
man pages section 5: Standards,
Environments, and Macros

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 817–0684–10
August 2003

Copyright 2003 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or service marks
of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2003 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, ou
marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des
marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques
SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

030610@5943

Contents

Preface 7

Introduction 13

Intro(5) 14

Standards, Environments, and Macros 15

ascii(5) 16
attributes(5) 18
charmap(5) 26
crypt_bsdbf(5) 29
crypt_bsdmd5(5) 30
crypt_sunmd5(5) 31
crypt_unix(5) 32
dhcp(5) 33
dhcp_modules(5) 35
environ(5) 37
eqnchar(5) 42
extensions(5) 43
filesystem(5) 44
fnmatch(5) 63
fns(5) 67
fns_dns(5) 69
fns_files(5) 71
fns_initial_context(5) 73
fns_nis+(5) 77

3

fns_nis(5) 79

fns_policies(5) 81

fns_references(5) 85

fns_x500(5) 88

formats(5) 91

fsattr(5) 96

iconv_1250(5) 107

iconv_1251(5) 113

iconv(5) 122

iconv_646(5) 126

iconv_852(5) 129

iconv_8859-1(5) 135

iconv_8859-2(5) 141

iconv_8859-5(5) 147

iconv_dhn(5) 155

iconv_koi8-r(5) 159

iconv_mac_cyr(5) 167

iconv_maz(5) 175

iconv_pc_cyr(5) 179

iconv_unicode(5) 185

isalist(5) 190

largefile(5) 192

lf64(5) 196

lfcompile(5) 203

lfcompile64(5) 206

live_upgrade(5) 208

locale(5) 212

man(5) 239

mansun(5) 243

me(5) 247

mm(5) 252

ms(5) 259

nfssec(5) 264

pam_authtok_check(5) 266

pam_authtok_get(5) 268

pam_authtok_store(5) 270

pam_dhkeys(5) 271

pam_dial_auth(5) 273

4 man pages section 5: Standards, Environments, and Macros • August 2003

pam_krb5(5) 274

pam_ldap(5) 279

pam_passwd_auth(5) 284

pam_projects(5) 286

pam_rhosts_auth(5) 287

pam_roles(5) 288

pam_sample(5) 290

pam_smartcard(5) 292

pam_unix(5) 294

pam_unix_account(5) 297

pam_unix_auth(5) 298

pam_unix_session(5) 300

prof(5) 301

rbac(5) 302

regex(5) 305

regexp(5) 314

SEAM(5) 321

sgml(5) 323

smartcard(5) 327

standards(5) 329

sticky(5) 334

term(5) 335

vgrindefs(5) 339

wbem(5) 342

Index 345

Contents 5

6 man pages section 5: Standards, Environments, and Macros • August 2003

Preface

Both novice users and those familar with the SunOS operating system can use online
man pages to obtain information about the system and its features. A man page is
intended to answer concisely the question “What does it do?” The man pages in
general comprise a reference manual. They are not intended to be a tutorial.

Overview
The following contains a brief description of each man page section and the
information it references:

� Section 1 describes, in alphabetical order, commands available with the operating
system.

� Section 1M describes, in alphabetical order, commands that are used chiefly for
system maintenance and administration purposes.

� Section 2 describes all of the system calls. Most of these calls have one or more
error returns. An error condition is indicated by an otherwise impossible returned
value.

� Section 3 describes functions found in various libraries, other than those functions
that directly invoke UNIX system primitives, which are described in Section 2.

� Section 4 outlines the formats of various files. The C structure declarations for the
file formats are given where applicable.

� Section 5 contains miscellaneous documentation such as character-set tables.
� Section 6 contains available games and demos.
� Section 7 describes various special files that refer to specific hardware peripherals

and device drivers. STREAMS software drivers, modules and the
STREAMS-generic set of system calls are also described.

7

� Section 9 provides reference information needed to write device drivers in the
kernel environment. It describes two device driver interface specifications: the
Device Driver Interface (DDI) and the Driver⁄Kernel Interface (DKI).

� Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point routines a
developer can include in a device driver.

� Section 9F describes the kernel functions available for use by device drivers.
� Section 9S describes the data structures used by drivers to share information

between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual section
generally follow this order, but include only needed headings. For example, if there
are no bugs to report, there is no BUGS section. See the intro pages for more
information and detail about each section, and man(1) for more information about man
pages in general.

NAME This section gives the names of the commands or
functions documented, followed by a brief
description of what they do.

SYNOPSIS This section shows the syntax of commands or
functions. When a command or file does not exist
in the standard path, its full path name is shown.
Options and arguments are alphabetized, with
single letter arguments first, and options with
arguments next, unless a different argument order
is required.

The following special characters are used in this
section:

[] Brackets. The option or argument
enclosed in these brackets is optional. If
the brackets are omitted, the argument
must be specified.

. . . Ellipses. Several values can be provided
for the previous argument, or the
previous argument can be specified
multiple times, for example, "filename
. . ." .

| Separator. Only one of the arguments
separated by this character can be
specified at a time.

{ } Braces. The options and/or arguments
enclosed within braces are
interdependent, such that everything
enclosed must be treated as a unit.

8 man pages section 5: Standards, Environments, and Macros • August 2003

PROTOCOL This section occurs only in subsection 3R to
indicate the protocol description file.

DESCRIPTION This section defines the functionality and behavior
of the service. Thus it describes concisely what the
command does. It does not discuss OPTIONS or
cite EXAMPLES. Interactive commands,
subcommands, requests, macros, and functions are
described under USAGE.

IOCTL This section appears on pages in Section 7 only.
Only the device class that supplies appropriate
parameters to the ioctl(2) system call is called
ioctl and generates its own heading. ioctl calls
for a specific device are listed alphabetically (on the
man page for that specific device). ioctl calls are
used for a particular class of devices all of which
have an io ending, such as mtio(7I).

OPTIONS This secton lists the command options with a
concise summary of what each option does. The
options are listed literally and in the order they
appear in the SYNOPSIS section. Possible
arguments to options are discussed under the
option, and where appropriate, default values are
supplied.

OPERANDS This section lists the command operands and
describes how they affect the actions of the
command.

OUTPUT This section describes the output – standard output,
standard error, or output files – generated by the
command.

RETURN VALUES If the man page documents functions that return
values, this section lists these values and describes
the conditions under which they are returned. If a
function can return only constant values, such as 0
or –1, these values are listed in tagged paragraphs.
Otherwise, a single paragraph describes the return
values of each function. Functions declared void do
not return values, so they are not discussed in
RETURN VALUES.

ERRORS On failure, most functions place an error code in
the global variable errno indicating why they
failed. This section lists alphabetically all error
codes a function can generate and describes the
conditions that cause each error. When more than

Preface 9

one condition can cause the same error, each
condition is described in a separate paragraph
under the error code.

USAGE This section lists special rules, features, and
commands that require in-depth explanations. The
subsections listed here are used to explain built-in
functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

EXAMPLES This section provides examples of usage or of how
to use a command or function. Wherever possible a
complete example including command-line entry
and machine response is shown. Whenever an
example is given, the prompt is shown as
example%, or if the user must be superuser,
example#. Examples are followed by explanations,
variable substitution rules, or returned values. Most
examples illustrate concepts from the SYNOPSIS,
DESCRIPTION, OPTIONS, and USAGE sections.

ENVIRONMENT VARIABLES This section lists any environment variables that
the command or function affects, followed by a
brief description of the effect.

EXIT STATUS This section lists the values the command returns to
the calling program or shell and the conditions that
cause these values to be returned. Usually, zero is
returned for successful completion, and values
other than zero for various error conditions.

FILES This section lists all file names referred to by the
man page, files of interest, and files created or
required by commands. Each is followed by a
descriptive summary or explanation.

ATTRIBUTES This section lists characteristics of commands,
utilities, and device drivers by defining the
attribute type and its corresponding value. See
attributes(5) for more information.

SEE ALSO This section lists references to other man pages,
in-house documentation, and outside publications.

10 man pages section 5: Standards, Environments, and Macros • August 2003

DIAGNOSTICS This section lists diagnostic messages with a brief
explanation of the condition causing the error.

WARNINGS This section lists warnings about special conditions
which could seriously affect your working
conditions. This is not a list of diagnostics.

NOTES This section lists additional information that does
not belong anywhere else on the page. It takes the
form of an aside to the user, covering points of
special interest. Critical information is never
covered here.

BUGS This section describes known bugs and, wherever
possible, suggests workarounds.

Preface 11

12 man pages section 5: Standards, Environments, and Macros • August 2003

Introduction

13

Intro – introduction to miscellany

Among the topics presented in this section are:

Standards The POSIX (IEEE) Standards and the X/Open Specifications are
described on the standards page.

Environments The user environment (environ), the subset of the user
environment that depends on language and cultural conventions
(locale), the large file compilation environment (lfcompile),
and the transitional compilation environment (lfcompile64) are
described.

Macros The macros to format Reference Manual pages (man and mansun)
as well as other text format macros (me, mm, and ms) are described.

Characters Tables of character sets (ascii, charmap, eqnchar, and iconv),
file format notation (formats), file name pattern matching
(fnmatch), and regular expressions (regex and regexp) are
presented.

FNS Topics concerning the Federated Naming Service (fns,
fns_initial_context, fns_policies, and
fns_references) are discussed.

Intro(5)

NAME

DESCRIPTION

14 man pages section 5: Standards, Environments, and Macros • Last Revised 12 May 1999

Standards, Environments, and Macros

15

ascii – map of ASCII character set

cat /usr/pub/ascii

/usr/pub/ascii is a map of the ASCII character set, to be printed as needed. It
contains octal and hexadecimal values for each character. While not included in that
file, a chart of decimal values is also shown here.

Octal − Character

000 NUL 001 SOH 002 STX 003 ETX 004 EOT 005 ENQ 006 ACK 007 BEL
010 BS 011 HT 012 NL 013 VT 014 NP 015 CR 016 SO 017 SI
020 DLE 021 DC1 022 DC2 023 DC3 024 DC4 025 NAK 026 SYN 027 ETB
030 CAN 031 EM 032 SUB 033 ESC 034 FS 035 GS 036 RS 037 US
040 SP 041 ! 042 " 043 # 044 $ 045 % 046 & 047 ’
050 (051) 052 * 053 + 054 , 055 − 056 . 057 /
060 0 061 1 062 2 063 3 064 4 065 5 066 6 067 7
070 8 071 9 072 : 073 ; 074 < 075 = 076 > 077 ?
100 @ 101 A 102 B 103 C 104 D 105 E 106 F 107 G
110 H 111 I 112 J 113 K 114 L 115 M 116 N 117 O
120 P 121 Q 122 R 123 S 124 T 125 U 126 V 127 W
130 X 131 Y 132 Z 133 [134 \ 135] 136 ^ 137 _
140 ‘ 141 a 142 b 143 c 144 d 145 e 146 f 147 g
150 h 151 i 152 j 153 k 154 l 155 m 156 n 157 o
160 p 161 q 162 r 163 s 164 t 165 u 166 v 167 w

170 x 171 y 172 z 173 { 174 | 175 } 176 ~ 177 DEL

Hexadecimal − Character

00 NUL 01 SOH 02 STX 03 ETX 04 EOT 05 ENQ 06 ACK 07 BEL
08 BS 09 HT 0A NL 0B VT 0C NP 0D CR 0E SO 0F SI
10 DLE 11 DC1 12 DC2 13 DC3 14 DC4 15 NAK 16 SYN 17 ETB
18 CAN 19 EM 1A SUB 1B ESC 1C FS 1D GS 1E RS 1F US
20 SP 21 ! 22 " 23 # 24 $ 25 % 26 & 27 ’
28 (29) 2A * 2B + 2C , 2D − 2E . 2F /
30 0 31 1 32 2 33 3 34 4 35 5 36 6 37 7
38 8 39 9 3A : 3B ; 3C < 3D = 3E > 3F ?
40 @ 41 A 42 B 43 C 44 D 45 E 46 F 47 G
48 H 49 I 4A J 4B K 4C L 4D M 4E N 4F O
50 P 51 Q 52 R 53 S 54 T 55 U 56 V 57 W
58 X 59 Y 5A Z 5B [5C \ 5D] 5E ^ 5F _
60 ‘ 61 a 62 b 63 c 64 d 65 e 66 f 67 g
68 h 69 i 6A j 6B k 6C l 6D m 6E n 6F o
70 p 71 q 72 r 73 s 74 t 75 u 76 v 77 w

78 x 79 y 7A z 7B { 7C | 7D } 7E ~ 7F DEL

Decimal − Character

0 NUL 1 SOH 2 STX 3 ETX 4 EOT 5 ENQ 6 ACK 7 BEL
8 BS 9 HT 10 NL 11 VT 12 NP 13 CR 14 SO 15 SI
16 DLE 17 DC1 18 DC2 19 DC3 20 DC4 21 NAK 22 SYN 23 ETB
24 CAN 25 EM 26 SUB 27 ESC 28 FS 29 GS 30 RS 31 US
32 SP 33 ! 34 " 35 # 36 $ 37 % 38 & 39 ’
40 (41) 42 * 43 + 44 , 45 − 46 . 47 /
48 0 49 1 50 2 51 3 52 4 53 5 54 6 55 7
56 8 57 9 58 : 59 ; 60 < 61 = 62 > 63 ?
64 @ 65 A 66 B 67 C 68 D 69 E 70 F 71 G
72 H 73 I 74 J 75 K 76 L 77 M 78 N 79 O

ascii(5)

NAME

SYNOPSIS

DESCRIPTION

16 man pages section 5: Standards, Environments, and Macros • Last Revised 19 Apr 2002

80 P 81 Q 82 R 83 S 84 T 85 U 86 V 87 W
88 X 89 Y 90 Z 91 [92 \ 93] 94 ^ 95 _
96 ‘ 97 a 98 b 99 c 100 d 101 e 102 f 103 g
104 h 105 i 106 j 107 k 108 l 109 m 110 n 111 o
112 p 113 q 114 r 115 s 116 t 117 u 118 v 119 w

120 x 121 y 122 z 123 { 124 | 125 } 126 ~ 127 DEL

/usr/pub/ascii On-line chart of octal and hexadecimal values for the
ASCII character set.

ascii(5)

FILES

Standards, Environments, and Macros 17

attributes, architecture, availability, CSI, stability, MT-Level – attributes of interfaces

The ATTRIBUTES section of a manual page contains a table (see below) defining
attribute types and their corresponding values.

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWcsu

CSI Enabled

Interface Stability Unstable

MT-Level Safe

Architecture defines processor or specific hardware. (See -p option of uname(1)). In
some cases, it may indicate required adapters or peripherals.

This refers to the software package which contains the command or component being
described on the man page. To be able to use the command, the indicated package
must have been installed. For information on how to add a package see pkgadd(1M).

OS utilities and libraries which are free of dependencies on the properties of any code
sets are said to have Code Set Independence (CSI). They have the attribute of being
CSI enabled. This is in contrast to many commands and utilities in Solaris, for
example, that work only with Extended Unix Codesets (EUC), an encoding method
that allows concurrent support for up to four code sets and is commonly used to
represent Asian character sets.

However, for practical reasons, this independence is not absolute. Certain assumptions
are still applied to the current CSI implementation:

� File code is a superset of ASCII.
� To support multi-byte characters and null-terminated UNIX file names, the NULL

and / (slash) characters cannot be part of any multi-byte characters.
� Only "stateless" file code encodings are supported. Stateless encoding avoids shift,

locking shift, designation, invocation, and so forth, although single shift is not
excluded.

� Process code (wchar_t values) is implementation dependent and can change over
time or between implementations or between locales.

� Not every object in Solaris 2 and Solaris 7can have names composed of arbitrary
characters. The names of the following objects must be composed of ASCII
characters:

– User names, group name, and passwords
– System name
– Names of printers and special devices

attributes(5)

NAME

DESCRIPTION

Architecture

Availability

Code Set
Independence

(CSI)

18 man pages section 5: Standards, Environments, and Macros • Last Revised 15 Aug 2001

– Names of terminals (/dev/tty*)
– Process ID numbers
– Message queues, semaphores, and shared memory labels.
– The following may be composed of ISO Latin-1 or EUC characters:

– File names
– Directory names
– Command names
– Shell variables and environmental variable names
– Mount points for file systems
– NIS key names and domain names

� The names of NFS shared files should be composed of ASCII characters. Although
files and directories may have names and contents composed of characters from
non-ASCII code sets, using only the ASCII codeset allows NFS mounting across
any machine, regardless of localization. For the commands and utilities that are CSI
enabled, all can handle single-byte and multi-byte locales released in 2.6. For
applications to get full support of internationalization services, dynamic binding
has to be applied. Statically bound programs will only get support for C and
POSIX locales.

Sun often provides developers with early access to new technologies, which allows
developers to evaluate with them as soon as possible. Unfortunately, new technologies
are prone to changes and standardization often results in interface incompatibility
from previous versions.

