
JFP Reference Manual 4 : File
Formats

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 817–0647–10
December 2002

Copyright 2002 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or service marks
of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

021225@5115

Contents

Preface 5

JFP Reference Manual 4 : File Formats 11

Intro_jfp(4) 12

atok12wordlist(4) 13

css.conf(4) 17

jserverrc(4) 18

sdtudc_map(4) 22

uumkey(4) 23

uumrc(4) 37

wnnenvrc(4) 41

wnnhosts(4) 50

wnn_2A_CTRL(4) 52

wnn_2B_ROMKANA(4) 53

wnn_automaton(4) 54

wnn_cvt_key_tbl(4) 70

wnn_cvt_xim_tbl(4) 72

wnn_hinsi.data(4) 73

wnn_mode(4) 74

wnn_serverdefs(4) 75

wnn_ximrc(4) 76

3

4 JFP Reference Manual 4 : File Formats • December 2002

Preface

Both novice users and those familar with the SunOS operating system can use online
man pages to obtain information about the system and its features. A man page is
intended to answer concisely the question “What does it do?” The man pages in
general comprise a reference manual. They are not intended to be a tutorial.

Overview
The following contains a brief description of each man page section and the
information it references:

� Section 1 describes, in alphabetical order, commands available with the operating
system.

� Section 1M describes, in alphabetical order, commands that are used chiefly for
system maintenance and administration purposes.

� Section 2 describes all of the system calls. Most of these calls have one or more
error returns. An error condition is indicated by an otherwise impossible returned
value.

� Section 3 describes functions found in various libraries, other than those functions
that directly invoke UNIX system primitives, which are described in Section 2.

� Section 4 outlines the formats of various files. The C structure declarations for the
file formats are given where applicable.

� Section 5 contains miscellaneous documentation such as character-set tables.
� Section 6 contains available games and demos.
� Section 7 describes various special files that refer to specific hardware peripherals

and device drivers. STREAMS software drivers, modules and the
STREAMS-generic set of system calls are also described.

5

� Section 9 provides reference information needed to write device drivers in the
kernel environment. It describes two device driver interface specifications: the
Device Driver Interface (DDI) and the Driver⁄Kernel Interface (DKI).

� Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point routines a
developer can include in a device driver.

� Section 9F describes the kernel functions available for use by device drivers.
� Section 9S describes the data structures used by drivers to share information

between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual section
generally follow this order, but include only needed headings. For example, if there
are no bugs to report, there is no BUGS section. See the intro pages for more
information and detail about each section, and man(1) for more information about man
pages in general.

NAME This section gives the names of the commands or
functions documented, followed by a brief
description of what they do.

SYNOPSIS This section shows the syntax of commands or
functions. When a command or file does not exist
in the standard path, its full path name is shown.
Options and arguments are alphabetized, with
single letter arguments first, and options with
arguments next, unless a different argument order
is required.

The following special characters are used in this
section:

[] Brackets. The option or argument
enclosed in these brackets is optional. If
the brackets are omitted, the argument
must be specified.

. . . Ellipses. Several values can be provided
for the previous argument, or the
previous argument can be specified
multiple times, for example, "filename
. . ." .

| Separator. Only one of the arguments
separated by this character can be
specified at a time.

{ } Braces. The options and/or arguments
enclosed within braces are
interdependent, such that everything
enclosed must be treated as a unit.

6 JFP Reference Manual 4 : File Formats • December 2002

PROTOCOL This section occurs only in subsection 3R to
indicate the protocol description file.

DESCRIPTION This section defines the functionality and behavior
of the service. Thus it describes concisely what the
command does. It does not discuss OPTIONS or
cite EXAMPLES. Interactive commands,
subcommands, requests, macros, and functions are
described under USAGE.

IOCTL This section appears on pages in Section 7 only.
Only the device class that supplies appropriate
parameters to the ioctl(2) system call is called
ioctl and generates its own heading. ioctl calls
for a specific device are listed alphabetically (on the
man page for that specific device). ioctl calls are
used for a particular class of devices all of which
have an io ending, such as mtio(7I).

OPTIONS This secton lists the command options with a
concise summary of what each option does. The
options are listed literally and in the order they
appear in the SYNOPSIS section. Possible
arguments to options are discussed under the
option, and where appropriate, default values are
supplied.

OPERANDS This section lists the command operands and
describes how they affect the actions of the
command.

OUTPUT This section describes the output – standard output,
standard error, or output files – generated by the
command.

RETURN VALUES If the man page documents functions that return
values, this section lists these values and describes
the conditions under which they are returned. If a
function can return only constant values, such as 0
or –1, these values are listed in tagged paragraphs.
Otherwise, a single paragraph describes the return
values of each function. Functions declared void do
not return values, so they are not discussed in
RETURN VALUES.

ERRORS On failure, most functions place an error code in
the global variable errno indicating why they
failed. This section lists alphabetically all error
codes a function can generate and describes the
conditions that cause each error. When more than

Preface 7

one condition can cause the same error, each
condition is described in a separate paragraph
under the error code.

USAGE This section lists special rules, features, and
commands that require in-depth explanations. The
subsections listed here are used to explain built-in
functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

EXAMPLES This section provides examples of usage or of how
to use a command or function. Wherever possible a
complete example including command-line entry
and machine response is shown. Whenever an
example is given, the prompt is shown as
example%, or if the user must be superuser,
example#. Examples are followed by explanations,
variable substitution rules, or returned values. Most
examples illustrate concepts from the SYNOPSIS,
DESCRIPTION, OPTIONS, and USAGE sections.

ENVIRONMENT VARIABLES This section lists any environment variables that
the command or function affects, followed by a
brief description of the effect.

EXIT STATUS This section lists the values the command returns to
the calling program or shell and the conditions that
cause these values to be returned. Usually, zero is
returned for successful completion, and values
other than zero for various error conditions.

FILES This section lists all file names referred to by the
man page, files of interest, and files created or
required by commands. Each is followed by a
descriptive summary or explanation.

ATTRIBUTES This section lists characteristics of commands,
utilities, and device drivers by defining the
attribute type and its corresponding value. See
attributes(5) for more information.

SEE ALSO This section lists references to other man pages,
in-house documentation, and outside publications.

8 JFP Reference Manual 4 : File Formats • December 2002

DIAGNOSTICS This section lists diagnostic messages with a brief
explanation of the condition causing the error.

WARNINGS This section lists warnings about special conditions
which could seriously affect your working
conditions. This is not a list of diagnostics.

NOTES This section lists additional information that does
not belong anywhere else on the page. It takes the
form of an aside to the user, covering points of
special interest. Critical information is never
covered here.

BUGS This section describes known bugs and, wherever
possible, suggests workarounds.

Preface 9

10 JFP Reference Manual 4 : File Formats • December 2002

JFP Reference Manual 4 : File Formats

11

Intro_jfp, intro_jfp – introduction to JFP file formats

This section outlines the formats of JFP various files. The C structure declarations for
the file formats are given where applicable. Usually, the headers containing these
structure declarations can be found in the directories /usr/include or
/usr/include/sys. For inclusion in C language programs, however, the syntax
#include <filename.h> or #include <sys/filename.h> should be used.

Because the operating system now allows the existence of multiple file system types,
there are several instances of multiple manual pages with the same name. These pages
all display the name of the FSType to which they pertain, in the form name_fstype at
the top of the page. For example, fs_ufs.

Name Description

Intro_jfp(4) introduction to JFP file formats

atok12wordlist(4) Text word file for ATOK12 dictionary utility

css.conf(4) CS starting information file

jserverrc(4) Initialization file for Wnn6 Kana-Kanji conversion
server

sdtudc_map(4) User defined character conversion map file

uumkey(4) Wnn6 Kana-Kanji conversion key binding definition
file

uumrc(4) xjsi and uum initialization file

wnnenvrc(4) Wnn6 Kana-Kanji conversion dictionary/conversion
parameter configuration file

wnnhosts(4) Wnn6 Kana-Kanji conversion server/dictionary lookup
server access control file

wnn_2A_CTRL(4) Change input conversion mode definition table

wnn_2B_ROMKANA(4) Roman character Kana conversion definition table

wnn_automaton(4) Automaton

wnn_cvt_key_tbl(4) Kana-Kanji conversion front end processor (uum) key
code conversion table file

wnn_cvt_xim_tbl(4) Key conversion table for xjsi

wnn_hinsi.data(4) Wnn6 part of speech administration file

wnn_mode(4) Mode definition table

wnn_serverdefs(4) Wnn6 Kana-Kanji conversion server connection
parameter configuration file

wnn_ximrc(4) xjsi configuration file

Intro_jfp(4)

NAME

DESCRIPTION

LIST OF FILES

12 JFP Reference Manual 4 : File Formats • Last Revised 10 Sep 1999

atok12wordlist – Text word file for ATOK12 dictionary utility

atok12wordlist is a word file of text format for ATOK12 dictionary maintenance. It
is used by some functions of the atok12(1) dictionary utilitiy for input and output.

The format of the word file is defined as follows:

First line of the file The first line must begin with:

!ATOK12

In this case, ! must be a half-size character. ATOK12 can
be half-size characters and corresponding full-size
characters.

Comment line Lines begin with ! (Both half-size and full-size can be
used) are ignored as a commented out line, except for
the first line.

Specifying words using a
part_of_speech

Words are specified by the following notation.

Reading,notation,part_of_speech

Either a comma or touten (Japanese comma) can be
used as a delimiter. When notation contains a delimiter,
enclose the notation in double- or single-quotation
marks. Either a half-size characters or a full-size
characters can be used for delimiters and quotation
marks. For the part_of_speech type, see the description
of "Possible part_of_speech". The part_of_speech entry
must be in Japanese.

Specifying a word with a
part_of_speech_number

Words can also be specified by the following notation.

Reading,notation,part_of_speech_number

This format is the same as above, except that the
part_of_speech is specified by a number. For the
part_of_speech_number, see the description of "Possible
part_of_speech".

Possible reading

Length: Up to 16 characters. Dakuten (sonant sound
mark) and han-dakuten (p-sound mark) are
counted as a single character.

Character: The following half-size and full-size
characters can be used. However, when
stored in the dictionary, the characters for
the reading are converted to the
corresponding half-size characters.

� Full-size Hiragana

� The following half-size and full-size
characters

atok12wordlist(4)

NAME

DESCRIPTION

JFP Reference Manual 4 : File Formats 13

Katakana
Alphabet
Numerals
Dakuten
Han-dakuten
–
+
*
/
_
#
$
%
&
=
@
:
;
<

>

The following characters cannot be used
as the first character of the reading.

� The following half-size and full-size
characters

Hiragana/Katakana "wo"
Hiragana/Katakana "n"
Chouon (prolonged sound mark)
Hiragana/Katakana Youon small "a", "i",
"u", "e", "o", "ya", "yu", "yo"
Hiragana/Katakana Sokuon "small tsu"
Dakuten (sonant sound mark)

Han-dakuten (p-sound mark)

Order of
reading:

In the dictionary, the reading is stored after
conversion to the corresponding half-size
characters. The order of the reading is same
as the order of the JIS-X0201 character set
definition code. When list display or
reading range specification is made using
the dictionary maintenance tool, this order
is used.

Possible notation

Length: Up to 50 characters. A half-size character is
counted as 1 and a full-size character 2.

Character: All half-size and full-size characters

atok12wordlist(4)

14 JFP Reference Manual 4 : File Formats • Last Revised 10 Sept 1999

Possible part_of_speech There are a total of 33 part_of_speech types. The
part_of_speech entries must be in Japanese.

