Developer’s Guide to Web
Applications

Sun™ ONE Application Server

Version7

816-7150-10
September 2002

Copyright © 2002 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

THIS SOFTWARE CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF SUN MICROSYSTEMS, INC. USE,
DISCLOSURE OR REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS WRITTEN PERMISSION OF SUN
MICROSYSTEMS, INC.U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc.
standard license agreement and applicable provisions of the FAR and its supplements. Use is subject to license terms.

This distribution may include materials developed by third parties.

Sun, Sun Microsystems, the Sun logo, Java and the Sun ONE logo are trademarks or registered trademarks of Sun Microsystems, Inc.
in the U.S. and other countries.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

This product is covered and controlled by U.S. Export Control laws and may be subject to the export or import laws in other
countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are
strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists,
including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

Copyright © 2002 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

CE LOGICIEL CONTIENT DES INFORMATIONS CONFIDENTIELLES ET DES SECRETS COMMERCIAUX DE SUN
MICROSYSTEMS, INC. SON UTILISATION, SA DIVULGATION ET SA REPRODUCTION SONT INTERDITES SANS
L’AUTORISATION EXPRESSE, ECRITE ET PREALABLE DE SUN MICROSYSTEMS, INC. Droits du gouvernement américain,
utlisateurs gouvernmentaux - logiciel commercial. Les utilisateurs gouvernmentaux sont soumis au contrat de licence standard de
Sun Microsystems, Inc., ainsi qu aux dispositions en vigueur de la FAR [(Federal Acquisition Regulations) et des suppléments a
celles-ci. Distribué par des licences qui en restreignent I’utilisation.

Cette distribution peut comprendre des composants développés pardes tierces parties.

Sun, Sun Microsystems, le logo Sun, Java et le logo Sun ONE sont des marques de fabrique ou des marques déposées de Sun
Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

UNIX est une marque déposée aux Etats-Unis et dans d’autres pays et licenciée exlusivement par X/Open Company, Ltd.

Les produits qui font I’'objet de ce manuel d’entretien et les informations qu’il contient sont régis par la législation américaine en
matiere de contréle des exportations et peuvent étre soumis au droit d’autres pays dans le domaine des exportations et importations.
Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires, des missiles, des armes biologiques et chimiques ou du
nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou réexportations vers des pays sous
embargo des Etats-Unis, ou vers des entités figurant sur les listes d’exclusion d’exportation américaines, y compris, mais de maniére
non exclusive, la liste de personnes qui font objet d’un ordre de ne pas participer, d’une fagon directe ou indirecte, aux exportations
des produits ou des services qui sont régi par la législation américaine en matiére de contr6le des exportations ("U.S. Commerce
Department’s Table of Denial Orders") et la liste de ressortissants spécifiguement désignés (*U.S. Treasury Department of Specially
Designated Nationals and Blocked Persons"), sont rigoureusement interdites.

Contents

AboUt This GUIDE ... e e e 9
Who Should Use This GUITEo e e e 9
Using the DOCUMENTAtION et et et e 10
How This Guide ISOrganized e e 12
Documentation CONVENTIONS i e e e e e e e 13
General CONVENLIONSottt e et e e e 13
Conventions Referring to DIreCtoriest e 15
Related INformation 15
ProdUCT SUPPOIT . . 16
Chapter 1 Web Applications 17
Introducing Web Applications 17
SNVt . 19
JAVASEIVEr Pages . . . 20
SHT ML L 21
GGl e 21
Creating a Web Application 21
Deploying a Web Application e 22
Debugging a Web Application 22
Internationalization ISSUES 22
TRE SOV oo 23
SNV . . 23
SerVIet ReqUESE e 23
SerVIEt RESPONSE o e 23

JOPS 24
VirtUAl BV . . o 24
Using the Administration Interface i 25
Editing the serverxml File 25
Default Web ModUIES o 26
Serviet and JSP Caching 26
Database Connection POOKING it e e e 27

4

Configuring the Web CoNntainer e 27

Web Application EXamPIes o 27
Chapter 2 Using Servlets 29
ADOUL SEIVIETS . .. 29
Servlet Data FIOW 30
SNVt TY PSS ottt 31
Creating SerVIEtS .. .o 32
Creating the Class Declaration i e 33
Overriding Methods 33
Overriding Initialize 33
OVerriding DestrOy 34
Overriding Service, Get, and POSt 34
Accessing Parameters and Storing Data 36
Handling Sessions and SeCUNitY it e 36
Accessing Business Logic COMPONENTSttt e 37
Handling Threading ISSUBSt e e 39
Delivering CHent ReSUITS e e e 40
Creating a Servlet ReSponse Page it 40
Creating @aJSP ReSPONSE Pagettt 41
INVOKING SerVIetS ... 42
CallingaServletwitha URL e 42
Calling a Servlet Programmatically 43
SerVIEt OULPUL . ..o 44
Using the Administration Interface i 44
Editing the serverxXml File 45
Caching Serviet ResUlts 45
Caching FEatUIES e e e e e e 46
Default Cache Configuration e 47
Caching EXample 47
CacheHelper Interface 48
CacheKeyGenerator Interface e 50
About the Servlet ENGINe 51
Instantiating and Removing ServIets e 51
Request Handlingo 51
Allocating Servlet ENging RESOUICESot 52
Chapter 3 Using JavaServer Pagest e 53
INtrOdUCING JSPS . . o 53
CrEatiNg JOPS . o o 54
Designing for Ease of Maintenance it 55
Designing for Portability 55

Sun ONE Application Server Developer's Guide to Web Applications ¢ September 2002

Handling EXCepliONS e 55

JSP Tag Libraries and Standard Portable Tagsttt 55
ISP CaChingo o 56
(072 Tod o 1 56
FIUSN L 58
Compiling JSPs: The Command-Line Compiler 59
DEebUGGING JOPS . 62
Chapter 4 Creating and Managing User SEeSSIiONSttt 63
INtrodUCINg SESSIONSo 63
SessionNs and COOKIES 64
Sessions and URL ReWTIItiNgo e e e 64
SeSSIONS AN SECUNILYot e e e e e e e 64
HOW 10 USE SESSIONS ottt e e e e e 65
Creating or ACCESSING @ SESSIONot e e e 65
Examining Session Properties 66
Binding Data to @ SESSIONottt 68
INvalidating @ SESSIONo e 68
SESSION IMANAGEIS . .o\ttt ettt e e e e e e 69
StanNdardManagero 70
Enabling StandardManagero 70
Manager Properties for StandardManager 70
PersiSteNtMaNagero 71
Enabling PersistentManager ot 71
Manager Properties for PersistentManager i 72

Store Properties for PersistentManager e 72
Chapter 5 Securing Web Applications 75
User Authentication by Serviets 75
HTTP Basic AUthentiCation e e 76
SSL Mutual AUthentication 76
FOrm-Based LOgint e 77
User Authentication for Single Sign-on 77
User Authorization by ServIets o 79
DefiNiNg ROIES . ..o 79
Defining Servlet Authorization Constraints it 80
Fetching the Client Certificate i e e e 80
Security for SHTML and CGl e e e 81
Chapter 6 Assembling and Deploying Web Modules 83
Web Application StrUCTUNe e e 84
Creating Web Deployment DesCriptorSttt e e 85

Contents 5

Deploying Web Applications 86

Using the Command Line e 86
Using the Administration Interface i 87
Using SUN ONE StUIOo e e e e e e e 88
Dynamic Reloading of Web Applications 88
The sun-web-app_2_3-0.dtd File 89
SUDBIEMENTS . o 90
Data . .. 90
A OUTES o 91
Elements in the sun-web.XxmlI File 91
General EIements o 92
SUN-WED- A .« ottt 92

0] 0] 01T o 1Y/ 94
AeSC i PION . 95
SeCUNItY ElemMENTS .. 95
SECUNItY-role-MapPing oo 95
SNVl . 96
SNVl NAME 96
POl . . . 96
PriNCIPAl-NaMIE . . 97

(o T 1 o g T U o1 97
SESSION ElBMENTS . .. 97
SESSION-CONTIG . ..o 98
SESSION-MANAGET . . . o e ittt et ettt e e e e e e 98
MaANAGEr-PrOPEITIES . . o ittt ettt e e e e 99

LS (o] = o] o] o =] 1= 100
SESSION-PIOPEITIES . . o oottt ettt e 101
COOKIB- PP ES .. ot e e e e 102
Reference EIEMENtS 103
FESOUICE-BNV-TEf o 104
resoUrCe-enV-ref-Name 104
FESOUICE-Tef L 105
FES TN . 105
default-resource-principal 106
NAIMIE . .ttt e 106
PASSWOI . . oot 106

B - 107

B b-ref-name . . 107
JNAI-NAMIE e 107
Caching Elements 108
CACNIE oo 108
cache-helper ... 111
default-helper 111

6 Sun ONE Application Server Developer's Guide to Web Applications ¢ September 2002

CaChe-MaAPPING . .. 112

L0 B o U (=T o 114
cache-helper-ref 114
MEOUL . 114
refresh-field 115
Nttp-Method 115
Key-fleld . .. 116
constraint-field 116
ValUE . o 117
Classloader EIements o e 118
Class-loader 118

JOP ElemMENtS . o 119
JOP-CON I e 119
Internationalization Elements 121
locale-charset-info 121
locale-Charset-map 122
Parameter-eNCOINGottt et e e e e e 123
Sample Web Module XML Files o 124
Sample web.xml File 124
Sample sun-web.xml File 130
Chapter 7 Using Server-Parsed HTML e 131
Server-Side HTML and J2EE Web Applications i 131
Enabling Server-Side HTML o 132
Using Server-Side HTML Commandsttt e 133
CONTIg oo 134
INCIUE . . 134
BCNO 135
TSIz o 135
FlaStmMOd .. . 135
BB ittt e e 135
Environment Variables in Server-Side HTML Commands, 136
Embedding ServIets 136
TIME FOIMALS . ..o e e e e e e 137
Chapter 8 Using CGl e e 139
CGland J2EE Web Applications it e 140
ENabling CGl ..o 140
SPeCIfYing CGl DIreCtOrieS . . . oottt e e e 140
Specifying CGI File EXIENSIONSo e 142
Creating Custom Execution Environments for CGI Programs (UNIXonly) 143
Specifying a Unique CGI Directory and UNIX User and Group for a Virtual Server 145

Contents 7

8

Specifying a Chroot Directory for a Virtual Server 146

Adding CGI Programs t0 the SErVer e 149
Setting the Priority of a CGI Program e 149
WINAOWS CGI Programsttt e ettt et e e e e e e 150
Overview of WIindows CGI Programsiuu it e it 150
Specifying a Windows CGI DireCtoryt i 151
Specifying Windows CGlasaFile Type e 152
Shell CGI Programs for WindowsS e e 152
Overview of Shell CGI Programs for Windows 153
Specifying a Shell CGI Directory (WiNdOWS) e 153
Specifying Shell CGl as a File Type (WindOws) 155
The Query Handler 156
Perl CGI Programs e et e e e e e e e 157
Global CGI SettiNgS . .. oottt e 157
CGlVariables 158
N EX .o 161

Sun ONE Application Server Developer's Guide to Web Applications ¢ September 2002

About This Guide

This guide describes how to create and run Java 2 Platform, Enterprise Edition
(J2EE) applications that follow the new open Java standards model for Servlets and
JavaServer Pages (JSPs) on the Sun™ Open Net Environment (Sun ONE)
Application Server 7. In addition to describing programming concepts and tasks,
this guide offers implementation tips and reference material.

This preface contains information about the following topics:
= Who Should Use This Guide

= Using the Documentation

< How This Guide Is Organized

= Documentation Conventions

« Related Information

 Product Support

Who Should Use This Guide

The intended audience for this guide is the person who develops, assembles, and
deploys web applications (servlets and JSPs) in a corporate enterprise.

This guide assumes you are familiar with the following topics:

J2EE specification
HTML

Java programming

Java APIs as defined in servlet, JSP, EJB, and JDBC specifications

Using the Documentation

= Structured database query languages such as SQL
= Relational database concepts

= Software development processes, including debugging and source code
control

Using the Documentation

The Sun ONE Application Server manuals are available as online files in Portable
Document Format (PDF) and Hypertext Markup Language (HTML) formats, at:

http://docs. sun. con!

The following table lists tasks and concepts described in the Sun ONE Application
Server manuals. The left column lists the tasks and concepts, and the right column
lists the corresponding manuals.

Sun ONE Application Server Documentation Roadmap

For information about See the following
Late-breaking information about the software and the Release Notes
documentation

Supported platforms and environments Platform Summary
Introduction to the application server, including new Getting Sarted Guide

features, evaluation installation information, and
architectural overview.

Installing Sun ONE Application Server and its various Installation Guide
components (sample applications, Administration interface, Sun
ONE Message Queue).

Creating and implementing J2EE applications that follow Developer’'s Guide
the open Java standards model on the Sun ONE

Application Server 7. Includes general information about

application design, developer tools, security, assembly,

deployment, debugging, and creating lifecycle modules.

Creating and implementing J2EE applications that follow Developer’'s Guide to Web
the open Java standards model for web applications on the Applications

Sun ONE Application Server 7. Discusses web application

programming concepts and tasks, and provides sample

code, implementation tips, and reference material.

10 Sun ONE Application Server Developer’'s Guide to Web Applications * September 2002

Using the Documentation

Sun ONE Application Server Documentation Roadmap (Continued)

For information about

See the following

Creating and implementing J2EE applications that follow
the open Java standards model for enterprise beans on the
Sun ONE Application Server 7. Discusses EJB
programming concepts and tasks, and provides sample
code, implementation tips, and reference material.

Creating clients that access J2EE applications on the Sun

ONE Application Server 7

Creating web services

J2EE features such as JDBC, JNDI, JTS, JMS, JavaMail,

resources, and connectors

Creating custom NSAPI plugins

Performing the following administration tasks:

« Using the Administration interface and the command line

interface

« Configuring server preferences

* Using administrative domains

« Using server instances

* Monitoring and logging server activity
« Configuring the web server plugin

« Configuring the Java Messaging Service

» Using J2EE features

« Configuring support for CORBA-based clients
« Configuring database connectivity
» Configuring transaction management

« Configuring the web container

« Deploying applications

e Managing virtual servers

Editing server configuration files

Developer’s Guide to
Enterprise JavaBeans
Technology

Developer’s Guide to Clients

Developer’'s Guide to Web
Services

Developer’'s Guide to J2EE
Features and Services

Developer’s Guide to NSAPI

Administrator’s Guide

Administrator’s Configuration

File Reference

About This Guide

11

How This Guide Is Organized

Sun ONE Application Server Documentation Roadmap (Continued)

For information about See the following

Configuring and administering security for the Sun ONE Administrator’s Guide to
Application Server 7 operational environment. Includes Security

information on general security, certificates, and SSL/TLS

encryption. HTTP server-based security is also addressed.

Configuring and administering service provider J2EE CA Service Provider
implementation for J2EE CA connectors for the Sun ONE Implementation
Application Server 7. Includes information about the Administrator’s Guide
Administration Tool, DTDs and provides sample XML

files.

Migrating your applications to the new Sun ONE Application Migration Guide
Server 7 programming model from the Netscape Application

Server version 2.1, including a sample migration of an Online

Bank application provided with Sun ONE Application Server

Using Sun ONE Message Queue. The Sun ONE Message
Queue documentation at:

http://docs.sun.com/?p=/
coll/S1_MessageQueue_30

How This Guide Is Organized

This guide provides a Sun ONE Application Server environment overview for
designing web applications. The content is as follows:

= Chapter 1, “Web Applications”

This chapter introduces web applications and describes how they are
supported in Sun ONE Application Server.

= Chapter 2, “Using Servlets”

This chapter describes how to create and use servlets.
= Chapter 3, “Using JavaServer Pages”

This chapter describes how to create and use JavaServer Pages (JSPs).
= Chapter 4, “Creating and Managing User Sessions”

This chapter describes how to create and manage a session that allows users
and transaction information to persist between interactions.

12 Sun ONE Application Server Developer’'s Guide to Web Applications * September 2002

Documentation Conventions

Chapter 5, “Securing Web Applications”

This chapter describes how to write a secure web application for the Sun ONE
Application Server.

Chapter 6, “Assembling and Deploying Web Modules”

This chapter describes how web modules are assembled and deployed in Sun
ONE Application Server.

Chapter 7, “Using Server-Parsed HTML”

This chapter describes how to use server-parsed HTML with the Sun ONE
Application Server.

Chapter 8, “Using CGI”
This chapter describes how to use CGI with the Sun ONE Application Server.

Finally, an Index is provided.

Documentation Conventions

This section describes the types of conventions used throughout this guide:

General Conventions

Conventions Referring to Directories

General Conventions

The following general conventions are used in this guide:

File and directory paths are given in UNIX® format (with forward slashes
separating directory names). For Windows versions, the directory paths are the
same, except that backslashes are used to separate directories.

URLs are given in the format:
http://server.domain/path/file.ntml

In these URLS, server is the server name where applications are run; domain is
your Internet domain name; path is the server’s directory structure; and file is
an individual filename. Italic items in URLs are placeholders.

Font conventions include:

About This Guide 13

Documentation Conventions

o The monospace font is used for sample code and code listings, APl and
language elements (such as function names and class names), file names,
pathnames, directory names, and HTML tags.

o Italic type is used for code variables.

o Italic type is also used for book titles, emphasis, variables and placeholders,
and words used in the literal sense.

o Boldtype is used as either a paragraph lead-in or to indicate words used in
the literal sense.

= Installation root directories for most platforms are indicated by install_dir in
this document. Exceptions are noted in “Conventions Referring to Directories”
on page 15.

By default, the location of install_dir on most platforms is:
o Solaris 8 non-package-based Evaluation installations:
user’s home directory/ sun/ appserver 7
o Solaris unbundled, non-evaluation installations:
[opt / SUN\WAppser ver 7
o Windows, all installations:

C:.\ Sun\ AppServer7

For the platforms listed above, default_config_dir and install_config_dir are
identical to install_dir. See “Conventions Referring to Directories” on page 15
for exceptions and additional information.

= Instance root directories are indicated by instance_dir in this document, which
is an abbreviation for the following:

default_config_dir/ domai ns/ domain/ instance

= UNIX-specific descriptions throughout this manual apply to the Linux
operating system as well, except where Linux is specifically mentioned.

NOTE Forte for Java 4.0 has been renamed to Sun ONE Studio 4
throughout this manual.

14 Sun ONE Application Server Developer’'s Guide to Web Applications * September 2002

Related Information

Conventions Referring to Directories

By default, when using the Solaris 8 and 9 package-based installation and the
Solaris 9 bundled installation, the application server files are spread across several
root directories. These directories are described in this section.

= For Solaris 9 bundled installations, this guide uses the following document
conventions to correspond to the various default installation directories
provided:

o install_dir refersto/ usr/ appserver/, which contains the static portion of
the installation image. All utilities, executables, and libraries that make up
the application server reside in this location.

o default_config_dir refers to/ var/ appser ver/ domai ns, which is the default
location for any domains that are created.

o install_config_dir refers to/ et c/ appser ver/ confi g, which contains
installation-wide configuration information such as licenses and the
master list of administrative domains configured for this installation.

= For Solaris 8 and 9 package-based, non-evaluation, unbundled installations,
this guide uses the following document conventions to correspond to the
various default installation directories provided:

o install_dir refers to / opt / SUN\Wappser ver 7, which contains the static
portion of the installation image. All utilities, executables, and libraries
that make up the application server reside in this location.

o default_config_dir refers to/ var/ opt / SUN\Wappser ver 7/ donai nswhich is
the default location for any domains that are created.

o install_config_dir refers to / et c/ opt / SUN\Wappser ver 7/ conf i g, which
contains installation-wide configuration information such as licenses and
the master list of administrative domains configured for this installation.

Related Information

You can find a directory of URLSs for the official specifications at
install_dir/ docs/ i ndex. ht m Additionally, we recommend the following resources:

Programming with Servlets and JSPs:
Java Servlet Programming, by Jason Hunter, O’Reilly Publishing
Java Threads, 2nd Edition, by Scott Oaks & Henry Wong, O’Reilly Publishing

About This Guide 15

Product Support

Programming with JDBC:
Database Programming with JDBC and Java, by George Reese, O’Reilly Publishing

JDBC Database Access With Java: A Tutorial and Annotated Reference (Java Series), by
Graham Hamilton, Rick Cattell, & Maydene Fisher

Product Support

If you have problems with your system, contact customer support using one of the
following mechanisms:

= The online support web site at:
http://ww. sun. com supportrai ni ng/

= The telephone dispatch number associated with your maintenance contract

Please have the following information available prior to contacting support. This
helps to ensure that our support staff can best assist you in resolving problems:

= Description of the problem, including the situation where the problem occurs
and its impact on your operation

= Machine type, operating system version, and product version, including any
patches and other software that might be affecting the problem

= Detailed steps on the methods you have used to reproduce the problem

< Any error logs or core dumps

16 Sun ONE Application Server Developer’'s Guide to Web Applications * September 2002

Chapter 1

Web Applications

This chapter describes how web applications are supported in Sun ONE
Application Server, and includes the following sections:

Introducing Web Applications
Creating a Web Application
Deploying a Web Application
Debugging a Web Application
Internationalization Issues
Virtual Servers

Default Web Modules

Servlet and JSP Caching
Database Connection Pooling
Configuring the Web Container
Web Application Examples

Introducing Web Applications

Sun ONE Application Server 7 supports the Servlet 2.3 API specification, which
allows servlets and JSPs to be included in web applications.

A web application is a collection of servlets, JavaServer Pages, HTML documents,
and other web resources which might include image files, compressed archives,
and other data. A web application may be packaged into an archive (a WAR file) or
exist in an open directory structure.

17

Introducing Web Applic

ations

The following figure illustrates details of the J2EE environment. Web applications
are in the presentation layer. Two web applications are running in the web
container: one of them is part of a full application that includes EJB modules and
connectors, while the other is an individually deployed web module.

Web applications in the J2EE environment

Client | Presentation Business Data | Data
layer : layer Logic layer Access layer : layer
: Web container EJB container :
| |
DD EPIT
| |
Browser tl Z |
'I-IL | RDBMS
|
I-> v |
: »(Connector)4 :
| |
| |
Browser |4¢—+»(HTML 44 |
| |
| v |
Web ' '
Service)4 p(Serviet |J«———(EJIB '
client : :
I I v
Application | | Legac
Client container >y 1S y
: p(EJB)4{»(Connector)4 | application
RMI/IIOP \ 1| | | A
client /|| 1 |
| |
| |
| |
IMS Ny P(MDB)4rP(Connector)4
client | |
| |
| |
: | JMS provider |¢— :
| |
Client | Server | EIS

18 Sun ONE Application Server Developer’'s Guide to Web Applications * September 2002

Introducing Web Applications

In addition, Sun ONE Application Server 7 supports SHTML and CGl, which are
non-J2EE application components.

This section includes summaries of the following topics:
= Servlets

= JavaServer Pages

e SHTML
e CGI
Servlets

Java servlets are server-side Java programs that application servers can run to
generate content in response to a client request. Servlets can be thought of as
applets that run on the server side without a user interface. Servlets are invoked
through URL invocation or by other servlets.

Sun ONE Application Server 7 supports the Java Servlet Specification version 2.3.

NOTE Servlet API version 2.3 is fully backward compatible with versions
2.1 and 2.2, so all existing servlets will continue to work without
modification or recompilation.

To develop servlets, use Sun Microsystems’ Java Servlet API. For information
about using the Java Servlet API, see the documentation provided by Sun
Microsystems at:

http://java. sun. coni product s/ servl et/index. ht m

For information about developing servlets in Sun ONE Application Server, see
Chapter 2, “Using Servlets.”

Chapter 1 Web Applications 19

Introducing Web Applications

JavaServer Pages

Sun ONE Application Server 7 supports JavaServer Pages (JSP) Specification
version 1.2.

A JSP is a page, much like an HTML page, that can be viewed in a web browser.
However, in addition to HTML tags, it can include a set of JSP tags and directives
intermixed with Java code that extend the ability of the web page designer to
incorporate dynamic content in a page. These additional features provide
functionality such as displaying property values and using simple conditionals.

One of the main benefits of JSPs is that they are like HTML pages. The web page
designer simply writes a page that uses HTML and JSP tags and puts it on their
application server. The page is compiled automatically when it is deployed. What
the web page designer needs to know about Java classes and Java compilers is
minimal.

Sun ONE Application Server supports precompilation of JSPs, however, and this is
recommended for production servers.

JSP pages can access full Java functionality in the following ways:
= by embedding Java code directly in scriptlets in the page

= by accessing Java beans

= Dby using server-side tags that include Java servlets

Both beans and servlets are Java classes that need to be compiled, but they can be
defined and compiled by a Java programmer, who then publishes the interface to
the bean or the servlet. The web page designer can access a pre-compiled bean or
servlet from a JSP page.

Sun ONE Application Server 7 supports JSP tag libraries and standard portable
tags.

For information about creating JSPs, see Sun Microsystem’s JavaServer Pages web
site at:

http://java. sun. coni products/jsp/index. ht m
For information about Java Beans, see Sun Microsystem’s JavaBeans web page at:
http://java. sun. conif beans/i ndex. ht m

For information about developing JSPs in Sun ONE Application Server, see
Chapter 3, “Using JavaServer Pages.”

20 Sun ONE Application Server Developer's Guide to Web Applications ¢ September 2002

Creating a Web Application

SHTML

HTML files can contain tags that are executed on the server. In addition to
supporting the standard server-side tags, or SSIs, Sun ONE Application Server 7
allows you to embed servlets and define your own server-side tags. For more
information, see Chapter 7, “Using Server-Parsed HTML.”

CGl

Common Gateway Interface (CGI) programs run on the server and generate a
response to return to the requesting client. CGl programs can be written in various
languages, including C, C++, Java, Perl, and as shell scripts. CGI programs are
invoked through URL invocation. Sun ONE Application Server complies with the
version 1.1 CGl specification. For more information, see Chapter 8, “Using CGI.”

Creating a Web Application

To create a web application:

1. Create a directory for all the web application’s files. This is the web
application’s document root.

2. Create any needed HTML files, image files, and other static content. Place these
files in the document root directory or a subdirectory where they can be
accessed by other parts of the application.

3. Create any needed JSP files. For more information, see Chapter 3, “Using
JavaServer Pages.”

4. Create any needed servlets. For more information, see Chapter 2, “Using
Servlets.”

5. Compile the servlets. For details about precompiling JSPs, see “Compiling
JSPs: The Command-Line Compiler,” on page 59.

6. Organize the web application as described in “Web Application Structure,” on
page 84.

7. Create the deployment descriptor files. For more information, see Chapter 6,
“Assembling and Deploying Web Modules.”

Chapter 1 Web Applications 21

Deploying a Web Application

8. Package the web application in a WAR file if desired. This is optional. For
example:

jar -cvf module_name. war *

9. Deploy the web application. For more information, see Chapter 6, “Assembling
and Deploying Web Modules.”

You can create a web application by hand, or you can use Sun ONE Studio 4. For
more information about Sun ONE Studio, see the Sun ONE Studio 4, Enterprise
Edition Tutorial.