To make reasonable risk assessments, developers need to know how likely an interface
is to change in future releases. To aid developers in making these assessments,
interface stability information is included on some manual pages for commands,
entry-points, and file formats.

The more stable interfaces can safely be used by nearly all applications, because Sun
will endeavor to ensure that these continue to work in future minor releases.
Applications that depend only on Standard and Stable interfaces should reliably
continue to function correctly on future minor releases (but not necessarily on earlier
major releases).

The less stable interfaces allow experimentation and prototyping, but should be used
only with the understanding that they might change incompatibly or even be dropped
or replaced with alternatives in future minor releases.

“Interfaces” that Sun does not document (for example, most kernel data structures and
some symbols in system header files) may be implementation artifacts. Such internal
interfaces are not only subject to incompatible change or removal, but we are unlikely
to mention such a change in release notes.

Products are given release levels, as well as names, to aid compatibility discussions.
Each release level may also include changes suitable for lower levels.

attributes(5)

Interface Stability

Release Levels

Standards, Environments, and Macros 19

Release Version Significance

Major x.0 Likely to contain major feature
additions; adhere to different,
possibly incompatible
Standard revisions; and
though unlikely, could
change, drop, or replace
Standard or Stable interfaces.
Initial product releases are
usually 1.0.

Minor x.y Compared to an x.0 or earlier
release (y!=0), it’s likely to
contain: minor feature
additions, compatible
Standard and Stable
interfaces, possibly
incompatible Evolving
interfaces, or likely
incompatible Unstable
interfaces.

Micro x.y.z Intended to be interface
compatible with the previous
release (z!=0), but likely to
add bug fixes, performance
enhancements, and support
for additional hardware.

The following table summarizes how stability level classifications relate to release
level. The first column lists the Stability Level. The second column lists the Release
Level for Incompatable Changes, and the third column lists other comments. For a
complete discussion of individual classifications, see the appropriate subsection below.

Stability Release Comments

Standard Major (x.0) Actual or de facto.

Stable Major (x.0) Incompatibilities are
exceptional.

Evolving Minor (x.y) Migration advice might
accompany an incompatibility.

Unstable Minor (x.y) Experimental or transitional:
incompatibilities are common.

External Micro (x.y.z) Not controlled by Sun:
intrarelease incompatibilities
are common.

attributes(5)

Classifications

20 man pages section 5: Standards, Environments, and Macros • Last Revised 15 Aug 2001

Stability Release Comments

Obsolete Minor (x.y) Deprecated interface: likely to
be removed in a future minor
release.

The interface stability levels described in this manual page apply to both source and
binary interfaces unless otherwise stated. The stability level of each interface is
unknown unless explicitly stated.

Standard[: [organization_name,] standard_name, version]
The documented interface complies with the standard listed. If a standard is not
specified the interface is defined by several standards. This is usually the hierarchy
built up from the C Language (defined by ISO/IEC or K&R), SVID 3 and associated
ABIs (defined by AT&T), the POSIX standards (defined by IEEE and ISO/IEC), and
the Single UNIX Specifications (defined by The Open Group). See standards(5)
for a complete list of these standards.

Most of these interfaces are defined by a formal standard, and controlled by a
standards development organization. Changes will usually be made in accordance
with approved changes to that standard. This stability level can also apply to
interfaces that have been adopted (without a formal standard) by an "industry
convention."

Support is provided for only the specified version(s) of a standard; support for later
versions is not guaranteed. If the standards development organization approves a
non-upward-compatible change to a Standard interface that Sun decides to support,
Sun will announce a compatibility and migration strategy.

Programmers producing portable applications should rely on the interface
descriptions present in the standard or specification to which the application is
intended to conform, rather than the manual page descriptions of Standard
interfaces. When the standard or specification allows alternative implementation
choices, the manual page usually only describes the alternative implemented by
Sun. The manual page also describes any compatible extensions to the base
definition of Standard interfaces provided by Sun.

Stable
A Stable interface is a mature interface under Sun’s control. Sun will try to avoid
non-upwards-compatible changes to these interfaces, especially in minor or micro
releases.

If support of a Stable interface must be discontinued, Sun will attempt to provide
notification and the stability level changes to Obsolete.

Evolving
An Evolving interface may eventually become Standard or Stable but is still in
transition.

attributes(5)

Standards, Environments, and Macros 21

Sun will make reasonable efforts to ensure compatibility with previous releases as it
evolves. When non-upwards compatible changes become necessary, they will occur
in minor and major releases; such changes will be avoided in micro releases
whenever possible. If such a change is necessary, it will be documented in the
release notes for the affected release, and when feasible, Sun will provide migration
aids for binary compatibility and continued source development.

External
An External interface is controlled by an entity other than Sun. At Sun’s discretion,
Sun can deliver as part of any release updated and possibly incompatible versions
of such interfaces, subject to their availability from the controlling entity. This
classification is typically applied to publicly available "freeware" and similar
objects.

For External interfaces, Sun makes no claims regarding either source or binary
compatibility between any two releases. Applications based on these interfaces
might not work in future releases, including patches that contain External
interfaces.

Unstable
An Unstable interface is provided to give developers early access to new or rapidly
changing technology or as an interim solution to a problem for which a more stable
solution is anticipated in the future.

For Unstable interfaces, Sun no claims about either source or binary compatibility
from one minor release to another. Applications developed based on these
interfaces may not work in future minor releases.

Obsolete: Scheduled for removal after event
An Obsolete interface is supported in the current release, but is scheduled to be
removed in a future (minor) release. When support of an interface is to be
discontinued, Sun will attempt to provide notification before discontinuing
support. Use of an Obsolete interface may produce warning messages.

Libraries are classified into four categories which define their ability to support
multiple threads. Manual pages containing routines that are of multiple or differing
levels show this within their NOTES or USAGEsection.

Safe
Safe is an attribute of code that can be called from a multithreaded application. The
effect of calling into a Safe interface or a safe code segment is that the results are
valid even when called by multiple threads. Often overlooked is the fact that the
result of this Safe interface or safe code segment can have global consequences that
affect all threads. For example, the action of opening or closing a file from one
thread is visible by all the threads within a process. A multi-threaded application
has the responsibility for using these interfaces in a safe manner, which is different
from whether or not the interface is Safe. For example, a multi-threaded application
that closes a file that is still in use by other threads within the application is not
using the close(2) interface safely.

attributes(5)

MT-Level

22 man pages section 5: Standards, Environments, and Macros • Last Revised 15 Aug 2001

Unsafe
An Unsafe library contains global and static data that is not protected. It is not safe
to use unless the application arranges for only one thread at time to execute within
the library. Unsafe libraries may contain routines that are Safe; however, most of the
library’s routines are unsafe to call.

The following table contains reentrant counterparts for Unsafe functions. This table
is subject to change by Sun.

Reentrant functions for libc:

Unsafe Function Reentrant counterpart

ctime ctime_r

localtime localtime_r

asctime asctime_r

gmtime gmtime_r

ctermid ctermid_r

getlogin getlogin_r

rand rand_r

readdir readdir_r

strtok strtok_r

tmpnam tmpnam_r

MT-Safe
An MT-Safe library is fully prepared for multithreaded access. It protects its global
and static data with locks, and can provide a reasonable amount of concurrency.
Note that a library can be safe to use, but not MT-Safe. For example, surrounding
an entire library with a monitor makes the library Safe, but it supports no
concurrency so it is not considered MT-Safe. An MT-Safe library must permit a
reasonable amount of concurrency. (This definition’s purpose is to give precision to
what is meant when a library is described as Safe. The definition of a Safe library
does not specify if the library supports concurrency. The MT-Safe definition makes
it clear that the library is Safe, and supports some concurrency. This clarifies the
Safe definition, which can mean anything from being single threaded to being any
degree of multithreaded.)

Async-Signal-Safe
Async-Signal-Safe refers to particular library routines that can be safely called from
a signal handler. A thread that is executing an Async-Signal-Safe routine will not
deadlock with itself if interrupted by a signal. Signals are only a problem for
MT-Safe routines that acquire locks.

attributes(5)

Standards, Environments, and Macros 23

Signals are disabled when locks are acquired in Async-Signal-Safe routines. This
prevents a signal handler that might acquire the same lock from being called. The
list of Async-Signal-Safe functions includes:

_exit access aio_error

aio_return aio_suspend alarm

cfgetispeed cfgetospeed cfsetispeed

cfsetospeed chdir chmod

chown clock_gettime close

creat dup dup2

execle execve fcntl

fdatasync fork fstat

fsync getegid geteuid

getgid getgroups getpgrp

getpid getppid getuid

kill link lseek

mkdir mkfifo open

pathconf pause pipe

read rename rmdir

sem_post sema_post setgid

setpgid setsid setuid

sigaction sigaddset sigdelset

sigemptyset sigfillset sigismember

sigpending sigprocmask sigqueue

sigsuspend sleep stat

sysconf tcdrain tcflow

tcflush tcgetattr tcgetpgrp

tcsendbreak tcsetattr tcsetpgrp

thr_kill thr_sigsetmask time

timer_getoverrun timer_gettime timer_settime

times umask uname

attributes(5)

24 man pages section 5: Standards, Environments, and Macros • Last Revised 15 Aug 2001

unlink utime wait

waitpid write

MT-Safe with Exceptions
See the NOTES or USAGE sections of these pages for a description of the exceptions.

Safe with Exceptions
See the NOTES or USAGE sections of these pages for a description of the exceptions.

Fork1-Safe
A Fork1-Safe library releases the locks it had held whenever fork1(2) is called in a
Solaris thread program, or fork(2) in a POSIX (see standards(5)) thread
program. Calling fork(2) in a POSIX thread program has the same semantic as
calling fork1(2) in a Solaris thread program. All system calls, libpthread, and
libthread are Fork1-Safe. Otherwise, you should handle the locking clean-up
yourself (see pthread_atfork(3C)).

Cancel-Safety
If a multi-threaded application uses pthread_cancel(3THR) to cancel (that is,
kill) a thread, it is possible that the target thread is killed while holding a resource,
such as a lock or allocated memory. If the thread has not installed the appropriate
cancellation cleanup handlers to release the resources appropriately (see
pthread_cancel(3THR)), the application is "cancel-unsafe", that is, it is not safe
with respect to cancellation. This unsafety could result in deadlocks due to locks
not released by a thread that gets cancelled, or resource leaks; for example, memory
not being freed on thread cancellation. All applications that use
pthread_cancel(3THR) should ensure that they operate in a Cancel-Safe
environment. Libraries that have cancellation points and which acquire resources
such as locks or allocate memory dynamically, also contribute to the
cancel-unsafety of applications that are linked with these libraries. This introduces
another level of safety for libraries in a multi-threaded program: Cancel-Safety.
There are two sub-categories of Cancel-Safety: Deferred-Cancel-Safety, and
Asynchronous-Cancel-Safety. An application is considered to be
Deferred-Cancel-Safe when it is Cancel-Safe for threads whose cancellation type is
PTHREAD_CANCEL_DEFERRED. An application is considered to be
Asynchronous-Cancel-Safe when it is Cancel-Safe for threads whose cancellation
type is PTHREAD_CANCEL_ASYNCHRONOUS. Deferred-Cancel-Safety is easier to
achieve than Asynchronous-Cancel-Safety, since a thread with the deferred
cancellation type can be cancelled only at well-defined cancellation points, whereas
a thread with the asynchronous cancellation type can be cancelled anywhere. Since
all threads are created by default to have the deferred cancellation type, it may
never be necessary to worry about asynchronous cancel safety. Indeed, most
applications and libraries are expected to always be Asynchronous-Cancel-Unsafe.
An application which is Asynchronous-Cancel-Safe is also, by definition,
Deferred-Cancel-Safe.

uname(1), pkgadd(1M), Intro(3), standards(5)

attributes(5)

SEE ALSO

Standards, Environments, and Macros 25

charmap – character set description file

A character set description file or charmap defines characteristics for a coded character
set. Other information about the coded character set may also be in the file. Coded
character set character values are defined using symbolic character names followed by
character encoding values.

The character set description file provides:

� The capability to describe character set attributes (such as collation order or
character classes) independent of character set encoding, and using only the
characters in the portable character set. This makes it possible to create generic
localedef(1) source files for all codesets that share the portable character set.

� Standardized symbolic names for all characters in the portable character set,
making it possible to refer to any such character regardless of encoding.

Each symbolic name is included in the file and is mapped to a unique encoding value
(except for those symbolic names that are shown with identical glyphs). If the control
characters commonly associated with the symbolic names in the following table are
supported by the implementation, the symbolic names and their corresponding
encoding values are included in the file. Some of the encodings associated with the
symbolic names in this table may be the same as characters in the portable character
set table.

<ACK> <DC2> <ENQ> <FS> <IS4> <SOH>

<BEL> <DC3> <EOT> <GS> <LF> <STX>

<BS> <DC4> <ESC> <HT> <NAK> <SUB>

<CAN> <ETB> <IS1> <RS> <SYN>

<CR> <DLE> <ETX> <IS2> <SI> <US>

<DC1> <FF> <IS3> <SO> <VT>

The following declarations can precede the character definitions. Each must consist of
the symbol shown in the following list, starting in column 1, including the
surrounding brackets, followed by one or more blank characters, followed by the
value to be assigned to the symbol.

<code_set_name> The name of the coded character set for which the
character set description file is defined.

<mb_cur_max> The maximum number of bytes in a multi-byte
character. This defaults to 1.

<mb_cur_min> An unsigned positive integer value that defines the
minimum number of bytes in a character for the
encoded character set.

charmap(5)

NAME

DESCRIPTION

Symbolic Names

Declarations

26 man pages section 5: Standards, Environments, and Macros • Last Revised 3 May 1995

<escape_char> The escape character used to indicate that the
characters following will be interpreted in a special
way, as defined later in this section. This defaults to
backslash (\thinsp;), which is the character glyph
used in all the following text and examples, unless
otherwise noted.

<comment_char> The character that when placed in column 1 of a
charmap line, is used to indicate that the line is to be
ignored. The default character is the number sign (#).

The character set mapping definitions will be all the lines immediately following an
identifier line containing the string CHARMAP starting in column 1, and preceding a
trailer line containing the string END CHARMAP starting in column 1. Empty lines and
lines containing a <comment_char> in the first column will be ignored. Each
non-comment line of the character set mapping definition (that is, between the
CHARMAP and END CHARMAP lines of the file) must be in either of two forms:

"%s %s %s\n",<symbolic-name>,<encoding>,<comments>

or

"%s. . .%s %s %s\n",<symbolic-name>,<symbolic-name>, <encoding>,<comments>

In the first format, the line in the character set mapping definition defines a single
symbolic name and a corresponding encoding. A character following an escape
character is interpreted as itself; for example, the sequence <\i\> represents the
symbolic name \ enclosed between angle brackets.

In the second format, the line in the character set mapping definition defines a range
of one or more symbolic names. In this form, the symbolic names must consist of zero
or more non-numeric characters, followed by an integer formed by one or more
decimal digits. The characters preceding the integer must be identical in the two
symbolic names, and the integer formed by the digits in the second symbolic name
must be equal to or greater than the integer formed by the digits in the first name. This
is interpreted as a series of symbolic names formed from the common part and each of
the integers between the first and the second integer, inclusive. As an example,
<j0101>. . .<j0104> is interpreted as the symbolic names <j0101>, <j0102>,
<j0103>, and <j0104>, in that order.

A character set mapping definition line must exist for all symbolic names and must
define the coded character value that corresponds to the character glyph indicated in
the table, or the coded character value that corresponds with the control character
symbolic name. If the control characters commonly associated with the symbolic

charmap(5)

Format

Standards, Environments, and Macros 27

names are supported by the implementation, the symbolic name and the
corresponding encoding value must be included in the file. Additional unique
symbolic names may be included. A coded character value can be represented by more
than one symbolic name.

The encoding part is expressed as one (for single-byte character values) or more
concatenated decimal, octal or hexadecimal constants in the following formats:

"%cd%d",<escape_char>,<decimal byte value>
"%cx%x",<escape_char>,<hexadecimal byte value>
"%c%o",<escape_char>,<octal byte value>

Decimal constants must be represented by two or three decimal digits, preceded by
the escape character and the lower-case letter d; for example, \d05, \d97, or \d143.
Hexadecimal constants must be represented by two hexadecimal digits, preceded by
the escape character and the lower-case letter x; for example, \x05, \x61, or \x8f.
Octal constants must be represented by two or three octal digits, preceded by the
escape character; for example, \05, \141, or \217. In a portable charmap file, each
constant must represent an 8-bit byte. Implementations supporting other byte sizes
may allow constants to represent values larger than those that can be represented in
8-bit bytes, and to allow additional digits in constants. When constants are
concatenated for multi-byte character values, they must be of the same type, and
interpreted in byte order from first to last with the least significant byte of the
multi-byte character specified by the last constant.