Part_of_speech_numberPart_of_speech

1 General nouns

4 Proper nouns (person name)

5 Proper nouns (location name)

6 Proper nouns (organization name)

8 Proper nouns (general)

9 Nouns (sa-gyou irregular)

10 Nouns (za-gyou irregular)

11 Nouns (adjective verbs)

13 Numerals

14 Aeverbs

15 Rentaishi (non-conjugative adjectives)

16 Conjunctions

17 Interjections

18 Independent words

19 Prefixes

21 Noun suffixes

23 Ka-gyou godan katsuyou
(consonant-stem) verbs

24 Ga-gyou godan katsuyou
(consonant-stem) verbs

25 Sa-gyou godan katsuyou
(consonant-stem) verbs

26 Ta-gyou godan katsuyou
(consonant-stem) verbs

27 Na-gyou godan katsuyou
(consonant-stem) verbs

32 Ha-gyou godan katsuyou
(consonant-stem) verbs

28 Ba-gyou godan katsuyou
(consonant-stem) verbs

atok12wordlist(4)

JFP Reference Manual 4 : File Formats 15

Part_of_speech_numberPart_of_speech

29 Ma-gyou godan katsuyou
(consonant-stem) verbs

30 Ra-gyou godan katsuyou
(consonant-stem) verbs

31 Wa-gyou godan katsuyou
(consonant-stem) verbs

33 Ichidan katsuyou verbs

34 Ka-gyou irregular verbs

35 Sa-gyou irregular verbs

36 Za-gyou irregular verbs

37 Adjectives

39 Adjective verbs

41 Tankanji (single Kanji)

See Japanese locale man pages for examples of word file entries.

atok12(1)

ATOK12 User’s Guide

atok12wordlist(4)

USAGE

SEE ALSO

16 JFP Reference Manual 4 : File Formats • Last Revised 10 Sept 1999

css.conf – CS starting information file

/etc/css.conf

css.conf is the editable text file and specifies CS starting information directories
which contain some CS starting script for cssd(1M)

Any line beginning with a # is treated as comment line.

Each line shows a pathname of a CS starting information directory. The primary
contents of this file are as follows.

/etc/css.d
/usr/lib/css.d

/etc/css.conf CS starting information file by default

cssd(1M)

css.conf(4)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

JFP Reference Manual 4 : File Formats 17

jserverrc – Initialization file for Wnn6 Kana-Kanji conversion server

/etc/lib/locale/ja/wnn/ja/jserverrc

jserverrc is the initialization file for Wnn6 Kana–Kanji conversion server (
jserver), which is read when jserver starts. The followings can be set in the file.

readfile dictionary_filename dictionary_filename is a dictionary file name to be read
when the server starts. The dictionary file resides on
the server until the server process is terminated. This
can save time for each client to read the dictionary file
when it starts. Add a colon (:) just before the file
name to allow jserver to read the file when wnnds is
used. For example:

readfile :iwanami/fisd

max_client number number is the maximum number of clients that can
connect to the server. The default is 64 .

max_sticky_env number number is the maximum number of environments that
can be set (fixed). The fixed environment maintains its
configuration even when connection to the client is
terminated and the environment can be freed. This
provides a time-saving startup because configuration
tasks are omitted when the environment is used next
time. The default is 10 .

jserver_dir path path is the path name through which the server controls
the dictionaries. User’s frequency files and dictionaries
are controled under the specified directory. The default
is /usr/local/lib/dic/. @LIBDIR and @LANG
notation can be used.

@LIBDIR Is the default directory path name
(/usr/lib/locale/ja/wnn) for
the uum environment file.

@LANG Should be ja for Japanese Solaris
releases.

def_param
number_0. . .number_16

Specifies Kana–Kanji conversion parameters and
pseudo-part of speech frequency. The default values
are shown in parentheses.

number_0 N for N (long) phrase analysis (5)

number_1 Maximum number of short phrases
in a long phrase (10)

number_2 Main word frequency parameter (
2)

jserverrc(4)

NAME

SYNOPSIS

DESCRIPTION

18 JFP Reference Manual 4 : File Formats • Last Revised 18 Aug 1998

number_3 Short phrase length parameter (45)

number_4 Main word length parameter (0)

number_5 Bit parameter to indicate most
recent usage (80)

number_6 Dictionary parameter (5)

number_7 Short phrase evaluation parameter (
1)

number_8 Long phrase length parameter (20)

number_9 Number of short phrases parameter
(0)

number_10 Pseudo–part of speech "number"
frequency (400)

number_11 Pseudo–part of speech "Kana"
frequency (–100)

number_12 Pseudo–part of speech
"alphanumerics" frequency (400)

number_13 Pseudo–part of speech "symbol"
frequency (80)

number_14 Pseudo–part of speech "closing
parentheses" frequency (200)

number_15 Pseudo–part of speech "auxillary
word" frequency (2)

number_16 Pseudo–part of speech "opening
parentheses" frequency (200)

Specify integers for the above parameters.

max_param
number_0. . .number_16

Specifies the upper limits of the Kana–Kanji conversion
parameters. The meaning and order of items are the
same as def_param specifications. The default value
will be set if the upper limit of autotuned parameters is
smaller than the default value. If the upper limit is
specified two times or more, the value set last will be
used.

min_param
number_0. . .number_16

Specifies the lower limits of the Kana–Kanji conversion
parameters. The meaning and order of items are the
same as def_param specifications. The default value
will be set if the lower limit of autotuned parameters is

jserverrc(4)

JFP Reference Manual 4 : File Formats 19

larger than the default value. If the lower limit is
specified two times or more, the value set last will be
used.

set_giji_eisuu
character. . .

Specifies character codes, which can be used, in
addition to alphanumerics in pseudo–phrase
conversion, as the "alphanumerics" pseudo–part of
speech. character should be specified in any of the
following notations:

Character Notation

CTRL_A ^A

’ ’(SPACE) 0x20 \x20 32 040 \o40

040 \o40 : octal number

32 : decimal number

0x20 \x20: hexadecimal
number

’ –’ ’ –’

default_wnnds_list
wnnds_info1 wnnds_info2
wnnds_info3

Specifies the default wnnds to be used if no default
wnnds options (–ds and +ds) are specified when
jserver starts.

wnnds is specified in the following format.

hostname wnnds that uses the well-known
port number (26208) on host
hostname.

hostname:no wnnds that uses the port number
obtained by adding no to the
well-known port number on host
hostname.

hostname/port_no wnnds that uses port_no as the port
number on host hostname.

Up to three wnnds can be specified. Attempts are made
for connection on the order specified. The one
successfully connected first is used as default wnnds .

Example: default_wnnds_list wnnds1/26209
wnnds2 wnnds3:1

jserverrc(4)

20 JFP Reference Manual 4 : File Formats • Last Revised 18 Aug 1998

wnnenvutil(1), jserver(1M), wnnds(1M)

jserverrc(4)

SEE ALSO

JFP Reference Manual 4 : File Formats 21

sdtudc_map – User defined character conversion map file

/usr/dt/config/$LANG/sdtudc_map

sdtudc_map is the default character conversion map file accessed by
sdtudc_convert(1) and sdtudc_extract(1) when moving from the environment
implemented for user–defined characters under Solaris 2.5.1 and earlier to the slightly
different environment used beginning under Solaris 2.6 and later. This file is a
standard text file that can be edited with a regular text editor.

Any line beginning with a # is interpreted as a comment line and not read.

Each line lists a character code to be converted and the character code it should be
converted to. Each character code to be converted must be placed ’,’ at the beginning
and the end, and a character code to be converted and the character code it should be
converted to must be separated by ’\t’.

Initial default values for ja locale are as follows. This example below is how to
convert code point of codeset 1 9 ku – 15 ku to codeset 1 85 ku – 91 ku.

a9a1,a9ff f5a1
aaa1,aaff f6a1
aba1,abff f7a1
aca1,acff f8a1
ada1,adff f9a1
aea1,aeff faa1
afa1,afff fba1

For example, sdtudc_extract would extract user–defined characters registered in
the region 0xa9a1 to 0xa9ff from the specified font file and convert them to values
beginning from 0xf5a1 in the first line. Also sdtudc_convert would convert
0xa9a1 to 0xa9ff code points in text file to code points beginning from 0xf5a1.

/usr/dt/config/$LANG/sdtudc_map

sdtudc_convert(1), sdtudc_extract(1), sdtudctool(1)

Be sure to specify f5a1 or larger for the code point of conversion target.

sdtudc_map(4)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

NOTES

22 JFP Reference Manual 4 : File Formats • Last Revised 28 October 1999

uumkey – Wnn6 Kana-Kanji conversion key binding definition file

/usr/lib/locale/ja/wnn/ja/uumkey

The uumkey file defines the key binding for Japanese input. Each user can define own
uumkey file.

Entries is set in the following style:

include uumkey file name

unset ^Function entries

Function entries ^keycode [keycode...]
include and unset are called “other entries”.

entries and setting_value are separated by space character or tab.

Lines beginning with semicolons (;) or colons (:) are comments.

keycode is specified in octal, decimal, or hexadecimal notation as in the C programming
language. For example, notation “^A” is available for control key input.

Up to 10 codes can be written for each function entry.

If the same entry appears more than once, the last one will be used. To specify more
than one keycode to the single function, they must be set at the same time.

However, only one function entry can be set to a single key in the same Kana-Kanji
conversion mode.

Integers from 0 through 511 can be taken as key code. Numbers that cannot be
generated from the keyboard (e.g., integers over 127) may be converted in key code
(cvt_xim_tbl/cvt_key_tbl) or must be generated through the Automaton.

include
uumkey_filename

Reads the specified uumkey file for key binding.

unset entry Cancels key binding for the specified entry.

Each function entry can be used in specifed operate mode.

Operation Mode Contents

0 Correction condition for conversion results; the contition of inspect.

1 Text input condition before conversion.

2 Phrase length adjustment condition after conversion.

uumkey(4)

NAME

SYNOPSIS

DESCRIPTION

Entries Style

Other Entries

Kana-Kanji
Conversion

Operation Mode

JFP Reference Manual 4 : File Formats 23

Operation Mode Contents

3 No strings specified condition (input buffer is empty).

4 Candidate selection condition. Including part of speech or dictionary
registration condition in uum

The function entries followed by _e can operate with the operation mode 3 (input
buffer is empty), adding the operation mode of the same function as those of the
function entries followed by no _e.

� Standard function entries

Entry Name Operation Mode Function

henkan_on 01234 Turns the conversion mode ON
and OFF. This function can be
used in all modes.

send_string 012 Binds the text string in the
conversion line with input
keycode that is allocated to
send_string, and sends it to
the application (Final operation).

kakutei 012 Sends the text string in the
conversion line to the application
(Final operation).

forward_char 1 Moves the cursor one character
to the right.

backward_char 1 Moves the cursor one character
to the left.

goto_top_of_line 1 Moves the cursor to the first
character on the line.

goto_end_of_line 1 Moves the cursor to the last
character on the line.

delete_char_at_cursor 1 Deletes the character at the
cursor.

fiwnn 012 Opens
"GAKUSYUU/HENKAN/HYOUJI"
window.

fiwnn_e 0123 Opens
"GAKUSYUU/HENKAN/HYOUJI"
window. It operates even when
the buffer is empty.

uumkey(4)

Function Entries

24 JFP Reference Manual 4 : File Formats • Last Revised 14 Aug 1998

Entry Name Operation Mode Function

hindo 012 Saves frequency information.

hindo_e 0123 Saves frequency information. It
operates even when the buffer is
empty.

kensaku 012 Opens
"TANGO_SAKUJO,HENSYUU"
window.

kensaku_e 0123 Opens
"TANGO_SAKUJO,HENSYUU"
window. It operates even when
the buffer is empty.

keybind 012 Opens
"NYUURYOKU_SUTAIRU"
window.

keybind_e 0123 Opens
"NYUURYOKU_SUTAIRU"
window. It operates even when
the buffer is empty.

Entry Name Operation Mode Function

kaijo 02 Restores the converted string
after the phrase the cursor is
positioned to the pre-conversion
state.

henkan 1 Converts continuous phrases.

tan_henkan 1 Converts a single phrase of a
short phrase as one phrase.

tan_henkan_dai 1 Converts a single phrase of a
long phrase as one phrase.

nobi_henkan 2 When adjusting the phrase
length, performs single phrase
conversion for the highlighted
section as a short phrase and
performs continuous phrase
conversion thereafter.

uumkey(4)

JFP Reference Manual 4 : File Formats 25

Entry Name Operation Mode Function

nobi_henkan_dai 2 When adjusting the phrase
length, performs single phrase
conversion for the highlighted
section as a long phrase and
performs continuous phrase
conversion thereafter.

jikouho 0 Displays the next candidate as a
short phrase.

jikouho_dai 0 Displays the next candidate as a
long phrase.

zenkouho 0 Displays the previous candidate
as a short phrase.

zenkouho_dai 0 Displays the previous candidate
as a long phrase.

select_jikouho 0 Displays the candidate list as
short phrases.

select_jikouho_dai 1 Displays the candidate list as
long phrases.

kana_henkan 1 Performs Kana–Kanji conversion.
However, only reverse lookup
dictionary (Kanji to Kana
coversion is possible in
registerable format) is effective.

kill 1 Deletes the text string at and
after the cursor and places it in
the kill buffer.

yank 1 Inserts the contents of kill
buffer to the cursor position.

yank_e 13 Inserts the contents of kill
buffer to the cursor position. It
operates even when the buffer is
empty.

