs flow control.

Classes that have more than one filter might require metering for only one filter.
Suppose you define filters for incoming and outgoing traffic of a certain class. You
might conclude that only traffic in one of the directions requires flow control.

5. Choose a meter module for each class to be flow controlled.

Add the module name to the meter column in your organizational table.

42 IPQoS Administration Guide • September 2002

6. Add the rates for each class to be metered to the organizational table.

If you use the tokenmt module, you need to define the following rates in bits per
second.

� Committed rate
� Peak rate

If sufficient to meter a particular class, you can define only the committed rate and
committed burst for tokenmt.

If needed, you can also define the following rates.

� Committed burst
� Peak burst

For a complete definition of tokenmt rates, refer to “Configuring tokenmt as a
Two-Rate Meter” on page 99. You can also find more detailed information in the
tokenmt(7ipp) man page.

If you use the tswtclmt module, you need to define the following rates in bits per
second.

� Committed rate
� Peak rate

You can also define the window size in milliseconds. These rates are defined in
“tswtclmt Metering Module” on page 100 and in the twstclmt(7ipp) man page.

7. Add traffic conformance outcomes for the metered traffic.

The outcomes for both metering modules are green, red, and yellow. Add to your QoS
organizational table the traffic conformance outcomes that apply to the rates you
define. Outcomes for the meters are fully explained in “Meter Module” on page 98.

You need to determine what action should be taken on traffic that conforms, or does
not conform, to the committed rate. Often this action is to mark the packet header with
a per-hop behavior, but not always. One acceptable action for green-level traffic could
be to continue processing while traffic flows do not exceed the committed rate.
Another action could be to drop packets of the class if flows exceed peak rate.

The next table shows meter entries for a class of email traffic. The network on which
the IPQoS system is located has a total bandwidth of 100 Mbps, or 100000000 bits per
second. The QoS policy assigns a low priority and best-effort forwarding behavior for
the email class.

TABLE 2–5 Example QoS Policy With Meters Defined

Class Priority Filters Selectors Rate

email 8 mail_in daddr 10.50.50.5

dport imap

direction LOCAL_IN

Chapter 2 • Planning for an IPQoS-Enabled Network (Tasks) 43

TABLE 2–5 Example QoS Policy With Meters Defined (Continued)
Class Priority Filters Selectors Rate

mail_out saddr 10.50.50.5

sport imap

direction LOCAL_OUT

meter=tokenmt

committed rate=5000000

committed burst =5000000

peak rate =10000000

peak burst=1000000

green precedence=continue
processing

yellow precedence=mark
yellow PHB

red precedence=drop

Where to Go From Here

Task For Information

Define forwarding behaviors for flows as they
return to the network stream

“How to Plan Forwarding Behavior”
on page 44

Plan for flow accounting of certain types of
traffic

“How to Plan for Flow Accounting”
on page 47

Add more classes to the QoS policy “How to Define the Classes for Your QoS
Policy” on page 38

Add more filters to the QoS policy “How to Define Filters in the QoS Policy”
on page 40

Define another flow-control scheme “How to Plan Flow Control” on page 42

Create an IPQoS configuration file “How to Begin the IPQoS Configuration File
and Define Traffic Classes” on page 56

� How to Plan Forwarding Behavior
Forwarding behavior determines the priority and drop precedence of traffic flows that
are about to be forwarded onto the network. You can choose two major forwarding
behaviors: prioritizing the flows of a class in relationship to other traffic classes or
dropping the flows entirely.

The diffserv model uses the marker to assign the chosen forwarding behavior to traffic
flows. IPQoS offers the following marker modules.

44 IPQoS Administration Guide • September 2002

� dscpmk, which you use to mark the DS field of an IP packet with a DS codepoint.

� dlcosmk, which you use to mark the VLAN tag of a datagram with a class of
service (CoS) value.

Note – The suggestions in this section refer specifically to IP packets. If your IPQoS
system includes a VLAN device, you can use the dlcosmk marker to mark
forwarding behaviors for datagrams. For more information, refer to “Using the
dlcosmk Marker With VLAN Devices” on page 103.

To prioritize IP traffic, you need to assign a DS codepoint to each packet. The dscpmk
marker marks the DS field of the packet with the DS codepoint. You choose the DS
codepoint for a class from a group of well-known codepoints that are associated with
the forwarding behavior type. These well-known codepoints are 46 (101110) for the EF
PHB and a range of codepoints for the AF PHB. For overview information on DS
codepoints and forwarding, refer to “Traffic Forwarding on an IPQoS-Enabled
Network” on page 27.

The next steps assume that you have defined classes and filters for the QoS policy.
Though you often use the meter with the marker to control traffic, you can use the
marker alone to define a forwarding behavior.

1. Review the classes that you have created thus far and the priorities that you have
assigned to them.

Not all traffic classes need to be marked.

2. Assign the EF per-hop behavior to the class with the highest priority.

The EF PHB guarantees that packets with the EF DS codepoint 46 (101110) are released
onto the network before packets that are marked with any AF PHBs. Use the EF PHB
for your highest-priority traffic. For more information about EF, refer to “Expedited
Forwarding (EF) PHB” on page 102.

3. Assign forwarding behaviors to classes that have traffic to be metered.

Traffic is generally metered for the following reasons:

� An SLA guarantees packets of this class greater or lesser service when the network
is heavily used.

� A class with a lower priority might have a tendency to flood the network.

You use the marker with the meter to provide differentiated services and bandwidth
management to these classes. For example, the following table shows a portion of a
QoS policy that defines a class for a popular games application that generates a high
level of traffic.

Chapter 2 • Planning for an IPQoS-Enabled Network (Tasks) 45

Class Priority Filters Selectors Rate Forwarding?

games_app 9 games_in sport 6080

games_out dport 6081 meter=tokenmt

committed
rate=5000000

committed burst
=5000000

peak rate =10000000

peak burst=15000000

green
precedence=continue
processing

yellow
precedence=mark
yellow PHB

red
precedence=drop

green =AF31

yellow=AF42

red=drop

The forwarding behaviors assign low-priority DS codepoints to games_app traffic that
conforms to its committed rate or is below the peak rate. When games_app traffic
exceeds peak rate, the QoS policy indicates that packets from games_app are to be
dropped. A list of all AF codepoints is in table Table 6–2.

4. Assign DS codepoints to the remaining classes in agreement with the priorities that
you have assigned to them.

Where to Go From Here

Task For Information

Plan for flow accounting of certain types of
traffic

“How to Plan for Flow Accounting”
on page 47

Add more classes to the QoS policy “How to Define the Classes for Your QoS
Policy” on page 38

Add more filters to the QoS policy “How to Define Filters in the QoS Policy”
on page 40

Define a flow-control scheme “How to Plan Flow Control” on page 42

46 IPQoS Administration Guide • September 2002

Task For Information

Define additional forwarding behaviors for
flows as they return to the network stream

“How to Plan Forwarding Behavior”
on page 44

Create an IPQoS configuration file “How to Begin the IPQoS Configuration File
and Define Traffic Classes” on page 56

� How to Plan for Flow Accounting
You use the IPQoS flowacct module to keep track of traffic flows for billing or
network management purposes. Use the following procedure to determine if your
QoS policy should include flow accounting.

1. Does your company offer SLAs to customers?

If the answer is yes, then you should use flow accounting. Review the SLAs to
determine what types of network traffic your company wants to bill customers to use.
Then review your QoS policy to determine which classes select traffic to be billed.

2. Are there applications that might need monitoring or testing to avoid network
problems?

If the answer is yes, consider using flow accounting to observe the behavior of these
applications. Review your QoS policy to determine the classes you have assigned to
traffic that requires monitoring.

3. Mark Y in the flow-accounting column for each class that requires flow accounting
in your QoS planning template.

Where to Go From Here?

Task For Information

Add more classes to the QoS policy “How to Define the Classes for Your QoS
Policy” on page 38

Add more filters to the QoS policy “How to Define Filters in the QoS Policy”
on page 40

Define a flow-control scheme “How to Plan Flow Control” on page 42

Define forwarding behaviors for flows as they
return to the network stream

“How to Plan Forwarding Behavior”
on page 44

Plan for additional flow accounting of certain
types of traffic

“How to Plan for Flow Accounting”
on page 47

Chapter 2 • Planning for an IPQoS-Enabled Network (Tasks) 47

Task For Information

Create the IPQoS configuration file “How to Begin the IPQoS Configuration File
and Define Traffic Classes” on page 56

Introducing the IPQoS Configuration
Example
Tasks in the remaining chapters of the guide use the example IPQoS configuration that
is introduced in this section. The example shows the differentiated services solution
that is implemented on the public intranet of a fictitious service provider, which is
called BigISP. BigISP offers services to two types of users: large companies that reach
BigISP through leased lines, and individuals who dial in from modems to BigISP.

Example—IPQoS Topology
The following figure shows the network topology that is used for BigISP’s public
intranet.

48 IPQoS Administration Guide • September 2002

Internet
Other

companies Goldco User1 User2

Telephone linesLeased lines

Big ISPTier 0
network

10.10.0.0

Tier 1
network

10.11.0.0

Tier 2
network

10.12.0.0

Tier 3
network

10.13.0.0

Other web
servers

Userweb

IPQoS

Goldweb

IPQoS

Other
applications

Big APPS
(smtp, news)

FTP

IPQoS

Bigrouter

diffserv

datarouter

diffserv

Database servers

FIGURE 2–4 IPQoS Example Topology

BigISP has implemented four tiers in its public intranet, as shown in the previous
figure.

� Tier 0 – Network 10.10.0.0 includes a large diffserv router that is called
Bigrouter, which has both external and internal interfaces. Several companies,
including a large organization called Goldco, have rented leased-line services that
terminate at Bigrouter. Tier 0 also handles individual customers who call over
telephone lines or ISDN.

� Tier 1 – Network 10.11.0.0 provides web services. The Goldweb server hosts the
web site which was purchased by Goldco as part of the premium service that it has
purchased from BigISP. The server Userweb hosts small web sites that were
purchased by individual customers. Both Goldweb and Userweb are IPQoS

Chapter 2 • Planning for an IPQoS-Enabled Network (Tasks) 49

enabled.

� Tier 2 – Network 10.12.0.0 provides applications for all customers to use. BigApps,
one of the application servers, is IPQoS-enabled. BigApps provides SMTP, News,
and FTP services.

� Tier 3 – Network 10.13.0.0 houses large database servers. Access to Tier 3 is
controlled by datarouter, a diffserv router.

50 IPQoS Administration Guide • September 2002

CHAPTER 3

Creating the IPQoS Configuration File
(Tasks)

This chapter shows how to create IPQoS configuration files and use the ipqosconf
utility. Topics that are covered in the chapter include the following.

� “Defining a QoS Policy in the IPQoS Configuration File (Task Map)” on page 51
� “Tools for Creating a QoS Policy” on page 52
� “Creating IPQoS Configuration Files for Web Servers” on page 53
� “Creating an IPQoS Configuration File for an Application Server” on page 68
� “Providing Differentiated Services on a Router” on page 79

The text assumes that you have a complete QoS policy, and are ready to use this policy
as the basis for the IPQoS configuration file. For instructions on QoS policy planning,
refer to “Planning the Quality-of-Service Policy” on page 35.

Defining a QoS Policy in the IPQoS
Configuration File (Task Map)
The next table lists the general tasks for creating an IPQoS configuration file.

TABLE 3–1 Creating an IPQoS Configuration File (Task Map)

Task Description Instructions

1. Plan your IPQoS-
enabled network
configuration.

Decide which systems on the local
network should become IPQoS-enabled.

“How to Prepare a Network for IPQoS”
on page 37

51

TABLE 3–1 Creating an IPQoS Configuration File (Task Map) (Continued)
Task Description Instructions

2. Plan the QoS policy for
IPQoS systems on your
network.

Identify traffic flows as distinct classes of
service and determine which flows
require traffic management.

“Planning the Quality-of-Service Policy”
on page 35

3. Begin the IPQoS
configuration file and
define its first action.

Create the IPQoS file, invoke the IP
classifier, and define a class for
processing.

“How to Begin the IPQoS Configuration
File and Define Traffic Classes”
on page 56

4. Create filters for a class. Add the filters that govern which traffic is
selected and organized into a class.

“How to Define Filters in the IPQoS
Configuration File” on page 58

5. Add more classes and
filters to the IPQoS
configuration file.

Create more classes and filters to be
processed by the IP classifier.

“How to Create an IPQoS Configuration
File for a Best-Effort Web Server”
on page 65

6. Add an action statement
with parameters that
configure the metering
modules.

If the QoS policy calls for flow control,
assign flow-control rates and
conformance levels to the meter.

“How to Configure Flow Control in the
IPQoS Configuration File” on page 75

7. Add an action statement
with parameters that
configure the marker.

If the QoS policy calls for differentiated
forwarding behaviors, define how traffic
classes are to be forwarded.

“How to Define Traffic Forwarding in the
IPQoS Configuration File” on page 60

8. Add an action statement
with parameters that
configure the flow-
accounting module.

If the QoS policy calls for statistics taking
on traffic flows, define how these
accounting statistics are to be taken.

“How to Enable Accounting for a Class in
the IPQoS Configuration File” on page 63

9. Apply the IPQoS
configuration file.

Add the content of a specified IPQoS
configuration file into the appropriate
kernel modules.

“How to Apply a New Configuration to
the IPQoS Kernel Modules” on page 82

10. Configure forwarding
behaviors in the router
files.

If any IPQoS configuration files on the
network define forwarding behaviors,
add the resulting DSCPs to the
appropriate scheduling files on the router.