In lines defining ranges of symbolic names, the encoded value is the value for the first
symbolic name in the range (the symbolic name preceding the ellipsis). Subsequent
symbolic names defined by the range will have encoding values in increasing order.
For example, the line

<j0101>. . .<j0104> \d129\d254

will be interpreted as:

<j0101> \d129\d254
<j0102> \d129\d255
<j0103> \d130\d0

<j0104> \d130\d1

Note that this line will be interpreted as the example even on systems with bytes
larger than 8 bits. The comment is optional.

locale(1) localedef(1) nl_langinfo(3C) extensions(5), locale(5)

charmap(5)

Decimal Constants

Ranges of
Symbolic Names

SEE ALSO

28 man pages section 5: Standards, Environments, and Macros • Last Revised 3 May 1995

crypt_bsdbf – password hashing module using Blowfish cryptographic algorithm

/usr/lib/security/$ISA/crypt_bsdbf.so

The crypt_bsdmd5 module is a one-way password hashing module for use with
crypt(3C) that uses the Blowfish cryptographic algorithm. The algorithm identifier
for crypt.conf(4) and policy.conf(4) is 2a.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

passwd(1), crypt(3C), crypt_genhash_impl(3C), crypt_gensalt(3C),
crypt_gensalt_impl(3C), getpassphrase(3C), crypt.conf(4), passwd(4),
policy.conf(4), attributes(5)

crypt_bsdbf(5)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

Standards, Environments, and Macros 29

crypt_bsdmd5 – password hashing module using MD5 message hash algorithm

/usr/lib/security/$ISA/crypt_bsdmd5.so

The crypt_bsdmd5 module is a one-way password hashing module for use with
crypt(3C) that uses the MD5 message hash algorithm. The algorithm identifier for
crypt.conf(4) and policy.conf(4) is 1. The output is compatible with md5crypt
on BSD and Linux systems.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

passwd(1), crypt(3C), crypt_genhash_impl(3C), crypt_gensalt(3C),
crypt_gensalt_impl(3C), getpassphrase(3C), crypt.conf(4), passwd(4),
policy.conf(4), attributes(5)

crypt_bsdmd5(5)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

30 man pages section 5: Standards, Environments, and Macros • Last Revised 10 Jun 2002

crypt_sunmd5 – password hashing module using MD5 message hash algorithm

/usr/lib/security/$ISA/crypt_sunmd5.so

The crypt_sunmd5 module is a one-way password hashing module for use with
crypt(3C) that uses the MD5 message hash algorithm. The algorithm identifier for
crypt.conf(4) and policy.conf(4) is md5.

This module is designed to make it difficult to crack passwords that use brute force
attacks based on high speed MD5 implementations that use code inlining, unrolled
loops, and table lookup.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

passwd(1), crypt(3C), crypt_genhash_impl(3C), crypt_gensalt(3C),
crypt_gensalt_impl(3C), getpassphrase(3C), crypt.conf(4), passwd(4),
policy.conf(4), attributes(5)

crypt_sunmd5(5)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

Standards, Environments, and Macros 31

crypt_unix – traditional UNIX crypt algorithm

The crypt_unix algorithm is the traditional UNIX crypt algorithm. It is not
considered sufficiently secure for current systems and is provided for backwards
compatibility. The crypt_sunmd5(5), crypt_bsdmd5(5), or crypt_bsdbf(5)
algorithm should be used instead.

The algorithm identifier for policy.conf(4) is __unix__. There is no entry in
crypt.conf(4) for this algorithm.

The crypt_unix algorithm is internal to libc and provides the string encoding
function used by crypt(3C) when the first character of the salt is not a "$".

This algorithm is based on a one-way encryption algorithm with variations intended
(among other things) to frustrate use of hardware implementations of a key search.
Only the first eight characters of the key passed to crypt() are used with this
algorithm; the rest are silently ignored. The salt is a two-character string chosen from
the set [a-zA-Z0-9./]. This string is used to perturb the hashing algorithm in one of
4096 different ways.

The return value of the crypt_unix algorithm might not be portable among
standard-conforming systems. See standards(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

passwd(1), crypt(3C), crypt_genhash_impl(3C), crypt_gensalt(3C),
crypt_gensalt_impl(3C), getpassphrase(3C), crypt.conf(4), passwd(4),
policy.conf(4), attributes(5), crypt_bsdbf(5), crypt_bsdmd5(5),
crypt_sunmd5(5), standards(5)

crypt_unix(5)

NAME

DESCRIPTION

USAGE

ATTRIBUTES

SEE ALSO

32 man pages section 5: Standards, Environments, and Macros • Last Revised 10 Jun 2002

dhcp – Dynamic Host Configuration Protocol

Dynamic Host Configuration Protocol (DHCP) enables host systems in a TCP/IP
network to be configured automatically for the network as they boot. DHCP uses a
client/server mechanism: servers store configuration information for clients, and
provide that information upon a client’s request. The information can include the
client’s IP address and information about network services available to the client.

This manual page provides a brief summary of the Solaris DHCP implementation.

The Solaris DHCP client is implemented as background daemon, dhcpagent(1M).
This daemon is started automatically during bootup if there exists at least one
dhcp.interface file in /etc. Only interfaces with a corresponding
/etc/dhcp.interface file are automatically configured during boot. Network
parameters needed for system configuration during bootup are extracted from the
information recieved by the daemon through the use of the dhcpinfo(1) command.
The daemon’s default behavior can be altered by changing the tunables in the
/etc/default/dhcpagent file. The daemon is controlled by the ifconfig(1M)
utility. Check the status of the daemon using the netstat(1M) and ifconfig(1M)
commands.

The Solaris DHCP server is implemented as a background daemon, in.dhcpd(1M).
This daemon can deliver network configuration information to either BOOTP or DHCP
clients. The Solaris DHCP service can be managed using the dhcpmgr(1M) GUI or the
command line utilities dhcpconfig(1M), dhtadm(1M), and pntadm(1M).

The Solaris DHCP server stores client configuration information in the following two
types of tables:

dhcptab tables Contain macros and options (also known as symbols),
used to construct a package of configuration
information to send to each DHCP client. There exists
only one dhcptab for the DHCP service. The
dhcptab(4) can be viewed and modified using the
dhtadm(1M) command or dhcpmgr(1M) graphical
utility. See dhcptab(4) for more information about the
syntax of dhcptab records. See dhcp_inittab(4) for
more information about the DHCP options and
symbols.

DHCP network tables DHCP network tables, which contain mappings of
client IDs to IP addresses and parameters associated
with those addresses. Network tables are named with
the IP address of the network, and can be created,
viewed, and modified using the pntadm command or
dhcpmgr graphical utility. See dhcp_network(4) for
more information about network tables.

dhcp(5)

NAME

DESCRIPTION

Solaris DHCP
Client

Solaris DHCP
Server

DHCP
Configuration

Tables

Standards, Environments, and Macros 33

dhcpinfo(1), dhcpagent(1M), dhcpconfig(1M), dhcpmgr(1M), dhtadm(1M),
ifconfig(1M), in.dhcpd(1M), netstat(1M), pntadm(1M), syslog(3C),
dhcp_network(4), dhcptab(4), dhcpsvc.conf(4), dhcp_inittab(4),
dhcp_modules(5)

Solaris DHCP Service Developer’s Guide

Alexander, S., and R. Droms. RFC 2132, DHCP Options and BOOTP Vendor Extensions.
Silicon Graphics, Inc. Bucknell University. March 1997.

Droms, R. RFC 1534, Interoperation Between DHCP and BOOTP. Bucknell University.
October 1993.

Droms, R. RFC 2131, Dynamic Host Configuration Protocol. Bucknell University. March
1997.

Wimer, W.RFC 1542, Clarifications and Extensions for the Bootstrap Protocol. Carnegie
Mellon University. October 1993.

dhcp(5)

SEE ALSO

34 man pages section 5: Standards, Environments, and Macros • Last Revised 13 Mar 2001

dhcp_modules – data storage modules for the DHCP service

This man page describes the characteristics of data storage modules (public modules)
for use by the Solaris Dynamic Host Configuration Protocol (DHCP) service.

Public modules are the part of the DHCP service architecture that encapsulate the
details of storing DHCP service data in a data storage service. Examples of data
storage services are NIS+, Oracle, and ufs file systems.

Public modules are dynamic objects which can be shipped separately from the Solaris
DHCP service. Once installed, a public module is visible to the DHCP service, and can
be selected for use by the service through the DHCP service management interfaces
(dhcpmgr(1M), dhcpconfig(1M), dhtadm(1M), and pntadm(1M)).

Public modules may be provided by Sun Microsystems, Inc or by third parties.

The Solaris DHCP service management architecture provides a mechanism for
plugging in public module-specific administration functionality into the dhcpmgr(1M)
and dhcpconfig(1M) utilities. This functionality is in the form of a Java Bean, which
is provided by the public module vendor. This Java Bean collects public
module-specific configuration from the user (you) and provides it to the Solaris DHCP
service.

The Solaris DHCP service bundles three modules with the service, which are
described below. There are three dhcpsvc.conf(4) DHCP service configuration
parameters pertaining to public modules: RESOURCE, PATH, and RESOURCE_CONFIG.
See dhcpsvc.conf(4) for more information about these parameters.

This module stores its data in ASCII files. Although the format is ASCII, hand-editing
is discouraged. It is useful for DHCP service environments that support several
hundred to a couple thousand of clients and lease times are a few hours or more.

This module’s data may be shared between DHCP servers through the use of NFS.

This module stores its data in binary files. It is useful for DHCP service environments
with many networks and many thousands of clients. This module provides an order of
magnitude increase in performance and capacity over SUNWfiles.

This module’s data cannot be shared between DHCP servers.

This module stores its data within a NIS+ domain. It is useful in environments where
NIS+ is already deployed and facilitates sharing among multiple DHCP servers. This
module suports several hundred to a few thousand clients with lease times of several
hours or more.

The NIS+ service should be hosted on a machine with ample CPU power, memory,
and disk space, as the load on NIS+ is significant when it is used to store DHCP data.
Periodic checkpointing of the NIS+ service is necessary in order to roll the transaction
logs and keep the NIS+ service operating at its highest efficiency. See nisping(1M)
and crontab(1) for more information.

dhcp_modules(5)

NAME

DESCRIPTION

SUNWfiles

SUNWbinfiles

SUNWnisplus

Standards, Environments, and Macros 35

crontab(1), dhcpconfig(1M), dhcpmgr(1M), dhtadm(1M), nisping(1M),
pntadm(1M), dhcpsvc.conf(4), dhcp(5)

Solaris DHCP Service Developer’s Guide

dhcp_modules(5)

SEE ALSO

36 man pages section 5: Standards, Environments, and Macros • Last Revised 24 Jan 2003

environ – user environment

When a process begins execution, one of the exec family of functions makes available
an array of strings called the environment; see exec(2). By convention, these strings
have the form variable=value, for example, PATH=/sbin:/usr/sbin. These
environmental variables provide a way to make information about a program’s
environment available to programs.

A name may be placed in the environment by the export command and name=value
arguments in sh(1), or by one of the exec functions. It is unwise to conflict with
certain shell variables such as MAIL, PS1, PS2, and IFS that are frequently exported
by .profile files; see profile(4).

The following environmental variables can be used by applications and are expected
to be set in the target run-time environment.

HOME
The name of the user’s login directory, set by login(1) from the password file; see
passwd(4).

LANG
The string used to specify internationalization information that allows users to
work with different national conventions. The setlocale(3C) function checks the
LANG environment variable when it is called with "" as the locale argument.
LANG is used as the default locale if the corresponding environment variable for a
particular category is unset or null. If, however, LC_ALL is set to a valid, non-empty
value, its contents are used to override both the LANG and the other LC_* variables.
For example, when invoked as setlocale(LC_CTYPE, ""), setlocale() will
query the LC_CTYPE environment variable first to see if it is set and non-null. If
LC_CTYPE is not set or null, then setlocale() will check the LANG environment
variable to see if it is set and non-null. If both LANG and LC_CTYPE are unset or
NULL, the default "C" locale will be used to set the LC_CTYPE category.

Most commands will invoke setlocale(LC_ALL, "") prior to any other
processing. This allows the command to be used with different national
conventions by setting the appropriate environment variables.

The following environment variables correspond to each category of
setlocale(3C):

LC_ALL
If set to a valid, non-empty string value, override the values of LANG and all the
other LC_*variables.

LC_COLLATE
This category specifies the character collation sequence being used. The
information corresponding to this category is stored in a database created by the
localedef(1) command. This environment variable affects strcoll(3C) and
strxfrm(3C).

environ(5)

NAME

DESCRIPTION

Standards, Environments, and Macros 37

LC_CTYPE
This category specifies character classification, character conversion, and widths
of multibyte characters. When LC_CTYPE is set to a valid value, the calling
utility can display and handle text and file names containing valid characters for
that locale; Extended Unix Code (EUC) characters where any individual
character can be 1, 2, or 3 bytes wide; and EUC characters of 1, 2, or 3 column
widths. The default "C" locale corresponds to the 7-bit ASCII character set; only
characters from ISO 8859-1 are valid. The information corresponding to this
category is stored in a database created by the localedef() command. This
environment variable is used by ctype(3C), mblen(3C), and many commands,
such as cat(1), ed(1), ls(1), and vi(1).

LC_MESSAGES
This category specifies the language of the message database being used. For
example, an application may have one message database with French messages,
and another database with German messages. Message databases are created by
the mkmsgs(1) command. This environment variable is used by exstr(1),
gettxt(1), srchtxt(1), gettxt(3C), and gettext(3C).

LC_MONETARY
This category specifies the monetary symbols and delimiters used for a
particular locale. The information corresponding to this category is stored in a
database created by the localedef(1) command. This environment variable is
used by localeconv(3C).

LC_NUMERIC
This category specifies the decimal and thousands delimiters. The information
corresponding to this category is stored in a database created by the
localedef() command. The default C locale corresponds to "." as the
decimal delimiter and no thousands delimiter. This environment variable is used
by localeconv(3C), printf(3C), and strtod(3C).

LC_TIME
This category specifies date and time formats. The information corresponding to
this category is stored in a database specified in localedef(). The default C
locale corresponds to U.S. date and time formats. This environment variable is
used by many commands and functions; for example: at(1), calendar(1),
date(1), strftime(3C), and getdate(3C).

MSGVERB
Controls which standard format message components fmtmsg selects when
messages are displayed to stderr; see fmtmsg(1) and fmtmsg(3C).

NETPATH
A colon-separated list of network identifiers. A network identifier is a character
string used by the Network Selection component of the system to provide
application-specific default network search paths. A network identifier must consist
of non-null characters and must have a length of at least 1. No maximum length is
specified. Network identifiers are normally chosen by the system administrator. A
network identifier is also the first field in any /etc/netconfig file entry.
NETPATH thus provides a link into the /etc/netconfig file and the information

environ(5)

38 man pages section 5: Standards, Environments, and Macros • Last Revised 25 Oct 2001

about a network contained in that network’s entry. /etc/netconfig is
maintained by the system administrator. The library routines described in
getnetpath(3NSL) access the NETPATH environment variable.

NLSPATH
Contains a sequence of templates which catopen(3C) and gettext(3C) use when
attempting to locate message catalogs. Each template consists of an optional prefix,
one or more substitution fields, a filename and an optional suffix. For example:

NLSPATH="/system/nlslib/%N.cat"

defines that catopen() should look for all message catalogs in the directory
/system/nlslib, where the catalog name should be constructed from the name
parameter passed to catopen(), %N, with the suffix .cat.

Substitution fields consist of a % symbol, followed by a single-letter keyword. The
following keywords are currently defined:

%N The value of the name parameter passed to catopen().

%L The value of LANG or LC_MESSAGES.

%l The language element from LANG or LC_MESSAGES.

%t The territory element from LANG or LC_MESSAGES.

%c The codeset element from LANG or LC_MESSAGES.

%% A single % character.

An empty string is substituted if the specified value is not currently defined. The
separators “_” and “.” are not included in %t and %c substitutions.

Templates defined in NLSPATH are separated by colons (:). A leading colon or two
adjacent colons (::) is equivalent to specifying %N. For example:

NLSPATH=":%N.cat:/nlslib/%L/%N.cat"

indicates to catopen() that it should look for the requested message catalog in
name, name.cat and /nlslib/$LANG/name.cat. For gettext(), %N automatically
maps to "messages".

If NLSPATH is unset or NULL, catopen() and gettext() call setlocale(3C),
which checks LANG and the LC_* variables to locate the message catalogs.

NLSPATH will normally be set up on a system wide basis (in /etc/profile) and
thus makes the location and naming conventions associated with message catalogs
transparent to both programs and users.

PATH
The sequence of directory prefixes that sh(1), time(1), nice(1), nohup(1), and
other utilities apply in searching for a file known by an incomplete path name. The
prefixes are separated by colons (:). login(1) sets PATH=/usr/bin. For more
detail, see sh(1).

environ(5)

Standards, Environments, and Macros 39

SEV_LEVEL
Define severity levels and associate and print strings with them in standard format
error messages; see addseverity(3C), fmtmsg(1), and fmtmsg(3C).