Deploying a Web Application

Web application deployment descriptor files are created by the Sun ONE
Application Server Administration interface during deployment. You can also
create these by hand. These descriptor files are packaged within Web Application
aRchive (. war) files. They contain metadata, plus information that identifies the
servlet or JSP and establishes its application role. For more information about these
descriptor files, see Chapter 6, “Assembling and Deploying Web Modules.”

Debugging a Web Application

For information about debugging applications, see the Sun ONE Application Server
Developer’s Guide.

Internationalization Issues
This section covers internationalization as it applies to the following:
« The Server
= Servlets

= JSPs

22 Sun ONE Application Server Developer's Guide to Web Applications ¢ September 2002

Internationalization Issues

The Server

To set the default locale of the entire Sun ONE Application Server, which
determines the locale of the Administration interface, the logs, and so on, do one of
the following:

= Go to the server instance page of the Administration interface, click on the
Advanced tab, type a value in the Locale field, click on the Save button, click on
the General tab, and select the Apply Changes button.

e Setthel ocal e attribute of the server element in the server. xn file, then
restart the server. For more information about this file, see the Sun ONE
Application Server Administrator’s Configuration File Reference.

Servlets

This section explains how the Sun ONE Application Server determines the
character encoding for the servlet request and the servlet response.

For encodings you can use, see:

http://java. sun.conlj2se/ 1. 4/ docs/ gui de/intl/encodi ng. doc. ht n

Servlet Request

When processing a servlet request, the server uses the following order of
precedence, first to last, to determine the request character encoding:

e The set Char act er Encodi ng() method.

= Anhidden field in the form, specified by the par anet er - encodi ng element in
the sun-web. xnm file. For more information, see “parameter-encoding,” on
page 123.

= The character encoding set in the | ocal e- char set -i nf o element in the
sun-web. xnml file. For more information about this element, see
“Internationalization Elements,” on page 121.

e The default, which is | SO 8859- 1.

Servlet Response

When processing a servlet response, the server uses the following order of
precedence, first to last, to determine the response character encoding:

e The set Cont ent Type() method.

Chapter 1 Web Applications 23

Virtual Servers

e Theset Local e() method.

e The default, which is | SO 8859- 1.

JSPs

For encodings you can use, see:

http://java. sun.conij2se/ 1. 4/ docs/ gui de/intl/encodi ng. doc. ht m
To set the character encoding of a JSP, use the page directive. For example:
<%@ page content Type="text/htm ; charset=Shift_JIS" %

The cont ent Type attribute defines the following:

= The character encoding for the JSP page.

= The character encoding for the response of the JSP page.

< The MIME type for the response of the JSP page.

The default value ist ext/ html ; char set =I SO 8859- 1.

When processing a JSP page, the server uses the following order of precedence,
first to last, to determine the character encoding:

= The page directive and cont ent Type attribute of JSP file.
= The default, which is | SO 8859- 1.

Some JSP pages can deliver content using different content types and character
encodings depending on the request time input. Dynamic setting of content type
relies on an underlying invocation of r esponse. set Cont ent Type() . This method
can be invoked as long as no content has been sent to the response stream.

Virtual Servers

A virtual server, also called a virtual host, is a virtual web server that serves
content targeted for a specific URL. Multiple virtual servers may serve content
using the same or different host names, port numbers, or IP addresses. The HTTP
service can direct incoming web requests to different virtual servers based on the
URL.

24 Sun ONE Application Server Developer's Guide to Web Applications ¢ September 2002

Virtual Servers

When you first install Sun ONE Application Server, a default virtual server is
created. (You can also assign a default virtual server to each new HTTP listener you
create. For details, see the Sun ONE Application Server Administrator’s Guide.)

Web applications and J2EE applications containing web components can be
assigned to virtual servers. You can assign virtual servers in either of these ways:

« Using the Administration Interface

= Editing the server.xml File

Using the Administration Interface

You can assign a virtual server to a web module during deployment as described in
“Deploying Web Applications,” on page 86.

To use the Administration interface to configure a default web module for a virtual
server:

1. Deploy the web application or J2EE application as described in “Deploying
Web Applications,” on page 86.

2. Openthe HTTP Server component under your server instance.

3. Open the Virtual Servers component under the HTTP Server component.
4. Select the virtual server to which you want to assign the web application.
5. Select the web module from the Default Web Module drop-down list.

6. Select the Save button.

7. Go to the server instance page and select the Apply Changes button.

For more information, see “Default Web Modules,” on page 26.

Editing the server.xml File

When a web module is deployed as part of an application, a j 2ee- appl i cati on
element is created for itin server . xm during deployment. When a web module is
deployed as an individual module, a web- nodul e element is created for it in
server. xm during deployment. The j 2ee- appl i cati on and web- nodul e
elements both have a vi rt ual - ser ver s attribute, which specifies a list of virtual
server IDs. The vi rt ual - server s attribute is empty by default, which means that
the web application is assigned to all virtual servers.

Chapter 1 Web Applications 25

Default Web Modules

Each vi rtual - server elementinserver. xm has adef aul t - web- nodul e
attribute, which allows you to configure a default web module for each virtual
server. A default web module for the default virtual server is provided at
installation. For more information, see “Default Web Modules,” on page 26.

For more information about ser ver. xnl and virtual servers, see the Sun ONE
Application Server Administrator’s Configuration File Reference.

Default Web Modules

You can assign a default web module to the default virtual server and to each new
virtual server you create. For details, see “Virtual Servers,” on page 24. To access
the default web module for a virtual server, point your browser to the URL for the
virtual server, but do not supply a context root. For example:

http://nyvserver: 3184/

If you do not assign a default web module to a virtual server, the virtual server
serves HTML or JSP content from its document root, which is usually
instance_dir/ docr oot . To access this HTML or JSP content, point your browser to
the URL for the virtual server, do not supply a context root, but specify the target
file. For example:

http://nmyvserver: 3184/ hel | ot here.jsp

Servlet and JSP Caching

The Sun ONE Application Server has the ability to cache servlet or JSP results in
order to make subsequent calls to the same servlet or JSP faster. The Sun ONE
Application Server caches the request results for a specific amount of time. In this
way, if another data call occurs the Sun ONE Application Server can return the
cached data instead of performing the operation again. For example, if your servlet
returns a stock quote that updates every 5 minutes, you set the cache to expire after
300 seconds.

For more information about response caching as it pertains to servlets, see
“Caching Servlet Results,” on page 45. For more information about JSP caching, see
“JSP Caching,” on page 56.

26 Sun ONE Application Server Developer’'s Guide to Web Applications * September 2002

Database Connection Pooling

Database Connection Pooling

Database connection pooling enhances the performance of servlet or JSP database
interactions. There are several JDBC 2.0 compatible drivers that support connection
pooling, for example Pointbase (provided with Sun ONE Application Server except
for Solaris 9 bundled installations), Oracle 8i update, and CloudScape 3.0. For more
information about JDBC, see the Sun ONE Application Server Developer’s Guide to

J2EE Features and Services.

Configuring the Web Container

You can configure logging in the web container for the entire server in these ways:

= By using the Administration interface; see the Sun ONE Application Server
Administrator’s Guide.

= By editing the server. xn file; see the Sun ONE Application Server
Administrator’s Configuration File Reference.

Web Application Examples

Sample web applications that you can examine and deploy are included in Sun
ONE Application Server, in the install_dir/ sanpl es/ webapps directory. Each
sample has its own documentation.

Chapter 1 Web Applications

27

Web Application Examples

28 Sun ONE Application Server Developer's Guide to Web Applications ¢ September 2002

Chapter 2

Using Servlets

This chapter describes how to create effective servlets to control application
interactions running on a Sun ONE Application Server, including standard
servlets. In addition, this chapter describes the Sun ONE Application Server
features to use to augment the standards.

This chapter contains the following sections:
= About Servlets

= Creating Servlets

= Invoking Servlets

= Servlet Output

= Caching Servlet Results

= About the Servlet Engine

About Servlets

Servlets, like applets, are reusable Java applications. However, servlets run on an
application server or web server rather than in a web browser.

Servlets supported by the Sun ONE Application Server are based on the Java
Servlet Specification v2.3. All relevant specifications are accessible from
install_dir/ docs/ i ndex. ht m where install_dir is the directory where the Sun ONE
Application Server is installed.

29

About Servlets

Servlets are used for an application’s presentation logic. A servlet acts as an
application’s central dispatcher by processing form input, invoking business logic
components encapsulated in EJB components, and formatting web page output
using JSPs. Servlets control the application flow from one user interaction to the
next by generating content in response to user requests.

The fundamental characteristics are:

= Servlets are created and managed at runtime by the Sun ONE Application
Server servlet engine.

= Servlets operate on input data that is encapsulated in ar equest object.

= Servlets respond to a query with data encapsulated in ar esponse object.
= Servlets call EJB components to perform business logic functions.

= Servlets call JSPs to perform page layout functions.

= Servlets are extensible; use the APIs provided with the Sun ONE Application
Server to add functionality.

= Servlets provide user session information persistence between interactions.

= Servlets can be part of an application or they can reside discretely on the
application server so they are available to multiple applications.

= Servlets can be dynamically reloaded while the server is running.

= Servlets are addressable with URLS; buttons on an application’s pages often
point to servlets.

e Servlets can call other servlets.

Servlet Data Flow

When a user clicks a Submit button, information entered in a display page is sent to
a servlet. The servlet processes the incoming data and orchestrates a response by
generating content, often through business logic components, which are EJB
components. Once the content is generated, the servlet creates a response page,
usually by forwarding the content to a JSP. The response is sent back to the client,
which sets up the next user interaction.

The following illustration shows the information flow to and from the servlet, as:
1. Servlet processes the client request

2. Servlet generates content

30 Sun ONE Application Server Developer’'s Guide to Web Applications * September 2002

About Servlets

3. Servlet creates response and either:

a. Sends it back directly to the client

or
b. Dispatches the task to a JSP
The servlet remains in memory, available to process another request.

Servlet Data Flow Steps

Page 1
| E—

— 1.
Servlet
O option 1

Q option2

2

G I

3b.

o option 1
O option 2

Servlet Types

There are two main servlet types:
e Generic servlets

o Extendjavax. servl et. GenericServl et.

o Are protocol independent; they contain no inherent HTTP support or any
other transport protocol.

Chapter 2 Using Servlets 31

Creating Servlets

e HTTP servlets
o Extendjavax.servlet.HtpServlet.

o Have built-in HTTP protocol support and are more useful in a Sun ONE
Application Server environment.

For both servlet types, implement the constructor method i ni t () and the
destructor method dest roy() to initialize or deallocate resources, respectively.

All servlets must implement a ser vi ce() method, which is responsible for
handling servlet requests. For generic servlets, simply override the service method
to provide routines for handling requests. HTTP servlets provide a service method
that automatically routes the request to another method in the servlet based on
which HTTP transfer method is used. So, for HTTP servlets, override doPost () to
process POST requests, doGet () to process GET requests, and so on.

Creating Servlets

To create a servlet, perform the following tasks:

= Design the servlet into your application, or, if accessed in a generic way, design
it to access no application data.

= Create aclass that extends either Generi cServl et or H t pSer vl et , overriding
the appropriate methods so it handles requests.

= Use the Sun ONE Application Server Administration interface to create a web
application deployment descriptor. For details, see Chapter 6, “Assembling
and Deploying Web Modules.”

The rest of this section discusses the following topics:
= Creating the Class Declaration

« Overriding Methods

= Accessing Parameters and Storing Data

= Handling Sessions and Security

= Accessing Business Logic Components

= Handling Threading Issues

= Delivering Client Results

32 Sun ONE Application Server Developer’'s Guide to Web Applications * September 2002

Creating Servlets

Creating the Class Declaration

To create a servlet, write a public Java class that includes basic 1/0 support as well
as the package j avax. servl et . The class must extend either Generi cServl et or
Ht t pSer vl et . Since Sun ONE Application Server servlets exist inan HTTP
environment, the latter class is recommended. If the servlet is part of a package,
you must also declare the package name so the class loader can properly locate it.

The following example header shows the HTTP servlet declaration called
nmyServl et:

i mport java.io.*;
i nport javax.servlet.*;
i mport javax.servlet.http.*;

public class nmyServl et extends HttpServlet {
.. . servlet methods. . .

}

Overriding Methods

Next, override one or more methods to provide servlet instructions to perform its

intended task. All processing by a servlet is done on a request-by-request basis and
happens in the service methods, either ser vi ce() for generic servlets or one of the
doOperation() methods for HTTP servlets. This method accepts incoming requests,
processing them according to the instructions you provide, and directs the output
appropriately. You can create other methods in a servlet as well.

Business logic may involve database access to perform a transaction or passing the
request to an EJB component.

Overriding Initialize

Override the class initializer i ni t () to initialize or allocate resources for the serviet
instance’s life, such as a counter. The i ni t () method runs after the servlet is
instantiated but before it accepts any requests. For more information, see the
servlet API specification.

NOTE Alli ni t () methods must call super.init(Servl et Config) toset
their scope. This makes the servlet’s configuration object available to
other servlet methods. If this call is omitted, a 500
SC | NTERNAL_SERVER ERROR appears in the browser when the
servlet starts up.

Chapter 2 Using Servlets 33

Creating Servlets

NOTE A web application is not started if any of its components, such as a
filter, throws a Ser vl et Except i on during initialization. This is to
ensure that if any part of the web application runs, all of it runs. It is
especially important that a web application fail if security
components fail.

The following example of the i ni t () method initializes a counter by creating a
public integer variable called t hi sMany:

public class nmyServl et extends HttpServlet {
i nt thisMany;

public void init (ServletConfig config) throws Servl et Exception
{

super.init(config);
t hi sMany = 0;

}
Now other servlet methods can access the variable.

Overriding Destroy

Override the class destructor dest r oy() to write log messages or to release
resources that have been opened in the servlet’s life cycle. Resources should be
appropriately closed and dereferenced so that they are recycled or garbage
collected. The dest r oy() method runs just before the servlet itself is deallocated
from memory. For more information, see the servlet API specification.

For example, the dest r oy() method could write a log message like the following,
based on the example for “Overriding Initialize” above:

out.println("nyServlet was accessed " + thisMany " tines.\n");

Overriding Service, Get, and Post

When a request is made, the Sun ONE Application Server hands the incoming data
to the servlet engine to process the request. The request includes form data,
cookies, session information, and URL name-value pairs, all in a type

Ht t pSer vl et Request object called the request object. Client metadata is
encapsulated as a type Ht t pSer vl et Response object called the response object.
The servlet engine passes both objects as the servlet’s servi ce() method
parameters.

34 Sun ONE Application Server Developer’'s Guide to Web Applications * September 2002

Creating Servlets

The default servi ce() method in an HTTP servlet routes the request to another
method based on the HTTP transfer method (POST, GET, and so on). For example,
HTTP POST requests are routed to the doPost () method, HTTP GET requests are
routed to the doGet () method, and so on. This enables the servlet to perform
different request data processing depending on the transfer method. Since the
routing takes place in servi ce(), there is no need to generally override ser vi ce()
in an HTTP servlet. Instead, override doGet (), doPost (), and so on, depending on
the expected request type.

The automatic routing in an HTTP servlet is based simply on a call to
r equest . get Met hod() , which provides the HTTP transfer method. In a Sun ONE
Application Server, request data is already preprocessed into a name-value list by
the time the servlet sees the data, so simply overriding the ser vi ce() method in an
HTTP servlet does not lose any functionality. However, this does make the servlet
less portable, since it is now dependent on preprocessed request data.

Override the ser vi ce() method (for generic servlets) or the doGet () or doPost ()
methods (for HTTP servlets) to perform tasks needed to answer the request. Very
often, this means accessing EJB components to perform business transactions,
collating the needed information (in the request object or in a JDBC result set
object), and then passing the newly generated content to a JSP for formatting and
delivery back to the client.

Most operations that involve forms use either a GET or a POST operation, so for
most servlets you override either doGet () or doPost () . Note that implementing
both methods to provide for both input types or simply pass the request object to a
central processing method, as shown in the following example:

public void doGet (HtpServletRequest request,
Ht t pSer vl et Response response)
throws Servl et Exception, | CException {
doPost (request, response);

}

All request-by-request traffic in an HTTP servlet is handled in the appropriate
doOperation() method, including session management, user authentication,
dispatching EJB components and JSPs, and accessing Sun ONE Application Server
features.

If a servlet intends to call the Request Di spat cher method i ncl ude() or

f orwar d(), be aware the request information is no longer sent as HTTP POST,
GET, and so on. In other words, if a servlet overrides doPost (), it may not process
anything if another servlet calls it, if the calling servlet happens to receive its data
through HTTP GET. For this reason, be sure to implement routines for all possible
input types, as explained above. Request Di spat cher methods always call
service().

Chapter 2 Using Servlets 35

Creating Servlets

For more information, see “Calling a Servlet Programmatically,” on page 43.

NOTE Arbitrary binary data, such as uploaded files or images, can be
problematic, since the web connector translates incoming data into
name-value pairs by default. You can program the web connector
to properly handle these kinds of data and package them correctly
in the request object.

Accessing Parameters and Storing Data

Incoming data is encapsulated in a request object. For HTTP servlets, the request
object type is Ht t pSer vl et Request . For generic servlets, the request object type is
Ser vl et Request . The request object contains all request parameters, including
your own request values called attributes.

To access all incoming request parameters, use the get Par anet er () method. For
example:

String usernane = request.get Paraneter("usernane");

Set and retrieve values in a request object using set Attri but e() and
get Attri bute(), respectively. For example:

request.setAttribute("favoriteDwarf", "Dwalin");

This shows one way to transfer data to a JSP, since JSPs have access to the request
object as an implicit bean.

Handling Sessions and Security

From a web or application server’s perspective, a web application is a series of
unrelated server hits. There is no automatic recognition if a user has visited the site
before, even if their last interaction were seconds before. A session provides a
context between multiple user interactions by remembering the application state.
Clients identify themselves during each interaction by a cookie, or, in the case of a
cookie-less browser, by placing the session identifier in the URL.

A session object can store objects, such as tabular data, information about the
application’s current state, and information about the current user. Objects bound
to a session are available to other components that use the same session.

For more information, see Chapter 4, “Creating and Managing User Sessions.”

36 Sun ONE Application Server Developer's Guide to Web Applications * September 2002

Creating Servlets

After a successful login, you should direct a servlet to establish the user’s identity
in a standard object called a session object that holds information about the current
session, including the user’s login name and whatever additional information to
retain. Application components can then query the session object to obtain user
authentication.

To provide a secure user session for your application, see Chapter 5, “Securing
Web Applications.”

Accessing Business Logic Components

In the Sun ONE Application Server programming model, you implement business
logic, including database or directory transactions and complex calculations, in EJB
components. A request object reference can be passed as an EJB parameter to
perform the specified task.

Store the results from database transactions in JDBC Resul t Set objects and pass
object references to other components for formatting and delivery to the client.
Also, store request object results by using the r equest . set At t ri but e() method,
or in the session by using the sessi on. set Attri but e() method. Objects stored in
the request object are valid only for the request length, or in other words for this
particular servlet thread. Objects stored in the session persist for the session
duration, which can span many user interactions.

This example shows a servlet accessing an EJB component called Shoppi ngCart .
The servlet creates a cart handle by casting the user’s session ID as a cart after
importing the cart’s remote interface. The cart is stored in the user’s session.

i mport cart. Shoppi ngCart;

/1 Get the user’s session and shopping cart
Ht t pSessi on sessi on = request. get Session(true);
Shoppi ngCart cart =
(Shoppi ngCart) session. getAttri bute(session.getld());

// 1f the user has no cart, create a new one
if (cart == null) {
String jndi Nm= "java: conp/ env/ ej b/ Shoppi ngCart";
javax. nam ng. Context initCtx = null;
hj ect hone = null;
try {
initCtx = new javax. nam ng. | nitial Context(env);
java. util.Properties props = null;
hone i nitCx. | ookup(jndiNm;
cart ((I Shoppi ngCart Hone) hone).create();

Chapter 2 Using Servlets 37

Creating Servlets

sessi on. set Val ue(session.getld(),cart);

}
catch (Exception ex) {

Access EJB components from servlets by using the Java Naming Directory Interface
(JNIDI) to establish a handle, or proxy, to the EJB component. Next, refer to the EJB
component as a regular object; overhead is managed by the bean’s container.

This example shows JNDI looking up a proxy for the shopping cart:

String jndi Nm= "java: conp/ env/ ej b/ Shoppi ngCart";
j avax. nam ng. Context initcCtx;
hj ect hone;

try

{

}

catch (Exception ex)

{

}
try

initCtx = new javax. nam ng. | nitial Context (env);

return null;

java. util.Properties props = null;
home = initC x. | ookup(jndi Nm;

}
cat ch(j avax. nam ng. NameNot FoundExcepti on e)
{
return nul | ;
}
cat ch(j avax. nam ng. Nam ngException e)
{
return null;
}
try

| Shoppi ngCart cart = ((IShoppi ngCart Hone) hone).create();

}
catch (...) {...}

For more information on EJB components, see the Sun ONE Application Server
Developer’s Guide to Enterprise JavaBeans Technology.

38 Sun ONE Application Server Developer’'s Guide to Web Applications * September 2002

Creating Servlets

NOTE To avoid collisions with names of other enterprise resources in

JNDI, and to avoid portability problems, all names in a Sun ONE
Application Server application should begin with the string
j ava: conp/ env.

Handling Threading Issues

By default, servlets are not thread-safe. The methods in a single servlet instance are
usually executed numerous times simultaneously (up to the available memory
limit). Each execution occurs in a different thread though only one serviet copy
exists in the servlet engine.

This is efficient system resource usage, but is dangerous because of how Java
manages memory. Because variables belonging to the servlet class are passed by
reference, different threads can overwrite the same memory space as a side effect.
To make a servlet (or a block within a servlet) thread-safe, do one of the following:

Synchronize write access to all instance variables, as in publ i ¢ synchroni zed
voi d method() (whole method) or synchroni zed(this) {...} (block only).
Because synchronizing slows response time considerably, synchronize only

blocks, or make sure that the blocks in the servlet do not need synchronization.

For example, this servlet has a thread-safe block in doGet () and a thread-safe
method called nySaf eMet hod() :

i mport java.io.*;
i nport javax.servlet.*;
i mport javax.servlet.http.*;

public class nmyServlet extends HttpServlet {

public void doGet (HtpServletRequest request,
Ht t pSer vl et Response response)
throws Servl et Exception, | CException {
/| pre-processing
synchroni zed (this) {
//code in this block is thread-safe
}

/1 ot her processing;

}

public synchroni zed i nt nySafeMet hod (HttpServl et Request request)

Chapter 2 Using Servlets 39

Creating Servlets

{

[l everything that happens in this nethod is thread-safe

}
}

Use the Si ngl eThr eadMbdel class to create a single-threaded servlet. When a
single-threaded servlet is deployed to the Sun ONE Application Server, the
servlet engine creates a servlet instance pool used for incoming requests
(multiple copies of the same servlet in memory). You can change the number of
servlet instances in the pool by setting the si ngl eThr eadedSer vl et Pool Si ze
property in the Sun ONE Application Server specific web application
deployment descriptor. For more information on the Sun ONE Application
Server web application deployment descriptor, see Chapter 6, “Assembling
and Deploying Web Modules.” A single-threaded servlet is slower under load
because new requests must wait for a free instance in order to proceed, but this
is not a problem with distributed, load-balanced applications since the load
automatically shifts to a less busy process.

For example, this servlet is completely single-threaded:

i mport java.io.*;
i nport javax.servlet.*;
i mport javax.servlet.http.*;

public class nyServl et extends H tpServlet
i mpl ement s Si ngl eThr eadModel {
servlet methods. . .

Delivering Client Results

The final user interaction activity is to provide a response page to the client. The
response page can be delivered in two ways:

Creating a Servlet Response Page

Creating a JSP Response Page

Creating a Servlet Response Page

Generate the output page within a servlet by writing to the output stream. The
recommended way to do this depends on the output type.

40 Sun ONE Application Server Developer's Guide to Web Applications « September 2002

Creating Servlets

Always specify the output MIME type using set Cont ent Type() before any output
commences, as in this example:

response. set Cont ent Type("text/htm ");

For textual output, such as plain HTML, create a Pri nt Wi t er object and then
write to it using pri nt | n. For example:

PrintWiter output = response.getWiter();
output.println("Hello, Wrld\in");

For binary output, write to the output stream directly by creating a
Ser vl et Qut put St r eamobject and then write to it using pri nt () . For example:

Ser vl et Qut put St r eam out put = response. get Qut put Streamn();
out put . print (bi nary_data);

Creating a JSP Response Page
Servlets can invoke JSPs in two ways:

e Theinclude() method in the Request Di spat cher interface calls a JSP and
waits for it to return before continuing to process the interaction. The
i ncl ude() method can be called multiple times within a given servlet.

This example shows a JSP using i ncl ude() :

Request Di spat cher di spatcher =

get Servl et Cont ext (). get Request Di spat cher ("JSP_URI");
di spat cher.incl ude(request, response);

/| processi ng continues

e Theforward() method in the Request Di spat cher interface hands the JSP
interaction control. The servlet is no longer involved with the current
interaction’s output after invoking f or war d() , thus only one call to the
forwar d() method can be made in a particular servlet.

NOTE You cannot use the f or war d() method if you have already defined
aPrintWiter or Servl et Qut put St r eamobject.

This example shows a JSP using f or war d() :

Request Di spat cher di spatcher =
get Ser vl et Cont ext () . get Request Di spat cher ("JSP_URI ") ;
di spat cher. forward(request, response);

Chapter 2 Using Servlets 41

Invoking Servlets

NOTE Identify which JSP to call by specifying a Universal Resource
Identifier (URI). The path is a St ri ng describing a path within the
Ser vl et Cont ext scope. There is also a get Request Di spat cher ()
method in the request object that takes a St ri ng argument
indicating a complete path. For more information about this
method, see the Java Servlet Specification, v2.3, section 8.

For more information about JSPs, see Chapter 3, “Using JavaServer Pages.”

Invoking Servlets

You can invoke a servlet by directly addressing it from an application page with a
URL or calling it programmatically from an already running servlet. See the
following sections:

« Calling a Servlet with a URL

= Calling a Servlet Programmatically

Calling a Servlet with a URL

You can call servlets by using URLs embedded as links in an application’s HTML
or JSP pages. The format of these URLSs is as follows:

ht t p: / / server: port/ context_root/ ser vl et / servlet_name?name=value

The following table describes each URL section. The left column lists the URL
elements, and the right column lists descriptions of each URL element.

URL Fields for Servlets within an Application

URL element Description

server: port The IP address (or host name) and optional port number.

To access the default web module for a virtual server, specify only this
URL section. You do not need to specify the context_root or servlet_name
unless you also wish to specify name-value parameters.

42 Sun ONE Application Server Developer's Guide to Web Applications ¢ September 2002

Invoking Servlets

URL Fields for Servlets within an Application (Continued)

URL element Description

context_root For an application, the context root is defined in the cont ext - r oot
element of the appl i cati on. xm or sun-application. xm file.
For an individually deployed web module, you specify the context root
during deployment.

servl et Only needed if no ser vl et - mappi ng is defined in the web. xm file.

servlet_name The ser vl et - nane (or ser vl et - mappi ng if defined) as configured
in the web. xm file.