“How to Configure a Router on an
IPQoS-Enabled Network” on page 79

Tools for Creating a QoS Policy
The QoS policy for your network resides in the IPQoS configuration file. You create
this configuration file with a text editor and provide the file as an argument to
ipqosconf, the IPQoS configuration utility. When you instruct ipqosconf to apply
the policy that is defined in your configuration file, the policy is written into the kernel

52 IPQoS Administration Guide • September 2002

IPQoS system. For detailed information about the ipqosconf command, refer to the
ipqosconf(1m) man page. For instructions on the use of ipqosconf, refer to “How
to Apply a New Configuration to the IPQoS Kernel Modules” on page 82.

IPQoS Configuration File
An IPQoS configuration file consists of a tree of action statements that implement the
QoS policy that you defined in “Planning the Quality-of-Service Policy” on page 35.
The IPQoS configuration file configures the IPQoS modules. Each action statement
contains a set of classes, filters, or parameters to be processed by the module that is
called in the action statement.

For the complete syntax of the IPQoS configuration file, refer to Example 6–3 and the
ipqosconf(1m) man page.

Configuring the IPQoS Sample Topology
The tasks in this chapter explain how to create IPQoS configuration files for three
IPQoS-enabled systems. These systems are part of the network topology of the
company BigISP, which was introduced in Figure 2–4.

� Goldweb – A web server that hosts web sites for customers who have purchased
premium-level SLAs.

� Userweb – A less-powerful web server that hosts personal web sites for home
users who have purchased “best-effort” SLAs.

� BigAPPS – An application server that serves mail, network news, and FTP to both
gold-level and best-effort customers.

The three configuration files illustrate the most common IPQoS configurations. You
might use them as templates for your own IPQoS implementation.

Creating IPQoS Configuration Files for
Web Servers
This section introduces IPQoS configuration file creation by showing how to create a
configuration file for a premium web server. The section then shows how to configure
a completely different level of service in another configuration file for a server that
hosts personal web sites. Both servers are part of the network example that is shown
in Figure 2–4.

The following configuration file defines IPQoS activities for the Goldweb server,
which hosts the web site for Goldco, the company that has purchased a premium SLA.

Chapter 3 • Creating the IPQoS Configuration File (Tasks) 53

EXAMPLE 3–1 Sample IPQoS Configuration File for a Premium Web Server

fmt_version 1.0

action {
module ipgpc
name ipgpc.classify
params {

global_stats TRUE
}
class {

name goldweb
next_action markAF11
enable_stats FALSE

}
class {

name video
next_action markEF
enable_stats FALSE

}
filter {

name webout
sport 80
direction LOCAL_OUT
class goldweb

}
filter {

name videoout
sport videosrv
direction LOCAL_OUT
class video

}
}
action {

module dscpmk
name markAF11
params {

global_stats FALSE
dscp_map{0-63:10}
next_action continue

}
}
action {

module dscpmk
name markEF
params {

global_stats TRUE
dscp_map{0-63:46}
next_action acct

}
}
action {

module flowacct
name acct
params {

54 IPQoS Administration Guide • September 2002

EXAMPLE 3–1 Sample IPQoS Configuration File for a Premium Web Server (Continued)

enable_stats TRUE
timer 10000
timeout 10000
max_limit 2048

}

}

The following configuration file defines IPQoS activities on Userweb, which hosts
web sites for individuals with low-priced, or best-effort, SLAs. This SLA level
guarantees the best service that can be delivered to best-effort customers after the
IPQoS system handles traffic from customers with more expensive SLAs.

EXAMPLE 3–2 Sample Configuration for a Best-Effort Web Server

fmt_version 1.0

action {
module ipgpc
name ipgpc.classify
params {

global_stats TRUE
}
class {

name Userweb
next_action markAF12
enable_stats FALSE

}
filter {

name webout
sport 80
direction LOCAL_OUT
class Userweb

}
}
action {

module dscpmk
name markAF12
params {

global_stats FALSE
dscp_map{0-63:12}
next_action continue

}

}

Chapter 3 • Creating the IPQoS Configuration File (Tasks) 55

� How to Begin the IPQoS Configuration File and
Define Traffic Classes
You can create your first IPQoS configuration file in whatever directory is easiest for
you to maintain and use. The tasks in this chapter use the directory /var/ipqos as
the location for IPQoS configuration files. The next procedure builds the initial
segment of the IPQoS configuration file that is introduced in Example 3–1.

Note – As you create the IPQoS configuration file, be very careful to start and end
each action statement and clause with curly braces ({ }). For an example of the use of
braces, see Example 3–1.

1. Log in to the premium web server, and create a new IPQoS configuration file with a
.qos extension.

Every IPQoS configuration file must start with the version number fmt_version
1.0 as its first uncommented line.

2. Follow the opening parameter with the initial action statement, which configures
the generic IP classifier ipgpc.

This initial action begins the tree of action statements that compose the IPQoS
configuration file. For example, the /var/ipqos/Goldweb.qos file begins with the
initial action statement to call the ipgpc classifier.

fmt_version 1.0

action {
module ipgpc
name ipgpc.classify

Entry Description

fmt_version 1.0 Begins the IPQoS configuration file

action {

module ipgpc

Configures the ipgpc classifier as the first action in the
configuration file

name ipgpc.classify Defines the name of the classifier action statement,
which must always be ipgpc.classify

For detailed syntactical information about action statements, refer to “action
Statement” on page 109 and theipqosconf(1M) man page.

3. Add a params clause with the statistics parameter global_stats.

56 IPQoS Administration Guide • September 2002

params {
global_stats TRUE

}

The parameter global_stats TRUE in the ipgpc.classify action enables
statistics taking for that action. global_stats TRUE also enables per-class statistics
taking wherever a class clause definition specifies enable_stats TRUE.

Turning on statistics impacts performance. You might want to take statistics on a new
IPQoS configuration file to verify that IPQoS works properly. Later, you can turn off
statistics collection by changing the argument to global_stats to FALSE.

Global statistics are but one type of parameter you can define in a params clause. For
syntactical and other details about params clauses, refer to “Params Clause”
on page 111 and the ipqosconf man page.

4. Define a class that identifies traffic that is bound for the premium server.

class {
name goldweb
next_action markAF11
enable_stats FALSE

}

The previous statement is called a class clause. A class clause has the following
contents.

Entry Description

name goldweb Creates the class goldweb to identify traffic that is bound for the
Goldweb server.

next_action markF11 Instructs the ipgpc module to pass packets of the goldweb
class to the markAF11 action statement. The markAF11 action
statement calls the dscpmk marker.

enable_stats FALSE Enables statistics taking for the goldweb class. However,
because the value of enable_stats is FALSE, statistics for this
class are not turned on.

For detailed information about the syntax of the class clause, see “Class Clause”
on page 110 and the ipqosconf(1M) man page.

5. Define a class that identifies an application that must have highest-priority
forwarding.

class {
name video
next_action markEF
enable_stats FALSE

}

Chapter 3 • Creating the IPQoS Configuration File (Tasks) 57

Entry Description

name video Creates the class video to identify streaming video
traffic that is outgoing from Goldweb.

next_action markEF Instructs the ipgpc module to pass packets of the
video class to the markEF action statement after
ipgpc completes processing. The markEF action
statement calls the dscpmk marker.

enable_stats FALSE Enables statistics taking for the video class. However,
because the value of enable_stats is FALSE, statistics
for this class are not turned on.

Where to Go From Here

Task For Information

Define filters for the class you just created “How to Define Filters in the IPQoS
Configuration File” on page 58

Create another class clause for the
configuration file

“How to Begin the IPQoS Configuration File
and Define Traffic Classes” on page 56

� How to Define Filters in the IPQoS Configuration
File
The next procedure shows how to define filters for a class in the IPQoS configuration
file. The procedure assumes that you have already begun the file and have defined
classes. The steps continue building the /var/ipqos/Goldweb.qos file that is
introduced in “How to Begin the IPQoS Configuration File and Define Traffic Classes”
on page 56.

Note – As you create the IPQoS configuration file, be very careful to start and end
each class clause and filter clause with curly braces ({ }). For an example of the use of
braces, use Example 3–1.

1. Open the IPQoS configuration file, and locate the end of the last class that you
defined.

For example, on the IPQoS-enabled server Goldweb you would start after the
following class clause in /var/ipqos/Goldweb.qos.

class {
name video
next_action markEF

58 IPQoS Administration Guide • September 2002

enable_stats FALSE

}

2. Define a filter clause to select outgoing traffic from the IPQoS system.

filter {
name webout
sport 80
direction LOCAL_OUT
class goldweb

}

Entry Description

name webout Gives the name webout to the filter

sport 80 Selects traffic with a source port of 80, the well-known
port for HTTP (Web) traffic

direction LOCAL_OUT Further selects traffic that is outgoing from the local
system

class goldweb Identifies the class to which the filter belongs, in this
instance, class goldweb

For syntactical and detailed information about the filter clause in the IPQoS
configuration file, refer to “Filter Clause” on page 111.

3. Define a filter clause to select streaming video traffic on the IPQoS system.

filter {
name videoout
sport videosrv
direction LOCAL_OUT
class video

}

Entry Description

name videoout Gives the name videoout to the filter

sport videosrv Selects traffic with a source port of videosrv, a
previously defined port for the streaming video
application on this system

direction LOCAL_OUT Further selects traffic that is outgoing from the local
system

class video Identifies the class to which the filter belongs, in this
instance, class video

Chapter 3 • Creating the IPQoS Configuration File (Tasks) 59

Where to Go From Here

Task For Information

Define forwarding behaviors for the marker modules “How to Define Traffic Forwarding in the IPQoS
Configuration File” on page 60

Define flow-control parameters for the metering
modules

“How to Configure Flow Control in the IPQoS
Configuration File” on page 75

Activate the IPQoS configuration file “How to Apply a New Configuration to the IPQoS
Kernel Modules” on page 82

Define additional filters “How to Define Filters in the IPQoS Configuration File”
on page 58

Create classes for traffic flows from applications “How to Configure the IPQoS Configuration File for an
Applications Server” on page 70

� How to Define Traffic Forwarding in the IPQoS
Configuration File
The next procedure shows how to define traffic forwarding by adding per-hop
behaviors for a class into the IPQoS configuration file. The procedure assumes that
you have an existing IPQoS configuration file with already-defined classes and filters.
The steps continue building the /var/ipqos/Goldweb.qos file from Example 3–1.

Note – The procedure shows how to configure traffic forwarding by using the dscpmk
marker module. For information about traffic forwarding on VLAN systems by using
the dlclosmk marker, refer to “Using the dlcosmk Marker With VLAN Devices”
on page 103.

1. Open the IPQoS configuration file, and locate the end of the last filter you defined.

For example, on the IPQoS-enabled server Goldweb, you would start after the
following filter clause in /var/ipqos/Goldweb.qos.

filter {
name videoout
sport videosrv
direction LOCAL_OUT
class video

}

}

Note that this filter is at the end of the ipgpc classifier action statement. Therefore,
you need a closing brace to terminate the filter and a second closing brace to terminate
the action statement.

60 IPQoS Administration Guide • September 2002

2. Invoke the marker with the following action statement.

action {
module dscpmk

name markAF11

Entry Description

module dscpmk Calls the marker module dscpmk

name markAF11 Gives the name markAF11 to the action statement

The previously defined class goldweb includes a next_action markAF11
statement. This statement sends traffic flows to the markAF11 action statement after
the classifier concludes processing.

3. Define actions for the marker to take on the traffic flow.

params {
global_stats FALSE
dscp_map{0-63:10}
next_action continue

}

}

Entry Description

global_stats FALSE Enables statistics taking for the markAF11 marker
action statement. However, because the value of
enable_stats is FALSE, statistics are not turned on.

dscp_map{0–63:10} Assigns a DS codepoint of 10 to the packet headers of
the traffic class goldweb, which is currently being
processed by the marker.

next_action continue Indicates that no further processing is required on
packets of the traffic class goldweb, and that these
packets can return to the network stream.

The DS codepoint 10 instructs the marker to set all entries in the dscp map to the
decimal value 10 (binary 001010). This codepoint indicates that packets of the
goldweb traffic class are subject to the AF11 per-hop behavior. AF11 guarantees that
all packets with DS codepoint 10 receive a low-drop, high-priority service. Thus,
outgoing traffic for premium customers on Goldweb is given the highest priority
available for the Assured Forwarding PHB. For a table of possible DS codepoints for
AF, refer to Table 6–2.

4. Start another marker action statement.

Chapter 3 • Creating the IPQoS Configuration File (Tasks) 61

action {
module dscpmk

name markEF

Entry Description

module dscpmk Calls the marker module dscpmk

name markEF Gives the name markEF to the action statement

5. Define actions for the marker to take on the traffic flow.

params {
global_stats TRUE
dscp_map{0-63:46}
next_action acct

}

}

Entry Description

global_stats TRUE Enables statistics taking on class video, which selects
streaming video packets.

dscp_map{0–63:46} Assigns a DS codepoint of 46 to the packet headers of
the traffic class video, which is currently being
processed by the marker.

next_action acct Instructs the dscpmk module to pass packets of the
video class to the acct action statement after dscpmk
completes processing. The acct action statement
invokes the flowacct module.

The DS codepoint 46 instructs the dscpmk module to set all entries in the dscp map
to the decimal value 46 (binary 101110) in the DS field. This codepoint indicates that
packets of the video traffic class are subject to the EF per-hop behavior.

Note – The recommended codepoint for EF is 46 (binary 101110). Other DS codepoints
assign AF PHBs to a packet.

The EF PHB guarantees that packets with the DS codepoint of 46 are given the highest
precedence by IPQoS and diffserv-aware systems. Streaming applications require
highest-priority service, which is the rationale behind assigning them EF PHBs in the
QoS policy. For more details about the expedited forwarding PHB, refer to “Expedited
Forwarding (EF) PHB” on page 102.