TERM
The kind of terminal for which output is to be prepared. This information is used
by commands, such as vi(1), which may exploit special capabilities of that
terminal.

TZ
Timezone information. The contents of this environment variable are used by the
functions ctime(3C), localtime(3C), strftime(3C), and mktime(3C) to
override the default timezone. If TZ is not in the following form, it designates a
path to a timezone database file relative to /usr/share/lib/zoneinfo/,
ignoring the first character if it is a colon (:). Otherwise, TZ has the form:

stdoffset[dst[offset][,start[/time],end[/time]]]

std and dst Three or more bytes that are the designation for the
standard (std) and daylight savings time (dst)
timezones. Only std is required. If dst is missing,
then daylight savings time does not apply in this
locale. Upper- and lower-case letters from the
portable character set are explicitly allowed. Any
graphic characters from the portable character set
except a leading colon (:) or digits, the comma (,),
the minus (-), the plus (+), and the null character are
permitted to appear in these fields, but their
meaning is unspecified.

offset Indicates the value one must add to the local time to
arrive at Coordinated Universal Time. The offset has
the form:

hh[:mm[:ss]]

The minutes (mm) and seconds (ss) are optional. The
hour (hh) is required and may be a single digit. The
offset following std is required. If no offset follows dst ,
daylight savings time is assumed to be one hour
ahead of standard time. One or more digits may be
used. The value is always interpreted as a decimal
number. The hour must be between 0 and 24, and the
minutes (and seconds), if present, must be between 0
and 59. Out of range values may cause unpredictable
behavior. If preceded by a “–”, the timezone is east of
the Prime Meridian. Otherwise, it is west of the
Prime Meridian (which may be indicated by an
optional preceding “+” sign).

environ(5)

40 man pages section 5: Standards, Environments, and Macros • Last Revised 25 Oct 2001

start/time, end/time Indicate when to change to and back from daylight
savings time, where start/time describes when the
change from standard time to daylight savings time
occurs, and end/time describes when the change back
happens. Each time field describes when, in current
local time, the change is made.

The formats of start and end are one of the following:

Jn The Julian day n (1 ≤ n ≤ 365). Leap days
are not counted. That is, in all years,
February 28 is day 59 and March 1 is day
60. It is impossible to refer to the
occasional February 29.

n The zero-based Julian day (0 ≤ n ≤ 365).
Leap days are counted, and it is possible
to refer to February 29.

Mm.n.d The dth day, (0 ≤ d ≤ 6) of week n of
month m of the year (1 ≤ n ≤ 5, 1 ≤ m ≤
12), where week 5 means “the last d-day
in month m” which may occur in either
the fourth or the fifth week). Week 1 is
the first week in which the dth day occurs.
Day zero is Sunday.

Implementation specific defaults are used for start
and end if these optional fields are not given.

The time has the same format as offset except that no
leading sign (“–” or “+” is allowed. The default, if
time is not given is 02:00:00.

cat(1), date(1), ed(1), fmtmsg(1), localedef(1), login(1), ls(1), mkmsgs(1),
nice(1), nohup(1), sh(1), sort(1), time(1), vi(1), exec(2), addseverity(3C),
catopen(3C), ctime(3C), ctype(3C), fmtmsg(3C), getdate(3C),
getnetpath(3NSL), gettext(3C), gettxt(3C), localeconv(3C), mblen(3C),
mktime(3C), printf(3C), setlocale(3C), strcoll(3C), strftime(3C),
strtod(3C), strxfrm(3C), TIMEZONE(4), netconfig(4), passwd(4), profile(4)

environ(5)

SEE ALSO

Standards, Environments, and Macros 41

eqnchar – special character definitions for eqn

eqn /usr/share/lib/pub/eqnchar filename | troff options

neqn /usr/share/lib/pub/eqnchar filename | troff options

The eqnchar command contains nroff(1) and troff(1) character definitions for
constructing characters that are not available on the Graphic Systems typesetter. These
definitions are primarily intended for use with eqn(1) and neqn(1). It contains
definitions for the following characters:

/usr/share/lib/pub/eqnchar

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdoc

eqn(1), nroff(1), troff(1), attributes(5)

eqnchar(5)

NAME

SYNOPSIS

DESCRIPTION

FILES

ATTRIBUTES

SEE ALSO

42 man pages section 5: Standards, Environments, and Macros • Last Revised 12 Jul 2002

extensions – localedef extensions description file

A localedef extensions description file or extensions file defines various extensions for
the localedef(1) command.

The localedef extensions description file provides:

� EUC code set width information via the cswidth keyword: cswidth
bc1 : sw1,bc2 : sw2,bc3 : sw3where bc1, bc2, and bc3 indicate the
number of bytes (byte count) per character for EUC codesets 1, 2, and 3,
respectively. sw1, sw2, and sw3 indicate screen width for EUC codesets 1, 2, and
3, respectively.

� Other extensions which will be documented in a future release.

locale(1), localedef(1), environ(5), locale(5)

extensions(5)

NAME

DESCRIPTION

SEE ALSO

Standards, Environments, and Macros 43

filesystem – file system organization

/

/usr

The file system tree is organized for administrative convenience. Distinct areas within
the file system tree are provided for files that are private to one machine, files that can
be shared by multiple machines of a common platform, files that can be shared by all
machines, and home directories. This organization allows sharable files to be stored on
one machine but accessed by many machines using a remote file access mechanism
such as NFS. Grouping together similar files makes the file system tree easier to
upgrade and manage.

The file system tree consists of a root file system and a collection of mountable file
systems. The mount(2) program attaches mountable file systems to the file system tree
at mount points (directory entries) in the root file system or other previously mounted
file systems. Two file systems, / (the root) and /usr, must be mounted in order to
have a completely functional system. The root file system is mounted automatically by
the kernel at boot time; the /usr file system is mounted by the system start-up script,
which is run as part of the booting process.

Certain locations, noted below, are approved installation locations for bundled
Foundation Solaris software. In some cases, the approved locations for bundled
software are also approved locations for add-on system software or for applications.
The following descriptions make clear where the two locations differ. For example,
/etc is the installation location for platform‐dependent configuration files
that are bundled with Solaris software. The analogous location for applications is
/etc/opt/packagename.

In the following descriptions, subsystem is a category of application or system
software, such as a window system (dt) or a language (java1.2)

The following descriptions make use of the terms platform, platform‐dependent,
platform‐independent, and platform‐specific. Platform refers to a
machines Instruction Set Architecture or processor type, such as is returned by uname
-i. Platform‐dependent refers to a file that is installed on all platforms and
whose contents vary depending on the platform. Like a platform‐dependent
file, a platform‐independent file is installed on all platforms. However, the
contents of the latter type remains the same on all platforms. An example of a
platform‐dependent file is compiled, executable program. An example of a
platform‐independent file is a standard configuration file, such as
/etc/hosts. Unlike a platform‐dependent or a
platform‐independent file, the platform‐specific file is installed only on
a subset of supported platforms. Most platform-specific files are gathered under
/platform and /usr/platform.

The root file system contains files that are unique to each machine. It contains the
following directories:

filesystem(5)

NAME

SYNOPSIS

DESCRIPTION

Root File System

44 man pages section 5: Standards, Environments, and Macros • Last Revised 15 Nov 2001

/
Root of the overall file system name space.

/dev
Primary location for special files. Typically, device files are built to match the kernel
and hardware configuration of the machine.

/dev/cfg
Symbolic links to physical ap_ids.

/dev/cua
Device files for uucp.

/dev/dsk
Block disk devices.

/dev/fbs
Frame buffer device files.

/dev/fd
File descriptors.

/dev/md
Logical volume management meta-disk devices.

/dev/printers
USB printer device files.

/dev/pts
Pseudo-terminal devices.

/dev/rdsk
Raw disk devices.

/dev/rmt
Raw tape devices.

/dev/sad
Entry points for the STREAMS Administrative driver.

/dev/sound
Audio device and audio device control files.

/dev/swap
Default swap device.

/dev/term
Terminal devices.

/devices
Physical device files.

/etc
Platform‐dependent administrative and configuration files and databases
that are not shared among systems. /etc may be viewed as the directory that

filesystem(5)

Standards, Environments, and Macros 45

defines the machine’s identity. An approved installation location for bundled
Solaris software. The analogous location for add-on system software or for
applications is /etc/opt/packagename.

/etc/acct
Accounting system configuration information.

/etc/apache
Apache configuration files.

/etc/cron.d
Configuration information for cron(1M).

/etc/default
Defaults information for various programs.

/etc/dfs
Configuration information for shared file systems.

/etc/dhcp
Dynamic Host Configuration Protocol (DHCP) configuration files.

/etc/dmi
Solstice Enterprise Agents configuration files.

/etc/fn
Federated Naming Service and X.500 support files.

/etc/fs
Binaries organized by file system types for operations required before /usr is
mounted.

/etc/gss
Generic Security Service (GSS) Application Program Interface configuration files.

/etc/gtk
GNOME (GNU Network Object Model Environment) configuration files.

/etc/inet
Configuration files for Internet services.

/etc/init.d
Shell scripts for transitioning between run levels.

/etc/iplanet
iPlanet configuration files.

/etc/krb5
Kerberos configuration files.

/etc/lib
Shared libraries needed during booting.

/etc/lp
Configuration information for the printer subsystem.

filesystem(5)

46 man pages section 5: Standards, Environments, and Macros • Last Revised 15 Nov 2001

/etc/llc2
Logical link control (llc2) driver configuration files.

/etc/lp
Configuration information for the printer subsystem.

/etc/lu
Solaris Live Upgrade configuration files.

/etc/lvm
Solaris Logical Volume Manager configuration files.

/etc/mail
Mail subsystem configuration.

/etc/nca
Solaris Network Cache and Accelerator (NCA) configuration files.

/etc/net
Configuration information for transport independent network services.

/etc/nfs
NFS server logging configuration file.

/etc/openwin
OpenWindows configuration files.

/etc/opt
Configuration information for optional packages.

/etc/ppp
Solaris PPP configuration files.

/etc/rc0.d
Scripts for entering or leaving run level 0. See init(1M).

/etc/rc1.d
Scripts for entering or leaving run level 1. See init(1M).

/etc/rc2.d
Scripts for entering or leaving run level 2. See init(1M).

/etc/rc3.d
Scripts for entering or leaving run level 3. See init(1M).

/etc/rcS.d
Scripts for bringing the system up in single user mode.

/etc/rcm
Directory for reconfiguration manager (RCM) custom scripts.

/etc/rpcsec
This directory might contain an NIS+ authentication configuration file.

/etc/saf
Service Access Facility files.

filesystem(5)

Standards, Environments, and Macros 47

/etc/security
Basic Security Module (BSM) configuration files.

/etc/sfw
Samba configuration files.

/etc/skel
Default profile scripts for new user accounts. See useradd(1M).

/etc/smartcard
Solaris SmartCard configuration files.

/etc/snmp
Solstice Enterprise Agents configuration files.

/etc/ssh
Secure Shell configuration files. See ssh(1)

/etc/sysevent
syseventd configuration files.

/etc/subsystem
Platform‐dependent subsystem configuration files that are not shared
among systems. An approved installation location for bundled Solaris software.
The analogous location for add-on system software or for applications is
/etc/opt/packagename.

/etc/tm
Trademark files; contents displayed at boot time.

/etc/usb
USB configuration information.

/etc/uucp
UUCP configuration information. See uucp(1C).

/etc/wrsm
WCI Remote Shared Memory (WRSM) configuration information. See
wrsmconf(1M)

/export
Default root of the shared file system tree.

/home
Default root of a subtree for user directories.

/kernel
Subtree of platform‐dependent loadable kernel modules required as part
of the boot process. It includes the generic part of the core kernel that is
platform‐independent, /kernel/genunix. See kernel(1M) An
approved installation location for bundled Solaris software and for add-on system
software.

/kernel/drv
32-bit device drivers.

filesystem(5)

48 man pages section 5: Standards, Environments, and Macros • Last Revised 15 Nov 2001

/kernel/drv/sparcv9
64-bit SPARC device drivers.

/kernel/genunix
Platform‐independent kernel.

/kernel/subsystem/ia64
64-bit x86 platform‐dependent modules required for boot. An approved
installation location for bundled Solaris software and for add-on system software.
Note that ia64 is an example name; the actual name might be different.

/kernel/subsystem/sparcv9
64-bit SPARC platform‐dependent modules required for boot. An
approved installation location for bundled Solaris software and for add-on system
software.

/mnt
Default temporary mount point for file systems. This is an empty directory on
which file systems can be temporarily mounted.

/opt
Root of a subtree for add-on application packages.

/platform
Subtree of platform‐specific objects which need to reside on the root
filesystem. It contains a series of directories, one per supported platform. The
semantics of the series of directories is equivalent to / (root).

/platform/‘uname -i‘/kernel
Platform‐specific modules required for boot. These modules have
semantics equivalent to /kernel. It includes the file unix, the core kernel. See
kernel(1M). An approved installation location for bundled Solaris software and
for add-on system software.

/platform/‘uname -m‘/kernel
Hardware class-specific modules required for boot. An approved installation
location for bundled Solaris software and for add-on system software.

/platform/‘uname -i‘/kernel/subsystem/ia64
x86 64-bit, platform‐dependent modules required for boot. Note that ia64
is an example name; the actual name might be different. An approved installation
location for bundled Solaris software.

/platform/‘uname -i‘/kernel/subsystem/sparcv9
SPARC 64-bit platform‐specific modules required for boot. An approved
installation location for bundled Solaris software.

/platform/‘uname -i‘/kernel/sparcv9/unix
64-bit platform‐dependent kernel.

/platform/‘uname -i‘/kernel/unix
32-bit platform‐dependent kernel.

filesystem(5)

Standards, Environments, and Macros 49

/platform/‘uname -i‘/lib
Platform‐specific shared objects required for boot. Semantics are
equivalent to /lib. An approved installation location for bundled Solaris software
and for add-on system software.

/platform/‘uname -i‘/sbin
Platform‐specific administrative utilities required for boot. Semantics are
equivalent to /sbin. An approved installation location for bundled Solaris
software and for add-on system software.

/proc
Root of a subtree for the process file system.

/sbin
Essential executables used in the booting process and in manual system recovery.
The full complement of utilities is available only after /usr is mounted. /sbin is
an approved installation location for bundled Solaris software.

/tmp
Temporary files; cleared during the boot operation.

/usr
Mount point for the /usr file system. See description of /usr file system, below.

/var
Root of a subtree for varying files. Varying files are files that are unique to a
machine but that can grow to an arbitrary (that is, variable) size. An example is a
log file. An approved installation location for bundled Solaris software. The
analogous location for add-on system software or for applications is
/var/opt/packagename.

/var/adm
System logging and accounting files.

/var/apache
Scripts, icons, logs, and cache pages for Apache web server.

/var/audit
Basic Security Module (BSM) audit files.

/var/crash
Default depository for kernel crash dumps.

/var/cron
Log files for cron(1M).

/var/dmi
Solstice Enterprise Agents (SEA) Desktop Management Interface (DMI) run-time
components.

/var/dt
dtlogin configuration files.

filesystem(5)

50 man pages section 5: Standards, Environments, and Macros • Last Revised 15 Nov 2001

/var/ftp
FTP server directory.

/var/inet
IPv6 router state files.

/var/krb5
Database and log files for Kerberos.

/var/ld
Configuration files for runtime linker.

/var/ldap
LDAP client configuration files.

/var/log
System log files.

/var/lp
Line printer subsystem logging information.

/var/mail
Directory where users’ mail is kept.

/var/news
Community service messages. This is not the same as USENET-style news.

/var/nfs
NFS server log files.

/var/nis
NIS+ databases.

/var/ntp
Network Time Protocol (NTP) server state directory.

/var/opt
Root of a subtree for varying files associated with optional software packages. An
approved installation location for add-on system software and applications.

/var/preserve
Backup files for vi(1) and ex(1).

/var/run
Temporary files which are not needed across reboots. Only root may modify the
contents of this directory.

/var/sadm
Databases maintained by the software package management utilities.

/var/sadm/system/logs
Status log files produced by software management functions and/or applications.
For example, log files produced for product installation. An approved installation
location for bundled Solaris software and for add-on system software and
applications.

filesystem(5)

Standards, Environments, and Macros 51

/var/saf
Service access facility logging and accounting files.

/var/samba
Log and lock files for Samba.

/var/snmp
SNMP status and configuration information.

/var/spool
Contains directories for files used in printer spooling, mail delivery, cron(1M),
at(1), and so forth.

/var/spool/clientmqueue
sendmail(1M) client files.

/var/spool/cron
cron(1M) and at(1) spooling files.

/var/spool/locks
Spooling lock files.

/var/spool/lp
Line printer spool files. See lp(1).

/var/spool/mqueue
Mail queued for delivery.

