
man pages section 9: DDI and DKI
Properties and Data Structures

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 816–5226–10
December 2002

Copyright 2002 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or service marks
of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2002 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, ou
marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des
marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques
SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

021017@4660

Contents

Preface 7

Introduction 13

Intro(9S) 14

Data Structures for Drivers 17

aio_req(9S) 18
buf(9S) 19
cb_ops(9S) 22
copyreq(9S) 24
copyresp(9S) 25
datab(9S) 26
ddi_device_acc_attr(9S) 27
ddi_dma_attr(9S) 31
ddi_dma_cookie(9S) 34
ddi_dmae_req(9S) 35
ddi_dma_lim_sparc(9S) 39
ddi_dma_lim_x86(9S) 41
ddi_dma_req(9S) 43
ddi-forceattach(9P) 46
ddi_idevice_cookie(9S) 47
ddi_mapdev_ctl(9S) 48
devmap_callback_ctl(9S) 49
dev_ops(9S) 51
fmodsw(9S) 52

3

free_rtn(9S) 53
gld_mac_info(9S) 54
gld_stats(9S) 57
inquiry-device-type(9P) 59
iocblk(9S) 60
iovec(9S) 61
kstat(9S) 62
kstat_intr(9S) 64
kstat_io(9S) 65
kstat_named(9S) 66
linkblk(9S) 67
modldrv(9S) 68
modlinkage(9S) 69
modlstrmod(9S) 70
module_info(9S) 71
msgb(9S) 72
no-involuntary-power-cycles(9P) 73
pm(9P) 75
pm-components(9P) 77
qband(9S) 80
qinit(9S) 81
queclass(9S) 82
queue(9S) 83
removable-media(9P) 84
scsi_address(9S) 85
scsi_arq_status(9S) 86
scsi_asc_key_strings(9S) 87
scsi_device(9S) 88
scsi_extended_sense(9S) 89
scsi_hba_tran(9S) 92
scsi_inquiry(9S) 94
scsi_pkt(9S) 97
scsi_status(9S) 101
streamtab(9S) 103
stroptions(9S) 104
tuple(9S) 106
uio(9S) 109

4 man pages section 9: DDI and DKI Properties and Data Structures • December 2002

Index 111

Contents 5

6 man pages section 9: DDI and DKI Properties and Data Structures • December 2002

Preface

Both novice users and those familar with the SunOS operating system can use online
man pages to obtain information about the system and its features. A man page is
intended to answer concisely the question “What does it do?” The man pages in
general comprise a reference manual. They are not intended to be a tutorial.

Overview
The following contains a brief description of each man page section and the
information it references:

� Section 1 describes, in alphabetical order, commands available with the operating
system.

� Section 1M describes, in alphabetical order, commands that are used chiefly for
system maintenance and administration purposes.

� Section 2 describes all of the system calls. Most of these calls have one or more
error returns. An error condition is indicated by an otherwise impossible returned
value.

� Section 3 describes functions found in various libraries, other than those functions
that directly invoke UNIX system primitives, which are described in Section 2.

� Section 4 outlines the formats of various files. The C structure declarations for the
file formats are given where applicable.

� Section 5 contains miscellaneous documentation such as character-set tables.
� Section 6 contains available games and demos.
� Section 7 describes various special files that refer to specific hardware peripherals

and device drivers. STREAMS software drivers, modules and the
STREAMS-generic set of system calls are also described.

7

� Section 9 provides reference information needed to write device drivers in the
kernel environment. It describes two device driver interface specifications: the
Device Driver Interface (DDI) and the Driver⁄Kernel Interface (DKI).

� Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point routines a
developer can include in a device driver.

� Section 9F describes the kernel functions available for use by device drivers.
� Section 9S describes the data structures used by drivers to share information

between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual section
generally follow this order, but include only needed headings. For example, if there
are no bugs to report, there is no BUGS section. See the intro pages for more
information and detail about each section, and man(1) for more information about man
pages in general.

NAME This section gives the names of the commands or
functions documented, followed by a brief
description of what they do.

SYNOPSIS This section shows the syntax of commands or
functions. When a command or file does not exist
in the standard path, its full path name is shown.
Options and arguments are alphabetized, with
single letter arguments first, and options with
arguments next, unless a different argument order
is required.

The following special characters are used in this
section:

[] Brackets. The option or argument
enclosed in these brackets is optional. If
the brackets are omitted, the argument
must be specified.

. . . Ellipses. Several values can be provided
for the previous argument, or the
previous argument can be specified
multiple times, for example, "filename
. . ." .

| Separator. Only one of the arguments
separated by this character can be
specified at a time.

{ } Braces. The options and/or arguments
enclosed within braces are
interdependent, such that everything
enclosed must be treated as a unit.

8 man pages section 9: DDI and DKI Properties and Data Structures • December 2002

PROTOCOL This section occurs only in subsection 3R to
indicate the protocol description file.

DESCRIPTION This section defines the functionality and behavior
of the service. Thus it describes concisely what the
command does. It does not discuss OPTIONS or
cite EXAMPLES. Interactive commands,
subcommands, requests, macros, and functions are
described under USAGE.

IOCTL This section appears on pages in Section 7 only.
Only the device class that supplies appropriate
parameters to the ioctl(2) system call is called
ioctl and generates its own heading. ioctl calls
for a specific device are listed alphabetically (on the
man page for that specific device). ioctl calls are
used for a particular class of devices all of which
have an io ending, such as mtio(7I).

OPTIONS This secton lists the command options with a
concise summary of what each option does. The
options are listed literally and in the order they
appear in the SYNOPSIS section. Possible
arguments to options are discussed under the
option, and where appropriate, default values are
supplied.

OPERANDS This section lists the command operands and
describes how they affect the actions of the
command.

OUTPUT This section describes the output – standard output,
standard error, or output files – generated by the
command.

RETURN VALUES If the man page documents functions that return
values, this section lists these values and describes
the conditions under which they are returned. If a
function can return only constant values, such as 0
or –1, these values are listed in tagged paragraphs.
Otherwise, a single paragraph describes the return
values of each function. Functions declared void do
not return values, so they are not discussed in
RETURN VALUES.

ERRORS On failure, most functions place an error code in
the global variable errno indicating why they
failed. This section lists alphabetically all error
codes a function can generate and describes the
conditions that cause each error. When more than

Preface 9

one condition can cause the same error, each
condition is described in a separate paragraph
under the error code.

USAGE This section lists special rules, features, and
commands that require in-depth explanations. The
subsections listed here are used to explain built-in
functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

EXAMPLES This section provides examples of usage or of how
to use a command or function. Wherever possible a
complete example including command-line entry
and machine response is shown. Whenever an
example is given, the prompt is shown as
example%, or if the user must be superuser,
example#. Examples are followed by explanations,
variable substitution rules, or returned values. Most
examples illustrate concepts from the SYNOPSIS,
DESCRIPTION, OPTIONS, and USAGE sections.

ENVIRONMENT VARIABLES This section lists any environment variables that
the command or function affects, followed by a
brief description of the effect.

EXIT STATUS This section lists the values the command returns to
the calling program or shell and the conditions that
cause these values to be returned. Usually, zero is
returned for successful completion, and values
other than zero for various error conditions.

FILES This section lists all file names referred to by the
man page, files of interest, and files created or
required by commands. Each is followed by a
descriptive summary or explanation.

ATTRIBUTES This section lists characteristics of commands,
utilities, and device drivers by defining the
attribute type and its corresponding value. See
attributes(5) for more information.

SEE ALSO This section lists references to other man pages,
in-house documentation, and outside publications.

10 man pages section 9: DDI and DKI Properties and Data Structures • December 2002

DIAGNOSTICS This section lists diagnostic messages with a brief
explanation of the condition causing the error.

WARNINGS This section lists warnings about special conditions
which could seriously affect your working
conditions. This is not a list of diagnostics.

NOTES This section lists additional information that does
not belong anywhere else on the page. It takes the
form of an aside to the user, covering points of
special interest. Critical information is never
covered here.

BUGS This section describes known bugs and, wherever
possible, suggests workarounds.

Preface 11

12 man pages section 9: DDI and DKI Properties and Data Structures • December 2002

Introduction

13

Intro – introduction to kernel data structures and properties

Section 9P describes kernel properties used by device drivers. Section 9S describes the
data structures used by drivers to share information between the driver and the
kernel. See Intro(9E) for an overview of device driver interfaces.

In Section 9S, reference pages contain the following headings:

� NAME summarizes the purpose of the structure or property.
� SYNOPSIS lists the include file that defines the structure or property.
� INTERFACE LEVEL describes any architecture dependencies.
� DESCRIPTION provides general information about the structure or property.
� STRUCTURE MEMBERS lists all accessible structure members (for Section 9S).
� SEE ALSO gives sources for further information.

Of the preceding headings, Section 9P reference pages contain the NAME,
DESCRIPTION, and SEE ALSO fields.

Every driver MUST include <sys/ddi.h> and <sys/sunddi.h>, in that order, and
as final entries.

The following table summarizes the STREAMS structures described in Section 9S.

Structure Type

copyreq DDI/DKI

copyresp DDI/DKI

datab DDI/DKI

fmodsw Solaris DDI

free_rtn DDI/DKI

iocblk DDI/DKI

linkblk DDI/DKI

module_info DDI/DKI

msgb DDI/DKI

qband DDI/DKI

qinit DDI/DKI

queclass Solaris DDI

queue DDI/DKI

streamtab DDI/DKI

stroptions DDI/DKI

Intro(9S)

NAME

DESCRIPTION

14 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 15 May 2001

The following table summarizes structures that are not specific to STREAMS I/O.

Structure Type

aio_req Solaris DDI

buf DDI/DKI

cb_ops Solaris DDI

ddi_device_acc_attr Solaris DDI

ddi_dma_attr Solaris DDI

ddi_dma_cookie Solaris DDI

ddi_dma_lim_sparc Solaris SPARC DDI

ddi_dma_lim_IA Solaris IA DDI

ddi_dma_req Solaris DDI

ddi_dmae_req Solaris IA DDI

ddi_idevice_cookie Solaris DDI

ddi_mapdev_ctl Solaris DDI

devmap_callback_ctl Solaris DDI

dev_ops Solaris DDI

iovec DDI/DKI

kstat Solaris DDI

kstat_intr Solaris DDI

kstat_io Solaris DDI

kstat_named Solaris DDI

map DDI/DKI

modldrv Solaris DDI

modlinkage Solaris DDI

modlstrmod Solaris DDI

scsi_address Solaris DDI

scsi_arq_status Solaris DDI

scsi_device Solaris DDI

scsi_extended_sense Solaris DDI

Intro(9S)

Introduction 15

Structure Type

scsi_hba_tran Solaris DDI

scsi_inquiry Solaris DDI

scsi_pkt Solaris DDI

scsi_status Solaris DDI

uio DDI/DKI

Intro(9E)

Do not declare arrays of structures as the size of the structures can change between
releases. Rely only on the structure members listed in this chapter and not on unlisted
members or the position of a member in a structure.

Intro(9S)

SEE ALSO

NOTES

16 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 15 May 2001

Data Structures for Drivers

17

aio_req – asynchronous I/O request structure

#include <sys/uio.h>
#include <sys/aio_req.h>
#include <sys/ddi.h>

#include <sys/sunddi.h>

Solaris DDI specific (Solaris DDI)

An aio_req structure describes an asynchronous I/O request.

struct uio*aio_uio; /* uio structure describing the I/O request */

The aio_uio member is a pointer to a uio(9S) structure, describing the I/O transfer
request.

aread(9E), awrite(9E), aphysio(9F), uio(9S)

aio_req(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

18 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 28 Mar 1997

buf – block I/O data transfer structure

#include <sys/ddi.h>

#include <sys/sunddi.h>

Architecture independent level 1 (DDI/DKI)

The buf structure is the basic data structure for block I/O transfers. Each block I/O
transfer has an associated buffer header. The header contains all the buffer control and
status information. For drivers, the buffer header pointer is the sole argument to a
block driver strategy(9E) routine. Do not depend on the size of the buf structure
when writing a driver.

A buffer header can be linked in multiple lists simultaneously. Because of this, most of
the members in the buffer header cannot be changed by the driver, even when the
buffer header is in one of the driver’s work lists.

Buffer headers are also used by the system for unbuffered or physical I/O for block
drivers. In this case, the buffer describes a portion of user data space that is locked into
memory.

Block drivers often chain block requests so that overall throughput for the device is
maximized. The av_forw and the av_back members of the buf structure can serve
as link pointers for chaining block requests.

int b_flags; /* Buffer status */
struct buf *av_forw; /* Driver work list link */
struct buf *av_back; /* Driver work list link */
size_t b_bcount; /* # of bytes to transfer */
union {

caddr_t b_addr; /* Buffer’s virtual address */
} b_un;
daddr_t b_blkno; /* Block number on device */
diskaddr_t b_lblkno; /* Expanded block number on device */
size_t b_resid; /* # of bytes not transferred */
size_t b_bufsize; /* size of allocated buffer */
int (*b_iodone)(struct buf *); /* function called */

/* by biodone */
int b_error; /* expanded error field */
void *b_private; /* "opaque" driver private area */
dev_t b_edev; /* expanded dev field */

The members of the buffer header available to test or set by a driver are as follows:

b_flags stores the buffer status and indicates to the driver whether to read or write
to the device. The driver must never clear the b_flags member. If this is done,
unpredictable results can occur including loss of disk sanity and the possible failure of
other kernel processes.

All b_flags bit values not otherwise specified above are reserved by the kernel and
may not be used.

Valid flags are as follows:

buf(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

Data Structures for Drivers 19

B_BUSY Indicates the buffer is in use. The driver must not change this flag
unless it allocated the buffer with getrbuf(9F) and no I/O
operation is in progress.

B_DONE Indicates the data transfer has completed. This flag is read-only.

B_ERROR Indicates an I/O transfer error. It is set in conjunction with the
b_error field. bioerror(9F) should be used in preference to
setting the B_ERROR bit.

B_PAGEIO Indicates the buffer is being used in a paged I/O request. See the
description of the b_un.b_addr field for more information. This
flag is read-only.

B_PHYS indicates the buffer header is being used for physical (direct) I/O
to a user data area. See the description of the b_un.b_addr field
for more information. This flag is read-only.

B_READ Indicates that data is to be read from the peripheral device into
main memory.

B_WRITE Indicates that the data is to be transferred from main memory to
the peripheral device. B_WRITE is a pseudo flag and cannot be
directly tested; it is only detected as the NOT form of B_READ.

av_forw and av_back can be used by the driver to link the buffer into driver work
lists.

b_bcount specifies the number of bytes to be transferred in both a paged and a
non-paged I/O request.

b_un.b_addr is the virtual address of the I/O request, unless B_PAGEIO is set. The
address is a kernel virtual address, unless B_PHYS is set, in which case it is a user
virtual address. If B_PAGEIO is set, b_un.b_addr contains kernel private data. Note
that either one of B_PHYS and B_PAGEIO, or neither, can be set, but not both.

b_blkno identifies which logical block on the device (the device is defined by the
device number) is to be accessed. The driver might have to convert this logical block
number to a physical location such as a cylinder, track, and sector of a disk. This is a
32-bit value. The driver should use b_blkno or b_lblkno, but not both.

b_lblkno identifies which logical block on the device (the device is defined by the
device number) is to be accessed. The driver might have to convert this logical block
number to a physical location such as a cylinder, track, and sector of a disk. This is a
64-bit value. The driver should use b_lblkno or b_blkno, but not both.

b_resid should be set to the number of bytes not transferred because of an error.

b_bufsize contains the size of the allocated buffer.

b_iodone identifies a specific biodone routine to be called by the driver when the
I/O is complete.

buf(9S)

20 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 19 Sep 2002

b_error can hold an error code that should be passed as a return code from the
driver. b_error is set in conjunction with the B_ERROR bit set in the b_flags
member. bioerror(9F) should be used in preference to setting the b_error field.

b_private is for the private use of the device driver.

b_edev contains the major and minor device numbers of the device accessed.

strategy(9E), aphysio(9F), bioclone(9F), biodone(9F), bioerror(9F),
bioinit(9F), clrbuf(9F), getrbuf(9F), physio(9F), iovec(9S), uio(9S)

Writing Device Drivers

Buffers are a shared resource within the kernel. Drivers should read or write only the
members listed in this section. Drivers that attempt to use undocumented members of
the buf structure risk corrupting data in the kernel or on the device.

buf(9S)

SEE ALSO

WARNINGS

Data Structures for Drivers 21

cb_ops – character/block entry points structure

#include <sys/conf.h>
#include <sys/ddi.h>

#include <sys/sunddi.h>

Solaris DDI specific (Solaris DDI)

cb_ops contains all entry points for drivers that support both character and block
entry points. All leaf device drivers supporting direct user process access to a device
should declare a cb_ops structure.

All drivers that safely allow multiple threads of execution in the driver at the same
time must set the D_MP flag in the cb_flag field.

If the driver properly handles 64-bit offsets, it should also set the D_64BIT flag in the
cb_flag field. This specifies that the driver will use the uio_loffset field of the
uio(9S) structure.

mt-streams(9F) describes other flags that can be set in the cb_flag field.

cb_rev is the cb_ops structure revision number. This field must be set to CB_REV.

Non-STREAMS drivers should set cb_str to NULL.

The following DDI/DKI or DKI-only or DDI-only functions are provided in the
character/block driver operations structure.

block/char Function Description

b/c XXopen DDI/DKI

b/c XXclose DDI/DKI

b XXstrategy DDI/DKI

b XXprint DDI/DKI

b XXdump DDI(Sun)

c XXread DDI/DKI

c XXwrite DDI/DKI

c XXioctl DDI/DKI

c XXdevmap DDI(Sun)

c XXmmap DKI

c XXsegmap DKI

c XXchpoll DDI/DKI

cb_ops(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

22 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 30 Sep 1996

block/char Function Description

c XXprop_op DDI(Sun)

c XXaread DDI(Sun)

c XXawrite DDI(Sun)

int (*cb_open)(dev_t *devp, int flag, int otyp, cred_t *credp);
int (*cb_close)(dev_t dev, int flag, int otyp, cred_t *credp);
int (*cb_strategy)(struct buf *bp);int(*cb_print)(dev_t dev, char *str);
int (*cb_print)(dev_t dev, char *str);
int (*cb_dump)(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
int (*cb_read)(dev_t dev, struct uio *uiop, cred_t *credp);
int (*cb_write)(dev_t dev, struct uio *uiop, cred_t *credp);
int (*cb_ioctl)(dev_t dev, int cmd, intptr_t arg, int mode,

cred_t *credp, int *rvalp);
int (*cb_devmap)(dev_t dev, devmap_cookie_t dhp, offset_t off,

size_t len, size_t *maplen, uint_t model);
int (*cb_mmap)(dev_t dev, off_t off, int prot);
int (*cb_segmap)(dev_t dev, off_t off, struct as *asp,

caddr_t *addrp, off_t len, unsigned int prot,
unsigned int maxprot, unsigned int flags, cred_t *credp);

int (*cb_chpoll)(dev_t dev, short events, int anyyet,
short *reventsp, struct pollhead **phpp);

int (*cb_prop_op)(dev_t dev, dev_info_t *dip,
ddi_prop_op_t prop_op, int mod_flags,
char *name, caddr_t valuep, int *length);

struct streamtab *cb_str; /* streams information */
int cb_flag;intcb_rev;
int (*cb_aread)(dev_t dev, struct aio_req *aio, cred_t *credp);
int (*cb_awrite)(dev_t dev, struct aio_req *aio, cred_t *credp);

aread(9E), awrite(9E), chpoll(9E), close(9E), dump(9E), ioctl(9E), mmap(9E),
open(9E), print(9E), prop_op(9E), read(9E), segmap(9E), strategy(9E),
write(9E), nochpoll(9F), nodev(9F), nulldev(9F), dev_ops(9S), qinit(9S)

Writing Device Drivers

STREAMS Programming Guide

cb_ops(9S)

STRUCTURE
MEMBERS

SEE ALSO

Data Structures for Drivers 23

copyreq – STREAMS data structure for the M_COPYIN and the M_COPYOUT
message types

#include <sys/stream.h>

Architecture independent level 1 (DDI/DKI)

The data structure for the M_COPYIN and the M_COPYOUT message types.

int cq_cmd; /* ioctl command (from ioc_cmd) */
cred_t *cq_cr; /* full credentials */
uint_t cq_id; /* ioctl id (from ioc_id) */
uint_t cq_flag; /* must be zero */
mblk_t *cq_private; /* private state information */
caddr_t cq_addr; /* address to copy data to/from */
size_t cq_size; /* number of bytes to copy */

STREAMS Programming Guide

copyreq(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

24 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 6 October 2000

copyresp – STREAMS data structure for the M_IOCDATA message type

#include <sys/stream.h>

Architecture independent level 1 (DDI/DKI)

The data structure copyresp is used with the M_IOCDATA message type.

int cp_cmd; /* ioctl command (from ioc_cmd) */
cred_t *cp_cr; /* full credentials */
uint_t cp_id; /* ioctl id (from ioc_id) */
uint_t cp_flag; /* ioctl flags */
mblk_t *cp_private; /* private state information */
caddr_t cp_rval; /* status of request: 0 -> success;

/* non-zero -> failure */

STREAMS Programming Guide

copyresp(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

Data Structures for Drivers 25

datab – STREAMS message data structure

#include <sys/stream.h>

Architecture independent level 1 (DDI/DKI).