62 IPQoS Administration Guide • September 2002

6. Add the DS codepoints that you have just created to the appropriate files on the
diffserv router. For more information, refer to “How to Configure a Router on an
IPQoS-Enabled Network” on page 79.

Where to Go From Here

Task For Information

Start gathering flow-accounting statistics on traffic flows “How to Enable Accounting for a Class in the IPQoS
Configuration File” on page 63

Define forwarding behaviors for the marker modules “How to Define Traffic Forwarding in the IPQoS
Configuration File” on page 60

Define flow-control parameters for the metering
modules

“How to Configure Flow Control in the IPQoS
Configuration File” on page 75

Activate the IPQoS configuration file “How to Apply a New Configuration to the IPQoS
Kernel Modules” on page 82

Define additional filters “How to Define Filters in the IPQoS Configuration File”
on page 58

Create classes for traffic flows from applications “How to Configure the IPQoS Configuration File for an
Applications Server” on page 70

� How to Enable Accounting for a Class in the IPQoS
Configuration File
The next procedure shows how to enable accounting on a traffic class in the IPQoS
configuration file. The procedure assumes that you have an existing IPQoS
configuration file with already-defined classes, filters, metering actions, if appropriate,
and marking actions, if appropriate. The steps continue building the
/var/ipqos/Goldweb.qos file from Example 3–1.

The procedure shows how to define flow accounting for the video class, which is
introduced in “How to Begin the IPQoS Configuration File and Define Traffic Classes”
on page 56. This class selects streaming video traffic, which must be billed as part of a
premium customer’s SLA.

1. Open the IPQoS configuration file, and locate the end of the last action statement
you defined.

For example, on the IPQoS-enabled server Goldweb, you would start after the
following markEF action statement in /var/ipqos/Goldweb.qos.

action {
module dscpmk
name markEF

Chapter 3 • Creating the IPQoS Configuration File (Tasks) 63

params {
global_stats TRUE
dscp_map{0-63:46}
next_action acct

}

}

2. Begin an action statement that calls flow accounting.

action {
module flowacct

name acct

Entry Description

module flowacct Invokes the flow-accounting module flowacct

name acct Gives the name acct to the action statement

3. Define a params clause to control accounting on the traffic class.

params {
global_stats TRUE
timer 10000
timeout 10000
max_limit 2048
next_action continue

}

}

Entry Description

global_stats TRUE Enables statistics taking on class video, which selects
streaming video packets.

timer 10000 Specifies the duration of the interval, in milliseconds,
when the flow table is scanned for timed out flows. In
this parameter, that interval is 10000 milliseconds.

timeout 10000 Specifies the minimum interval time-out value. A flow
“times out” when packets for the flow are not seen
during a time-out interval. In this parameter, packets
time out after 10000 milliseconds.

max_limit 2048 Sets the maximum number of active flow records in the
flow table for this action instance.

next_action continue Indicates that no further processing is required on
packets of the traffic class video, and that these packets
can return to the network stream.

64 IPQoS Administration Guide • September 2002

The flowacct module gathers statistical information on packet flows of a particular
class until a specified timeout value is reached.

Where to Go From Here

Task For Information

Configure per-hop behaviors on a router “How to Configure a Router on an IPQoS-Enabled
Network” on page 79

Activate the IPQoS configuration file “How to Apply a New Configuration to the IPQoS
Kernel Modules” on page 82

Create classes for traffic flows from applications “How to Configure the IPQoS Configuration File for an
Applications Server” on page 70

� How to Create an IPQoS Configuration File for a
Best-Effort Web Server
The IPQoS configuration file for a best-effort web server differs slightly from an IPQoS
configuration file for a premium web server. The following procedure illustrates the
similarities and differences between configuration files for the varying levels of web
service. As an example, the procedure uses the configuration file from Example 3–2.

1. Log in to the best-effort web server.

2. Create a new IPQoS configuration file with a .qos extension.

fmtversion 1.0

action {
module ipgpc
name ipgpc.classify
params {

global_stats TRUE

}

The /var/ipqos/userweb.qos file must begin with the partial action statement to
invoke the ipgpc classifier. In addition, the action statement also has a params clause
to turn on statistics taking. For an explanation of this action statement, see “How to
Begin the IPQoS Configuration File and Define Traffic Classes” on page 56.

3. Define a class that identifies traffic that is bound for the best-effort web server.

class {
name userweb
next_action markAF12
enable_stats FALSE

Chapter 3 • Creating the IPQoS Configuration File (Tasks) 65

}

Entry Description

name userweb Creates a class that is called userweb for forwarding web traffic
from users.

next_action markF12 Instructs the ipgpc module to pass packets of the userweb
class to the markAF12 action statement after ipgpc completes
processing. The markAF12 action statement invokes the dscpmk
marker.

enable_stats FALSE Enables statistics taking for the userweb class. However,
because the value of enable_stats is FALSE, statistics for this
class are not turned on.

For an explanation of the class clause task, see “How to Begin the IPQoS
Configuration File and Define Traffic Classes” on page 56.

4. Define a filter clause to select traffic flows for the userweb class.

filter {
name webout
sport 80
direction LOCAL_OUT
class userweb

}
}

Entry Description

name webout Gives the name webout to the filter

sport 80 Selects traffic with a source port of 80, the well-known
port for HTTP (Web) traffic

direction LOCAL_OUT Further selects traffic that is outgoing from the local
system

class userweb Identifies the class to which the filter belongs, in this
instance, class userweb

For an explanation of the filter clause task, see “How to Define Filters in the IPQoS
Configuration File” on page 58.

5. Begin the action statement to invoke the dscpmk marker.

action {
module dscpmk

name markAF12

66 IPQoS Administration Guide • September 2002

Entry Description

module dscpmk Invokes the marker module dscpmk

name markAF11 Gives the name markAF12 to the action statement

The previously defined class userweb includes a next_action markAF12
statement. This statement sends traffic flows to the markAF12 action statement after
the classifier concludes processing.

6. Define parameters for the marker to use for processing the traffic flow.

params {
global_stats FALSE
dscp_map{0-63:12}
next_action continue

}

}

Entry Description

global_stats FALSE Enables statistics taking for the markAF12 marker
action statement. However, because the value of
enable_stats is FALSE, statistics are not turned on.

dscp_map{0–63:12} Assigns a DS codepoint of 12 to the packet headers of
the traffic class userweb, which is currently being
processed by the marker.

next_action continue Indicates that no further processing is required on
packets of the traffic class goldweb, and that these
packets can return to the network stream.

The DS codepoint 12 instructs the marker to set all entries in the dscp map to the
decimal value 12 (binary 001100). This codepoint indicates that packets of the
userweb traffic class are subject to the AF12 per-hop behavior. AF12 guarantees that
all packets with DS codepoint 12 in the DS field receive a medium-drop, high-priority
service.

When you complete the IPQoS configuration file, apply the configuration, as described
in “How to Apply a New Configuration to the IPQoS Kernel Modules” on page 82.

Chapter 3 • Creating the IPQoS Configuration File (Tasks) 67

Where to Go From Here

Task For Information

Add classes and other configuration for traffic
flows from applications

“How to Configure the IPQoS Configuration
File for an Applications Server” on page 70

Configure per-hop behaviors on a router “How to Configure a Router on an IPQoS-
Enabled Network” on page 79

Activate your IPQoS configuration file “How to Apply a New Configuration to the
IPQoS Kernel Modules” on page 82

Creating an IPQoS Configuration File for
an Application Server
This section explains how to create a configuration file for an applications server that
provides a number of major applications to both internal and external customers. The
procedure uses as its example the BigAPPs server from Figure 2–4.

The following configuration file defines IPQoS activities for the BigAPPs server, which
hosts FTP, electronic mail (SMTP), and network news (NNTP) for customers.

EXAMPLE 3–3 Sample Configuration for an Application Server

fmt_version 1.0

action {
module ipgpc
name ipgpc.classify
params {

global_stats TRUE
}
class {

name smtp
enable_stats FALSE
next_action markAF13

}
class {

name news
next_action markAF21

}
class {

name ftp
next_action meterftp

}

68 IPQoS Administration Guide • September 2002

EXAMPLE 3–3 Sample Configuration for an Application Server (Continued)

filter {
name smtpout
sport smtp
class smtp

}
filter {

name newsout
sport nntp
class news

}
filter {

name ftpout
sport ftp
class ftp

filter {
name ftpdata
sport ftp-data
class ftp

}
}
action {

module dscpmk
name markAF13
params {

global_stats FALSE
dscp_map{0-63:14}
next_action continue

}
}
action {

module dscpmk
name markAF21
params {

global_stats FALSE
dscp_map{0-63:18}
next_action continue

}
}
action {

module tokenmt
name meterftp
params {

committed_rate 50000000
committed_burst 50000000
red_action markAF31
green_action markAF22
global_stats TRUE

}
}
action {

module dscpmk
name markAF31

Chapter 3 • Creating the IPQoS Configuration File (Tasks) 69

EXAMPLE 3–3 Sample Configuration for an Application Server (Continued)

params {
global_stats TRUE
dscp_map{0-63:26}
next_action continue

}
}
action {

module dscpmk
name markAF22
params {

global_stats TRUE
dscp_map{0-63:20}
next_action continue

}

}

� How to Configure the IPQoS Configuration File for
an Applications Server

1. Log in to the IPQoS-enabled application server, and create a new IPQoS
configuration file with a .qos extension.

For example, you would create the /var/ipqos/BigAPPS.qos file for the
applications server. Begin with the following required phrases to start the action
statement that invokes the ipgpc classifier.

fmtversion 1.0

action {
module ipgpc
name ipgpc.classify
params {

global_stats TRUE

{

For an explanation of the opening action statement, refer to “How to Begin the IPQoS
Configuration File and Define Traffic Classes” on page 56.

2. Create classes to select traffic from three applications on the BigAPPs server.

Add the class definitions after the opening action statement.

class {
name smtp
enable_stats FALSE
next_action markAF13

}
class {

name news
next_action markAF21

}

70 IPQoS Administration Guide • September 2002

class {
name ftp
enable_stats TRUE
next_action meterftp

}

Entry Description

name smtp Creates a class that is called smtp, which
includes email traffic flows to be handled by
the SMTP application.

enable_stats FALSE Enables statistics taking for the smtp class.
However, because the value of
enable_stats is FALSE, statistics for this
class are not turned on.

next_action markAF13 Instructs the ipgpc module to pass packets of
the smtp class to the markAF13 action
statement after ipgpc completes processing.

name news Creates a class that is called news, which
includes network news traffic flows to be
handled by the NNTP application.

next_action markAF21 Instructs the ipgpc module to pass packets of
the news class to the markAF21 action
statement after ipgpc completes processing.

name ftp Creates a class that is called ftp, which
handles outgoing traffic that is handled by the
FTP application.

enable_stats TRUE Enables statistics taking for the ftp class.

next_action meterftp Instructs the ipgpc module to pass packets of
the ftp class to the meterftp action
statement after ipgpc completes processing.

For more information about defining classes, refer to “How to Begin the IPQoS
Configuration File and Define Traffic Classes” on page 56.

3. Define filter clauses to select traffic of the previously defined classes.

filter {
name smtpout
sport smtp
class smtp

}
filter {

name newsout
sport nntp
class news

Chapter 3 • Creating the IPQoS Configuration File (Tasks) 71

}
filter {
name ftpout
sport ftp
class ftp

}
filter {
name ftpdata
sport ftp-data
class ftp

}

}

Entry Description

name smtpout Gives the name smtpout to the filter

sport smtp Selects traffic with a source port of 25, the
well-known port for the sendmail (SMTP)
application

class smtp Identifies the class to which the filter belongs,
in this instance, class smtp

name newsout Gives the name newsout to the filter

sport nntp Selects traffic with a source port name of
nntp, the well-known port name for the
network news application

class news Identifies the class to which the filter belongs,
in this instance, class news

name ftpout Gives the name ftpout to the filter

sport ftp Selects control data with a source port of 21,
the well-known port number for FTP traffic

name ftpdata Gives the name ftpdata to the filter

sport ftp-data Selects traffic with a source port of 20, the
well-known port number for FTP data traffic

class ftp Identifies the class to which the ftpout and
ftpdata filters belong, in this instance ftp

For more information about defining filters, refer to “How to Define Filters in the
IPQoS Configuration File” on page 58.

72 IPQoS Administration Guide • September 2002

Where to Go From Here

Task For Information

Define filters “How to Define Filters in the IPQoS
Configuration File” on page 58

Define forwarding behaviors for application
traffic

“How to Configure Forwarding for
Application Traffic in the IPQoS Configuration
File” on page 73

Configure flow control by using the metering
modules

“How to Configure Flow Control in the IPQoS
Configuration File” on page 75

Configure flow accounting “How to Enable Accounting for a Class in the
IPQoS Configuration File” on page 63

� How to Configure Forwarding for Application
Traffic in the IPQoS Configuration File
The next procedure shows how to configure forwarding for application traffic. In the
procedure, you define per-hop behaviors for application traffic classes that might have
lower precedence than other traffic on a network. The procedure assumes that you
have an existing IPQoS configuration file with already-defined classes and filters for
the applications to be marked. The steps continue building the
/var/ipqos/BigAPPs.qos file in Example 3–3.

1. Open the IPQoS configuration file you have created for the applications server.

Locate the end of the last filter clause. In the /var/ipqos/BigAPPs.qos file, the last
filter is the following:

filter {
name ftpdata
sport ftp-data
class ftp

}

}

2. Invoke the marker as follows:

action {
module dscpmk
name markAF13

Chapter 3 • Creating the IPQoS Configuration File (Tasks) 73

Entry Description

module dscpmk Invokes the marker module dscpmk

name markAF13 Gives the name markAF13 to the action statement

3. Define the per-hop behavior to be marked on electronic mail traffic flows.

params {
global_stats FALSE
dscp_map{0-63:14}
next_action continue

}

}

Entry Description

global_stats FALSE Enables statistics taking for the markAF13 marker
action statement. However, because the value of
enable_stats is FALSE, statistics are not turned on.

dscp_map{0–63:14} Assigns a DS codepoint of 14 to the packet headers of
the traffic class smtp, which is currently being
processed by the marker.

next_action continue Indicates that no further processing is required on
packets of the traffic class smtp. These packets can then
return to the network stream.