/var/spool/pkg
Spooled packages.

/var/spool/print
LP print service client-side request staging area.

/var/spool/samba
Samba print queue.

/var/spool/uucp
Queued uucp(1C) jobs.

/var/spool/uucppublic
Files deposited by uucp(1C).

/var/statmon
Network status monitor files.

/var/tmp
Files that vary in size or presence during normal system operations. This directory
is not cleared during the boot operation. An approved installation location for
bundled Solaris software and for add-on system software and applications.

/var/uucp
uucp(1C) log and status files.

filesystem(5)

52 man pages section 5: Standards, Environments, and Macros • Last Revised 15 Nov 2001

/var/yp
Databases needed for backwards compatibility with NIS and ypbind(1M);
unnecessary after full transition to NIS+.

Because it is desirable to keep the root file system small and not volatile, on disk-based
systems larger file systems are often mounted on /home, /opt, /usr, and /var.

The file system mounted on /usr contains platform-dependent and
platform-independent sharable files. The subtree rooted at /usr/share contains
platform-independent sharable files; the rest of the /usr tree contains
platform-dependent files. By mounting a common remote file system, a group of
machines with a common platform may share a single /usr file system. A single
/usr/share file system can be shared by machines of any platform. A machine
acting as a file server can share many different /usr file systems to support several
different architectures and operating system releases. Clients usually mount /usr
read-only so that they do not accidentally change any shared files.

The /usr file system contains the following subdirectories:

/usr/4lib
a.out libraries for the Binary Compatibility Package.

/usr/5bin
Symbolic link to the /usr/bin directory.

/usr/X
Symbolic link to the /usr/openwin directory.

/usr/adm
Symbolic link to the /var/adm directory.

/usr/apache
Apache executables, loadable modules, and documentation.

/usr/aset
Directory for Automated Security Enhancement Tools (ASET) programs and files.

/usr/bin
Platform‐dependent, user-invoked executables. These are commands users
expect to be run as part of their normal $PATH. For executables that are different on
a 64–bit system than on a 32–bit system, a wrapper that selects the appropriate
executable is placed here. See isaexec(3C). An approved installation location for
bundled Solaris software. The analogous location for add-on system software or for
applications is /opt/packagename/bin.

/usr/bin/ia64
x86 64–bit, platform‐dependent, user-invoked executables. Note that ia64
is an example name; the actual name might be different. This directory should not
be part of a user’s $PATH. A wrapper in /usr/bin should invoke the executable in
this directory. See isaexec(3C). An approved installation location for bundled
Solaris software. The analogous location for add-on system software or for
applications is /opt/packagename/bin/ia64.

filesystem(5)

/usr File System

Standards, Environments, and Macros 53

/usr/bin/sparcv9
SPARC 64–bit, platform‐dependent, user-invoked executables. This
directory should not be part of a user’s $PATH. A wrapper in /usr/bin should
invoke the executable in this directory. See isaexec(3C). An approved installation
location for bundled Solaris software. The analogous location for add-on system
software or for applications is /opt/packagename/bin/sparcv9.

/usr/bin/subsystem
Platform‐dependent user-invoked executables that are associated with
subsystem. These are commands users expect to be run as part of their normal
$PATH. An approved installation location for bundled Solaris software. The
analogous location for add-on system software or for applications is
/opt/packagename/bin.

/usr/bin/subsystem/ia64
x86 64–bit, platform‐dependent, user-invoked executables. Note that ia64
is an example name; the actual name might be different. This directory should not
be part of a user’s $PATH. A wrapper in /usr/bin should invoke the executable in
this directory. See isaexec(3C). An approved installation location for bundled
Solaris software. The analogous location for add-on system software or for
applications is /opt/packagename/bin/ia64.

/usr/bin/subsystem/sparcv9
SPARC 64–bit, platform‐dependent, user-invoked executables. This
directory should not be part of a user’s $PATH. A wrapper in /usr/bin should
invoke the executable in this directory. See isaexec(3C). An approved installation
location for bundled Solaris software. The analogous location for add-on system
software or for applications is /opt/packagename/bin/sparcv9.

/usr/subsystem/bin
Platform‐dependent user-invoked executables that are associated with
subsystem. These are commands users expect to be run as part of their normal
$PATH. An approved installation location for bundled Solaris software. The
analogous location for add-on system software or for applications is
/opt/packagename/bin.

/usr/subsystem/bin/ia64
x86 64–bit, platform‐dependent, user-invoked executables. Note that ia64
is an example name; the actual name might be different. This directory should not
be part of a user’s $PATH. A wrapper in /usr/bin should invoke the executable in
this directory. See isaexec(3C). An approved installation location for bundled
Solaris software. The analogous location for add-on system software or for
applications is /opt/packagename/bin/ia64.

/usr/subsystem/bin/sparcv9
SPARC 64–bit, platform‐dependent, user-invoked executables. This
directory should not be part of a user’s $PATH. A wrapper in /usr/bin should
invoke the executable in this directory. See isaexec(3C). An approved installation
location for bundled Solaris software. The analogous location for add-on system
software or for applications is /opt/packagename/bin/sparcv9.

filesystem(5)

54 man pages section 5: Standards, Environments, and Macros • Last Revised 15 Nov 2001

/usr/ccs
C compilation system.

/usr/ccs/bin
C compilation commands and system utilities.

/usr/ccs/lib
Symbolic link to /usr/lib.

/usr/demo
Demo programs and data.

/usr/dict
Symbolic link to the /usr/share/lib/dict directory, which contains the
dictionary file used by the UNIX spell program.

/usr/dt
root of a subtree for CDE software.

/usr/dt/bin
Primary location for CDE system utilities.

/usr/dt/include
Header files for CDE software.

/usr/dt/lib
Libraries for CDE software.

/usr/dt/share/man
On-line reference manual pages for CDE software.

/usr/games
An empty directory, a remnant of the SunOS 4.0/4.1 software.

/usr/include
Include headers (for C programs).

/usr/iplanet
Directory server executables, loadable modules, and documentation.

/usr/j2se
Java 2 SDK executables, loadable modules, and documentation.

/usr/java*
Directories containing Java programs and libraries.

/usr/kernel
Subtree of platform‐dependent loadable kernel modules, not needed in the
root filesystem. An approved installation location for bundled Solaris software.

/usr/kvm
A mount point, retained for backward compatibility, that formerly contained
platform-specific binaries and libraries.

filesystem(5)

Standards, Environments, and Macros 55

/usr/lib
Platform‐dependent libraries, various databases, commands and daemons
not invoked directly by a human user. An approved installation location for
bundled Solaris software. The analogous location for add-on system software or for
applications is /opt/packagename/lib.

/usr/lib/64
Symbolic link to the most portable 64-bit Solaris interfaces.

/usr/lib/acct
Accounting scripts and binaries. See acct(1M).

/usr/lib/class
Scheduling‐class-specific directories containing executables for
priocntl(1) and dispadmin(1M).

/usr/lib/dict
Database files for spell(1).

/usr/lib/font
troff(1) font description files.

/usr/lib/fs
File system type dependent modules; generally not intended to be invoked directly
by the user.

/usr/lib/ia64
x86 64–bit, platform‐dependent libraries, various databases, commands
and daemons not invoked directly by a human user. Note that ia64 is an example
name; the actual name might be different. An approved installation location for
bundled Solaris software. The analogous location for add-on system software or for
applications is /opt/packagename/lib/ia64.

/usr/lib/iconv
Conversion tables for iconv(1).

/usr/lib/libp
Profiled libraries.

/usr/lib/locale
Localization databases.

/usr/lib/lp
Line printer subsystem databases and back-end executables.

/usr/lib/mail
Auxiliary programs for the mail(1) subsystem.

/usr/lib/netsvc
Internet network services.

/usr/lib/nfs
Auxiliary NFS-related programs and daemons.

filesystem(5)

56 man pages section 5: Standards, Environments, and Macros • Last Revised 15 Nov 2001

/usr/lib/pics
Position Independent Code (PIC) archives needed to rebuild the run-time linker.

/usr/lib/refer
Auxiliary programs for refer(1).

/usr/lib/sa
Scripts and commands for the system activity report package. See sar(1).

/usr/lib/saf
Auxiliary programs and daemons related to the service access facility.

/usr/lib/sparcv9
SPARC 64-bit, platform‐dependent libraries, various databases, commands
and daemons not invoked directly by a human user. An approved installation
location for bundled Solaris software. The analogous location for add-on system
software or for applications is /opt/packagename/lib/sparcv9.

/usr/lib/spell
Auxiliary programs and databases for spell(1). This directory is only present
when the Binary Compatibility Package is installed.

/usr/lib/uucp
Auxiliary programs and daemons for uucp(1C).

/usr/lib/subsystem
Platform‐dependent libraries, various databases, commands and daemons
that are associated with subsystem and that are not invoked directly by a human
user. An approved installation location for bundled Solaris software. The analogous
location for add-on system software or for applications is /opt/packagename/lib.

/usr/lib/subsystem/ia64
x86 64–bit, platform‐dependent libraries, various databases, commands
and daemons that are associated with subsystem and that are not invoked directly
by a human user. Note that ia64 is an example name; the actual name might be
different. An approved installation location for bundled Solaris software. The
analogous location for add-on system software or for applications is
/opt/packagename/lib/ia64.

/usr/lib/subsystem/sparcv9
SPARC 64-bit, platform‐dependent libraries, various databases, commands
and daemons that are associated with subsystem and that are not invoked directly
by a human user. An approved installation location for bundled Solaris software.
The analogous location for add-on system software or for applications is
/opt/packagename/lib/sparcv9.

/usr/subsystem/lib
Platform‐dependent libraries, various databases, commands and daemons
not invoked directly by a human user. An approved installation location for
bundled Solaris software. The analogous location for add-on system software or for
applications is /opt/packagename/lib.

filesystem(5)

Standards, Environments, and Macros 57

/usr/subsystem/lib/ia64
x86 64–bit, platform‐dependent libraries, various databases, commands
and daemons that are associated with subsystem and that are not invoked directly
by a human user. Note that ia64 is an example name; the actual name might be
different. An approved installation location for bundled Solaris software. The
analogous location for add-on system software or for applications is
/opt/packagename/lib/ia64.

/usr/subsystem/lib/sparcv9
SPARC 64-bit, platform‐dependent libraries, various databases, commands
and daemons that are associated with subsystem and that are not invoked directly
by a human user. An approved installation location for bundled Solaris software.
The analogous location for add-on system software or for applications is
/opt/packagename/lib/sparcv9.

/usr/local
Not part of the SVR4-based Solaris distribution. The /usr directory is exclusively
for software bundled with the Solaris operating system. If needed for storing
machine-local add-on software, create the directory /opt/local and make
/usr/local a symbolic link to /opt/local. The /opt directory or filesystem is
for storing add-on software to the system.

/usr/mail
Symbolic link to the /var/mail directory.

/usr/man
Symbolic link to the /usr/share/man directory.

/usr/net/servers
Entry points for foreign name service requests relayed using the network listener.
See listen(1M).

/usr/news
Symbolic link to the /var/news directory.

/usr/oasys
Commands and files related to the Form and Menu Language Interpreter (FMLI)
execution environment. See face(1).

/usr/old
Programs that are being phased out.

/usr/openwin
Installation or mount point for the OpenWindows software.

/usr/perl5
Perl 5 programs and documentation

/usr/platform
Subtree of platform‐specific objects which does not need to reside on the
root filesystem. It contains a series of directories, one per supported platform. The

filesystem(5)

58 man pages section 5: Standards, Environments, and Macros • Last Revised 15 Nov 2001

semantics of the series of directories is equivalent to /platform, except for
subdirectories which do not provide utility under one or the other (for example,
/platform/include is not needed).

/usr/platform/‘uname -i‘/include
Symbolic link to /../‘uname -i‘/include.Platform‐specific system
(sys, vm) header files with semantics equivalent to /usr/include. An approved
installation location for bundled Solaris software and for add-on system software.

/usr/platform/‘uname -i‘/kernel
Platform‐specific modules with semantics equivalent to /usr/kernel.
An approved installation location for bundled Solaris software and for add-on
system software.

/usr/platform/‘uname -i‘/lib
Platform‐specific daemon and shared objects with semantics equivalent to
/usr/lib. An approved installation location for bundled Solaris software and for
add-on system software.

/usr/platform/‘uname -i‘/lib/ia64
x86 64–bit, platform‐specific daemon and shared objects. Note that ia64 is
an example name; the actual name might be different. An approved installation
location for bundled Solaris software and for add-on system software.

/usr/platform/‘uname -i‘/lib/sparcv9
SPARC 64–bit, platform‐specific daemon and shared objects. An approved
installation location for bundled Solaris software and for add-on system software.

/usr/platform/‘uname -i‘/[s]mannum
Where num can be one of 3x, 1m, 4, 7d, or 9e. Platform‐specific system
manual pages for documenting platform‐specific, shared objects,
administration utilities, configuration files, special files/modules, and header files.
An approved installation location for bundled Solaris software and for add-on
system software.

/usr/platform/‘uname -i‘/sbin
Platform-specific system administration utilities with semantics equivalent to
/usr/sbin. An approved installation location for bundled Solaris software and for
add-on system software.

/usr/preserve
Symbolic link to the /var/preserve directory.

/usr/proc
Directory for the proc tools.

/usr/proc/bin
Contains links to SPARC Version 8 binaries in /usr/bin.

/usr/pub
Files for online man page and character processing.

/usr/sadm
System administration files and directories.

filesystem(5)

Standards, Environments, and Macros 59

/usr/sadm/bin
Binaries for the Form and Menu Language Interpreter (FMLI) scripts. See fmli(1).

/usr/sadm/install
Executables and scripts for package management.

/usr/sbin
Platform‐dependent executables for system administration, expected to be
run only by system administrators. An approved installation location for bundled
Solaris software. The analogous location for add-on system software or for
applications is /opt/packagename/sbin.

/usr/sbin/install.d
Custom Jumpstart scripts and executables.

/usr/sbin/static
Statically linked version of selected programs from /usr/bin and /usr/sbin.
These are used to recover from broken dynamic linking and before all pieces
necessary for dynamic linking are present.

/usr/sbin/sparc7 and sparc9
32–bit and 64–bit versions of commands.

/usr/sfw
GNU and open source executables, libraries, and documentation.

/usr/sbin/subsystem
Platform‐dependent executables for system administration, expected to be
run only by system administrators, and associated with subsystem. An approved
installation location for bundled Solaris software. The analogous location for
add-on system software or for applications is /opt/packagename/sbin.

/usr/subsystem/sbin
Platform‐dependent executables for system administration, expected to be
run only by system administrators, and associated with subsystem. An approved
installation location for bundled Solaris software. The analogous location for
add-on system software or for applications is /opt/packagename/sbin.

/usr/share
Platform‐independent sharable files. An approved installation location for
bundled Solaris software.

/usr/share/admserv5.1
iPlanet Console and Administration Server documentation.

/usr/share/audio
Sample audio files.

/usr/share/ds5
iPlanet Server documentation.

/usr/share/lib
Platform‐independent sharable databases. An approved installation
location for bundled Solaris software.

filesystem(5)

60 man pages section 5: Standards, Environments, and Macros • Last Revised 15 Nov 2001

/usr/share/lib/dict
Contains word list for spell(1).

/usr/share/lib/keytables
Keyboard layout description tables.

/usr/share/lib/mailx
Help files for mailx(1).

/usr/share/lib/nterm
nroff(1) terminal tables.

/usr/share/lib/pub
Character set data files.

/usr/share/lib/tabset
Tab setting escape sequences.

/usr/share/lib/terminfo
Terminal description files for terminfo(4).

/usr/share/lib/tmac
Macro packages and related files for text processing tools, for example, nroff(1)
and troff(1).

/usr/share/lib/zoneinfo
Time zone information.

/usr/share/[s]man
Platform‐independent sharable manual pages. An approved installation
location for bundled Solaris software. The analogous location for add-on system
software or for applications is /opt/packagename/[s]man.

/usr/share/src
Source code for kernel, utilities, and libraries.

/usr/snadm
Files related to system and network administration.

/usr/spool
Symbolic link to the /var/spool directory.

/usr/src
Symbolic link to the /usr/share/src directory.

/usr/tmp
Symbolic link to the var/tmp directory.

/usr/ucb
Berkeley compatibility package binaries.

/usr/ucbinclude
Berkeley compatibility package headers.

/usr/ucblib
Berkeley compatibility package libraries.

filesystem(5)

Standards, Environments, and Macros 61

/usr/vmsys
Commands and files related to the Framed Access Command Environment (FACE)
programs. See face(1).