The datab structure describes the data of a STREAMS message. The actual data
contained in a STREAMS message is stored in a data buffer pointed to by this
structure. A msgb (message block) structure includes a field that points to a datab
structure.

Because a data block can have more than one message block pointing to it at one time,
the db_ref member keeps track of a data block’s references, preventing it from being
deallocated until all message blocks are finished with it.

unsigned char *db_base; /* first byte of buffer */
unsigned char *db_lim; /* last byte (+1) of buffer */
dbref_t db_ref; /* # of message pointers to this data */
unsigned char db_type; /* message type */

A datab structure is defined as type dblk_t.

free_rtn(9S), msgb(9S)

Writing Device Drivers

STREAMS Programming Guide

datab(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

26 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 18 Feb 1998

ddi_device_acc_attr – data access attributes structure

#include <sys/ddi.h>

#include <sys/sunddi.h>

Solaris DDI specific (Solaris DDI).

The ddi_device_acc_attr structure describes the data access characteristics and
requirements of the device.

ushort_t devacc_attr_version;
uchar_t devacc_attr_endian_flags;
uchar_t devacc_attr_dataorder;

The devacc_attr_version member identifies the version number of this structure.
The current version number is DDI_DEVICE_ATTR_V0.

The devacc_attr_endian_flags member describes the endian characteristics of
the device. Specify one of the following values:

DDI_NEVERSWAP_ACC Data access with no byte swapping

DDI_STRUCTURE_BE_ACC Structural data access in big-endian format

DDI_STRUCTURE_LE_ACC Structural data access in little endian format

DDI_STRUCTURE_BE_ACC and DDI_STRUCTURE_LE_ACC describes the endian
characteristics of the device as big-endian or little-endian, respectively. Though most
of the devices will have the same endian characteristics as their buses, examples of
devices that have opposite endian characteristics of the buses do exist. When
DDI_STRUCTURE_BE_ACC or DDI_STRUCTURE_LE_ACC is set, byte swapping is
automatically performed by the system if the host machine and the device data
formats have opposite endian characteristics. The implementation can take advantage
of hardware platform byte swapping capabilities.

When you specify DDI_NEVERSWAP_ACC, byte swapping is not invoked in the data
access functions.

The devacc_attr_dataorder member describes order in which the CPU will
reference data. Specify one of the following values.

DDI_STRICTORDER_ACC The data references must be issued by a
CPU in program order. Strict ordering is the
default behavior.

DDI_UNORDERED_OK_ACC The CPU can re-order the data references.
This includes all kinds of re-ordering. For
example, a load followed by a store may be
replaced by a store followed by a load.

DDI_MERGING_OK_ACC The CPU can merge individual stores to
consecutive locations. For example, the CPU
can turn two consecutive byte stores into

ddi_device_acc_attr(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

Data Structures for Drivers 27

one halfword store. It can also batch
individual loads. For example, the CPU
might turn two consecutive byte loads into
one halfword load. DDI_MERGING_OK_ACC
also implies re-ordering.

DDI_LOADCACHING_OK_ACC The CPU can cache the data it fetches and
reuse it until another store occurs. The
default behavior is to fetch new data on
every load. DDI_LOADCACHING_OK_ACC
also implies merging and re-ordering.

DDI_STORECACHING_OK_ACC The CPU can keep the data in the cache and
push it to the device (perhaps with other
data) at a later time. The default behavior is
to push the data right away.
DDI_STORECACHING_OK_ACC also implies
load caching, merging, and re-ordering.

These values are advisory, not mandatory. For example, data can be ordered without
being merged or cached, even though a driver requests unordered, merged, and
cached together.

The following examples illustrate the use of device register address mapping setup
functions and different data access functions.

EXAMPLE 1 Using ddi_device_acc_attr() in ddi_regs_map_setup(9F)

This example demonstrates the use of the ddi_device_acc_attr() structure in
ddi_regs_map_setup(9F). It also shows the use of ddi_getw(9F) and
ddi_putw(9F) functions in accessing the register contents.

dev_info_t *dip;
uint_t rnumber;
ushort_t *dev_addr;
offset_t offset;
offset_t len;
ushort_t dev_command;
ddi_device_acc_attr_t dev_attr;
ddi_acc_handle_t handle;

. . .

/*
* setup the device attribute structure for little endian,
* strict ordering and 16-bit word access.
*/
dev_attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
dev_attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC;
dev_attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;

/*
* set up the device registers address mapping

ddi_device_acc_attr(9S)

EXAMPLES

28 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 27 Oct 1994

EXAMPLE 1 Using ddi_device_acc_attr() in ddi_regs_map_setup(9F)
(Continued)

*/
ddi_regs_map_setup(dip, rnumber, (caddr_t *)&dev_addr, offset, len,

&dev_attr, &handle);

/* read a 16-bit word command register from the device */
dev_command = ddi_getw(handle, dev_addr);

dev_command |= DEV_INTR_ENABLE;
/* store a new value back to the device command register */
ddi_putw(handle, dev_addr, dev_command);

EXAMPLE 2 Accessing a Device with Different Apertures

The following example illustrates the steps used to access a device with different
apertures. Several apertures are assumed to be grouped under one single "reg" entry.
For example, the sample device has four different apertures, each 32 Kbyte in size. The
apertures represent YUV little-endian, YUV big-endian, RGB little-endian, and RGB
big-endian. This sample device uses entry 1 of the "reg" property list for this purpose.
The size of the address space is 128 Kbyte with each 32 Kbyte range as a separate
aperture. In the register mapping setup function, the sample driver uses the offset and
len parameters to specify one of the apertures.

ulong_t *dev_addr;
ddi_device_acc_attr_t dev_attr;
ddi_acc_handle_t handle;
uchar_t buf[256];

. . .

/*
* setup the device attribute structure for never swap,
* unordered and 32-bit word access.
*/
dev_attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
dev_attr.devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
dev_attr.devacc_attr_dataorder = DDI_UNORDERED_OK_ACC;

/*
* map in the RGB big-endian aperture
* while running in a big endian machine
* - offset 96K and len 32K
*/
ddi_regs_map_setup(dip, 1, (caddr_t *)&dev_addr, 96*1024, 32*1024,

&dev_attr, &handle);

/*
* Write to the screen buffer
* first 1K bytes words, each size 4 bytes
*/
ddi_rep_putl(handle, buf, dev_addr, 256, DDI_DEV_AUTOINCR);

ddi_device_acc_attr(9S)

Data Structures for Drivers 29

EXAMPLE 2 Accessing a Device with Different Apertures (Continued)

EXAMPLE 3 Functions That Call Out the Data Word Size

The following example illustrates the use of the functions that explicitly call out the
data word size to override the data size in the device attribute structure.

struct device_blk {
ushort_t d_command; /* command register */
ushort_t d_status; /* status register */
ulong d_data; /* data register */

} *dev_blkp;
dev_info_t *dip;
caddr_t dev_addr;
ddi_device_acc_attr_t dev_attr;
ddi_acc_handle_t handle;
uchar_t buf[256];

. . .

/*
* setup the device attribute structure for never swap,
* strict ordering and 32-bit word access.
*/
dev_attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
dev_attr.devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
dev_attr.devacc_attr_dataorder= DDI_STRICTORDER_ACC;

ddi_regs_map_setup(dip, 1, (caddr_t *)&dev_blkp, 0, 0,
&dev_attr, &handle);

/* write command to the 16-bit command register */
ddi_putw(handle, &dev_blkp->d_command, START_XFER);

/* Read the 16-bit status register */
status = ddi_getw(handle, &dev_blkp->d_status);

if (status & DATA_READY)
/* Read 1K bytes off the 32-bit data register */
ddi_rep_getl(handle, buf, &dev_blkp->d_data,

256, DDI_DEV_NO_AUTOINCR);

ddi_getw(9F), ddi_putw(9F), ddi_regs_map_setup(9F)

Writing Device Drivers

ddi_device_acc_attr(9S)

SEE ALSO

30 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 27 Oct 1994

ddi_dma_attr – DMA attributes structure

#include <sys/ddidmareq.h>

Solaris DDI specific (Solaris DDI).

A ddi_dma_attr_t structure describes device– and DMA engine-specific attributes
necessary to allocate DMA resources for a device. The driver might have to extend the
attributes with bus-specific information, depending on the bus to which the device is
connected.

uint_t dma_attr_version; /* version number */
uint64_t dma_attr_addr_lo; /* low DMA address range */
uint64_t dma_attr_addr_hi; /* high DMA address range */
uint64_t dma_attr_count_max; /* DMA counter register */
uint64_t dma_attr_align; /* DMA address alignment */
uint_t dma_attr_burstsizes; /* DMA burstsizes */
uint32_t dma_attr_minxfer; /* min effective DMA size */
uint64_t dma_attr_maxxfer; /* max DMA xfer size */
uint64_t dma_attr_seg; /* segment boundary */
int dma_attr_sgllen; /* s/g list length */
uint32_t dma_attr_granular; /* granularity of device */
uint_t dma_attr_flags; /* DMA transfer flags */

dma_attr_version stores the version number of this DMA attribute structure. It
should be set to DMA_ATTR_V0.

The dma_attr_addr_lo and dma_attr_addr_hi fields specify the address range
the device’s DMA engine can access. The dma_attr_addr_lo field describes the
inclusive lower 64–bit boundary. The dma_attr_addr_hi describes the inclusive
upper 64–bit boundary. The system ensures that allocated DMA resources are within
the range specified. See ddi_dma_cookie(9S).

The dma_attr_count_max describes an inclusive upper bound for the device’s
DMA counter register. For example, 0xFFFFFF would describe a DMA engine with a
24–bit counter register. DMA resource allocation functions have to break up a DMA
object into multiple DMA cookies if the size of the object exceeds the size of the DMA
counter register.

The dma_attr_align specifies alignment requirements for allocated DMA resources.
This field can be used to force more restrictive alignment than imposed by
dma_attr_burstsizes or dma_attr_minxfer, such as alignment at a page
boundary. Most drivers set this field to 1, indicating byte alignment.

Note that dma_attr_align only specifies alignment requirements for allocated
DMA resources. The buffer passed to ddi_dma_addr_bind_handle(9F) or
ddi_dma_buf_bind_handle(9F) must have an equally restrictive alignment (see
ddi_dma_mem_alloc(9F)).

ddi_dma_attr(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

Data Structures for Drivers 31

The dma_attr_burstsizes field describes the possible burst sizes the device’s
DMA engine can accept. The format of the data sizes is binary encoded in terms of
powers of two. When DMA resources are allocated, the system can modify the
burstsizes value to reflect the system limits. The driver must use the allowable
burstsizes to program the DMA engine. See ddi_dma_burstsizes(9F).

The dma_attr_minxfer field describes the minimum effective DMA access size in
units of bytes. DMA resources can be modified, depending on the presence and use of
I/O caches and write buffers between the DMA engine and the memory object. This
field is used to determine alignment and padding requirements for
ddi_dma_mem_alloc(9F).

The dma_attr_maxxfer field describes the maximum effective DMA access size in
units of bytes.

The dma_attr_seg field specifies segment boundary restrictions for allocated DMA
resources. The system allocates DMA resources for the device so that the object does
not span the segment boundary specified by dma_attr_seg. For example, a value of
0xFFFF means DMA resources must not cross a 64 Kbyte boundary. DMA resource
allocation functions might have to break up a DMA object into multiple DMA cookies
to enforce segment boundary restrictions. In this case, the transfer must be performed
using scatter-gather I/O or multiple DMA windows.

The dma_attr_sgllen field describes the length of the device’s DMA scatter/gather
list. Possible values are as follows:

< 0 Device DMA engine is not constrained by the size, for example, withDMA
chaining.

= 0 Reserved.

= 1 Device DMA engine does not support scatter/gather such as third party
DMA.

> 1 Device DMA engine uses scatter/gather. dma_attr_sgllen is the
maximum number of entries in the list.

The dma_attr_granular field describes the granularity of the device transfer size,
in units of bytes. When the system allocates DMA resources, a single segment’s size is
a multiple of the device granularity. Or if dma_attr_sgllen is larger than 1 within a
window, the sum of the sizes for a subgroup of segments is a multiple of the device
granularity.

Note that all driver requests for DMA resources must be a multiple of the granularity
of the device transfer size.

The dma_attr_flags field can be set to:

DDI_DMA_FORCE_PHYSICAL
Some platforms, such as SPARC systems, support what is called Direct Virtual
Memory Access (DVMA). On these platforms, the device is provided with a virtual

ddi_dma_attr(9S)

32 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 26 Sep 1996

address by the system in order to perform the transfer. In this case, the underlying
platform provides an IOMMU, which translates accesses to these virtual addresses
into the proper physical addresses. Some of these platforms also support DMA.
DDI_DMA_FORCE_PHYSICAL indicates that the system should return physical
rather than virtual I/O addresses if the system supports both. If the system does
not support physical DMA, the return value from ddi_dma_alloc_handle(9F)
will be DDI_DMA_BADATTR. In this case, the driver has to clear
DDI_DMA_FORCE_PHYSICAL and retry the operation.

EXAMPLE 1 Initializing the ddi_dma_attr_t Structure

Assume a device has the following DMA characteristics:

� Full 32-bit range addressable
� 24-bit DMA counter register
� Byte alignment
� 4– and 8-byte burst sizes support
� Minimum effective transfer size of 1 bytes
� 64 Mbyte maximum transfer size limit
� Maximum segment size of 32 Kbyte
� 17 scatter/gather list elements
� 512–byte device transfer size granularity

The corresponding ddi_dma_attr_t structure is initialized as follows:

static ddi_dma_attr_t dma_attrs = {
DMA_ATTR_V0 /* version number */
(uint64_t)0x0, /* low address */
(uint64_t)0xffffffff, /* high address */
(uint64_t)0xffffff, /* DMA counter max */
(uint64_t)0x1 /* alignment */
0x0c, /* burst sizes */
0x1, /* minimum transfer size */
(uint64_t)0x3ffffff, /* maximum transfer size */
(uint64_t)0x7fff, /* maximum segment size */
17, /* scatter/gather list lgth */
512 /* granularity */
0 /* DMA flags */

};

ddi_dma_addr_bind_handle(9F), ddi_dma_alloc_handle(9F),
ddi_dma_buf_bind_handle(9F), ddi_dma_burstsizes(9F),
ddi_dma_mem_alloc(9F), ddi_dma_nextcookie(9F), ddi_dma_cookie(9S)

Writing Device Drivers

ddi_dma_attr(9S)

EXAMPLES

SEE ALSO

Data Structures for Drivers 33

ddi_dma_cookie – DMA address cookie

#include <sys/sunddi.h>

Solaris DDI specific (Solaris DDI).

The ddi_dma_cookie_t structure contains DMA address information required to
program a DMA engine. The structure is filled in by a call to ddi_dma_getwin(9F),
ddi_dma_addr_bind_handle(9F), or ddi_dma_buf_bind_handle(9F), to get
device-specific DMA transfer information for a DMA request or a DMA window.

typedef struct {
union {

uint64_t _dmac_ll; /* 64 bit DMA address */
uint32_t _dmac_la[2]; /* 2 x 32 bit address */

} _dmu;
size_t dmac_size; /* DMA cookie size */
uint_t dmac_type; /* bus specific type bits */

} ddi_dma_cookie_t;

You can access the DMA address through the #defines: dmac_address for 32-bit
addresses and dmac_laddress for 64-bit addresses. These macros are defined as
follows:

#define dmac_laddress _dmu._dmac_ll
#ifdef _LONG_LONG_HTOL
#define dmac_notused _dmu._dmac_la[0]
#define dmac_address _dmu._dmac_la[1]
#else
#define dmac_address _dmu._dmac_la[0]
#define dmac_notused _dmu._dmac_la[1]
#endif

dmac_laddress specifies a 64-bit I/O address appropriate for programming the
device’s DMA engine. If a device has a 64-bit DMA address register a driver should
use this field to program the DMA engine. dmac_address specifies a 32-bit I/O
address. It should be used for devices that have a 32-bit DMA address register. The
I/O address range that the device can address and other DMA attributes have to be
specified in a ddi_dma_attr(9S) structure.

dmac_size describes the length of the transfer in bytes.

dmac_type contains bus-specific type bits, if appropriate. For example, a device on a
PCI bus has PCI address modifier bits placed here.

pci(4), sbus(4), sysbus(4), ddi_dma_addr_bind_handle(9F),
ddi_dma_buf_bind_handle(9F), ddi_dma_getwin(9F),
ddi_dma_nextcookie(9F), ddi_dma_attr(9S)

Writing Device Drivers

ddi_dma_cookie(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

34 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 30 Sep 1996

ddi_dmae_req – DMA engine request structure

#include <sys/dma_engine.h>

Solaris IA DDI specific (Solaris IA DDI).

A device driver uses the ddi_dmae_req structure to describe the parameters for a
DMA channel. This structure contains all the information necessary to set up the
channel, except for the DMA memory address and transfer count. The defaults, as
specified below, support most standard devices. Other modes might be desirable for
some devices, or to increase performance. The DMA engine request structure is passed
to ddi_dmae_prog(9F).