The DS codepoint 14 tells the marker to set all entries in the dscp map to the decimal
value 14 (binary 001110). This value sets the AF13 per-hop behavior and marks packets
of the smtp traffic class with the DS codepoint 14 in the DS field.

AF13 assigns all packets with a DS codepoint of 14 to a high-drop precedence.
However, because AF13 also assures a Class 1 priority, the router still guarantees
outgoing email traffic a high priority in its queue. For a table of possible AF
codepoints, refer to Table 6–2.

4. Add a marker action statement to define a per-hop behavior for network news
traffic:

action {
module dscpmk
name markAF21
params {

global_stats FALSE
dscp_map{0-63:18}
next_action continue

}

}

The next table explains parameters that have not yet been defined in this procedure.

74 IPQoS Administration Guide • September 2002

Entry Description

name markAF21 Gives the name markAF21 to the action
statement

dscp_map{0–63:18} Assigns a DS codepoint of 18 to the packet
headers of the traffic class nntp, which is
currently being processed by the marker

The DS codepoint 18 tells the marker to set all entries in the dscp map to the decimal
value 18 (binary 010010). This value sets the AF21 per-hop behavior and marks
packets of the news traffic class with the DS codepoint 18 in the DS field.
AF21 assures that all packets with a DS codepoint of 18 receive a low-drop
precedence, but with only Class 2 priority. Thus, the possibility of network news traffic
being dropped is low, but the router gives a higher forwarding probability to traffic
classes with a Class 1 mark.

Where to Go From Here

Task For Information

Add configuration information for web
servers

“How to Begin the IPQoS Configuration File
and Define Traffic Classes” on page 56

Configure flow control by using the metering
modules

“How to Configure Flow Control in the IPQoS
Configuration File” on page 75

Configure flow accounting “How to Enable Accounting for a Class in the
IPQoS Configuration File” on page 63

Configure forwarding behaviors on a router “How to Configure a Router on an IPQoS-
Enabled Network” on page 79

Activate the IPQoS configuration file “How to Apply a New Configuration to the
IPQoS Kernel Modules” on page 82

� How to Configure Flow Control in the IPQoS
Configuration File
To control the rate at which a particular traffic flow is released onto the network, you
must define parameters for the meter. You can use either of the two metering
modules, tokenmt or tswtclmt, in the IPQoS configuration file.

The next procedure continues to build the IPQoS configuration file for the application
server in Example 3–3. In the procedure, you configure not only the meter but also
two marker actions that are called within the meter action statement.

Chapter 3 • Creating the IPQoS Configuration File (Tasks) 75

1. Open the IPQoS configuration file you have created for the applications server.

The remaining steps assume that you have already defined a class and a filter for the
application to be flow-controlled. In the /var/ipqos/BigAPPs.qos file, you begin
after the following marker action:

action {
module dscpmk
name markAF21
params {

global_stats FALSE
dscp_map{0-63:18}
next_action continue

}

}

2. Create a meter action statement to flow-control traffic of the ftp class:

action {
module tokenmt
name meterftp

Entry Definition

module tokenmt Invokes the tokenmt meter

name meterftp Gives the name meterftp to the action statement

3. Add parameters to configure the meter’s rate:

params {
committed_rate 50000000
committed_burst 50000000

Entry Description

committed_rate 50000000 Assigns a transmission rate of 5,000,0000 bits-per-
second to traffic of the ftp class

committed_burst 50000000 Commits a burst size of 50,000,000 bits to traffic of the
ftp class

For an explanation of tokenmt parameters, refer to “Configuring tokenmt as a
Two-Rate Meter” on page 99.

4. Add parameters to configure traffic conformance precedences:

red_action markAF31
green_action markAF22
global_stats TRUE

76 IPQoS Administration Guide • September 2002

}
}

Entry Description

red_action markAF31 Indicates that when the traffic flow of the ftp class
becomes nonconformant, that is, exceeds the committed
rate, packets are sent to the markAF31 marker action
statement

green_action markAF22 Indicates that when traffic flows of class ftp conform to
the committed rate, packets are sent to the markAF22
action statement

global_stats TRUE Enables metering statistics for the ftp class

For more information about traffic conformance, see “Meter Module” on page 98.

5. Add a marker action statement to assign a per-hop behavior to nonconformant
traffic flows of class ftp.

action {
module dscpmk
name markAF31
params {

global_stats TRUE
dscp_map{0-63:26}
next_action continue

}

}

Entry Description

module dscpmk Invokes the marker module dscpmk.

name markAF31 Gives the name markAF31 to the action
statement.

global_stats TRUE Enables statistics for the ftp class.

dscp_map{0–63:26} Assigns a DS codepoint of 26 to the packet
headers of the traffic class ftp whenever this
traffic exceeds the committed rate.

next_action continue Indicates that no further processing is required
on packets of the traffic class ftp. Then these
packets can return to the network stream.

The DS codepoint 26 instructs the marker to set all entries in the dscp map to the
decimal value 26 (binary 011010). This value sets the AF31 per-hop behavior and
marks packets of the ftp traffic class with the DS codepoint 26 in the DS field.

Chapter 3 • Creating the IPQoS Configuration File (Tasks) 77

AF31 assures that all packets with a DS codepoint of 26 receive a low-drop
precedence, but with only Class 3 priority. Therefore, the possibility of nonconformant
FTP traffic being dropped is low. However, the router gives a higher forwarding
probability to traffic classes with a Class 1 or Class 2 low-drop precedence mark or
better. For a table of possible AF codepoints, refer to Table 6–2.

6. Add a marker action statement to assign a per-hop behavior to traffic flows of class
ftp that conform to the committed rate.

action {
module dscpmk
name markAF22
params {

global_stats TRUE
dscp_map{0-63:20}
next_action continue

}

}

The next table contains parameters that are not defined in the previous step.

Entry Description

name markAF22 Gives the name markAF22 to the marker
action

dscp_map{0–63:20}
Assigns a DS codepoint of 20 to the packet
headers of the traffic class ftp whenever ftp
traffic conforms to its configured rate

The DS codepoint 20 tells the marker to set all entries in the dscp map to the decimal
value 20 (binary 010100). This value sets the AF22 per-hop behavior and marks
packets of the ftp traffic class with the DS codepoint 20 in the DS field.

AF22 assures that all packets with a DS codepoint of 20 receive a medium-drop
precedence with Class 2 priority. Therefore, conformant FTP traffic is assured a
medium-drop precedence among flows that are simultaneously released by the IPQoS
system. However, the router gives a higher forwarding priority to traffic classes with a
Class 1 medium-drop precedence mark or higher. For a table of possible AF
codepoints, refer to Table 6–2.

7. Add the DS codepoints that you have created for the application server to the
appropriate files on the diffserv router. For more information, refer to “How to
Configure a Router on an IPQoS-Enabled Network” on page 79.

78 IPQoS Administration Guide • September 2002

Where to Go From Here

Task For Information

Activate the IPQoS configuration file “How to Apply a New Configuration to the
IPQoS Kernel Modules” on page 82

Add configuration information for web
servers

“How to Begin the IPQoS Configuration File
and Define Traffic Classes” on page 56

Configure flow accounting “How to Enable Accounting for a Class in the
IPQoS Configuration File” on page 63

Configure forwarding behaviors on a router “How to Configure a Router on an IPQoS-
Enabled Network” on page 79

Providing Differentiated Services on a
Router
To provide true differentiated services, you must include a diffserv-aware router in
your network topology, as described in “Hardware Strategies for the Diffserv
Network” on page 32. The actual steps for configuring diffserv on a router and
updating that router’s files are outside the scope of this document.

This section gives general steps for coordinating the forwarding information among
various IPQoS-enabled systems on the network and the diffserv router. The next
procedure assumes that you have already configured the IPQoS systems on your
network by performing the previous tasks in this chapter.

� How to Configure a Router on an IPQoS-Enabled
Network
The next procedure uses as its example the topology in Figure 2–4.

1. Review the configuration files for all IPQoS-enabled systems on your network.

2. Identify each codepoint that is used in the various policies.

List the codepoints, and the systems and classes, to which the codepoints apply. The
table can illustrate areas where you might have used the same codepoint. This practice
is acceptable, but you should provide other criteria in the IPQoS configuration file,
such as a precedence selector, to be used to determine the precedence of identically
marked classes.

Chapter 3 • Creating the IPQoS Configuration File (Tasks) 79

For example, for the sample network that is used in the procedures of this chapter, you
might construct the following codepoint table.

TABLE 3–2 Per-Hop Behaviors Configured for a Sample Network

System Class PHB DS Codepoint

Goldweb video EF 46 (101110)

“ “ goldweb AF11 10 (001010)

Userweb webout AF12 12 (001100)

BigAPPs smtp AF13 14 (001110)

“ news AF18 18 (010010)

“ ftp conformant traffic AF22 20 (010100)

“ ftp nonconformant
traffic

AF31 26 (011010)

3. Add the codepoints from your network’s IPQoS configuration files to the
appropriate files on the diffserv router.

The codepoints you supply should help to configure the router’s diffserv scheduling
mechanism. Refer to the router manufacturers’ documentation and web sites for
instructions.

80 IPQoS Administration Guide • September 2002

CHAPTER 4

Starting Up and Maintaining IPQoS
(Tasks)

This chapter contains tasks for activating an IPQoS configuration file and for logging
IPQoS-related events. The following topics are covered:

� “Activating an IPQoS Configuration” on page 82
� “Enabling syslog Logging for IPQoS Messages” on page 83
� “Using IPQoS Error Messages” on page 84

Administering IPQoS (Task Map)
This section lists the set of tasks for starting and maintaining IPQoS on a Solaris
system. Before you use the tasks, you must have a completed IPQoS configuration file,
as described in “Defining a QoS Policy in the IPQoS Configuration File (Task Map)”
on page 51.

TABLE 4–1 Configuring and Maintaining IPQoS (Task Map)

Task Description For Instructions

1. Configure IPQoS on a
system.

Use the ipqosconf utility
to activate the IPQoS
configuration file on a
system.

“How to Apply a New Configuration to the IPQoS
Kernel Modules” on page 82

2. Make the Solaris startup
scripts apply the debugged
IPQoS configuration file
after each system boot.

Ensure that the IPQoS
configuration is applied
each time the system
reboots.

“How to Ensure That the IPQoS Configuration Is
Applied After Each Reboot” on page 83

81

TABLE 4–1 Configuring and Maintaining IPQoS (Task Map) (Continued)
Task Description For Instructions

3. Enable syslog logging
for IPQoS.

Add an entry to enable
syslog logging of IPQoS
messages.

“How to Enable Logging of IPQoS Messages During
Booting” on page 84

4. Fix IPQoS problems as
they arise.

Troubleshoot IPQoS
problems by using error
messages.

Refer to the error messages in Table 4–2

Activating an IPQoS Configuration
You activate and otherwise manipulate the IPQoS configuration by using the
ipqosconf command.

� How to Apply a New Configuration to the IPQoS
Kernel Modules
You use the ipqosconf tool to read the IPQoS configuration file and configure the
IPQoS modules in the UNIX kernel. The next procedure uses as an example the file
/var/ipqos/Goldweb.qos, which is created in “Creating IPQoS Configuration Files
for Web Servers” on page 53. For detailed information, refer to the ipqosconf(1m)
man page.

1. Become superuser on the IPQoS-enabled system.

2. Apply the new configuration.

/usr/sbin/ipqosconf -a /var/ipqos/Goldweb.qos

ipqosconf writes the information in the specified IPQoS configuration file into the
IPQoS modules in the Solaris kernel. In the previous example, the contents of
/var/ipqos/Goldweb.qos are applied to the current Solaris kernel.

Note – When you apply an IPQoS configuration file with the -a option, the actions in
the file are active for the current session only.

3. Test and debug the new IPQoS configuration.

Use UNIX utilities to track IPQoS behavior and gather statistics on your IPQoS
implementation. Thus, you can determine if the configuration operates as you
expected.

82 IPQoS Administration Guide • September 2002

Where to Go From Here

Task For Instructions

View statistics on how the IPQoS modules are
working

“Gathering Statistical Information” on page 93

Log ipqosconf messages “Enabling syslog Logging for IPQoS
Messages” on page 83

Ensure that the current IPQoS configuration is
applied after each boot

“How to Ensure That the IPQoS Configuration
Is Applied After Each Reboot” on page 83

� How to Ensure That the IPQoS Configuration Is
Applied After Each Reboot
You must explicitly make an IPQoS configuration persistent across reboots. Otherwise,
the current configuration applies only until the system reboots. When IPQoS works
correctly on a system, do the following to make the configuration persistent across
reboots.

1. Log in as superuser to the IPQoS-enabled system.

2. Test for the existence of an IPQoS configuration in the kernel modules:

ipqosconf -l

If a configuration already exists, ipqosconf displays it on the screen. If you do not
receive output, apply the configuration, as explained in“How to Apply a New
Configuration to the IPQoS Kernel Modules” on page 82.

3. Ensure that the existing IPQoS configuration is applied every time the IPQoS
system reboots.

/usr/sbin/ipqosconf -c

The -c option causes the current IPQoS configuration to be represented in the
boot-time configuration file /etc/inet/ipqosinit.conf.

Enabling syslog Logging for IPQoS
Messages
To record IPQoS boot-time messages, you need to modify the /etc/syslog.conf
file as shown in the next procedure.