/usr/xpg4
Directory for POSIX-compliant utilities.

at(1), ex(1), face(1), fmli(1), iconv(1), lp(1), isainfo(1), mail(1), mailx(1),
nroff(1), priocntl(1), refer(1), sar(1), sh(1), spell(1), troff(1), uname(1),
uucp(1C), vi(1), acct(1M), cron(1M), dispadmin(1M), fsck(1M), init(1M),
kernel(1M), mknod(1M), mount(1M), useradd(1M), ypbind(1M), mount(2),
intro(4), terminfo(4)

filesystem(5)

SEE ALSO

62 man pages section 5: Standards, Environments, and Macros • Last Revised 15 Nov 2001

fnmatch – file name pattern matching

The pattern matching notation described below is used to specify patterns for
matching strings in the shell. Historically, pattern matching notation is related to, but
slightly different from, the regular expression notation. For this reason, the description
of the rules for this pattern matching notation is based on the description of regular
expression notation described on the regex(5) manual page.

The following patterns matching a single character match a single character: ordinary
characters, special pattern characters and pattern bracket expressions. The pattern bracket
expression will also match a single collating element.

An ordinary character is a pattern that matches itself. It can be any character in the
supported character set except for NUL, those special shell characters that require
quoting, and the following three special pattern characters. Matching is based on the
bit pattern used for encoding the character, not on the graphic representation of the
character. If any character (ordinary, shell special, or pattern special) is quoted, that
pattern will match the character itself. The shell special characters always require
quoting.

When unquoted and outside a bracket expression, the following three characters will
have special meaning in the specification of patterns:

? A question-mark is a pattern that will match any character.

* An asterisk is a pattern that will match multiple characters, as described in
Patterns Matching Multiple Characters, below.

[The open bracket will introduce a pattern bracket expression.

The description of basic regular expression bracket expressions on the regex(5)
manual page also applies to the pattern bracket expression, except that the
exclamation-mark character (!) replaces the circumflex character (^) in its role in a
non-matching list in the regular expression notation. A bracket expression starting with
an unquoted circumflex character produces unspecified results.

The restriction on a circumflex in a bracket expression is to allow implementations that
support pattern matching using the circumflex as the negation character in addition to
the exclamation-mark. A portable application must use something like [\^!] to match
either character.

When pattern matching is used where shell quote removal is not performed (such as
in the argument to the find –name primary when find is being called using one of
the exec functions, or in the pattern argument to the fnmatch(3C) function, special
characters can be escaped to remove their special meaning by preceding them with a
backslash character. This escaping backslash will be discarded. The sequence \\
represents one literal backslash. All of the requirements and effects of quoting on
ordinary, shell special and special pattern characters will apply to escaping in this
context.

fnmatch(5)

NAME

DESCRIPTION

Patterns Matching
a Single Character

Standards, Environments, and Macros 63

Both quoting and escaping are described here because pattern matching must work in
three separate circumstances:

� Calling directly upon the shell, such as in pathname expansion or in a case
statement. All of the following will match the string or file abc:

abc "abc" a"b"c a\bc a[b]c

a["b"]c a[\b]c a["\b"]c a?c a*c

The following will not:

"a?c" a*c a\[b]c

� Calling a utility or function without going through a shell, as described for find(1)
and the function fnmatch(3C)

� Calling utilities such as find, cpio, tar or pax through the shell command line.
In this case, shell quote removal is performed before the utility sees the argument.
For example, in:

find /bin -name e\c[\h]o -print after quote removal, the backslashes are presented
to find and it treats them as escape characters. Both precede ordinary characters,
so the c and h represent themselves and echo would be found on many historical
systems (that have it in /bin). To find a file name that contained shell special
characters or pattern characters, both quoting and escaping are required, such as:

pax -r . . . "*a\ (\?"to extract a filename ending with a(?.

Conforming applications are required to quote or escape the shell special characters
(sometimes called metacharacters). If used without this protection, syntax errors can
result or implementation extensions can be triggered. For example, the KornShell
supports a series of extensions based on parentheses in patterns; see ksh(1)

The following rules are used to construct patterns matching multiple characters from
patterns matching a single character:

� The asterisk (*) is a pattern that will match any string, including the null string.
� The concatenation of patterns matching a single character is a valid pattern that will

match the concatenation of the single characters or collating elements matched by
each of the concatenated patterns.

� The concatenation of one or more patterns matching a single character with one or
more asterisks is a valid pattern. In such patterns, each asterisk will match a string
of zero or more characters, matching the greatest possible number of characters
that still allows the remainder of the pattern to match the string.

fnmatch(5)

Patterns Matching
Multiple

Characters

64 man pages section 5: Standards, Environments, and Macros • Last Revised 28 Mar 1995

Since each asterisk matches zero or more occurrences, the patterns a*b and a**b have
identical functionality.

Examples:

a[bc] matches the strings ab and ac.

a*d matches the strings ad, abd and abcd, but not the string abc.

a*d* matches the strings ad, abcd, abcdef, aaaad and adddd.

*a*d matches the strings ad, abcd, efabcd, aaaad and adddd.

The rules described so far in Patterns Matching Multiple Characters and
Patterns Matching a Single Character are qualified by the following rules that
apply when pattern matching notation is used for filename expansion.

1. The slash character in a pathname must be explicitly matched by using one or
more slashes in the pattern; it cannot be matched by the asterisk or question-mark
special characters or by a bracket expression. Slashes in the pattern are identified
before bracket expressions; thus, a slash cannot be included in a pattern bracket
expression used for filename expansion. For example, the pattern a[b/c]d will
not match such pathnames as abd or a/d. It will only match a pathname of
literally a[b/c]d.

2. If a filename begins with a period (.), the period must be explicitly matched by
using a period as the first character of the pattern or immediately following a slash
character. The leading period will not be matched by:

• the asterisk or question-mark special characters

• a bracket expression containing a non-matching list, such as:

[!a]a range expression, such as:

[%−0]or a character class expression, such as:

[[:punct:]]It is unspecified whether an explicit period in a bracket expression
matching list, such as:

[.abc]can match a leading period in a filename.

3. Specified patterns are matched against existing filenames and pathnames, as
appropriate. Each component that contains a pattern character requires read
permission in the directory containing that component. Any component, except the
last, that does not contain a pattern character requires search permission. For
example, given the pattern:

/foo/bar/x*/bamsearch permission is needed for directories / and foo, search
and read permissions are needed for directory bar, and search permission is

fnmatch(5)

Patterns Used for
Filename

Expansion

Standards, Environments, and Macros 65

needed for each x* directory. If the pattern matches any existing filenames or
pathnames, the pattern will be replaced with those filenames and pathnames,
sorted according to the collating sequence in effect in the current locale. If the
pattern contains an invalid bracket expression or does not match any existing
filenames or pathnames, the pattern string is left unchanged.

find(1), ksh(1), fnmatch(3C), regex(5)

fnmatch(5)

SEE ALSO

66 man pages section 5: Standards, Environments, and Macros • Last Revised 28 Mar 1995

fns – overview of FNS

Federated Naming Service (FNS) provides a method for federating multiple naming
services under a single, simple interface for the basic naming operations. The service
supports resolution of composite names, names that span multiple naming systems,
through the naming interface. In addition to the naming interface, FNS also specifies
policies for composing names in the enterprise namespace. See fns_policies(5) and
fns_initial_context(5).

Fundamental to the FNS model are the notions of composite names and contexts. A
context provides operations for:

� associating (binding) names to objects
� resolving names to objects
� removing bindings, listing names, renaming and so on.

A context contains a set of names to reference bindings. A reference contains a list of
communication end-points. Every naming operation in the FNS interface is performed
on a context object.

The federated naming system is formed by contexts from one naming system being
bound in the contexts of another naming system. Resolution of a composite name
proceeds from contexts within one naming system to those in the next, until the name
is resolved.

XFN is X/Open Federated Naming. The programming interface and policies that FNS
supports are specified by XFN. See xfn(3XFN) and fns_policies(5).

A composite name is a name that spans multiple naming systems. It consists of an
ordered list of components. Each component is a name from the namespace of a single
naming system. FNS defines the syntax for constructing a composite name using
names from component naming systems. Individual naming systems are responsible
for the syntax of each component.

The syntax for composite names is that components are composed left to right using
the slash character (’/’) as the component separator. For example, the composite name
. . . /Wiz.Com/site/Oceanview.East consists of four components: . . . ,
Wiz.COM, site, and Oceanview.East. See fns_policies(5) and
fns_initial_context(5) for more examples of composite names.

FNS is useful for the following reasons:

� A single uniform naming interface is provided to clients for accessing naming
services. Consequently, the addition of new naming services does not require
changes to applications or existing naming services. Furthermore, applications that
use FNS will be portable across platforms because the interface exported by FNS is
XFN, a public, open interface endorsed by other vendors and by the X/Open
Company.

fns(5)

NAME

DESCRIPTION

XFN

Composite Names

Why FNS?

Standards, Environments, and Macros 67

� Names can be composed in a uniform way (that is, FNS supports a model in which
composite names are constructed in a uniform syntactic way and can have any
number of components).

� Coherent naming is encouraged through the use of shared contexts and shared
names.

FNS has support for NIS+, NIS, and files as enterprise-level naming services. This
means that FNS implements the enterprise-level policies using NIS+, NIS, and files.
FNS also supports DNS and X.500 (via DAP or LDAP) as global naming services, as
well as support for federating NIS+ and NIS with DNS and X.500. See the
corresponding individual man page for information about the implementation for a
specific naming service.

nis+(1), xfn(3XFN), fns_dns(5), fns_files(5), fns_initial_context(5),
fns_nis(5), fns_nis+(5), fns_policies(5), fns_references(5), fns_x500(5)

fns(5)

FNS and Naming
Systems

SEE ALSO

68 man pages section 5: Standards, Environments, and Macros • Last Revised 22 Nov 1996

fns_dns – overview of FNS over DNS implementation

Federated Naming Service (FNS) provides a method for federating multiple naming
services under a single, simple interface for the basic naming operations. One of the
naming services supported by FNS is the Internet Domain Name System, or DNS (see
in.named(1M)). DNS is a hierarchical collection of name servers that provide the
Internet community with host and domain name resolution. FNS uses DNS to name
entities globally. Names can be constructed for any enterprise that is accessible on the
Internet; consequently, names can also be constructed for objects exported by these
enterprises.

FNS provides the XFN interface for performing naming resolution on DNS domains
and hosts. In addition, enterprise namespaces such as those served by NIS+ and NIS
can be federated with DNS by adding TXT records to DNS. To federate an NIS+ or
NIS namespace under DNS, you first obtain the root reference for the NIS+ hierarchy
or NIS domain. This reference is referred to as the next naming system reference because
it refers to the next naming system beneath the DNS domain. This reference contains
information about how to communicate with the NIS+ or NIS servers and has the
following format:

<domainname> <server name> [<server address>]

where <domainname> is the fully qualified domain name. Notice that NIS+ and NIS
have slightly different syntaxes for domain names. For NIS+, the fully qualified
domain name is case-insensitive and terminated by a dot character (’.’). For NIS, the
fully qualified domain name is case-sensitive and is not terminated by a dot character.
For both NIS+ and NIS, <server address> is optional. If it is not supplied, a host name
lookup will be performed to get the machine’s address.

For example, if the machine wiz-nisplus-server with address 133.33.33.33
serves the NIS+ domain wiz.com., the reference would look like this:

wiz.com. wiz-nisplus-server 133.33.33.33

For NIS, the reference information is of the form:

<domainname> <server name>

For example, if the machine woz-nis-server serves the NIS domain Woz.COM, the
reference would look like this:

Woz.COM woz-nis-server

fns_dns(5)

NAME

DESCRIPTION

Standards, Environments, and Macros 69

After obtaining this information, you then edit the DNS table (see in.named(1M))
and add a TXT record with this reference information. The TXT record must be
associated with a DNS domain that includes an NIS record. For example, the reference
information shown in the examples above would be entered as follows.

For NIS+:

TXT "XFNNISPLUS wiz.com. wiz-nisplus-server 133.33.33.33"

For NIS:

TXT "XFNNIS woz.com woz-nis-server"

Note the mandatory double quotes (’ " ’) delimiting the contents of the TXT record.
After making any changes to the DNS table, you must notify the server by either
restarting it or sending it a signal to reread the table:

#kill -HUP ‘cat /etc/named.pid‘

This update effectively adds the next naming system reference to DNS. You can look
up this reference using fnlookup(1) to see if the information has been added
properly. For example, the following command looks up the next naming system
reference of the DNS domain Wiz.COM:

#fnlookup -v .../Wiz.COM/

Note the mandatory trailing slash (’/’).

After this administrative step has been taken, clients outside of the NIS+ hierarchy or
NIS domain can access and perform operations on the contexts in the NIS+ hierarchy
or NIS domain. Foreign NIS+ clients access the hierarchy as unauthenticated NIS+
clients. Continuing the example above, and assuming that NIS+ is federated
underneath the DNS domain Wiz.COM, you can now list the root of the NIS+
enterprise using the command:

#fnlist .../Wiz.COM/

fnlist(1), fnlookup(1), nis+(1), in.named(1M), ypserv(1M), xfn(3XFN), fns(5),
fns_nis(5), fns_nis+(5), fns_references(5), fns_x500(5)

fns_dns(5)

SEE ALSO

70 man pages section 5: Standards, Environments, and Macros • Last Revised 22 Nov 1996

fns_files – overview of FNS over files implementation

The Federated Naming Service (FNS) provides a method for federating multiple
naming services under a single, simple interface for the basic naming operations. One
of the naming services supported by FNS is /etc files. FNS provides the XFN
interface for performing naming and attribute operations on FNS enterprise objects
(organization, site, user, host, and service objects), using files as the naming service.
FNS stores bindings for these objects in files and uses them in conjunction with
existing /etc files objects.

FNS defines policies for naming objects in the federated namespace (see
fns_policies(5)). At the enterprise level, FNS policies specify naming for
organizations, hosts, users, sites, and services. The enterprise-level naming service
provides contexts to allow other objects to be named relative to these objects.

The organizational unit namespace provides a hierarchical namespace for naming
subunits of an enterprise. In /etc files, there is no concept of an organization. Hence,
with respect to /etc files as the naming service, there is a single organizational unit
context that represents the entire system. Users in an FNS organizational unit
correspond to the users in the /etc/passwd file. FNS provides a context for each user
in the /etc/passwd file.

Hosts in an FNS organizational unit correspond to the hosts in the /etc/hosts file.
FNS provides a context for each host in the /etc/hosts file.

Changes to the FNS information (using the commands fncreate(1M),
fncreate_fs(1M), fnbind(1), fndestroy(1M) and fnunbind(1)) can be
performed only by the privileged users on the system that exports the /var/fn
directory. Also, based on the UNIX user IDs, users are allowed to modify their own
contexts, bindings, and attributes, from any machine that mounts the /var/fn
directory.

For example, the command fncreate(1M) creates FNS related files and directories in
the system on which the command is executed. Hence, the invoker of the
fncreate(1M) command must have super-user privileges in order to create the user,
host, site, and service contexts. However, a user could use the fnunbind(1) command
to create calendar bindings in the user’s own context, as in this example:

fnbind –r thisuser/service/calendar onc_calendar onc_cal_str
jsmith@beatrix

The files object name that corresponds to an FNS composite name can be obtained
using fnlookup(1) and fnlist(1).

The files used for storing FNS information are placed in the directory /var/fn. The
machine on which /var/fn is located has access to the FNS file. The FNS information
can be made accessible to other machines by exporting /var/fn. Client machines that
NFS mount the /var/fn directory would then be able to access the FNS information.

fns_files(5)

NAME

DESCRIPTION

FNS Policies and
/etc Files

Security
Considerations

USAGE

Standards, Environments, and Macros 71

fnbind(1), fnlist(1), fnlookup(1), fnunbind(1), fncreate(1M),
fncreate_fs(1M), fndestroy(1M), xfn(3XFN), fns(5),
fns_initial_context(5), fns_nis(5), fns_nis+(5), fns_policies(5),
fns_references(5)

fns_files(5)

SEE ALSO

72 man pages section 5: Standards, Environments, and Macros • Last Revised 13 Dec 1996

fns_initial_context – overview of the FNS Initial Context

Every FNS name is interpreted relative to some context, and every FNS naming
operation is performed on a context object. The FNS programming interface (XFN)
provides a function that allows the client to obtain an Initial Context object. The Initial
Context provides the initial pathway to other FNS contexts. FNS defines a set of
bindings that the client can expect to find in this context,

FNS assumes that for every process:

1. There is a user associated with the process when
fn_ctx_handle_from_initial() is invoked. This association is based on the
effective uid of the process. In the following discussion this user is denoted by U.
The association of user to process may change during the life of a process but does
not affect the context handle originally returned by
fn_ctx_handle_from_initial().

2. The process is running on a host when fn_ctx_handle_from_initial() is
invoked. In the following discussion this host is denoted by H.

The following atomic names can appear in the Initial Context:

. . . thishost thisorgunit

thisens myself myorgunit

myens orgunit site

user host

Except for . . . , these names with an added underscore (’_’) prefix are also in the
Initial Context and have the same binding as their counterpart (for example,
thishost and _thishost have the same binding). In addition, org has the same
binding as orgunit, and thisuser has the same binding as myself. The bindings
for these names are summarized in the following table.