?name=value. . . Optional servlet name-value parameters.

In this example, | eMor t is the host name, Mor t Pages is the context root, and
cal cMort gage is the servlet name:

http://ww. | eMort. com Mort Pages/ servl et/ cal cMort gage?rat e=8. 0&per =360&bal =180000

Calling a Servlet Programmatically

First, identify which servlet to call by specifying a URI. This is normally a path
relative to the current application. For example, if your servlet is part of an
application with a context root called O f i ceFr ont End, the URL to a servlet called
ShowSuppl i es from a browser is as follows:

htt p: // server: port/ Of fi ceApp/ O fi ceFront End/ servl et/ ShowSuppl i es?nanme=val ue

You can call this servlet programmatically from another servlet in one of two ways,
as described below.

= Toinclude another servlet’s output, use the i ncl ude() method from the
Request Di spat cher interface. This method calls a servlet by its URI and waits
for it to return before continuing to process the interaction. The i ncl ude()
method can be called multiple times within a given servlet.

For example:

Request Di spat cher di spatcher =
get Ser vl et Cont ext () . get Request Di spat cher ("/ ShowSuppl i es");
di spat cher.incl ude(request, response);

= To hand interaction control to another servlet, use the Request Di spat cher
interface’s f or war d() method with the servlet’s URI as a parameter.

Chapter 2 Using Servlets 43

Servlet Output

NOTE Forwarding a request means the original servlet is no longer
involved with the current interaction output after f or war d() is
invoked. Therefore, only one f or war d() call can be made in a
particular servlet.

This example shows a servlet using f orwar d() :

Request Di spat cher di spatcher =
get Ser vl et Cont ext () . get Request Di spat cher ("/ ShowSuppl i es");
di spat cher. forward(request, response);

Servlet Output

Ser vl et Cont ext . | og messages are sent to the server log.

By default, the Syst em out and Syst em er r output of servlets are sent to the
server log, and during start-up server log messages are echoed to the System err
output. Also by default, there is no Windows-only console for the Syst em err
output. You can change these defaults in these ways:

= Using the Administration Interface

= Editing the server.xml File

Using the Administration Interface

Use the Administration interface as follows:

1. Click on the Logging tab of the server instance page in the Administration
interface.

2. Check or uncheck these boxes:

o Log stdout content to event log - If t r ue, Syst em out output is sent to the
server log.

o Log stderr content to event log - If t r ue, Syst em err output is sent to the
server log.

o Echo to stderr - If t r ue, server log messages are echoed System err.

o Create console - Creates a Windows-only console for Syst em err output.

44 Sun ONE Application Server Developer's Guide to Web Applications ¢ September 2002

Caching Servlet Results

3. Click on the Save button.
4. Go to the server instance page and select the Apply Changes button.

For more information, see the Sun ONE Application Server Administrator’s Guide.

Editing the server.xml File

Edit the server. xm file as follows, then restart the server:

<l og-service | o0g-stdout=fal se
| og-stderr=fal se
echo- | og- nessages-to-stderr=fal se
create-consol e=true />

The cr eat e- consol e attribute is Windows-only. For more information about
server. xni , see the Sun ONE Application Server Administrator’s Configuration File
Reference.

Caching Servlet Results

The Sun ONE Application Server can cache the results of invoking a servlet, a JSP,
or any URL pattern to make subsequent invocations of the same servlet, JSP, or
URL pattern faster. The Sun ONE Application Server caches the request results for
a specific amount of time. In this way, if another data call occurs, the Sun ONE
Application Server can return the cached data instead of performing the operation
again. For example, if your servlet returns a stock quote that updates every 5
minutes, you set the cache to expire after 300 seconds.

Whether to cache results and how to cache them depends on the data involved. For
example, it makes no sense to cache the results of a quiz submission, because the
input to the servlet is different each time. However, you could cache a high level
report showing demographic data taken from quiz results that is updated once an
hour.

You can define how a Sun ONE Application Server web application handles
response caching by editing specific fields in the sun- web. xni file. In this way, you
can create programmatically standard servlets that still take advantage of this
valuable Sun ONE Application Server feature.

For more information about JSP caching, see “JSP Caching,” on page 56.

Chapter 2 Using Servlets 45

Caching Servlet Results

NOTE For information about caching static file content, see the nsf c. conf

file, described in the Sun ONE Application Server Administrator’s
Configuration File Reference.

The rest of this section covers the following topics:

Caching Features

Default Cache Configuration
Caching Example
CacheHelper Interface

CacheKeyGenerator Interface

Caching Features

Sun ONE Application Server 7 has the following web application response caching
capabilities:

Caching is configurable based on the servlet name or the URI.

When caching is based on the URI, this includes user specified parameters in
the query string. For example, a response from

/ gar den/ cat al og?cat egor y=r oses is different from a response from

/ gar den/ cat al og?cat egory=li |l i es. These responses are stored under
different keys in the cache.

Cache size, entry timeout, and other caching behaviors are configurable.

Entry timeout is measured from the time an entry is created or refreshed. You
can override this timeout for an individual cache mapping by specifying the
cache- mappi ng subelement ti neout .

You can determine caching criteria programmatically by writing a cache helper
class. For example, if a servlet only knows when a back end data source was
last modified, you can write a helper class to retrieve the last modified
timestamp from the data source and decide whether to cache the response
based on that timestamp. See “CacheHelper Interface,” on page 48.

You can determine cache key generation programmatically by writing a cache
key generator class. See “CacheKeyGenerator Interface,” on page 50.

46 Sun ONE Application Server Developer's Guide to Web Applications « September 2002

Caching Servlet Results

All non-ASCII request parameter values specified in cache key elements must
be URL encoded. The caching subsystem attempts to match the raw parameter
values in the request query string.

Since newly updated classes impact what gets cached, the web container clears
the cache during dynamic deployment or reloading of classes.

The following Ht t pSer vl et Request request attributes are exposed:
o com sun. appser V. web. cachedSer vl et Nane, the cached servlet target

o com sun. appserv. web. cachedURLPat t er n, the URL pattern being cached

Default Cache Configuration

If you enable caching but do not provide any special configuration for a servlet or
JSP, the default cache configuration is as follows:

The default cache timeout is 30 seconds.
Only the HTTP GET method is eligible for caching.
HTTP requests with cookies or sessions automatically disable caching.

No special consideration is given to Pragma: , Cache-control :, or Vary:
headers.

The default key consists of the Servlet Path (minus pat hl nf o and the query
string).

A “least recently used” list is maintained to evict cache entries if the maximum
cache size is exceeded.

Key generation concatenates the servlet path with key field values, if any are
specified.

Caching Example

Here is an example cache element in the sun- web. xn file:

<cache max-capacity="8192" ti meout="60">
<cache- hel per nane="nyHel per" cl ass-name="M/CacheHel per"/>
<cache- mappi ng>
<servl et - nane>nyservl et </ servl et nane
<ti meout nanme="tinefiel d">120</ti neout >
<ht t p- net hod>GET</ ht t p- met hod>

Chapter 2 Using Servlets 47

Caching Servlet Results

<ht t p- net hod>POST</ ht t p- met hod>
</ cache- mappi ng>
<cache- mappi ng>
<url-pattern> /catal og/* </url-pattern>
<l-- cache the best selling category; cache the responses to
-- this resource only when the given paraneters exist. cache
-- only when the catal og paranmeter has 'lilies’ or ’'roses’
-- but no other catalog varieties:
-- lorchard/ cat al og?best &at egory="lilies
-- [lorchard/ cat al og?best &cat egory='roses’
-- but not the result of
-- [lorchard/ cat al og?best &at egory="wi | d’
-->
<constraint-field nane=" best’ scope='request. paraneter’/>
<constraint-field nane=' category’ scope='request. paraneter’>
<val ue> roses </val ue>

<value> lilies </value>
</constraint-field>
<I-- Specify that a particular field is of given range but the

-- field doesn’'t need to be present in all the requests -->
<constraint-field nane=" SKUnum scope='request.paraneter’ >
<val ue match-expr="in-range’ > 1000 - 2000 </val ue>
</constraint-field>
<I-- cache when the category matches with any val ue other than
-- a specific value -->
<constraint-field nane="cat egory" scope="request. paraneter>
<val ue match-expr="equal s" cache-on-match-failure="true">bogus</val ue>
</constraint-field>
</ cache- mappi ng>
<cache- mappi ng>
<servl et-name> | nfoServlet </servlet nane>
<cache- hel per -ref >myHel per </ cache- hel per-ref>
</ cache- mappi ng>
</ cache>

For more information about the sun- web. xml caching settings, see “Caching
Elements,” on page 108.

CacheHelper Interface

Here is the CacheHel per interface:

package com sun. appserv. web. cache

i nport java.util.Mp

48 Sun ONE Application Server Developer's Guide to Web Applications ¢ September 2002

Caching Servlet Results

i mport javax. servlet. Servl et Cont ext;
i mport javax.servlet.http.HtpServl et Request;

/** CacheHel per interface is an user-extensible interface to custoni ze:
* a) the key generation b) whether to cache the response.

*/

public interface CacheHel per {

/'l name of request attributes
public static final String ATTR_CACHE MAPPED SERVLET_NAME =

"com sun. appserv. web. cachedSer vl et Nane";
public static final String ATTR CACHE MAPPED URL_PATTERN =

"com sun. appserv. web. cachedURLPat t ern";

public static final int TIMEQUT_VALUE NOT_SET = -2;

/** initialize the hel per

* @aram context the web application context this hel per belongs to
* @xception Exception if a startup error occurs

*/

public void init(ServletContext context, Map props) throws Exception;

/** get CacheKey: generate the key to be used to cache this request

* @aram request inconm ng <code>Htt pServl et Request </ code> obj ect

* @eturns the generated key for this requested cacheabl e resource.
*/

public String getCacheKey(HttpServl et Request request);

/** isCacheable: is the response to given request cachebal e?

* @aram request incom ng <code>Htt pServl et Request </ code> obj ect

* @eturns <code>true</code> if the response could be cached. or

* <code>fal se</code> if the results of this request nust not be cached.
*/

publ i ¢ bool ean i sCacheabl e(H t pServl et Request request);

/** isRefreshNeeded: is the response to given request be refreshed?
* @aram request inconm ng <code>Htt pServl et Request </ code> obj ect

* @eturns <code>true</code> if the response needs to be refreshed.
* or return <code>fal se</code> if the results of this request

* don't need to be refreshed.

publ i c bool ean i sRefreshNeeded(Htt pServl et Request request);
[** get timeout for the cached response.
* @aramrequest incom ng <code>Htt pServl et Request </ code> obj ect

* @eturns the tinmeout in seconds for the cached response; a return
* wvalue of -1 nmeans the response never expires and a value of -2 indicates

Chapter 2 Using Servlets 49

Caching Servlet Results

* hel per cannot determine the timeout (container assigns default tineout)
*/
public int getTi meout(HttpServl et Request request);

/**

* Stop the hel per fromactive use

* @xception Exception if an error occurs
*/

public void destroy() throws Exception;

CacheKeyGenerator Interface

The built-in default CacheHel per implementation allows web applications to
customize the key generation. An application component (in a servlet or JSP) can
set up a custom CachekeyGener at or implementation as an attribute in the

Ser vl et Cont ext .

The name of the context attribute is configurable as the val ue of the
cacheKeyGener at or At t r Name property in the def aul t - hel per element of the
sun-web. xm deployment descriptor. For more information, see “default-helper,”
on page 111.

Here is the CacheKeyGener at or interface:

package com sun. appserv. web. cache;

i mport javax. servlet. Servl et Cont ext;
i mport javax.servlet.http.HtpServl et Request;

/** CacheKeyGenerator: a helper interface to generate the key that
* s used to cache this request.

Name of the ServletContext attribute inplementing the
CacheKeyGenerator is configurable via a property of the
defaul t-hel per in sun-web. xm :
<def aul t - hel per >
<property
nanme="cacheKeyGener at or Att r Nane"
val ue="com acme. web. MyCacheKeyGenerator" />
</ def aul t - hel per >

Cachi ng engi ne |1 ooks up the specified attribute in the servlet
context; the result of the | ookup nmust be an i npl enentation of the
CacheKeyGenerator interface.

0% X X X X X X X X X X X F

50 Sun ONE Application Server Developer's Guide to Web Applications ¢ September 2002

About the Servlet Engine

public interface CacheKeyGenerator {

[** get CacheKey: generate the key to be used to cache the
* response.
@ar am context the web application context
@ar am request incomnmi ng <code>Htt pServl et Request </ code>
@eturns key string used to access the cache entry.
if the return value is null, a default key is used.
/
public String getCacheKey(Servl et Context context,
Ht t pSer vl et Request request);

E T L B I

About the Servlet Engine

Servlets exist in and are managed by the servlet engine in the Sun ONE Application
Server. The servlet engine is an internal object that handles all servlet meta
functions. These functions include instantiation, initialization, destruction, access
from other components, and configuration management.

Instantiating and Removing Servlets

After the servlet engine instantiates the servlet, the servlet engine runs itsi ni t ()
method to perform any necessary initialization. Override this method to perform
an initialize a function for the servlet’s life, such as initializing a counter.

When a servlet is removed from service, the server engine calls the dest r oy()
method in the servlet so that the servlet can perform any final tasks and deallocate
resources. Override this method to write log messages or clean up any lingering
connections that won’t be caught in garbage collection.

Request Handling

When a request is made, the Sun ONE Application Server hands the incoming data
to the servlet engine. The servlet engine processes the request’s input data, such as
form data, cookies, session information, and URL name-value pairs, into an

Ht t pSer vl et Request request object type.

The servlet engine also creates an Ht t pSer vl et Response response object type. The
engine then passes both as parameters to the servlet’s ser vi ce() method.

Chapter 2 Using Servlets 51

About the Servlet Engine

In an HTTP servlet, the default ser vi ce() method routes requests to another
method based on an HTTP transfer method, such as POST, GET, and so on. For
example, HTTP POST requests are sent to the doPost () method, HTTP GET requests
are sent to the doGet () method, and so on. This enables the servlet to process
request data differently, depending on which transfer method is used. Since the
routing takes place in the service method, you generally do not override
service() inan HTTP servlet. Instead, override doGet (), doPost (), and so on,
depending on the request type you expect.

TIP To enable automatic routing in an HTTP servlet, call
request . get Met hod() , which provides the HTTP transfer method.
Since request data is already preprocessed into a name value list in
the Sun ONE Application Server, you could simply override the
servi ce() method in an HTTP servlet without losing functionality.
However, this does make the servlet less portable, since it is now
dependent on preprocessed request data.

To perform the tasks to answer a request, override the ser vi ce() method for
generic servlets, and the doGet () or doPost () methods for HTTP servlets. Very
often, this means accessing EJB components to perform business transactions,
collating the information in the request object or in a JDBC Resul t Set object, and
then passing the newly generated content to a JSP for formatting and delivery back
to the user.

Allocating Servlet Engine Resources

By default, the servlet engine creates a thread for each new request. This is less
resource intensive than instantiating a new servlet copy in memory for each
request. Avoid threading issues, since each thread operates in the same memory
space where servlet object variables can overwrite each other.

If a servlet is specifically written as a single thread, the servlet engine creates a pool
of servlet instances to be used for incoming requests. If a request arrives when all
instances are busy, it is queued until an instance becomes available. The number of
pool instances is configurable in the sun-web. xm file, in the

si ngl eThr eadedSer vl et Pool Si ze property of the sun- web- app element.

For more information about the sun-web. xnm file, see Chapter 6, “Assembling and
Deploying Web Modules.” For more information on threading issues, see
“Handling Threading Issues,” on page 39.

52 Sun ONE Application Server Developer's Guide to Web Applications ¢ September 2002

Chapter 3

Using JavaServer Pages

This chapter describes how to use JavaServer Pages (JSPs) as page templates in a
Sun ONE Application Server web application.

This chapter contains the following sections:

= Introducing JSPs

« Creating JSPs

= JSP Tag Libraries and Standard Portable Tags
= JSP Caching

= Compiling JSPs: The Command-Line Compiler
= Debugging JSPs

Introducing JSPs

JSPs are browser pages in HTML or XML. They also contain Java code, which
enables them to perform complex processing, conditionalize output, and
communicate with other application objects. JSPs in Sun ONE Application Server
are based on the JSP 1.2 specification. This specification is accessible from
install_dir/ docs/ i ndex. ht nyinstall_dir is where the Sun ONE Application Server is
installed.

In a Sun ONE Application Server application, JSPs are the individual pages that
make up an application. You can call a JSP from a servlet to handle the user
interaction output, or, since JSPs have the same application environment access as
any other application component, you can use a JSP as an interaction destination.

53

Creating JSPs

JSPs are made up of JSP elements and template data. Template data is anything not in
the JSP specification, including text and HTML tags. For example, the minimal JSP
requires no processing by the JSP engine and is a static HTML page.

The Sun ONE Application Server compiles JSPs into HTTP servlets the first time
they are called (or they can be precompiled for better performance). This makes
them available to the application environment as standard objects and enables
them to be called from a client using a URL.

JSPs run inside the server’s JSP engine, which is responsible for interpreting JSP
specific tags and performing the actions they specify in order to generate dynamic
content. This content, along with any template data surrounding it, is assembled
into an output page and is returned to the caller.

Creating JSPs

You create JSPs in basically the same way you create HTML files. You can use an
HTML editor to create pages and edit the page layout. You make a page a JSP by
inserting JSP-specific tags into the raw source code where needed, and by giving
the file a . j sp extension.

JSPs that adhere to the JSP 1.2 specification follow XML syntax for the most part,
which is consistent with HTML. For a summary of the JSP tags you can use, see
“JSP Tag Libraries and Standard Portable Tags,” on page 55.

JSPs are compiled into servlets, so servlet design considerations also apply to JSPs.
JSPs and servlets can perform the same tasks, but each excels at one task at the
expense of the other. Servlets are strong in processing and adaptability. However,
performing HTML output from them involves many cumbersome print | n
statements that must be coded by hand. Conversely, JSPs excel at layout tasks
because they are simply HTML files and can be created with HTML editors,
though performing complex computational or processing tasks with them is
awkward. For information about servlets, see Chapter 2, “Using Servlets.”

Here are a few additional JSP design tips:
= Designing for Ease of Maintenance
= Designing for Portability

= Handling Exceptions

54 Sun ONE Application Server Developer’'s Guide to Web Applications * September 2002

JSP Tag Libraries and Standard Portable Tags

Designing for Ease of Maintenance

Each JSP can call or include any other JSP. For example, you can create a generic
corporate banner, a standard navigation bar, and a left-side column table of
contents, where each element is in a separate JSP and is included for each page
built. The page can be constructed with a JSP functioning as a frameset,
dynamically determining the pages to load into each subframe. A JSP can also be
included when the JSP is compiled into a servlet or when a request arrives.

Designing for Portability

JSPs can be completely portable between different applications and different
servers. A disadvantage is that they have no particular application data
knowledge, but this is only a problem if they require that kind of data.

One possible use for generic JSPs is for portable page elements, such as navigation
bars or corporate headers and footers, which are meant to be included in other
JSPs. You can create a library of reusable generic page elements to use throughout
an application, or even among several applications.

For example, the minimal generic JSP is a static HTML page with no JSP-specific
tags. A slightly less minimal JSP might contain some Java code that operates on
generic data, such as printing the date and time, or that makes a change to the
page’s structure based on a standard value set in the request object.

Handling Exceptions

If an uncaught exception occurs in a JSP file, Sun ONE Application Server
generates an exception, usually a 404 or 500 error. To avoid this problem, set the
err or Page attribute of the <%@ page% tag.

JSP Tag Libraries and Standard Portable Tags

Sun ONE Application Server supports tag libraries and standard portable tags. For
more information about tag libraries, see the JSP 1.2 specification at:

http://java. sun. coni product s/ j sp/ downl oad. ht m
For a handy summary of JSP 1.2 tag syntax, see the following PDF file:
http://java. sun. conl product s/ j sp/ pdf / card12. pdf

Chapter 3 Using JavaServer Pages 55

JSP Caching

JSP Caching

JSP caching lets you cache JSP page fragments within the Java engine. Each can be
cached using different cache criteria. For example, suppose you have page
fragments to view stock quotes, weather information, and so on. The stock quote
fragment can be cached for 10 minutes, the weather report fragment for 30 minutes,
and so on.

For more information about response caching as it pertains to servlets, see
“Caching Servlet Results,” on page 45.

JSP caching uses the custom tag library support provided by JSP 1.2. JSP caching is
implemented by a tag library packaged into the install_dir/ | i b/ appserv-tags.j ar
file, which you can copy into the VEB- | NF/ | i b directory of your web application.
The appserv-tags. t1 d tag description file is in this JAR file and in the
install_dir/ 1i b/ t| ds directory.

You refer to these tags in your JSP files as follows:
<v@taglib prefix="prefix" uri="Sun ONE Application Server Tags" %

Subsequently, the cache tags are available as <prefix: cache> and <prefix: f | ush>.
For example, if your prefix is nypf x, the cache tags are available as <nmypf x: cache>
and <nypf x: fl ush>.

If you wish to use a different URI for this tag library, you can use an explicit
<t agl i b> element in your web. xm file.

The tags are as follows:

e cache
e flush
cache

The cache tag caches the body between the beginning and ending tags according to
the attributes specified. The first time the tag is encountered, the body content is
executed and cached. Each subsequent time it is run, the cached content is checked
to see if it needs to be refreshed and if so, it is executed again, and the cached data
is refreshed. Otherwise, the cached data is served.

Attributes

The following table describes attributes for the cache tag. The left column lists the
attribute name, the middle column indicates the default value, and the right
column describes what the attribute does.

56 Sun ONE Application Server Developer's Guide to Web Applications ¢ September 2002

JSP Caching

cache attributes

Attribute Default Description

key

ServletPath_Suffix (optional) The name used by the container to access the
cached entry. The cache key is suffixed to the servlet path
to generate a key to access the cached entry. If no key is
specified, a number is generated according to the
position of the tag in the page.

ti meout 60s (optional) The time in seconds after which the body of

the tag is executed and the cache is refreshed. By default,
this value is interpreted in seconds. To specify a different
unit of time, add a suffix to the timeout value as follows:
s for seconds, mfor minutes, h for hours, d for days. For
example, 2h specifies two hours.

nocache fal se (optional) If setto t r ue, the body content is executed

and served as if there were no cache tag. This offers a
way to programmatically decide whether the cached
response should be sent or whether the body has to be
executed, though the response is not cached.

refresh false (optional) If setto t r ue, the body content is executed

and the response is cached again. This lets you
programmatically refresh the cache immediately
regardless of the t i neout setting.

Example
The following example represents a cached JSP page:

<v@taglib prefix="mypfx" uri="Sun ONE Application Server Tags" %

<%

String cacheKey = null;
if (session !'= null)
cacheKey = (String)session.getAttribute("loginld");

/'l check for nocache
bool ean noCache = fal se;
String nc = request. get Paranet er (" nocache");
if (nc != null)
noCache = "true";

/]l force rel oad

bool ean rel oad=f al se;
String refresh = request. get Paraneter("refresh");

Chapter 3 Using JavaServer Pages

57

JSP Caching

if (refresh !'= null)
rel oad = true;
%

<nypf x: cache key="<% cacheKey %" nocache="<% noCache %"
refresh="<% reload %" tineout="10n">
<%
String page = request.getParaneter("page");
i f (page.equal s("frontPage") {
/1 get headlines from dat abase
} else {

%
</ nypf x: cache>

<nypf x: cache tinmeout="1h">
<h2> Local News </h2>
<%
/1 get the headline news and cache them
%
</ nypf x: cache>

flush

Forces the cache to be flushed. If a key is specified, only the entry with that key is
flushed. If no key is specified, the entire cache is flushed.

Attributes

The following table describes attributes for the f | ush tag. The left column lists the
attribute name, the middle column indicates the default value, and the right
column describes what the attribute does.

f | ush attributes

Attribute Default Description

key ServletPath_Suffix (optional) The name used by the container to access the
cached entry. The cache key is suffixed to the servlet path
to generate a key to access the cached entry. If no key is
specified, a number is generated according to the
position of the tag in the page.

58 Sun ONE Application Server Developer's Guide to Web Applications ¢ September 2002

Compiling JSPs: The Command-Line Compiler

Examples
To flush the entry with key="f oobar":

<nypf x: flush key="foobar"/>

To flush the entire cache:

<%if (session != null && session.getAttribute("clearCache") !'= null) { %
<nmypfx: flush />
<%} %

Compiling JSPs: The Command-Line Compiler

Sun ONE Application Server provides the following ways of compiling JSP 1.2
compliant source files into servlets:

= JSPs are automatically compiled at runtime.

e Theasadmi n depl oy command has a pr econpi | ej sp option; see the Sun ONE
Application Server Developer’s Guide.

= The sun-appserv-j spc Ant task allows you to precompile JSPs; see the Sun
ONE Application Server Developer’s Guide.

= Thej spc command line tool, described in this section, allows you to
precompile JSPs at the command line.

To allow the JSP container to pick up the precompiled JSPs from a JAR file, you
must disable dynamic reloading of JSPs. To do this, set the r el oad- i nt er val
property to - 1 in the j sp- conf i g element of the sun-web. xnm file. See “JSP
Elements,” on page 119.

The j spc command line tool is located under install_dir/ bi n (make sure this
directory is in your path). The format of the j spc command is as follows:

j spc [options] file_specifier

The following table shows what file_specifier can be in the j spc command. The left
column lists file specifiers, and the right column lists descriptions of those file
specifiers.

File specifiers for the j spc command

File Specifier Description

files One or more JSP files to be compiled.

Chapter 3 Using JavaServer Pages 59

Compiling JSPs: The Command-Line Compiler

File specifiers for the j spc command

File Specifier Description

-webapp dir A directory containing a web application. All JSPs in the
directory and its subdirectories are compiled. You cannot
specify a WAR, JAR, or ZIP file; you must first extract it to an
open directory structure.

The following table shows the basic options for the j spc command. The left column
lists options, and the right column lists descriptions of those options.

Basic j spc options

Option Description

-q Enables quiet mode (same as - v0). Only fatal error messages
are displayed.

-d dir Specifies the output directory for the compiled JSPs. Package
directories are automatically generated based on the
directories containing the uncompiled JSPs. The default
top-level directory is the directory from which j spc is

invoked.

-p name Specifies the name of the target package for all specified JSPs,
overriding the default package generation performed by the
- d option.

- C name Specifies the target class name of the first JSP compiled.

Subsequent JSPs are unaffected.

-uribase dir Specifies the URI directory to which compilations are relative.
Applies only to JSP files listed in the command, and not to JSP
files specified with - webapp.

This is the location of each JSP file relative to the uri r oot . If
this cannot be determined, the defaultis/ .

-uriroot dir Specifies the root directory against which URI files are
resolved. Applies only to JSP files listed in the command, and
not to JSP files specified with - webapp.

If this option is not specified, all parent directories of the first
JSP page are searched for a V\EB- | NF subdirectory. The closest
directory to the JSP page that has one is used.

If none of the JSP’s parent directories have a V\EB- | NF
subdirectory, the directory from which j spc is invoked is
used.

60 Sun ONE Application Server Developer's Guide to Web Applications ¢ September 2002

Compiling JSPs: The Command-Line Compiler

Basic j spc options

Option Description

- gencl ass Compiles the generated servlets into class files.

