
JFP Reference Manual 3 : Library
Routines

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 817–0658–10
December 2002

Copyright 2002 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or service marks
of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

021211@5115

Contents

Preface 5

JFP Reference Manual 3 : Library Routines 11

Intro_jfp(3) 12

wctrans_ja(3C) 15

wctype_ja(3C) 16

3

4 JFP Reference Manual 3 : Library Routines • December 2002

Preface

Both novice users and those familar with the SunOS operating system can use online
man pages to obtain information about the system and its features. A man page is
intended to answer concisely the question “What does it do?” The man pages in
general comprise a reference manual. They are not intended to be a tutorial.

Overview
The following contains a brief description of each man page section and the
information it references:

� Section 1 describes, in alphabetical order, commands available with the operating
system.

� Section 1M describes, in alphabetical order, commands that are used chiefly for
system maintenance and administration purposes.

� Section 2 describes all of the system calls. Most of these calls have one or more
error returns. An error condition is indicated by an otherwise impossible returned
value.

� Section 3 describes functions found in various libraries, other than those functions
that directly invoke UNIX system primitives, which are described in Section 2.

� Section 4 outlines the formats of various files. The C structure declarations for the
file formats are given where applicable.

� Section 5 contains miscellaneous documentation such as character-set tables.
� Section 6 contains available games and demos.
� Section 7 describes various special files that refer to specific hardware peripherals

and device drivers. STREAMS software drivers, modules and the
STREAMS-generic set of system calls are also described.

5

� Section 9 provides reference information needed to write device drivers in the
kernel environment. It describes two device driver interface specifications: the
Device Driver Interface (DDI) and the Driver⁄Kernel Interface (DKI).

� Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point routines a
developer can include in a device driver.

� Section 9F describes the kernel functions available for use by device drivers.
� Section 9S describes the data structures used by drivers to share information

between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual section
generally follow this order, but include only needed headings. For example, if there
are no bugs to report, there is no BUGS section. See the intro pages for more
information and detail about each section, and man(1) for more information about man
pages in general.

NAME This section gives the names of the commands or
functions documented, followed by a brief
description of what they do.

SYNOPSIS This section shows the syntax of commands or
functions. When a command or file does not exist
in the standard path, its full path name is shown.
Options and arguments are alphabetized, with
single letter arguments first, and options with
arguments next, unless a different argument order
is required.

The following special characters are used in this
section:

[] Brackets. The option or argument
enclosed in these brackets is optional. If
the brackets are omitted, the argument
must be specified.

. . . Ellipses. Several values can be provided
for the previous argument, or the
previous argument can be specified
multiple times, for example, "filename
. . ." .

| Separator. Only one of the arguments
separated by this character can be
specified at a time.

{ } Braces. The options and/or arguments
enclosed within braces are
interdependent, such that everything
enclosed must be treated as a unit.

6 JFP Reference Manual 3 : Library Routines • December 2002

PROTOCOL This section occurs only in subsection 3R to
indicate the protocol description file.

DESCRIPTION This section defines the functionality and behavior
of the service. Thus it describes concisely what the
command does. It does not discuss OPTIONS or
cite EXAMPLES. Interactive commands,
subcommands, requests, macros, and functions are
described under USAGE.

IOCTL This section appears on pages in Section 7 only.
Only the device class that supplies appropriate
parameters to the ioctl(2) system call is called
ioctl and generates its own heading. ioctl calls
for a specific device are listed alphabetically (on the
man page for that specific device). ioctl calls are
used for a particular class of devices all of which
have an io ending, such as mtio(7I).

OPTIONS This secton lists the command options with a
concise summary of what each option does. The
options are listed literally and in the order they
appear in the SYNOPSIS section. Possible
arguments to options are discussed under the
option, and where appropriate, default values are
supplied.

OPERANDS This section lists the command operands and
describes how they affect the actions of the
command.