The ddi_dmae_req structure contains several members, each of which controls some
aspect of DMA engine operation. The structure members associated with supported
DMA engine options are described here.

uchar_tder_command; /* Read / Write *
/uchar_tder_bufprocess; /* Standard / Chain */
uchar_tder_path; /* 8 / 16 / 32 */
uchar_tder_cycles; /* Compat / Type A / Type B / Burst */
uchar_tder_trans; /* Single / Demand / Block */
ddi_dma_cookie_t*(*proc)(); /* address of nextcookie routine */
void*procparms; /* parameter for nextcookie call */

der_command
Specifies what DMA operation is to be performed. The value DMAE_CMD_WRITE
signifies that data is to be transferred from memory to the I/O device. The value
DMAE_CMD_READ signifies that data is to be transferred from the I/O device to
memory. This field must be set by the driver before calling ddi_dmae_prog().

der_bufprocess
On some bus types, a driver can set der_bufprocess to the value
DMAE_BUF_CHAIN to specify that multiple DMA cookies will be given to the DMA
engine for a single I/O transfer. This action causes a scatter/gather operation. In
this mode of operation, the driver calls ddi_dmae_prog() to give the DMA
engine the DMA engine request structure and a pointer to the first cookie. The
proc structure member must be set to the address of a driver nextcookie routine.
This routine takes one argument, specified by the procparms structure member,
and returns a pointer to a structure of type ddi_dma_cookie_t that specifies the
next cookie for the I/O transfer. When the DMA engine is ready to receive an
additional cookie, the bus nexus driver controlling that DMA engine calls the
routine specified by the proc structure member to obtain the next cookie from the
driver. The driver’s nextcookie routine must then return the address of the next
cookie (in static storage) to the bus nexus routine that called it. If there are no more
segments in the current DMA window, then (*proc)() must return the NULL
pointer.

A driver can specify the DMAE_BUF_CHAIN flag only if the particular bus
architecture supports the use of multiple DMA cookies in a single I/O transfer. A
bus DMA engine can support this feature either with a fixed-length scatter/gather
list, or by an interrupt chaining feature such as the one implemented in the EISA

ddi_dmae_req(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

Data Structures for Drivers 35

architecture. A driver must determine whether its parent bus nexus supports this
feature by examining the scatter/gather list size returned in the dlim_sgllen
member of the DMA limit structure returned by the driver’s call to
ddi_dmae_getlim(). (See ddi_dma_lim_IA(9S).) If the size of the
scatter/gather list is 1, then no chaining is available. The driver must not specify
the DMAE_BUF_CHAIN flag in the ddi_dmae_req structure it passes to
ddi_dmae_prog(), and the driver need not provide a nextcookie routine.

If the size of the scatter/gather list is greater than 1, then DMA chaining is
available, and the driver has two options. Under the first option, the driver chooses
not to use the chaining feature. In this case (a) the driver must set the size of the
scatter/gather list to 1 before passing it to the DMA setup routine, and (b) the
driver must not set the DMAE_BUF_CHAIN flag.

Under the second option, the driver chooses to use the chaining feature, in which
case, (a) it should leave the size of the scatter/gather list alone, and (b) it must set
the DMAE_BUF_CHAIN flag in the ddi_dmae_req structure. Before calling
ddi_dmae_prog(), the driver must prefetch cookies by repeatedly calling
ddi_dma_nextseg(9F) and ddi_dma_segtocookie(9F) until either (1) the end
of the DMA window is reached (ddi_dma_nextseg(9F) returns NULL), or (2) the
size of the scatter/gather list is reached, whichever occurs first. These cookies must
be saved by the driver until they are requested by the nexus driver calling the
driver’s nextcookie routine. The driver’s nextcookie routine must return the
prefetched cookies in order, one cookie for each call to the nextcookie routine,
until the list of prefetched cookies is exhausted. After the end of the list of cookies is
reached, the nextcookie routine must return the NULL pointer.

The size of the scatter/gather list determines how many discontiguous segments of
physical memory can participate in a single DMA transfer. ISA bus DMA engines
have no scatter/gather capability, so their scatter/gather list sizes are 1. EISA bus
DMA engines have a DMA chaining interrupt facility that allows very large
scatter/gather operations. Other finite scatter/gather list sizes would also be
possible. For performance reasons, drivers should use the chaining capability if it is
available on their parent bus.

As described above, a driver making use of DMA chaining must prefetch DMA
cookies before calling ddi_dmae_prog(). The reasons for this are:

� First, the driver must have some way to know the total I/O count with which to
program the I/O device. This I/O count must match the total size of all the
DMA segments that will be chained together into one DMA operation.
Depending on the size of the scatter/gather list and the memory position and
alignment of the DMA object, all or just part of the current DMA window might
be able to participate in a single I/O operation. The driver must compute the
I/O count by adding up the sizes of the prefetched DMA cookies. The number
of cookies whose sizes are to be summed is the lesser of (a) the size of the
scatter/gather list, or (b) the number of segments remaining in the window.

ddi_dmae_req(9S)

36 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 1 Jan 1997

� Second, on some bus architectures, the driver’s nextcookie routine can be
called from a high-level interrupt routine. If the cookies were not prefetched, the
nextcookie routine would have to call ddi_dma_nextseg() and
ddi_dma_segtocookie() from a high-level interrupt routine, which is not
recommended.

When breaking a DMA window into segments, the system arranges for the end of
every segment whose number is an integral multiple of the scatter/gather list size
to fall on a device-granularity boundary, as specified in the dlim_granular field
in the ddi_dma_lim_IA(9S) structure.

If the scatter/gather list size is 1 (either because no chaining is available or because
the driver does not want to use the chaining feature), then the total I/O count for a
single DMA operation is the size of DMA segment denoted by the single DMA
cookie that is passed in the call to ddi_dmae_prog(). In this case, the system
arranges for each DMA segment to be a multiple of the device-granularity size.

der_path
Specifies the DMA transfer size. The default of zero (DMAE_PATH_DEF) specifies
ISA compatibility mode. In that mode, channels 0, 1, 2, and 3 are programmed in
8-bit mode (DMAE_PATH_8), and channels 5, 6, and 7 are programmed in 16-bit,
count-by-word mode (DMAE_PATH_16). On the EISA bus, other sizes can be
specified: DMAE_PATH_32 specifies 32-bit mode, and DMAE_PATH_16B specifies a
16-bit, count-by-byte mode.

der_cycles
Specifies the timing mode to be used during DMA data transfers. The default of
zero (DMAE_CYCLES_1) specifies ISA compatible timing. Drivers using this mode
must also specify DMAE_TRANS_SNGL in the der_trans structure member. On
EISA buses, these other timing modes are available:

DMAE_CYCLES_2 Specifies type ‘‘A’’ timing;

DMAE_CYCLES_3 Specifies type ‘‘B’’ timing;

DMAE_CYCLES_4 Specifies ‘‘Burst’’ timing.

der_trans
Specifies the bus transfer mode that the DMA engine should expect from the
device. The default value of zero (DMAE_TRANS_SNGL) specifies that the device
performs one transfer for each bus arbitration cycle. Devices that use ISA
compatible timing (specified by a value of zero, which is the default, in the
der_cycles structure member) should use the DMAE_TRANS_SNGL mode. On
EISA buses, a der_trans value of DMAE_TRANS_BLCK specifies that the device
perform a block of transfers for each arbitration cycle. A value of
DMAE_TRANS_DMND specifies that the device perform the Demand Transfer Mode
protocol.

See attributes(5) for descriptions of the following attributes:

ddi_dmae_req(9S)

ATTRIBUTES

Data Structures for Drivers 37

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

eisa(4), isa(4), attributes(5), ddi_dma_segtocookie(9F), ddi_dmae(9F),
ddi_dma_lim_IA(9S), ddi_dma_req(9S)

ddi_dmae_req(9S)

SEE ALSO

38 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 1 Jan 1997

ddi_dma_lim_sparc, ddi_dma_lim – SPARC DMA limits structure

#include <sys/ddidmareq.h>

Solaris SPARC DDI specific (Solaris SPARC DDI).

This page describes the SPARC version of the ddi_dma_lim structure. See
ddi_dma_lim_x86(9S) for a description of the Intel version of this structure.

A ddi_dma_lim structure describes in a generic fashion the possible limitations of a
device’s DMA engine. This information is used by the system when it attempts to set
up DMA resources for a device.

uint_t dlim_addr_lo; /* low range of 32 bit addressing capability */
uint_t dlim_addr_hi; /* inclusive upper bound of addressing */

/* capability */
uint_t dlim_cntr_max; /* inclusive upper bound of dma engine’s */

/* address limit * /
uint_t dlim_burstsizes; /* binary encoded dma burst sizes */
uint_t dlim_minxfer; /* minimum effective dma transfer size */
uint_t dlim_dmaspeed; /* average dma data rate (kb/s) */

The dlim_addr_lo and dlim_addr_hi fields specify the address range the device’s
DMA engine can access. The dlim_addr_lo field describes the lower 32–bit
boundary of the device’s DMA engine, the dlim_addr_hi describes the inclusive
upper 32–bit boundary. The system allocates DMA resources in a way that the address
for programming the device’s DMA engine (see ddi_dma_cookie(9S) or
ddi_dma_htoc(9F)) is within this range. For example, if your device can access the
whole 32–bit address range, you may use [0,0xFFFFFFFF]. If your device has just a
16–bit address register but will access the top of the 32–bit address range, then
[0xFFFF0000,0xFFFFFFFF] is the right limit.

The dlim_cntr_max field describes an inclusive upper bound for the device’s DMA
engine address register. This handles a fairly common case where a portion of the
address register is only a latch rather than a full register. For example, the upper 8 bits
of a 32–bit address register can be a latch. This splits the address register into a portion
that acts as a true address register (24 bits) for a 16 Mbyte segment and a latch (8 bits)
to hold a segment number. To describe these limits, specify 0xFFFFFF in the
dlim_cntr_max structure.

The dlim_burstsizes field describes the possible burst sizes the device’s DMA
engine can accept. At the time of a DMA resource request, this element defines the
possible DMA burst cycle sizes that the requester’s DMA engine can handle. The
format of the data is binary encoding of burst sizes assumed to be powers of two. That
is, if a DMAengine is capable of doing 1–, 2–, 4–, and 16–byte transfers, the encoding
ix 0x17. If the device is an SBus device and can take advantage of a 64–bit SBus, the
lower 16 bits are used to specify the burst size for 32–bit transfers and the upper 16
bits are used to specify the burst size for 64–bit transfers. As the resource request is
handled by the system, the burstsizes value can be modified. Prior to enabling
DMA for the specific device, the driver that owns the DMA engine should check
(using ddi_dma_burstsizes(9F)) what the allowed burstsizes have become and
program the DMA engine appropriately.

ddi_dma_lim_sparc(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

Data Structures for Drivers 39

The dlim_minxfer field describes the minimum effective DMA transfer size (in units
of bytes). It must be a power of two. This value specifies the minimum effective
granularity of the DMA engine. It is distinct from dlim_burstsizes in that it
describes the minimum amount of access a DMA transfer will effect.
dlim_burstsizes describes in what electrical fashion the DMA engine might
perform its accesses, while dlim_minxfer describes the minimum amount of
memory that can be touched by the DMA transfer. As a resource request is handled by
the system, the dlim_minxfer value can be modified contingent upon the presence
(and use) of I/O caches and DMA write buffers in between the DMA engine and the
object that DMA is being performed on. After DMA resources have been allocated, the
resultant minimum transfer value can be gotten using ddi_dma_devalign(9F).

The field dlim_dmaspeed is the expected average data rate for the DMA engine (in
units of kilobytes per second). Note that this should not be the maximum, or peak,
burst data rate, but a reasonable guess as to the average throughput. This field is
entirely optional and can be left as zero. Its intended use is to provide some hints
about how much of the DMA resource this device might need.

ddi_dma_addr_setup(9F), ddi_dma_buf_setup(9F), ddi_dma_burstsizes(9F),
ddi_dma_devalign(9F), ddi_dma_htoc(9F), ddi_dma_setup(9F),
ddi_dma_cookie(9S), ddi_dma_lim_IA(9S), ddi_dma_req(9S)

ddi_dma_lim_sparc(9S)

SEE ALSO

40 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 1 Feb 1994

ddi_dma_lim_x86 – IA DMA limits structure

#include <sys/ddidmareq.h>

Solaris IA DDI specific (Solaris IA DDI)

A ddi_dma_lim structure describes in a generic fashion the possible limitations of a
device or its DMA engine. This information is used by the system when it attempts to
set up DMA resources for a device. When the system is requested to perform a DMA
transfer to or from an object, the request is broken up, if necessary, into multiple
sub-requests. Each sub–request conforms to the limitations expressed in the
ddi_dma_lim structure.

This structure should be filled in by calling the routine ddi_dmae_getlim(9F). This
routine sets the values of the structure members appropriately based on the
characteristics of the DMA engine on the driver’s parent bus. If the driver has
additional limitations, it can further restrict some of the values in the structure
members. A driver should not relax any restrictions imposed by ddi_dmae_getlim()
.

uint_t dlim_addr_lo; /* low range of 32 bit addressing capability */
uint_t dlim_addr_hi; /* inclusive upper bound of addressing capability */
uint_t dlim_minxfer; /* minimum effective dma transfer size */
uint_t dlim_version; /* version number of this structure */
uint_t dlim_adreg_max; /* inclusive upper bound of

/* incrementing addr reg */
uint_t dlim_ctreg_max; /* maximum transfer count minus one */
uint_t dlim_granular; /* granularity (and min size) of transfer count */
short dlim_sgllen; /* length of DMA scatter/gather list */
uint_t dlim_reqsize; /* maximum transfer size in bytes of a single I/O */

The dlim_addr_lo and dlim_addr_hi fields specify the address range that the
device’s DMA engine can access. The dlim_addr_lo field describes the lower 32–bit
boundary of the device’s DMA engine. The dlim_addr_hi member describes the
inclusive, upper 32–bit boundary. The system allocates DMA resources in a way that
the address for programming the device’s DMA engine will be within this range. For
example, if your device can access the whole 32–bit address range, you can use
[0,0xFFFFFFFF]. See ddi_dma_cookie(9S) or ddi_dma_segtocookie(9F).

The dlim_minxfer field describes the minimum effective DMA transfer size (in units
of bytes), which must be a power of two. This value specifies the minimum effective
granularity of the DMA engine and describes the minimum amount of memory that
can be touched by the DMA transfer. As a resource request is handled by the system,
the dlim_minxfer value can be modified. This modification is contingent upon the
presence (and use) of I/O caches and DMA write buffers between the DMA engine
and the object that DMA is being performed on. After DMA resources have been
allocated, you can retrieve the resultant minimum transfer value using
ddi_dma_devalign(9F).

The dlim_version field specifies the version number of this structure. Set this field
to DMALIM_VER0.

ddi_dma_lim_x86(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

Data Structures for Drivers 41

The dlim_adreg_max field describes an inclusive upper bound for the device’s DMA
engine address register. This bound handles a fairly common case where a portion of
the address register is simply a latch rather than a full register. For example, the upper
16 bits of a 32–bit address register might be a latch. This splits the address register into
a portion that acts as a true address register (lower 16 bits) for a 64–kilobyte segment
and a latch (upper 16 bits) to hold a segment number. To describe these limits, you
specify 0xFFFF in the dlim_adreg_max structure member.

The dlim_ctreg_max field specifies the maximum transfer count that the DMA
engine can handle in one segment or cookie. The limit is expressed as the maximum
count minus one. This transfer count limitation is a per-segment limitation. Because
the limitation is used as a bit mask, it must be one less than a power of two.

The dlim_granular field describes the granularity of the device’s DMA transfer
ability, in units of bytes. This value is used to specify, for example, the sector size of a
mass storage device. DMA requests are broken into multiples of this value. If there is
no scatter/gather capability, then the size of each DMA transfer will be a multiple of
this value. If there is scatter/gather capability, then a single segment cannot be smaller
than the minimum transfer value, but can be less than the granularity. However, the
total transfer length of the scatter/gather list is a multiple of the granularity value.

The dlim_sgllen field specifies the maximum number of entries in the
scatter/gather list. This value is the number of segments or cookies that the DMA
engine can consume in one I/O request to the device. If the DMA engine has no
scatter/gather list, set this field to one.

The dlim_reqsize field describes the maximum number of bytes that the DMA
engine can transmit or receive in one I/O command. This limitation is only significant
if it is less than (dlim_ctreg_max +1) * dlim_sgllen. If the DMA engine has no
particular limitation, set this field to 0xFFFFFFFF.

ddi_dmae(9F), ddi_dma_addr_setup(9F), ddi_dma_buf_setup(9F),
ddi_dma_devalign(9F), ddi_dma_segtocookie(9F), ddi_dma_setup(9F),
ddi_dma_cookie(9S) ddi_dma_lim_sparc(9S), ddi_dma_req(9S)

ddi_dma_lim_x86(9S)

SEE ALSO

42 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 31 Jan 1994

ddi_dma_req – DMA Request structure

#include <sys/ddidmareq.h>

Solaris DDI specific (Solaris DDI).

A ddi_dma_req structure describes a request for DMA resources. A driver can use it
to describe forms of allocations and ways to allocate DMA resources for a DMA
request.

ddi_dma_lim_t *dmar_limits; /* Caller’s dma engine’s */
/* constraints */

uint_t dmar_flags; /* Contains information for */
/* mapping routines */

int (*dmar_fp)(caddr_t); /* Callback function */
caddr_t dmar_arg; /* Callback function’s argument */
ddi_dma_obj_t dmar_object; /* Description of the object */

/* to be mapped */

For the definition of the DMA limits structure, which dmar_limits points to, see
ddi_dma_lim_sparc(9S) or ddi_dma_lim_IA(9S).

Valid values for dmar_flags are:

DDI_DMA_WRITE /* Direction memory --> IO */
DDI_DMA_READ /* Direction IO --> memory */
DDI_DMA_RDWR /* Both read and write */
DDI_DMA_REDZONE /* Establish an MMU redzone at end of mapping */
DDI_DMA_PARTIAL /* Partial mapping is allowed */
DDI_DMA_CONSISTENT /* Byte consistent access wanted */
DDI_DMA_SBUS_64BIT /* Use 64 bit capability on SBus */

DDI_DMA_WRITE, DDI_DMA_READ, and DDI_DMA_RDWR describe the intended
direction of the DMA transfer. Some implementations might explicitly disallow
DDI_DMA_RDWR.

DDI_DMA_REDZONE asks the system to establish a protected red zone after the object.
The DMA resource allocation functions do not guarantee the success of this request, as
some implementations might not have the hardware ability to support it.

DDI_DMA_PARTIAL lets the system know that the caller can accept partial mapping.
That is, if the size of the object exceeds the resources available, the system allocates
only a portion of the object and returns status indicating this partial allocation. At a
later point, the caller can use ddi_dma_curwin(9F) and ddi_dma_movwin(9F) to
change the valid portion of the object that has resources allocated.

DDI_DMA_CONSISTENT gives a hint to the system that the object should be mapped
for byte consistent access. Normal data transfers usually use a streaming mode of
operation. They start at a specific point, transfer a fairly large amount of data
sequentially, and then stop, usually on an aligned boundary. Control mode data
transfers for memory-resident device control blocks (for example, Ethernet message
descriptors) do not access memory in such a sequential fashion. Instead, they tend to
modify a few words or bytes, move around and maybe modify a few more.

ddi_dma_req(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

Data Structures for Drivers 43

Many machine implementations make this non-sequential memory access difficult to
control in a generic and seamless fashion. Therefore, explicit synchronization steps
using ddi_dma_sync(9F) or ddi_dma_free(9F) are required to make the view of a
memory object shared between a CPU and a DMA device consistent. However, proper
use of the DDI_DMA_CONSISTENT flag can create a condition in which a system will
pick resources in a way that makes these synchronization steps are as efficient as
possible.