The following table shows the advanced options for the j spc command. The left
column lists options, and the right column lists descriptions of those options.

Advanced j spc options

Option Description

- v[level] Enables verbose mode. The level is optional; the default is 2.
Possible level values are:

= 0 - fatal error messages only

e 1 -error messages only

= 2 -error and warning messages only

= 3 -error, warning, and informational messages

= 4 -error, warning, informational, and debugging
messages

- mapped Generates separate wr i t e calls for each HTML line and
comments that describe the location of each line in the JSP file.
By default, all adjacent wr i t e calls are combined and no
location comments are generated.

- di e[code] Returns the error number specified by code if an error occurs.
If the code is absent or unparsable it defaults to 1.

-webi nc file Creates partial servlet mappings for the - webapp option,
which can be pasted into aweb. xm file.

-webxm file Creates an entire web. xmi file for the - webapp option.

-ieplugin class_id Specifies the Java plugin COM class ID for Internet Explorer.

Used by the <j sp: pl ugi n> tags.

For example, this command compiles the hel | o JSP file and writes the compiled
JSP under hel | odi r:

jspc -d hellodir -genclass hello.jsp

Chapter 3 Using JavaServer Pages 61

Debugging JSPs

This command compiles all the JSP files in the web application under webappdi r
into class files under j spcl assdir:
jspc -d jspclassdir -genclass -webapp webappdir

To use either of these precompiled JSPs in a web application, put the classes under
hel | odi r orj spcl assdir into a JAR file, place the JAR file under VEB- I NF/ | i b,
and set the rel oad-i nt erval property to -1 inthe sun-web. xm file.

Debugging JSPs

When you use Sun ONE Studio 4 to debug JSPs, you can set breakpoints in either
the JSP code or the generated servlet code, and you can switch between them and
see the same breakpoints in both.

To set up debugging in Sun ONE Studio, see the Sun ONE Application Server
Developer’s Guide. For further details, see the Sun ONE Studio 4, Enterprise Edition
Tutorial.

62 Sun ONE Application Server Developer's Guide to Web Applications ¢ September 2002

Chapter 4

Creating and Managing User
Sessions

This chapter describes how to create and manage a session that allows users and
transaction information to persist between interactions.

This chapter contains the following sections:
= Introducing Sessions
= How to Use Sessions

= Session Managers

Introducing Sessions

The term user session refers to a series of user application interactions that are
tracked by the server. Sessions are used for maintaining user specific state,
including persistent objects (like handles to EJB components or database result
sets) and authenticated user identities, among many interactions. For example, a
session could be used to track a validated user login followed by a series of
directed activities for a particular user.

The session itself resides in the server. For each request, the client transmits the
session ID in a cookie or, if the browser does not allow cookies, the server
automatically writes the session ID into the URL.

The Sun ONE Application Server supports the servlet standard session interface,
called Ht t pSessi on, for all session activities. This interface enables you to write
portable, secure servlets.

63

Introducing Sessions

Sessions and Cookies

A cookie is a small collection of information that can be transmitted to a calling
browser, which retrieves it on each subsequent call from the browser so that the
server can recognize calls from the same client. A cookie is returned with each call
to the site that created it, unless it expires.

Sessions are maintained automatically by a session cookie that is sent to the client
when the session is first created. The session cookie contains the session 1D, which
identifies the client to the browser on each successive interaction. If a client does
not support or allow cookies, the server rewrites the URLs where the session ID
appears in the URLs from that client.

You can configure whether and how sessions use cookies. See the
sessi on-properties and cooki e- properti es elements in the sun-web. xni file,
described in Chapter 6, “Assembling and Deploying Web Modules.”

Sessions and URL Rewriting

There are two situations in which the Sun ONE Application Server plugin
performs implicit URL rewriting:

= When a response comes back from the Sun ONE Application Server; if implicit
URL rewriting has been chosen, the plugin rewrites the URLs in the response
before passing the response on to the client.

= When the request given by a client need not be sent to the Sun ONE
Application Server and can be served on the web server side. Such requests
may occur in the middle of a session and the response may need to be
rewritten.

You can configure whether sessions use URL rewriting. See the
sessi on-properties elementin the sun-web. xnl file, described in Chapter 6,
“Assembling and Deploying Web Modules.”

Sessions and Security

The Sun ONE Application Server security model is based on an authenticated user
session. Once a session has been created the application user is authenticated (if
authentication is used) and logged in to the session. Each interaction step from the
servlet that receives an EJB request does two things: generates content for a JSP to
format the output, and checks that the user is properly authenticated.

64 Sun ONE Application Server Developer's Guide to Web Applications ¢ September 2002

How to Use Sessions

Additionally, you can specify that a session cookie is only passed on a secured
connection (that is, HTTPS), so the session can only remain active on a secure
channel.

For more information about security, see Chapter 5, “Securing Web Applications.”

How to Use Sessions

To use a session, first create a session using the Ht t pSer vl et Request method
get Sessi on() . Once the session is established, examine and set its properties
using the provided methods. If desired, set the session to time out after being
inactive for a defined time period or invalidate it manually. You can also bind
objects to the session which store them for use by other components.

Creating or Accessing a Session

To create a new session or to gain access to an existing session, use the
Ht t pSer vl et Request method get Sessi on(), as shown in the following example:

Ht t pSessi on mySessi on = request. get Session();

get Sessi on() returns the valid session object associated with the request,
identified in the session cookie which is encapsulated in the request object. Calling
the method with no arguments, creates a session if one does not already exist
which is associated with the request. Additionally, calling the method with a
Boolean argument creates a session only if the argument is t r ue.

The following example shows the doPost () method from a servlet which only
performs the servlet’s main functions, if the session is present. Note that, the f al se
parameter to get Sessi on() prevents the servlet from creating a new session if one
does not already exist:

public void doPost (HttpServletRequest req,
Ht t pSer vl et Response res)
throws Servl et Exception, | CException

{
if (HtpSession session = req.getSession(fal se))
{
/1 session retrieved, continue with servlet operations
}
el se

Chapter 4 Creating and Managing User Sessions 65

How to Use Sessions

/1 no session, return an error page

NOTE The get Sessi on() method should be called before anything is
written to the response stream. Otherwise the Set Cooki e string is
placed in the HTTP response body instead of the HTTP header.

For more information about get Sessi on(), see the Java Servlet Specification v2.3.

Examining Session Properties

Once a session ID has been established, use the methods in the Ht t pSessi on
interface to examine session properties, and methods in the Ht t pSer vl et Request
interface to examine request properties that relate to the session.

The following table shows the methods to examine session properties. The left
column lists Ht t pSessi on methods, and the right column lists descriptions of these
methods.

Ht t pSessi on Methods

Ht t pSessi on method Description

get Creati onTi ne() Returns the session time in milliseconds since January 1, 1970, 00:00:00
GMT.

get1d() Returns the assigned session identifier. An HTTP session’s identifier is a

unique string which is created and maintained by the server.

get Last AccessedTi ne() Returns the last time the client sent a request carrying the assigned session
identifier (or - 1 if its a new session) in milliseconds since January 1, 1970,
00:00:00 GMT.

i sNew() Returns a Boolean value indicating if the session is new. Its a new session, if
the server has created it and the client has not sent a request to it. This
means, the client has not acknowledged or joined the session and may not
return the correct session identification information when making its next
request.

66 Sun ONE Application Server Developer's Guide to Web Applications ¢ September 2002

How to Use Sessions

For example:

String mySessionl D = nySession.getld();
if (mySession.isNewm)) {
| og. println(currentDate);
log.println("client has not yet joined session " + nySessionlD);

}

The following table shows the methods to examine servlet request properties. The
left column lists Ht t pSer vl et Request methods, and the right column lists
descriptions of these methods.

Ht t pSer vl et Request Methods

Ht t pSer vl et Request Methods Description

get Renot eUser () Gets the requesting user name (HTTP authentication can

provide the information). Returns null if the request has no
user name information.

get Request edSessi onl d() Returns the session ID specified with the request. This may

differ from the session ID in the current session if the session
ID given by the client is invalid and a new session was
created. Returns null if the request does not have a session
associated with it.

i sSRequest edSessi onl dVal i d() Checks if the request is associated to a currently valid

session. If the session requested is not valid, it is not
returned through the get Sessi on() method.

i sRequest edSessi onl dFr omCooki e() Returns true if the request’s session ID provided by the

client is a cookie, or false otherwise.

i sRequest edSessi onl dFr omUJRL() Returns true if the request’s session ID provided by the

client is a part of a URL, or false otherwise.

For example:

if (request.isRequestedSessionldVvalid()) {
if (request.isRequestedSessionldFronCookie()) {
// this session is maintained in a session cookie
}
/1l any other tasks that require a valid session
} else {
/1 log an application error

}

Chapter 4 Creating and Managing User Sessions 67

How to Use Sessions

Binding Data to a Session

You can bind objects to sessions in order to make them available across multiple
user interactions.

The following table shows the Ht t pSessi on methods that provide support for
binding objects to the session object. The left column lists Ht t pSessi on methods,
and the right column lists descriptions of these methods.

Ht t pSessi on Methods

Ht t pSessi on Methods Description

getAttribute() Returns the object bound to a given name in the session or null if there is no

such binding.

get Attribut eNames() Returns an array of names of all attributes bound to the session.

set Attribute() Binds the specified object into the session with the given name. Any existing

binding with the same name is overwritten. For an object bound into the session
to be distributed it must implement the seri al i zabl e interface.

renoveAttribute() Unbinds an object in the session with the given name. If there is no object bound

to the given name this method does nothing.

Binding Notification with HttpSessionBindingListener

Some objects require you to know when they are placed in or removed from, a
session. To obtain this information, implement the Ht t pSessi onBi ndi ngLi st ener
interface in those objects. When your application stores or removes data with the
session, the servlet engine checks whether the object being bound or unbound
implements Ht t pSessi onBi ndi ngLi st ener . If it does, the Sun ONE Application
Server notifies the object under consideration, through the

Ht t pSessi onBi ndi ngLi st ener interface, that it is being bound into or unbound
from the session.

Invalidating a Session

Specify the session to invalidate itself automatically after being inactive for a
defined time period. Alternatively, invalidate the session manually with the
Ht t pSessi on method i nval i dat e().

68 Sun ONE Application Server Developer's Guide to Web Applications ¢ September 2002

Session Managers

TIP The session APl does not provide an explicit session logout API, so
any logout implementation must call the sessi on. i nval i dat e()
API.

Invalidating a Session Manually
To invalidate a session manually, simply call the following method:

session.invalidate();

All objects bound to the session are removed.

Setting a Session Timeout

Session timeout is set using the sun- web. xm deployment descriptor file. For more
information, see the sessi on- properti es element in Chapter 6, “Assembling and
Deploying Web Modules.”

Session Managers

A session manager automatically creates new session objects whenever a new
session starts. In some circumstances, clients do not join the session, for example, if
the session manager uses cookies and the client does not accept cookies.

Sun ONE Application Server 7 gives you these session management options:
« Standar dvanager , the default session manager

= Persistent Manager, a provided session manager that uses a persistent data
store

NOTE The session manager interface is Unstable. An unstable interface
may be experimental or transitional, and hence may change
incompatibly, be removed, or be replaced by a more stable interface
in the next release.

Chapter 4 Creating and Managing User Sessions 69

Session Managers

StandardManager

The St andar dvanager is the default session manager.

Enabling StandardManager

You may want to specify St andar dvanager explicitly to change its default
parameters. To do so, edit the sun-web. xm file for the web application as in the
following example.

<sun- web- app>

<sessi on-confi g>
<sessi on- nanager >
<manager - properti es>
<property name="reapl nt erval Seconds" val ue="20" />
</ manager - properti es>
</ sessi on- nanager >

</ sessi on-confi g>

</ sun- web- app>

For more information about the sun-web. xn file, see Chapter 6, “Assembling and
Deploying Web Modules.”

Manager Properties for StandardManager

The following table describes manager - pr opert i es properties for the

St andar dvanager session manager. The left column lists the property name, the
middle column indicates the default value, and the right column describes what
the property does.

manager - pr operti es properties

Property Name Default Value Description

reapl nt erval Seconds 60 Specifies the number of seconds between checks for
expired sessions.

Setting this value lower than the frequency at which
session data changes is recommended. For example,
this value should be as low as possible (1 second) for a
hit counter servlet on a frequently accessed website, or
you could lose the last few hits each time you restart
the server.

70 Sun ONE Application Server Developer's Guide to Web Applications ¢ September 2002

manager - pr operti es properties

Session Managers

Property Name Default Value Description
maxSessi ons -1 Specifies the maximum number of active sessions, or
- 1 (the default) for no limit
sessi onFi | enane none; state is not Specifies the absolute or relative pathname of the file in
preserved across which the session state is preserved between
restarts application restarts, if preserving the state is possible.

A relative pathname is relative to the temporary
directory for this web application.

PersistentManager

The Per si st ent Manager is the other session manager provided with Sun ONE
Application Server. For session persistence, Per si st ent Manager can use a file, to
which each session is serialized. You can also create your own persistence

mechanism.

Enabling PersistentManager

You may want to specify Per si st ent Manager explicitly to change its default
parameters. To do so, edit the sun-web. xm file for the web application as in the
following example. Note that per si st ence-t ype must be settofil e.

<sun-web- app>

<sessi on-confi g>

<sessi on- manager

persi stence-type=fil e>

<manager - properties>

<property name=reapl nt erval Seconds val ue=20 />
</ manager - properti es>
<store-properties>

<property nane=directory val ue=sessions />
</store-properties>

</ sessi on- nanager >

</ sessi on-confi g>

</ sun- web- app>

For more information about the sun-web. xn file, see Chapter 6, “Assembling and

Deploying Web Modules.”

Chapter 4 Creating and Managing User Sessions 71

Session Managers

Manager Properties for PersistentManager

The following table describes manager - pr operti es properties for the

Per si st ent Manager session manager. The left column lists the property name, the
middle column indicates the default value, and the right column describes what
the property does.

manager - propert i es properties

Property Name Default Value Description

reapl nt erval Seconds 60 Specifies the number of seconds between checks for

expired sessions.

Setting this value lower than the frequency at which
session data changes is recommended. For example,
this value should be as low as possible (1 second) for
a hit counter servlet on a frequently accessed website,
or you could lose the last few hits each time you
restart the server.

maxSessi ons -1 Specifies the maximum number of active sessions, or

- 1 (the default) for no limit.

Store Properties for PersistentManager

The following table describes st or e- pr operti es properties for the

Per si st ent Manager session manager. The left column lists the property name, the
middle column indicates the default value, and the right column describes what
the property does.

st ore- properti es properties

Property Name Default Value Description

reapl nt er val Seconds 60 Specifies the number of seconds between checks

for expired sessions for those sessions that are
currently swapped out.

Setting this value lower than the frequency at
which session data changes is recommended.
For example, this value should be as low as
possible (1 second) for a hit counter servlet on a
frequently accessed website, or you could lose
the last few hits each time you restart the server.

72

Sun ONE Application Server Developer's Guide to Web Applications * September 2002

Session Managers

st ore- properti es properties

Property Name Default Value Description
directory directory specified by Specifies the absolute or relative pathname of
j avax. servl et. the directory into which individual session files
cont ext.tenpdir are written. A relative path is relative to the
context attribute temporary work directory for this web
application.

Chapter 4 Creating and Managing User Sessions 73

Session Managers

74 Sun ONE Application Server Developer's Guide to Web Applications ¢ September 2002

Chapter 5

Securing Web Applications

This chapter describes how to write a secure web application for the Sun ONE
Application Server with components that perform user authentication and access
authorization.

This chapter contains the following sections:
= User Authentication by Servlets

= User Authentication for Single Sign-on
= User Authorization by Servlets

= Fetching the Client Certificate

« Security for SHTML and CGlI

User Authentication by Servlets

The web-based login mechanisms required by the J2EE Specification, v1.3 are
supported by the Sun ONE Application Server. These mechanisms include:

e HTTP Basic Authentication
e SSL Mutual Authentication
< Form-Based Login

The | ogi n- confi g element in the web. xm deployment descriptor file describes
the authentication method used, the application’s realm name displayed by the
HTTP basic authentication, and the form login mechanism’s attributes.

The | ogi n- confi g element syntax is as follows:
<! ELEMENT | ogi n-config

(aut h- met hod?, real m nane?, form | ogi n-config?) >

75

User Authentication by Servlets

NOTE The aut h- net hod subelement of | ogi n- confi g is officially
optional, but if it is not included, the server defaults to HTTP Basic
Authentication, which is not very secure.

For more information regarding web. xml elements, see Chapter 13, “Deployment
Descriptor,” of the Java Servlet Specification, v2.3.

For more information regarding sun- web. xnl elements, see Chapter 6,
“Assembling and Deploying Web Modules.”

For information about programmatic login, see the Sun ONE Application Server
Developer’s Guide.

HTTP Basic Authentication

HTTP basic authentication (RFC2068) is supported by the Sun ONE Application
Server. Because passwords are sent with base64 encoding, this authentication type
is not very secure. Use of SSL or another equivalent transport encryption is
recommended to protect the password during transmission.

SSL Mutual Authentication

Secure Socket Layer (SSL) 3.0 and the means to perform mutual (client/server)
certificate-based authentication is a J2EE Specification, v1.3 requirement. This
security mechanism provides user authentication using HTTPS (HTTP over SSL).

The Sun ONE Application Server SSL mutual authentication mechanism (also
known as HTTPS authentication) supports the following cipher suites:

SSL_RSA EXPORT_W TH_RC4_40_MD5
SSL_RSA EXPORT_W TH_RC2_CBC 40 _MD5
SSL_RSA EXPORT_W TH_DES40_CBC_SHA
SSL_DH_DSS_EXPORT W TH_DES40_CBC_SHA
SSL_DH_RSA_EXPORT_W TH_DES40_CBC_SHA
SSL_DHE_DSS_EXPORT W TH_DES40_CBC_SHA
SSL_DHE_RSA_EXPORT_W TH_DES40_CBC_SHA

76 Sun ONE Application Server Developer's Guide to Web Applications ¢ September 2002

User Authentication for Single Sign-on

Form-Based Login

The login screen’s look and feel cannot be controlled with the HTTP browser’s
built-in mechanisms. J2EE introduces the ability to package a standard HTML or
Servlet/JSP based form for logging in. The login form is associated with a web
protection domain (an HTTP realm) and is used to authenticate previously
unauthenticated users.

Because passwords are sent in the clear (unless protected by the underlying
transport), this authentication type is not very secure.Use of SSL or another
equivalent transport encryption is recommended to protect the password during
transmission.

In order for the authentication to proceed appropriately, the login form action must
always bej _security_check.

The following is an HTML sample showing how to program the form in an HTML
page:

<f or m net hod="POST" action="j_security_check">
<i nput type="text" nanme="j _usernane">
<i nput type="password" nane="j _password">
</forne

You can specify the parameter encoding for the form. For details, see
“parameter-encoding,” on page 123.

User Authentication for Single Sign-on

The single sign-on across applications on the Sun ONE Application Server is
supported by the Sun ONE Application Server servlets and JSPs. This feature
allows multiple applications that require the same user sign-on information to
share this information between them, rather than having the user sign-on
separately for each application. These applications are created to authenticate the
user one time, and when needed this authentication information is propagated to
all other involved applications.

An example application using the single sign-on scenario could be a consolidated
airline booking service that searches all airlines and provides links to different
airline web sites. Once the user signs on to the consolidated booking service, the
user information can be used by each individual airline site without requiring
another sign-on.

Chapter 5 Securing Web Applications 77

User Authentication for Single Sign-on

Single sign-on operates according to the following rules:

Single sign-on applies to web applications configured for the same realm and
virtual server. The realm is defined by the r eal m nane element in the web. xm
file. For information about virtual servers, see the Sun ONE Application Server
Administrator’s Guide or the Sun ONE Application Server Administrator’s
Configuration File Reference.

As long as users access only unprotected resources in any of the web
applications on a virtual server, they are not challenged to authenticate
themselves.

As soon as a user accesses a protected resource in any web application
associated with a virtual server, the user is challenged to authenticate himself
or herself, using the login method defined for the web application currently
being accessed.

Once authenticated, the roles associated with this user are used for access
control decisions across all associated web applications, without challenging
the user to authenticate to each application individually.

When the user logs out of one web application (for example, by invalidating or
timing out the corresponding session if form based login is used), the user’s
sessions in all web applications are invalidated. Any subsequent attempt to
access a protected resource in any application requires the user to authenticate
himself or herself again.

The single sign-on feature utilizes HTTP cookies to transmit a token that associates
each request with the saved user identity, so it can only be used in client
environments that support cookies.

To configure single sign-on, set the following properties in the vi rt ual - ser ver
element of the server. xni file:

sso- enabl ed - If f al se, single sign-on is disabled for this virtual server, and
users must authenticate separately to every application on the virtual server.
The defaultist r ue.

$s0- max- i nact i ve- seconds - Specifies the time after which a user’s single
sign-on record becomes eligible for purging if no client activity is received.
Since single sign-on applies across several applications on the same virtual
server, access to any of the applications keeps the single sign-on record active.
The default value is 5 minutes (300 seconds). Higher values provide longer
single sign-on persistence for the users at the expense of more memory use on
the server.

78 Sun ONE Application Server Developer's Guide to Web Applications ¢ September 2002

User Authorization by Servlets

= sso-reap-interval - seconds - Specifies the interval between purges of
expired single sign-on records. The default value is 60.

Here is an example configuration with all default values:

<virtual -server id="serverl" ... >

<property name="sso-enabl ed" val ue="true"/>

<property name="sso-nmax-inactive-seconds" val ue="300"/>

<property name="sso-reap-interval -seconds" val ue="60"/>
</virtual -server>

User Authorization by Servlets

Servlets can be configured to only permit access to users with the appropriate
authorization level. This section covers the following topics:

= Defining Roles

= Defining Servlet Authorization Constraints

Defining Roles

You define roles in the J2EE deployment descriptor file, web. xm , and the
corresponding role mappings in the Sun ONE Application Server deployment
descriptor file, sun- appl i cati on. xm (or sun-web. xn for individually deployed
web modules). For more information about sun- web. xn , see Chapter 6,
“Assembling and Deploying Web Modules.”

Each security-rol e- mappi ng element in the sun- appl i cati on. xm or

sun-web. xm file maps a role name permitted by the web application to principals
and groups. For example, a sun- web. xni file for an individually deployed web
module might contain the following:

<sun-web- app>

<security-rol e- mappi ng>
<r ol e- name>nanager </ r ol e- nane>
<pri nci pal - nane>j gar ci a</ pri nci pal - nane>
<pri nci pal - nane>mwebst er </ pri nci pal - nane>
<gr oup- nanme>t eam | eads</ gr oup- nane>

</ security-rol e- mappi ng>

<security-rol e- mappi ng>

Chapter 5 Securing Web Applications 79

Fetching the Client Certificate

<rol e- name>adm ni strator</rol e- nanme>
<pri nci pal - nane>dsmi t h</ pri nci pal - nane>
</ security-rol e- mappi ng>
</ sun- web- app>

Note that the r ol e- nane in this example must match the r ol e- nane in the
securi ty-rol e element of the corresponding web. xm file.

Note that for J2EE applications (EAR files), all security role mappings for the
application modules must be specified in the sun- appl i cati on. xm file. For
individually deployed web modules, the roles are always specified in the
sun-web. xm file. A role can be mapped to either specific principals or to groups
(or both). The principal or group names used must be valid principals or groups in
the current default realm.

Defining Servlet Authorization Constraints

On the servlet level, you define access permissions using the aut h- const r ai nt
element of the web. xni file.

The aut h- const r ai nt element on the resource collection must be used to indicate
the user roles permitted to the resource collection. Refer to the Servlet specification
for details on configuring servlet authorization constraints.

Fetching the Client Certificate

When you enable SSL and require client certificate authorization, your servlets
have access to the client certificate as shown in the following example:

if (request.isSecure()) {
java.security.cert. X509Certificate[] certs;
certs = request.getAttribute("javax.servlet.request. X509Certificate");
if (certs !'=null) {
clientCert = certs[O0];
if (clientCert !'= null) {
/1 CGet the Distinguised Nane for the user.
java.security.Principal userDN = clientCert.getSubjectDN();

The user Dn is the fully qualified Distinguished Name for the user.

80 Sun ONE Application Server Developer's Guide to Web Applications ¢ September 2002

Security for SHTML and CGlI

Security for SHTML and CGl

For security, server-parsed HTML tags and CGI scripts depend on the server’s
security configuration. The following J2EE-only security features are not available
for server-parsed HTML tags and CGI scripts:

J2EE realms

J2EE roles
Form-based login
Single sign-on
Programmatic login

J2EE authorization constraints

For more information about the server’s security configuration, see the Sun ONE
Application Server Administrator’s Guide to Security.

Chapter 5 Securing Web Applications 81

Security for SHTML and CGl

82 Sun ONE Application Server Developer's Guide to Web Applications ¢ September 2002

Chapter 6

Assembling and Deploying Web
Modules

This chapter describes how web modules are assembled and deployed in Sun ONE
Application Server. For general assembly and deployment information, see the Sun
ONE Application Server Developer’s Guide.

The following topics are presented in this chapter:
= Web Application Structure

= Creating Web Deployment Descriptors

= Deploying Web Applications

< Dynamic Reloading of Web Applications

= The sun-web-app_2_ 3-0.dtd File

= Elements in the sun-web.xml File

= Sample Web Module XML Files

83

Web Application Structure

Web Application Structure

84

Web Applications have a directory structure, all accessible from a mapping to the
application’s document root (for example, / hel | 0). The document root contains
JSP files, HTML files, and static files such as image files.

A WAR (web application archive) file contains a complete web application in
compressed form.

A special directory under the document root, VEB- | NF, contains everything related
to the application that is not in the public document tree of the application. No file
contained in VEB- | NF can be served directly to the client. The contents of VEB- | NF
include:

= /VEB-INF/ cl asses/ *, the directory for servlet and other classes.

e /WEB-INF/Iib/*.jar,the directory for JAR files containing beans and other
utility classes.

e /VEB-I NF/ web. xm and / WEB- | NF/ sun- web. xm , XML-based deployment
descriptors that specify the web application configuration, including
mappings, initialization parameters, and security constraints.

The web application directory structure follows the structure outlined in the J2EE
specification. Here is an example directory structure of a simple web application.

+ hel |l o/
| --- index.jsp
| --+ META-I NF/
| |--- MANI FEST. MF
" - -+ WEB- | NF/
| --- web. xm
' --- sun-web. xn

Sun ONE Application Server Developer's Guide to Web Applications * September 2002

Creating Web Deployment Descriptors

Here is an example directory structure of a simple J2EE application containing a
web module.