OUTPUT This section describes the output – standard output,
standard error, or output files – generated by the
command.

RETURN VALUES If the man page documents functions that return
values, this section lists these values and describes
the conditions under which they are returned. If a
function can return only constant values, such as 0
or –1, these values are listed in tagged paragraphs.
Otherwise, a single paragraph describes the return
values of each function. Functions declared void do
not return values, so they are not discussed in
RETURN VALUES.

ERRORS On failure, most functions place an error code in
the global variable errno indicating why they
failed. This section lists alphabetically all error
codes a function can generate and describes the
conditions that cause each error. When more than

Preface 7

one condition can cause the same error, each
condition is described in a separate paragraph
under the error code.

USAGE This section lists special rules, features, and
commands that require in-depth explanations. The
subsections listed here are used to explain built-in
functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

EXAMPLES This section provides examples of usage or of how
to use a command or function. Wherever possible a
complete example including command-line entry
and machine response is shown. Whenever an
example is given, the prompt is shown as
example%, or if the user must be superuser,
example#. Examples are followed by explanations,
variable substitution rules, or returned values. Most
examples illustrate concepts from the SYNOPSIS,
DESCRIPTION, OPTIONS, and USAGE sections.

ENVIRONMENT VARIABLES This section lists any environment variables that
the command or function affects, followed by a
brief description of the effect.

EXIT STATUS This section lists the values the command returns to
the calling program or shell and the conditions that
cause these values to be returned. Usually, zero is
returned for successful completion, and values
other than zero for various error conditions.

FILES This section lists all file names referred to by the
man page, files of interest, and files created or
required by commands. Each is followed by a
descriptive summary or explanation.

ATTRIBUTES This section lists characteristics of commands,
utilities, and device drivers by defining the
attribute type and its corresponding value. See
attributes(5) for more information.

SEE ALSO This section lists references to other man pages,
in-house documentation, and outside publications.

8 JFP Reference Manual 3 : Library Routines • December 2002

DIAGNOSTICS This section lists diagnostic messages with a brief
explanation of the condition causing the error.

WARNINGS This section lists warnings about special conditions
which could seriously affect your working
conditions. This is not a list of diagnostics.

NOTES This section lists additional information that does
not belong anywhere else on the page. It takes the
form of an aside to the user, covering points of
special interest. Critical information is never
covered here.

BUGS This section describes known bugs and, wherever
possible, suggests workarounds.

Preface 9

10 JFP Reference Manual 3 : Library Routines • December 2002

JFP Reference Manual 3 : Library
Routines

11

Intro_jfp, intro_jfp – introduction to JFP functions and libraries

This section describes JFP functions found in various libraries, other than those
functions that directly invoke UNIX which are described in Section 2 of man pages
section 1: User Commands. Function declarations can be obtained from the #include
files indicated on each page.

A character is any bit pattern able to fit into a byte on the machine.

The null character is a character with value 0, conventionally represented in the C
language as \0. A character array is a sequence of characters. A null-terminated
character array (a string) is a sequence of characters, the last of which is the null
character. The null string is a character array containing only the terminating null
character. A NULL pointer is the value that is obtained by casting 0 into a pointer. C
guarantees that this value will not match that of any legitimate pointer, so many
functions that return pointers return NULL to indicate an error. The macro NULL is
defined in <stdio.h>. Types of the form size_t are defined in the appropriate
headers.

See attributes(5) for descriptions of library MT-Levels.