Entry Name Operation Mode Function

bunsetu_nobasi 0 Increases the phrase length by
one character.

bunsetu_chijime 0 Reduces the phrase length by one
character.

uumkey(4)

26 JFP Reference Manual 4 : File Formats • Last Revised 14 Aug 1998

Entry Name Operation Mode Function

jisho_utility 012 Opens Wnn6 menu.

jisho_utility_e 0123 Opens Wnn6 menu. It operates
even when the buffer is empty.

touroku 012 Opens "TANGO_TOUROKU"
window.

touroku_e 0123 Opens "TANGO_TOUROKU"
window. It operates even when
the buffer is empty.

sainyuuryoku 1 Replaces the contents of the input
buffer with the previously input
Kana string.

sainyuuryoku_e 13 Replaces the contents of the input
buffer with the previously input
Kana string. It operates even
when the buffer is empty.

kuten 1 Enters the Kuten code input
mode.

kuten_e 13 Enters the Kuten code input
mode. It operates even when the
buffer is empty.

jis 1 Enters the JIS code input mode.

jis_e 13 Enters the JIS code input mode. It
operates even when the buffer is
empty.

redraw_line 0124 Redraw the conversion line.

redraw_line_e 01234 Redraw the conversion line. It
operates even when the buffer is
empty.

Entry Name Operation Mode Function

previous_history 1 Replaces the contents of the input
buffer with the previous text
string recorded in the history.

previous_history_e 13 Replaces the contents of the input
buffer with the previous text
string recorded in the history. It
operates even when the buffer is
empty.

uumkey(4)

JFP Reference Manual 4 : File Formats 27

Entry Name Operation Mode Function

next_history 1 Replaces the contents of the input
buffer with the next text string
recorded in the history.

next_history_e 13 Replaces the contents of the input
buffer with the next text string
recorded in the history. It
operates even when the buffer is
empty.

all_history 1 Replaces the contents of the input
buffer with all the text string
recorded in the history.

all_history_e 13 Replaces the contents of the input
buffer with all the text string
recorded in the history. It
operates even when the buffer is
empty.

bushu 1 Radical input. It is not used for
uum.

bushu_e 13 Radical input. It is not used for
uum. It operates even when the
buffer is empty.

com_entry Adds comments to word and
dictionary for uum.

Entry Name Operation Mode Function

greek 13 Inputs the Greek characters list. It
is not used for uum.

hankaku 012 Converts to the half-width
characters. It is not used for uum.

hiragana 012 Converts to the Enters the
Hiragana characters. It is not
used for uum.

jis2 13 Enters the auxiliary Kanji
hexadecimal code input mode. It
is not used for uum.

katakana 012 Converts to the Katakana. It is
not used for uum.

uumkey(4)

28 JFP Reference Manual 4 : File Formats • Last Revised 14 Aug 1998

Entry Name Operation Mode Function

russian 13 Enters the Cyrillic characters
(Russian) list input. It is not used
for uum.

select_ikeiji_dai 0 Converts the long phrase special
characters.

tankan_henkan 01 Performs single Kanji conversion.
It is not used for uum.

kuten2 13 Inputs auxiliary Kanji Kuten
code. It is not used for uum.

next_page 4 Displays the next candidates list.
It is not used for uum.

tankan_nobi_henkan 2 Performs single Kanji conversion.
It is not used for uum.

tel_henkan 01 Converts telephone number. It is
not used for uum.

tel_nobi_henkan 2 Converts telephone number. It is
not used for uum.

zip_henkan 01 Converts zip code. It is not used
for uum.

zip_nobi_henkan 2 Converts zip code. It is not used
for uum.

one_char_kakutei 012 Commits one character. It is not
used for uum.

one_char_no_henkan 01 Does not convert N characters. It
is not used for uum.

previous_page 4 Displays the previous candidate
list. It is not used for uum.

kigou 13 Enters the symbol input mode. It
is not used for uum.

eisuu 012 Converts to alphanumerics. It is
not used for uum.

Entry Name Operation Mode Function

change_to_insert_mode 0 Enables editing of a converted
text string. Converted Kanji will
not be returned to Kana.

uumkey(4)

JFP Reference Manual 4 : File Formats 29

Entry Name Operation Mode Function

quote 1 Includes the next input character
to input buffer directly if it is not
allocated to henkan_on
character. In this case, inputed
characters are not converted for
Roman-Kana conversion and
allocated function is invalid.

quote_e 13 Equivalent to quote. It operates
even when the buffer is empty.

forward_select 4 Moves to the next (right)
candidate. The next candidates is
displayed (if necessary).

backward_select 4 Moves to the previous (left)
candidate. The previous
candidates is displayed (if
necessary).

next_select 4 Moves to the next (under) line in
candidates. The next candidates
is displayed (if necessary).

previous_select 4 Moves to the previous (above)
line in candidates. The previous
candidates is displayed (if
necessary).

linestart_select 4 Moves to the left side candidate.

lineend_select 4 Moves to the right side
candidate.

select_select 4 Select candidates and shifts to
operation mode 0.

send_ascii_char 01234 Prevents to store in the input
buffer when the input buffer is
empty and ASCII characters are
input (Sends for ASCII
characters).

not_send_ascii_char 01234 Store in the input buffer when
the input buffer is empty and
ASCII characters are input
(Prevents to send for ASCII
characters).

uumkey(4)

30 JFP Reference Manual 4 : File Formats • Last Revised 14 Aug 1998

Entry Name Operation Mode Function

pop_send_ascii_char 01234 Restores the previous sending for
ASCII operation status when the
buffer is empty and ASCII
characters are input.

togle_send_ascii_char 01234 Reverses the ASCII operation
status when the buffer is empty
and ASCII characters are input
for uum.

quote_send_ascii_char 3 Stores the next inputed ASCII
character into the buffer when
the input buffer is empty in the
ASCII operation status.

reconnect_jserver 01234 Reconnects to the Kana-Kanji
conversion server (jserver).

inspect 0 Displays the candidates
information.

sakujo_kouho 0 Deletes a candidate from the
Kana-Kanji conversion
dictionary.

forward_bunsetsu 0 Moves forward one phrase. If not
defined key binding explicitly,
the key for forward_char is
allocated. It is not used for uum.

henkan_forward 2 Performs single phrase
conversion for the phrase
adjusting the length, performs
continuous phrase conversion
thereafter, and moves to the
forward one phrase. If not
defined key binding explicitly,
the same key code as
forward_char is used.

backward_bunsetsu 0 Moves bakward one phrase. If
not defined key binding
explicitly, the key for
backward_char is allocated. It
is not used for uum.

uumkey(4)

JFP Reference Manual 4 : File Formats 31

Entry Name Operation Mode Function

henkan_backward 2 Performs single phrase
conversion for the phrase
adjusting the length, performs
continuous phrase conversion
thereafter, and moves to the
backward one phrase. If not
defined key binding explicitly,
the same key code as
backward_char is used.

top_bunsetsu 0 Moves top one phrase. If not
defined key binding explicitly,
the key for goto_top_of_line
is allocated. It is not used for
uum.

end_bunsetsu 0 Moves end one phrase. If not
defined key binding explicitly,
the key for goto_end_of_line
is allocated. It is not used for
uum.

Entry Name Operation Mode Function

jmptijime 2 Moves to the first character. If not
defined key binding explicitly,
the key for goto_top_of_line
is allocated. It is not used for
uum.

c_end_nobi 2 Moves to the last character. If not
defined key binding explicitly,
the key for goto_end_of_line
is allocated. It is not used for
uum.

forward 2 Increases the length of the phrase
by one character. If not defined
key binding explicitly, the key for
bunsetu_nobasi is allocated. It
is not used for uum.

chijime 2 Decreases the length of the
phrase by one character. If not
defined key binding explicitly,
the key for bunsetu_chijime
is allocated. It is not used for
uum.

uumkey(4)

32 JFP Reference Manual 4 : File Formats • Last Revised 14 Aug 1998

Entry Name Operation Mode Function

rubout 1 Deletes the character to the left of
the cursor. Also used in
Roman-Kana conversion. The key
code must be the range from 0 to
255. It is not used for uum.

next_ku_kuten 4 Displays candidates in next ku
on the kuten number input
candidate list window. It is not
used for uum.

previous_ku_kuten 4 Displays candidates in previous
ku on the kuten number input
candidate list window. It is not
used for uum.

� Function entries in ATOK8 input style

Entry name Operation Mode Function

bubun_kakutei 02 Minimum decision. Decides first
one phrase. Phrases are available to
operate continuously. It is not used
for uum.

ichi_oto_kakutei 1 ICHIOTO decision. Decides first one
KANA. Phrases are available to
operate continuously. It is not used
for uum.

bunsetu_top_kakutei 02 One character decision (top) .
Decides first one character of the
serected phrase (target phrase). Any
strings except this character are
deleted. It is not used for uum.

bunsetu_end_kakutei 02 One character decision (last) .
Decides last one character of the
serected phrase (target phrase). Any
strings except this character are
deleted. It is not used for uum.

bunsetu_kakutei 012 Target phrase decision. Decides first
phrase to the serected phrase (target
phrase). Phrases are available to
operate continuously. It is not used
for uum.

uumkey(4)

JFP Reference Manual 4 : File Formats 33

Entry name Operation Mode Function

atok_jikouho 4 Next candidate. Displays next
candidates in the converting line
and selects it in the candidate list
selecting window. It is not used for
uum.

hankaku_space_input 0123 Inputs hankaku space. It is not used
for uum.

sjis 1 Enters the PC Kanji hexadecimal
code input mode. It is not used for
uum.

sjis_e 13 Enters the PC Kanji hexadecimal
code input mode. It operates even
when the input buffer is empty. It is
not used for uum.

atok_zenkouho 4 Previous candidate. Displays
previous candidates in the
converting line and selects it in the
candidate list selecting window. It is
not used for uum.

atok_jikouho_gun 4 Displays next candedate. It is not
used for uum.

atok_jikouho_gun 4 Displays previous candedate. It is
not used for uum.

top_kigou_kuten 4 Displays first symbol ku on the
kuten number input candidate list
window. It is not used for uum.

top_gaiji_kuten 4 Displays first ku in the storage to
available for user definition
character on the kuten number
input candidate list window. It is
not used for uum.

atok_kill 0124 Delete. Deletes any undefined
strings for conversion. It is not used
for uum.

atok_kaijo 012 Reset. Resets strings converted after
target phrase to input mode. It is
not used for uum.

zen__kaijo 0 Resets all conversion (entire). Resets
all undefined characters to input
mode. It is not used for uum.

uumkey(4)

34 JFP Reference Manual 4 : File Formats • Last Revised 14 Aug 1998

Entry name Operation Mode Function

atok_rubout 1 Deletes the character to the previous
of the cursor. If converted
(undefined) phrase is before cursor,
resets the phrase to input mode. It is
not used for uum.

new_backward_char 1 Moves to the previous one
character. If converted (undefined)
phrase is before cursor, resets the
phrase to input mode. It is not used
for uum.

zenkaku_space_input 0123 Mode 0 : Displays next candidate.
Mode 13 : Inputs zenkaku space.
Mode 2 : Converts in extend phrase.
It is not used for uum.

atok_select_jikouho 0 Displays next candidate list of
ATOK style. It is not used for uum.

� Function entries in ATOK7 input style

Entry name Operation Mode Function

atok_bubun_kakutei 01 Minimum decision. It is not used for
uum.