+
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
:
;

converter_1/

--- converterdient.jar
--+ META-| NF/

| --- MANI FEST. MF
| --- application.xm
"--- sun-application.xn
-+ war-ic_war/
| --- index.jsp
| --+ META-1NF/
| |--- MANIFEST. MF
" - -+ WEB- | NF/
|--- web.xm
'--- sun-web. xn
-+ ejb-jar-ic_jar/
| --- Converter.class
| --- ConverterBean.cl ass
| --- ConverterHone.cl ass

"--+ META- | NF/
|--- MANI FEST. MF
| --- ejb-jar.xmn

’

--- sun-ejb-jar.xm

--+ app-client-ic_jar/
| --- Converterdient.class

.-+ META- | NF/
| --- MANI FEST. MF

| --- application-client.xmn
--- sun-application-client.xmn

Creating Web Deployment Descriptors

Sun ONE Application Server web modules include two deployment descriptor
files:

A J2EE standard file (web. xn), described in the Java Servlet Specification,
v2.3, Chapter 13, “Deployment Descriptors.” You can find the specification

here:

http://java. sun. coni product s/ servl et/index. ht m

An optional Sun ONE Application Server specific file (sun- web. xm),

described in this chapter.

Assembling and Deploying Web Modules 85

Deploying Web Applications

The easiest way to create the web. xm and sun-web. xnl files is to deploy a web
module using the Administration interface or Sun ONE Studio 4. For more
information, see the next section or the Sun ONE Application Server Developer’s
Guide. For example web. xnl and sun-web. xni files, see “Sample Web Module
XML Files,” on page 124.

After you have created these files, you can edit them using the Administration
interface or a combination of an editor and command line utilities such as Ant to
reassemble and redeploy the updated deployment descriptor information. Apache
Ant 1.4.1 is provided with Sun ONE Application Server. For more information, see
the Sun ONE Application Server Developer’s Guide.

Deploying Web Applications

When you deploy, undeploy, or redeploy a web application, you do not need to
restart the server. In other words, deployment is dynamic.

You can deploy a web application in these ways, which are described briefly:
= Using the Command Line

= Using the Administration Interface

= Using Sun ONE Studio

For more detailed information about deployment, see the Sun ONE Application
Server Developer’s Guide.

You can keep the generated source for JSPs by adding the - keepgener at ed
property to the j sp- confi g element in sun-web. xni . If you include this property
when you deploy the web application, the generated source is kept in
instance_dir/ gener at ed/ j sp/ j 2ee- apps/ app_name/ module_name if itis in an
application or instance_dir/ gener at ed/ j sp/ j 2ee- nodul es/ module_name if itis in
an individually deployed web module.

Using the Command Line
To deploy a web application using the command line:
1. Edit the deployment descriptor files (web. xml and sun- web. xm) by hand.

2. Execute an Ant build command (such as bui | d war) to reassemble the WAR
module.

86 Sun ONE Application Server Developer's Guide to Web Applications ¢ September 2002

Deploying Web Applications

Write the web application to a WAR file if desired. This is optional. For
example:

jar -cvf module_name. war *

Use the asadni n depl oy command to deploy the WAR module. The syntax is
as follows:

asadm n depl oy --user admin_user [--password admin_password]
[--passwordfil e password_file] --host hosthame --port adminport
[--secure | -s] [--virtual servers virtual_servers] [--type
application|ejb|web|connector] [--contextroot contextroot]
[--force=true] [--preconpilejsp=false] [--verify=false] [--nane
component_name] [--upload=true] [--retrieve local_dirpath] [--instance
instance_name] filepath

For example, the following command deploys a web application as an
individual module:

asadm n depl oy --user jadans --password secret --host |ocal host
--port 4848 --type web --instance serverl nmyWebApp. war

If upl oad is set to f al se, the filepath must be an absolute path on the server
machine.

Using the Administration Interface

To deploy a web application using the Administration interface:

1.

2
3.
4

Open the Applications component under your server instance.
Go to the Web Applications page.
Click on the Deploy button.

Enter the full path to the WAR module (or click on Browse to find it), then click
on the OK button.

Enter the web application name and the context root.

You can also redeploy the web application if it already exists by checking the
appropriate box. This is optional.

Assign the web application to one or more virtual servers by checking the
boxes next to the virtual server names.

Click on the OK button.

Chapter 6 Assembling and Deploying Web Modules 87

Dynamic Reloading of Web Applications

Using Sun ONE Studio

You can use Sun ONE Studio 4, to assemble and deploy web applications. For more
information about using Sun ONE Studio, see the Sun ONE Studio 4, Enterprise
Edition Tutorial.

NOTE In Sun ONE Studio, deploying web application is referred to as
executing it.

Dynamic Reloading of Web Applications

If you make code changes to a web application and dynamic reloading is enabled,
you do not need to redeploy the web application or restart the server. To enable
dynamic reloading, you can do one of the following:

* Use the Administration interface:
a. Open the Applications component under your server instance.
b. Go to the Applications page.
c. Check the Reload Enabled box to enable dynamic reloading.

d. Enter a number of seconds in the Reload Poll Interval field to set the
interval at which applications and modules are checked for code changes
and dynamically reloaded.

e. Click on the Save button.
f. Go to the server instance page and select the Apply Changes button.
For details, see the Sun ONE Application Server Administrator’s Guide.

= Edit the following attributes of the server. xm file’s appl i cati ons element,
then restart the server:

o dynani c-rel oad- enabl ed="t rue" enables dynamic reloading.

o dynanmi c-rel oad-pol | -i nterval -i n-seconds sets the interval at which
applications and modules are checked for code changes and dynamically
reloaded.

For details about ser ver . xm , see the Sun ONE Application Server
Administrator’s Configuration File Reference.

88 Sun ONE Application Server Developer's Guide to Web Applications ¢ September 2002

The sun-web-app_2_3-0.dtd File

In addition, to load new servlet files, reload EJB related changes, or reload
deployment descriptor changes, you must do the following:

1. Create an empty file named . r el oad at the root of the deployed application:
instance_dir/ appl i cati ons/j 2ee- apps/ app_name/ . r el oad
or individually deployed module:
instance_dir/ appl i cati ons/j 2ee- nodul es/ module_name/ . r el oad

2. Explicitly update the . r el oad file’s timestamp (t ouch . rel oad in UNIX) each
time you make the above changes.

For JSPs, changes are reloaded automatically at a frequency set in the
rel oad-i nt erval property of the j sp-confi g elementinthe sun-web. xm file. To
disable dynamic reloading of JSPs, set the r el oad-i nt er val property to - 1.

The sun-web-app_ 2 3-0.dtd File

The sun-web- app_2_3- 0. dt d file defines the structure of the sun- web. xm file,
including the elements it can contain and the subelements and attributes these
elements can have. The sun-web-app_2_3-0. dt d file is located in the
install_dir/ 1 i b/ dt ds directory.

NOTE Do not edit the sun- web- app_2_3- 0. dt d file; its contents change
only with new versions of Sun ONE Application Server.

For general information about DTD files and XML, see the XML specification at:
http://ww. w3. or g/ TR/ REC- xm

Each element defined in a DTD file (which may be present in the corresponding
XML file) can contain the following:

e Subelements
e Data
= Attributes

Chapter 6 Assembling and Deploying Web Modules 89

The sun-web-app_2_3-0.dtd File

Subelements

Elements can contain subelements. For example, the following file fragment
defines the cache element.

<! ELEMENT cache (cache-hel per*, default-hel per?, property*, cache-mapping*)>

The ELEMENT tag specifies that a cache element can contain cache- hel per,
def aul t - hel per, property, and cache- mappi ng subelements.

The following table shows how optional suffix characters of subelements
determine the requirement rules, or number of allowed occurrences, for the
subelements. The left column lists the subelement ending character, and the right
column lists the corresponding requirement rule.

requirement rules and subelement suffixes

Subelement Suffix Requirement Rule

element* Can contain zero or more of this subelement.
element? Can contain zero or one of this subelement.
element+ Must contain one or more of this subelement.
element (no suffix) Must contain only one of this subelement.

If an element cannot contain other elements, you see EMPTY or (#PCDATA) instead
of a list of element names in parentheses.

Data

Some elements contain character data instead of subelements. These elements have
definitions of the following format:

<! ELEMENT element-name (#PCDATA) >
For example:
<! ELEMENT descri pti on (#PCDATA) >

In the sun-web. xm file, white space is treated as part of the data in a data element.
Therefore, there should be no extra white space before or after the data delimited
by a data element. For example:

<descri pti on>cl ass name of session nanager</description>

90 Sun ONE Application Server Developer's Guide to Web Applications ¢ September 2002

Elements in the sun-web.xml File

Attributes

Elements that have ATTLI ST tags contain attributes (name-value pairs). For

example:

<! ATTLI ST cache maex- capacity CDATA "4096"
ti meout CDATA "30"
enabl ed %ool ean; "fal se">

A cache element can contain nax- capaci ty, t i meout, and enabl ed attributes.

The #REQUI RED label means that a value must be supplied. The #1 MPLI ED label
means that the attribute is optional, and that Sun ONE Application Server
generates a default value. Wherever possible, explicit defaults for optional
attributes (such as "t r ue") are listed.

Attribute declarations specify the type of the attribute. For example, CDATA means
character data, and %ool ean is a predefined enumeration.

Elements in the sun-web.xml File

This section describes the XML elements in the sun-web. xni file. Elements are
grouped as follows:

= General Elements

= Security Elements

= Session Elements

= Reference Elements
= Caching Elements

= Classloader Elements
= JSP Elements

e Internationalization Elements

NOTE Subelements must be defined in the order in which they are listed
under each Subelements heading unless otherwise noted.

Chapter 6 Assembling and Deploying Web Modules 91

Elements in the sun-web.xml File

General Elements

General elements are as follows:
® sun-web-app
e property

e description

sun-web-app
Defines Sun ONE Application Server specific configuration for a web module. This

is the root element; there can only be one sun- web- app element in a sun-web. xni
file.

Subelements

The following table describes subelements for the sun- web- app element. The left
column lists the subelement name, the middle column indicates the requirement
rule, and the right column describes what the element does.

sun- web- app subelements

Element Required Description

security-rol e-mappi ng zeroor more Maps roles to users or groups in the
currently active realm.

servl et zero or more Specifies a principal nhame for a servlet,
which is used for the r un- as role defined
inweb. xm .

session-config Zero or one Specifies session manager, session cookie,
and other session-related information.

resour ce- env-ref zero or more Maps the absolute JINDI name to the
resour ce- env-r ef inthe corresponding
J2EE XML file.

resource-r ef zero or more Maps the absolute JNDI name to the
resour ce-r ef inthe corresponding J2EE
XML file.

ej b-ref zero or more Maps the absolute JNDI name to the
ej b-ref in the corresponding J2EE XML
file.

cache Zero or one Configures caching for web application
components.

92 Sun ONE Application Server Developer's Guide to Web Applications ¢ September 2002

sun- web- app subelements (Continued)

Elements in the sun-web.xml File

Element Required Description

cl ass-1 oader Zero or one Specifies classloader configuration
information.

jsp-config Zero or one Specifies JSP configuration information.

| ocal e-charset-info Zero or one Specifies internationalization settings.

property zero or more Specifies a property, which has a name and
avalue.

Attributes

none

Properties

The following table describes properties for the sun- web- app element. The left
column lists the property name, the middle column indicates the default value, and
the right column describes what the property does.

sun- web- app properties

Property Name

Default Value

Description

crossCont ext Al | owed

tenpdir

si ngl eThr eadedSer vl et Pool Si ze

true

instance_dir/ gener at ed/
j 2ee- apps/ app_name

or

instance_dir/ gener at ed/
j 2ee- modul es/ module_
name

5

Ift r ue, allows this web application
to access the contexts of other web
applications using the

Ser vl et Cont ext . get Cont ext ()
method.

Specifies a temporary directory for
use by this web module. This value
is used to construct the value of the
javax. servl et.context.tenpdir
context attribute. Compiled JSPs are
also placed in this directory.

Specifies the maximum number of
servlet instances allocated for each
Si ngl eThr eadMbdel servietinthe
web application.

Chapter 6

Assembling and Deploying Web Modules

93

Elements in the sun-web.xml File

property
Specifies a property, which has a name and a value. A property adds configuration
information to its parent element that is one or both of the following:

= Optional with respect to Sun ONE Application Server

= Needed by a system or object that Sun ONE Application Server doesn’t have
knowledge of, such as an LDAP server or a Java class

For example, a manager - pr operti es element can include pr oper t y subelements:

<manager - properti es>
<property name="reapl nterval Seconds" val ue="20" />
</ manager - properti es>

Which properties a manager - pr oper t i es element uses depends on the value of the
parent sessi on- manager element’s per si st ence- t ype attribute. For details, see
the description of the sessi on- manager element.

Subelements

The following table describes subelements for the pr opert y element. The left
column lists the subelement name, the middle column indicates the requirement
rule, and the right column describes what the element does.

pr oper ty subelements

Element Required Description

description zeroorone Specifiesan optional text description of a property.

Attributes

The following table describes attributes for the pr oper t y element. The left column
lists the attribute name, the middle column indicates the default value, and the
right column describes what the attribute does.

pr operty attributes

Attribute Default Description
name none Specifies the name of the property.
val ue none Specifies the value of the property.

94 Sun ONE Application Server Developer's Guide to Web Applications ¢ September 2002

description
Contains data that specifies a text description of the containing element.

Subelements
none

Attributes
none

Security Elements

Security elements are as follows:

security-rol e-mappi ng
servl et

servl et - nanme

rol e- nane

princi pal - name

gr oup- nane

security-role-mapping
Maps roles to users or groups in the currently active realm. See the Sun ONE
Application Server Developer’s Guide for how to define the currently active realm.

Subelements
The following table describes subelements for the securi t y- r ol e- mappi ng
element. The left column lists the subelement name, the middle column indicates
the requirement rule, and the right column describes what the element does.

security-rol e- mappi ng subelements

Elements in the sun-web.xml File

Element Required

Description

rol e- name only one

princi pal - name

gr oup- name

requires at least one
pri nci pal - name or gr oup- namne

requires at least one
princi pal - nane or gr oup- nanme

Contains the role name.

Contains a principal (user)
name in the current realm.

Contains agroup name in the
current realm.

Assembling and Deploying Web Modules 95

Elements in the sun-web.xml File

Attributes
none

servlet

Specifies a principal name for a servlet, which is used for the r un- as role defined in
web- xm .

Subelements

The following table describes subelements for the ser vl et element. The left
column lists the subelement name, the middle column indicates the requirement
rule, and the right column describes what the element does.

ser vl et subelements

Element Required Description

servl et - nane only one Contains the name of a servlet, which is matched to a
servl et - nane inweb. xm .

princi pal - name only one Contains a principal (user) name in the current realm.

Attributes

none

servlet-name

Contains data that specifies the name of a servlet, which is matched to a
servl et - nane in web. xm . This name must be present in web. xn .

Subelements
none

Attributes
none

role-name

Contains data that specifies the r ol e- nane in the securi ty-r ol e element of the
web. xn file.

Subelements
none

96 Sun ONE Application Server Developer's Guide to Web Applications ¢ September 2002

Elements in the sun-web.xml File

Attributes
none

principal-name
Contains data that specifies a principal (user) name in the current realm.

Subelements
none

Attributes
none

group-name
Contains data that specifies a group name in the current realm.

Subelements
none

Attributes
none

Session Elements

Session elements are as follows:
* session-config

* session-nmanager

= nmanager-properties

e store-properties

® session-properties

= cookie-properties

NOTE The session manager interface is Unstable. An unstable interface
may be experimental or transitional, and hence may change
incompatibly, be removed, or be replaced by a more stable interface
in the next release.

Chapter 6 Assembling and Deploying Web Modules 97

Elements in the sun-web.xml File

session-config
Specifies session configuration information.

Subelements

The following table describes subelements for the sessi on- confi g element. The
left column lists the subelement name, the middle column indicates the
requirement rule, and the right column describes what the element does.

sessi on- confi g subelements

Element Required Description
sessi on- manager zero or one Specifies session manager configuration
information.

session-properties zeroorone Specifies session properties.

cooki e-properties zeroor one Specifies session cookie properties.

Attributes
none

session-manager
Specifies session manager information.

Subelements

The following table describes subelements for the sessi on- manager element. The
left column lists the subelement name, the middle column indicates the
requirement rule, and the right column describes what the element does.

sessi on- manager subelements

Element Required Description

manager - properti es zeroorone Specifies session manager properties.

store-properties zero or one Specifies session persistence (storage)
properties.

98 Sun ONE Application Server Developer's Guide to Web Applications ¢ September 2002

Elements in the sun-web.xml File

Attributes

The following table describes attributes for the sessi on- manager element. The left
column lists the attribute name, the middle column indicates the default value, and
the right column describes what the attribute does.

sessi on- manager attributes

Attribute Default Value Description

persi stence-type nenory (optional) Specifies the session persistence
mechanism. Allowed values are menor y and
file.

The cust omvalue is not implemented and
should not be used.

manager-properties
Specifies session manager properties.

Subelements

The following table describes subelements for the manager - properti es element.
The left column lists the subelement name, the middle column indicates the
requirement rule, and the right column describes what the element does.

manager - pr operti es subelements

Element Required Description

property zeroormore Specifiesa property, which has a name and a value.

Attributes
none

Properties

The following table describes properties for the manager - pr oper ti es element. The
left column lists the property name, the middle column indicates the default value,
and the right column describes what the property does.

Chapter 6 Assembling and Deploying Web Modules 99

Elements in the sun-web.xml File

manager - propert i es properties

Property Name Default Value Description

reapl nt erval Seconds 60 Specifies the number of seconds between checks for
expired sessions.

Setting this value lower than the frequency at which
session data changes is recommended. For example,
this value should be as low as possible (1 second) for a
hit counter servlet on a frequently accessed website, or
you could lose the last few hits each time you restart

the server.
maxSessi ons -1 Specifies the maximum number of active sessions, or
- 1 (the default) for no limit.
sessi onFi | enane none; state is not Specifies the absolute or relative pathname of the file in
preserved across which the session state is preserved between
restarts application restarts, if preserving the state is possible.

A relative pathname is relative to the temporary
directory for this web module.

Applicable only if the per si st ence-t ype attribute
of the sessi on- manager elementis menory.

store-properties
Specifies session persistence (storage) properties.

Subelements

The following table describes subelements for the st or e- pr operti es element. The
left column lists the subelement name, the middle column indicates the
requirement rule, and the right column describes what the element does.

st or e- properti es subelements

Element Required Description

property zeroormore Specifiesa property, which has a name and a value.

Attributes
none

100 Sun ONE Application Server Developer’'s Guide to Web Applications ¢ September 2002

Elements in the sun-web.xml File

Properties

The following table describes properties for the st or e- properti es element. The
left column lists the property name, the middle column indicates the default value,
and the right column describes what the property does.

st ore- properti es properties

Property Name

Default Value Description

reapl nt er val Seconds 60 Specifies the number of seconds between checks

directory

for expired sessions for those sessions that are
currently swapped out.

Setting this value lower than the frequency at
which session data changes is recommended.
For example, this value should be as low as
possible (1 second) for a hit counter servlet on a
frequently accessed website, or you could lose
the last few hits each time you restart the server.

directory specified by Specifies the absolute or relative pathname of

j avax. servl et. the directory into which individual session files
context.tenpdir are written. A relative path is relative to the
context attribute temporary work directory for this web module.

session-properties
Specifies session properties.

Subelements

The following table describes subelements for the sessi on- properti es element.
The left column lists the subelement name, the middle column indicates the
requirement rule, and the right column describes what the element does.

sessi on- properti es subelements

Element Required Description

property zeroormore Specifiesa property, which has a name and a value.

Attributes
none

Chapter 6 Assembling and Deploying Web Modules 101

Elements in the sun-web.xml File

Properties

The following table describes properties for the sessi on- properti es element. The
left column lists the property name, the middle column indicates the default value,
and the right column describes what the property does.

sessi on- properti es properties

Property Name Default Value Description

ti meout Seconds 600 Specifies the default maximum inactive interval (in seconds) for
all sessions created in this web module. If set to O or less, sessions
in this web module never expire.

Ifasession-ti nmeout elementis specified in the web. xm file,
the sessi on-ti meout value overrides any t i nreout Seconds
value. If neither sessi on-ti neout norti neout Seconds is
specified, the t i neout Seconds default is used.

Note that the sessi on-t i neout elementinweb. xnl is
specified in minutes, not seconds.

enabl eCooki es true Uses cookies for session tracking if settot r ue.

enabl eURLRewiting true Enables URL rewriting. This provides session tracking via URL
rewriting when the browser does not accept cookies. You must
also use an encodeURL or encodeRedi r ect URL call in the
servlet or JSP.

i dLengt hByt es 128 Specifies the number of bytes in this web module’s session ID.

cookie-properties
Specifies session cookie properties.

Subelements

The following table describes subelements for the cooki e- pr operti es element.
The left column lists the subelement name, the middle column indicates the
requirement rule, and the right column describes what the element does.

cooki e- properti es subelements

Element Required Description

property zeroormore Specifiesa property, which has a name and a value.

102 Sun ONE Application Server Developer’'s Guide to Web Applications ¢ September 2002

Attributes
none

Properties
The following table describes properties for the cooki e- properti es element. The
left column lists the property name, the middle column indicates the default value,
and the right column describes what the property does.

cooki e- properti es properties

Elements in the sun-web.xml File

Property Name

Default Value

Description

cooki eNane

cooki ePat h

JSESSI ONI D

Context path at which
the web module is
installed.

cooki eMaxAgeSeconds -1

cooki eDomai n

cooki eConment

(unset)

Sun ONE

Appl i cation
Server Session
Tracki ng Cooki e

Specifies the name of the cookie used for session
tracking.

Specifies the pathname that is set when the cookie is
created. The browser sends the cookie if the
pathname for the request contains this pathname. If
setto/ (slash), the browser sends cookies to all URLs
served by the Sun ONE Application Server. You can
set the path to a narrower mapping to limit the
request URLs to which the browser sends cookies.

Specifies the expiration time (in seconds) after which
the browser expires the cookie.

Specifies the domain for which the cookie is valid.

Specifies the comment that identifies the session
tracking cookie in the cookie file. Applications can
provide a more specific comment for the cookie.

Reference Elements

Reference elements are as follows:

resour ce-env-ref
resour ce-env-ref-nane
resource-ref

res-ref-nane

def aul t - resour ce-pri nci pal

name

Chapter 6 Assembling and Deploying Web Modules 103

Elements in the sun-web.xml File

e password
* ejb-ref
* ejb-ref-nane

* jndi-nane

resource-env-ref

Maps the r es-r ef - nane in the corresponding J2EE web. xm file
resour ce- env-ref entry to the absolute j ndi - nane of a resource.

Subelements

The following table describes subelements for the r esour ce- env-r ef element. The
left column lists the subelement name, the middle column indicates the
requirement rule, and the right column describes what the element does.

resour ce- env-ref subelements

Element Required Description

resour ce-env-ref-name onlyone Specifies the r es- r ef - nane in the
corresponding J2EE web. xm file
resour ce- env-ref entry.

j ndi - nane only one Specifies the absolute j ndi - nane of a
resource.

Attributes

none

resource-env-ref-name

Contains data that specifies the r es- r ef - name in the corresponding J2EE web. xm
file resour ce- env-ref entry.

Subelements
none

Attributes
none

104 Sun ONE Application Server Developer’'s Guide to Web Applications ¢ September 2002

resource-ref

Elements in the sun-web.xml File

Maps the r es-r ef - nane in the corresponding J2EE web. xm file r esour ce-r ef
entry to the absolute j ndi - nane of a resource.

Subelements

The following table describes subelements for the r esour ce- r ef element. The left
column lists the subelement name, the middle column indicates the requirement
rule, and the right column describes what the element does.

r esour ce-r ef subelements

Element Required Description

res-ref-nane only one Specifies the r es- r ef - nane in the corresponding
J2EE web. xml filer esour ce-ref entry.

j ndi - name only one Specifies the absolute j ndi - nane of a resource.

defaul t-resource zeroorone
- princi pal

Specifies the default principal (user) for the
resource.

Attributes
none

res-ref-name

Contains data that specifies the r es- r ef - name in the corresponding J2EE web. xm

file resour ce-ref entry.

Subelements
none

Attributes
none

Chapter 6 Assembling and Deploying Web Modules 105

Elements in the sun-web.xml File

default-resource-principal
Specifies the default principal (user) for the resource.

If this element is used in conjunction with a JMS Connection Factory resource, the
nanme and passwor d subelements must be valid entries in Sun ONE Message
Queue’s broker user repository. See the “Security Management” chapter in the Sun
ONE Message Queue Administrator’s Guide for details.

Subelements

The following table describes subelements for the def aul t - r esour ce- pri nci pal
element. The left column lists the subelement name, the middle column indicates
the requirement rule, and the right column describes what the element does.

def aul t - resour ce- pri nci pal subelements

Element Required Description

name only one Contains the name of the principal.
password only one Contains the password for the principal.
Attributes

none

name

Contains data that specifies the name of the principal.

Subelements
none

Attributes
none

password
Contains data that specifies the password for the principal.

Subelements
none

Attributes
none

106 Sun ONE Application Server Developer’'s Guide to Web Applications ¢ September 2002

Elements in the sun-web.xml File

ejb-ref
Maps the ej b-r ef - nane in the corresponding J2EE ej b-j ar. xnl file ej b-r ef
entry to the absolute j ndi - nane of a resource.

Subelements

The following table describes subelements for the ej b-ref element. The left
column lists the subelement name, the middle column indicates the requirement
rule, and the right column describes what the element does.

ej b-r ef subelements

Element Required Description

ej b-ref-nanme onlyone Specifies the ej b- r ef - nan®e in the corresponding J2EE
ej b-jar. xm file ej b-ref entry.

j ndi - nane only one Specifies the absolute j ndi - nane of a resource.

Attributes

none

ejb-ref-name
Contains data that specifies the ej b- r ef - name in the corresponding J2EE
ej b-jar.xm file ej b-ref entry.

Subelements
none

Attributes
none

jndi-name
Contains data that specifies the absolute j ndi - narme of a URL resource or a
resource in the server. xni file.

NOTE To avoid collisions with names of other enterprise resources in
JNDI, and to avoid portability problems, all names in a Sun ONE
Application Server application should begin with the string
j ava: conp/ env.

Chapter 6 Assembling and Deploying Web Modules 107

Elements in the sun-web.xml File

Subelements
none

Attributes
none

Caching Elements

For details about response caching as it pertains to servlets, see “Caching Servlet
Results,” on page 45. For details about JSP caching, see “JSP Caching,” on page 56.

Caching elements are as follows;
= cache

= cache- hel per

= default-hel per

= cache- mappi ng

e url-pattern

= tineout

e http-nmethod

e key-field

e constraint-field

e value

cache
Configures caching for web application components.

Subelements

The following table describes subelements for the cache element. The left column
lists the subelement name, the middle column indicates the requirement rule, and
the right column describes what the element does.

108 Sun ONE Application Server Developer’'s Guide to Web Applications ¢ September 2002

cache subelements

Elements in the sun-web.xml

File

Element Required

Description

cache- hel per Zero or more

defaul t - hel per zeroorone

property Zero or more

cache- mappi ng Zero or more

Specifies a custom class that implements the

CacheHel per interface.

Allows you to change the properties of the default,

built-in cache- hel per class.

Specifies a cache property, which has a name and a

value.

Maps a URL pattern or a servlet name to its

cacheability constraints.