INCDIR usually, /usr/include

LIBDIR usually, /usr/lib (32-bit) or /usr/lib/sparcv9
(64-bit)

LIBDIR/libci.so

LIBDIR/libci.a

LIBDIR/libcics.so

LIBDIR/libcics.a

LIBDIR/libci.so.1

LIBDIR/libcics.so.1

ar(1), cc(1B), ld(1), nm(1),

intro(2),

intro(3), stdio(3C)

libadm(3LIB), libc(3LIB), libelf(3LIB), libdl(3LIB), libkvm(3LIB),
libmapmalloc(3LIB), libmp(3LIB), libnsl(3LIB), librac(3LIB),
libresolv(3LIB), librpcsvc(3LIB), libsocket(3LIB), libpthread(3LIB),
libthread(3LIB), libxfn(3LIB), libxnet(3LIB)

attributes(5), standards(5)

Linker and Libraries Guide

Intro_jfp(3)

NAME

DESCRIPTION

DEFINITIONS

MT-Level of
Libraries

FILES

SEE ALSO

12 JFP Reference Manual 3 : Library Routines • Last Revised 13 Sep 2002

Profiling Tools

ANSI C Programmer’s Guide

For functions that return floating-point values, error handling varies according to
compilation mode. Under the –Xt (default) option to cc these functions return the
conventional values 0, ±HUGE or NaN when the function is undefined for the given
arguments or when the value is not representable. In the –Xa and –Xc compilation
modes, ±HUGE_VAL is returned instead of ±HUGE. (HUGE_VAL and HUGE are defined in
math.h to be infinity and the largest-magnitude single-precision number,
respectively.)

When compiling a multithreaded application, either the _POSIX_C_SOURCE,
_POSIX_PTHREAD_SEMANTICS, or _REENTRANT flag must be defined on the
command line. This enables special definitions for functions only applicable to
multithreaded applications. For POSIX.1c-conforming applications, define the
_POSIX_C_SOURCE flag to be >= 199506L:

cc [flags]file... –D_POSIX_C_SOURCE=199506L –lpthread

For POSIX behavior with the Solaris fork() and fork1() distinction, compile as
follows:

cc [flags]file... –D_POSIX_PTHREAD_SEMANTICS –lthread

For Solaris behavior, compile as follows:

cc [flags]file... –D_REENTRANT –lthread

When building a singlethreaded application, the above flag should be undefined. This
generates a binary that is executable on previous Solaris releases, which do not
support multithreading.

Unsafe interfaces should be called only from the main thread to ensure the
application’s safety.

MT-Safe interfaces are denoted in the NOTES section of the functions and libraries
man pages. If a man page does not state explicitly that an interface is MT-Safe, the user
should assume that the interface is unsafe.

Be sure to have set the environment variable LD_BIND_NOW to a non-NULL value to
enable early binding. Refer to the “When Relocations are Performed” chapter in Linker
and Libraries Guide for additional information.

None of the functions, external variables, or macros should be redefined in the user’s
programs. Any other name may be redefined without affecting the behavior of other
library functions, but such redefinition may conflict with a declaration in an included
header.

Intro_jfp(3)

DIAGNOSTICS

NOTES ON
MULTITHREAD
APPLICATIONS

REALTIME
APPLICATIONS

NOTES

JFP Reference Manual 3 : Library Routines 13

The headers in INCDIR provide function prototypes (function declarations including
the types of arguments) for most of the functions listed in this manual. Function
prototypes allow the compiler to check for correct usage of these functions in the
user’s program.

The lint program checker may also be used and will report discrepancies even if the
headers are not included with #include statements. Definitions for Sections 2, 3C,
and 3S are checked automatically. Other definitions can be included by using the -l
option to lint. (For example, –lm includes definitions for libm.) Use of lint is
highly recommended. See the lint chapter in Profiling Tools.

Users should carefully note the difference between STREAMS and stream. STREAMS is
a set of kernel mechanisms that support the development of network services and data
communication drivers. It is composed of utility routines, kernel facilities, and a set of
data structures. Astream is a file with its associated buffering. It is declared to be a
pointer to a type FILE defined in <stdio.h>.

In detailed definitions of components, it is sometimes necessary to refer to symbolic
names that are implementation-specific, but which are not necessarily expected to be
accessible to an application program. Many of these symbolic names describe
boundary conditions and system limits.