DDI_DMA_SBUS_64BIT tells the system that the device can perform 64–bit transfers
on a 64–bit SBus. If the SBus does not support 64–bit data transfers, data will be
transferred in 32–bit mode.

The callback function specified by the member dmar_fp indicates how a caller to one
of the DMA resource allocation functions wants to deal with the possibility of
resources not being available. (See ddi_dma_setup(9F).) If dmar_fp is set to
DDI_DMA_DONTWAIT, then the caller does not care if the allocation fails, and can deal
with an allocation failure appropriately. Setting dmar_fp to DDI_DMA_SLEEP
indicates the caller wants to have the allocation routines wait for resources to become
available. If any other value is set, and a DMA resource allocation fails, this value is
assumed to be a function to call later, when resources become available. When the
specified function is called, it is passed the value set in the structure member
dmar_arg. The specified callback function must return either:

0 Indicating that it attempted to allocate a DMA resource but failed to do so,
again, in which case the callback function will be put back on a list to be
called again later.

1 Indicating either success at allocating DMA resources or that it no longer
wants to retry.

The callback function is called in interrupt context. Therefore, only system functions
and contexts that are accessible from interrupt context are available. The callback
function must take whatever steps necessary to protect its critical resources, data
structures, and queues.

It is possible that a call to ddi_dma_free(9F), which frees DMA resources, might
cause a callback function to be called and, unless some care is taken, an undesired
recursion can occur. This can cause an undesired recursive mutex_enter(9F), which
makes the system panic.

The dmar_object member of the ddi_dma_req structure is itself a complex and
extensible structure:

uint_t dmao_size; /* size, in bytes, of the object */
ddi_dma_atyp_t dmao_type; /* type of object */
ddi_dma_aobj_t dmao_obj; /* the object described */

The dmao_size element is the size, in bytes, of the object resources allocated for
DMA.

ddi_dma_req(9S)

dmar_object
Structure

44 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 17 May 1994

The dmao_type element selects the kind of object described by dmao_obj. It can be
set to DMA_OTYP_VADDR, indicating virtual addresses.

The last element, dmao_obj, consists of the virtual address type:

struct v_address virt_obj;

It is specified as:

struct v_address {
caddr_t v_addr; /* base virtual address */
struct as *v_as; /* pointer to address space */
void *v_priv; /* priv data for shadow I/O */

};

ddi_dma_addr_setup(9F), ddi_dma_buf_setup(9F), ddi_dma_curwin(9F),
ddi_dma_free(9F), ddi_dma_movwin(9F), ddi_dma_setup(9F),
ddi_dma_sync(9F), mutex(9F)

Writing Device Drivers

ddi_dma_req(9S)

SEE ALSO

Data Structures for Drivers 45

ddi-forceattach, ddi-no-autodetach – properties controlling driver attach/detach
behavior

Solaris device drivers are attached by devfsadm(1M) and by the kernel in response to
open(2) requests from applications. Drivers not currently in use can be detached when
the system experiences memory pressure. The ddi-forceattach and
ddi-no-autodetach properties can be used to customize driver attach/detach
behavior.

The ddi-forceattach is an integer property, to be set globally by means of the
driver.conf(4) file. Drivers with this property set to 1 are loaded and attached to all
possible instances during system startup. The driver will not be auto-detached due to
system memory pressure.

The ddi-no-autodetach is an integer property to be set globally by means of the
driver.conf(4) file or created dynamically by the driver on a per-instance basis with
ddi_prop_update_int(9F). When this property is set to 1, the kernel will not
auto-detach driver due to system memory pressure.

Note that ddi-forceattach implies ddi-no-autodetach. Setting either property
to a non-integer value or an integer value not equal to 1 produces undefined results.
These properties do not prevent driver detaching in response to reconfiguration
requests, such as executing commands cfgadm(1M), modunload(1M), rem_drv(1M),
and update_drv(1M).

driver.conf(4)

Writing Device Drivers

ddi-forceattach(9P)

NAME

DESCRIPTION

SEE ALSO

46 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 18 May 2001

ddi_idevice_cookie – device interrupt cookie

#include <sys/ddi.h>

#include <sys/sunddi.h>

Solaris DDI specific (Solaris DDI).

The ddi_idevice_cookie_t structure contains interrupt priority and interrupt
vector information for a device. This structure is useful for devices having
programmable bus-interrupt levels. ddi_add_intr(9F) assigns values to the
ddi_idevice_cookie_t structure members.

u_short idev_vector; /* interrupt vector */

ushort_t idev_priority; /* interrupt priority */

The idev_vector field contains the interrupt vector number for vectored bus
architectures such as VMEbus. The idev_priority field contains the bus interrupt
priority level.

ddi_add_intr(9F)

Writing Device Drivers

ddi_idevice_cookie(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

Data Structures for Drivers 47

ddi_mapdev_ctl – device mapping-control structure

#include <sys/conf.h>

#include <sys/devops.h>

Solaris DDI specific (Solaris DDI).

Future releases of Solaris will provide this structure for binary and source
compatibility. However, for increased functionality, use devmap_callback_ctl(9S)
instead. See devmap_callback_ctl(9S) for details.

A ddi_mapdev_ctl structure describes a set of routines that allow a device driver to
manage events on mappings of the device created by ddi_mapdev(9F).

See mapdev_access(9E), mapdev_dup(9E) and mapdev_free(9E) for more details
on these entry points.

int mapdev_rev;
int (*mapdev_access)(ddi_mapdev_handle_t handle, void *devprivate,

off_t offset);
void (*mapdev_free)(ddi_mapdev_handle_t handle, void *devprivate);
int (*mapdev_dup)(ddi_mapdev_handle_t handle, void *devprivate,

ddi_mapdev_handle_t new_handle, void **new_devprivate);

A device driver should allocate the device mapping control structure and initialize the
following fields:

mapdev_rev Must be set to MAPDEV_REV.

mapdev_access Must be set to the address of the mapdev_access(9E) entry point.

mapdev_free Must be set to the address of the mapdev_free(9E) entry point.

mapdev_dup Must be set to the address of the mapdev_dup(9E) entry point.

exit(2), fork(2), mmap(2), munmap(2), mapdev_access(9E), mapdev_dup(9E),
mapdev_free(9E), segmap(9E), ddi_mapdev(9F), ddi_mapdev_intercept(9F),
ddi_mapdev_nointercept(9F)

Writing Device Drivers

ddi_mapdev_ctl(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

48 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 14 Jan 1997

devmap_callback_ctl – device mapping-control structure

#include <sys/ddidevmap.h>

Solaris DDI specific (Solaris DDI).

A devmap_callback_ctl structure describes a set of callback routines that are
called by the system to notify a device driver to manage events on the device
mappings created by devmap_setup(9F) or ddi_devmap_segmap(9F).

Device drivers pass the initialized devmap_callback_ctl structure to either
devmap_devmem_setup(9F) or devmap_umem_setup(9F) in the devmap(9E) entry
point during the mapping setup. The system makes a private copy of the structure for
later use. Device drivers can specify different devmap_callback_ctl for different
mappings.

A device driver should allocate the device mapping control structure and initialize the
following fields, if the driver wants the entry points to be called by the system:

devmap_rev Version number. Set this to DEVMAP_OPS_REV.

devmap_map Set to the address of the devmap_map(9E) entry point
or to NULL if the driver does not support this callback.
If set, the system calls the devmap_map(9E) entry point
during the mmap(2) system call. The drivers typically
allocate driver private data structure in this function
and return the pointer to the private data structure to
the system for later use.

devmap_access Set to the address of the devmap_access(9E) entry
point or to NULL if the driver does not support this
callback. If set, the system calls the driver’s
devmap_access(9E) entry point during memory
access. The system expects devmap_access(9E) to call
either devmap_do_ctxmgt(9F) or
devmap_default_access(9F) to load the memory
address translations before it returns to the system.

devmap_dup Set to the address of the devmap_dup(9E) entry point
or to NULL if the driver does not support this call. If set,
the system calls the devmap_dup(9E) entry point
during the fork(2) system call.

devmap_unmap Set to the address of the devmap_unmap(9E) entry
point or to NULL if the driver does not support this call.
If set, the system will call the devmap_unmap(9E) entry
point during the munmap(2) or exit(2) system calls.

int devmap_rev;
int (*devmap_map)(devmap_cookie_t dhp, dev_t dev, uint_t flags,

offset_t off, size_t len, void **pvtp);
int (*devmap_access)(devmap_cookie_t dhp, void *pvtp, offset_t off,

devmap_callback_ctl(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

Data Structures for Drivers 49

size_t len, uint_t type, uint_t rw);
int (*devmap_dup)(devmap_cookie_t dhp, void *pvtp,

devmap_cookie_t new_dhp, void **new_pvtp);
void (*devmap_unmap)(devmap_cookie_t dhp, void *pvtp, offset_t off,

size_t len, devmap_cookie_t new_dhp1, void **new_pvtp1,

devmap_cookie_t new_dhp2, void **new_pvtp2);

exit(2), fork(2), mmap(2), munmap(2), devmap(9E), devmap_access(9E),
devmap_dup(9E), devmap_map(9E), devmap_unmap(9E), ddi_devmap_segmap(9F),
devmap_default_access(9F), devmap_devmem_setup(9F),
devmap_do_ctxmgt(9F), devmap_setup(9F), devmap_umem_setup(9F)

Writing Device Drivers

devmap_callback_ctl(9S)

SEE ALSO

50 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 24 Jul 1996

dev_ops – device operations structure

#include <sys/conf.h>

#include <sys/devops.h>

Solaris DDI specific (Solaris DDI).

dev_ops contains driver common fields and pointers to the bus_ops and
cb_ops(9S).

Following are the device functions provided in the device operations structure. All
fields must be set at compile time.

devo_rev Driver build version. Set this to DEVO_REV.

devo_refcnt Driver reference count. Set this to 0.

devo_getinfo Get device driver information (see getinfo(9E)).

devo_identify Determine if a driver is associated with a device. See
identify(9E).

devo_probe Probe device. See probe(9E).

devo_attach Attach driver to dev_info. See attach(9E).

devo_detach Detach/prepare driver to unload. See detach(9E).

devo_reset Reset device. (Not supported in this release.) Set this to
nodev.

devo_cb_ops Pointer to cb_ops(9S) structure for leaf drivers.

devo_bus_ops Pointer to bus operations structure for nexus drivers.
Set this to NULL if this is for a leaf driver.

devo_power Power a device attached to system. See power(9E).

int devo_rev;
int devo_refcnt;
int (*devo_getinfo)(dev_info_t *dip,

ddi_info_cmd_t infocmd, void *arg, void **result);
int (*devo_identify)(dev_info_t *dip);
int (*devo_probe)(dev_info_t *dip);
int (*devo_attach)(dev_info_t *dip,

ddi_attach_cmd_t cmd);
int (*devo_detach)(dev_info_t *dip,

ddi_detach_cmd_t cmd);
int (*devo_reset)(dev_info_t *dip, ddi_reset_cmd_t cmd);
struct cb_ops *devo_cb_ops;
struct bus_ops *devo_bus_ops;

int (*devo_power)(dev_info_t *dip, int component, int level);

attach(9E), detach(9E), getinfo(9E), identify(9E), probe(9E), power(9E),
nodev(9F)

Writing Device Drivers

dev_ops(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

Data Structures for Drivers 51

fmodsw – STREAMS module declaration structure

#include <sys/stream.h>

#include <sys/conf.h>

Solaris DDI specific (Solaris DDI)

The fmodsw structure contains information for STREAMS modules. All STREAMS
modules must define a fmodsw structure.

f_name must match mi_idname in the module_info structure. See
module_info(9S).

All modules must set the f_flag to D_MP to indicate that they safely allow multiple
threads of execution. See mt-streams(9F) for additional flags.

char f_name[FMNAMESZ + 1]; /* module name */
struct streamtab *f_str; /* streams information */

int f_flag; /* flags */

mt-streams(9F), modlstrmod(9S), module_info(9S)

STREAMS Programming Guide

fmodsw(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

52 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 23 Feb 1994

free_rtn – structure that specifies a driver’s message-freeing routine

#include <sys/stream.h>

Architecture independent level 1 (DDI/DKI).

The free_rtn structure is referenced by the datab structure. When freeb(9F) is
called to free the message, the driver’s message-freeing routine (referenced through
the free_rtn structure) is called, with arguments, to free the data buffer.

void (*free_func)() /* user’s freeing routine */

char *free_arg /* arguments to free_func() */

The free_rtn structure is defined as type frtn_t.

esballoc(9F), freeb(9F), datab(9S)

STREAMS Programming Guide

free_rtn(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

Data Structures for Drivers 53

gld_mac_info – Generic LAN Driver MAC info data structure

#include <sys/gld.h>

Solaris architecture specific (Solaris DDI).

The Generic LAN Driver (GLD) Media Access Control (MAC) information
(gld_mac_info) structure is the main data interface between the device-specific
driver and GLD. It contains data required by GLD and a pointer to an optional
additional driver-specific information structure.

The gld_mac_info structure should be allocated using gld_mac_alloc() and
deallocated using gld_mac_free(). Drivers can make no assumptions about the
length of this structure, which might be different in different releases of Solaris and/or
GLD. Structure members private to GLD, not documented here, should not be set or
read by the device-specific driver.

caddr_t gldm_private; /* Driver private data */
int (*gldm_reset)(); /* Reset device */
int (*gldm_start)(); /* Start device */
int (*gldm_stop)(); /* Stop device */
int (*gldm_set_mac_addr)(); /* Set device phys addr */
int (*gldm_set_multicast)(); /* Set/delete */

/* multicast address */
int (*gldm_set_promiscuous)(); /* Set/reset */

/* promiscuous mode */
int (*gldm_send)(); /* Transmit routine */
u_int (*gldm_intr)(); /* Interrupt handler */
int (*gldm_get_stats)(); /* Get device statistics */
int (*gldm_ioctl)(); /* Driver-specific ioctls */
char *gldm_ident; /* Driver identity string */
uint32_t gldm_type; /* Device type */
uint32_t gldm_minpkt; /* Minimum packet size */

/* accepted by driver */
uint32_t gldm_maxpkt; /* Maximum packet size */

/* accepted by driver */
uint32_t gldm_addrlen; /* Physical address */

/* length */
int32_t gldm_saplen; /* SAP length for */

/* DL_INFO_ACK */
unsigned char *gldm_broadcast_addr; /* Physical broadcast */

/* addr */
unsigned char *gldm_vendor_addr; /* Factory MAC address */
t_uscalar_t gldm_ppa; /* Physical Point of */

/* Attachment (PPA) number */
dev_info_t *gldm_devinfo; /* Pointer to device’s */

/* dev_info node */
ddi_iblock_cookie_t gldm_cookie; /* Device’s interrupt */

/* block cookie */

Below is a description of the members of the gld_mac_info structure that are visible
to the device driver.

gldm_private This structure member is private to the device-specific
driver and is not used or modified by GLD.

gld_mac_info(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

54 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 18 Jan 2000

Conventionally, this is used as a pointer to private data,
pointing to a driver-defined and driver-allocated
per-instance data structure.

The following group of structure members must be set by the driver before calling
gld_register(), and should not thereafter be modified by the driver;
gld_register() can use or cache the values of some of these structure members, so
changes made by the driver after calling gld_register() might cause unpredicted
results.

gldm_reset Pointer to driver entry point; see gld(9E).

gldm_start Pointer to driver entry point; see gld(9E).

gldm_stop Pointer to driver entry point; see gld(9E).

gldm_set_mac_addr Pointer to driver entry point; see gld(9E).

gldm_set_multicast Pointer to driver entry point; see gld(9E).

gldm_set_promiscuous Pointer to driver entry point; see gld(9E).

gldm_send Pointer to driver entry point; see gld(9E).

gldm_intr Pointer to driver entry point; see gld(9E).

gldm_get_stats Pointer to driver entry point; see gld(9E).

gldm_ioctl Pointer to driver entry point; can be NULL; see gld(9E).

gldm_ident Pointer to a string containing a short description of the
device. It is used to identify the device in system
messages.

gldm_type The type of device the driver handles. The values
currently supported by GLD are DL_ETHER (IEEE 802.3
and Ethernet Bus), DL_TPR (IEEE 802.5 Token Passing
Ring), and DL_FDDI (ISO 9314-2 Fibre Distributed Data
Interface). This structure member must be correctly set
for GLD to function properly.

gldm_minpkt Minimum Service Data Unit size — the minimum
packet size, not including the MAC header, that the
device will transmit. This can be zero if the
device-specific driver can handle any required
padding.

gldm_maxpkt Maximum Service Data Unit size — the maximum size
of packet, not including the MAC header, that can be
transmitted by the device. For Ethernet, this number is
1500.

gld_mac_info(9S)

Data Structures for Drivers 55

gldm_addrlen The length in bytes of physical addresses handled by
the device. For Ethernet, Token Ring, and FDDI, the
value of this structure member should be 6.

gldm_saplen The length in bytes of the Service Access Point (SAP)
address used by the driver. For GLD-based drivers, this
should always be set to -2, to indicate that two-byte
SAP values are supported and that the SAP appears
after the physical address in a DLSAP address. See the
description under ‘‘Message DL_INFO_ACK’’ in the
DLPI specification for more details.

gldm_broadcast_addr Pointer to an array of bytes of length gldm_addrlen
containing the broadcast address to be used for
transmit. The driver must allocate space to hold the
broadcast address, fill it in with the appropriate value,
and set gldm_broadcast_addr to point at it. For
Ethernet, Token Ring, and FDDI, the broadcast address
is normally 0xFF-FF-FF-FF-FF-FF.

gldm_vendor_addr Pointer to an array of bytes of length gldm_addrlen
containing the vendor-provided network physical
address of the device. The driver must allocate space to
hold the address, fill it in with information read from
the device, and set gldm_vendor_addr to point at it.

gldm_ppa The Physical Point of Attachment (PPA) number for
this instance of the device. Normally this should be set
to the instance number, returned from
ddi_get_instance(9F).

gldm_devinfo Pointer to the dev_info node for this device.

gldm_cookie The interrupt block cookie returned by
ddi_get_iblock_cookie(9F), ddi_add_intr(9F),
ddi_get_soft_iblock_cookie(9F), or
ddi_add_softintr(9F). This must correspond to the
device’s receive interrupt, from which gld_recv() is
called.

gld(7D), gld(9F), gld(9E), gld_stats(9S), dlpi(7P), attach(9E),
ddi_add_intr(9F).

Writing Device Drivers

gld_mac_info(9S)

SEE ALSO

56 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 18 Jan 2000

gld_stats – Generic LAN Driver statistics data structure

#include <sys/gld.h>

Solaris architecture specific (Solaris DDI).

The Generic LAN Driver (GLD) statistics (gld_stats) structure is used to
communicate statistics and state information from a GLD-based driver to GLD when
returning from a driver’s gldm_get_stats() routine as discussed in gld(9E) and
gld(7D). The members of this structure, filled in by the GLD-based driver, are used
when GLD reports the statistics. In the tables below, the name of the statistics variable
reported by GLD is noted in the comments. See gld(7D) for a more detailed
description of the meaning of each statistic.

Drivers can make no assumptions about the length of this structure, which might be
different in different releases of Solaris and/or GLD. Structure members private to
GLD, not documented here, should not be set or read by the device specific driver.