Chapter 4 • Starting Up and Maintaining IPQoS (Tasks) 83

� How to Enable Logging of IPQoS Messages During
Booting

1. Become superuser on the IPQoS-enabled machine.

2. Open the /etc/syslog.conf file.

3. Add the following text as the final entry in the file.

Use tabs, rather than spaces, between the columns.

user.info /var/adm/messages

This entry logs all boot-time messages that are generated by IPQoS into the
/var/adm/messages file.

4. Reboot the system to apply the messages.

Examples—IPQoS Output From /var/adm/messages

When you view /var/adm/messages after system reboot, your output might
contain IPQoS logging messages similar to the following.

May 14 10:44:33 ipqos-14 ipqosconf: [ID 815575 user.info]
New configuration applied.
May 14 10:44:46 ipqos-14 ipqosconf: [ID 469457 user.info]
Current configuration saved to init file.
May 14 10:44:55 ipqos-14 ipqosconf: [ID 435810 user.info]

Configuration flushed.

You might also see IPQoS error messages similar to the following in your IPQoS
system’s /var/adm/messages file.

May 14 10:56:47 ipqos-14 ipqosconf: [ID 123217 user.error]
Missing/Invalid config file fmt_version.
May 14 10:58:19 ipqos-14 ipqosconf: [ID 671991 user.error]

No ipgpc action defined.

For a description of the previous error messages, see Table 4–2.

Using IPQoS Error Messages
This section contains a table of error messages that are generated by IPQoS and their
possible solutions.

84 IPQoS Administration Guide • September 2002

TABLE 4–2 IPQoS Error Messages

Error Message Description Solution

Undefined action in
parameter parameter-
name’s action action-name

In the IPQoS configuration
file, the action name that
you specified in parameter-
name does not exist in the
configuration file.

Create the action or refer to a different, existing action
in the parameter.

action action-name
involved in cycle

In the IPQoS configuration
file, action-name is part of a
cycle of actions, which is
not allowed by IPQoS.

Determine the action cycle and remove one of the
cyclical references from the IPQoS configuration file.

Action action-name isn’t
referenced by any
other actions

A non-ipgpc action
definition is not referenced
by any other defined
actions in the IPQoS
configuration, which is not
allowed by IPQoS.

Remove the unreferenced action or make another
action reference the currently unreferenced action.

Missing/Invalid
config file
fmt_version

The format of the
configuration file is not
specified as the first entry of
the file, which is required
by IPQoS.

Add the format version, as explained in “How to
Begin the IPQoS Configuration File and Define Traffic
Classes” on page 56.

Unsupported config
file format version

The format version that is
specified in the
configuration file is not
supported by IPQoS.

Change the format version to fmt_version 1.0,
which is required to run the Solaris 9 9/02 version of
IPQoS.

No ipgpc action
defined.

You did not define an action
for the ipgpc classifier in
the configuration file, which
is an IPQoS requirement.

Define an action for ipgpc, as shown in “How to
Begin the IPQoS Configuration File and Define Traffic
Classes” on page 56.

Can’t commit a null
configuration

When you ran ipqosconf
-c to commit a
configuration, that
configuration was empty,
which IPQoS does not
allow.

Be sure to apply a configuration file before you
attempt to commit a configuration.

Invalid CIDR mask on
line line_number

In the configuration file,
you used a CIDR mask as
part of the IP address that is
out of the valid range for IP
addresses.

Change the mask value to be in the range of 1–32 for
IPv4 and 1–128 for IPv6.

Chapter 4 • Starting Up and Maintaining IPQoS (Tasks) 85

TABLE 4–2 IPQoS Error Messages (Continued)
Error Message Description Solution

Address masks aren’t
allowed for host
names line line_number

In the configuration file,
you defined a CIDR mask
for a host name, which is
not allowed in IPQoS.

Remove the mask or change the host name to an IP
address.

Invalid module name
line line_number

In the configuration file, the
module name you specified
in an action statement is
invalid.

Check the spelling of the module name. For a list of
IPQoS modules, refer to Table 6–5.

ipgpc action has
incorrect name line
line_number

The name that you gave to
the ipgpc action in the
configuration file is not the
required
ipgpc.classify.

Rename the action ipgpc.classify.

Second parameter
clause not supported
line line_number

In the configuration file,
you specified two
parameter clauses for a
single action, which IPQoS
does not allow.

Combine all parameters for the action into a single
parameters clause.

Duplicate named
action

In the configuration file,
you gave the same name to
two actions.

Rename or remove one of the actions.

Duplicate named
filter/class in
action action_name

You gave the same name to
two filters or two classes in
the same action, which is
not allowed in the IPQoS
configuration file.

Rename or remove one of the filters or classes.

Undefined class in
filter filter_name in
action action_name

In the configuration file, the
filter references a class that
is not defined in the action.

Create the class, or change the filter reference to an
already existing class.

Undefined action in
class class_name action
action_name

The class refers to an action
that is not defined in the
configuration file.

Create the action, or change the reference to an
already existing action.

Invalid parameters
for action action_name

In the configuration file, one
of the parameters is invalid.

For the module that is called by the named action,
refer to the module entry in “IPQoS Architecture and
the diffserv Model” on page 95. Alternatively, you can
refer to the ipqosconf(1M) man page.

Mandatory parameter
missing for action
action_name

You have not defined a
required parameter for an
action in the configuration
file.

For the module that is called by the named action,
refer to the module entry in “IPQoS Architecture and
the diffserv Model” on page 95. Alternatively, you can
refer to the ipqosconf(1M) man page.

86 IPQoS Administration Guide • September 2002

TABLE 4–2 IPQoS Error Messages (Continued)
Error Message Description Solution

Max number of classes
reached in ipgpc

You specified more classes
than are allowed in the
ipgpc action of the IPQoS
configuration file. The
maximum number is 10007.

Review the configuration file and remove unneeded
classes. Alternatively, you can raise the maximum
number of classes by adding to the /etc/system file
the entry ipgpc_max_classes class_number.

Max number of filters
reached in action
ipgpc

You specified more filters
than are allowed in the
ipgpc action of the IPQoS
configuration file. The
maximum number is 10007.

Review the configuration file and remove unneeded
filters. Alternatively, you can raise the maximum
number of filters by adding to the /etc/system file
the entry ipgpc_max_filters class_number.

Invalid/missing
parameters for filter
filter_name in action
ipgpc.

In the configuration file,
filter filter_name has an
invalid or missing
parameter.

Refer to the ipqosconf(1m) man page for the list of
valid parameters.

Name not allowed to
start with ’!’, line
line_number

You began an action, filter,
or class name with an
exclamation mark (!), which
is not allowed in the IPQoS
file.

Remove the exclamation mark or rename the action,
class, or filter.

Name exceeds the
maximum name length
line line_number

You defined a name for an
action, class, or filter in the
configuration file that
exceeds the maximum
length of 23 characters.

Give a shorter name to the action, class, or filter.

Array declaration
line line_number is
invalid

In the configuration file, the
array declaration for the
parameter on line
line_number is invalid.

For the correct syntax of the array declaration that is
called by the action statement with the invalid array,
refer to “IPQoS Architecture and the diffserv Model”
on page 95. Alternatively, refer to the ipqosconf(1m)
man page.

Quoted string exceeds
line, line_number

The string does not have
the terminating quotation
marks on the same line,
which is required in the
configuration file.

Make sure that the quoted string begins and ends on
the same line in the configuration file.

Invalid value, line
line_number

The value that is given on
line_number of the
configuration file is not
supported for the
parameter.

For the acceptable values for the module that is called
by the action statement, refer to module description in
“IPQoS Architecture and the diffserv Model”
on page 95. Alternatively, you can refer to the
ipqosconf(1m) man page.

Chapter 4 • Starting Up and Maintaining IPQoS (Tasks) 87

TABLE 4–2 IPQoS Error Messages (Continued)
Error Message Description Solution

Unrecognized value,
line line_number

The value on line_number of
the configuration file is not
a supported enumeration
value for its parameter.

Check that the enumeration value is correct for the
parameter. For a the description of the module that is
called by the action statement with the unrecognized
line number, refer to “IPQoS Architecture and the
diffserv Model” on page 95. Alternatively, you can
refer to the ipqosconf(1m) man page.

Malformed value list
line line_number

The enumeration that is
specified on line_number of
the configuration file does
not conform to the
specification syntax.

For correct syntax of the module that is called by the
action with the malformed value list, refer to the
module description in “IPQoS Architecture and the
diffserv Model” on page 95. Alternatively, you can
refer to the ipqosconf(1m) man page.

Duplicate parameter
line line_number

A duplicate parameter was
specified on line_number,
which is not allowed in the
configuration file.

Remove one of the duplicate parameters.

Invalid action name
line line_number

You gave the action on
line_number of the
configuration file a name
that uses the predefined
name “continue” or “drop.”

Rename the action so that it does not use a predefined
name.

Failed to resolve
src/dst host name for
filter at line
line_number, ignoring
filter

ipqosconf could not
resolve the source or
destination address that
was defined for the given
filter in the configuration
file. Therefore, the filter is
ignored.

If the filter is important, try applying the
configuration at a later time.

Incompatible address
version line line_number

The IP version of the
address on line_number is
incompatible with the
version of a previously
specified IP address or
ip_version parameter in
the configuration file.

Change the two conflicting entries to be compatible.

Action at line
line_number has the same
name as currently
installed action, but
is for a different
module

You tried to change the
module of an action that
already exists in the
system’s IPQoS
configuration, which is not
allowed.

Flush the current configuration before you apply the
new configuration.

88 IPQoS Administration Guide • September 2002

CHAPTER 5

Using Flow Accounting and Statistics
Gathering (Tasks)

This chapter explains how to obtain accounting and statistical information on traffic
that is handled by an IPQoS system. The following topics are discussed:

� “Recording Information About Flows” on page 90
� “Gathering Statistical Information” on page 93

Setting Up Flow Accounting (Task Map)
The following table lists the generic tasks for obtaining information about traffic flows
by using the flowacct module.

TABLE 5–1 Configuring Flow Accounting (Task Map)

Task Description For Instructions

1. Create a file to contain
accounting information for
traffic flows.

Use the acctadm command
to create a file that holds the
results of processing by
flowacct.

“How to Create a File for Flow-Accounting Data”
on page 90

2. Define flowacct
parameters in the IPQoS
configuration file.

Define values for the timer,
timeout, and max_limit
parameters.

“How to Enable Accounting for a Class in the
IPQoS Configuration File” on page 63

3. View the contents of the file. View an example program
that can be used to create a
utility to read accounting
records from a file.

“How to Get Instructions for Viewing a
Flow-Accounting File” on page 92

89

Recording Information About Flows
You use the IPQoS flowacct module to collect information about traffic flows, such
as the source and destination addresses, amount of packets in a flow, and similar data.
The process of accumulating and recording information about flows is called flow
accounting.

The results of flow accounting on traffic of a particular class are recorded in a table of
flow records. Each flow record consists of a series of attributes. These attributes contain
data about traffic flows of a particular class over an interval of time. For a list of the
flowacct attributes, refer to Table 6–4.

Flow accounting is particularly useful for billing clients as is defined in their
service-level agreements (SLAs). You can also use flow accounting to obtain flow
statistics for critical applications. This section contains tasks for using flowacct with
the Solaris extended accounting facility to obtain data on traffic flows.

The following information is contained in sources outside this chapter:

� For instructions on creating an action statement for flowacct in the IPQoS
configuration file, refer to “How to Configure Flow Control in the IPQoS
Configuration File” on page 75.

� To learn how flowacct works, refer to “Classifier Module” on page 95.

� For technical information, refer to the flowacct(7ipp) man page.

� How to Create a File for Flow-Accounting Data
Before you add a flowacct action to the IPQoS configuration file, you must create a
file for flow records from the flowacct module. You use the acctadm command for
this purpose. acctadm can record either basic attributes or extended attributes in the
file. All flowacct attributes are listed in Table 6–4. For detailed information about
acctadm, refer to acctadm(1m).

1. Log in as superuser to the IPQoS-enabled system.

2. Create a basic flow-accounting file.

The following example shows how to create a basic flow-account file for the premium
web server that is configured in Example 3–1.

/usr/sbin/acctadm -e basic -f /var/ipqos/goldweb/account.info flow

90 IPQoS Administration Guide • September 2002

Statement Definition

acctadm -e Invokes acctadm with the -e option. The -e
option enables the arguments that follow.

basic States that only data for the eight basic
flowacct attributes are to be recorded in the
file.

/var/ipqos/goldweb/account.info Specifies the fully qualified path name of the
file to hold the flow records from flowacct.

flow Tells acctadm to enable flow accounting.

3. View information about flow accounting on the IPQoS system by typing acctadm
without arguments.

acctadm generates the following output:

Task accounting: inactive
Task accounting file: none

Tracked task resources: none
Untracked task resources: extended

Process accounting: inactive
Process accounting file: none

Tracked process resources: none
Untracked process resources: extended,host,mstate

Flow accounting: active
Flow accounting file: /var/ipqos/goldweb/account.info

Tracked flow resources: basic

Untracked flow resources: dsfield,ctime,lseen,projid,uid

All but the last four entries are for use with the Solaris 9 Resource Manager feature.
The next table explains the entries that are specific to IPQoS.

Entry Description

Flow accounting: active Indicates that flow accounting is turned on

Flow accounting file:
/var/ipqos/goldweb/account.info

Gives the name of the current flow-accounting
file

Tracked flow resources: basic Indicates that only the basic flow attributes are
tracked

Untracked flow resources:
dsfield,ctime,lseen,projid,uid

Lists the flowacct attributes that are not
tracked in the file

4. (Optional) Add the extended attributes to the accounting file as follows:

acctadm -e extended -f /var/ipqos/goldweb/account.info flow

5. (Optional) Return to recording only the basic attributes in the accounting file.