In this section, for readability, these implementation-specific values are given symbolic
names. These names always appear enclosed in curly brackets to distinguish them
from symbolic names of other implementation-specific constants that are accessible to
application programs by headers. These names are not necessarily accessible to an
application program through a header, although they may be defined in the
documentation for a particular system.

In general, a portable application program should not refer to these symbolic names in
its code. For example, an application program would not be expected to test the length
of an argument list given to a routine to determine if it was greater than {ARG_MAX}.

Name Description

Intro_jfp(3) introduction to JFP functions and libraries

wctrans_ja(3C) Wide character conversion for the Japanese locale

wctype_ja(3C) Define a character class for the Japanese locale

Intro_jfp(3)

LIST OF C
LIBRARY

FUNCTIONS

14 JFP Reference Manual 3 : Library Routines • Last Revised 13 Sep 2002

wctrans_ja – Wide character conversion for the Japanese locale

#include <wchar.h>

wctrans_t wctrans(const char *property);

wctrans() builds values in wctrans_t data type according to the specification with
the property argument to allow conversion between wide characters. towctrans() is
used for actual conversion. wctrans() returns arguments that towctrans() needs
to use.

The following character class names are defined in every locale.

tolower
toupper

In addition to the above, the Japanese locale (ja, ja_JP.PCK and ja_JP.UTF-8) defines the
following character classes specific to the Japanese locale.

tojhira
tojkata
tojisx0208
tojisx0201

These can be also used as property arguments to wctrans(). However, the use of
these classes are limited to applications for the Japanese locale only.

tolower Specifies conversion to lowercase alphabet wide characters.

toupper Specifies conversion to uppercase alphabet wide characters.

tojhira Specifies conversion of JIS X 0208 Katakana to Hiragana.

tojkata Specifies conversion of JIS X 0208 Hiragana to Katakana.

tojisx0208 Specifies conversion of JIS X 0201 Roman character graphic set or
Katakana character graphic set to the associated JIS X 0208
characters.

tojisx0201 Specifies conversion of JIS X 0208 characters to the associated JIS X
0201 Roman character graphic set or Katakana character graphic
set.

The following shows an example to convert a wide character wc to Hiragana.

towctrans(wc, wctrans("tojhira"))

towctrans(3C), wctrans(3C), wctype_ja(3C), PCK(5), eucJP(5)

wctrans_ja(3C)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLE

SEE ALSO

JFP Reference Manual 3 : Library Routines 15

wctype_ja – Define a character class for the Japanese locale

#include <wchar.h>

wctype_t wctype(const char *charclass);

wctype() builds values in wctype_t data type according to the specification with
the charclass argument to determine wide character classes. iswctype() is used for
actual determination. wctype() returns arguments that wctype() needs to use.

The following character class names are defined in every locale.

alnum alpha blank cntrl
digit graph lower print
punct space upper xdigit

In addition to the above, the Japanese locale (ja, ja_JP.eucJP, ja_JP.PCK and ja_JP.UTF-8)
defines the following character classes specific to the Japanese locale.

jkanji jkata hira jdigit
jparen line jisx0201r jisx0208
jisx0212 udc vdc

The following character classes are supported in ja and ja_JP.eucJP locales only.

jalpha jspecial jgreek jrussian
junit jsci jgen jpunct

The following character classes are supported in ja_JP.eucJP and ja_JP.UTF-8 locale
only.

ascii paren jisx0201
gaiji jhankana jspace

These can be also used as charclass arguments to wctype(). However, the use of these
classes are limited to applications for the Japanese locale only.

upper Character class that represents any uppercase letter

JIS X
0201
Roman
character
graphic
set

Alphabet uppercase letters (C/1–D/10)

JIS X
0208

Roman character uppercase letters (3/33–3/58)

Greek character uppercase letters (6/1–24)

Russian character uppercase letters (7/1–33)