The following structure members are defined for all media types:

uint64_t glds_speed; /* ifspeed */
uint32_t glds_media; /* media */
uint32_t glds_intr; /* intr */
uint32_t glds_norcvbuf; /* norcvbuf */
uint32_t glds_errrcv; /* ierrors */
uint32_t glds_errxmt; /* oerrors */
uint32_t glds_missed; /* missed */
uint32_t glds_underflow; /* uflo */

uint32_t glds_overflow; /* oflo */

The following structure members are defined for media type DL_ETHER:

uint32_t glds_frame; /* align_errors */
uint32_t glds_crc; /* fcs_errors */
uint32_t glds_duplex; /* duplex */
uint32_t glds_nocarrier; /* carrier_errors */
uint32_t glds_collisions; /* collisions */
uint32_t glds_excoll; /* ex_collisions */
uint32_t glds_xmtlatecoll; /* tx_late_collisions */
uint32_t glds_defer; /* defer_xmts */
uint32_t glds_dot3_first_coll; /* first_collisions */
uint32_t glds_dot3_multi_coll; /* multi_collisions */
uint32_t glds_dot3_sqe_error; /* sqe_errors */
uint32_t glds_dot3_mac_xmt_error; /* macxmt_errors */
uint32_t glds_dot3_mac_rcv_error; /* macrcv_errors */
uint32_t glds_dot3_frame_too_long; /* toolong_errors */

uint32_t glds_short; /* runt_errors */

The following structure members are defined for media type DL_TPR:

uint32_t glds_dot5_line_error /* line_errors */
uint32_t glds_dot5_burst_error /* burst_errors */
uint32_t glds_dot5_signal_loss /* signal_losses */
uint32_t glds_dot5_ace_error /* ace_errors */
uint32_t glds_dot5_internal_error /* internal_errors */

gld_stats(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

Data Structures for Drivers 57

uint32_t glds_dot5_lost_frame_error /* lost_frame_errors */
uint32_t glds_dot5_frame_copied_error /* frame_copied_errors */
uint32_t glds_dot5_token_error /* token_errors */

uint32_t glds_dot5_freq_error /* freq_errors */

The following structure members are defined for media type DL_FDDI:

uint32_t glds_fddi_mac_error; /* mac_errors */
uint32_t glds_fddi_mac_lost; /* mac_lost_errors */
uint32_t glds_fddi_mac_token; /* mac_tokens */
uint32_t glds_fddi_mac_tvx_expired; /* mac_tvx_expired */
uint32_t glds_fddi_mac_late; /* mac_late */

uint32_t glds_fddi_mac_ring_op; /* mac_ring_ops */

Most of the above statistics variables are counters denoting the number of times the
particular event was observed. Exceptions are:

glds_speed An estimate of the interface’s current bandwidth in bits per
second. For interfaces that do not vary in bandwidth or for those
where no accurate estimation can be made, this object should
contain the nominal bandwidth.

glds_media The type of media (wiring) or connector used by the hardware.
Currently supported media names include GLDM_AUI, GLDM_BNC,
GLDM_TP, GLDM_10BT, GLDM_100BT, GLDM_100BTX,
GLDM_100BT4, GLDM_RING4, GLDM_RING16, GLDM_FIBER, and
GLDM_PHYMII. GLDM_UNKNOWN can also be specified.

glds_duplex Current duplex state of the interface. Supported values are
GLD_DUPLEX_HALF and GLD_DUPLEX_FULL.
GLD_DUPLEX_UNKNOWN can also be specified.

gld(7D), gld(9F), gld(9E), gld_mac_info(9S)

Writing Device Drivers

gld_stats(9S)

SEE ALSO

58 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 18 Jan 2000

inquiry-device-type, inquiry-vendor-id, inquiry-product-id, inquiry-revision-id –
properties from SCSI inquiry data

These are optional properties created by the system for SCSI target devices.

inquiry-device-type is an integer property. When present, the least significant
byte of the value indicates the device type as defined by the SCSI standard.

inquiry-vendor-id is a string property. When present, it contains the SCSI vendor
identification inquiry data (from SCSI inquiry data bytes 8 - 15), formatted as a
NULL-terminated string.

inquiry-product-id is a string property. When present, it contains the SCSI
product identification inquiry data (from SCSI inquiry data bytes 16 - 31).

inquiry-revision-id is a string property. When present, it contains the SCSI
product revision inquiry data (from SCSI inquiry data bytes 32 - 35).

Consumers of these properties should compare the property values with DTYPE_*
values defined in <sys/scsi/generic/inquiry.h>.

Writing Device Drivers

inquiry-device-type(9P)

NAME

DESCRIPTION

SEE ALSO

Data Structures for Drivers 59

iocblk – STREAMS data structure for the M_IOCTL message type

#include <sys/stream.h>

Architecture independent level 1 (DDI/DKI).

The iocblk data structure is used for passing M_IOCTL messages.

int ioc_cmd; /* ioctl command type */
cred_t *ioc_cr; /* full credentials */
uint_t ioc_id; /* ioctl id */
uint_t ioc_flag; /* ioctl flags */
uint_t ioc_count; /* count of bytes in data field */
int ioc_rval; /* return value */

int ioc_error; /* error code */

STREAMS Programming Guide

iocblk(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

60 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 13 Nov 1996

iovec – data storage structure for I/O using uio

#include <sys/uio.h>

Architecture independent level 1 (DDI/DKI).

An iovec structure describes a data storage area for transfer in a uio(9S) structure.
Conceptually, it can be thought of as a base address and length specification.

caddr_t iov_base; /* base address of the data storage area */
/* represented by the iovec structure */

int iov_len; /* size of the data storage area in bytes */

uio(9S)

Writing Device Drivers

iovec(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

Data Structures for Drivers 61

kstat – kernel statistics structure

#include <sys/types.h>
#include <sys/kstat.h>
#include <sys/ddi.h>

#include <sys/sunddi.h>

Solaris DDI specific (Solaris DDI)

Each kernel statistic (kstat) exported by device drivers consists of a header section
and a data section. The kstat structure is the header portion of the statistic.

A driver receives a pointer to a kstat structure from a successful call to
kstat_create(9F). Drivers should never allocate a kstat structure in any other
manner.

After allocation, the driver should perform any further initialization needed before
calling kstat_install(9F) to actually export the kstat.

void *ks_data; /* kstat type-specific data */
ulong_t ks_ndata; /* # of type-specific data records */
ulong_t ks_data_size; /* total size of kstat data section */
int (*ks_update)(struct kstat *, int);
void *ks_private; /* arbitrary provider-private data */

void *ks_lock; /* protects this kstat’s data */

The members of the kstat structure available to examine or set by a driver are as
follows:

ks_data Points to the data portion of the kstat. Either allocated by
kstat_create(9F) for the drivers use, or by the driver if it is
using virtual kstats.

ks_ndata The number of data records in this kstat. Set by the
ks_update(9E) routine.

ks_data_size The amount of data pointed to by ks_data. Set by the
ks_update(9E) routine.

ks_update Pointer to a routine that dynamically updates kstat. This is
useful for drivers where the underlying device keeps cheap
hardware statistics, but where extraction is expensive. Instead of
constantly keeping the kstat data section up to date, the driver
can supply a ks_update(9E) function that updates the kstat
data section on demand. To take advantage of this feature, set the
ks_update field before calling kstat_install(9F).

ks_private Is a private field for the driver’s use. Often used in
ks_update(9E).

ks_lock Is a pointer to a mutex that protects this kstat. kstat data
sections are optionally protected by the per-kstat ks_lock. If
ks_lock is non-NULL, kstat clients (such as /dev/kstat) will

kstat(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

62 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 4 Apr 1994

acquire this lock for all of their operations on that kstat. It is up
to the kstat provider to decide whether guaranteeing consistent
data to kstat clients is sufficiently important to justify the locking
cost. Note, however, that most statistic updates already occur
under one of the provider’s mutexes. If the provider sets ks_lock
to point to that mutex, then kstat data locking is free. ks_lock is
really of type (kmutex_t*) and is declared as (void*) in the
kstat header. That way, users do not have to be exposed to all of
the kernel’s lock-related data structures.

kstat_create(9F)

Writing Device Drivers

kstat(9S)

SEE ALSO

Data Structures for Drivers 63

kstat_intr – structure for interrupt kstats

#include <sys/types.h>
#include <sys/kstat.h>
#include <sys/ddi.h>

#include <sys/sunddi.h>

Solaris DDI specific (Solaris DDI)

Interrupt statistics are kept in the kstat_intr structure. When kstat_create(9F)
creates an interrupt kstat, the ks_data field is a pointer to one of these structures.
The macro KSTAT_INTR_PTR() is provided to retrieve this field. It looks like this:

#define KSTAT_INTR_PTR(kptr) ((kstat_intr_t *)(kptr)->ks_data)

An interrupt is a hard interrupt (sourced from the hardware device itself), a soft
interrupt (induced by the system through the use of some system interrupt source), a
watchdog interrupt (induced by a periodic timer call), spurious (an interrupt entry
point was entered but there was no interrupt to service), or multiple service (an
interrupt was detected and serviced just prior to returning from any of the other
types).

Drivers generally report only claimed hard interrupts and soft interrupts from their
handlers, but measurement of the spurious class of interrupts is useful for
auto-vectored devices in order to pinpoint any interrupt latency problems in a
particular system configuration.

Devices that have more than one interrupt of the same type should use multiple
structures.

ulong_t intrs[KSTAT_NUM_INTRS]; /* interrupt counters */

The only member exposed to drivers is the intrs member. This field is an array of
counters. The driver must use the appropriate counter in the array based on the type
of interrupt condition.

The following indexes are supported:

KSTAT_INTR_HARD Hard interrupt

KSTAT_INTR_SOFT Soft interrupt

KSTAT_INTR_WATCHDOG Watchdog interrupt

KSTAT_INTR_SPURIOUS Spurious interrupt

KSTAT_INTR_MULTSVC Multiple service interrupt

kstat(9S)

Writing Device Drivers

kstat_intr(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

64 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 4 Apr 1994

kstat_io – structure for I/O kstats

#include <sys/types.h>
#include <sys/kstat.h>
#include <sys/ddi.h>

#include <sys/sunddi.h>

Solaris DDI specific (Solaris DDI)

I/O kstat statistics are kept in a kstat_io structure. When kstat_create(9F)
creates an I/O kstat, the ks_data field is a pointer to one of these structures. The
macro KSTAT_IO_PTR() is provided to retrieve this field. It looks like this:

#define KSTAT_IO_PTR(kptr) ((kstat_io_t *)(kptr)->ks_data)

u_longlong_t nread; /* number of bytes read */
u_longlong_t nwritten; /* number of bytes written *]/
ulong_t reads; /* number of read operations */

ulong_t writes; /* number of write operations */

The nread field should be updated by the driver with the number of bytes
successfully read upon completion.

The nwritten field should be updated by the driver with the number of bytes
successfully written upon completion.

The reads field should be updated by the driver after each successful read operation.

The writes field should be updated by the driver after each successful write
operation

Other I/O statistics are updated through the use of the kstat_queue(9F) functions.

kstat_create(9F), kstat_named_init(9F), kstat_queue(9F),
kstat_runq_back_to_waitq(9F), kstat_runq_enter(9F),
kstat_runq_exit(9F), kstat_waitq_enter(9F), kstat_waitq_exit(9F),
kstat_waitq_to_runq(9F)

Writing Device Drivers

kstat_io(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

Data Structures for Drivers 65

kstat_named – structure for named kstats

#include <sys/types.h>
#include <sys/kstat.h>
#include <sys/ddi.h>

#include <sys/sunddi.h>

Solaris DDI specific (Solaris DDI)

Named kstats are an array of name-value pairs. These pairs are kept in the
kstat_named structure. When a kstat is created by kstat_create(9F), the driver
specifies how many of these structures will be allocated. The structures are returned as
an array pointed to by the ks_data field.

union {
char c[16];
long l;
ulong_t ul;
longlong_t ll;
u_longlong_t ull;

} value; /* value of counter */

The only member exposed to drivers is the value member. This field is a union of
several data types. The driver must specify which type it will use in the call to
kstat_named_init().

kstat_create(9F), kstat_named_init(9F)

Writing Device Drivers

kstat_named(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

66 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 4 Apr 1994

linkblk – STREAMS data structure sent to multiplexor drivers to indicate a link

#include <sys/stream.h>

Architecture independent level 1 (DDI/DKI)

The linkblk structure is used to connect a lower Stream to an upper STREAMS
multiplexor driver. This structure is used in conjunction with the I_LINK, I_UNLINK,
P_LINK, and P_UNLINK ioctl commands. See streamio(7I). The M_DATA portion of
the M_IOCTL message contains the linkblk structure. Note that the linkblk
structure is allocated and initialized by the Stream head as a result of one of the above
ioctl commands.

queue_t *l_qtop; /* lowest level write queue of upper stream */
/* (set to NULL for persistent links) */

queue_t *l_qbot; /* highest level write queue of lower stream */

int l_index; /* index for lower stream. */

ioctl(2), streamio(7I)

STREAMS Programming Guide

linkblk(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

Data Structures for Drivers 67

modldrv – linkage structure for loadable drivers

#include <sys/modctl.h>

Solaris DDI specific (Solaris DDI)

The modldrv structure is used by device drivers to export driver specific information
to the kernel.

struct mod_ops *drv_modops;
char *drv_link info;

struct dev_ops *drv_dev_ops;

drv_modops Must always be initialized to the address of mod_driverops.
This member identifies the module as a loadable driver.

drv_linkinfo Can be any string up to MODMAXNAMELEN characters (including the
terminating NULL character), and is used to describe the module
and its version number. This is usually the name of the driver and
module version information, but can contain other information as
well.

drv_dev_ops Pointer to the driver’s dev_ops(9S) structure.

add_drv(1M), dev_ops(9S), modlinkage(9S)

Writing Device Drivers

modldrv(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

68 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 5 Mar 2001

modlinkage – module linkage structure

#include <sys/modctl.h>

Solaris DDI specific (Solaris DDI)

The modlinkage structure is provided by the module writer to the routines that
install, remove, and retrieve information from a module. See _init(9E), _fini(9E),
and _info(9E).

int ml_rev

void *ml_linkage[4];

ml_rev Is the revision of the loadable modules system. This must have the
value MODREV_1 .

ml_linkage Is a null-terminated array of pointers to linkage structures. Driver
modules have only one linkage structure.

add_drv(1M), _fini(9E), _info(9E), _init(9E), modldrv(9S), modlstrmod(9S)

Writing Device Drivers

modlinkage(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

Data Structures for Drivers 69

modlstrmod – linkage structure for loadable STREAMS modules

#include <sys/modctl.h>

Solaris DDI specific (Solaris DDI)

The modlstrmod structure is used by STREAMS modules to export module specific
information to the kernel.

struct mod_ops *strmod_modops;
char *strmod_linkinfo;

struct fmodsw *strmod_fmodsw;

strmod_modops Must always be initialized to the address of
mod_strmodops. This identifies the module as a
loadable STREAMS module.

strmod_linkinfo Can be any string up to MODMAXNAMELEN, and is used
to describe the module. This string is usually the name
of the module, but can contain other information (such
as a version number).

strmod_fmodsw Is a pointer to a template of a class entry within the
module that is copied to the kernel’s class table when
the module is loaded.

modload(1M)

Writing Device Drivers

modlstrmod(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

70 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 7 Jun 1993

module_info – STREAMS driver identification and limit value structure

#include <sys/stream.h>

Architecture independent level 1 (DDI/DKI).

When a module or driver is declared, several identification and limit values can be set.
These values are stored in the module_info structure.

The module_info structure is intended to be read-only. However, the flow control
limits (mi_hiwat and mi_lowat) and the packet size limits (mi_minpsz and
mi_maxpsz) are copied to the QUEUE structure, where they can be modified.

ushort_t mi_idnum; /* module ID number */
char *mi_idname; /* module name */
ssize_t mi_minpsz; /* maximum packet size */
size_t mi_hiwat; /* high water mark */

size_t mi_lowat; /* low water mark */

The constant FMNAMESZ, limiting the length of a module’s name, is set to eight in this
release.

queue(9S)

STREAMS Programming Guide

module_info(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

Data Structures for Drivers 71

msgb – STREAMS message block structure

#include <sys/stream.h>

Architecture independent level 1 (DDI/DKI)

A STREAMS message is made up of one or more message blocks, referenced by a
pointer to a msgb structure. The b_next and b_prev pointers are used to link
messages together on a QUEUE. The b_cont pointer links message blocks together
when a message consists of more than one block.

Each msgb structure also includes a pointer to a datab(9S) structure, the data block
(which contains pointers to the actual data of the message), and the type of the
message.

struct msgb *b_next; /* next message on queue */
struct msgb *b_prev; /* previous message on queue */
struct msgb *b_cont; /* next message block */
unsigned char *b_rptr; /* 1st unread data byte of buffer */
unsigned char *b_wptr; /* 1st unwritten data byte of buffer */
struct datab *b_datap; /* pointer to data block */
unsigned char b_band; /* message priority */

unsigned short b_flag; /* used by stream head */

Valid flags are as follows:

MSGMARK Last byte of message is marked.

MSGDELIM Message is delimited.

The msgb structure is defined as type mblk_t.

datab(9S)

Writing Device Drivers

STREAMS Programming Guide

msgb(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

72 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 11 Apr 1991

no-involuntary-power-cycles – device property to prevent involuntary power cycles

A device that might be damaged by power cycles should export the boolean (zero
length) property no-involuntary-power-cycles to notify the system that all
power cycles for the device must be under the control of the device driver.

The presence of this property prevents power from being removed from a device or
any ancestor of the device while the device driver is detached, unless the device was
voluntarily powered off as a result of the device driver calling pm_lower_power(9F).

The presence of no-involuntary-power-cycles also forces attachment of the
device driver during a CPR suspend operation and prevents the suspend from taking
place, unless the device driver returns DDI_SUCCESS when its detach(9E) entry
point is called with DDI_SUSPEND.

The presence of no-involuntary-power-cycles does not prevent the system
from being powered off due to a halt(1M) or uadmin(1M) invocation, except for CPR
suspend.

This property can be exported by a device that is not power manageable, in which
case power is not removed from the device or from any of its ancestors, even when the
driver for the device and the drivers for its ancestors are detached.

EXAMPLE 1 Use of Property in Driver’s Configuration File

The following is an example of a no-involuntary-power-cycles entry in a
driver’s .conf file:

no-involuntary-power-cycles=1;

...

EXAMPLE 2 Use of Property in attach() Function

The following is an example of how the preceding .conf file entry would be
implemented in the attach(9E) function of a driver:

xxattach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{
...

if (ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP,
"no-involuntary-power-cycles", NULL, 0) != DDI_PROP_SUCCESS)
goto failed;

...

}

See attributes(5) for descriptions of the following attributes:

no-involuntary-power-cycles(9P)

NAME

DESCRIPTION

EXAMPLES

ATTRIBUTES

Data Structures for Drivers 73

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface stability Evolving

attributes(5), pm(7D), attach(9E), detach(9E), ddi_prop_create(9F)

Writing Device Drivers

no-involuntary-power-cycles(9P)

SEE ALSO

74 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 22 Mar 2001

pm – Power Management properties

The pm-hardware-state property can be used to influence the behavior of the
Power Management framework. Its syntax and interpretation is described below.