Some of these names may not necessarily appear in all Initial Contexts. For example, a
process owned by the super-user of a machine does not have any of the user-related
bindings. Or, for another example, an installation that has not set up a site namespace
will not have the site-related bindings.

… global context for resolving DNS or X.500 names.
Synonym: /. . .

thishost H’s host context. Synonym: _thishost

thisens the enterprise root of H. Synonym: _thisens

thisorgunit H’s distinguished organizational unit context. In
Solaris, this is H’s NIS+ home domain. Synonym:
_thisorgunit

fns_initial_context(5)

NAME

DESCRIPTION

Standards, Environments, and Macros 73

myself U’s user context. Synonyms: _myself, thisuser

myens the enterprise root of U. Synonym: _myens

myorgunit U’s distinguished organizational unit context. In
Solaris, this is U’s NIS+ home domain. Synonym:
_myorgunit

user the context in which users in the same organizational
unit as H are named. Synonym: _user

host the context in which hosts in the same organizational
unit as H are named. Synonym: _host

org the root context of the organizational unit namespace
in H’s enterprise. In Solaris, this corresponds to the
NIS+ root domain. Synonyms: orgunit, _orgunit

site the root context of the site namespace in H’s enterprise,
if the site namespace has been configured. Synonym:
_site

EXAMPLE 1 Names beginning with the enterprise root

The types of objects that may be named relative to the enterprise root are user, host,
service, organizational unit, file, and site. Here are some examples of names that begin
with the enterprise root:

thisens/orgunit/multimedia.servers.engineering
names an organizational unit multimedia.servers.engineering in H’s
enterprise.

thisens/site/northwing.floor3.admin
names the north wing site, on the third floor of the administrations building in H’s
enterprise.

myens/user/hdiffie
names the user hdiffie in U’s enterprise.

myens/service/teletax
names the teletax service of U’s enterprise.

EXAMPLE 2 Names beginning with organizational unit names

The types of objects that may be named relative to an organizational unit name are:
user, host, service, file, and site. Here are some examples of names that begin with
organizational unit names (either explicitly via org, or implicitly via thisorgunit or
myorgunit), and name objects relative to organizational unit names when resolved in
the Initial Context:

org/accounts_payable.finance/site/videoconference.northwing
names a conference room videoconference located in the north wing of the site
associated with the organizational unit accounts_payable.finance.

fns_initial_context(5)

EXAMPLES

74 man pages section 5: Standards, Environments, and Macros • Last Revised 1 Nov 1994

EXAMPLE 2 Names beginning with organizational unit names (Continued)

org/finance/user/mjones
names a user mjones in the organizational unit finance.

org/finance/host/inmail
names a machine inmail belonging to the organizational unit finance.

org/accounts_payable.finance/fs/pub/blue-and-whites/FY92-124
names a file pub/blue-and-whites/FY92-124 belonging to the organizational
unit accounts_payable.finance.

org/accounts_payable.finance/service/calendar
names the calendar service of the organizational unit
accounts_payable.finance. This might manage the meeting schedules of the
organizational unit.

thisorgunit/user/cmead
names the user cmead in H’s organizational unit.

myorgunit/fs/pub/project_plans/widget.ps
names the file pub/project_plans/widget.ps exported by U’s organizational
unit’s file system.

EXAMPLE 3 Names beginning with site names

The types of objects that may be named relative to a site name are users, hosts,
services, and files. Here are some examples of names that begin with site names via
site, and name objects relative to sites when resolved in the Initial Context:

site/b5.mtv/service/printer/speedy
names a printer speedy in the b5.mtv site.

site/admin/fs/usr/dist
names a file directory usr/dist available in the site admin.

EXAMPLE 4 Names beginning with user names

The types of objects that may be named relative to a user name are services and files.
Here are some examples of names that begin with user names (explicitly via user or
implicitly via thisuser), and name objects relative to users when resolved in the
Initial Context:

user/jsmith/service/calendar
names the calendar service of the user jsmith.

user/jsmith/fs/bin/games/riddles
names the file bin/games/riddles of the user jsmith.

thisuser/service/printer
names the printer service of U.

fns_initial_context(5)

Standards, Environments, and Macros 75

EXAMPLE 5 Names beginning with host names

The types of objects that may be named relative to a host name are services and files.
Here are some examples of names that begin with host names (explicitly via host or
implicitly via thishost), and name objects relative to hosts when resolved in the
Initial Context:

host/mailhop/service/mailbox
names the mailbox service associated with the machine mailhop.

host/mailhop/fs/pub/saf/archives.91
names the directory pub/saf/archives.91 found under the root directory of the
machine mailhop.

thishost/service/printer
names the printer service of H.

nis+(1), geteuid(2), fn_ctx_handle_from_initial(3XFN), xfn(3XFN), fns(5),
fns_policies(5)

fns_initial_context(5)

SEE ALSO

76 man pages section 5: Standards, Environments, and Macros • Last Revised 1 Nov 1994

fns_nis+ – overview of FNS over NIS+ implementation

Federated Naming Service (FNS) provides a method for federating multiple naming
services under a single, simple interface for the basic naming operations. One of the
naming services supported by FNS is NIS+, the enterprise-wide information service in
Solaris (see nis+(1)). FNS provides the XFN interface for performing naming and
attribute operations on FNS enterprise objects (organization, site, user, host, and
service objects) using NIS+. FNS stores bindings for these objects in NIS+ and uses
them in conjunction with existing NIS+ objects.

FNS defines policies for naming objects in the federated namespace (see
fns_policies(5)). At the enterprise level, FNS policies specify naming for
organizations, hosts, users, sites, and services. The enterprise-level naming service
provides contexts to allow other objects to be named relative to these objects.

The organizational unit namespace provides a hierarchical namespace for naming
subunits of an enterprise. An organizational unit maps to an NIS+ domain.
Organizational unit names can be either fully qualified NIS+ domain names or
relatively NIS+ domain names. If a terminal dot is present in the name, it is treated as
a fully qualified name. Otherwise, the name is resolved relative to the root NIS+
domain.

Users in the NIS+ namespace are found in the passwd.org_dir table of an NIS+
domain. Users in an FNS organizational unit correspond to the users in the
passwd.org_dir table of the corresponding NIS+ domain. FNS provides a context
for each user in the passwd.org_dir table.

Hosts in the NIS+ namespace are found in the hosts.org_dir table of an NIS+
domain. Hosts in an FNS organizational unit correspond to the hosts in the
hosts.org_dir table of the corresponding NIS+ domain. FNS provides a context for
each host in the hosts.org_dir table.

In NIS+, users and hosts have a notion of a home domain. It is the primary NIS+
domain that maintains information associated with them. A user or host’s home
domain can be determined directly using its NIS+ principal name, which is composed
of the atomic user (login) name or the atomic host name, and the name of the NIS+
home domain. For example, user jsmith with home domain wiz.com has an NIS+
principal name, jsmith.wiz.com.

A user’s NIS+ home domain corresponds to the user’s FNS organizational unit and
determines the binding for myens and myorgunit.

A host’s NIS+ home domain corresponds to the host’s FNS organizational unit and
determines the binding for thisens, thisorgunit, user, and host.

fns_nis+(5)

NAME

DESCRIPTION

FNS Policies and
NIS+

Standards, Environments, and Macros 77

Federating NIS+ with the global naming systems DNS or X.500 makes NIS+ contexts
accessible outside of an NIS+ hierarchy. To enable the federation, the administrator
must first add address information in either DNS or X.500 (see fns_dns(5) and
fns_x500(5)). After this administrative step has been taken, clients outside of the
NIS+ hierarchy can access contexts and perform operations from outside the hierarchy
as an unauthenticated NIS+ client.

The command fncreate(1M) creates NIS+ tables and directories in the NIS+
hierarchy associated with the domain of the host on which it executes. The invoker of
fncreate(1M) and other FNS commands is expected to have the necessary NIS+
credentials. (See nis+(1) and nisdefaults(1)). The environment variable
NIS_GROUP of the process specifies the group owner for the NIS+ objects thus created.
In order to facilitate administration of the NIS+ objects, NIS_GROUP should be set to
the name of the NIS+ administration group for the domain prior to executing
fncreate(1M) and other FNS commands. Changes to NIS+-related properties,
including default access control rights, could be effected using NIS+ administration
tools and interfaces after the context has been created. The NIS+ object name that
corresponds to an FNS composite name can be obtained using fnlookup(1) and
fnlist(1).

fnlist(1), fnlookup(1), nis+(1), nischgrp(1), nischmod(1), nischown(1),
nisdefaults(1), nisls(1), fncreate(1M), xfn(3XFN), fns(5), fns_dns(5),
fns_files(5), fns_initial_context(5), fns_nis(5), fns_policies(5),
fns_references(5), fns_x500(5)

fns_nis+(5)

Federating NIS+
with DNS or X.500

NIS+ Security

SEE ALSO

78 man pages section 5: Standards, Environments, and Macros • Last Revised 22 Nov 1996

fns_nis – overview of FNS over NIS (YP) implementation

Federated Naming Service (FNS) provides a method for federating multiple naming
services under a single, simple interface for the basic naming operations. One of the
naming services supported by FNS is NIS (YP), the enterprise-wide information
services in Solaris (see ypcat(1), ypmatch(1), ypfiles(4)). FNS provides the XFN
interface for performing naming and attribute operations on FNS enterprise objects
(organization, site, user, host and service objects) using NIS. FNS stores bindings for
these objects in NIS and uses them in conjunction with existing NIS objects.

FNS defines policies for naming objects in the federated namespace (see
fns_policies(5)). At the enterprise level, FNS policies specify naming for
organizations, hosts, users, sites, and services. The enterprise-level naming service
provides contexts to allow other objects to be named relative to these objects.

The FNS organizational unit namespace provides a hierarchical namespace for naming
subunits of an enterprise. However, NIS does not support a hierarchical organizational
structure. Therefore, a NIS domain maps to a single organizational unit in the FNS
namespace.

Users in an FNS organizational unit correspond to the users in the passwd.byname
map of the corresponding NIS domain. FNS provides a context for each user in the
passwd.byname map.

Hosts in an FNS organizational unit correspond to the hosts in the hosts.byname
map of the corresponding NIS domain. FNS provides a context for each host in the
hosts.byname map.

Federating NIS with the global naming systems DNS or X.500 makes NIS contexts
accessible outside of an NIS domain. To enable the federation, the administrator must
first add address information in either DNS or X.500 (see fns_dns(5) and
fns_x500(5)). After this administrative step has been taken, clients outside of the NIS
domain can access contexts and perform operations.

Changes to the FNS information (using the commands fncreate(1M),
fncreate_fs(1M), fncreate_printer(1M), fnbind(1), fndestroy(1M),
fncheck(1M), and fnunbind(1)) can be performed only by the privileged users on
the NIS master server that maintains the FNS information.

For example, the command fncreate(1M) creates the NIS map for the associated NIS
domain in the system on which it is executed. Hence, the command must be run by a
privileged user either on the NIS master server or on a system that will serve as a NIS
master server for FNS.

The NIS object name that corresponds to an FNS composite name can be obtained
using fnlookup(1) and fnlist(1).

fns_nis(5)

NAME

DESCRIPTION

FNS Policies and
NIS

Federating NIS
with DNS or X.500

Security
Considerations

Standards, Environments, and Macros 79

fnbind(1), fnlist(1), fnlookup(1), fnunbind(1), ypcat(1), ypmatch(1),
fncheck(1M), fncreate(1M), fncreate_fs(1M), fncreate_printer(1M),
fndestroy(1M), xfn(3XFN), ypfiles(4), fns(5), fns_dns(5), fns_files(5),
fns_initial_context(5), fns_nis+(5), fns_policies(5), fns_references(5),
fns_x500(5)

fns_nis(5)

SEE ALSO

80 man pages section 5: Standards, Environments, and Macros • Last Revised 22 Nov 1996

fns_policies – overview of the FNS Policies

FNS defines policies for naming objects in the federated namespace. The goal of these
policies is to allow easy and uniform composition of names. The policies use the basic
rule that objects with narrower scopes are named relative to objects with wider scopes.

FNS policies are described in terms of the following three categories: global,
enterprise, and application.

Global naming service A global naming service is a naming service
that has world-wide scope. Internet DNS
and X.500 are examples of global naming
services. The types of objects named at this
global level are typically countries, states,
provinces, cities, companies, universities,
institutions, and government departments
and ministries. These entities are referred to
as enterprises.

Enterprise-level naming service Enterprise-level naming services are used to
name objects within an enterprise. Within
an enterprise, there are naming services that
provide contexts for naming common
entities such as organizational units,
physical sites, human users, and computers.
Enterprise-level naming services are bound
below the global naming services. Global
naming services provide contexts in which
the root contexts of enterprise-level naming
services can be bound.

Application-level naming service Application-level naming services are
incorporated in applications offering
services such as file service, mail service,
print service, and so on. Application-level
naming services are bound below enterprise
naming services. The enterprise-level
naming services provide contexts in which
contexts of application-level naming
services can be bound.

FNS has policies for global and enterprise naming. Naming within applications is left
to individual applications or groups of related applications and not specified by FNS.

FNS policy specifies that DNS and X.500 are global naming services that are used to
name enterprises. The global namespace is named using the name A DNS
name or an X.500 name can appear after the Support for federating global
naming services is planned for a future release of FNS.

fns_policies(5)

NAME

DESCRIPTION

Standards, Environments, and Macros 81

Within an enterprise, there are namespaces for organizational units, sites, hosts, users,
files and services, referred to by the names orgunit, site, host, user, fs, and
service. In addition, these namespaces can be named using these names with an
added underscore (’_’) prefix (for example, host and _host have the same binding).
The following table summarizes the FNS policies.

Context Subordinate Parent

Type Context Context

org unit site enterprise root

user

host

file system

service

site user enterprise root

host org unit

file system

service

user service enterprise root

file system org unit

host service enterprise root

file system org unit

service not specified enterprise root

org unit

site

user

host

file system none enterprise root

org unit

site

user

host

fns_policies(5)

82 man pages section 5: Standards, Environments, and Macros • Last Revised 4 Nov 1994

In Solaris, an organizational unit name corresponds to an NIS+ domain name and is
identified using either the fully-qualified form of its NIS+ domain name, or its NIS+
domain name relative to the NIS+ root. Fully-qualified NIS+ domain names have a
terminal dot (’.’). For example, assume that the NIS+ root domain is "Wiz.COM." and
"sales" is a subdomain of that. Then, the names org/sales.Wiz.COM. and
org/sales both refer to the organizational unit corresponding to the same NIS+
domain sales.Wiz.COM.

User names correspond to names in the corresponding NIS+ passwd.org_dir table. The
file system context associated with a user is obtained from his entry in the NIS+
passwd.org_dir table.

Host names correspond to names in the corresponding NIS+ hosts.org_dir table. The
file system context associated with a host corresponds to the files systems exported by
the host.

EXAMPLE 1 The types of objects that may be named relative to an organizational unit name
are: user, host, service, file, and site. Here are some examples of names name objects
relative to organizational unit names:

org/accounts_payable.finance/site/videoconference.northwing
names a conference room videoconference located in the north wing of the site
associated with the organizational unit accounts_payable.finance.

org/finance/user/mjones
names a user mjones in the organizational unit finance.

org/finance/host/inmail
names a machine inmail belonging to the organizational unit finance.

org/accounts_payable.finance/fs/pub/blue-and-whites/FY92-124
names a file pub/blue-and-whites/FY92-124 belonging to the organizational
unit accounts_payable.finance.

org/accounts_payable.finance/service/calendar
names the calendar service of the organizational unit
accounts_payable.finance. This might manage the meeting schedules of the
organizational unit.

EXAMPLE 2 The types of objects that may be named relative to a site name are services and
files. Here are some examples of names that name objects relative to sites:

site/b5.mtv/service/printer/speedy
names a printer speedy in the b5.mtv site.

site/admin/fs/usr/dist
names a file directory usr/dist available in the site admin.

EXAMPLE 3 The types of objects that may be named relative to a user name are services and
files. Here are some examples of names that name objects relative to users:

user/jsmith/service/calendar
names the calendar service of the user jsmith.

fns_policies(5)

EXAMPLES

Standards, Environments, and Macros 83

EXAMPLE 3 The types of objects that may be named relative to a user name are services and
files. Here are some examples of names that name objects relative to users: (Continued)

user/jsmith/fs/bin/games/riddles
names the file bin/games/riddles of the user jsmith.