JIS X
0212

Greek alphabet uppercase letters with diacritical marks
(6/65–69, 71, 73, 74, 76)

wctype_ja(3C)

NAME

SYNOPSIS

DESCRIPTION

16 JFP Reference Manual 3 : Library Routines • Last Revised 18 Jun 1998

Cyrillic alphabet uppercase letters (7/34-46)

Latin alphabet uppercase letters (9/1, 2, 4, 6, 8, 9, 11, 12,
13, 15, 16)

Latin alphabet uppercase letters with diacritical marks
(10/01–24, 26–87)

lower Character class that represents any lowercase letter

JIS X
0201
Roman
character
graphic
set

Alphabet lowercase letters (E/1–F/10)

JIS X
0208

Roman character lowercase letters (3/65–90)

Greek character lowercase letters (6/33–56)

Russian character lowercase letters (7/49–81)

JIS X
0212

Greek alphabet lowercase letters with diacritical marks
(6/81–92)

Cyrillic alphabet lowercase letters (7/82–94)

Latin alphabet lowercase letters (9/33–48)

Latin alphabet lowercase letters with diacritical marks
(11/1–27, 29–35, 37–87)

digit Class that determines the numbers 0 to 10 for decimal
representation.

JIS X
0201
Roman
character
graphic
set

Numbers (B/0–9)

space Class that determines a space.

JIS X
0201
Control
character
set

Space (A/9–13)

Space characters

JIS X
0208

Space (1/1)

wctype_ja(3C)

JFP Reference Manual 3 : Library Routines 17

punct Class that determines symbols and special characters.

JIS X
0201
Roman
character
graphic
set

A/1–15, B/10–C/0, D/11–E/0, F/11–14

cntrl Class that determines control characters.

JIS X
0201
Control
character
set

All characters

Kill
characters

C1
control
characters

All characters

blank Class that determines field delimiters.

JIS X
0201
Control
character
set

A/9

Space characters

JIS X
0208

Space (1/1)

xdigit Class that determines alphanumerics used for hexadecimal
representation.

JIS X
0201
Roman
character
graphic
set

Numbers (B/0–9)

A–F, a–f (C/1–6, E/1–6)

alpha Class that determines alphabets.

upper class and lower class letters

print Class that determines printable characters.

JIS X 0201 Roman character
graphic set

Space characters

wctype_ja(3C)

18 JFP Reference Manual 3 : Library Routines • Last Revised 18 Jun 1998

JIS X 0201 Katakana
character graphic set

All the characters except in
character undefined areas

JIS X 0208 All the characters except in
character undefined areas

JIS X 0212 All the characters except in
character undefined areas

Vendor-defined character
areas

All the characters except in
character undefined areas in Class
vdc.

User-defined character areas All the characters including
character undefined areas in Class
udc.

graph Class that determines graphic characters.

All the characters in Class print except those in Class space.

jkanji Class that determines Kanji (symbol or ideographic characters
used for Kanji representation).

JIS X
0208

Character defined areas from Ku 16 to Ku 84.

JIS X
0212

Character defined areas from Ku 16 to Ku 77.

jkata Class that determines Katakana.

JIS X
0208

5/1–86, 1/11, 12, 19, 20

jhira Class that determines Hiragana.

JIS X
0208

4/1–83, 1/11, 12, 21, 22, 26

jdigit Class that determines numbers except in digit.

JIS X
0208

3/16–25

jparen Class that determines characters such as parentheses.

JIS X
0208

1/38–59

line Class that determines ruled line primitives.

JIS X 0208 8/1–32

jisx0201r Class that determines characters included in JIS X 0201 Katakana
character graphic set.

wctype_ja(3C)

JFP Reference Manual 3 : Library Routines 19

JIS X 0201 Katakana
character graphic set

All the characters from A/1 to
D/15.

jisx0208 Class that determines characters included in JIS X 0208.