Attributes

The following table describes attributes for the cache element. The left column lists
the attribute name, the middle column indicates the default value, and the right
column describes what the attribute does.

cache attributes

Attribute

Default Value

Description

mex-entries

tinmeout-in-seconds

enabl ed

4096

30

fal se

(optional) Specifies the maximum number of
entries the cache can contain. Must be a
positive integer.

(optional) Specifies the maximum amount of
time in seconds that an entry can remain in the
cache after it is created or refreshed. Can be
overridden by ati neout element.

(optional) Determines whether servlet and JSP
caching is enabled. Legal values are on, of f,
yes,no, 1,0,true, fal se.

Properties

The following table describes properties for the cache element. The left column
lists the property name, the middle column indicates the default value, and the
right column describes what the property does.

Chapter 6 Assembling and Deploying Web Modules

109

Elements in the sun-web.xml File

cache properties

Property Default Value

Description

cached assNane com sun. appserv. web
. cache. LruCache

Mul ti LRUSegnent Si ze 4096

MaxSi ze unlimited;
Long. MAX_VALUE

Specifies the fully qualified name of the class that
implements the cache functionality. The
“cacheClassName values” table below lists
possible values.

Specifies the number of entries in a segment of the
cache table that should have its own LRU (least
recently used) list. Applicable only if

cached assNane is set to

com sun. appserv. web. cache. Mil ti LruCache.

Specifies an upper bound on the cache memory
size in bytes (KB or MB units). Example values are
32 KBor 2 MB. Applicable only if

cached assNane is set to

com sun. appserv. web. cache. BoundedMul ti Lru
Cache.

Cache Class Names

The following table lists possible values of the cacheC assNane property. The left
column lists the value, and the right column describes the kind of cache the value

specifies.

cacheClassName values

Value Description

com sun. appserv. web. cache. A bounded cache with an LRU (least recently used) cache

LruCache replacement policy.
com sun. appserv. web. cache. An unbounded cache suitable if the maximum number of entries is
BaseCache known.

com sun. appser v. web. cache. A cache suitable for a large number of entries (>4096). Uses the
Mul ti LruCache Mul t i LRUSegnent Si ze property.

com sun. appser v. web. cache. A cache suitable for limiting the cache size by memory rather than
BoundedMul ti LruCache number of entries. Uses the MaxSi ze property.

110 Sun ONE Application Server Developer’'s Guide to Web Applications ¢ September 2002

Elements in the sun-web.xml File

cache-helper

Specifies a class that implements the CacheHel per interface. For details, see
“CacheHelper Interface,” on page 48.

Subelements

The following table describes subelements for the cache- hel per element. The left
column lists the subelement name, the middle column indicates the requirement
rule, and the right column describes what the element does.

cache- hel per subelements

Element Required Description
property zero or more Specifies a property, which has a name and a value.
Attributes

The following table describes attributes for the cache- hel per element. The left
column lists the attribute name, the middle column indicates the default value, and
the right column describes what the attribute does.

cache- hel per attributes

Attribute Default Value Description

nane defaul t Specifies a unique name for the helper class, which is
referenced in the cache- nappi ng element.

cl ass-nane none Specifies the fully qualified class name of the cache helper,
which must implement the
com sun. appser v. web. CacheHel per interface.

default-helper

Allows you to change the properties of the built-in def aul t cache- hel per class.

Subelements

The following table describes subelements for the def aul t - hel per element. The
left column lists the subelement name, the middle column indicates the
requirement rule, and the right column describes what the element does.

Chapter 6 Assembling and Deploying Web Modules 111

Elements in the sun-web.xml File

def aul t - hel per subelements

Element Required Description

property zero or more Specifies a property, which has a name and a value.
Attributes

none

Properties

The following table describes properties for the def aul t - hel per element. The left
column lists the property name, the middle column indicates the default value, and
the right column describes what the property does.

def aul t - hel per properties

Property Default Value Description

cacheKeyCGenerat or AttrName Uses the built-in The caching engine looks in the
def aul t Ser vl et Cont ext for an attribute with a
cache- hel per key name equal to the value specified for this
generation, which property to determine whether a
concatenates the servlet customized CacheKeyGener at or
path with key-fi el d implementation is used. An application
values, if any. may provide a customized key generator

rather than using the def aul t helper.

See “CacheKeyGenerator Interface,” on
page 50.

cache-mapping
Maps a URL pattern or a servlet name to its cacheability constraints.

Subelements

The following table describes subelements for the cache- mappi ng element. The left
column lists the subelement name, the middle column indicates the requirement
rule, and the right column describes what the element does.

112 Sun ONE Application Server Developer’'s Guide to Web Applications ¢ September 2002

cache- mappi ng subelements

Elements in the sun-web.xml File

Element Required

Description

servl et - nanme requires one
servl et - name or
url-pattern

url-pattern requires one
servl et - name or
url-pattern

cache-hel per-ref requiredifti meout,
refresh-field,
ht t p- met hod,
key-field,and
constraint-field
are not used

ti meout zero or one if
cache- hel per-ref
is not used

refresh-field zero or one if
cache- hel per -ref
is not used

ht t p- met hod zero or more if
cache- hel per -ref
is not used

key-field zero or more if
cache- hel per -ref
is not used

constraint-field zeroormoreif
cache- hel per-ref
is not used

Contains the name of a servlet.

Contains a servlet URL pattern for which
caching is enabled.

Contains the nane of the
cache- hel per used by the parent
cache- mappi ng element.

Contains the cache- mappi ng specific
maximum amount of time in seconds
that an entry can remain in the cache
after it is created or refreshed.

Specifies a field that gives the
application component a programmatic
way to refresh a cached entry.

Contains an HTTP method that is
eligible for caching.

Specifies a component of the key used to
look up and extract cache entries.

Specifies a cacheability constraint for the
givenurl -patternor
servl et - nane.

Attributes
none

Chapter 6 Assembling and Deploying Web Modules 113

Elements in the sun-web.xml File

url-pattern

Contains data that specifies a servlet URL pattern for which caching is enabled. See
the Servlet 2.3 specification section SRV. 11.2 for applicable patterns.

Subelements
none

Attributes
none

cache-helper-ref

Contains data that specifies the nane of the cache- hel per used by the parent
cache- mappi ng element.

Subelements
none

Attributes
none

timeout

Contains data that specifies the cache- nappi ng specific maximum amount of time
in seconds that an entry can remain in the cache after it is created or refreshed. If
not specified, the default is the value of the t i meout attribute of the cache element.

Subelements
none

Attributes

The following table describes attributes for the t i meout element. The left column
lists the attribute name, the middle column indicates the default value, and the
right column describes what the attribute does.

ti meout attributes

Attribute Default Value Description

nane none Specifies the timeout input parameter, whose value
is interpreted in seconds. The field’s type must be
java.l ang. Longorjava. |l ang. | nt eger.

114 Sun ONE Application Server Developer’'s Guide to Web Applications ¢ September 2002

Elements in the sun-web.xml File

ti meout attributes (Continued)

Attribute Default Value Description

scope request.attribute (optional) Specifies the scope in which the input
parameter can be present. Allowed values are
context.attribute, request. header,
request . paraneter,request. cooki e,
request.attribute,andsession. attribute.

refresh-field

Specifies a field that gives the application component a programmatic way to
refresh a cached entry.

Subelements
none

Attributes

The following table describes attributes for the r ef r esh-fi el d element. The left
column lists the attribute name, the middle column indicates the default value, and
the right column describes what the attribute does.

refresh-fi el d attributes

Attribute Default Value Description

nane none Specifies the input parameter name.

scope request . paraneter (optional) Specifies the scope in which the input
parameter can be present. Allowed values are
context.attribute, request. header,
request . par aneter,request . cooki e,
session.id,and session. attribute.

http-method

Contains data that specifies an HTTP method that is eligible for caching. The
default is GET.

Subelements
none

Attributes
none

Chapter 6 Assembling and Deploying Web Modules 115

Elements in the sun-web.xml File

key-field
Specifies a component of the key used to look up and extract cache entries. The web
container looks for the named parameter, or field, in the specified scope.

If this element is not present, the web container uses the Servlet Path (the path
section that corresponds to the servlet mapping that activated the current request).
See the Servlet 2.3 specification, section SRV 4.4, for details on the Servlet Path.

Subelements
none

Attributes

The following table describes attributes for the key- fi el d element. The left
column lists the attribute name, the middle column indicates the default value, and
the right column describes what the attribute does.

key-fi el d attributes

Attribute Default Value Description

name none Specifies the input parameter name.

scope request . paraneter (optional) Specifies the scope in which the input
parameter can be present. Allowed values are
context.attribute, request. header,
request . paraneter,request. cooki e,
session.id,andsession. attri bute.

constraint-field
Specifies a cacheability constraint for the givenur| - pat t ern or ser vl et - nane.

All constrai nt - fi el d constraints must pass for a response to be cached. If there
are val ue constraints, at least one of them must pass.

Subelements

The following table describes subelements for the constrai nt - fi el d element. The
left column lists the subelement name, the middle column indicates the
requirement rule, and the right column describes what the element does.

constraint-fieldsubelements

Element Required Description

val ue zeroor more Contains a value to be matched to the input parameter value.

116 Sun ONE Application Server Developer’'s Guide to Web Applications ¢ September 2002

Elements in the sun-web.xml File

Attributes

The following table describes attributes for the const rai nt - fi el d element. The
left column lists the attribute name, the middle column indicates the default value,
and the right column describes what the attribute does.

constraint-field attributes

Attribute Default Value Description
name none Specifies the input parameter name.
scope request . paranet er (optional) Specifies the scope in which the input parameter

can be present. Allowed values are cont ext . attri bute,
request . header, request . par aneter,

request . cooki e, request. attri bute, and
session. attribute.

cache-on-match true (optional) If t r ue, caches the response if matching succeeds.
Overrides the same attribute in a val ue subelement.
cache-on-match fal se (optional) If t r ue, caches the response if matching fails.
-failure Overrides the same attribute in a val ue subelement.
value

Contains data that specifies a value to be matched to the input parameter value.
The matching is case sensitive. For example:

<val ue match-expr="in-range">1-60</val ue>

Subelements
none

Attributes

The following table describes attributes for the val ue element. The left column lists
the attribute name, the middle column indicates the default value, and the right
column describes what the attribute does.

Chapter 6 Assembling and Deploying Web Modules 117

Elements in the sun-web.xml File

val ue attributes

Attribute Default Value Description

mat ch- expr equal s (optional) Specifies the type of comparison
performed with the value. Allowed values are
equal s, not - equal s,greater, | esser, and
i n-range.

If mat ch- expr isgreater orl esser, the value
must be a number. If mat ch- expr isi n-range, the
value must be of the form nl1- n2, where nl1 and n2
are numbers.

cache-on-match true (optional) Ift r ue, caches the response if matching
succeeds.

cache-on-match fal se (optional) If t r ue, caches the response if matching

-failure fails.

Classloader Elements

Classloader elements are as follows:

e cl ass-1 oader

class-loader
Configures the classloader for the web module.

Subelements
none

Attributes

The following table describes attributes for the cl ass- | oader element. The left
column lists the attribute name, the middle column indicates the default value, and
the right column describes what the attribute does.

cl ass- | oader attributes

Attribute Default Value Description

extra-class-path null (optional) Specifies additional classpath settings
for this web module.

118 Sun ONE Application Server Developer’'s Guide to Web Applications ¢ September 2002

Elements in the sun-web.xml File

cl ass- | oader attributes (Continued)

Attribute Default Value Description

del egat e fal se (optional) If t r ue, the web module follows the
standard classloader delegation model and
delegates to its parent classloader first before
looking in the local classloader. If f al se, the web
module follows the delegation model specified in
the Servlet specification and looks in its
classloader before looking in the parent
classloader.

For a web component of a web service, you must
set this value to t r ue.

Legal values are on, of f ,yes, no, 1,0,true,
fal se.

JSP Elements

JSP elements are as follows:

e |jsp-config

jsp-config

Specifies JSP configuration information.

Subelements

The following table describes subelements for the j sp- confi g element. The left

column lists the subelement name, the middle column indicates the requirement
rule, and the right column describes what the element does.

j sp- confi g subelements

Element Required Description

property zeroormore Specifiesa property.

Attributes
none

Chapter 6 Assembling and Deploying Web Modules 119

Elements in the sun-web.xml File

Properties

The following table describes properties for the j sp- conf i g element. The left
column lists the property name, the middle column indicates the default value, and
the right column describes what the property does.

j sp-confi g properties

Property Name Default Value Description

i ed assld cl si d: 8AD9C840- The Java plugin COM class ID for Internet Explorer. Used
044E-11D1- B3E9- by the <j sp: pl ugi n> tags.
00805F499D93

j avaConpi | er Pl ugi n The internal IDK
compiler (j avac)

j avaConpi | er Pat h none
j avaEncodi ng UTF8
cl assdebugi nfo fal se
keepgener at ed true
| argefile fal se

The fully qualified class name of the Java compiler plug-in
to be used. Not needed for the default compiler.

For example, to use the j i kes compiler for JSP pages, set
the j avaConpi | er Pl ugi n property to

org. apache. j asper. conpil er. Ji kesJavaConpi | er,
then set the j avaConpi | er Pat h property to point to the
j 1 kes executable.

Specifies the path to the executable of an out-of-process
Java compiler such as j i kes. Ignored for the default
compiler. Needed only if the j avaConpi | er Pl ugi n
property is specified.

Specifies the encoding for the generated Java servlet. This
encoding is passed to the Java compiler used to compile
the servlet as well. By default, the web container tries to
use UTF8. If that fails, it tries to use the j avaEncodi ng
value.

For encodings you can use, see:

http://java.sun.conlj2se/ 1. 4/ docs/ gui de/intl/
encodi ng. doc. ht m

Specifies whether the generated Java servlets should be
compiled with the debug option set (- g for j avac).

If settot r ue, keeps the generated Java files. If f al se,
deletes the Java files.

If settot r ue, static HTML is stored is a separate data file
when a JSP is compiled. This is useful when a JSP is very
large, because it minimizes the size of the generated
servlet.

120 Sun ONE Application Server Developer’'s Guide to Web Applications ¢ September 2002

j sp-confi g properties

Elements in the sun-web.xml File

Description

Property Name Default Value
mappedfil e fal se
scratchdir The default work

directory for the
web application

rel oad-i nterval 0

If setto t r ue, generates separate wr i t e calls for each
HTML line and comments that describe the location of
each line in the JSP file. By default, all adjacentwr i t e calls
are combined and no location comments are generated.

The working directory created for storing all the generated
code.

Specifies the frequency (in seconds) at which JSP files are
checked for modifications. Setting this value to 0 checks
JSPs for modifications on every request. Setting this value
to - 1 disables checks for JSP modifications and JSP
recompilation.

Internationalization Elements

Internationalization elements are as follows:

e |ocale-charset-info
e | ocal e-charset-map

= paraneter-encodi ng

locale-charset-info

Specifies information about the application’s internationalization settings.

Subelements

The following table describes subelements for the | ocal e- char set - i nf o element.
The left column lists the subelement name, the middle column indicates the
requirement rule, and the right column describes what the element does.

| ocal e- char set - i nf o subelements

Element

Required Description

| ocal e- char set - map

par amet er - encodi ng

one or more Maps a locale and an agent to a character set.

zeroorone Determines how the web container decodes
parameters from forms for this web application

according to a hidden field value.

Chapter 6 Assembling and Deploying Web Modules

121

Elements in the sun-web.xml File

122

Attributes

The following table describes attributes for the | ocal e- char set - i nf o element.
The left column lists the attribute name, the middle column indicates the default
value, and the right column describes what the attribute does.

| ocal e- char set - i nf o attributes

Attribute Default Value Description

default-1ocale none Specifies the default locale.

locale-charset-map
Maps locales and agents to character sets.

For encodings you can use, see:

http://java. sun.conij2se/ 1. 4/ docs/ gui de/intl/encodi ng. doc. ht m
Subelements
The following table describes subelements for the | ocal e- char set - map element.

The left column lists the subelement name, the middle column indicates the
requirement rule, and the right column describes what the element does.

| ocal e- char set - map subelements

Element Required Description

description zeroorone Specifiesan optional text description of a mapping.

Attributes

The following table describes attributes for the | ocal e- char set - map element. The
left column lists the attribute name, the middle column indicates the default value,
and the right column describes what the attribute does.

| ocal e- char set - map attributes

Attribute Default Value Description

| ocal e none Specifies the locale name.

Sun ONE Application Server Developer's Guide to Web Applications * September 2002

Elements in the sun-web.xml File

| ocal e- char set - map attributes (Continued)

Attribute Default Value Description

agent none (optional) Specifies the type of client that interacts with the
application server. For a given locale, different agents may
have different preferred character sets. The value of this
attribute must exactly match the value of the user - agent
HTTP request header sent by the client. See the “example
agent attribute values” table for more information.

charset none Specifies the character set.

Example Agents
The following table specifies example agent attribute values. The left column lists
the agent, and the right column lists the corresponding attribute value.

example agent attribute values

Agent

user-agent Header and agent Attribute Value

Internet Explorer 5.00 for Windows Mozilla/ 4.0 (conpatible; MSIE 5.01; Wndows NT 5.0)

2000

Netscape 4.7.7 for Windows 2000 Mozillal4.77 [en] (Wndows NT 5.0; U
Netscape 4.7 for Solaris Mozillal/4.7 [en] (X11; u; Sun OS 5.6 sun4u)

parameter-encoding

Specifies a hidden field that determines the character encoding the web container
uses to decode parameters for r equest . get Par anet er calls when the char set is
not set in the request’s cont ent - t ype.

For encodings you can use, see:

http://java. sun.conij2se/ 1. 4/ docs/ gui de/intl/encodi ng. doc. ht m

Subelements
none

Attributes

The following table describes attributes for the par anet er - encodi ng element. The
left column lists the attribute name, the middle column indicates the default value,
and the right column describes what the attribute does.

Chapter 6 Assembling and Deploying Web Modules 123

Sample Web Module XML Files

par anet er - encodi ng attributes

Attribute Default Value Description

formhint-field none The name of the hidden field in the form that
specifies the parameter encoding.

Sample Web Module XML Files

124

This section includes the following:
= Sample web.xml File

= Sample sun-web.xml File

Sample web.xml File

<?xm version="1.0" encodi ng="UTF-8"?>

<! DOCTYPE web-app PUBLIC '-//Sun M crosystens, Inc.//DID Wb
Application 2.3//EN
"http://java. sun. conij 2ee/ dt ds/ web-app_2_2.dtd’ >

<web- app>
<di spl ay- name>webapps- si npl e</ di spl ay- nane>
<descri pti on>
The jakarta-tontat-4.0.3 sanple apps ports over to S1AS.
</ descri ption>
<di stri but abl e></di stri but abl e>
<servl et >
<servl et - name>Hel | oWr | dExanpl e</ servl et - nane>
<servl et-cl ass>
sanpl es. webapps. si npl e. servl et. Hel | oWor | dExanpl e
</ servl et-class>
</servlet>
<servl et >

<servl et - name>Request Header Exanpl e</ ser vl et - nanme>

Sun ONE Application Server Developer's Guide to Web Applications * September 2002

Sample Web Module XML Files

<servl et-class>
sanpl es. webapps. si npl e. servl et. Request Header Exanpl e
</ servl et-class>
</servlet>
<servlet>
<servl et - name>SnoopSer vl et </ ser vl et - nanme>
<servl et-class>
sanpl es. webapps. si npl e. servl et. SnoopSer vl et
</ servl et-class>
</servlet>
<servlet>
<servl et - nane>ser vl et ToJsp</ servl et - name>
<servl et-class>
sanpl es. webapps. si mpl e. servl et. servl et ToJsp
</ servl et-class>
</servlet>
<servlet>
<servl et - name>Request | nf oExanpl e</ ser vl et - nane>
<servl et-class>
sanpl es. webapps. si npl e. servl et. Request | nf oExanpl e
</ servl et-class>
</servlet>
<servlet>
<servl et - nane>Sessi onExanpl e</ ser vl et - nane>
<servl et-class>
sanpl es. webapps. si npl e. servl et. Sessi onExanpl e
</ servl et-class>
</servlet>
<servlet>
<ser vl et - name>Cooki eExanpl e</ ser vl et - nane>

<servl et-cl ass>

Chapter 6 Assembling and Deploying Web Modules

125

Sample Web Module XML Files

sanpl es. webapps. si npl e. servl et. Cooki eExanpl e
</servlet-cl ass>
</servlet>
<servlet>
<servl et - nane>Request Par anExanpl e</ ser vl et - nane>
<servl et-class>
sanpl es. webapps. si npl e. servl et. Request Par anExanpl e
</servl et-cl ass>
</servlet>
<servlet>
<servl et - name>SendMai | Ser vl et </ servl et - name>
<servl et-class>
sanpl es. webapps. si npl e. servl et. SendMai | Ser vl et
</servlet-cl ass>
</servlet>
<servlet>
<servl et - nane>Jndi Servl et </ servl et - name>
<servl et-class>
sanpl es. webapps. si npl e. servl et. Jndi Servl et
</servlet-class>
</servlet>
<servl et - mappi ng>
<servl et - nane>Hel | oWor | dExanpl e</ servl et - nane>
<url -pattern>/hell oworld</url-pattern>
</ servl et - mappi ng>
<servl et - mappi ng>
<servl et - nane>Request Header Exanpl e</ ser vl et - nane>
<url - pattern>/request header</url -pattern>
</ servl et - mappi ng>
<servl et - mappi ng>

<servl et - name>SnoopSer vl et </ ser vl et - nane>

126 Sun ONE Application Server Developer’'s Guide to Web Applications ¢ September 2002

Sample Web Module XML Files

<url - pattern>/snoop</url -pattern>

</ servl et - mappi ng>

<servl et - mappi ng>
<servl et - nane>ser vl et ToJsp</ ser vl et - nane>
<url -pattern>/servl et ToJsp</url-pattern>

</ servl et - mappi ng>

<servl et - mappi ng>
<servl et - name>Request | nf oExanpl e</ ser vl et - nane>
<url - pattern>/requestinfo</url-pattern>

</ servl et - nappi ng>

<servl et - mappi ng>
<servl et - nane>Sessi onExanpl e</ ser vl et - nane>
<url - pattern>/session</url-pattern>

</ servl et - mappi ng>

<servl et - mappi ng>
<servl et - nane>Cooki eExanpl e</ servl et - nane>
<url - pattern>/cooki e</url-pattern>

</ servl et - mappi ng>

<servl et - mappi ng>
<servl et - name>Request Par anExanpl e</ ser vl et - nane>
<url - pattern>/requestparanx/url-pattern>

</ servl et - nappi ng>

<servl et - mappi ng>
<servl et - name>SendMai | Ser vl et </ servl et - name>
<url - pattern>/ SendMai | Servl et </ url -pattern>

</ servl et - mappi ng>

<servl et - mappi ng>
<servl et - nane>Jndi Servl et </ servl et - name>
<url -pattern>/Jndi Servl et</url -pattern>

</ servl et - mappi ng>

<wel cone-file-list>

Chapter 6 Assembling and Deploying Web Modules 127

Sample Web Module XML Files

<wel cone-fil e>i ndex. ht M </ wel conme-fil e>
</wel cone-file-list>
<tagli b>
<taglib-uri>
http://java. apache. org/tontat/exanpl es-taglib
</taglib-uri>
<taglib-1ocation>
/VEB- | NF/ t 1 ds/ exanmpl e-taglib.tld
</taglib-Ilocation>
</taglib>
<resource-ref>
<res-ref-name>mai | / Sessi on</res-ref - name>
<res-type>j avax. mai | . Sessi on</res-type>
<r es- aut h>Cont ai ner </ res- aut h>
</ resource-ref>
<security-constraint>
<web-resource-col | ection>
<web-r esour ce- name>Pr ot ect ed Area</ web-resource- nane>
<I-- Define the context-relative URL(S) to be protected -->
<url -pattern>/jsp/security/protected/ *</url-pattern>
<l-- If you list http nmethods, only those nethods are protected -->
<ht t p- net hod>DELETE</ ht t p- et hod>
<ht t p- net hod>GET</ ht t p- met hod>
<ht t p- net hod>POST</ ht t p- met hod>
<ht t p- met hod>PUT</ ht t p- met hod>
</ web-resource-col | ecti on>
<aut h-constrai nt >
<!-- Anyone with one of the listed roles may access this area -->
<r ol e- nane>t ontat </ r ol e- nane>
<r ol e- name>r ol el</rol e- nane>

</ aut h-constrai nt >

128 Sun ONE Application Server Developer’'s Guide to Web Applications ¢ September 2002

Sample Web Module XML Files

</ security-constraint>
<!-- Environnent entry exanples -->
<env-entry>
<descri pti on>
The maxi mum nunber of tax exenptions allowed to be set.
</ descri ption>
<env-ent ry- nane>maxExenpt i ons</ env-entry- nane>
<env-entry-val ue>15</env-entry-val ue>
<env-entry-type>j ava.l ang. | nt eger</env-entry-type>
</env-entry>
<env-entry>
<env-ent ry-nane>nm nExenpti ons</ env-entry- nane>
<env-entry-val ue>1</env-entry-val ue>
<env-entry-type>j ava. |l ang. | nt eger </ env-entry-type>
</env-entry>
<env-entry>
<env- ent ry- nane>f oo/ nanel</ env-entry- nane>
<env-entry-val ue>val uel</env-entry-val ue>
<env-entry-type>java.lang. String</env-entry-type>
</env-entry>
<env-entry>
<env-ent ry- nane>f oo/ bar/ nane2</ env- ent ry- nane>
<env-entry-val ue>true</ env-entry-val ue>
<env-entry-type>j ava. | ang. Bool ean</ env-entry-type>
</env-entry>
<env-entry>
<env-entry- nane>nanme3</ env- ent ry- nane>
<env-entry-val ue>1</env-entry-val ue>
<env-entry-type>j ava.l ang. | nt eger</env-entry-type>
</env-entry>

<env-entry>

Chapter 6 Assembling and Deploying Web Modules 129

Sample Web Module XML Files

<env-ent ry- nane>f oo/ nanme4</ env- ent r y- nane>

<env-entry-val ue>10</ env-entry-val ue>

<env-entry-type>j ava.l ang. | nt eger</env-entry-type>
</env-entry>

</ web- app>

Sample sun-web.xml File

<?xm version="1.0" encodi ng="UTF-8""?>

<! DOCTYPE sun-web-app PUBLIC '-//Sun M crosystens, Inc.//DTD Sun ONE
Application Server 7.0 Servlet 2.3//EN

"http://ww. sun. coni sof t war e/ sunone/ appser ver/ dt ds/ sun- web- app_2_3-
0.dtd >

<sun-web- app>

<sessi on-confi g>
<sessi on- nanager/ >

</ sessi on-confi g>

<resource-ref>
<res-ref-nane>nuil / Sessi on</res-ref - nane>
<j ndi - name>mai | / Sessi on</j ndi - nane>

</resource-ref>

<j sp-config/>

</ sun- web- app>

130 Sun ONE Application Server Developer’'s Guide to Web Applications ¢ September 2002

Chapter 7

Using Server-Parsed HTML

HTML files can contain tags that are executed on the server. In addition to
supporting the standard server-side tags, Sun ONE Application Server 7 allows
you to embed servlets and define your own server-side tags.

You can create custom server-parsed HTML tags. For more information, see the
Sun ONE Application Server NSAPI Developer’s Guide.