Chapter 5 • Using Flow Accounting and Statistics Gathering (Tasks) 91

acctadm -d extended -e basic -f /var/ipqos/goldweb/account.info

The -d option disables extended accounting.

Where to Go Next

Task For Instructions

Define flowacct parameters in the IPQoS
configuration file

“How to Enable Accounting for a Class in the
IPQoS Configuration File” on page 63

Print out the data in the file that was created
with acctadm

“How to Get Instructions for Viewing a
Flow-Accounting File” on page 92

� How to Get Instructions for Viewing a Flow-
Accounting File
You must create a script to display the contents of the flow-accounting file that was
created by acctadm. You can use as the basis for your script a demonstration script
for resource management tasks and processing accounting. The following task shows
how to get information about the demonstration script.

Before you can use the next procedure, you must have created a file to hold flow
records, as described in “How to Create a File for Flow-Accounting Data” on page 90.
You also must have added a flowacct action and parameters to the IPQoS
configuration file so that traffic classes are tracked by flowacct.

The next task introduces the libexacct programmatic interface and exdump utility
to provide output for an acctadm file for viewing processes and tasks. For technical
information, refer to the libexacct(3LIB) man page.

1. Become superuser on the IPQoS system and access the directory
/usr/demo/libexacct.

This directory contains a Makefile and the exdump.c script.

2. Perform the instructions to build exdump as is explained in the README.

3. View the data in the flow-accounting file, as is explained in the README.

92 IPQoS Administration Guide • September 2002

Gathering Statistical Information
You can use the kstat command to generate statistical information from the IPQoS
modules. Use the following syntax.

/bin/kstat -m ipqos-module-name
You can specify any valid IPQoS module name, as shown in Table 6–5. For example, to
view statistics that are generated by the dscpmk marker, you use the following form
of kstat.

/bin/kstat -m dscpmk

For technical details, refer to the kstat(1M) man page.

Example—kstat Statistics for IPQoS
Here is an example of possible results from running kstat to obtain statistics about
the flowacct module.

kstat -m flowacct
module: flowacct instance: 3
name: Flowacct statistics class: flacct

bytes_in_tbl 84
crtime 345728.504106363
epackets 0
flows_in_tbl 1
nbytes 84
npackets 1
snaptime 345774.031843301

usedmem 256

Entry Description

class: flacct Gives the name of the class to which the traffic flows
belong, in this instance flacct.

bytes_in_tbl Total number of bytes in the flow table, that is, the sum
in bytes of all the flow records that currently reside in
the flow table. The total number of bytes for this flow
table is 84. If no flows are in the table, the value for
bytes_in_tbl is 0.

crtime The last time this kstat was created.

epackets Number of packets that resulted in an error during
processing, in this instance 0.

Chapter 5 • Using Flow Accounting and Statistics Gathering (Tasks) 93

Entry Description

flows_in_tbl Number of flow records in the flow table, which in this
instance is 1. When no records are in the table, the value
for flows_in_tbl is 0.

nbytes Total number of bytes that are seen by this flowacct
action instance, which is 84 in the example. The value
includes bytes that are currently in the flow table and
bytes that have timed out—are no longer in the flow
table.

npackets Total number of packets that are seen by this flowacct
action instance, which is 1 in the example. npackets
includes packets that are currently in the flow table and
those that have timed out—are no longer in the flow
table.

usedmem Memory in bytes in use by the flow table that is
maintained by this flowacct instance. The usedmem
value is 256 in the example. The value for usedmem is 0
when the flow table does not have any flow records.

94 IPQoS Administration Guide • September 2002

CHAPTER 6

IPQoS in Depth (Reference)

This chapter contains reference materials that provide in-depth details about the
following IPQoS topics:

� “IPQoS Architecture and the diffserv Model” on page 95
� “IPQoS Configuration File” on page 108

For an overview, refer to Chapter 1. For planning information, refer to Chapter 2. For
procedures for configuring IPQoS, refer to Chapter 3.

IPQoS Architecture and the diffserv
Model
This section describes the IPQoS architecture and how it implements the differentiated
services (diffserv) model that is defined in RFC 2475, An Architecture for Differentiated
Services. The following elements of the diffserv model are included in IPQoS:

� Classifier
� Meter
� Marker

In addition, IPQoS includes the flow-accounting module and the dlcosmk marker for
use with VLAN devices.

Classifier Module
In the diffserv model, the classifier is responsible for organizing selected traffic flows
into groups on which to apply different service levels. The classifiers that are defined
in RFC 2475 were originally designed for boundary routers. By contrast, the IPQoS

95

classifier ipgpc is designed to handle traffic flows on hosts internal to the local
network. Therefore, a network with both IPQoS systems and a diffserv router can
provide a greater degree of differentiated services. For a technical description of
ipgpc, refer to the ipgpc(7ipp) man page.

The ipgpc classifier does the following:

1. Selects traffic flows that meet the criteria that are specified in the IPQoS
configuration file on the IPQoS-enabled system

The QoS policy defines various criteria that must be present in packet headers.
These criteria are called selectors. The ipgpc classifier compares these selectors
against the headers of packets that are received by the IPQoS system. ipgpc then
selects all matching packets.

2. Separates the packet flows into classes, network traffic with the same characteristics,
as defined in the IPQoS configuration file

3. Examines the value in the packet’s differentiated service (DS) field for the presence
of a differentiated services (DS) codepoint

The presence of the DS codepoint, also known as the DSCP, indicates whether the
incoming traffic has been marked by the sender with a forwarding behavior.

4. Determines what further action is specified in the IPQoS configuration file for
packets of a particular class

5. Passes the packets to the next IPQoS module that is specified in the IPQoS
configuration file, or returns the packets to the network stream

For an overview of the classifier, refer to “Classifier (ipgpc) Overview” on page 23.
For information on invoking the classifier in the IPQoS configuration file, refer to
“IPQoS Configuration File” on page 108.

Selectors
ipgpc supports a variety of selectors that you can use in the filter clause of the IPQoS
configuration file. When you define a filter, always use the minimum number of
selectors that are needed to successfully retrieve traffic of a particular class. The
amount of filters you define can impact IPQoS performance.

The next table lists the selectors available for ipgpc.

TABLE 6–1 Filter Selectors for the IPQoS Classifier

Selector Argument(s) Information Selected

saddr IP address number. Source address.

daddr IP address number. Destination address.

96 IPQoS Administration Guide • September 2002

TABLE 6–1 Filter Selectors for the IPQoS Classifier (Continued)
Selector Argument(s) Information Selected

sport Either a port number or service name, as
defined in /etc/services.

Source port from which a traffic class
originated.

dport Either a port number or service name, as
defined in /etc/services.

Destination port to which a traffic class
is bound.

protocol Either a protocol number or protocol
name, as defined in /etc/protocols.

Protocol to be used by this traffic class.

dsfield DS codepoint. Default is zero (0). DS codepoint, which defines any
forwarding behavior to be applied to
the packet.

if_name Interface name. Interface to be used for either
incoming or outgoing traffic of a
particular class.

if_groupname Interface group name. Interface group to be used for either
incoming or outgoing traffic of a
particular class.

user Number of the UNIX userID or user
name to be selected. If no userID or user
name is on the packet, the default –1 is
used.

UserID that is supplied to an
application.

projid Number of the project ID to be selected. Project ID that is supplied to an
application.

priority Priority number. Lowest priority is 0. Priority that is given to packets of this
class. Priority is used to order the
importance of filters for the same class.

direction Argument can be one of the following: Direction of packet flow on the IPQoS
machine.

LOCAL_IN Input traffic local to the IPQoS system.

LOCAL_OUT Output traffic local to the IPQoS
system.

FWD_IN Input traffic to be forwarded.

FWD_OUT Output traffic to be forwarded.

0 Wildcard that represents either
LOCAL_IN and LOCAL_OUT, or
FORWARD_IN and FORWARD_OUT.

precedence Precedence value. Highest precedence is
0.

Precedence is used to order filters with
the same priority.

Chapter 6 • IPQoS in Depth (Reference) 97

TABLE 6–1 Filter Selectors for the IPQoS Classifier (Continued)
Selector Argument(s) Information Selected

ip_version v4 or v6 Addressing scheme that is used by the
packets, either IPv4 or IPv6.

Meter Module
The meter tracks the transmission rate of flows on a per-packet basis and determines
whether the packet conforms to the configured parameters. The meter module
determines the next action for a packet from a set of actions that depend on packet
size, configured parameters, and flow rate.

The meter consists of two metering modules, tokenmt and tswtclmt, which you
configure in the IPQoS configuration file. You can configure either module or both
modules for a class.

When you configure a metering module, you can define two parameters for rate:

� committed rate – Defines the acceptable transmission rate in bits per second for
packets of a particular class

� peak rate – Defines the maximum transmission rate in bits per second that is
allowable for packets of a particular class

A metering action on a packet can result in one of the following three outcomes:

� green – The packet causes the flow to remain within its committed rate.

� yellow – The packet causes the flow to exceed its committed rate but not its peak
rate.

� red – The packet causes the flow to exceed its peak rate.

You can configure each outcome with different actions in the IPQoS configuration file.
Committed rate and peak rate are explained in the next section.

tokenmt Metering Module
The tokenmt module uses token buckets to measure the transmission rate of a flow.
You can configure tokenmt to operate as a single-rate or two-rate meter. A tokenmt
action instance maintains two token buckets that determine whether the traffic flow
conforms to configured parameters.

The tokenmt(7ipp) man page explains how IPQoS implements the token meter
paradigm. You can find more general information about token buckets in Kalevi
Kilkki’s Differentiated Services for the Internet and on a number of Web sites.

Configuration parameters for tokenmt are as follows:

98 IPQoS Administration Guide • September 2002

� committed_rate – Specifies the committed rate of the flow in bits per second.
� committed_burst – Specifies the committed burst size in bits. The

committed_burst parameter defines how many outgoing packets of a particular
class can pass onto the network at the committed rate.

� peak_rate – Specifies the peak rate in bits per second.
� peak_burst – Specifies the peak or excess burst size in bits. The peak burst

parameter grants to a traffic class a peak-burst size that exceeds the committed rate.
� color_aware – Turns on color-aware mode for tokenmt.
� color_map – Defines an integer array that maps DSCP values to green, yellow, or

red.

Configuring tokenmt as a Single-Rate Meter

To configure tokenmt as a single-rate meter, do not specify a peak_rate parameter
for tokenmt in the IPQoS configuration file. To configure a single-rate tokenmt
instance to have a red, green, or yellow outcome, you must specify the peak_burst
parameter. If you do not use the peak_burst parameter, you can configure tokenmt
to have only a red or green outcome. For an example of a single-rate tokenmt with
two outcomes, see Example 3–3.

When tokenmt operates as a single-rate meter, the peak_burst parameter is actually
the excess burst size. committed_rate and either committed_burst or
peak_burst must be nonzero positive integers.

Configuring tokenmt as a Two-Rate Meter

To configure tokenmt as a two-rate meter, specify a peak_rate parameter for the
tokenmt action in the IPQoS configuration file. A two-rate tokenmt always has the
three outcomes, red, yellow, and green. The committed_rate, committed_burst,
and peak_burst parameters must all be non-zero positive integers.

Configuring tokenmt to Be Color Aware

To configure a two-rate tokenmt to be color aware, you must add parameters to
specifically add “color awareness.” The following is an example action statement that
configures color-aware tokenmt.

EXAMPLE 6–1 Color-Aware tokenmt Action for the IPQoS Configuration File

action {
module tokenmt
name meter1
params {

committed_rate 4000000
peak_rate 8000000

Chapter 6 • IPQoS in Depth (Reference) 99

EXAMPLE 6–1 Color-Aware tokenmt Action for the IPQoS Configuration File (Continued)

committed_burst 4000000
peak_burst 8000000
global_stats true
red_action_name continue
yellow_action_name continue
green_action_name continue
color_aware true
color_map {0-20,22:GREEN;21,23-42:RED;43-63:YELLOW}

}

}

You turn on color awareness by setting the color_aware parameter to true. As a
color-aware meter, tokenmt assumes that the packet has already been marked as red,
yellow, or green by a previous tokenmt action. Color-aware tokenmt evaluates a
packet by using the DS codepoint in the packet header in addition to the parameters
for a two-rate meter.

The color_map parameter contains an array into which the DSCP in the packet
header is mapped. Consider the following color_map array:

color_map {0-20,22:GREEN;21,23-42:RED;43-63:YELLOW}

Packets with a DSCP of 0–20 and 22 are mapped to green. Packets with a DSCP of 21
and 23–42 are mapped to red. Packets with a DSCP of 43–63 are mapped to yellow.
tokenmt maintains a default color map, but you can change it as needed by using the
color_map parameters.

In the color_action_name parameters, you can specify continue to complete
processing of the packet. Or you can add an argument to send the packet to a marker
action, for example, yellow_action_name mark22.

tswtclmt Metering Module
The tswtclmt metering module estimates average bandwidth for a traffic class by
using a time-based rate estimator. tswtclmt always operates as a three-outcome
meter. The rate estimator provides an estimate of the flow’s arrival rate. This rate
should approximate the running average bandwidth of the traffic stream over a
specific period or time, its window. The rate estimation algorithm is taken from RFC
2859, A Time Sliding Window Three Colour Marker.

You use the following parameters to configure tswtclmt:

� committed_rate – Specifies the committed rate in bits per second

� peak_rate – Specifies the peak rate in bits per second

� window – Defines the time window, in milliseconds over which history of average
bandwidth is kept

100 IPQoS Administration Guide • September 2002

For technical details on tswtclmt, refer to the tswtclmt(7ipp) man page. For
general information on rate shapers similar to tswtclmt, see RFC 2963, A Rate
Adaptive Shaper for Differentiated Services.