� Function entries in cs00 input style

Entry name Operation Mode Function

send_string_off 0123 Defined the undefined characters,
and sets convert OFF. It is not used
for uum.

� Function entries in EGBRIDGE input style

Entry name Operation Mode Function

eg_zenkaku_eisuu 012 Converts to zenkaku numeric
characters. It is not used for uum.

eg_hankaku_katakana 012 Converts to hankaku katakana. It is
not used for uum.

eg_hankaku_eisuu 012 Converts to hankaku numeric
character. It is not used for uum.

uumkey(4)

JFP Reference Manual 4 : File Formats 35

Entry name Operation Mode Function

eg_Aa_henkan_big_loop 012 Converts to the following order,
Hiragana, katakana, hankaku
katakana, zenkaku numeric, and
hankaku numeric. It is not used for
uum.

eg_Aa_henkan_small_loop 012 Converts to the following order,
Hiragana, katakana, and hankaku
katakana. It is not used for uum.

code_convert 012 Code reconversion. Converts to
hexadecimal code. It is not used for
uum.

undetermined_henkan 1 Conversion in undeternined.
Modifies inputed YOMI without
conversion. It is not used for uum.

delete_one_kanji 0 Deletes last one character of the
target phrase, and then does not
delete the character in the phrase
when the target phrase consists of
only one character. It is not used for
uum.

; include file
include /usr/lib/locale/ja/wnn/ja/uumkey
; Commands Codes
unset sjis_e

atok_select_jikouho 0x20 0x9E 0x118 ^W

� The first and third lines are comments.
� Includes the standard key binding definition file in the second line.
� Resets the key binding for sjis_e function entry in the forth line.
� Binds the key for atok_select_jikouho function entry in the fifth line.

uum(1), wnnenvutil(1), xjsi(1), uumrc(4), wnn_automaton(4),
wnn_cvt_key_tbl(4),wnn_cvt_xim_tbl(4),wnn_mode(4)

It cannot be allocated key code generated by Automaton set as henkan_on entries.

uumkey(4)

EXAMPLE

SEE ALSO

BUGS

36 JFP Reference Manual 4 : File Formats • Last Revised 14 Aug 1998

uumrc – xjsi and uum initialization file

/usr/lib/locale/ja/wnn/ja/uumrc

uumrc is used to set the Wnn6 Kana–Kanji conversion standard interface for each
user.

Entries is set in the following style:

entry setting_value ...entry and setting_value are separated by space character or tab.
Lines beginning with semicolons (;) are comments. If the same entry that may not
specified only once, appears more than once, the last one will be used.

include uumrc_filename
Reads another uumrc file. Used to add personal settings on the another uumrc file.
If @DEFAULT is specified, uumrc is read in the following order.

1. @HOME/.Wnn6/uumrc
2. /etc/lib/locale/ja/wnn/ja/uumrc
3. /usr/lib/locale/ja/wnn/ja/uumrc This entry can be specified more than
once.

setconvenv wnnenvrc_filename

setconvenv wnnenvrc_filename sticky

setconvenv jserver wnnenvrc_filename

setconvenv jserver wnnenvrc_filename sticky
Specifies the Kana-Kanji conversion configuration file.

Specifies the connected Kana–Kanji conversion server by jserver. It is specified in
the following order.

hostname Kana–Kanji conversion server that uses the standart port
number (22273) on hostname

hostname:offset Kana–Kanji conversion server that uses the standart port
number plus offset as port number on hostname

hostname/port_number Kana–Kanji conversion server that uses port_number as
port number on hostname

If sticky is specified, the current environment settings are stored even after
xjsi/uum exits. This eliminates the need to initialize the environment the next
time xjsi/uum starts and increases startup speed.

If this setting is omitted, path name for wnnenvrc is determined in the following
order.

1. @HOME/.Wnn6/wnnenvrc
2. /etc/lib/locale/ja/wnn/ja/wnnenvrc
3. /usr/lib/locale/ja/wnn/ja/wnnenvrc

uumrc(4)

NAME

SYNOPSIS

DESCRIPTION

JFP Reference Manual 4 : File Formats 37

setkankanaenv wnnenvrc_filename

setkankanaenv wnnenvrc_filename sticky

setkankanaenv server_hostname wnnenvrc_filename

setkankanaenv server_hostname wnnenvrc_filename sticky
Specifies the Kanji–Kana conversion configuration file. By standard setting, Kanji
cannot be converted to Kana. Kanji–Kana conversion cannot be done using the
Wnn6 system dictionary.

The connected Kana–Kanji conversion server can be specified by jserver. The
style of Kana–Kanji conversion server is the same of setconvenv.

If sticky is specified, the current environment settings are stored even after
xjsi/uum exits. This eliminates the need to initialize the environment the next
time xjsi/uum starts and increases startup speed.

setmaxchg number
Specify the maximum number of convertable characters. The default value will be
used if 0 or a number below 0 is specified. The default is 100.

setmaxbunsetsu number
Specify the maximum number of convertable phrases. The upper limit is 400. The
default value will be used if 0 or a number below 0 is specified. The default is 80.

setmaxichirankosu number
Specify the maximum number of candidates that can be displayed on the candidate
list for uum. The default value will be used if 0 or a number below 0 is specified.
The default is 36.

setmaxhistory number
Specify the maximum number of entries to be saved in the history. The default
value will be used if 0 or a number below 0 is specified. The default is 11.

excellent_delete
Deletes the individual alphabetic characters that were input when deleting
confirmed characters for the Automaton (roman character–Kana conversion)
(default setting).

simple_delete
Deletes individual Japanese language characters when deleting confirmed
characters for the Automaton (roman character–Kana conversion).

flow_control_on
Turns ON tty flow control (default setting) for uum.

flow_control_off
Turns OFF tty flow control for uum.

convkey_not_always_on
Disables key code conversion when conversion is turned OFF (default setting) for
uum.

uumrc(4)

38 JFP Reference Manual 4 : File Formats • Last Revised 12 Aug 1998

convkey_always_on
Enables key code conversion when conversion is turned OFF for uum.

not_send_ascii_char
Places ASCII characters in the Kana–Kanji conversion buffer when the buffer is
empty (default setting).

send_ascii_char
Does not place ASCII characters in the Kana–Kanji conversion buffer when the
buffer is empty.

waking_up_in_henkan_mode
Boots with the conversion mode turned ON (default setting).

waking_up_no_henkan_mode
Boots with the conversion mode turned OFF.

henkan_off_kuten
Does not convert Japanese language period (default setting).

henkan_on_kuten
Converts Japanese language period.

setuumkey uumkey_filename
Specifies the key binding configuration file.

If this setting is omitted, the path name for uumkey file is determined in the
following order.

1. /etc/lib/locale/ja/wnn/ja/uumkey
2. /usr/lib/locale/ja/wnn/ja/uumkey

setrkfile roman_character-Kana_conversion_file_name
Specifies the mode defined table file name for the roman–Kana conversion. The
direcroty including the mode defined table file (mode) can be also specified. The
default is /usr/lib/locale/ja/wnn/ja/rk/mode.

setconvkey convert–key_filename

setconvkey termtype convert–key_filename
Specifies the key code conversion table file that is used to resolve the differences in
key binding between machines (terminals) in uum. The default is
/usr/lib/locale/ja/wnn/cvt_key_tbl. The entry that is specified termtype
and it matches the value of the TERM environment variable, the entry is in effect. A
wildcard character (*) can be used. This entry can be specified more than once.

setjishopath pathname
Specify the initial value of the dictionary file name input buffer that is used in
adding dictionaries function of uum. The default is an empty string.

sethindopath pathname
Specify the initial value of the frequency file name input buffer that is used in
adding dictionaries function of uum. The default is an empty string.

uumrc(4)

JFP Reference Manual 4 : File Formats 39

setfuzokugopath pathname
Specify the initial value of the auxiliary word file name input buffer that is used in
adding dictionaries function of uum. The default is an empty string.

touroku_comment
Accepts comment input for word registration for uum.

touroku_no_comment
Does not accepts comment input for word registration for uum (default setting).

The following can be used at file name.

~ Value of the HOME environmental variable.

~user user home directory.

@HOME Value of the HOME environmental variable.

@LIBDIR /usr/lib/locale/ja/wnn

@USR user name

@LANG ja

The first @USR in the arguments for setdic, setjishopath, or sethindopath is
expanded into the startup user name.

uum(1), wnnenvutil(1), xjsi(1), jserver(1M), uumkey(4), wnn_automaton(4),
wnn_cvt_key_tbl(4),wnn_mode(4), wnnenvrc(4)

uumrc(4)

SEE ALSO

40 JFP Reference Manual 4 : File Formats • Last Revised 12 Aug 1998

wnnenvrc – Wnn6 Kana-Kanji conversion dictionary/conversion parameter
configuration file

/usr/lib/locale/ja/wnn/ja/wnnenvrc

wnnenvrc is a file that sets the Kana–Kanji conversion dictionary, attributes files, and
conversion parameters.

Entries is set in the following style:

entry setting_value ...entry and setting_value are separated by space character or tab.
Lines beginning with semicolons (;) are comments. If the same entry except for
setdic appears more than once, the last one will be used. Up to 30 files can be
specified as entry setting dictionaries (setdic, set_fi_system_dic,
set_fi_user_dic, muhenkan_gakusyuu, bunsetsugiri_gakusyuu).

� include wnnenvrc_filename

Reads another wnnenvrc file, and is used to add individual user settings to
another wnnenvrc file. The following can be used for file name.

~ Value of HOME environmental variable

~user The home directory of user

@HOME Value of HOME environmental variable

@LIBDIR /usr/lib/locale/ja/wnn

@USR user name

� setdic dictionary_file_name frequency_file_name dictionary_priority
dictionary_read–only_setting frequency_read–only_setting
dictionary_file_password_file_name frequency_file_password_file_name conversion

The above dictionaries are set.

dictionary_file_name frequency_file_name
Specifies the name of the dictionary file and the frequency file. The frequency in
the dictionary file will be used if "–" is specified. The following specification for
file position can be used at the beginning of file names.

! For a client file

: For a jserver file

hostname: For a hostname wnnds file

If a file position is not specified and the dictionary server (wnnds) set by jserver
is specified, the wnnds file will be used. Otherwise, the jserver file is used.

dictionary_priority
Specifies the dictionary priority as a decimal value.

dictionary_read–only_setting
Specifies the dictionary read–only setting.

wnnenvrc(4)

NAME

SYNOPSIS

DESCRIPTION

JFP Reference Manual 4 : File Formats 41

1 Read–only. Does not update the dictionary file.

2 Temporary learning. Learns temporarily, but does not update the
dictionary file.

3 Group dictionary. Shares one dictionary among multiple users.
Updates the dictionary file.

4 Merge dictionary. Shares one dictionary among multiple users. Does
not updates the dictionary file.

0 Others.

frequency_read–only_setting
Specify the dictionary read–only setting.

1 Read–only. Does not update the frequency file.

2 Temporary learning. Learns temporarily, but does not update the
frequency file.

0 Others.

dictionary_file_password_file_name
Specifies the file in which the dictionary file password is described

frequency_file_password_file_name
Specifies the file in which the frequency file password is described

conversion
Specify 0 for Kana–Kanji conversion and 1 for Kanji–Kana conversion.

If the specification is omitted setting after frequency_file_name, the following value is
used.

– 5 0 0 – – 0

� set_fi_system_dic FI–related_system_dictionary_file_name
FI–related_frequency_file_name FI–related_frequency_read–only_setting
FI–related_frequency file_password_file_name

FI–related_system_dictionary_file_name FI–related_frequency_file_name
Specifies the FI–related user dictionary file name. If
FI–related_system_dictionary_file_name is specified “-”, FI related frequency is not
updated. The following specification for file position can be used at the
beginning of FI–related_system_dictionary_file_name and
FI–related_frequency_file_name.

! For a client file

: For a jserver file

hostname: For a hostname wnnds file

wnnenvrc(4)

42 JFP Reference Manual 4 : File Formats • Last Revised 2 Sep 1998

If a file position is not specified and the dictionary server (wnnds) set by jserver
is specified, the wnnds file will be used. Otherwise, the jserver file is used.