For security, server-parsed HTML tags depend on the server’s security
configuration. For more information, see “Security for SHTML and CGl,” on
page 81 and the Sun ONE Application Server Administrator’s Guide to Security.

This chapter has the following sections;

Server-Side HTML and J2EE Web Applications
Enabling Server-Side HTML

Using Server-Side HTML Commands
Embedding Servlets

Time Formats

Server-Side HTML and J2EE Web Applications

In Sun ONE Application Server, server-parsed HTML cannot interoperate with
J2EE web applications. Specifically:

Do not place server-parsed HTML within web application context roots.
Do not include the output of server-parsed HTML in servlets or JSPs.

Do not forward requests to server-parsed HTML from servlets or JSPs.

131

Enabling Server-Side HTML

= You cannot apply J2EE security-constrai nt andfilter-mappi ng features
to server-parsed HTML.

Enabling Server-Side HTML

To enable server-side HTML.:

1. Open the HTTP Server component under your server instance in the
Administration interface.

2. Go to the Virtual Servers page.

3. Click on the name of the virtual server for which you are enabling server-side
HTML.

4. Click onthe HTTP/HTML tab.
5. Click on the Parse HTML option.
6. Choose a resource for which the server will parse HTML.
Choose the virtual server or a specific directory within the virtual server.

If you choose a directory, the server will parse HTML only when the server
receives a URL for that directory or any file in that directory.

7. Choose whether to activate server-parsed HTML.

You can activate for HTML files but not the exec tag, or for HTML files and the
exec tag, which allows HTML files to execute other programs on the server.

8. Choose which files to parse.

You can choose whether to parse only files with the . sht nl extension, or all
HTML files, which slows performance. If you are using UNIX, you can also
choose to parse UNIX files with the execut e permission turned on, though
that can be unreliable.

9. Click on the OK button.
10. Go to the server instance page and select the Apply Changes button.

When you activate parsing, you need to be sure that the following directives are
added to youri ni t. conf file (note that native threads are turned off):

132 Sun ONE Application Server Developer’'s Guide to Web Applications ¢ September 2002

Using Server-Side HTML Commands

Init funcs="shtm _init,shtm _send" shlib="install _dir/ bi n/ Shtm . dl "
Nat i veThr ead="no" fn="1 oad- nodul es"

Note that you must set Nat i veThr ead="no" for Sun ONE Application Server 7. In
addition, these functions now originate from Shtni . dI | (orli bShtni . so on
UNIX), which is located in install_dir/ bi n for Windows (and install_dir/ | i b for
UNIX).

In addition, be sure that the following directive is added to your obj . conf file:

<Cbj ect nane="defaul t">

Service fn="shtml _send" type="nmgnus-internal/parsed-htm" method="(GET| HEAD) "

</ Obj ect >

Using Server-Side HTML Commands

This section describes the HTML commands for including server-parsed tags in
HTML files. These commands are embedded into HTML files, which are processed
by the obj . conf file’s par se- ht ml function.

The server replaces each command with data determined by the command and its
attributes. The format for a command is:

<! --#command attributel attribute2 <Body>... -->

The format for each at t ri but e is a name-value pair such as:
name="value"

Commands and attribute names should be in lower case.

The commands are “hidden” within HTML comments so they are ignored if not
parsed by the server. The standard server-side commands are:

e config
* include
e echo

e fsize

Chapter 7 Using Server-Parsed HTML 133

Using Server-Side HTML Commands

e flastnod

® exec

config

The confi g command initializes the format for other commands.

= The errnsg attribute defines a message sent to the client when an error occurs
while parsing the file. This error is also logged in the server log file.

e Thetinefnt attribute determines the format of the date for the f | ast nod
command. It uses the same format characters as theuti | _strfti me function.
The default time format is: " %A, %l- %- %y %d".

Refer to “Time Formats,” on page 137 for details about time formats.

e Thesizef nt attribute determines the format of the file size for the f si ze
command. It can have one of these values:

o byt es to report file size as a whole number in the format 12,345,678.
o abbrev (the default) to report file size as a number of KB or MB.
Example:
<I--#config timefn="% % % %, %" sizefnt="abbrev"-->

This sets the date format to a value such as 08:23:15 AM Wed Apr 15, 1996, and the
file size format to the number of KB or MB of characters used by the file.

include

The i ncl ude command inserts a file into the parsed file. You can nest files by
including another parsed file, which then includes another file, and so on. The
client requesting the parsed document must also have access to the included file if
your server uses access control for the directories where they reside.

In Sun ONE Application Server 7, you can use the i ncl ude command with the
vi rtual attribute to include a CGI program file. You must also use an exec
command to execute the CGI program.

e Thevirtual attribute is the URI of a file on the server.

= Thefil e attribute is a relative path name from the current directory. It cannot
contain elements such as . . / and it cannot be an absolute path.

134 Sun ONE Application Server Developer’'s Guide to Web Applications ¢ September 2002

Using Server-Side HTML Commands

Example:

<I--#include file="bottle.gif"-->

echo

The echo command inserts the value of an environment variable. The var attribute
specifies the environment variable to insert. If the variable is not found, “(none)” is
inserted. For a list of environment variables, see the section “Environment
Variables in Server-Side HTML Commands,” on page 136.

Example:

<l --#echo var="DATE_GMI" - - >

fsize

The f si ze command sends the size of a file. The attributes are the same as those for
the i ncl ude command (virtual and fil e). The file size format is determined by
the si zef nt attribute in the confi g command.

Example:

<I--#fsize file="bottle.gif"-->

flastmod

The f | ast mod command prints the date a file was last modified. The attributes are
the same as those for the i ncl ude command (vi rt ual andfi |l e). The date format
is determined by the t i mef nt attribute in the confi g command.

Example:

<I--#flastnod file="bottle.gif"-->

exec

The exec command runs a shell command or CGI program.

= The cnd attribute (UNIX only) runs a command using / bi n/ sh. You may
include any special environment variables in the command.

Chapter 7 Using Server-Parsed HTML 135

Embedding Servlets

The cgi attribute runs a CGI program and includes its output in the parsed file.

Example:

<!--#exec cgi="workit.pl"-->

Environment Variables in Server-Side HTML
Commands

In addition to the normal set of environment variables used in CGl, you may
include the following variables in your parsed commands:

DOCUNVENT _ NAME

is the file name of the parsed file.

DOCUMENT_URI

is the virtual path to the parsed file (for example,/ shtml / test. shtnl).
QUERY_STRI NG_UNESCAPED

is the unescaped version of any search query the client sent with all
shell-special characters escaped with the \ character.

DATE_LOCAL

is the current date and local time.

DATE_GMT

is the current date and time expressed in Greenwich Mean Time.
LAST_MODI FI ED

is the date the file was last modified.

Embedding Servlets

Sun ONE Application Server 7 supports the <SERVLET> tag as introduced by Java
Web Server. This tag allows you to embed servlet output in an SHTML file. No
configuration changes are necessary to enable this behavior. If SSI and servlets are
both enabled, the <SERVLET> tag is enabled.

136 Sun ONE Application Server Developer’'s Guide to Web Applications ¢ September 2002

Time Formats

The <SERVLET> tag syntax is slightly different from that of other SSI commands; it
resembles the <APPLET> tag syntax:

<servl et code=code>
<par am nane=paraml val ue=v3>
<par am nane=param?2 val ue=v4>

</servlet>

The code parameter specifies the URI of the servlet, including the web application
context root. This URI must match a ur | - pat t er n subelement of a
ser vl et - mappi ng element in the J2EE deployment descriptor (web. xni).

Time Formats

The following table describes the format strings for dates and times used by
server-parsed HTML. The left column lists time format symbols, and the right
column explains the meanings of the symbols.

Time formats

Symbol

Meaning

%a
%d
%S
%M
%H
%Y
%b
%h
%T
%X
%A
%B
%C

%c

Abbreviated weekday name (3 chars)
Day of month as decimal number (01-31)
Second as decimal number (00-59)
Minute as decimal number (00-59)

Hour in 24-hour format (00-23)

Year with century, as decimal number, up to 2099
Abbreviated month name (3 chars)
Abbreviated month name (3 chars)
Time " HH: MM SS"

Time " HH: MM SS"

Full weekday name

Full month name

"% % Y% %1 9M ¥S W

Date & time " %m %/ Yy % %vt %&"

Chapter 7 Using Server-Parsed HTML

137

Time Formats

Time formats

Symbol Meaning

%D Date " %m %/ %"

%e Day of month as decimal number (1-31) without leading zeros

%l Hour in 12-hour format (01-12)

%j Day of year as decimal number (001-366)

%k Hour in 24-hour format (0-23) without leading zeros

%I Hour in 12-hour format (1-12) without leading zeros

%m Month as decimal number (01-12)

%n line feed

%p A.M./P.M. indicator for 12-hour clock

%R Time " % %/

%r Time" % : 9YM %65 %"

%t tab

%U Week of year as decimal number, with Sunday as first day of week
(00-51)

%w Weekday as decimal number (0-6; Sunday is 0)

%W Week of year as decimal number, with Monday as first day of week
(00-51)

%X Date " %m %/ %"

%y Year without century, as decimal number (00-99)

%% Percent sign

138 Sun ONE Application Server Developer’'s Guide to Web Applications ¢ September 2002

Chapter 8

Using CGl

Common Gateway Interface (CGI) programs run on the server and generate a
response to return to the requesting client. CGI programs can be written in various
languages, including C, C++, Perl, and as shell scripts. CGI programs are invoked
through URL invocation.

A myriad of information about writing CGI programs is available. A good starting
point is “The Common Gateway Interface” at:

htt p://hoohoo. ncsa. ui uc. edu/ cgi / over vi ew. ht m
Sun ONE Application Server complies with the version 1.1 CGI specification.

Since the server starts up a process each time the CGI script or program runs, this is
an expensive method of programming the server.

For security, CGI scripts depend on the server’s security configuration. For more
information, see “Security for SHTML and CGl,” on page 81 and the Sun ONE
Application Server Administrator’s Guide to Security.

This chapter includes the following topics:

= CGl and J2EE Web Applications

< Enabling CGI

= Creating Custom Execution Environments for CGI Programs (UNIX only)
= Adding CGI Programs to the Server

e Setting the Priority of a CGI Program

< Windows CGI Programs

= Shell CGI Programs for Windows

e The Query Handler

« Perl CGI Programs

139

CGIl and J2EE Web Applications

Global CGI Settings
CGl Variables

CGIl and J2EE Web Applications

In Sun ONE Application Server, CGI programs cannot interoperate with J2EE web
applications. Specifically:

Do not place CGI programs within web application context roots.
Do not include the output of CGI programs in servlets or JSPs.
Do not forward requests to CGI programs from servlets or JSPs.

You cannot apply J2EE security-constraint andfilter-mappi ng features
to CGI programs.

Enabling CGI

Sun ONE Application Server provides these ways to identify CGI programs:

140

Specifying CGI Directories. The server treats all files in CGI directories as CGI
programs.

Specifying CGI File Extensions. The server treats all files with the specified
extensions as CGI programs.

Specifying CGI Directories

To specify directories that contain CGI programs (and only CGI programs):

1.

Create the CGI directory on your computer. This directory doesn’t have to be a
subdirectory of your document root directory. This is why you must specify a
URL prefix in Step 7.

Open the HTTP Server component under your server instance in the
Administration interface.

Go to the Virtual Servers page.

Click on the name of the virtual server for which you are specifying a CGlI
directory.

Sun ONE Application Server Developer's Guide to Web Applications * September 2002

Enabling CGI

5. Click on the CGl tab.
6. Click on the CGI Directory option.

7. Inthe URL Prefix field, type the URL prefix to use for this directory. That is, the
text you type appears as the directory for the CGI programs in URLSs.

For example, if you type cgi - bi n as the URL prefix, then all URLs to these CGlI
programs have the following structure:

http://yourserver. domai n. contf cgi - bi n/ program nane

NOTE The URL prefix you specify can be different from the real CGI
directory you specify in the previous step.

8. Inthe CGI Directory text field, type the location of the directory as an absolute
path.

9. Click on the OK button.
10. Go to the server instance page and select the Apply Changes button.
The server treats all files in these directories as CGI programs.

To remove an existing CGI directory, click that directory’s Remove button in the
CGI Directory page. To change the URL prefix or CGI directory of an existing
directory, click that directory’s Edit button.

Copy your CGI programs into the directories you’ve specified. Remember that any
files in those directories are processed as CGl files, so don’t put HTML files in your
CGl directory.

For each CGI directory, the file obj . conf contains a NaneTr ans directive that
associates the name cgi with each request for a resource in that directory. These
directives are automatically added to obj . conf when you specify CGI directories
in the Administration interface, or you can manually add them to obj . conf if
desired.

For example, the following instruction interprets all requests for resources in
ht t p: // server-name/ cgi - | ocal as requests to invoke CGI programs in the directory
C. / SunSer ver/ docs/ mycgi .

NaneTrans fn="pfx2dir" from="/cgi-Iocal"
di r="C:/ SunServer/docs/ nmycgi " nane="cgi "

The obj . conf file must contain the following named object:

Chapter 8 Using CGI 141

Enabling CGI

<Cbj ect name="cgi ">

hj ect Type fn="force-type" type="magnus-internal/cgi"
Servi ce fn="send-cgi"

</ Obj ect >

Do not remove this object from obj . conf . If you do, the server will never recognize
CGl directories, regardless of whether you specify them in the Administration
interface or manually add more NameTr ans directives to obj . conf .

Specifying CGI File Extensions

To instruct the server to treat all files with certain extensions as CGI programs,
regardless of which directory they reside in:

1. Open the HTTP Server component under your server instance in the
Administration interface.

2. Go to the Virtual Servers page.

3. Click on the name of the virtual server for which you are specifying CGl file
types.

4. Click on the CGl tab.

5. Click on the CGI File Type option.

6. From the Editing picker, choose the resource you want this change to apply to.

7. Click the Yes radio button under Activate CGl as a File Type.

8. Click on the OK button.

9. Go tothe server instance page and select the Apply Changes button.
The default CGI extensions are .cgi , . bat and. exe.

To change which extensions indicate CGI programs, modify the following line in
mi me. t ypes to specify the desired extensions. Be sure to restart the server after
editing mi nme. t ypes.

type=magnus-internal / cgi exts=cgi, exe, bat

When the server is enabled to treat all files with an appropriate extensions as CGI
programs, the obj . conf file contains the following Service directive:

Service fn="send-cgi" type="nmagnus-internal/cgi"

142 Sun ONE Application Server Developer’'s Guide to Web Applications ¢ September 2002

Creating Custom Execution Environments for CGI Programs (UNIX only)

Creating Custom Execution Environments for
CGI Programs (UNIX only)

Before you can create a custom execution environment, you must install the sui d
Cgi st ub and run it as root:

1.

Log in as the superuser.

Ssu

Create the pri vat e directory for Cgi st ub:
cd instance_dir

nkdir private

Copy Cgi st ub to the pri vat e directory:
cd private

cp install_dir/1i b/ Cgi stub .

Set the owner of pri vat e to the server user:
chown username .

Set the permissions on pri vat e:

chnod 500 .

Set the owner of Cgi st ub tor oot :

chown root Cgistub

Set the permissions on Cgi st ub:

chnod 4711 Cgi stub

You can give each reference to the send- cgi function in obj . conf a user
parameter. For example:

Service fn="send-cgi" user="username"

You can use variable substitution. For example, in server. xm , give a
vi rtual - server element the following pr oper t y subelement:

<property name="user" val ue="username"/>
This lets you write the send- cgi function line in obj . conf as follows:

Service fn="send-cgi" user="$user"

Chapter 8 Using CGlI

143

Creating Custom Execution Environments for CGI Programs (UNIX only)

For more information about send- cgi and obj . conf, see the Sun ONE
Application Server Developer’s Guide to NSAPI. For more information about

server. xni , see the Sun ONE Application Server Administrator’s Configuration
File Reference.

9. Restart the server so these changes take effect.

NOTE Installing Cgi st ub in the instance_dir/ pri vat e directory is
recommended. If you install it anywhere else, you must specify the
path to Cgi st ub inthei nit-cgi functionininit. conf.For
details, see the Sun ONE Application Server Developer’s Guide to
NSAPI.

NOTE It may not be possible to install the sui d Cgi st ub program on an
NFS mount. If you wish to use an sui d Cgi st ub, you must install
your server instance to a local file system.

Cgi st ub enforces the following security restrictions:

= The user the CGI program executes as must have a uid of 100 or greater. This
prevents anyone from using Cgi st ub to obtain root access.

= The CGI program must be owned by the user it is executed as and must not be
writable by anyone other than its owner. This makes it difficult for anyone to
covertly inject and then remotely execute programs.

= Cgi st ub creates its UNIX listen socket with 0700 permissions.

NOTE Socket permissions are not respected on a number of UNIX
variants, including current versions of SunOS/Solaris. To prevent a
malicious user from exploiting Cgi st ub, change the server’s
temporary directory (using thei ni t. conf TenpDi r directive) to a
directory accessible only to the server user. For details, see the Sun
ONE Application Server Administrator’s Configuration File Reference.

144 Sun ONE Application Server Developer’'s Guide to Web Applications ¢ September 2002

Creating Custom Execution Environments for CGI Programs (UNIX only)

After you have installed Cgi st ub, you can create custom execution environments
in the following ways:

= Specifying a Unique CGI Directory and UNIX User and Group for a Virtual
Server

= Specifying a Chroot Directory for a Virtual Server

Specifying a Unique CGI Directory and UNIX
User and Group for a Virtual Server

To prevent a virtual server’s CGI programs from interfering with other users, these
programs should be stored in a unique directory and execute with the permissions
of a unique UNIX user and group.

First, create the UNIX user and group. The exact steps required to create a user and
group vary by operating system. For help, consult your operating system's
documentation.

Next, follow these steps to create a cgi - bi n directory for the virtual server:
1. Log in as the superuser.
Ssu
2. Change to the virtual server directory.
cd vs_dir
3. Create the cgi - bi n directory.
nmkdir cgi-bin
chown user: group cgi - bin
chnod 755 cgi-bin
You can set the virtual server’s CGI directory, user, and group in one of these ways:

e Usethedir,user, and group parameters of the send- cgi function in the
obj . conf file. For more information, see the Sun ONE Application Server
Developer’s Guide to NSAPI.

= Enter this information using the Administration interface:
a. Openthe HTTP Server component under your server instance.

b. Go to the Virtual Servers page.

Chapter 8 Using CGI 145

Creating Custom Execution Environments for CGI Programs (UNIX only)

146

c. Click on the name of the virtual server for which you are specifying CGI
directories.

d. Click on the General tab.

e. Type values in the Directory, User, and Group fields.

f. Click on the Save button.

g. Go tothe server instance page and select the Apply Changes button.

For more information, see the Sun ONE Application Server Administrator’s Guide.

Specifying a Chroot Directory for a Virtual Server

To further improve security, these CGlI scripts should be prevented from accessing
data above and outside of the virtual server directory.

First, set up the chroot environment. The exact steps required to set up the chroot
environment vary by operating system. For help, consult your operating system’s
documentation. The nman pages for f t pd and chr oot are often a good place to start.

These are the steps required for Solaris versions 2.6 through 8:

1

Log in as the superuser.
Ssu

Change to the chroot directory. This is typically the vs_dir directory mentioned
in the previous section.

cd chroot

Create t np in the chroot directory:
nkdir tnp

chnod 1777 tnp

Create dev in the chroot directory:
nkdir dev

chrmod 755 dev

List/ dev/ t cp, and note the major and minor numbers of the resulting output.
In this example, the major number is 11 and the minor number is 42:

Is -IL /dev/tcp
CrW- W T W 1 root sys 11, 42 Apr 9 1998 /dev/tcp

Sun ONE Application Server Developer's Guide to Web Applications * September 2002

10.

Creating Custom Execution Environments for CGI Programs (UNIX only)

Create the t cp device using the major and minor numbers;
nmknod dev/tcp c 11 42
chnod 666 dev/tcp

Repeat steps 5 and 6 for each of the following devices (each device will have a
different major and minor combination):

[dev/ udp

[dev/ip

/ dev/ knmem
/ dev/ kst at
/ dev/ ksyns
/ dev/ mem

/ dev/ nul |

/ dev/ stderr
/dev/stdin
/ dev/ st dout
/dev/ticotsord
/ dev/ zero

Set permissions on the devices in dev in the chroot directory:
chnod 666 dev/*

Create and populate I i b and usr/1'i b in the chroot directory:
nkdi r usr

nmkdir usr/lib

In -s /fusr/lib

In /fusr/lib/* usr/lib

You can ignore the messages this command generates.

If the/usr/1i b directory is on a different file system, replace the last command
with the following:

cp -rf Jusr/lib/* usr/lib

Create and populate bi n and usr/ bi n in the chroot directory:
nkdi r usr/bin

In -s /usr/bin

In /usr/bin/* usr/bin

You can ignore the messages this command generates.

Chapter 8 Using CGI 147

Creating Custom Execution Environments for CGI Programs (UNIX only)

148

11.

12.

If the / usr/ bi n directory is on a different file system, replace the last command
with the following:

cp -rf Jusr/bin/* usr/bin

Create and populate et ¢ in the chroot directory:
nkdir etc

In /etc/passwd /etc/group /etc/netconfig etc
Test the chroot environment:

chroot chroot bin/ls -1

The output should look something like this:

total 14

| rwxr wxr wx 1 root ot her 8 Jan 13 03:32 bin -> /usr/bin
dr wxr - Xr - x 2 user group 512 Jan 13 03:42 cgi-bin

dr wxr - Xr - x 2 root ot her 512 Jan 13 03:28 dev

dr wxr - Xr - x 2 user group 512 Jan 13 03: 26 docs

dr wxr - Xr - X 2 root ot her 512 Jan 13 03:33 etc

| rwxr wxr wx 1 root ot her 8 Jan 13 03:30 lib -> fusr/lib
dr wxr - Xr - x 4 root ot her 512 Jan 13 03: 32 usr

You can set the virtual server’s chroot directory in one of these ways:

Use the chr oot parameter of the send- cgi function in the obj . conf file. For
more information, see the Sun ONE Application Server Developer’s Guide to
NSAPI.

Enter this information using the Administration interface:
a. Openthe HTTP Server component under your server instance.
b. Go to the Virtual Servers page.

c. Click on the name of the virtual server for which you are specifying CGI
directories.

d. Click on the General tab.

e. Type avalue in the Chroot field.

f. Click on the Save button.

g. Go tothe server instance page and select the Apply Changes button.

For more information, see the Sun ONE Application Server Administrator’s Guide.

Sun ONE Application Server Developer's Guide to Web Applications * September 2002

Adding CGI Programs to the Server

Adding CGI Programs to the Server

To add CGI programs to the Sun ONE Application Server, simply do one of the
following:

Drop the program file in a CGI directory (if there are any).

Give it a file name that the server recognizes as a CGl program and put it in
any directory at or below the document root (if CGl file type recognition has
been activated).

For UNIX, make sure the program file has execute permissions set.

Setting the Priority of a CGI Program

To set the priority of a CGI program:

1.

6.

7.

Open the HTTP Server component under your server instance in the
Administration interface.

Go to the Virtual Servers page.

Click on the name of the virtual server for which you are specifying CGI
directories.

Click on the General tab.

Type a value in the Nice field. This increment determines the CGI program’s
priority relative to the server. Typically, the server is run with a nice value of 0
and the nice increment would be between 0 (the CGI program runs at same
priority as server) and 19 (the CGI program runs at much lower priority than
server). While it is possible to increase the priority of the CGI program above
that of the server by specifying a nice increment of - 1, this is not
recommended.

Click on the Save button.

Go to the server instance page and select the Apply Changes button.

For more information, see the Sun ONE Application Server Administrator’s Guide.

Chapter 8 Using CGI 149

Windows CGI Programs

Windows CGI Programs

150

This section discusses how to install Windows CGI Programs. The following topics
are included in this section:

= Overview of Windows CGI Programs
= Specifying a Windows CGlI Directory
= Specifying Windows CGl as a File Type

Overview of Windows CGI Programs

Windows CGI programs are handled much as other CGI programs. You specify a
directory that contains only Windows CGI programs, or you specify that all
Windows CGI programs have the same file extension, or both.

Although Windows CGI programs behave like regular CGI programs, your server
processes the actual programs slightly differently. Therefore, you need to specify
different directories for Windows CGI programs. If you enable the Windows CGI
file type, it uses the file extension . wcg.

Sun ONE Application Servers support the Windows CGI 1.3a informal
specification, with the following differences:

= The following keywords have been added to the [C@] section to support
security methods:

o HTTPS: its value is on or off, depending on whether the transaction is
conducted through SSL.

o HTTPS Keysize: when HTTPS is on, this value reports the number of bits
in the session key used for encryption.

o HTTPS Secret Keysize: when HTTPS is on, this value reports the number of
bits used to generate the server’s private key.

= The keyword Docunent Root inthe [CA] section might not refer to the
expected document root because the server does not have a single document
root. The directory returned in this variable is the root directory for the
Windows CGI program.

= The keyword Server Adnmininthe[CGE] section is not supported.
= The keyword Aut hent i cati on Real minthe [C3@] section is not supported.

= Forms sent with multi-part/form-data encoding are not supported.

Sun ONE Application Server Developer's Guide to Web Applications * September 2002

Windows CGI Programs

Specifying a Windows CGlI Directory

To specify directories that contain WinCGI programs (and only WinCGl
programs):

1. Create the Windows CGlI directory on your computer. This directory doesn’t
have to be a subdirectory of your document root directory. This is why you
must specify a URL prefix in Step 7.

2. Openthe HTTP Server component under your server instance in the
Administration interface.

3. Go to the Virtual Servers page.

4. Click on the name of the virtual server for which you are specifying Windows
CGl directories.

5. Click on the CGI tab.
6. Click on the WinCGI Directory option.

7. Inthe URL Prefix field, type the URL prefix to use for this directory. That is, the
text you type appears as the directory for the CGI programs in URLSs.

For example, if you type cgi - bi n as the URL prefix, then all URLs to these CGlI
programs have the following structure:

http://yourserver. domain. contf cgi - bi n/ program nane

NOTE The URL prefix you specify can be different from the real CGI
directory you specify in the previous step.

8. Inthe WINCGI Directory text field, type the location of the directory as an
absolute path.

9. To enable script tracing, select the Yes radio button.
10. Click on the OK button.
11. Go to the server instance page and select the Apply Changes button.

To remove an existing Windows CGI directory, click that directory’s Remove
button in the WINCGI Directory page. To change the URL prefix or Windows CGI
directory of an existing directory, click that directory’s Edit button.

Copy your Windows CGI programs into the directories you’ve specified.
Remember that any file in those directories is processed as a Windows CGl file.

Chapter 8 Using CGI 151

Shell CGI Programs for Windows

Specifying Windows CGI as a File Type

To specify a file extension for Windows CGil files, perform the following steps:

1.

9.

Open the HTTP Server component under your server instance in the
Administration interface.

Go to the Virtual Servers page.

Click on the name of the virtual server for which you are specifying a Windows
CGl file type.

Note the name of the MIME Types File for the virtual server.
Go to the MIME Type Files page.

Click on the name that matches the name you noted in Step 4.
Click on the MIME File... button.