Marker Module
IPQoS includes two marker modules, dscpmk and dlcosmk. This section contains
information for using both markers. Normally, you should use dscpmk because
dlcosmk is only available for IPQoS systems with VLAN devices.

For technical information about dscpmk, refer to the dscpmk(7ipp) man page. For
technical information about dlcosmk, refer to the dlcosmk(7ipp) man page.

Using the dscpmk Marker for Forwarding Packets
The marker receives traffic flows after they are processed by the classifier or metering
modules. The marker marks the traffic with a forwarding behavior, which is the action
to be taken on the flows after they leave the IPQoS system. Forwarding behavior to be
taken on a traffic class is defined in the per-hop behavior (PHB). The PHB assigns a
priority to a traffic class, which indicates the precedence flows of that class have in
relation to other traffic classes. PHBs only govern forwarding behaviors on the IPQoS
system’s contiguous network. For more information on PHBs, refer to “Per-Hop
Behaviors” on page 27.

Packet forwarding is the process of sending traffic of a particular class to its next
destination on a network. For a host, such as an IPQoS system, a packet is forwarded
from the host to the local network stream. For a diffserv router, a packet is forwarded
from the local network to the router’s next hop.

The marker marks the DS field in the packet header with a well-known forwarding
behavior that is defined in the IPQoS configuration file. Thereafter, the IPQoS system
and subsequent diffserv-aware systems forward the traffic as indicated in the DS field
until the mark changes. To assign a PHB, the IPQoS system marks the DS field of the
packet header with a value that is called the differentiated services (DS) codepoint, or
DSCP. The diffserv architecture defines two types of forwarding behaviors, EF and AF,
which use differing DS codepoints. For overview information about DS codepoints,
refer to “DS Codepoint (DSCP)” on page 27.

The IPQoS system reads the DS codepoint for the traffic flow and evaluates the flow’s
precedence in relation to other outgoing traffic flows. The IPQoS system then
prioritizes all concurrent traffic flows and releases each flow onto the network by its
priority.

Chapter 6 • IPQoS in Depth (Reference) 101

The diffserv router receives the outgoing traffic flows and reads the DS field in the
packet headers. The DS codepoint enables the router to prioritize and schedule the
concurrent traffic flows and forward each flow by the priority that is indicated by the
PHB. Note that the PHB cannot apply beyond the boundary router of the network
unless diffserv-aware systems on subsequent hops also recognize the same PHB.

Expedited Forwarding (EF) PHB

Expedited forwarding (EF) guarantees that any packets that are marked with the
recommended EF codepoint 46 (101110) receive the best treatment available on release
to the network. EF forwarding is often compared to a leased line. Packets with the 46
(101110) codepoint are guaranteed preferential treatment by all diffserv routers en
route to the packets’ destination. For technical information about EF, refer to RFC
2598, An Expedited Forwarding PHB.

Assured Forwarding (AF) PHB

Assured forwarding (AF) provides four different classes of forwarding behaviors that
you can specify to the marker. The next table shows the classes, the three drop
precedences that are provided with each class, and the recommended DCSPs that are
associated with each precedence. Each DSCP is represented by its AF value, its value
in hexadecimal, and its value in binary.

TABLE 6–2 Assured Forwarding Codepoints

Class 1 Class 2 Class 3 Class 4

Low-Drop Precedence AF11 =

10 (001010)

AF21 =

18 (010010)

AF31 =

26 (011010)

AF41 =

34 (100010)

Medium-Drop
Precedence

AF12 =

12 (001100)

AF22 =

20 (010100)

AF32 =

28 (011100)

AF42 =

36 (100100)

High-Drop
Precedence

AF13 =

14 (001110)

AF23 =

010110

AF33 =

30 (011110)

AF43 =

38 (100110)

Any diffserv-aware system can use the AF codepoint as a guide for providing
differentiated forwarding behaviors to different classes of traffic.

For example, suppose your QoS policy assigns DSCPs of AF31 and AF13 to two
different traffic classes. When packets that are marked AF31 (011010) leave the IPQoS
system, they receive lower forwarding probability than the packets with AF13
(001110).

102 IPQoS Administration Guide • September 2002

When these packets reach a diffserv router, the router evaluates the packets’
codepoints along with DS codepoints of other traffic in the queue. The router then
forwards or drops packets, depending on the available bandwidth and the priorities
that are assigned by the packets’ DS codepoints. Note that packets that are marked
with the EF PHB are guaranteed bandwidth over packets that are marked with the
various AF PHBs.

Coordinate packet marking between any IPQoS systems on your network and the
diffserv router to ensure that packets are forwarded as expected. For example, suppose
IPQoS systems on your network marks packets with AF21 (010010), AF13 (001110),
AF43 (100110), and EF (101110) codepoints. You then need to add the AF21, AF13,
AF43, and EF DS codepoints to the appropriate file on the diffserv router.

For a technical explanation of the AF codepoint table, refer to RFC 2597. Router
manufacturers Cisco Systems and Juniper Networks have detailed information about
setting the AF PHB in their Web sites. You can use this information to define AF PHBs
for IPQoS systems as well as routers. Additionally, router manufacturers’
documentation contains instructions for setting DS codepoints on their equipment.

Supplying a DS Codepoint to the Marker

The DS codepoint is 6 bits in length. The DS field is 1 byte long. When you define a DS
codepoint in the IPQoS configuration file, the marker marks the first 6 significant bits
of the packet header with the DS codepoint. The remaining 2 least-significant bits are
unused.

To define a DS codepoint, you use the following parameter within a marker action
statement:

dscp_map{0-63:DS_codepoint}

The dscp_map parameter is a 64-element array, which you populate with the DS
codepoint (DSCP) value. dscp_map is used to map incoming DSCPs to outgoing
DSCPs that are applied by the dscpmk marker.

You must specify the DSCP value to dscp_map in hexadecimal notation. For example,
you must translate the EF codepoint of 101110 into the hexadecimal value 46, which
results in dscp_map{0-63:46}. For AF codepoints, you must translate the various
codepoints that are shown in Table 6–2 to hexadecimal for use with dscp_map.

Using the dlcosmk Marker With VLAN Devices
The dlcosmk marker module marks a forwarding behavior in the MAC header of a
datagram. You can use dlcosmk only on an IPQoS system with a VLAN interface.

Chapter 6 • IPQoS in Depth (Reference) 103

dlcosmk adds four bytes, which are known as the VLAN tag, to the MAC header. The
VLAN tag includes a 3-bit user priority value, which is defined by the IEEE 801.D
standard. Diffserv-aware switches that understand VLAN can read the user priority
field in a datagram. The 801.D user priority values implement the class of service
(CoS) marks, which are well known and understood by commercial switches.

You can use the user priority values in dlcosmk marker action by defining the class of
service marks that are listed in the next table.

TABLE 6–3 801.D User Priority Values

Class of Service Definition

0 Best effort

1 Background

2 Spare

3 Excellent effort

4 Controlled load

5 Video less than 100ms latency

6 Video less than 10ms latency

7 Network control

For more information on dlcosmk, refer to the dlcosmk(7ipp) man page.

IPQoS Configuration for Systems With VLAN Devices

This section introduces a simple network scenario that shows how to implement
IPQoS on systems with VLAN devices. The scenario includes two IPQoS systems,
machine1 and machine2, that are connected by a switch. The VLAN device on
machine1 has the IP address 10.10.8.1. The VLAN device on machine2 has the IP
address 10.10.8.3.

The following IPQoS configuration file for machine1 shows a simple solution for
marking traffic through the switch to machine2.

EXAMPLE 6–2 IPQoS Configuration File for a System With a VLAN Device

fmt_version 1.0
action {

module ipgpc
name ipgpc.classify

filter {
name myfilter2
daddr 10.10.8.3

104 IPQoS Administration Guide • September 2002

EXAMPLE 6–2 IPQoS Configuration File for a System With a VLAN Device (Continued)

class myclass
}

class {
name myclass
next_action mark4

}
}

action {
name mark4
module dlcosmk
params {

cos 4
next_action continue

global_stats true
}

}

In this configuration, all traffic from machine1 that is destined for the VLAN device
on machine2 is passed to the dlcosmk marker. The mark4 marker action instructs
dlcosmk to add a VLAN mark to datagrams of class myclass with a CoS of 4. The 4
user priority value indicates that the switch between the two machines should give
controlled load forwarding to myclass traffic flows from machine1.

flowacct Module
The IPQoS flowacct module records information about traffic flows, a process that is
referred to as flow accounting. The results of flow accounting are data that can be used
for billing customers or for evaluating the amount of traffic to a particular class.

Flow accounting is optional. flowacct is typically the final module that metered or
marked traffic flows might encounter before release onto the network stream. For an
illustration of flowacct’s position in the diffserv model, see Figure 1–1. For detailed
technical information about flowacct, refer to the flowacct(7ipp) man page.

To enable flow accounting, you need to use the Solaris exacct accounting facility and
the acctadm command, as well as flowacct. For the overall steps in setting up flow
accounting, refer to Table 5–1.

flowacct Parameters
flowacct gathers information about flows in a flow table that is composed of flow
records. Each entry in the table contains one flow record. You cannot display a
flow-account table.

Chapter 6 • IPQoS in Depth (Reference) 105

In the IPQoS configuration file, you define the following flowacct parameters to
measure flow records and to write them to the table:

� timer – Defines an interval, in milliseconds, when timed-out flows are removed
from the flow table and written to the file that is created by acctadm

� timeout – Defines a interval, in milliseconds, that specifies how long a packet flow
must be inactive before it times out

Note – You can configure timer and timeout to have different values.

� max_limit – Places an upper limit on the number of flow records that can be stored
in the table

For an example of how flowacct parameters are used in the IPQoS configuration
file, refer to “How to Configure Flow Control in the IPQoS Configuration File”
on page 75.

Flow Record Table
The flowacct module maintains a flow table that records all packet flows that are
seen by a flowacct instance. A flow is identified by the following parameters, which
comprise the flowacct 8–tuple.

� Source address
� Destination address
� Source port
� Destination port
� DSCP
� User ID
� Project ID
� Protocol

If all the parameters of the 8–tuple for a flow remain the same, the flow table contains
only one entry. The max_limit parameter determines the number of entries that a
flow table can contain.

The flow table is scanned at the interval that is specified in the IPQoS configuration
file for the timer parameter. The default is 15 seconds. A flow “times out” when its
packets are not seen by the IPQoS system for at least the timeout interval in the
IPQoS configuration file. The default time-out interval is 60 seconds. Entries that have
timed out are then written to the accounting file that is created with the acctadm
command.

flowacct Records
A flowacct record contains the following attributes.

106 IPQoS Administration Guide • September 2002

TABLE 6–4 Attributes of a flowacct Record

Attribute Name Attribute Contents Type

src -addr-address_type Source address of the originator. address_type
is either v4 for IPv4 or v6 for IPv6, as
specified in the IPQoS configuration file.

Basic

dest_ addr_address_type Destination address for the packets.
address_type is either v4 for IPv4 or v6 for
IPv6, as specified in the IPQoS configuration
file.

Basic

src- port Source port from which the flow originated. Basic

dest-port Destination port number to which this flow
is bound.

Basic

protocol Protocol number for the flow. Basic

total-packets Number of packets in the flow. Basic

total-bytes Number of bytes in the flow. Basic

action_name Name of the flowacct action that recorded
this flow.

Basic

creation_time First time that a packet is seen for the flow
by flowacct.

Extended only

last_seen Last time that a packet of the flow was seen. Extended only

diffserv-field DS codepoint in the outgoing packet headers
of the flow.

Extended only

user Either a UNIX UserID or user name, which is
obtained from the application.

Extended only

projid Project ID, which is obtained from the
application.

Extended only

Using acctadm with the flowacct Module
You use the acctadm command to create a file in which to store the various flow
records that are generated by flowacct. acctadm works in conjunction with the
extended accounting facility. For technical information about acctadm, refer to the
acctadm(1M) man page.

flowacct observes flows and fills its table with flow records. flowacct then
evaluates its parameters and attributes in the interval that is specified by timer.
When a packet is not seen for at least the last_seen plus timeout values, the
packet times out. All timed-out entries are deleted from the flow table. They are then
written to the accounting file each time the interval that is specified in the timer
parameter elapses.

Chapter 6 • IPQoS in Depth (Reference) 107

To invoke acctadm for use with the flowacct module, use the following syntax:

acctadm -e type -f filename flow

acctadm -e Invokes acctadm with the -e option. The -e
indicates that a resource list follows.

type Specifies the attributes to be gathered. file-type must
be replaced by either basic or extended. For a
list of attributes in each file type, refer to Table 6–4.

-f file_name Creates the file file_name to hold the flow records.

flow Indicates that acctadm is to be run with IPQoS.

IPQoS Configuration File
This section contains full details about the parts of the IPQoS configuration file. The
IPQoS boot-time activated policy is stored in the file /etc/inet/ipqosinit.conf.
Although you can edit this file, the best practice for a new IPQoS system is to create a
configuration file with a different name. Tasks for applying and debugging an IPQoS
configuration are in Chapter 4.

The syntax of the IPQoS configuration file is shown in the next example. The example
uses the following conventions:

� computer-style type - Syntactical information that is provided to explain the
parts of the configuration file. You do not type any text that appears in computer
style type.

� bold type - Literal text that you must type in the IPQoS configuration file. For
example, you must always begin the IPQoS configuration file with fmt_version.

� italics type - Variable text that you replace with descriptive information about your
configuration. For example, you must always replace action_name or module_name
with information that pertains to your configuration.