Note that this property is only interpreted by the system immediately after the device
has successfully attached. Changes in the property made by the driver after the driver
has attached will not be recognized.

pm-hardware-state is a string-valued property. The existence of the
pm-hardware-state property indicates that a device needs special handling by the
Power Management framework with regard to its hardware state.

If the value of this property is needs-suspend-resume, the device has a hardware
state that cannot be deduced by the framework. The framework definition of a device
with hardware state is one with a reg property. Some drivers, such as SCSI disk and
tape drivers, have no reg property but manage devices with "remote" hardware. Such
a device must have a pm-hardware-state property with a value of
needs-suspend-resume for the system to identify it as needing a call to its
detach(9E) entry point with command DDI_SUSPEND when system is suspended,
and a call to attach(9E) with command DDI_RESUME when system is resumed. For
devices using original Power Management interfaces (which are now obsolete)
detach(9E) is also called with DDI_PM_SUSPEND before power is removed from the
device, and attach(9E) is called with DDI_PM_RESUME after power is restored.

A value of no-suspend-resume indicates that, in spite of the existence of a reg
property, a device has no hardware state that needs saving and restoring. A device
exporting this property will not have its detach() entry point called with command
DDI_SUSPEND when system is suspended, nor will its attach() entry point be
called with command DDI_RESUME when system is resumed. For devices using the
original (and now obsolete) Power Management interfaces, detach(9E) will not be
called with DDI_PM_SUSPEND command before power is removed from the device,
nor attach(9E) will be called with DDI_PM_RESUME command after power is
restored to the device.

A value of parental-suspend-resume indicates that the device does not
implement the detach(9E) DDI_SUSPEND semantics, nor the attach()
DDI_RESUME semantics, but that a call should be made up the device tree by the
framework to effect the saving and/or restoring of hardware state for this device. For
devices using original Power Management interfaces (which are now obsolete), it also
indicates that the device does not implement the detach(9E) DDI_PM_SUSPEND
semantics, nor the attach(9E) DDI_PM_RESUME semantics, but that a call should be
made up the device tree by the framework to effect the saving and/or restoring the
hardware state for this device.

See attributes(5) for descriptions of the following attributes:

pm(9P)

NAME

DESCRIPTION

ATTRIBUTES

Data Structures for Drivers 75

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface stability Evolving

power.conf(4), pm(7D), attach(9E), detach(9E), pm_busy_component(9F),
pm_create_components(9F), pm_destroy_components(9F),
pm_idle_component(9F), pm-components(9P)

Writing Device Drivers

pm(9P)

SEE ALSO

76 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 6 Mar 2001

pm-components – Power Management device property

A device is power manageable if the power consumption of the device can be reduced
when it is idle. In general, a power manageable device consists of a number of power
manageable hardware units called components. Each component is separately
controllable and has its own set of power parameters.

An example of a one-component power manageable device is a disk whose spindle
motor can be stopped to save power when the disk is idle. An example of a
two-component power manageable device is a frame buffer card with a connected
monitor. The frame buffer electronics (with power that can be reduced when not in
use) comprises the first component. The second component is the monitor, which can
enter in a lower power mode when not in use. The combination of frame buffer
electronics and monitor is considered as one device by the system.

In the Power Management framework, all components are considered equal and
completely independent of each other. If this is not true for a particular device, the
device driver must ensure that undesirable state combinations do not occur.

The pm-components property describes the Power Management model of a device
driver to the Power Management framework. It lists each power manageable
component by name and lists the power level supported by each component by
numerical value and name. Its syntax and interpretation is described below.

This property is only interpreted by the system immediately after the device has
successfully attached, or upon the first call into Power Management framework,
whichever comes first. Changes in the property made by the driver after the property
has been interpreted will not be recognized.

pm-components is a string array property. The existence of the pm-components
property indicates that a device implements power manageable components and
describes the Power Management model implemented by the device driver. The
existence of pm-components also indicates to the framework that device is ready for
Power Management if automatic device Power Management is enabled. See
power.conf(4).

The pm-component property syntax is:

pm-components="NAME=component name", "numeric power level=power level name",
"numeric power level=power level name"
[, "numeric power level=power level name" ...]
[, "NAME=component name", "numeric power level=power level name",
"numeric power level=power level name"

[, "numeric power level=power level name"...]...];

The start of each new component is represented by a string consisting of NAME=
followed by the name of the component. This should be a short name that a user
would recognize, such as "Monitor" or "Spindle Motor." The succeeding elements in
the string array must be strings consisting of the numeric value (can be decimal or 0x
<hexadecimal number>) of a power level the component supports, followed by an
equal sign followed by a short descriptive name for that power level. Again, the

pm-components(9P)

NAME

DESCRIPTION

Data Structures for Drivers 77

names should be descriptive, such as "On," "Off," "Suspend," "Standby," etc. The next
component continues the array in the same manner, with a string that starts out
NAME=, specifying the beginning of a new component (and its name), followed by
specifications of the power levels the component supports.

The components must be listed in increasing order according to the component
number as interpreted by the driver’s power(9E) routine. (Components are numbered
sequentially from 0). The power levels must be listed in increasing order of power
consumption. Each component must support at least two power levels, or there is no
possiblity of power level transitions. If a power level value of 0 is used, it must be the
first one listed for that component. A power level value of 0 has a special meaning (off)
to the Power Management framework.

An example of a pm-components entry from the .conf file of a driver which
implements a single power managed component consisting of a disk spindle motor is
shown below. This is component 0 and it supports 2 power level, which represent
spindle stopped or full speed.

pm-components="NAME=Spindle Motor", "0=Stopped", "1=Full Speed";

...

Below is an example of how the above entry would be implemented in the
attach(9E) function of the driver.

static char *pmcomps[] = {
"NAME=Spindle Motor",

"0=Stopped",
"1=Full Speed"

};

...

xxattach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{
...

if (ddi_prop_update_string_array(DDI_DEV_T_NONE, dip, "pm-components",
&pmcomp[0], sizeof (pmcomps) / sizeof (char *)) != DDI_PROP_SUCCESS)
goto failed;

}

Below is an example for a frame buffer which implements two components.
Component 0 is the frame buffer electronics which supports four different power
levels. Component 1 represents the state of Power Management of the attached
monitor.

pm-components="NAME=Frame Buffer", "0=Off"
"1=Suspend", "2=Standby", "3=On",

"NAME=Monitor", "0=Off", "1=Suspend", "2=Standby,"

"3=On;

See attributes(5) for descriptions of the following attributes:

pm-components(9P)

EXAMPLES

ATTRIBUTES

78 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 6 Mar 2001

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface stability Evolving

power.conf(4), pm(7D), attach(9E), detach(9E),
ddi_prop_update_string_array(9F) pm_busy_component(9F),
pm_create_components(9F), pm_destroy_components(9F),
pm_idle_component(9F)

Writing Device Drivers

pm-components(9P)

SEE ALSO

Data Structures for Drivers 79

qband – STREAMS queue flow control information structure

#include <sys/stream.h>

Architecture independent level 1 (DDI/DKI)

The qband structure contains flow control information for each priority band in a
queue.

The qband structure is defined as type qband_t.

struct qband*qb_next; /* next band’s info */
size_t qb_count /* number of bytes in band */
struct msgb *qb_first; /* start of band’s data */
struct msgb *qb_last; /* end of band’s data */
size_t qb_hiwat; /* band’s high water mark */
size_t qb_lowat; /* band’s low water mark */

uint_t qb_flag; /* see below */

Valid flags are as follows:

QB_FULL Band is considered full.

QB_WANTW Someone wants to write to band.

strqget(9F), strqset(9F), msgb(9S), queue(9S)

STREAMS Programming Guide

All access to this structure should be through strqget(9F) and strqset(9F). It is
logically part of the queue(9S) and its layout and partitioning with respect to that
structure might change in future releases. If portability is a concern, do not declare or
store instances of or references to this structure.

qband(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

NOTES

80 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 14 Nov 1996

qinit – STREAMS queue processing procedures structure

#include <sys/stream.h>

Architecture independent level 1 (DDI/DKI)

The qinit structure contains pointers to processing procedures for a QUEUE. The
streamtab structure for the module or driver contains pointers to one queue(9S)
structure for both upstream and downstream processing.

int (*qi_putp)(); /* put procedure */
int (*qi_srvp)(); /* service procedure */
int (*qi_qopen)(); /* open procedure */
int (*qi_qclose)(); /* close procedure */
int (*qi_qadmin)(); /* unused */
struct module_info *qi_minfo; /* module parameters */

struct module_stat *qi_mstat; /* module statistics */

queue(9S), streamtab(9S)

Writing Device Drivers

STREAMS Programming Guide

This release includes no support for module statistics.

qinit(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

NOTES

Data Structures for Drivers 81

queclass – a STREAMS macro that returns the queue message class definitions for a
given message block

#include <sys/stream.h>

queclass(mblk_t *bp);

Solaris DDI specific (Solaris DDI)

queclass returns the queue message class definition for a given data block pointed
to by the message block bp passed in.

The message can be either QNORM, a normal priority message, or QPCTL, a high
priority message.

STREAMS Programming Guide

queclass(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

SEE ALSO

82 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 07 Mar 1994

queue – STREAMS queue structure

#include <sys/stream.h>

Architecture independent level 1 (DDI/DKI)

A STREAMS driver or module consists of two queue structures, one for upstream
processing (read) and one for downstream processing (write). This structure is the
major building block of a stream. It contains pointers to the processing procedures,
pointers to the next and previous queues in the stream, flow control parameters, and a
pointer defining the position of its messages on the STREAMS scheduler list.

The queue structure is defined as type queue_t.

struct qinit*q_qinfo; /* module or driver entry points */
struct msgb*q_first; /* first message in queue */
struct msgb*q_last; /* last message in queue */
struct queue*q_next; /* next queue in stream */
struct queue*q_link; /* to next queue for scheduling*/
void *q_ptr; /* pointer to private data structure */
size_t q_count; /* approximate size of message queue */
uint_t q_flag; /* status of queue */
ssize_t q_minpsz; /* smallest packet accepted by QUEUE*/
ssize_t q_maxpsz; /*largest packet accepted by QUEUE */
size_t q_hiwat; /* high water mark */

size_t q_lowat; /* low water mark */

Valid flags are as follows:

QENAB Queue is already enabled to run.

QWANTR Someone wants to read queue.

QWANTW Someone wants to write to queue.

QFULL Queue is considered full.

QREADR This is the reader (first) queue.

QUSE This queue is in use (allocation).

QNOENB Do not enable queue by way of putq().

strqget(9F), strqset(9F), module_info(9S), msgb(9S), qinit(9S),
streamtab(9S)

Writing Device Drivers

STREAMS Programming Guide

queue(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

Data Structures for Drivers 83

removable-media – removable media device property

A device that supports removable media—such as CDROM, JAZZ, and ZIP
drives—and that supports power management and expects automatic mounting of the
device via the volume manager should export the boolean (zero length) property
removable-media. This property enables the system to make the power state of the
device dependent on the power state of the frame buffer and monitor. See the
power.conf(4) discussion of the device-dependency-property entry for more
information.

Devices that behave like removable devices (such as PC ATA cards, where the
controller and media both are removed at the same time) should also export this
property.

EXAMPLE 1 removable-media Entry

An example of a removable-media entry from the .conf file of a driver is shown
below.

This entry keeps removable media from being powered down unless
the console framebuffer and monitor are powered down
#

removable-media=1;

EXAMPLE 2 Implementation in attach()

Below is an example of how the entry above would be implemented in the
attach(9E) function of the driver.

xxattach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{
...

if (ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP,
"removable-media", NULL, 0)) != DDI_PROP_SUCCESS)
goto failed;

...

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface stability Evolving

power.conf(4), pm(7D), attach(9E), detach(9E), ddi_prop_create(9F)

Writing Device Drivers

removable-media(9P)

NAME

DESCRIPTION

EXAMPLES

ATTRIBUTES

SEE ALSO

84 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 15 Jun 2001

scsi_address – SCSI address structure

#include <sys/scsi/scsi.h>

Solaris architecture specific (Solaris DDI)

A scsi_address structure defines the addressing components for a SCSI target
device. The address of the target device is separated into two components: target
number and logical unit number. The two addressing components are used to
uniquely identify any type of SCSI device; however, most devices can be addressed
with the target component of the address.

In the case where only the target component is used to address the device, the logical
unit should be set to 0. If the SCSI target device supports logical units, then the HBA
must interpret the logical units field of the data structure.

The pkt_address member of a scsi_pkt(9S) is initialized by scsi_init_pkt(9F).

scsi_hba_tran_t *a_hba_tran; /* Transport vectors for the SCSI bus */
ushort_t a_target; /* SCSI target id */

uchar_t a_lun; /* SCSI logical unit */

a_hba_tran is a pointer to the controlling HBA’s transport vector structure. The
SCSA interface uses this field to pass any transport requests from the SCSI target
device drivers to the HBA driver.

a_target is the target component of the SCSI address.

a_lun is the logical unit component of the SCSI address. The logical unit is used to
further distinguish a SCSI target device that supports multiple logical units from one
that does not. The makecom(9F) family of functions use the a_lun field to set the
logical unit field in the SCSI CDB, for compatibility with SCSI-1.

makecom(9F), scsi_init_pkt(9F), scsi_hba_tran(9S), scsi_pkt(9S)

Writing Device Drivers

scsi_address(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

Data Structures for Drivers 85

scsi_arq_status – SCSI auto request sense structure

#include <sys/scsi/scsi.h>

Solaris DDI specific (Solaris DDI)

When auto request sense has been enabled using scsi_ifsetcap(9F) and the
"auto-rqsense" capability, the target driver must allocate a status area in the SCSI
packet structure for the auto request sense structure (see scsi_pkt(9S)). In the event
of a check condition, the transport layer automatically executes a request sense
command. This check ensures that the request sense information does not get lost. The
auto request sense structure supplies the SCSI status of the original command, the
transport information pertaining to the request sense command, and the request sense
data.

struct scsi_status sts_status; /* SCSI status */
struct scsi_status sts_rqpkt_status; /* SCSI status of

request sense cmd */
uchar_t sts_rqpkt_reason; /* reason completion */
uchar_t sts_rqpkt_resid; /* residue */
uint_t sts_rqpkt_state; /* state of command */
uint_t sts_rqpkt_statistics; /* statistics */

struct scsi_extended_sense sts_sensedata; /* actual sense data */

sts_status is the SCSI status of the original command. If the status indicates a
check condition, the transport layer might have performed an auto request sense
command.

sts_rqpkt_status is the SCSI status of the request sense command.
sts_rqpkt_reason is the completion reason of the request sense command. If the
reason is not CMD_CMPLT, then the request sense command did not complete
normally.

sts_rqpkt_resid is the residual count of the data transfer and indicates the number
of data bytes that have not been transferred. The auto request sense command
requests SENSE_LENGTH bytes.

sts_rqpkt_state has bit positions representing the five most important statuses
that a SCSI command can go obtain.

sts_rqpkt_statistics maintains transport-related statistics of the request sense
command.

sts_sensedata contains the actual sense data if the request sense command
completed normally.

scsi_ifgetcap(9F), scsi_init_pkt(9F), scsi_extended_sense(9S),
scsi_pkt(9S)

Writing Device Drivers

scsi_arq_status(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

86 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 30 Sep 1996

scsi_asc_key_strings – SCSI ASC ASCQ to message structure

#include <sys/scsi/scsi.h>

Solaris DDI specific (Solaris DDI).

The scsi_asc_key_strings structure stores the ASC and ASCQ codes and a
pointer to the related ASCII string.

ushort_t asc; /* ASC code */
ushort_t ascq; /* ASCQ code */
char *message; /* ASCII message string */

asc Contains the ASC key code.

ascq Contains the ASCQ code.

message Points to the NULL terminated ASCII string

describing the asc and ascq condition

scsi_vu_errmsg(9F)

ANSI Small Computer System Interface-2 (SCSI-2)

Writing Device Drivers

scsi_asc_key_strings(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

Data Structures for Drivers 87

scsi_device – SCSI device structure

#include <sys/scsi/scsi.h>

Solaris DDI specific (Solaris DDI).

The scsi_device structure stores common information about each SCSI logical unit,
including pointers to areas that contain both generic and device specific information.
There is one scsi_device structure for each logical unit attached to the system. The
host adapter driver initializes part of this structure prior to probe(9E) and destroys
this structure after a probe failure or successful detach(9E).

struct scsi_address sd_address; /* Routing information */
dev_info_t *sd_dev; /* Cross-reference */

/* to our dev_info_t */
kmutex_t sd_mutex; /* Mutex for this device */
struct scsi_inquiry *sd_inq; /* scsi_inquiry data structure */
struct scsi_extended_sense *sd_sense; /* Optional request */

/* sense buffer ptr */

caddr_t sd_private; /* Target drivers private data */

sd_address contains the routing information that the target driver normally copies
into a scsi_pkt(9S) structure using the collection of makecom(9F) functions. The
SCSA library routines use this information to determine which host adapter, SCSI bus,
and target/logical unit number (lun) a command is intended for. This structure is
initialized by the host adapter driver.

sd_dev is a pointer to the corresponding dev_info structure. This pointer is
initialized by the host adapter driver.

sd_mutex is a mutual exclusion lock for this device. It is used to serialize access to a
device. The host adapter driver initializes this mutex. See mutex(9F).

sd_inq is initially NULL (zero). After executing scsi_probe(9F), this field contains
the inquiry data associated with the particular device.

sd_sense is initially NULL (zero). If the target driver wants to use this field for
storing REQUEST SENSE data, it should allocate an scsi_extended_sense(9S)
buffer and set this field to the address of this buffer.

sd_private is reserved for the use of target drivers and should generally be used to
point to target specific data structures.

detach(9E), probe(9E), makecom(9F), mutex(9F), scsi_probe(9F),
scsi_extended_sense(9S), scsi_pkt(9S)

Writing Device Drivers

scsi_device(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

88 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 19 Feb 1993

scsi_extended_sense – SCSI extended sense structure

#include <sys/scsi/scsi.h>

Solaris DDI specific (Solaris DDI).

The scsi_extended_sense structure for error codes 0x70 (current errors) and
0x71 (deferred errors) is returned on a successful REQUEST SENSE command. SCSI-2
compliant targets are required to return at least the first 18 bytes of this structure. This
structure is part of scsi_device(9S) structure.

uchar_t es_valid :1; /* Sense data is valid */
uchar_t es_class :3; /* Error Class- fixed at 0x7 */
uchar_t es_code :4; /* Vendor Unique error code */
uchar_t es_segnum; /* Segment number: for COPY cmd only */
uchar_t es_filmk :1; /* File Mark Detected */
uchar_t es_eom :1; /* End of Media */
uchar_t es_ili :1; /* Incorrect Length Indicator */
uchar_t es_key :4; /* Sense key */
uchar_t es_info_1; /* Information byte 1 */
uchar_t es_info_2; /* Information byte 2 */
uchar_t es_info_3; /* Information byte 3 */
uchar_t es_info_4; /* Information byte 4 */
uchar_t es_add_len; /* Number of additional bytes */
uchar_t es_cmd_info[4]; /* Command specific information */
uchar_t es_add_code; /* Additional Sense Code */
uchar_t es_qual_code; /* Additional Sense Code Qualifier */
uchar_t es_fru_code; /* Field Replaceable Unit Code */

uchar_t es_skey_specific[3]; /* Sense Key Specific information */

es_valid, if set, indicates that the information field contains valid information.

es_class should be 0x7.

es_code is either 0x0 or 0x1.

es_segnum contains the number of the current segment descriptor if the REQUEST
SENSE command is in response to a COPY, COMPARE, and COPY AND VERIFY
command.

es_filmk, if set, indicates that the current command had read a file mark or set mark
(sequential access devices only).

es_eom, if set, indicates that an end-of-medium condition exists (sequential access
and printer devices only).

es_ili, if set, indicates that the requested logical block length did not match the
logical block length of the data on the medium.

es_key indicates generic information describing an error or exception condition. The
following sense keys are defined:

KEY_NO_SENSE
Indicates that there is no specific sense key information to be reported.

scsi_extended_sense(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

Data Structures for Drivers 89

KEY_RECOVERABLE_ERROR
Indicates that the last command completed successfully with some recovery action
performed by the target.