FI–related_frequency_read–only_setting/fP
Specify the FI-related frequency read–only setting.

1 Read–only. Does not update the FI-related frequency file.

2 Temporary learning. Learns the FI-related frequency file
temporarily, but does not update the FI-related frequency file.

3 Group dictionary. Shares one FI-related frequency dictionary
among multiple users. Updates the FI-related frequency file.

0 Others.

FI–related_frequency file_password_file_name
Specifies the file in which the FI-related frequency file password is described

set_fi_user_dic FI–related_user_dictionary_file_name
FI–related_user_dictionary_read–only_setting
FI–related_user_dictionary_file_password_file_name

FI–related_user_dictionary_file_name
Specifies the FI-related user dictionary file. The following specification for file
position can be used at the beginning of the file.

! For a client file

: For a jserver file

hostname: For a hostname wnnds file

If a file position is not specified and the dictionary server (wnnds) set by jserver
is specified, the wnnds file will be used. Otherwise, the jserver file is used.

FI–related_user_dictionary_read–only_setting
Specify the FI-related user dictionary read–only setting.

1 Read–only. Does not update the FI-related user dictionary file.

2 Temporary learning. Learns temporarily, but does not update the
FI-related user dictionary file.

3 Group dictionary. Shares one dictionary among multiple users.
Updates the FI-related user dictionary file.

0 Others.

FI–related_user_dictionary_file_password_file_name
Specifies the file in which the FI-related user dictionary file name password is
described.

wnnenvrc(4)

JFP Reference Manual 4 : File Formats 43

muhenkan_gakusyuu no-conversion_learning_dictionary_file_name
no–conversion_learning_dictionary_read–only_setting
no–conversion_learning_dictionary_priority
no–conversion_learning_dictionary_file_password_file_name conversion

Sets the no-conversion learning. No–conversion learning is used to
automatically record candidates in the no–conversion learning dictionary when
candidates are confirmed in Hiragana, Katakana, or roman characters.

no-conversion_learning_dictionary_file_name
Specifies no-conversion learning dictionary file name. The following
specification for file position can be used at the beginning of the file.

! For a client file

: For a jserver file

hostname: For a hostname wnnds file

If a file position is not specified and the dictionary server (wnnds) set by jserver
is specified, the wnnds file will be used. Otherwise, the jserver file is used.

no–conversion_learning_dictionary_read–only_setting
Specify the no-conversion learning dictionary read–only setting.

1 Read–only. Does not update the no-conversion learning dictionary
file.

2 Temporary learning. Learns temporarily, but does not update the
no-conversion learning dictionary file.

3 Group dictionary. Shares one no-conversion learning dictionary
among multiple users. Updates the no-conversion learning
dictionary file.

0 Others.

no–conversion_learning_dictionary_priority
Specifies the no-conversion learning dictionary priority in a decimal number.

no–conversion_learning_dictionary_file_password_file_name
Specifies the file in which the no-conversion learning dictionary file password
is decribed.

conversion
Specify 0 for Kana–Kanji conversion and 1 for Kanji–Kana conversion.

� bunsetsugiri_gakusyuu rephrasing_learning_dictionary_file_name
rephrasing_learning_dictionary_read–only_setting
rephrasing_learning_dictionary_priority rephrasing_learning_dictionary_
file_password_file_name conversion

Set the rephrasing learning. Rephrasing learning is used to record one phrase in the
rephrasing learning dictionary, which is made from two phrases before and after a
rephrasing point when confirming phrases.

wnnenvrc(4)

44 JFP Reference Manual 4 : File Formats • Last Revised 2 Sep 1998

rephrasing_learning_dictionary_file_name
Specifies the rephrasing learning dictionary file. The following specification for
file position can be used at the beginning of the file.

!
For a client file

:
For a jserver file

hostname:
For a hostname wnnds file

If a file position is not specified and the dictionary server (wnnds) set by jserver
is specified, the wnnds file will be used. Otherwise, the jserver file is used.

rephrasing_learning_dictionary_read–only_setting
Specify the rephrasing learning dictionary setting.

1 Read–only. Does not update the rephrasing learning dictionary file.

2 Temporary learning. Learns temporarily, but does not update the
rephrasing learning dictionary file.

3 Group dictionary. Shares one rephrasing learning dictionary among
multiple users. Updates the rephrasing learning dictionary file.

0 Others.

rephrasing_learning_dictionary_priority
Specifies the rephrasing learning dictionary priority in a decimal number.

rephrasing_learning_dictionary_ file_password_file_name
Specifies the file in which the rephrasing learning dictionary file password is
decribed.

conversion
Specifies 0 for Kana–Kanji conversion and 1 for Kanji–Kana conversion.

� setfuzokugo auxiliary_word_file

setgrammar auxiliary_word_file

Specifies the auxiliary word file name.
� setparam param0. . . param9 hindo0. . . hindo6

Specifies conversion parameters and pseudo–part of speech frequencies as integers.
Defaults are given in parentheses.

param0 N for N (long) phrase analysis (5)

param1 Maximum number of short phrases in a long phrase (10)

param2 Main word frequency parameter (2)

param3 Short phrase length parameter (45)

param4 Main word length parameter (0)

wnnenvrc(4)

JFP Reference Manual 4 : File Formats 45

param5 Bit parameter to indicate immediate previous usage (80)

param6 Dictionary parameter (5)

param7 Short phrase evaluation parameter (1)

param8 Long phrase length parameter (20)

param9 Number of short phrases parameter (0)

hindo0 Pseudo–part of speech "number" frequency (400)

hindo1 Pseudo–part of speech "Kana" frequency (–100)

hindo2 Pseudo–part of speech "alphanumerics" frequency (400)

hindo3 Pseudo–part of speech "symbol" frequency (80)

hindo4 Pseudo–part of speech "closing parentheses" frequency (200)

hindo5 Pseudo–part of speech "auxillary word" frequency (2)

hindo6 Pseudo–part of speech "opening parentheses" frequency (200)

� confirm

Asks the user to confirm whether or not to create a dictionary or frequency file if a
dictionary or frequency file does not exist after this entry.

� confirm1

Asks the user once to confirm whether or not to create a dictionary or frequency
file if a dictionary or frequency file does not exist after this entry and then
continues using the confirmation thereafter.

� create_without_confirm

Creates dictionary or frequency file unconditionally if a dictionary or frequency file
does not exist after this entry (initial setting).

� no_create

Does not create dictionary or frequency file if a dictionary or frequency file does
not exist after this entry.

� saisyu_siyou TRUE|FALSE

Last–useage top–priority processing provides the last–used homophone as the first
candidate and then lists the remaining candidates in the order of previous
confirmation (up to six candidates). Specify TRUE to enable this processing and
FALSE to disable it.

� fukugou_yuusen TRUE|FALSE

Composite–word priority conversion gives priority to candidates that do not
contain auxilliary words. Specify TRUE to enable this processing and FALSE to
disable it.

� okuri_kijun REGULATION|YES|NO

wnnenvrc(4)

46 JFP Reference Manual 4 : File Formats • Last Revised 2 Sep 1998

Okurigana processing is used to provide the first candidate according to the
specified rules when converting words that can have different Okurigana. Specify
REGULATION to take precedence candidates according to the basic rule, specify
YES to take precedence the long Okurigana, NO to take precedence the short
Okurigana.

� settou_kouho HIRAGANA|KANJI

Specify HIRAGANA to provide Hiragana candidates first, KANJI to provide Kanji
candidates first.

� rendaku TRUE|FALSE

Euphonic change processing does not provide candidates with euphonic changes
to voiced sounds first. Specify TRUE to enable this processing and FALSE to disable
it.

� yuragi TRUE|FALSE

Long vowel/alternate spelling processing enables the conversion of long vowels
and alternate spellings. Specify TRUE to enable this processing and FALSE to
disable it.

� okuri_gakusyu TRUE|FALSE

Okurigana processing learning enables learning the previously confirmed
Okurigana processing rule and using it for the next conversion. Specify TRUE to
enable this processing and FALSE to disable it.

� settou_gakusyu TRUE|FALSE

Prefix learning enables learning the previously confirmed prefix information
(Hiragana or Kanji) and using it for the next converstion. Specify TRUE to enable
this processing and FALSE to disable it.

� setubi_gakusyu TRUE|FALSE

Suffix learning enables learning the previously confirmed suffix information
(provide or do not provide) and using it for the next converstion. Specify TRUE to
enable this processing and FALSE to disable it.

� hanyou_gakusyu TRUE|FALSE

General learning enables learning of the previously confirmed general word
candidate information (Hiragana, Katakana, or Kanji) and using it for the next
conversion. Specify TRUE to enable this processing and FALSE to disable it.

� hindo_kakuritu NOT|LOW|NORMAL|HIGH|ALWAYS

Specifies the frequency learning extent. Specify HIGH to learn quickly, specify LOW
to learn slowly, specify ALWAYS to always learn, and specify NOT to never learn.

� fi_hindo_kakuritu NOT|LOW|NORMAL|HIGH|ALWAYS

FI Specifies the FI –related frequency learning extent. Specify HIGH to learn quickly,
specify LOW to learn slowly, specify ALWAYS to always learn, and specify NOT to
never learn.

� use_hinsi hinsi. . .

wnnenvrc(4)

JFP Reference Manual 4 : File Formats 47

Specifies the list of part of speech to be used in conversion.

� unuse_hinsi hinsi. . .

Specify the list of part of speech not to be used in conversion.

� giji_number HAN|ZEN|HANCAN|ZENCAN|KAN|KANSUUJI|KANOLD

Specify the first candidate to be given for converting pseudo–numbers. Kanji
numbers with unit: KANSUUJI Old Kanji numbers with unit: KANOLD Half–width
numbers with commas: HANCAN Full–width number with commas: ZENCAN
Half–width numbers without commas: HAN Full–width number without commas:
ZEN Kanji without unit: KAN

� giji_eisuu HAN|ZEN

Specifies HAN to provide half–width conversion candidates first for
pseudo–alphabet characters. Specify ZEN to provide full–width candidates first.

� giji_kigou HAN|JIS|ASC

Specify HAN to provide half–width conversion candidates first for pseudo–symbols,
specify ZEN to provide full–width candidates first, and specify ASC to provide
ASCII candidates first.

� kutouten TRUE|FALSE

Specify TRUE to input periods as full-width period and full-width comma FALSE
to input periods as ".".

� kakko TRUE|FALSE

Specify TRUE to input full-width parentheses and FALSE to input bracket
parentheses.

� kigou TRUE|FALSE

Specify TRUE to set the symbol input and FALSE to set it to "/".

� autosave number

Specifies the confirmation operation times to save automatically the learned
information. If the confirmation operation is done specified times, the learned
information is automatically saved. The default is 50.

The first @ USR used in arguments in setdic, setjishopath, or sethindopath
will be expanded into the startup user name.

EXAMPLE 1

confirm1
setfuzokugo iwanami/kougo.fzk
set_fi_system_dic iwanami/fisd usr/@USR/fisd.h 0 –
set_fi_user_dic usr/@USR/fiud 0 –
setdic iwanami/kihon.dic usr/@USR/kihon.h 6 1 0 – – 0
setdic iwanami/symbol.dic usr/@USR/symbol.h 1 1 0 – – 0
setdic iwanami/tankan.dic – 1 1 1 – – 0
setdic iwanami/tankan2.dic – 1 1 1 – – 0
setdic iwanami/tankan3.dic – 1 1 1 – – 0
setdic iwanami/tel.dic – 1 1 1 – – 0

wnnenvrc(4)

EXAMPLES

48 JFP Reference Manual 4 : File Formats • Last Revised 2 Sep 1998

EXAMPLE 1 (Continued)

setdic iwanami/zip.dic – 1 1 1 – – 0
setdic iwanami/ikeiji.dic – 1 1 0 – – 0
setdic usr/@USR/ud – 15 0 0 – – 0
muhenkan_gakusyuu usr/@USR/muhenkan 0 15 – 0
bunsetsugiri_gakusyuu usr/@USR/bunsetsu 0 15 – 0
okuri_kijun REGULATION
settou_kouho KANJI
setubi_gakusyu TRUE
hanyou_gakusyu TRUE
hindo_kakuritu NORMAL
giji_number HAN
unuse_hinsi single Kanji zip code telephone number
;; N nsho hindo len jiri flag jisho sbn dbn_len sbn_cnt
suuji kana eisuu kigou toji_kakko fuzokogo kaikakko
setparam 5 10 2 45 0 80 5 1 20 0 400

–100 400 80 200 2 200

uum(1), xjsi(1), jserver(1M), uumrc(4)

wnnenvrc(4)

SEE ALSO

JFP Reference Manual 4 : File Formats 49

wnnhosts – Wnn6 Kana-Kanji conversion server/dictionary lookup server access
control file

/etc/lib/locale/ja/wnn/wnnhosts

wnnhosts specifies users who can use the Wnn6 Kana–Kanji conversion server
(jserver) and the Kana–Kanji conversion server that can be connected to the Wnn6
dictionary lookup server (wnnds).