EXAMPLE 6–3 Syntax of the IPQoS Configuration File

file_format_version ::= fmt_version version

action_clause ::= action {
name action_name
module module_name
params_clause | ""
cf_clauses

}
action_name ::= string

108 IPQoS Administration Guide • September 2002

EXAMPLE 6–3 Syntax of the IPQoS Configuration File (Continued)

module_name ::= ipgpc | dlcosmk | dscpmk | tswtclmt | tokenmt | flowacct

params_clause ::= params {
parameters
params_stats | ""
}

parameters ::= prm_name_value parameters | ""
prm_name_value ::= param_name param_value

params_stats ::= global_stats boolean

cf_clauses ::= class_clause cf_clauses |
filter_clause cf_clauses | ""

class_clause ::= class {
name class_name
next_action next_action_name
class_stats | ""

}
class_name ::= string
next_action_name ::= string
class_stats ::= enable_stats boolean
boolean ::= TRUE | FALSE

filter_clause ::= filter {
name filter_name
class class_name
parameters
}

filter_name ::= string

The remaining text describes each major part of the IPQoS configuration file.

action Statement
You use action statements to invoke the various IPQoS modules that are described in
“IPQoS Architecture and the diffserv Model” on page 95.

When you begin the IPQoS configuration file, you must always begin with the version
number. Then, you must add the following action to invoke the classifier:

fmt_version 1.0

action {
module ipgpc
name ipgpc.classify

}

Follow the classifier action statement with a params clause or a class clause.

Use the following syntax for all other action statements:

Chapter 6 • IPQoS in Depth (Reference) 109

action {
name action_name
module module_name
params_clause | ""
cf_clauses
}

Statement Definition

name action_name Assigns a name to the action

module module_name Identifies the IPQoS module to be invoked,
which must be one of the modules in Table 6–5

params_clause Can be parameters for the classifier to process,
such as global statistics or the next action to
process

cf_clauses A set of zero or more class clauses or
filter clauses

Module Definitions
The module definition indicates which module is to process the parameters in the
action statement. The IPQoS configuration file can include the following modules.

TABLE 6–5 IPQoS Modules

Module Name Definition

ipgpc IP classifier

dscpmk Marker to be used to create DS codepoints in
IP packets

dlcosmk Marker to be used with VLAN devices

tokenmt Token bucket meter

tswtclmt Time-sliding window meter

flowacct Flow-accounting module

Class Clause
You define a class clause for each class of traffic.

Use this syntax to define the remaining classes in the IPQoS configuration.

class {

name class_name

110 IPQoS Administration Guide • September 2002

next_action next_action_name
}

To enable statistics taking on a particular class, you must first enable global statistic in
the ipgpc.classify action statement. For more information, refer to “action
Statement” on page 109.

Use the enable_stats TRUE statement whenever you want to turn on statistics for a
class. If you do not need to gather statistics for a class, you can specify
enable_stats FALSE. Alternatively, you can eliminate the enable_stats
statement.

Traffic on an IPQoS-enabled network that you do not specifically define is relegated to
the default class.

Filter Clause
Filters are made up of selectors that group traffic flows into classes. These selectors
specifically define the criteria to be applied to traffic of the class that was created in the
class clause. If a packet matches all selectors of the highest-priority filter, the packet is
considered to be a member of the filter’s class. For a complete list of selectors that you
can use with the ipgpc classifier, refer to Table 6–1.

You define filters in the IPQoS configuration file by using a filter clause, which has the
following syntax:

filter {
name filter_name
class class_name
parameters (selectors)
}

Params Clause
The params clause contains processing instructions for the module that is defined in
the action statement. Use the following syntax for the params clause:

params {
parameters
params_stats | ""

}

In the params clause, you use parameters that are applicable to the module.

The params_stats value in the params clause is either global_stats TRUE or
global_stats FALSE. The global_stats TRUE instruction turns on UNIX-style
statistics for the action statement where global statistics is invoked. You can view the
statistics by using the kstat command. You must enable action statement statistics
before you can enable per-class statistics.

Chapter 6 • IPQoS in Depth (Reference) 111

ipqosconf Configuration Utility
You use the ipqosconf utility to read the IPQoS configuration file and configure
IPQoS modules in the UNIX kernel. ipqosconf can perform the following actions:

� Apply the configuration file to the IPQoS kernel modules (ipqosconf -a) filename

� List the IPQoS configuration file currently resident in the kernel (ipqosconf -l)

� Ensure that the current IPQoS configuration is read and applied each time the
machine reboots (ipqosconf -c)

� Flush the current IPQoS kernel modules (ipqosconf -f)

For technical information, refer to the ipqosconf(1M) man page.

112 IPQoS Administration Guide • September 2002

Glossary

class A group of network flows that share similar characteristics. You define
classes in the IPQoS configuration file.

diffserv model Internet Engineering Task Force architectural standard for
implementing differentiated services on IP networks. The major
modules are classifier, meter, marker, scheduler, and dropper. IPQoS
implements the classifier, meter, and marker modules. The diffserv
model is described in RFC 2475, An Architecture for Differentiated
Services.

DS codepoint (DSCP) A 6–bit value that, when included in the DS field of an IP header,
indicates how a packet must be forwarded.

filter A set of rules that define the characteristics of a class in the IPQoS
configuration file. The IPQoS system selects for processing any traffic
flows that conform to the filters in its IPQoS configuration file.

flow accounting The process of accumulating and recording information about traffic
flows. You establish flow accounting by defining parameters for the
flowacct module in the IPQoS configuration file.

IPQoS Software feature in Solaris 9, 9/02 that provides an implementation of
the diffserv standard, plus flow accounting and 802.1 D marking for
virtual LANs. Using IPQoS, you can provide different levels of
network services to customers and applications, as defined in the
IPQoS configuration file.

marker 1. A module in the diffserv architecture and IPQoS that marks the DS
field of an IP packet with a value that indicates how the packet is to be
forwarded. In the IPQoS implementation, the marker module is
dscpmk.

113

2. A module in the IPQoS implementation, which marks the virtual
LAN tag of an Ethernet datagram with a user priority value. The user
priority value indicates how datagrams are to be forwarded on a
network with VLAN devices. This module is called dlcosmk.

meter A module in the diffserv architecture that measures the rate of traffic
flow for a particular class. The IPQoS implementation includes two
meters, tokenmt and tswtclmt.

outcome Action to take as a result of metering traffic. The IPQoS meters have
three outcomes, red, yellow, and green, which you define in the IPQoS
configuration file.

per-hop behavior (PHB) A priority that is assigned to a traffic class. The PHB indicates the
precedence which flows of that class have in relation to other traffic
classes.

selector Element that specifically defines the criteria to be applied to packets of
a particular class in order to select that traffic from the network stream.
You define selectors in the filter clause of the IPQoS configuration file.

user-priority A 3-bit value that implements class of service marks, which define how
Ethernet datagrams are forwarded on a network of VLAN devices.

virtual LAN (VLAN)
device

Network interfaces that provide traffic forwarding at the Ethernet
(data link) level of the IP protocol stack.

114 IPQoS Administration Guide • September 2002

Index

A
acctadm command, for flow accounting, 25,

90, 91, 107
action statement, 109
application server, configuring for IPQoS, 68
assured forwarding (AF), 28, 102

for a marker action, 61
table of AF codepoints, 102

B
bandwidth regulation, 21

planning, in the QoS policy, 39

C
class clause, in the IPQoS configuration file,

57, 110
class of service (CoS) mark, 25
classes, 23

defining, in the IPQoS configuration file,
56, 65, 70

list of selectors, 96
planning, in the QoS policy, 38
syntax of class clause, 110

classes of service
See classes

classifier module, 23
action statement, 56
functions of the classifier, 96

color awareness, 25, 99

configuration example for IPQoS, 48
configuration file for IPQoS, 53

action statement syntax, 109
class clause, 57
filter clause, 59
initial action statement, 56, 109
list of IPQoS modules, 110
marker action statement, 61
syntax, 108

D
differentiated services, 17

differentiated services model, 23
network topologies, 32
providing different classes of service, 22

diffserv-aware router
configuring, 79
evaluating DS codepoints, 103
planning, 37

diffserv model
classifier module, 23
flow example, 26
IPQoS implementation, 23, 24, 25, 26
marker modules, 25
meter modules, 24

dlcosmk marker, 25
planning datagram forwarding, 45
table of user priority values, 104
VLAN tags, 104

DS codepoint (DSCP), 25, 27
AF forwarding codepoint, 28, 102

115

DS codepoint (DSCP) (Continued)
configuring, on a diffserv router, 79, 101
defining, in the IPQoS configuration file, 61
dscp_map parameter, 103
EF forwarding codepoint, 28, 102
in color-awareness configuration, 100
PHBs and the DSCP, 27
planning, in the QoS policy, 45

dscpmk marker, 25
invoking, in a marker action, 61, 67, 73, 77
PHBs for packet forwarding, 101
planning packet forwarding, 45

E
error messages for IPQoS, 85, 88
example IPQoS configuration files

application server, 68
best-effort web server, 55
color-awareness segment, 99
premium web server, 53
VLAN device configuration, 104

expedited forwarding (EF), 28, 102
defining, in the IPQoS configuration file, 62

F
filter clause, in the IPQoS configuration file,

59, 111
filters, 24

creating, in the IPQoS configuration file,
58, 66, 71

filter clause syntax, 111
list of selectors, 96
planning, in the QoS policy, 40

flow accounting, 90, 105
creating a flow-accounting file, 90
flow record table, 106
implementing, in the IPQoS configuration

file, 63
planning, in the QoS policy, 47

flow control
defining, in the IPQoS configuration file, 75
planning, in the QoS policy, 42
through the metering modules, 24

flowacct module, 25, 105

flowacct module (Continued)
acctadm command, for creating a flow
accounting file, 107
action statement for flowacct, 64
attributes of flow records, 107
flow record table, 106
flow records, 90
parameters, 105

forwarding traffic
application traffic forwarding, 73
datagram forwarding, 103
effect of PHBs on packet forwarding, 101
implementing, in the IPQoS configuration

file, 60
IP packet forwarding , with DSCP, 27
planning, in the QoS policy, 39, 44
traffic flow through diffserv networks, 28

H
hardware for IPQoS-enabled networks, 32

I
ipgpc classifier

See classifier module
IPQoS, 17

configuration file, 53
configuration file syntax, 108
configuration planning, 31
diffserv model implementation, 23
error messages, 85
features, 18
ipqosconf utility, 82
man pages, 19
message logging, 83
network example, 48, 53
network topologies supported, 32, 33, 34
QoS policy planning, 35
related RFCs, 19
routers on an IPQoS network, 79
statistics generation, 93
traffic management capabilities, 21, 22
VLAN device support, 103

ipqosconf, 52
applying a configuration, 82, 83

116 IPQoS Administration Guide • September 2002

ipqosconf (Continued)
command options, 112
listing the current configuration, 83

K
kstat command, use with IPQoS, 93

M
man pages for IPQoS, 19
marker modules

See also dlcosmk marker
See also dscpmk marker
PHBs, for IP packet forwarding, 27
planning IP forwarding, in the QoS policy,

44
specifying a DS codepoint, 103
support for VLAN devices, 103

metering modules
See also tokenmt meter
See also tswtclmt meter
invoking, in the IPQoS configuration file,

76
outcomes of metering, 24, 98
planning, in the QoS policy, 42

N
network example for IPQoS, 53
network topologies for IPQoS, 32

configuration example, 48
LAN with IPQoS-enabled firewall, 34
LAN with IPQoS-enabled hosts, 33
LAN with IPQoS-enabled server farms, 33
preparing the topology, 37

P
params clause

defining global statistics, 56, 111
for a flowacct action, 64
for a marker action, 61
for a metering action, 76

params clause (Continued)
syntax, 111

per-hop behavior (PHB), 27
AF forwarding, 28
defining, in the IPQoS configuration file,

60, 78
EF forwarding, 28
using, with dscpmk marker, 101

Q
QoS policy, 20

creating classes, 38
creating filters, 40
implementing, in the IPQoS configuration

file, 51
planning for flow accounting, 47
planning for flow control, 42
planning for traffic forwarding, 44
planning task map, 36
template for policy organization, 35

quality of service (QoS)
QoS policy, 20
tasks, 17

R
requests for comments (RFCs) for IPQoS, 19
router in an IPQoS network

See diffserv-aware router

S
selectors, 24

IPQoS 5–tuple, 23
list of selectors, 96
planning, in the QoS policy, 40

service-level agreement (SLA), 20
billing clients, based on flow accounting,

90
classes of services, 23
implementation, in the QoS policy, 38
providing different classes of service, 22

statistics for IPQoS
enabling class-based statistics, 111

Index 117

statistics for IPQoS (Continued)
enabling global statistics, 57, 111
generating, through the kstat command,

93
syslog.conf file logging for IPQoS, 83

T
task maps for IPQoS

configuration file creation, 51
configuration planning, 31
flow-accounting setup, 89
IPQoS configuration and maintenance, 81
QoS policy planning, 36

tokenmt meter, 24
as a single-rate meter, 99
as a two rate-meter, 99
color-awareness configuration, 25, 99
metering rates, 98
rate parameters, 98

traffic conformance
defining outcomes, 76
defining rates, 76
outcomes, 24, 98
planning outcomes in the QoS policy, 43
planning rates in the QoS policy, 43
rate parameters, 98

traffic management
controlling flow, 24
forwarding traffic, 27, 28, 29
planning network topologies, 33
prioritizing traffic flows, 22
regulating bandwidth, 21

tswtclmt meter, 24, 100
metering rates, 100

U
user priority value, 25

V
virtual LAN (VLAN) devices on an IPQoS

network, 103

W
web servers

configuring for IPQoS, 53, 55, 56, 57, 58, 60,
62, 63, 65, 66, 68

118 IPQoS Administration Guide • September 2002