KEY_NOT_READY
Indicates that the logical unit addressed cannot be accessed.

KEY_MEDIUM_ERROR
Indicates that the command terminated with a non-recovered error condition that
was probably caused by a flaw on the medium or an error in the recorded data.

KEY_HARDWARE_ERROR
Indicates that the target detected a non-recoverable hardware failure while
performing the command or during a self test.

KEY_ILLEGAL_REQUEST
Indicates that there was an illegal parameter in the CDB or in the additional
parameters supplied as data for some commands.

KEY_UNIT_ATTENTION
Indicates that the removable medium might have been changed or the target has
been reset.

KEY_WRITE_PROTECT/KEY_DATA_PROTECT
Indicates that a command that reads or writes the medium was attempted on a
block that is protected from this operation.

KEY_BLANK_CHECK
Indicates that a write-once device or a sequential access device encountered blank
medium or format-defined end-of-data indication while reading or a write-once
device encountered a non-blank medium while writing.

KEY_VENDOR_UNIQUE
This sense key is available for reporting vendor-specific conditions.

KEY_COPY_ABORTED
Indicates that a COPY, COMPARE, and COPY AND VERIFY command was aborted.

KEY_ABORTED_COMMAND
Indicates that the target aborted the command.

KEY_EQUAL
Indicates that a SEARCH DATA command has satisfied an equal comparison.

KEY_VOLUME_OVERFLOW
Indicates that a buffered peripheral device has reached the end-of-partition and
data might remain in the buffer that has not been written to the medium.

KEY_MISCOMPARE
Indicates that the source data did not match the data read from the medium.

KEY_RESERVE
Indicates that the target is currently reserved by a different initiator.

es_info_{1,2,3,4} is device-type or command specific.

scsi_extended_sense(9S)

90 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 30 Aug 1995

es_add_len indicates the number of additional sense bytes to follow.

es_cmd_info contains information that depends on the command that was executed.

es_add_code (ASC) indicates further information related to the error or exception
condition reported in the sense key field.

es_qual_code (ASCQ) indicates detailed information related to the additional sense
code.

es_fru_code (FRU) indicates a device-specific mechanism to unit that has failed.

es_skey_specific is defined when the value of the sense-key specific valid bit (bit
7) is 1. This field is reserved for sense keys not defined above.

scsi_device(9S)

ANSI Small Computer System Interface-2 (SCSI-2)

Writing Device Drivers

scsi_extended_sense(9S)

SEE ALSO

Data Structures for Drivers 91

scsi_hba_tran – SCSI Host Bus Adapter (HBA) driver transport vector structure

#include <sys/scsi/scsi.h>

Solaris architecture specific (Solaris DDI).

A scsi_hba_tran_t structure defines vectors that an HBA driver exports to SCSA
interfaces so that HBA specific functions can be executed.

dev_info_t *tran_hba_dip; /* HBAs dev_info pointer */
void *tran_hba_private; /* HBA softstate */
void *tran_tgt_private; /* HBA target private pointer */
struct scsi_device *tran_sd; /* scsi_device */
int (*tran_tgt_init)(); /* Transport target */

/* Initialization */
int (*tran_tgt_probe)(); /* Transport target probe */
void (*tran_tgt_free)(); /* Transport target free */
int (*tran_start)(); /* Transport start */
int (*tran_reset)(); /* Transport reset */
int (*tran_abort)(); /* Transport abort */
int (*tran_getcap)(); /* Capability retrieval */
int (*tran_setcap)(); /* Capability establishment */
struct scsi_pkt *(*tran_init_pkt)(); /* Packet and DMA allocation */
void (*tran_destroy_pkt)(); /* Packet and DMA */

/* deallocation */
void (*tran_dmafree)(); /* DMA deallocation */
void (*tran_sync_pkt)(); /* Sync DMA */
void (*tran_reset_notify)(); /* Bus reset notification */
int (*tran_bus_reset)(); /* Reset bus only */
int (*tran_quiesce)(); /* Quiesce a bus */

int (*tran_unquiesce)(); /* Unquiesce a bus */

tran_hba_dip dev_info pointer to the HBA supplying the
scsi_hba_tran structure.

tran_hba_private Private pointer that the HBA driver can use to refer to
the device’s soft state structure.

tran_tgt_private Private pointer that the HBA can use to refer to
per-target specific data. This field can only be used
when the SCSI_HBA_TRAN_CLONE flag is specified in
scsi_hba_attach(9F). In this case, the HBA driver
must initialize this field in its tran_tgt_init(9E)
entry point.

tran_sd Pointer to scsi_device(9S) structure if cloning;
otherwise NULL.

tran_tgt_init The function entry allowing per-target HBA
initialization, if necessary.

tran_tgt_probe The function entry allowing per-target
scsi_probe(9F) customization, if necessary.

tran_tgt_free The function entry allowing per-target HBA
deallocation, if necessary.

scsi_hba_tran(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

92 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 20 Sep 1994

tran_start The function entry that starts a SCSI command
execution on the HBA hardware.

tran_reset The function entry that resets a SCSI bus or target
device.

tran_abort The function entry that aborts one SCSI command, or
all pending SCSI commands.

tran_getcap The function entry that retrieves a SCSI capability.

tran_setcap The function entry that sets a SCSI capability.

tran_init_pkt The function entry that allocates a scsi_pkt structure.

tran_destroy_pkt The function entry that frees a scsi_pkt structure
allocated by tran_init_pkt.

tran_dmafree The function entry that frees DMA resources that were
previously allocated by tran_init_pkt.

tran_sync_pkt Synchronize data in pkt after a data transfer has been
completed.

tran_reset_notify The function entry allowing a target to register a bus
reset notification request with the HBA driver.

tran_bus_reset The function entry that resets the SCSI bus without
resetting targets.

tran_quiesce The function entry that waits for all outstanding
commands to complete and blocks (or queues) any I/O
requests issued.

tran_unquiesce The function entry that allows I/O activities to resume
on the SCSI bus.

tran_abort(9E), tran_bus_reset(9E), tran_destroy_pkt(9E),
tran_dmafree(9E), tran_getcap(9E), tran_init_pkt(9E), tran_quiesce(9E),
tran_reset(9E), tran_reset_notify(9E), tran_setcap(9E), tran_start(9E),
tran_sync_pkt(9E), tran_tgt_free(9E), tran_tgt_init(9E),
tran_tgt_probe(9E), tran_unquiesce(9E), ddi_dma_sync(9F),
scsi_hba_attach(9F), scsi_hba_pkt_alloc(9F), scsi_hba_pkt_free(9F),
scsi_probe(9F), scsi_device(9S), scsi_pkt(9S)

Writing Device Drivers

scsi_hba_tran(9S)

SEE ALSO

Data Structures for Drivers 93

scsi_inquiry – SCSI inquiry structure

#include <sys/scsi/scsi.h>

Solaris DDI specific (Solaris DDI).

The scsi_inquiry structure contains 36 required bytes, followed by a variable
number of vendor-specific parameters. Bytes 59 through 95, if returned, are reserved
for future standardization. This structure is part of scsi_device(9S) structure and
typically filled in by scsi_probe(9F).

uchar_t inq_dtype; /* Peripheral qualifier, device type */
uchar_t inq_rmb :1; /* Removable media */
uchar_t inq_qual :7; /* Device type qualifier */
uchar_t inq_iso :2; /* ISO version */
uchar_t inq_ecma :3; /* ANSI version */
uchar_t inq_aenc :1; /* Async event notification cap. */
uchar_t inq_trmiop :1; /* Supports TERMINATE I/O PROC msg */
uchar_t inq_rdf :4; /* Response data format */
uchar_t inq_len; /* Additional length */
uchar_t inq_reladdr :1; /* Supports relative addressing */
uchar_t inq_wbus32 :1; /* Supports 32 bit wide data xfers */
uchar_t inq_wbus16 :1; /* Supports 16 bit wide data xfers */
uchar_t inq_sync :1; /* Supports synchronous data xfers */
uchar_t inq_linked :1; /* Supports linked commands */
uchar_t inq_cmd_que :1; /* Supports command queueing */
uchar_t inq_sftre :1; /* Supports Soft Reset option */
char inq_vid[8]; /* Vendor ID */
char inq_pid[16]; /* Product ID */

char inq_revision[4]; /* Revision level */

inq_dtype identifies the type of device. Bits 0 - 4 represent the Peripheral Device
Type and bits 5 - 7 represent the Peripheral Qualifier. The following values are
appropriate for Peripheral Device Type field:

DTYPE_ARRAY_CTRL Array controller device (for example, RAID).

DTYPE_DIRECT Direct-access device (for example, magnetic disk).

DTYPE_ESI Enclosure services device.

DTYPE_SEQUENTIAL Sequential-access device (for example, magnetic tape).

DTYPE_PRINTER Printer device.

DTYPE_PROCESSOR Processor device.

DTYPE_WORM Write-once device (for example, some optical disks).

DTYPE_RODIRECT CD-ROM device.

DTYPE_SCANNER Scanner device.

DTYPE_OPTICAL Optical memory device (for example, some optical
disks).

DTYPE_CHANGER Medium Changer device (for example, jukeboxes).

scsi_inquiry(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

94 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 1 Apr 1997

DTYPE_COMM Communications device.

DTYPE_UNKNOWN Unknown or no device type.

DTYPE_MASK Mask to isolate Peripheral Device Type field.

The following values are appropriate for the Peripheral Qualifier field:

DPQ_POSSIBLE The specified peripheral device type is currently
connected to this logical unit. If the target cannot
determine whether or not a physical device is currently
connected, it uses this peripheral qualifier when
returning the INQUIRY data. This peripheral qualifier
does not imply that the device is ready for access by
the initiator.

DPQ_SUPPORTED The target is capable of supporting the specified
peripheral device type on this logical unit. However,
the physical device is not currently connected to this
logical unit.

DPQ_NEVER The target is not capable of supporting a physical
device on this logical unit. For this peripheral qualifier,
the peripheral device type shall be set to
DTYPE_UNKNOWN to provide compatibility with
previous versions of SCSI. For all other peripheral
device type values, this peripheral qualifier is reserved.

DPQ_VUNIQ This is a vendor-unique qualifier.

DTYPE_NOTPRESENT is the peripheral qualifier DPQ_NEVER and the peripheral device
type DTYPE_UNKNOWN combined.

inq_rmb, if set, indicates that the medium is removable.

inq_qual is a device type qualifier.

inq_iso indicates ISO version.

inq_ecma indicates ECMA version.

inq_ansi indicates ANSI version.

inq_aenc, if set, indicates that the device supports asynchronous event notification
capability as defined in SCSI-2 specification.

inq_trmiop, if set, indicates that the device supports the TERMINATE I/O PROCESS
message.

inq_rdf, if reset, indicates the INQUIRY data format is as specified in SCSI-1.

scsi_inquiry(9S)

Data Structures for Drivers 95

inq_inq_len is the additional length field that specifies the length in bytes of the
parameters.

inq_reladdr, if set, indicates that the device supports the relative addressing mode
of this logical unit.

inq_wbus32, if set, indicates that the device supports 32-bit wide data transfers.

inq_wbus16, if set, indicates that the device supports 16-bit wide data transfers.

inq_sync, if set, indicates that the device supports synchronous data transfers.

inq_linked, if set, indicates that the device supports linked commands for this
logical unit.

inq_cmdque, if set, indicates that the device supports tagged command queueing.

inq_sftre, if reset, indicates that the device responds to the RESET condition with
the hard RESET alternative. If this bit is set, this indicates that the device responds
with the soft RESET alternative.

inq_vid contains eight bytes of ASCII data identifying the vendor of the product.

inq_pid contains sixteen bytes of ASCII data as defined by the vendor.

inq_revision contains four bytes of ASCII data as defined by the vendor.

scsi_probe(9F), scsi_device(9S)

ANSI Small Computer System Interface-2 (SCSI-2)

Writing Device Drivers

scsi_inquiry(9S)

SEE ALSO

96 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 1 Apr 1997

scsi_pkt – SCSI packet structure

#include <sys/scsi/scsi.h>

Solaris DDI specific (Solaris DDI).

A scsi_pkt structure defines the packet that is allocated by scsi_init_pkt(9F).
The target driver fills in some information, and passes it to scsi_transport(9F) for
execution on the target. The host bus adapter (HBA) fills in some other information as
the command is processed. When the command completes (or can be taken no further)
the completion function specified in the packet is called, with a pointer to the packet
as its argument. From fields within the packet, the target driver can determine the
success or failure of the command.

opaque_t pkt_ha_private;
/* private data for host adapter */

struct scsi_address pkt_address;
/* destination packet */

opaque_t pkt_private;
/* private data for target driver */

void (*pkt_comp)(struct scsi_pkt *);
/* callback */

uint_t pkt_flags;
/* flags */

int pkt_time;
/* time allotted to complete command */

uchar_t *pkt_scbp;
/* pointer to status block */

uchar_t *pkt_cdbp;
/* pointer to command block */

ssize_t pkt_resid;
/* number of bytes not transferred */

uint_t pkt_state;
/* state of command */

uint_t pkt_statistics;
/* statistics */

uchar_t pkt_reason;

/* reason completion called */

pkt_ha_private An opaque pointer that the Host Bus Adapter uses to
reference a private data structure used to transfer
scsi_pkt requests.

pkt_address Initialized by scsi_init_pkt(9F); pkt_address
records the intended route and recipient of a request.

pkt_private Reserved for the use of the target driver;
pkt_private is not changed by the HBA driver.

pkt_comp Specifies the command completion callback routine.
When the host adapter driver has gone as far as it can
in transporting a command to a SCSI target, and the
command has either run to completion or can go no
further for some other reason, the host adapter driver

scsi_pkt(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

Data Structures for Drivers 97

will call the function pointed to by this field and pass a
pointer to the packet as argument. The callback routine
itself is called from interrupt context and must not
sleep or call any function that might sleep.

pkt_flags Provides additional information about how the target
driver expects the command to be executed. See
pkt_flag Definitions.

pkt_time Will be set by the target driver to represent the
maximum time in seconds that this command is
allowed to take to complete. Timeout starts when the
command is transmitted on the SCSI bus. pkt_time
may be 0 if no timeout is required.

pkt_scbp Points to either a struct scsi_status(9S) or, if
auto–rqsense is enabled, and pkt_state includes
STATE_ARQ_DONE, a struct scsi_arq_status. If
scsi_status is returned, the SCSI status byte
resulting from the requested command is available; if
scsi_arq_status(9S) is returned, the sense
information is also available.

pkt_cdbp Points to a kernel-addressable buffer whose length was
specified by a call to the proper resource allocation
routine, scsi_init_pkt(9F).

pkt_resid Contains a residual count, either the number of data
bytes that have not been transferred (
scsi_transport(9F)) or the number of data bytes for
which DMA resources could not be allocated
scsi_init_pkt(9F). In the latter case, partial DMA
resources may only be allocated if
scsi_init_pkt(9F) is called with the
PKT_DMA_PARTIAL flag.

pkt_state Has bit positions that represent the six most important
states that a SCSI command can go through (see
pkt_state Definitions).

pkt_statistics Maintains some transport-related statistics. (see
pkt_statistics Definitions).

pkt_reason Contains a completion code that indicates why the
pkt_comp function was called. See pkt_reason
Definitions, below.

The host adapter driver will update the pkt_resid, pkt_reason, pkt_state, and
pkt_statistics fields.

The appropriate definitions for the structure member pkt_flags are:

scsi_pkt(9S)

pkt_flags
Definitions:

98 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 24 May 2001

FLAG_NOINTR
Run command with no command completion callback; command is complete upon
return from scsi_transport(9F).

FLAG_NODISCON
Run command without disconnects.

FLAG_NOPARITY
Run command without parity checking.

FLAG_HTAG
Run command as the head-of-queue-tagged command.

FLAG_OTAG
Run command as an ordered-queue-tagged command.

FLAG_STAG
Run command as a simple-queue —tagged command.

FLAG_SENSING
Indicates command is a request sense command.

FLAG_HEAD
Place command at the head of the queue.

FLAG_RENEGOTIATE_WIDE_SYNC
Before transporting this command, the host adapter should initiate the
renegotiation of wide mode and synchronous transfer speed. Normally the HBA
driver manages negotiations but under certain conditions forcing a renegotiation is
appropriate. Renegotiation is recommended before Request Sense and Inquiry
commands. (Refer to the SCSI 2 standard, sections 6.6.21 and 6.6.23.) This flag
should not be set for every packet as this will severely impact performance.

The appropriate definitions for the structure member pkt_reason are:

CMD_CMPLT No transport errors; normal completion.

CMD_INCOMPLETE Transport stopped with abnormal state.

CMD_DMA_DERR DMA direction error.

CMD_TRAN_ERR Unspecified transport error.

CMD_RESET SCSI bus reset destroyed command.

CMD_ABORTED Command transport aborted on request.

CMD_TIMEOUT Command timed out.

CMD_DATA_OVR Data overrun.

CMD_CMD_OVR Command overrun.

CMD_STS_OVR Status overrun.

CMD_BADMSG Message not command complete.

scsi_pkt(9S)

pkt_reason
Definitions:

Data Structures for Drivers 99

CMD_NOMSGOUT Target refused to go to message out phase.

CMD_XID_FAIL Extended identify message rejected.

CMD_IDE_FAIL “Initiator Detected Error” message rejected.

CMD_ABORT_FAIL Abort message rejected.

CMD_REJECT_FAIL Reject message rejected.

CMD_NOP_FAIL “No Operation” message rejected.

CMD_PER_FAIL “Message Parity Error” message rejected.

CMD_BDR_FAIL “Bus Device Reset" message rejected.

CMD_ID_FAIL Identify message rejected.

CMD_UNX_BUS_FREE Unexpected bus free phase.

CMD_TAG_REJECT Target rejected the tag message.

The appropriate definitions for the structure member pkt_state are:

STATE_GOT_BUS Bus arbitration succeeded.

STATE_GOT_TARGET Target successfully selected.

STATE_SENT_CMD Command successfully sent.

STATE_XFERRED_DATA Data transfer took place.

STATE_GOT_STATUS Status received.

STATE_ARQ_DONE The command resulted in a check condition and the
host adapter driver executed an automatic request
sense command.

The definitions that are appropriate for the structure member pkt_statistics are:

STAT_DISCON Device disconnect.

STAT_SYNC Command did a synchronous data transfer.

STAT_PERR SCSI parity error.

STAT_BUS_RESET Bus reset.

STAT_DEV_RESET Device reset.

STAT_ABORTED Command was aborted.