The following is the format of the access control file. Place a space character before "{".

jserver ja <Kana–Kanji conversion server> {
<access control data>

:
}
wnnds ja <dictionary lookup server> {
<access data>

:

}

<Kana–Kanji conversion server> is specified in the following format.

hostname The Kana–Kanji conversion server that uses the
well-known port number (22273) on host hostname.

hostname/port_no The Kana–Kanji conversion server that uses port_no as
port number on host hostname.

<dictionary lookup server> is specified in the following format.

hostname The dictionary lookup server that uses the well-known
port number (26208) on host hostname.

hostname/port_no The dictionary lookup server that uses port_no as port
number on host hostname.

<access control data> for jserver is specified in the following format.

hostname All the users on the host can use data.

hostname:username_list username_list contains a list of username separated with
",". Users listed in the list on this host can use data.

@username This user can use data from any host.

<access control data> for wnnds is specified in the following format.

hostname jserver on this host can be connected.

jserver and wnnds use the access control information with the host name and port
number matched.

Lines beginning with ";" are comments.

wnnhosts(4)

NAME

SYNOPSIS

DESCRIPTION

50 JFP Reference Manual 4 : File Formats • Last Revised 28 May 1998

EXAMPLE 1

jserver ja_JP hostA {
;hostC:usr1,usr2,usr3
hostA:usr1,usr4
hostB
hostC:usr5
@usrA
;usrB
}

wnnds ja_JP hostA {
hostA
hostD
}

jserver ja_JP hostA/22273 {
hostB
hostE
@usrA
}

wnnds ja_JP hostA/22385 {
hostA
hostD

}

jserver(1M), wnnaccess(1M), wnnds(1M)

wnnhosts(4)

EXAMPLES

SEE ALSO

JFP Reference Manual 4 : File Formats 51

wnn_2A_CTRL – Change input conversion mode definition table

/usr/lib/locale/ja/wnn/ja/rk/2A_CTRL

2A_CTRL sets conversion keys that change input conversion mode for xjsi(1) and
uum(1).

Refer to the wnn_automaton(4) manpage for 2A_CTRL description.

EXAMPLE 1

’\x81’ (switch katakana) ;PF1 key
’\x82’ (switch zenkaku) ;PF2 key

’\x83’ (switch romkan) ;PF3 key

uum(1), xjsi(1), uumkey(4), wnn_automaton(4), wnn_cvt_key_tbl(4),
wnn_cvt_xim_tbl(4),wnn_mode(4)

2A_CTRL is applied for the code processed by cvt_xim_tbl or cvt_key_tbl.

wnn_2A_CTRL(4)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

SEE ALSO

NOTES

52 JFP Reference Manual 4 : File Formats • Last Revised 27 Apr 1998

wnn_2B_ROMKANA – Roman character Kana conversion definition table

/usr/lib/locale/ja/wnn/ja/rk/2B_ROMKANA

2B_ROMKANA sets the roman character–Kana conversion rules for xjsi(1) and uum(1).

Refer to the wnn_automaton(4) manpage for 2A_ROMKANA description.

uum(1), xjsi(1), wnn_automaton(4), wnn_mode(4)

wnn_2B_ROMKANA(4)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

JFP Reference Manual 4 : File Formats 53

wnn_automaton – Automaton

Automaton performs xjsi and uum roman character–Kana conversion by referring to
the entries mapped in a table (called a conversion table). Automaton can replace tables
to enable versatile conversion.

Automaton performs three conversions in series according to conversion tables (in the
order of preprocessing, main processing, and postprocesing) and outputs the final
results. Processing is handled according to conversion tables for each of the three
conversions. Atomaton also has a mode function. The mode can be switched to
dynamically change the combinations of the three processing stages. Setting the mode
and the switchover codes is also performed using conversion tables.

Because the conversion tables are text files, they can be replaced easily. You can use a
backspace to return to the previous status after a conversion has been completed and
before the next conversion is completed.

Although xjsi performs roman character–Kana conversion only between uppercase
alphbets and Hiragana in the main processing stage, the preprocessing and
postprocessing stages can handle various types of inputs and outputs. For example,
the preprocessing can convert lowercase alphabets to uppercase alphabets. The
postprocessing stage can convert Hiragana to Katakana or Hiragana to half–width
Katakana.

Automaton proceeds with the operation as follows.

1. Input. Upper/lowercase of alphabet (half–width)

2. Preprocessing. Converts lower case characters to uppercase characters.

3. Main processing. Converts uppercase alphabets to Hiragana according to the
conversion table.

4. Postprocessing. Converts Hiragana to Katakana or half–width Kana as required.

5. Output

Automaton uses the following conversion tables.

� Mode definition table

Declares the mode and the correspondence tables to use. The file name is mode.

� Correspondence tables

� Preprocessing tables

The correspondence table used for preprocessing. The file name begins with "1".

� Main processing tables

The correspondence table used for main processing. The file name begins with
"2".

� Postprocessing tables

wnn_automaton(4)

NAME

DESCRIPTION

Conversion Tables

54 JFP Reference Manual 4 : File Formats • Last Revised 2 Sep 1998

The correspondence table used for postprocessing The file name begins with
"3".

The mode definition table contains the mode declaration, the correspondence tables to
be used for each mode, and table usage rules for them.

The correspondence tables contain lists of corresponding input codes and output
codes. The correspondence tables are separated into those for preprocessing, main
processing and postprocessing and any number of correspondence tables can be used
for each processing.

xjsi searches for the mode definition table in the following order.

1. Specification by setrkfile entry in the xjsi initialization file uumrc
2. File name /usr/lib/locale/ja/wnn/ja/rk/mode

The following table entires can be used in the following mode definition table and
correspondence tables.

� . . . Indicates repeating 0 or more times.

� Indicates one or more times.

� [] Indicates optional.

The mode definition table contains the mode declaration, the correspondence tables to
be used for each mode, the determination standards for them, and the mode display
text strings.

The mode definition table consists of the following items 1, 2, 3, and 4. The remainder
of a line is treated as a comment if a semicolon (;) appears at the beginning of the line
or follows leading space(s) (including tabs) unless the semicolon is escaped.

1. Special path specification
The followings are special strings to represent path names.

@HOME Indicates the environment variable HOME

@MODEDIR Indicates the directory containing the mode definition table.

@LIBDIR /usr/lib/locale/ja/wnn/

~user If user is a user name, it indicates the user’s home directory.

~ Indicates your home directory.

2. Mode Declaration
The mode is declared as follows:

defmode
mode_name
[on|off]
[r|nr]

mode_name specifies alphanumerics. [on|off] Specifies the initial
status. The default is off. [r|nr] is a flag to allow Automaton to
recognize roman character–Kana conversion mode. In a mode in which
r is set, it is used regardless of the current mode when converting
Hiragana by F6 key, etc. The default is nr.

wnn_automaton(4)

Mode Definition
Table

JFP Reference Manual 4 : File Formats 55

The mode declaration is made before the mode is used.

3. Search Specifications for Correspondence Tables
Search specifications are made for correspondence tables using the following
format.

search
directory. . .

Specify the directory name(s) to be searched when the correspondence
tables specified in the mode definition table are not in the same directory
as the mode definition table. Multiple directory names can be specified
by separating them with spaces. The search directory name must be
specified before the correspondence tables.

path
directory. . .

Overrides any directory names previously stored to search for
correspondence tables and specifies to search the directory name(s)
specified as the argument. Multiple directory names can be specified by
separating them with spaces. The path directory name must be
specified before the correspondence tables.

4. Specifications for Correspondence Tables and Mode Display Text Strings
There are three ways for the specifications.

(1) Correspondence table file names or mode display text string

(2) if Conditional_expression. Correspondence_table_specifications or
Mode_display_text_string

(3) when Conditional_expression. Correspondence_table_specifications or
Mode_display_text_string

File names for correspondence tables must begin with (1), (2) or (3). Path names can
also be specified. Mode display text strings are text strings enclosed with quotation
marks used to display the current mode.

(a) "string"

Indicates the mode display text string when conversion is ON.

(b) (on_dispmode "string")

Indicates the mode display text string when conversion is ON.

(c) (off_dispmode "string")

Indicates the mode display text string when conversion is OFF.

(d) (on_unchg)

Indicates the same mode display text string as was used before the
mode was changed be used when conversion is ON.

(e) (off_unchg)

Indicates the same mode display text string as was used before the
mode was changed be used when conversion is OFF.

wnn_automaton(4)

56 JFP Reference Manual 4 : File Formats • Last Revised 2 Sep 1998

This text string is used by xjsi to display the mode.

(2) and (3) are used to change the correspondence table depending on specified
conditions. If the condition in the if statement in (2) is true, then the specification in
the if statement is referenced and the specification following the if statement is not
referenced. If the condition is false, the if statement is exited and the specification
following the if statement is referenced.

If the condition in the when statement in (3) is true, the specification in the
statement is referenced. The specification following the when statement, however,
is referenced regardless of whether or not the condition is true or false.

(2) or (3) can be used recursively to specify correspondence tables.

Any one of the following can be used for the conditional statement.

mode_name True when the mode is ON

(and conditional_statement
conditional_statement)

True when both of the conditional statements are
true

(or conditional_statement
conditional_statement)

True when either of the conditional statements is
true

(not conditional_statement) True when the conditional statement is false

(false) Always false

(true) Always true

For example, when (defmode kana) and (defmode romajikana) are both in the
mode definition, (and kana romajikana) is true when both modes are ON.

Where conditional statements are represented by @, #, and *, and conversion table
names are represented by A, B, and C, assume the following statement.

(when @ A (if # B) C) (if * D) E

Also assume that conditional statements @, #, and * have been met. Examine the
statement from the beginning. First comes (when @ A (if # B) C). Because @ has been
met, "A (if # B) C" is examined and table A is selected.

Next comes (if # B) and # has been met so table B is selected. Because this is an if
statement and the conditional statements have been met, the rest of the current series
"A (if # B)C" need not be examined. Although this ends examination of "A (if # B)C,"
this series is contained in a when statement, so the remainder of "(when @ A (if # B)C)
(if * D) E" is examined.

wnn_automaton(4)

JFP Reference Manual 4 : File Formats 57

The next portion is (if * D). Table D is selected because the condition statement * has
been met. Because this is an if statement, the rest of "(when @ A (if # B) C) (if * D) E"
is not examined. As a result, tables A, B, and D are selected.

Next we’ll use the mode definition tables used by xjsi as an example.

Three modes are defined in the mode definition table. There are specifications for
correspondence table and mode display text string to be used from 2A_CTRL to the
end. This table is referenced each time the mode changes and the tables to be used are
selected as described above.

(defmode romkan)
(defmode katakana)
(defmode zenkaku)
2A_CTRL (if romkan

1B_TOUPPER
2B_ROMKANA 2B_JIS
(if (not katakana) "[Ar]")
(if zenkaku 3B_KATAKANA "[Ar]")
3B_HANKATA "[AIr]") ; "A" and "I" are half-width Katakana.

2B_DAKUTEN
(if (not katakana)

1B_ZENHIRA
(if zenkaku 3B_ZENKAKU "[A]")
"[AA]")

(if zenkaku
1B_ZENKATA
3B_ZENKAKU
"[A]")

"[AIA]" ; "A" and "I" are half-width Katakana.