Add a new MIME type with the following settings:

o Category:type

o Content-Type: magnus-i nt er nal / wi ncgi

o File Suffix: Enter the file suffixes that you want the server to associate with
Windows CGl. If you activated CGI, WinCGl, and shell CGl file types, you
must specify a different suffix for each type of CGI. For example, you can’t
use the suffix . exe for both a CGI program and a shell CGI program. If you
need to, you can edit the other MIME type fields on the page so that the
suffixes are unique.

Click on the New Type button.

10. Go to the server instance page and select the Apply Changes button.

Shell CGI Programs for Windows

This section discusses how to install Shell CGI Programs for Windows. The
following topics are included in this section:

Overview of Shell CGI Programs for Windows
Specifying a Shell CGI Directory (Windows)
Specifying Shell CGl as a File Type (Windows)

152 Sun ONE Application Server Developer’'s Guide to Web Applications ¢ September 2002

Shell CGI Programs for Windows

Overview of Shell CGI Programs for Windows

Shell CGl is a server configuration that lets you run CGI applications using the file
associations set in Windows.

For example, if the server gets a request for a shell CGl file called hel | o. pl , the
server uses the Windowvs file associations to run the file using the program
associated with the . pl extension. If the . pl extension is associated with the
program C: \ bi n\ per| . exe, the server attempts to execute the hel | o. pl file as
follows:

c:\bin\perl.exe hello.pl

The easiest way to configure shell CGl is to create a directory in your server’s
document root that contains only shell CGlI files. However, you can also configure
the server to associate specific file extensions with shell CGI by editing MIME types
from the Sun ONE Application Server.

NOTE For information on setting Windows file extensions, see your
Windows documentation.

Specifying a Shell CGI Directory (Windows)

To specify directories that contain shell CGI programs (and only shell CGlI
programs):

1. Create the shell CGI directory on your computer. This directory doesn’t have
to be a subdirectory of your document root directory. This is why you must
specify a URL prefix in Step 7.

2. Openthe HTTP Server component under your server instance in the
Administration interface.

3. Go to the Virtual Servers page.

4. Click on the name of the virtual server for which you are specifying shell CGI
directories.

5. Click on the CGI tab.
6. Click on the Shell CGI Directory option.

Chapter 8 Using CGI 153

Shell CGI Programs for Windows

7. Inthe URL Prefix field, type the URL prefix to use for this directory. That is, the
text you type appears as the directory for the CGI programs in URLSs.

For example, if you type cgi - bi n as the URL prefix, then all URLs to these CGlI
programs have the following structure:

http://yourserver. domai n. contf cgi - bi n/ program nane

NOTE The URL prefix you specify can be different from the real CGlI
directory you specify in the previous step.

8. Inthe Shell CGI Directory text field, type the location of the directory as an
absolute path.

9. Click on the OK button.
10. Go to the server instance page and select the Apply Changes button.

11. Make sure that any files in the shell CGI directory also have file associations set
in Windows. The server returns an error if it attempts to run a file that has no
file-extension association.

CAUTION The server must have read and execute permissions to the shell CGI
directory. For Windows, the user account the server runs as (for
example, Local Syst em) must have rights to read and execute
programs in the shell CGI directory.

To remove an existing shell CGI directory, click that directory’s Remove button in
the Shell CGI Directory page. To change the URL prefix or shell CGI directory of an
existing directory, click that directory’s Edit button.

Copy your shell CGI programs into the directories you’ve specified. Remember
that any file in those directories is processed as a shell CGl file.

154 Sun ONE Application Server Developer’'s Guide to Web Applications ¢ September 2002

Shell CGI Programs for Windows

Specifying Shell CGl as a File Type (Windows)

You can use the Sun ONE Application Server’s ni ne. t ypes file to associate a file
extension with the shell CGI feature. This is different from creating an association
in Windows.

To associate a file extension with the shell CGI feature in the server, for example,
you can create an association for files with the .pl extension. When the server gets a
request for a file with that extension, the server knows to treat the file as a shell CGI
file by calling the executable associated in Windows with that file extension.

To associate a file extension as a shell CGl file, perform the following steps:

1. Open the HTTP Server component under your server instance in the
Administration interface.

2. Go to the Virtual Servers page.

3. Click on the name of the virtual server for which you are specifying a Windows
CGl file type.

4. Note the name of the MIME Types File for the virtual server.

5. Go to the MIME Type Files page.

6. Click on the name that matches the name you noted in Step 4.

7. Click on the MIME File... button.

8. Add a new MIME type with the following settings:
o Category:type
o Content-Type: magnus-i nt ernal / shel | cgi

o File Suffix: Enter the file suffixes that you want the server to associate with
Windows CGl. If you activated CGI, WinCGl, and shell CGl file types, you
must specify a different suffix for each type of CGI. For example, you can’t
use the suffix . exe for both a CGI program and a shell CGI program. If you
need to, you can edit the other MIME type fields on the page so that the
suffixes are unique.

9. Click on the New Type button.

10. Go to the server instance page and select the Apply Changes button.

Chapter 8 Using CGI 155

The Query Handler

The Query Handler

156

NOTE The use of Query Handlers is outdated. Although Sun ONE Application

Server and Netscape Navigator clients still support it, it is rarely used. It is
much more common for people to use forms in their HTML pages to
submit queries.

You can specify a default query handler CGI program. A query handler processes
text sent to it via the ISINDEX tag in an HTML file.

ISINDEX is similar to a form text field in that it creates a text field in the HTML
page that can accept typed input. Unlike the information in a form text field,
however, the information in the ISINDEX box is immediately submitted when the
user presses Return. When you specify your default query handler, you tell your
server to which program to direct the input. For an in-depth discussion of the
ISINDEX tag, see an HTML reference manual.

To set a query handler, perform the following steps:

1.

Open the HTTP Server component under your server instance in the
Administration interface.

Go to the Virtual Servers page.

Click on the name of the virtual server for which you are specifying a query
handler.

Click on the CGl tab.
Click on the Query Handler option.

Use the Editing Picker to select the resource you want to set with a default
query handler.

If you choose a directory, the query handler you specify runs only when the
server receives a URL for that directory or any file in that directory.

In the Default Query Handler field, enter the full path for the CGI program you
want to use as the default for the resource you chose.

Click on the OK button.

Go to the server instance page and select the Apply Changes button.

Sun ONE Application Server Developer's Guide to Web Applications * September 2002

Perl CGI Programs

Perl CGI Programs

You cannot run CGls using Perl 5.6.x with the - wflag. Instead, include the
following code in the file:

use war ni ngs;

Global CGI Settings

To change global CGI settings:

1.

a > w

6.
7.

Open the HTTP Server component under your server instance in the
Administration interface.

Go to the HTTP Server page.

Click on the Advanced tab.

Click on the CGI option.

You can change the following settings:

o M nCd St ubs - Sets the number of CGIStub processes that are started by
default. This value must be lower than MaxCG St ubs. The default is 2.

o CG ExpirationTi neout - Specifies the maximum time in seconds that CGI
processes are allowed to run before being killed. The default is 0, which
means processes are allowed to run indefinitely.

o CA Stubl dl eTi meout - Killsany CGIStub processes that have been idle for
this number of seconds. The default is 30.

o MaxCd St ubs - Sets the maximum number of CGIStub processes the server
can execute concurrently. The default is 10.

Click on the OK button.

Go to the server instance page and select the Apply Changes button.

For more information about these global CGI settings, see the description of the
i nit.conf filein the Sun ONE Application Server Administrator’s Configuration File
Reference.

Chapter 8 Using CGI 157

CGl Variables

CGI Variables

In addition to the standard CGI variables, you can use the Sun ONE Application
Server CGl variables in CGI programs to access information about the client
certificate if the server is running in secure mode. The CLIENT_CERT and
REVOCATION variables are available only when client certificate based

158

authentication is enabled.

The following table lists the Sun ONE Application Server CGI variables. The left
column lists the variables, and the right column lists descriptions of those

variables.

CGl Variables

Variable Description

SERVER_URL The URL of the server that the client requested

HTTP_xxx An incoming HTTP request header, where xxx is
the name of the header

HTTPS ON if the server is in secure mode and OFF

HTTPS_KEYSIZE

HTTPS_SECRETKEYSIZE

HTTPS_SESSIONID

CLIENT_CERT

CLIENT_CERT_SUBJECT_DN

CLIENT_CERT_SUBJECT_OU

CLIENT_CERT_SUBIJECT O

CLIENT_CERT _SUBJECT C
CLIENT_CERT _SUBJECT L
CLIENT_CERT_SUBJECT ST
CLIENT_CERT_SUBJECT_E

otherwise

The keysize of the SSL handshake (available if the
server is in secure mode)

The keysize of the secret part of the SSL
handshake (available if the server is in secure
mode)

The session ID for the connection (available if the
server is in secure mode)

The certificate that the client provided (binary
DER format)

The Distinguished Name of the subject of the
client certificate

The Organization Unit of the subject of the client
certificate

The Organization of the subject of the client
certificate

The Country of the subject of the client certificate
The Location of the subject of the client certificate
The State of the subject of the client certificate

The E-mail of the subject of the client certificate

Sun ONE Application Server Developer’s Guide to Web Applications « September 2002

CGl Variables

CGl Variables

Variable

Description

CLIENT_CERT_SUBJECT_UID

CLIENT_CERT_ISSUER_DN

CLIENT_CERT_ISSUER_OU

CLIENT_CERT_ISSUER_O

CLIENT_CERT_ISSUER_C
CLIENT_CERT_ISSUER_L
CLIENT_CERT_ISSUER_ST
CLIENT_CERT_ISSUER_E
CLIENT_CERT_ISSUER_UID

CLIENT_CERT_VALIDITY_START
CLIENT_CERT_VALIDITY_EXIRES
CLIENT_CERT_EXTENSION_xxx

REVOCATION_METHOD

REVOCATION_STATUS

The UID part of the CN of the subject of the client
certificate

The Distinguished Name of the issuer of the client
certificate

The Organization Unit of the issuer of the client
certificate

The Organization of the issuer of the client
certificate

The Country of the issuer of the client certificate
The Location of the issuer of the client certificate
The State of the issuer of the client certificate
The E-mail of the issuer of the client certificate

The UID part of the CN of the issuer of the client
certificate

The start date of the certificate
The expiration date of the certificate

The certificate extension, where xxx is the name of
the extension

The name of the certificate revocation method if it
exists

The status of certificate revocation if it exists

Chapter 8 Using CGI 159

CGl Variables

160 Sun ONE Application Server Developer’s Guide to Web Applications « September 2002

A

abbrev, value of sizefmt attribute 134
Administration interface
changing servlet output 44
configuring a default web module 25
configuring the web container 27
deployment using 87
enabling SHTML 132
global CGI settings 157
setting a query handler 156
setting CGI program priority 149
setting the default locale 23
setting the virtual server’s CGlI directory 145
setting the virtual server’s chroot directory 148
setting up dynamic reloading 88
specifying a shell CGI directory 153
specifying CGI directories 140
Windows 151
specifying CGl file extensions 142
Windows 152
agent attribute 123
API reference
CGI 139
JavaBeans 20
JSP 20, 55
servlets 19
appserv-tags.jar file 56
appserv-tags.tld file 56
asadmin deploy command 59, 87
attributes, about 91
authentication 75
form-based login 77

Index

HTTP basic 76
single sign-on 77
SSL mutual 76

authorization 79
constraints 80
roles 79

B

BaseCache cacheClassName value 110

basic authentication 76

beans in JSPs 20

bin directory for CGI 147

BoundedMultiLruCache cacheClassName value 110
bytes, value of sizefmt attribute 134

C

cache 45, 108
default configuration 47
example configuration 47
for JSPs 56
for static file content 46
helper class 46, 50

cache element 108

cache tag 56

cacheClassName property 110

cache-helper element 111

161

CacheHelper interface 48, 50, 111
cache-helper-ref element 114
cacheKeyGeneratorAttrName property 50, 112
cache-mapping element 112
cache-on-match attribute 117, 118
cache-on-match-failure attribute 117, 118
certificate
CGl variables 158
fetching 80
CGI 139
adding programs to the server 149
and HTTPS 150
and J2EE applications 140
and virtual servers 145
client certificate variables 158
custom execution environment 143
enabling 140
global settings 157
Perl programs 157
security for 81
setting a program’s priority 149
shell programs for Windows
installing 152
specifying file extensions 155
specifying CGI directories 140
specifying file extensions 142, 152
variables 158
website 139
Windows 150
directories for 151
programs, overview 150
specifying file extensions 152
cgi attribute of exec command 136
cgi-bin directory 145
CGlExpirationTimeout CGI setting 157
Cgistub 143
CGIStubldleTimeout CGI setting 157
charset attribute 123
chroot directory 146
classdebuginfo attribute 120
classes directory 84
classloader delegation model 119
class-loader element 118
class-name attribute 111

client certificate

CGl variables 158

fetching 80
CloudScape 27
cmd attribute of exec command 135
compiling JSPs 59
config SHTML command 134
connection pooling, database 27
constraint-field element 116
contentType attribute of page directive 24
cookieComment property 103
cookieDomain property 103
cookieMaxAgeSeconds property 103
cookieName property 103
cookiePath property 103
cookie-properties element 102
cookies 64
crossContextAllowed property 93
custom execution environment 143

D

database connection pooling 27
DATE_GMT SHTML variable 136
DATE_LOCAL SHTML variable 136
debugging 22
default virtual server 25
default web module 26, 42
default-helper element 111
default-locale attribute 122
default-resource-principal element 106
delegate attribute 119
deployment 83

approaches 86

descriptors 85

dynamic 86

dynamic reloading 88
description element 95
destroy method 34, 51
destroying servlets 51
directory property 73, 101

162 Sun ONE Application Server Developer’'s Guide to Web Applications * September 2002

DOCUMENT_NAME SHTML variable 136

DOCUMENT_URI SHTML variable 136
doGet method 32, 34, 52
doPost method 32, 34, 52
dynamic
deployment 86
reloading 88
of JSPs 59, 89

E

echo SHTML command 135

EJB components, accessing 37
ejb-ref element 107

ejb-ref-name element 107
enableCookies property 102
enabled attribute 109
enableURLRewriting property 102

encoding
hidden field for 123
of JSPs 24, 120
of servlets 23

environment variables, SHTML 136
errmsg attribute of config command 134
exceptions 55

exec SHTML command 135

execution environment 143

extensions, for CGIl 142, 152
extra-class-path attribute 118

F

field, hidden, for character encoding 123
file attribute of include command 134
file extensions, for CGl 142, 152

flastmod SHTML command 135
affected by timefmt attribute 134

flush tag 58
formats, time 137

form-based login 77
form-hint-field attribute 124
Forte for Java 14

forward method 41, 43
fsize SHTML command 135

G

generic servlets 31

getAttribute method 68
getAttributeNames method 68
getCreationTime method 66
getld method 66
getLastAccessedTime method 66
getMethod method 35, 52
getParameter method 123
getRemoteUser method 67
getRequestedSessionld method 67
getSession method 65
group-name element 97

groups in realms 95

H

Handler, Query 156

handling requests 51

hidden field, for character encoding 123
HTML tags, server-parsed commands see SHTML
HTTP basic authentication 76

HTTP servlets 32

http-method element 115

HTTPS, and CGI 150
HttpServletRequest 47, 65

HttpSession 66

HttpSession interface 63
HttpSessionBindingListener interface 68

Index

163

idLengthBytes property 102
ieClassld property 120
include method 41

include SHTML command 134
init method 33, 51

init.conf file, and CGI 144, 157
init-cgi function 144
instantiating servlets 51
internationalization 22, 121
invalidate method 68
ISINDEX tag 156

isNew method 66

isRequestedSessionldFromCookie method 67

isRequestedSessionldFromURL method 67
isRequestedSessionldValid method 67

J

Java Database Connectivity see JDBC
Java Message Service see IMS

Java Naming Directory Interface see JNDI
Java Servlet API 19

JavaBeans 20

javaCompilerPath property 120
javaCompilerPlugin property 120
javaEncoding attribute 120

JDBC driver 27

jikes compiler 120

JMS 106

JNDI 38, 39

jndi-name element 107

JSP 1.2 specification 20, 55

jspc command 59

jsp-config element 119

JSPs
about 20, 53
accessing Java functionality 20
API reference 20, 55
beans in 20

caching 56

character encoding 24
command-line compiler 59
compiler for 120
configuring 119

creating 54

debugging 62

dynamic reloading of 59, 89, 121

encoding of 120
exceptions 55

generated source code 86
invoking from servlets 41
portability 55
precompiling 59

syntax 54

tag libraries 55

K

keepgenerated property 120

key attribute
of cache tag 57
of flush tag 58

key-field element 116

L

largefile property 120

LAST_MODIFIED SHTML variable 136

lib directory
for a web application 84
for CGI 147
for the entire server 89, 133
and JSP tags 56

locale attribute
server.xml file 23
sun-web.xml file 122
locale-charset-info element 121
locale-charset-map element 122
logging in the web container 27
login, form-based 77

164 Sun ONE Application Server Developer’'s Guide to Web Applications * September 2002

LruCache cacheClassName value 110

M

manager-properties element 99
mappedfile property 121

match-expr attribute 118

MaxCGIStubs CGlI setting 157

max-entries attribute 109

maxSessions property 71, 72, 100

MaxSize property 110

mime.types file, CGI extensions in 142, 155
MinCGlIStubs CGI setting 157
MultiLruCache cacheClassName value 110
MultiLRUSegmentSize property 110
mutual authentication 76

N

name attribute 94, 111, 114, 115, 116, 117
name element 106

nocache attribute of cache tag 57
nsfc.conf file 46

O

obj.conf file
and CGI 141, 142, 143, 145, 148
and SHTML 133

Oracle 27
output from servlets 44

P

page directive 24
parameter-encoding element 123

parameters, servlet, accessing 36
parse-html function 133
password element 106
Perl 157
persistence-type attribute 99
persistent session manger 71
PersistentManager 71
plugin tag 120
Pointbase 27
pooling
of database connections 27
of servlets 52

portability 55
precompiling JSPs 59
principal-name element 97
private directory 144
programmatic login 76
properties, about 94
property element 94

Q

Query Handler 156

QUERY_STRING_UNESCAPED SHTML variable

136

R

realms

mapping groups and users to 95

use in form-based login 77

reaplntervalSeconds property 70, 72, 100, 101

refresh attribute of cache tag 57
refresh-field element 115
.reload file 89

reloading, dynamic 88
of JSPs 59, 89

reload-interval property 121
removeAttribute method 68

removing servlets 51

request object 51
requirement rules 90
resource allocation 52
resource-env-ref element 104
resource-env-ref-name element 104
resource-ref element 105
response pages 40
res-ref-name element 105
role-name element 96

roles 79

S

scope attribute 115, 116, 117
scratchdir property 121
Secure Socket Layer see SSL
security 75
and servlets 36
of sessions 64
security-role-mapping element 95
send-cgi function 143, 145, 148
server.xml file
and JNDI names 107
changing servlet output 45
configuring a default web module 25
configuring single sign-on 78
configuring the web container 27
setting the default locale 23
setting up dynamic reloading 88
variables in 143
server-parsed HTML see SHTML
service method 32, 34, 52
Servlet 2.3 specification 19
servlet element 96
<SERVLET> tag 136
servlet-name element 96
servlets
about 19, 29
accessing EJB components 37
accessing parameters 36
API reference 19

caching 45

character encoding 23

creating 32

destroying 51

embedding in HTML files 136

engine 51, 52

execution cycle 30

generic vs. HTTP 31

instantiating 51

invoking

from another servlet 43
using a URL 42

invoking JSPs from 41

output 44

pooling 52

removing 51

request handling 51

response pages 40

security 36

sessions 36

specification 19

thread safety 39

user authentication 75

user authorization 79
session managers 97

default 70

persistent 71

PersistentManager 71

StandardManager 70
session-config element 98
sessionFilename property 71, 100
session-manager element 98
session-properties element 101
sessions

about 63

cookies 64

invalidating 68

properties 66

security 36, 64

servlets 36

session managers 69

URL rewriting 64
session-timeout element 102
setAttribute method 37, 68
setCharacterEncoding method 23
setContentType method 23, 24

166 Sun ONE Application Server Developer’'s Guide to Web Applications * September 2002

setLocale method 24
shell programs for Windows CGI 152
SHTML 131
and J2EE applications 131
commands and syntax 133
embedding servlets in 136
enabling 132
environment variables 136
security for 81
single sign-on 77
singleThreadedServletPoolSize property 40, 52, 93
SingleThreadModel class 40
sizefmt attribute of config command 134
SSI 136
SSL

and CGI 150, 158
mutual authentication 76
StandardManager 70
store-properties element 100
subelements, about 90
Sun customer support 16
Sun ONE Message Queue 106
Sun ONE Studio
creating web applications using 22
debugging JSPs using 62

deployment using 88
renamed from Forte for Java 14

sun-appserv-jspc Ant task 59
sun-web.xml file

elements in 91

example of 130

schema for 89

sun-web-app element 92
sun-web-app_2_3-0.dtd file 89
syntax of JSPs 54

T

tag libraries 55

tags
for JSP caching 56
SHTML 131

summary of 55
tempdir context attribute 73
tempdir property 93
thread safety 39
time formats 137
timefmt attribute of config command 134
timeout attribute of cache tag 57
timeout element 114
timeout-in-seconds attribute 109
timeoutSeconds property 102

U

URL rewriting 64
url-pattern element 114
users in realms 95

\Y

value attribute 94
value element 117

variables
CGl 158
for send-cgi function 143
SHTML 136

virtual attribute of include command 134

virtual servers 24
and CGI 145
default 25

W

WAR file 17, 84
creating 87

.wcg files 150

web applications 17
creating 21
debugging 22

Index

167

deploying 83

directory structure 84

examples 27
web container, configuring 27
web module, default 26, 42
web service 119
web.xml file

and the sun-web.xml file 85

example of 124

location 84

session-timeout element 102
WEB-INF directory 84
Windows CGlI see CGI

168 Sun ONE Application Server Developer’'s Guide to Web Applications * September 2002

	Developer’s Guide to Web Applications
	Contents
	About This Guide
	Who Should Use This Guide
	Using the Documentation
	How This Guide Is Organized
	Documentation Conventions
	General Conventions
	Conventions Referring to Directories

	Related Information
	Product Support

	Web Applications
	Introducing Web Applications
	Servlets
	JavaServer Pages
	SHTML
	CGI

	Creating a Web Application
	Deploying a Web Application
	Debugging a Web Application
	Internationalization Issues
	The Server
	Servlets
	Servlet Request
	Servlet Response

	JSPs

	Virtual Servers
	Using the Administration Interface
	Editing the server.xml File

	Default Web Modules
	Servlet and JSP Caching
	Database Connection Pooling
	Configuring the Web Container
	Web Application Examples

	Using Servlets
	About Servlets
	Servlet Data Flow
	Servlet Types

	Creating Servlets
	Creating the Class Declaration
	Overriding Methods
	Overriding Initialize
	Overriding Destroy
	Overriding Service, Get, and Post

	Accessing Parameters and Storing Data
	Handling Sessions and Security
	Accessing Business Logic Components
	Handling Threading Issues
	Delivering Client Results
	Creating a Servlet Response Page
	Creating a JSP Response Page

	Invoking Servlets
	Calling a Servlet with a URL
	Calling a Servlet Programmatically

	Servlet Output
	Using the Administration Interface
	Editing the server.xml File

	Caching Servlet Results
	Caching Features
	Default Cache Configuration
	Caching Example
	CacheHelper Interface
	CacheKeyGenerator Interface

	About the Servlet Engine
	Instantiating and Removing Servlets
	Request Handling
	Allocating Servlet Engine Resources

	Using JavaServer Pages
	Introducing JSPs
	Creating JSPs
	Designing for Ease of Maintenance
	Designing for Portability
	Handling Exceptions

	JSP Tag Libraries and Standard Portable Tags
	JSP Caching
	cache
	flush

	Compiling JSPs: The Command-Line Compiler
	Debugging JSPs

	Creating and Managing User Sessions
	Introducing Sessions
	Sessions and Cookies
	Sessions and URL Rewriting
	Sessions and Security

	How to Use Sessions
	Creating or Accessing a Session
	Examining Session Properties
	Binding Data to a Session
	Invalidating a Session

	Session Managers
	StandardManager
	Enabling StandardManager
	Manager Properties for StandardManager

	PersistentManager
	Enabling PersistentManager
	Manager Properties for PersistentManager
	Store Properties for PersistentManager

	Securing Web Applications
	User Authentication by Servlets
	HTTP Basic Authentication
	SSL Mutual Authentication
	Form-Based Login

	User Authentication for Single Sign-on
	User Authorization by Servlets
	Defining Roles
	Defining Servlet Authorization Constraints

	Fetching the Client Certificate
	Security for SHTML and CGI

	Assembling and Deploying Web Modules
	Web Application Structure
	Creating Web Deployment Descriptors
	Deploying Web Applications
	Using the Command Line
	Using the Administration Interface
	Using Sun ONE Studio

	Dynamic Reloading of Web Applications
	The sun-web-app_2_3-0.dtd File
	Subelements
	Data
	Attributes

	Elements in the sun-web.xml File
	General Elements
	sun-web-app
	property
	description

	Security Elements
	security-role-mapping
	servlet
	servlet-name
	role-name
	principal-name
	group-name

	Session Elements
	session-config
	session-manager
	manager-properties
	store-properties
	session-properties
	cookie-properties

	Reference Elements
	resource-env-ref
	resource-env-ref-name
	resource-ref
	res-ref-name
	default-resource-principal
	name
	password
	ejb-ref
	ejb-ref-name
	jndi-name

	Caching Elements
	cache
	cache-helper
	default-helper
	cache-mapping
	url-pattern
	cache-helper-ref
	timeout
	refresh-field
	http-method
	key-field
	constraint-field
	value

	Classloader Elements
	class-loader

	JSP Elements
	jsp-config

	Internationalization Elements
	locale-charset-info
	locale-charset-map
	parameter-encoding

	Sample Web Module XML Files
	Sample web.xml File
	Sample sun-web.xml File

	Using Server-Parsed HTML
	Server-Side HTML and J2EE Web Applications
	Enabling Server-Side HTML
	Using Server-Side HTML Commands
	config
	include
	echo
	fsize
	flastmod
	exec
	Environment Variables in Server-Side HTML Commands

	Embedding Servlets
	Time Formats

	Using CGI
	CGI and J2EE Web Applications
	Enabling CGI
	Specifying CGI Directories
	Specifying CGI File Extensions

	Creating Custom Execution Environments for CGI Programs (UNIX only)
	Specifying a Unique CGI Directory and UNIX User and Group for a Virtual Server
	Specifying a Chroot Directory for a Virtual Server

	Adding CGI Programs to the Server
	Setting the Priority of a CGI Program
	Windows CGI Programs
	Overview of Windows CGI Programs
	Specifying a Windows CGI Directory
	Specifying Windows CGI as a File Type

	Shell CGI Programs for Windows
	Overview of Shell CGI Programs for Windows
	Specifying a Shell CGI Directory (Windows)
	Specifying Shell CGI as a File Type (Windows)

	The Query Handler
	Perl CGI Programs
	Global CGI Settings
	CGI Variables

	Index