All the characters including those in JIS X 0208 character
undefined areas: From Ku 1 to Ku 84 (Ku 13 Vendor-defined
character area is included).

jisx0212 Class that determine characters included in JIS X 0212.

All the characters including those in JIS X 0212 character
undefined areas: From Ku 1 to Ku 84 (Ku 83 and 84
Vendor-defined character areas are also included). No characters in
ja_JP.PCK locale are included in this class.

udc Class that determines user-defined characters.

All the characters including those in character undefined areas in
the user-defined character area.

ja locale

User-defined characters (Ku 1–20) 0xf5a1–0xfefe

0x8ff5a1–0x8ffefe

ja_JP.PCK
locale

User-defined characters (Ku 1–20) 0xf040–0xf9fc

ja_JP.UTF-8
locale

User-defined characters (6400 characters)
0xe000–0xf8ff

vdc Class that determines vendor-defined characters.

All the characters including those in character undefined areas in
the vendor-defined character area.

ja and ja_JP.eucJP
locale

JIS X 0208 Ku 13: Special symbols

JIS X 0212 Ku 83 – 84

IBM Extended characters not included in JIS X
0212.

ja_JP.PCK locale JIS X 0208 Ku 13: Special symbols

NEC-selective IBM Extended characters
0xed40–0xeffc

wctype_ja(3C)

20 JFP Reference Manual 3 : Library Routines • Last Revised 18 Jun 1998

IBM Extended characters: 0xfa40–0xfcfc

ja_JP.UTF-8 locale Not defined

jalpha Class that determines alphabet letters.

JIS X
0208

3/33–58, 3/65–90

jspecial Class that determines special symbol characters.

JIS X
0208

1/2–94, 2/1–14, 2/26–33, 2/42–48, 2/60–74, 2/82–89, 94

JIS X
0212

2/15–25, 2/34–36, 2/75–81

JIS X
0208 Ku
13:
Special
symbols

IBM Extended characters

Special characters defined by NEC-selective IBM
Extended characters

jgreek Class that determines Greek characters.

JIS X
0208

6/1–24, 6/33–56

jrussian Class that determines Russian characters.

JIS X
0208

7/1–7/33, 7/49–81

junit Class that determines unit symbols.

JIS X
0208

1/75–83, 2/82, 83

JIS X
0212

2/80

jsci Class that detemines scientific symbols.

JIS X
0208

1/60–74, 2/26–33, 2/42–48, 2/60–74

jgen Class that determines general symbols.

JIS X
0208

1/84–94, 2/1–14, 2/84–89, 94

JIS X
0212

2/35, 75, 2/79–81

jpunct Class that determines punctuation symbols.

wctype_ja(3C)

JFP Reference Manual 3 : Library Routines 21

JIS X
0208

1/2–37

JIS X
0212

2/34, 36

ascii Class that determines JIS X 0201 Functional character set, Space
characters, Roman character graphic set, and Kill characters.

paren Class that determines characters such as parentheses.

jisx0201 Class that determines characters included in JIS X 0212.

gaiji Class that determines implementer defined characters. udc and
vdc classes are included.

jhankana Class that determines characters used for Japanese representation
included in JIS X 0212.

jspace Class that determines space characters included in JIS X 0208 and
JIS X 0212.

XX/YY in JIS X 0201 Functional character set, Roman character graphic set, and
Katakana character graphic set denotes Column XX and Row YY. XX/YY in JIS X 0208
and JIS X 0212 denotes Ku XX and Point YY.

In case of JIS X 0212 characters, this rule only applies to ja, ja_JP.eucJP, or ja_JP.UTF-8
locale.

The following example shows how to determine if the wide character wc is included
in Class udc.

iswctype(wc, wctype("udc"))

iswctype(3C), wctype(3C), wctrans_ja(3C), eucJP(5), PCK(5)

wctype_ja(3C)

EXAMPLES

SEE ALSO

22 JFP Reference Manual 3 : Library Routines • Last Revised 18 Jun 1998