Initially romkan , katakana, and zenkaku are all OFF. 2A_CTRL is selected as the
table at this point. Because romkan is OFF, the following if statement is not referenced,
and 2B_DAKUTEN is selected. The conditional statement for the next if statement, (not
katakana), is true because katakana is OFF. The inside of the if statement is referenced
and 1B_ZENHIRA is selected. Next the if statement inside the if statement is
referenced. Because zenkaku is OFF, the conditional statement is false. The if statement
is thus not referenced.

Next the mode display text string "[A[hiragana-A]]" is selected and the rest of the
conversion table series is not examined.

The correspondence tables contain the conversion data (input codes and
corresponding output codes) for preprocessing, main processing, and postprocessing.

Preprocessing and postprocessing play supplemental roles for main processing. The
following restrictions thus apply to preprocessing and postprocessing correspondence
tables.

Preprocessing
Table

Item (2), below, is not possible. Also, there can only be one form
for each input and output code in item (1) that results in a
character when evaluated. The buffer remainder cannot be entered.

wnn_automaton(4)

Correspondence
Tables

58 JFP Reference Manual 4 : File Formats • Last Revised 2 Sep 1998

Postprocessing
Table

Item (2), below, is not possible. Also, there can only be one form
for each input code in item (1) that results in a character when
evaluated. The buffer remainder cannot be entered.

All lines in the correspondence table must contain one of the following items (1) to (3)
or must be empty. Lines of this form are repeated to form the correspondence table.

(1) input_code [output_code [buffer_remainder]]

(2) input_code function

(3) Variable declaration

Each entry must occupy no more than one line. The remainder of a line is treated as a
comment if a semicolon (;) appears at the beginning of the line or follows leading
space(s) (including tabs) unless the semicolon is escaped.

The output code or buffer remainder will be treated as a null string if omitted. Input
codes, output codes, and buffer remainders must contain strings of the following
without intervening spaces: forms that evaluate to characters and forms that evaluate
to text strings.

Forms are considered to evaluate to characters or text strings if the form is replaced by
the character or text string.

The following types of forms evalutate to characters.

(1)
Character
Notation

Character notations are shown below (these differ from character notations
treated as forms that evaluate to text strings).

Character Characters excluding "(", ")", "’", """, "\", ";", and space characters

’Characters’Characters excluding "’", "\", and "^" characters.

’^Character’Represents control characters. The characters can be ASCII code
32 to 126. ^? indicates a DEL code.

’\Character’Characters do not include numerics, "o", "d", and "x". "\n", "\t",
"\b", "\r", "\f" indicates the characters same as escaped codes in
the C language. "\e", and "\E" indicate escape characters. The
other characters are literally interpreted.

’\octal
code.’

Indicates a character corresponding to the specified octal code.

’\ooctal
code.’

Indicates a character corresponding to the specified octal code.

’\ddecimal
code.’

Indicates a character corresponding to the specified decimal
code.

’\xhexadecimal
code.’

Indicates a character corresponding to the specified hexadecimal
code.

wnn_automaton(4)

JFP Reference Manual 4 : File Formats 59

(2)
Function
Name
with
Form
that
Evaluates
to a
Character

Function name Description

toupper If the augument is a lowercase alphabet ASCII
character, it is changed to an uppercase character.
Example: (toupper a) -> A

tolower If the augument is an uppercase alphabet ASCII
character, it is changed to a lowercase character.
Example: (tolower A) -> a

toupdown The case of the alphabet ASCII character is
changed from upper to lower or from lower to
upper. Example: (toupdown a) -> A (toupdown
A) -> a

tozenalpha If the argument is an ASCII character, it is
converted to a full–width Japanese roman
character. Example: (tozenalpha A) -> A

tohira If the argument is full–width Katakana, it is
converted to Hiragana. Example: (tohira A) -> A

tokata If the argument is Hiragana, it is converted to
full–width Katakana. Example: (tokata A) -> A

tozenhira If the argument is half–width Katakana, it is
converted to Hiragana. Example: (tozenhira A)
-> A ; "A" is half-width Katakana.

tozenkata If the argument is half–width Katakana, it is
converted to full–width Katakana. Example:
(tozenkata A) -> A ; "A" is half-width Katakana.

value Converts a character code to its actual numeric
value. Example: value 0 -> ’\x0’ value A ->
’\xA’ value F -> ’\xf’

wnn_automaton(4)

60 JFP Reference Manual 4 : File Formats • Last Revised 2 Sep 1998

(3)
Function
Name
with Two
Forms
that
Evaluate
to
Characters

Function name Description

+ Finds the sum of the arguments. Example: (+ A ’\d256’)
-> A (+ 0 (value 3)) → 3

– Finds the difference of the arguments.

* Finds the product of the arguments.

/ Finds the quotient of the arguments.

(4)
Variable
Names

Variable names are any alphanumeric text strings beginning with an
alphabet that do not correspond to function names, functions, and
declarations (defvar). Where, an underscore ’_’ is considered as an
alphabet.

The following types of forms evalutate to characters.

(1) "Character
Notation. . ."

Character notations are shown below (these differ from character
notations treated as forms that evaluate to text strings).

Character Characters excluding """, "^", and "\".

^ character Indicates a control character. It can be an ASCII
code 32 to 126 character. ^? indicates a DEL
code.

\Character Characters do not include numerics, "o", "d",
and "x". "\n", "\t", "\b", "\r", "\f" indicates the
characters same as escaped codes in the C
language.

\octal
code.[;]

Indicates a character corresponding to the
specified octal code. Specify a semicolon (;) if
number(s) follow.

\ooctal
code.[;]

Indicates a character corresponding to the
specified octal code. Specify a semicolon (;) if
number(s) follow.

wnn_automaton(4)

JFP Reference Manual 4 : File Formats 61

\ddecimal
code.[;]

Indicates a character corresponding to the
specified decimal code. Specify a semicolon (;)
if number(s) follow.

\xhexadecimal
code.[;]

Indicates a character corresponding to the
specified hexadecimal code. Specify a
semicolon (;) if number(s) follow. " " indicates

an empty character string.

(2) Function
Name with Form
that Evaluates to
a Character

Function name Description

tohankata If the augument is full–width Hiragana or
full–width Katakana, it is converted to
half–width Katakana. Example: tohankata
[hiragana–GA]) to [hankakukana–GA]

last= Examines the argument (a form that evaluates
to a character) to see if it matches the last
character of the last–matched text string. If the
character matches, an empty text string is
returned. Example: last= A → [A] last=
can only be entered for input codes.

todigit Converts the code given as the first argument
to a number in the number base code given as
the second argument.

dakuadd Adds a Dakuten (voiced constant mark) after
the argument.

handakuadd Adds a Handakuten (semivoiced constant
mark) after the argument.

(3) Function
Name with Mode
Name

The mode name must be defined in the mode definition table.

Function name Description

if If the mode given as the argument is ON, (if
mode_name) returns an empty string. Example:
(if katakana)VU [katakana–VU]

unless If the mode given as the argument is OFF,
(unless mode_name) returns an empty string.
Example: (unless katakana)VU
[hiragana–BU]

wnn_automaton(4)

62 JFP Reference Manual 4 : File Formats • Last Revised 2 Sep 1998

Function name Description

on Turns ON the mode given as the argument.
Example: (on katakana)

off Turns OFF the mode given as the argument.
Example: (off katakana)

switch Switches the state of the mode given as the
argument, i.e., ON to OFF or OFF to ON.
Example: (switch katakana)

However, if and unless can only be entered for on, off and
switch can only be entered for output codes in the main
processing table.

(4) Function
Names Only

The following function names can only be entered for output
codes in the main processing table.

Function name Description

allon Turns ON all modes.

alloff Turns OFF all modes.

Precautions on
functin usage

Because functions are forms that evaluate to
characters or text string, it can be represented
as (toupper (tolower Y)). However, if
evaluated as follows, a function that evaluates
to text string cannot be used as arguments for
other functions.

(toupper (tohankata [Hiragana KA]))

Functions The following functions can be used. These
functions can be used independently.

(error) An error will be generated if the
corresponding input code is
received.

(restart)The previous mode definition table
is read again to reset conversion. If
there is an error in the new
conversion table, an error message
is displayed and the settings in the
previous (original) conversion table
are used.

wnn_automaton(4)

JFP Reference Manual 4 : File Formats 63

Variable
Declarations

(defvar variable_notation (list
character_notation.))

list uses its arguments as the variable
range.

(defvar variable_notation (all))
all uses all the characters as the variable
range.

(defvar variable_notation (between
character_notation1 character_notation2))

between uses characters between
character_notation1 and character_notation2
(both inclusive), when sorted in the code
order, as the variable range.

Variables that can be used as forms that
evaluate to characters and the range of the
variables is defined. Variables are declared in
the table that uses it.

Variable notations are given as variable names
or as (variable_name.). Character
notations are the same as forms that evaluate
to characters.

The variable definitions are effective on the
entire table. The same variable cannot be
declared twice by defvar in a table.

You can define a variable a1 in a table, and
define it in another table with different
specifications. Two variables of a1 are
processed independently.

Variables Variables can be used effectively when the
same patterns appear many times in
conversions, such as in the following example.

(defvar a1 (list K S T H Y R W G Z
D B P))

(a1)(a1) [small tsu] (a1)

The above two lines achieve the same
conversions as the following lines. Both show
methods of handling assimulated sounds
(Sokuon) in roman character–Kana conversion.

wnn_automaton(4)

64 JFP Reference Manual 4 : File Formats • Last Revised 2 Sep 1998

KK [small tsu] K

SS [small tsu] S

TT [small tsu] T

. . .

(omitted)

PP [small tsu] P

The variables declared in the variable
declaration are processed.

(between A E) and (list A B C D E) are
the same.

Precautions on
variables

Variables to be used must be defined by
variable declaration in the table.

You can define the variable a1 in two different
tables as required and the a1 will be treated as
two separate variables. You cannot, however,
define the same variable twice in one table.
Variable definitions are valid anywhere within
the table. You can define the variable a1 within
two different tables as required and the a1 will
be treated as two separate variables. The
definitions of variables are effective in the
entire table. You cannot, however, define the
same variable twice within any one table.

A variable always has the same value within a
single line in a correspondence table.

(defvar a1 (list A B))

(a1)(tolower (a1)) 3

The text strings "Aa" and "Bb" will be
converted to "3" in the above example and not
to "Ab" and "Ba".

Input code is matched with input codes in the
tables starting at the left. Thus, when
examining input codes from the left in the
tables, a variable must not be used where it
will be treated as the argument of a function
before it is matched to specific characters, such
as in the following example.

wnn_automaton(4)

JFP Reference Manual 4 : File Formats 65

(defvar a1 (list a b))

(toupper (a1))(a1) 3

"Aa" will not be converted to "3", because the
argument of (toupper(a1)) is the variable
a1, which does not yet have a value. This type
of setting is checked when tables are read into
the system.

In this case, if you make changes as follows,
the result will be as expected.

(defvar a1 (list a b))

(a1)(toupper (a1)) 3

If "aA" and "bB" are input, they are converted
to "3 ".

(defvar a1 (list A B))

(a1)(toupper (a1)) 3

If "Aa" and "Bb" are input, they are converted
to "3 ".

Any variable appearing in the output codes or
buffer remainder section must appear in the
input code section, i.e., must have been
assigned a value when matched to an input
code.

(defvar a1 (list K S))
(defvar a2 (list a))

(a1)(a1) (a2) (a1)

The above programming is not correct because
the variable a2 is not matched to an input
code, but appears for an output code.

Conversion
Method by
Correspondence
Table

Preprocessing
First, the code that is input is grouped into
character units (characters of 2–byte codes
are also treated as one character). This is
called the input code.

wnn_automaton(4)

66 JFP Reference Manual 4 : File Formats • Last Revised 2 Sep 1998

In preprocessing, each input code
corresponds to one output code. The output
code from preprocessing becomes the input
code for main processing.

Input codes in the preprocessing table
currently used are examined in the order
from the beginning. When a match is found
for the input code, the corresponding
output code (i.e., the output code written on
the same line as the input code) is output.