STAT_TIMEOUT Command timed out.

tran_init_pkt(9E), scsi_arq_status(9S), scsi_init_pkt(9F),
scsi_transport(9F), scsi_status(9S)

Writing Device Drivers

scsi_pkt(9S)

pkt_state
Definitions:

pkt_statistics
Definitions:

SEE ALSO

100 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 24 May 2001

scsi_status – SCSI status structure

#include <sys/scsi/scsi.h>

Solaris DDI specific (Solaris DDI)

The SCSI-2standard defines a status byte that is normally sent by the target to the
initiator during the status phase at the completion of each command.

uchar sts_scsi2 :1; /* SCSI-2 modifier bit */
uchar sts_is :1; /* intermediate status sent */
uchar sts_busy :1; /* device busy or reserved */
uchar sts_cm :1; /* condition met */

ucha sts_chk :1; /* check condition */

sts_chk indicates that a contingent allegiance condition has occurred.

sts_cm is returned whenever the requested operation is satisfied

sts_busy indicates that the target is busy. This status is returned whenever a target is
unable to accept a command from an otherwise acceptable initiator (that is, no
reservation conflicts). The recommended initiator recovery action is to issue the
command again later.

sts_is is returned for every successfully completed command in a series of linked
commands (except the last command), unless the command is terminated with a check
condition status, reservation conflict, or command terminated status. Note that host
bus adapter drivers may not support linked commands (see scsi_ifsetcap(9F)). If
sts_is and sts_busy are both set, then a reservation conflict has occurred.

sts_scsi2 is the SCSI-2 modifier bit. If sts_scsi2 and sts_chk are both set, this
indicates a command terminated status. If sts_scsi2 and sts_busy are both set,
this indicates that the command queue in the target is full.

For accessing the status as a byte, the following values are appropriate:

STATUS_GOOD This status indicates that the target has
successfully completed the command.

STATUS_CHECK This status indicates that a contingent
allegiance condition has occurred.

STATUS_MET This status is returned when the requested
operations are satisfied.

STATUS_BUSY This status indicates that the target is busy.

STATUS_INTERMEDIATE This status is returned for every
successfully completed command in a series
of linked commands.

STATUS_SCSI2 This is the SCSI-2 modifier bit.

scsi_status(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

Data Structures for Drivers 101

STATUS_INTERMEDIATE_MET This status is a combination of
STATUS_MET and
STATUS_INTERMEDIATE.

STATUS_RESERVATION_CONFLICT This status is a combination of
STATUS_INTERMEDIATE and
STATUS_BUSY, and it is returned whenever
an initiator attempts to access a logical unit
or an extent within a logical unit is
reserved.

STATUS_TERMINATED This status is a combination of
STATUS_SCSI2 and STATUS_CHECK, and
it is returned whenever the target
terminates the current I/O process after
receiving a terminate I/O process message.

STATUS_QFULL This status is a combination of
STATUS_SCSI2 and STATUS_BUSY, and it
is returned when the command queue in
the target is full.

scsi_ifgetcap(9F), scsi_init_pkt(9F), scsi_extended_sense(9S),
scsi_pkt(9S)

Writing Device Drivers

scsi_status(9S)

SEE ALSO

102 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 30 Aug 1995

streamtab – STREAMS entity declaration structure

#include <sys/stream.h>

Architecture independent level 1 (DDI/DKI).

Each STREAMS driver or module must have a streamtab structure.

streamtab is made up of qinit structures for both the read and write queue
portions of each module or driver. Multiplexing drivers require both upper and lower
qinit structures. The qinit structure contains the entry points through which the
module or driver routines are called.

Normally, the read QUEUE contains the open and close routines. Both the read and
write queue can contain put and service procedures.

struct qinit *st_rdinit; /* read QUEUE */
struct qinit *st_wrinit; /* write QUEUE */
struct qinit *st_muxrinit; /* lower read QUEUE*/

struct qinit *st_muxwinit; /* lower write QUEUE*/

qinit(9S)

STREAMS Programming Guide

streamtab(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

Data Structures for Drivers 103

stroptions – options structure for M_SETOPTS message

#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/ddi.h>

#include <sys/sunddi.h>

Architecture independent level 1 (DDI/DKI)

The M_SETOPTS message contains a stroptions structure and is used to control
options in the stream head.

uint_t so_flags; /* options to set */
short so_readopt; /* read option */
ushort_t so_wroff; /* write offset */
ssize_t so_minpsz; /* minimum read packet size */
ssize_t so_maxpsz; /* maximum read packet size */
size_t so_hiwat; /* read queue high water mark */
size_t so_lowat; /* read queue low water mark */
unsigned char so_band; /* band for water marks */

ushort_t so_erropt; /* error option */

The following are the flags that can be set in the so_flags bit mask in the
stroptions structure. Note that multiple flags can be set.

SO_READOPT Set read option.

SO_WROFF Set write offset.

SO_MINPSZ Set minimum packet size

SO_MAXPSZ Set maximum packet size.

SO_HIWAT Set high water mark.

SO_LOWAT Set low water mark.

SO_MREADON Set read notification ON.

SO_MREADOFF Set read notification OFF.

SO_NDELON Old TTY semantics for NDELAY reads and writes.

SO_NDELOFFSTREAMS Semantics for NDELAY reads and writes.

SO_ISTTY The stream is acting as a terminal.

SO_ISNTTY The stream is not acting as a terminal.

SO_TOSTOP Stop on background writes to this stream.

SO_TONSTOP Do not stop on background writes to this stream.

SO_BAND Water marks affect band.

SO_ERROPT Set error option.

stroptions(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

104 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 14 Nov 1996

When SO_READOPT is set, the so_readopt field of the stroptions structure can
take one of the following values. See read(2).

RNORM Read message normal.

RMSGD Read message discard.

RMSGN Read message, no discard.

When SO_BAND is set, so_band determines to which band so_hiwat and so_lowat
apply.

When SO_ERROPT is set, the so_erropt field of the stroptions structure can take
a value that is either none or one of:

RERRNORM Persistent read errors; default.

RERRNONPERSIST Non-persistent read errors.

OR’ed with either none or one of:

WERRNORM Persistent write errors; default.

WERRNONPERSIST Non-persistent write errors.

read(2), streamio(7I)

STREAMS Programming Guide

stroptions(9S)

SEE ALSO

Data Structures for Drivers 105

tuple – card information structure (CIS) access structure

#include <sys/pccard.h>

Solaris DDI Specific (Solaris DDI)

The tuple_t structure is the basic data structure provided by card services to manage
PC card information. A PC card provides identification and configuration information
through its card information structure (CIS). A PC card driver accesses a PC card’s CIS
through various card services functions.

The CIS information allows PC cards to be self-identifying: the CIS provides
information to the system so that it can identify the proper PC card driver for the PC
card, and provides configuration information so that the driver can allocate
appropriate resources to configure the PC card for proper operation in the system.

The CIS information is contained on the PC card in a linked list of tuple data
structures called a CIS chain. Each tuple has a one-byte type and a one-byte link, an
offset to the next tuple in the list. A PC card can have one or more CIS chains.

A multi-function PC card that complies with the PC Card 95 MultiFunction
Metaformat specification will have one or more global CIS chains that collectively are
referred to as the global CIS. These PC Cards will also have one or more per-function
CIS chains. Each per-function collection of CIS chains is referred to as a
function-specific CIS.

To examine a PC card’s CIS, first a PC card driver must locate the desired tuple by
calling csx_GetFirstTuple(9F). Once the first tuple is located, subsequent tuples
may be located by calling csx_GetNextTuple(9F). See csx_GetFirstTuple(9F).
The linked list of tuples may be inspected one by one, or the driver may narrow the
search by requesting only tuples of a particular type.

Once a tuple has been located, the PC card driver may inspect the tuple data. The
most convenient way to do this for standard tuples is by calling one of the number of
tuple-parsing utility functions; for custom tuples, the driver may get access to the raw
tuple data by calling csx_GetTupleData(9F).

Solaris PC card drivers do not need to be concerned with which CIS chain a tuple
appears in. On a multi-function PC card, the client will get the tuples from the global
CIS followed by the tuples in the function-specific CIS. The caller will not get any
tuples from a function-specific CIS that does not belong to the caller’s function.

The structure members of tuple_t are:

uint32_t Socket; /* socket number */
uint32_t Attributes; /* tuple attributes */
cisdata_t DesiredTuple; /* tuple to search for */
cisdata_t TupleOffset; /* tuple data offset */
cisdata_t TupleDataMax; /* max tuple data size */
cisdata_t TupleDataLen; /* actual tuple data length */
cisdata_t TupleData[CIS_MAX_TUPLE_DATA_LEN];

tuple(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

106 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 20 Dec 1996

/* body tuple data */
cisdata_t TupleCode; /* tuple type code */
cisdata_t TupleLink; /* tuple link */

The fields are defined as follows:

Socket Not used in Solaris, but for portability with other card services
implementations, it should be set to the logical socket number.

Attributes This field is bit-mapped. The following bits are defined:

TUPLE_RETURN_LINK
Return link tuples if set.

TUPLE_RETURN_IGNORED_TUPLES
Return ignored tuples if set. Ignored tuples are those tuples in a
multi-function PC card’s global CIS chain that are duplicates of
the same tuples in a function-specific CIS chain.

TUPLE_RETURN_NAME
Return tuple name string using the csx_ParseTuple(9F)
function if set.

DesiredTuple This field is the requested tuple type code to be returned when
calling csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).
RETURN_FIRST_TUPLE is used to return the first tuple regardless
of tuple type. RETURN_NEXT_TUPLE is used to return the next
tuple regardless of tuple type.

TupleOffset This field allows partial tuple information to be retrieved, starting
at the specified offset within the tuple. This field must only be set
before calling csx_GetTupleData(9F).

TupleDataMax This field is the size of the tuple data buffer that card services uses
to return raw tuple data from csx_GetTupleData(9F). It can be
larger than the number of bytes in the tuple data body. Card
services ignores any value placed here by the client.

TupleDataLen This field is the actual size of the tuple data body. It represents the
number of tuple data body bytes returned by
csx_GetTupleData(9F).

TupleData This field is an array of bytes containing the raw tuple data body
contents returned by csx_GetTupleData(9F).

TupleCode This field is the tuple type code and is returned by
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F) when a
tuple matching the DesiredTuple field is returned.

TupleLink This field is the tuple link, the offset to the next tuple, and is
returned by csx_GetFirstTuple(9F) or
csx_GetNextTuple(9F) when a tuple matching the
DesiredTuple field is returned.

tuple(9S)

Data Structures for Drivers 107

csx_GetFirstTuple(9F), csx_GetTupleData(9F), csx_ParseTuple(9F),
csx_Parse_CISTPL_BATTERY(9F), csx_Parse_CISTPL_BYTEORDER(9F),
csx_Parse_CISTPL_CFTABLE_ENTRY(9F), csx_Parse_CISTPL_CONFIG(9F),
csx_Parse_CISTPL_DATE(9F), csx_Parse_CISTPL_DEVICE(9F),
csx_Parse_CISTPL_FUNCE(9F), csx_Parse_CISTPL_FUNCID(9F),
csx_Parse_CISTPL_JEDEC_C(9F), csx_Parse_CISTPL_MANFID(9F),
csx_Parse_CISTPL_SPCL(9F), csx_Parse_CISTPL_VERS_1(9F),
csx_Parse_CISTPL_VERS_2(9F)

PC Card 95 Standard, PCMCIA/JEIDA

tuple(9S)

SEE ALSO

108 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 20 Dec 1996

uio – scatter/gather I/O request structure

#include <sys/uio.h>

Architecture independent level 1 (DDI/DKI)

A uio structure describes an I/O request that can be broken up into different data
storage areas (scatter/gather I/O). A request is a list of iovec structures (base-length
pairs) indicating where in user space or kernel space the I/O data is to be read or
written.

The contents of uio structures passed to the driver through the entry points should
not be written by the driver. The uiomove(9F) function takes care of all overhead
related to maintaining the state of the uio structure.

uio structures allocated by the driver should be initialized to zero before use, by
bzero(9F), kmem_zalloc(9F), or an equivalent.

iovec_t *uio_iov; /* pointer to the start of the iovec */
/* list for the uio structure */

int uio_iovcnt; /* the number of iovecs in the list */
off_t uio_offset; /* 32-bit offset into file where data is */

/* transferred from or to. See NOTES. */
offset_t uio_loffset; /* 64-bit offset into file where data is */

/* transferred from or to. See NOTES. */
uio_seg_t uio_segflg; /* identifies the type of I/O transfer: */

/* UIO_SYSSPACE: kernel <-> kernel */
/* UIO_USERSPACE: kernel <-> user */

short uio_fmode; /* file mode flags (not driver setable) */
daddr_t uio_limit; /* 32-bit ulimit for file (maximum block */

/* offset). not driver setable. See NOTES. */
diskaddr_t uio_llimit; /* 64-bit ulimit for file (maximum block */

/* offset). not driver setable. See NOTES. */

int uio_resid; /* residual count */

The uio_iov member is a pointer to the beginning of the iovec(9S) list for the uio.
When the uio structure is passed to the driver through an entry point, the driver
should not set uio_iov. When the uio structure is created by the driver, uio_iov
should be initialized by the driver and not written to afterward.

aread(9E), awrite(9E), read(9E), write(9E), bzero(9F), kmem_zalloc(9F),
uiomove(9F), cb_ops(9S), iovec(9S)

Writing Device Drivers

Only one structure, uio_offset or uio_loffset, should be interpreted by the
driver. Which field the driver interprets is dependent upon the settings in the
cb_ops(9S) structure.

Only one structure, uio_limit or uio_llimit, should be interpreted by the driver.
Which field the driver interprets is dependent upon the settings in the cb_ops(9S)
structure.

uio(9S)

NAME

SYNOPSIS

INTERFACE
LEVEL

DESCRIPTION

STRUCTURE
MEMBERS

SEE ALSO

NOTES

Data Structures for Drivers 109

When performing I/O on a seekable device, the driver should not modify either the
uio_offset or the uio_loffset field of the uio structure. I/O to such a device is
constrained by the maximum offset value. When performing I/O on a device on
which the concept of position has no relevance, the driver may preserve the
uio_offset or uio_loffset, perform the I/O operation, then restore the
uio_offset or uio_loffset to the field’s initial value. I/O performed to a device
in this manner is not constrained.

uio(9S)

110 man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 28 Mar 1997

Index

A
aio_req — asynchronous I/O request

structure, 18
asynchronous I/O request structure —

aio_req, 18

B
buf — block I/O data transfer structure, 19

C
Card Information Structure (CIS) access

structure — tuple, 106
character/block entry points structure for

drivers, — cb_ops, 22
copyreq — STREAMS data structure for the

M_COPYIN and the M_COPYOUT message
types, 24

copyresp — STREAMS data structure for the
M_IOCDATA message type, 25

D
data access attributes structure —

ddi_device_acc_attr, 27
ddi_device_acc_attr — data access attributes

structure, 27

DDI device mapping
ddi_mapdev_ctl — device mapping-control

structure, 48
devmap_callback_ctl — device

mapping-control structure, 49
DDI direct memory access

DMA limits structure — ddi_dma_lim, 39,
41

DMA cookie structure —
ddi_dma_cookie, 34

DMA Request structure — ddi_dma_req, 43
ddi_dma_attr — DMA attributes structure, 31
ddi_dmae_req — DMA engine request

structure, 35
ddi_idevice_cookie — device interrupt

cookie, 47
ddi_mapdev_ctl — device mapping-control

structure, 48
device interrupt cookie —

ddi_idevice_cookie, 47
device mapping-control structure —

ddi_mapdev_ctl, 48
device mapping-control structure —

devmap_callback_ctl, 49
device operations structure, — dev_ops, 51
devmap_callback_ctl — device mapping-control

structure, 49
DMA attributes structure — ddi_dma_attr, 31
DMA cookie structure, — ddi_dma_cookie, 34
DMA engine request structure —

ddi_dmae_req, 35
DMA limits structure

— ddi_dma_lim, 39, 41

111

DMA Request structure, — ddi_dma_req, 43
driver’s message-freeing routine, —

free_rtn, 53
drivers, loadable, linkage structure, —

modldrv, 68

F
fmodsw — STREAMS module declaration

structure, 52

G
gld_mac_info — GLD mac info data

structure, 54
gld_stats — GLD statistics data structure, 57

I
I/O, block, data transfer structure, — buf, 19
I/O data storage structure using uio, —

iovec, 61
I/O request structure, scatter/gather, —

uio, 109
iocblk — STREAMS data structure for the

M_IOCTL message type, 60

K
kernel statistics structure — kstat, 62
kstat — kernel statistics structure, 62
kstat_intr — structure for interrupt kstats, 64
kstat_io — structure for I/O kstats, 65
kstat_named — structure for named kstats, 66

L
linkblk — STREAMS data structure sent to

multiplexor drivers to indicate a link, 67

M
modlinkage — module linkage structure, 69

O
options structure for M_SETOPTS message —

stroptions, 104

P
pm-components— Power Management device

property, 77
Power Management device property —

pm-component, 77

Q
queclass — a STREAMS macro that returns the

queue message class definitions for a given
message block, 82

S
scsi_address — SCSI address structure, 85
SCSI address structure — scsi_address, 85
scsi_arq_status — SCSI auto request sense

structure, 86
SCSI ASC ASCQ to message structure,

scsi-vu-errmsg, 87
scsi_asc_key_strings, SCSI ASC ASCQ to

message structure, 87
SCSI auto request sense structure —

scsi_arq_status, 86
scsi_device — SCSI device structure, 88
SCSI device structure — scsi_device, 88
SCSI device structure — scsi_inquiry, 94
scsi_extended_sense — SCSI extended sense

structure, 89
SCSI extended sense structure —

scsi_extended_sense, 89
scsi_hba_tran — SCSI Host Bus Adapter (HBA)

driver transport vector structure, 92
SCSI Host Bus Adapter (HBA) driver transport

vector structure — scsi_hba_tran, 92

112 man pages section 9: DDI and DKI Properties and Data Structures • December 2002

scsi_inquiry — SCSI device structure, 94
SCSI packet structure — scsi_pkt, 97
scsi_pkt — SCSI packet structure, 97

pkt_flags Definitions, 98
pkt_reason Definitions, 99
pkt_state Definitions, 100
pkt_statistics Definitions, 100

scsi_status — SCSI status structure, 101
SCSI status structure — scsi_status, 101
STREAMS data structure for the M_COPYIN

and the M_COPYOUT message types —
copyreq, 24

STREAMS data structure for the M_IOCDATA
message type — copyresp, 25

STREAMS data structure for the M_IOCTL
message type — iocblk, 60

STREAMS data structure sent to multiplexor
drivers to indicate a link — linkblk, 67

STREAMS driver identification and limit value
structure, — module_info, 71

STREAMS entity declaration structure, —
streamtab, 103

STREAMS macro that returns the queue
message class definitions for a given message
block — queclass, 82

STREAMS message block structure, —
msgb, 72

STREAMS message data structure, — datab, 26
STREAMS module declaration structure —

fmodsw, 52
STREAMS modules, loadable, linkage structure,

modlstrmod, 70
STREAMS queue flow control information

structure, — qband, 80
STREAMS queue processing procedures

structure, — qinit, 81
STREAMS queue structure, — queue, 83
stroptions — options structure for M_SETOPTS

message, 104
structure for I/O kstats — kstat_io, 65
structure for interrupt kstats — kstat_intr, 64
structure for named kstats — kstat_named, 66

T
tuple — Card Information Structure (CIS) access

structure, 106

U
uio — scatter/gather I/O request structure, 109

Index 113

114 man pages section 9: DDI and DKI Properties and Data Structures • December 2002