If there is more than one table specified in
the mode definition table, they are
examined in the same order as listed in the
mode definition table. If no matching input
code is found in a table (including when no
table is specified), the input code is output
unchanged. This is also true for main
processing and postprocessing.

Main processing
In main processing, input code is
continuously added to the buffer as long as
there is still a chance that a longer match
will be found in the input codes in the table
(i.e., when some number of characters from
the beginning of the current section of input
code have already been matched
sometwhere in the table).

Each time more input code is added to the
buffer, comparisons are again done in the
order from the beginning of the input codes
listed in the main processing table. As long
as there is a chance of the input code in the
buffer matching with the longest entry in
the table (i.e., when some number of
characters from the beginning of the current
section of input code have already been
matched somewhere in the table) a
conversion is not finalized and more input
code is awaited. The code in the buffer is,
however, output as nonfinalized characters
to enable displaying and other processing.

Codes for input errors and mode changes
are also output. These codes are
differentiated from normal output codes

wnn_automaton(4)

JFP Reference Manual 4 : File Formats 67

and do not undergo postprocessing. When
the contents of the buffer matches the
longest possible input code in the table (if
more than one match is made, then the first
one in the table is used), the corresponding
output code is output. If no buffer
remainder has been specified, the part of the
buffer that was matched is deleted from the
buffer. If a buffer remainder was specified, it
replaces the portion in the buffer that was
matched and the above operation is
repeated.

If no possibility of a match is found in the
table, the first character in the buffer is
output unchanged. If the output code for a
matched input code is a function that
changes the mode (on, off, switch, etc.),
the correspondence table is changed
according to the specifications in the mode
definition table. The functions that change
the mode should be placed in the tables
where they are required regardless of the
status of the modes.

If a match is found for the input code
corresponding to the function (restart),
the mode definition table will be reread.
However, the same file as the one for the
previous mode definition table will be used.
This function can be used to change to an
edited version of the conversion tables
(including the mode definition table) while
the Automaton is running without having to
stop the Automaton.

Postprocessing
In postprocessing, more than one output
code can be output for one input code as the
final output. In all the other ways,
postprocessing is the same as preprocessing.

In the following example "ls -la
(carriage_return)" is output when "Ls" or
"LS" is input.

wnn_automaton(4)

68 JFP Reference Manual 4 : File Formats • Last Revised 2 Sep 1998

Preprocessing
table

(defvar a1 (list s))

(a1) (toupper (a1))

Main
processing
table

LS "LS –la\n"

Postprocessing
table

(defvar a1 (all)) (a1)

(tolower (a1))

wnn_automaton(4)

JFP Reference Manual 4 : File Formats 69

wnn_cvt_key_tbl – Kana-Kanji conversion front end processor (uum) key code
conversion table file

/usr/lib/locale/ja/wnn/cvt_key_tbl

cvt_key_tbl defines the conversion table for terminfo entry and key code. uum(1)
converts the input strings to key code by using of terminfo and cvt_key_tbl. If
each escape sequence character is input for more than 1 second, uum converts it as
each separate character.

terminfo_entry code

A space character is necessary between terminfo_entry and code. Lines beginning with a
semicolon (;) are comments.

terminto_entryThe following terminfo entries are converted.

kf0 kf1 kf2 kf3 kf4 kf5 kf6

kf7 kf8 kf9 kf10 kf11 kf12 kf13

kf14 kf15 kf16 kf17 kf18 kf19 kf20

kf21 kf22 kf23 kf24 kf25 kf26 kf27

kf28 kf29 kf30 kf31 kbs ktbc kclr

kctab kdch1 kdl1 kcud1 krmir kel ked

khome kich1 kil1 kcub1 kll knp kpp

kcuf1 kind kri khts kcuu1

code

One
character
excluding
space,
"\", and
"^"

Indicates literal character.

^
character

character indicates @, A (a), B (b), C (c), D (d), E (e), F
(f), . . ., Z (z), [, \,], ^, and _, ^@ indicates control +
space (0x00), ^A indicates control + A (0x01), . . ., and ^_
indicates control + _ (0x1f).

wnn_cvt_key_tbl(4)

NAME

SYNOPSIS

DESCRIPTION

Syntax

70 JFP Reference Manual 4 : File Formats • Last Revised 27 Apr 1998

\octal
number,
\ooctal
number,
\ddecimal
number,
\xhexadecimal
number

Directly specifies character code.

\n, \t,
\b, \r, \f,
\e, \E

\n indicates newline, \t indicates tab, \b indicates backspace,
\r indicates return (RETURN), \f indicates form feed, \e
indicates escape (ESC), and \E indicates escape (ESC).

\character Possible characters are any characters except the following: 0
through 7, o, d, x, n, t, b, r, f, e, E. \ itself is repreasented by
"\\".

EXAMPLE 1

kf1 \x81
kf2 \x82
kf3 \x83
kf4 \x84
kcud1 \x92
kcub1 \x91
kcuf1 \x90

kcuu1 \x93

uum(1), uumkey(4), wnn_2A_CTRL(4)

Code converted by this table is evaluated by the roman character–Kana conversion
Automaton table 2A_CTRL (default) and then by uumkey.

wnn_cvt_key_tbl(4)

EXAMPLES

SEE ALSO

NOTES

JFP Reference Manual 4 : File Formats 71

wnn_cvt_xim_tbl – Key conversion table for xjsi

/usr/lib/locale/ja/wnn/cvt_xim_tbl

cvt_xim_tbl defines the conversion table for keyboard input and key code.xjsi(1)
converts keyboard input (KeySym) to code (Wnn_code) by using of cvt_key_tbl.

State-or-KeySym Wnn_code

State-or-KeySym = [States]KeySym-name

States = State-name | [States]
State-or-KeySym and Wnn_code must be separated with a space character or tab.
Lines beginning with a semicolon (;) are comments.

Octal number 0??

Decimal number ??

Hexadecimal number 0x?? or 0X??

EXAMPLE 1

Meta|Left 0x9A
Meta|Up 0x99
Meta|F11 0x95
Meta|minus 0x81
Meta|asciicircum 0x82
Kanji 0x81
F1 0x91
F2 0x90

Meta|Shift|F1 0x91

xjsi(1), uumkey(4), wnn_2A_CTRL(4)

Code converted by cvt_xim_tbl is evaluated by the Automaton table 2A_CTRL
(default) and then by uumkey.

wnn_cvt_xim_tbl(4)

NAME

SYNOPSIS

DESCRIPTION

SYNTAX

CODE
DESCRIPTION

EXAMPLES

SEE ALSO

NOTES

72 JFP Reference Manual 4 : File Formats • Last Revised 12 Aug 1998

wnn_hinsi.data – Wnn6 part of speech administration file

/usr/lib/locale/ja/wnn/ja/hinsi.data

hinsi.data is a file that contains information required to administer the main parts
of speech.

Numbers are allocated in the order of the parts of speech and composite parts of
speech defined in hinsi.data. These numbers are used when creating dictionary
files and part of speech files, when looking up part of speech names by numbers from
the client and server, and looking up the parts of speech in composite parts of speech.
Numbers are assigned in ascending order starting at 0.

Only the following operations are allowed for this file: appending new parts of speech
or composite parts of speech to the end of the file and replacing lines consisting of
only "@" with definitions of parts of speech or composite parts of speech. NEVER
DELETE ENTRIES. "@" is used to reserve lines in the file in advance when part of
speech names have not yet been determined.

The part of speech formats for lines in this file are as follows:

part_of_speech

composite_part_of_speech $ part_of_speech : part_of_speech: . . . :part_of_speech

All parts of speech appearing in definitions of composite parts of speech must be
defined before the composite part of speech can be defined. There must not be more
than one part of speech or composite part of speech with the same name.

Everything on a line following a semicolon (;) is treated as comment and ignored.

Information on this file (looking up part of speech names from part of speech numbers
and looking up the structural elements of composite parts of speech) are provided by
the library and can thus be referenced through the client process.

EXAMPLE 1

[SENTOU] ;Beginning of a sentence
[MEISHI] ;Indicates a noun.
[ICHIDAN]
[ICHIDANMEI]$[ICHIDAN]:[MEISHI] ;A composite part of speech
@

@

Information on the main parts of speech must be consistent between all dictionaries
and connection information files. Do not edit and change hinsi.data. (If the file is
changed, the meaning of the part of speech numbers in dictionaries and connection
information files created with the old part of speech administration file will change.)

wnn_hinsi.data(4)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

NOTES

JFP Reference Manual 4 : File Formats 73

wnn_mode – Mode definition table

/usr/lib/locale/ja/wnn/ja/rk/mode

mode specifies the input definition mode for xjsi(1) and uum(1), and sets the
combinations of correspondence tables used in each input conversion mode and the
rules for determining their usage. mode correspondes to a "table of contents" for
Automaton conversion tables.

Refer to the wnn_automaton(4) manpage for wnn_mode description.

uum(1), uumrc(1), xjsi(1), wnn_automaton(4)

wnn_mode(4)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

74 JFP Reference Manual 4 : File Formats • Last Revised 27 Apr 1998

wnn_serverdefs – Wnn6 Kana-Kanji conversion server connection parameter
configuration file

/etc/lib/locale/ja/wnn/serverdefs

serverdefs configures the connection between clients and the Wnn6 Kana–Kanji
conversion server. The Wnn6 library refers to this file to connect the conversion server.
Lines beginning with semicolons (;) are comments.

<LANG_name> <server_host_name> <UNIX_DOMAIN_socket_name>
<service_name> <port_number> <environment_variable_name>

<LANG_name> Specifies the language. xjsi and uum refers the
line containing "ja".

<server_host_name> Specifies the host name of the conversion server.

<UNIX_DOMAIN_socket_name> Specifies the socket’s terminal to use if
connection is made to a unix domain socket.

<service_name> Specifies the name of the tcp service to use if
connection is made to an inet domain socket.

<port_number> Specifies the tcp port number to use if connection
is made to an inet domain socket. If the service
name is not found, this port number will be
used. This port number may be omitted.

<environmental_variable_name> Specifies the environment variable name set to
the host name of the conversion server.

EXAMPLE 1

ja jserver /tmp/jd_sockV6 wnn6 22273 JSERVER

uum(1), xjsi(1), jserver(1M)

wnn_serverdefs(4)

NAME

SYNOPSIS

DESCRIPTION

SYNTAX

EXAMPLES

SEE ALSO

JFP Reference Manual 4 : File Formats 75

wnn_ximrc – xjsi configuration file

/usr/lib/locale/ja/wnn/ximrc

ximrc file sets the environment for xjsi. Different settings are possible for each user.
Entries is set in the following style:

entry setting_value ...entry and setting_value are separated by space character or tab.
Lines beginning with semicolons (;) are comments. If the same entry appears more
than once, the last one will be used. Defaults are used for any setting_values that are
not set.

setuumrc language uumrc
Specifies the uumrc file that xjsi refers to for each language. For Japanese, specify
"ja". uumrc defaults to @LIBDIR/@LANG/uumrc.

preloadrkfile language_name
Specifies the language that loads the Automaton table when starting. xjsi ignores
this entry.

setbackspacechar backspace_char
Specifies the backspace character. If it is omitted, 0x7f is used.

setposition location
Specifies the position to display the candidate list window.

over window bottom in which input operation is executed

spot inserted position for input characters

center center of the screen

The default is over.

setlayout format
Specifies the format of the candidate list window.

multi Displays the candidate in vertical and horizontal

vert Displays the candidate in vertical

horiz Displays the candidate in horizontal

If ATOK input style is used, the default is horiz. Otherwise, multi is used as
default value. If multi is specified in ATOK input style, horiz is used. The default
is multi.

EXAMPLE 1

;; sample ximrc
setposition spot

setlayout vert

wnn_ximrc(4)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

76 JFP Reference Manual 4 : File Formats • Last Revised 12 Aug 1998

xjsi(1)

wnn_ximrc(4)

SEE ALSO

JFP Reference Manual 4 : File Formats 77

wnn_ximrc(4)

78 JFP Reference Manual 4 : File Formats • Last Revised 12 Aug 1998