EXAMPLE 4 The types of objects that may be named relative to a host name are services and
files. Here are some examples of names that name objects relative to hosts:

host/mailhop/service/mailbox
names the mailbox service associated with the machine mailhop.

host/mailhop/fs/pub/saf/archives.91
names the directory pub/saf/archives.91 found under the root directory of the
machine mailhop.

fncreate(1M), nis+(1), xfn(3XFN), fns(5), fns_initial_context(5),
fns_references(5)

fns_policies(5)

SEE ALSO

84 man pages section 5: Standards, Environments, and Macros • Last Revised 4 Nov 1994

fns_references – overview of FNS References

Every composite name in FNS is bound to a reference. A reference consists of a type
and a list of addresses. The reference type is used to identify the type of object.

An address is something that can be used with some communication mechanism to
invoke operations on an object or service. Multiple addresses are intended to identify
multiple communication endpoints for a single conceptual object or service. Each
address in a reference consists of an address type and an opaque buffer. The address
type determines the format and interpretation of the address data. Together, the
address’s type and data specify how to reach the object. Many communication
mechanisms are possible; FNS does not place any restrictions on them.

The following summarizes the reference and address types that are currently defined.
New types should be registered with the Federated Naming Group at SunSoft.

All reference types use the FN_ID_STRING identifier format unless otherwise
qualified.

onc_fn_enterprise Enterprise root context.

onc_fn_organization A context for naming objects related to an
organizational unit.

onc_fn_hostname A context for naming hosts.

onc_fn_username A context for naming users.

onc_fn_user A context for naming objects related to a user.

onc_fn_host A context for naming objects related to a computer.

onc_fn_site A context for naming sites.

onc_fn_service A context for naming services.

onc_fn_nsid A context for naming namespace identifiers.

onc_fn_generic A context for naming application-specific objects.

onc_fn_fs A context for naming files, directories, and file systems.

onc_fn_printername A context for naming printers.

onc_printers A printer object. When implemented on top of NIS+,
this could also be a context for naming printers.

fn_link_ref An XFN link.

inet_domain An Internet domain.

All address types use the FN_ID_STRING identifier format unless otherwise qualified.
The format of address contents is determined by the corresponding address type.

onc_fn_nisplus For an FNS enterprise-level object
implemented on top of NIS+. The address

fns_references(5)

NAME

DESCRIPTION

Reference Types

Address Types

Standards, Environments, and Macros 85

contains the context type, context
representation type (either normal or
merged), version number of the reference,
and the NIS+ name of the object. The only
intended use of this reference is that it be
passed to
fn_ctx_handle_from_ref(3XFN)

onc_fn_nis For an FNS enterprise-level object
implemented on top of NIS. The address
contains the context type and version
number of the reference, and the NIS name
of the object. The only intended use of this
reference is that it be passed to
fn_ctx_handle_from_ref(3XFN).

onc_fn_files For an FNS enterprise-level object
implemented on top of /etc files. The
address contains the context type and
version number of the reference, and the
location of the object in the /etc file
system. The only intended use of this
reference is that it be passed to
fn_ctx_handle_from_ref(3XFN).

onc_fn_fs_user For a user’s home directory. The address
contains the user’s name and the name of
the naming service password table where
the user’s home directory is stored.

onc_fn_fs_user_nisplus For a user’s home directory. The address
contains the user’s name and the name of
the NIS+ password table where the user’s
home directory is stored.

onc_fn_fs_host For all file systems exported by a host. The
address contains the host’s name.

onc_fn_fs_mount For a single mount point. The address
contains the mount options, the name of the
servers and the exported path. See
mount(1M).

onc_fn_printer_files For a printer’s address in the files naming
service.

onc_fn_printer_nis For a printer’s address in the NIS naming
service.

onc_fn_printer_nisplus For a printer’s address in the NIS+ naming
service.

fns_references(5)

86 man pages section 5: Standards, Environments, and Macros • Last Revised 13 Dec 1996

fn_link_addr For an XFN link address. The contents is the
string form of the composite name.

inet_domain For an Internet domain. The address
contains the fully-qualified domain name
(for example, "Wiz.COM.")

inet_ipaddr_string For an object with an Internet address. The
address contains an internet IP address in
dotted string form (for example,
"192.144.2.3").

x500 For an X.500 object. The address contains an
X.500 Distinguished Name, in the syntax
specified in the X/Open DCE: Directory
Services.

osi_paddr For an object with an OSI presentation
address. The address contains the string
encoding of an OSI Presentation Address as
defined in A string encoding of Presentation
Address (RFC 1278).

onc_printers_bsaddr For a printer that understands the BSD print
protocol. The address contains the machine
name and printer name used by the
protocol.

onc_printers_use For a printer alias. The address contains a
printer name.

onc_printers_all For a list of printers that are enumerated
using the "all" option. The address contains
a list of printer names.

onc_printers_location For a printer’s location. The address format
is unspecified.

onc_printers_type For a printer’s type. The address format is
unspecified.

onc_printers_speed For a printer’s speed. The address format is
unspecified.

mount(1M), fn_ctx_handle_from_ref(3XFN), xfn(3XFN), fns(5),
fns_policies(5)

Hardcastle-Kille, S.E., A string encoding of Presentation Address, RFC 1278, University
College London, November 1991.

fns_references(5)

SEE ALSO

Standards, Environments, and Macros 87

fns_x500 – overview of FNS over X.500 implementation

Federated Naming Service (FNS) provides a method for federating multiple naming
services under a single, simple interface for the basic naming operations. One of the
naming services supported by FNS is the X.500 Directory Service (see ITU-T X.500 or
ISO/IEC 9594). X.500 is a global directory service. Its components cooperate to
manage information about a hierarchy of objects on a worldwide scope. Such objects
include countries, organizations, people, services, and machines. FNS uses X.500 to
name entities globally.

FNS provides the XFN interface for retrieval and modification of information stored in
X.500. In addition, enterprise namespaces such as those served by NIS+ and NIS can
be federated with X.500 by adding reference information to X.500 describing how to
reach the desired next naming service. To federate a NIS+ or NIS namespace under
X.500, perform the following steps:

1. Obtain the root reference for the NIS+ hierarchy or NIS domain.
2. Enhance the X.500 schema to support the addition of XFN references.
3. Create an X.500 entry to store the XFN reference.
4. Add the XFN reference.

The root reference is referred to as the next naming system reference because it refers to
the next naming system beneath X.500. This reference contains information about how
to communicate with the NIS+ or NIS servers and has the following format:

<domainname> <server name> [<server address>]

where <domainname> is the fully qualified domain name. Notice that NIS+ and NIS
have slightly different syntaxes for domain names. For NIS+, the fully qualified
domain name is case-insensitive and terminated by a dot character (’.’). For NIS, the
fully qualified domain name is case-sensitive and not terminated by a dot character.
For both NIS+ and NIS, <server address> is optional. If it is not supplied, a host name
lookup will be performed to get the machine’s address.

For example, if the machine wiz-nisplus-server with address 133.33.33.33
serves the NIS+ domain wiz.com., the reference would look like this:

wiz.com. wiz-nisplus-server 133.33.33.33

For another example, if the machine woz-nis-server serves the NIS domain
Woz.COM, the reference would look like this:

Woz.COM woz-nis-server

Before the next naming system reference can be added to X.500, the X.500 schema
must be altered to include the following object class and associated attributes (defined
in ASN.1 notation).

fns_x500(5)

NAME

DESCRIPTION

88 man pages section 5: Standards, Environments, and Macros • Last Revised 29 Jan 1998

xFNSupplement OBJECT-CLASS ::= {
SUBCLASS OF { top }
KIND auxiliary
MAY CONTAIN { objectReferenceString | nNSReference-

String }
ID id-oc-xFNSupplement }

id-oc-xFNSupplement OBJECT IDENTIFIER ::= {
iso member-body(2) ansi(840) sun(113536) 25 }

objectReferenceString ATTRIBUTE ::= {
WITH SYNTAX OCTET STRING
EQUALITY MATCHING RULE octetStringMatch
SINGLE VALUE TRUE
ID id-at-objectReferenceString }

id-at-objectReferenceString OBJECT IDENTIFIER ::= {
iso member-body(2) ansi(840) sun(113536) 30 }

nNSReferenceString ATTRIBUTE ::= {
WITH SYNTAX OCTET STRING
EQUALITY MATCHING RULE octetStringMatch
SINGLE VALUE TRUE
ID id-at-nNSReferenceString }

id-at-nNSReferenceString OBJECT IDENTIFIER ::= {

so member-body(2) ansi(840) sun(113536) 31 }

The procedures for altering the X.500 schema will vary from implementation to
implementation. Consult Solstice X.500 or the schema administration guide for your
X.500 product.

Once X.500 supports XFN references, the next naming system reference can be added
by first creating an X.500 object and then adding the new reference to it. For example,
the following commands create entries for the Wiz and Woz organizations in the
U.S.A. and add the reference information shown in the examples above to them.

For NIS+:

example% fnattr .../c=us/o=wiz -a objectclass \

top organization xfnsupplement

example% fnbind -r .../c=us/o=wiz/ onc_fn_enterprise \

onc_fn_nisplus_root "wiz.com. wiz-nisplus-server"

For NIS:

example% fnattr .../c=us/o=woz -a objectclass \

top organization xfnsupplement

example% fnbind -r .../c=us/o=woz/ onc_fn_enterprise \

onc_fn_nis_root "Woz.COM woz-nis-server"

Notice the mandatory trailing slash (’/’) in the name argument to fnbind(1).

fns_x500(5)

Standards, Environments, and Macros 89

This modification effectively adds the next naming system reference to X.500. The
reference may be retrieved using fnlookup(1) to see if the information has been
added properly. For example, the following command looks up the next naming
system reference of the Wiz organization:

example% fnlookup -v .../c=us/o=wiz/

Note the mandatory trailing slash.

After this administrative step has been taken, clients outside of the NIS+ hierarchy or
NIS domain can access and perform operations on the contexts in the NIS+ hierarchy
or NIS domain. Foreign NIS+ clients access the hierarchy as unauthenticated NIS+
clients. Continuing the example above, and assuming that NIS+ is federated
underneath the Wiz organization, the root of the NIS+ enterprise may be listed using
the command:

example% fnlist .../c=us/o=wiz/

Note the mandatory trailing slash.

The next naming system reference may be removed using the command:

example% fnunbind .../c=us/o=wiz/

Note the mandatory trailing slash.

fnattr(1), fnbind(1), fnlist(1), fnlookup(1), nis+(1), ypserv(1M), xfn(3XFN),
fns(5), fns_dns(5), fns_nis(5), fns_nis+(5), fns_references(5)

Solstice X.500

In a 64-bit XFN application, retrieval and modification of information stored in the
X.500 directory service is not supported.

fns_x500(5)

SEE ALSO

NOTES

90 man pages section 5: Standards, Environments, and Macros • Last Revised 29 Jan 1998

formats – file format notation

Utility descriptions use a syntax to describe the data organization within files—stdin,
stdout, stderr, input files, and output files—when that organization is not otherwise
obvious. The syntax is similar to that used by the printf(3C) function. When used
for stdin or input file descriptions, this syntax describes the format that could have
been used to write the text to be read, not a format that could be used by the
scanf(3C) function to read the input file.

The description of an individual record is as follows:

"<format>", [<arg1>, <arg2>, . . ., <argn>]

The format is a character string that contains three types of objects defined below:

characters Characters that are not escape sequences or conversion
specifications, as described below, are copied to the
output.

escape sequences Represent non-graphic characters.

conversion specifications Specifies the output format of each argument. (See
below.)

The following characters have the following special meaning in the format string:

„ (An empty character position.) One or more blank
characters.

⁄\ Exactly one space character.

The notation for spaces allows some flexibility for application output. Note that an
empty character position in format represents one or more blank characters on the
output (not white space, which can include newline characters). Therefore, another
utility that reads that output as its input must be prepared to parse the data using
scanf(3C), awk(1), and so forth. The character is used when exactly one space
character is output.

The following table lists escape sequences and associated actions on display devices
capable of the action.

Sequence Character Terminal Action

\\ backslash None.

\a alert Attempts to alert the user through audible or visible
notification.

\b backspace Moves the printing position to one column before the
current position, unless the current position is the
start of a line.

formats(5)

NAME

DESCRIPTION

Format

Escape Sequences

Standards, Environments, and Macros 91

Sequence Character Terminal Action

\f form-feed Moves the printing position to the initial printing
position of the next logical page.

\n newline Moves the printing position to the start of the next
line.

\r carriage-return Moves the printing position to the start of the current
line.

\t tab Moves the printing position to the next tab position
on the current line. If there are no more tab positions
left on the line, the behavior is undefined.

\v vertical-tab Moves the printing position to the start of the next
vertical tab position. If there are no more vertical tab
positions left on the page, the behavior is undefined.

Each conversion specification is introduced by the percent-sign character (%). After the
character %, the following appear in sequence:

flags Zero or more flags, in any order, that modify the
meaning of the conversion specification.

field width An optional string of decimal digits to specify a
minimum field width. For an output field, if the
converted value has fewer bytes than the field width, it
is padded on the left (or right, if the left-adjustment
flag (−), described below, has been given to the field
width).

precision Gives the minimum number of digits to appear for the
d, o, i, u, x or X conversions (the field is padded with
leading zeros), the number of digits to appear after the
radix character for the e and f conversions, the
maximum number of significant digits for the g
conversion; or the maximum number of bytes to be
written from a string in s conversion. The precision
takes the form of a period (.) followed by a decimal
digit string; a null digit string is treated as zero.

conversion characters A conversion character (see below) that indicates the
type of conversion to be applied.

The flags and their meanings are:

− The result of the conversion is left-justified within the field.

+ The result of a signed conversion always begins with a sign (+ or
−).

formats(5)

Conversion
Specifications

flags

92 man pages section 5: Standards, Environments, and Macros • Last Revised 28 Mar 1995

<space> If the first character of a signed conversion is not a sign, a space
character is prefixed to the result. This means that if the space
character and + flags both appear, the space character flag is
ignored.

The value is to be converted to an alternative form. For c, d, i, u,
and s conversions, the behaviour is undefined. For o conversion, it
increases the precision to force the first digit of the result to be a
zero. For x or X conversion, a non-zero result has 0x or 0X prefixed
to it, respectively. For e, E, f, g, and G conversions, the result
always contains a radix character, even if no digits follow the radix
character. For g and G conversions, trailing zeros are not removed
from the result as they usually are.

0 For d, i, o, u, x, X, e, E, f, g, and G conversions, leading zeros
(following any indication of sign or base) are used to pad to the
field width; no space padding is performed. If the 0 and − flags
both appear, the 0 flag is ignored. For d, i, o, u, x and X
conversions, if a precision is specified, the 0 flag is ignored. For
other conversions, the behaviour is undefined.

Each conversion character results in fetching zero or more arguments. The results are
undefined if there are insufficient arguments for the format. If the format is exhausted
while arguments remain, the excess arguments are ignored.

The conversion characters and their meanings are:

d,i,o,u,x,X The integer argument is written as signed decimal (d or i),
unsigned octal (o), unsigned decimal (u), or unsigned hexadecimal
notation (x and X). The d and i specifiers convert to signed decimal
in the style [−]dddd. The x conversion uses the numbers and
letters 0123456789abcdef and the X conversion uses the numbers
and letters 0123456789ABCDEF. The precision component of the
argument specifies the minimum number of digits to appear. If the
value being converted can be represented in fewer digits than the
specified minimum, it is expanded with leading zeros. The default
precision is 1. The result of converting a zero value with a
precision of 0 is no characters. If both the field width and precision
are omitted, the implementation may precede, follow or precede
and follow numeric arguments of types d, i and u with blank
characters; arguments of type o (octal) may be preceded with
leading zeros.

The treatment of integers and spaces is different from the
printf(3C) function in that they can be surrounded with blank
characters. This was done so that, given a format such as:

"%d\n",<foo>

the implementation could use a printf() call such as:

formats(5)

Conversion
Characters

Standards, Environments, and Macros 93

printf("%6d\n", foo);

and still conform. This notation is thus somewhat like scanf() in
addition to printf().

f The floating point number argument is written in decimal notation
in the style [−]ddd.ddd, where the number of digits after the radix
character (shown here as a decimal point) is equal to the precision
specification. The LC_NUMERIC locale category determines the
radix character to use in this format. If the precision is omitted from
the argument, six digits are written after the radix character; if the
precision is explicitly 0, no radix character appears.

e,E The floating point number argument is written in the style
[−]d.ddde±dd (the symbol ± indicates either a plus or minus sign),
where there is one digit before the radix character (shown here as a
decimal point) and the number of digits after it is equal to the
precision. The LC_NUMERIC locale category determines the radix
character to use in this format. When the precision is missing, six
digits are written after the radix character; if the precision is 0, no
radix character appears. The E conversion character produces a
number with E instead of e introducing the exponent. The
exponent always contains at least two digits. However, if the value
to be written requires an exponent greater than two digits,
additional exponent digits are written as necessary.

g,G The floating point number argument is written in style f or e (or in
style E in the case of a G conversion character), with the precision
specifying the number of significant digits. The style used depends
on the value converted: style g is used only if the exponent
resulting from the conversion is less than −4 or greater than or
equal to the precision. Trailing zeros are removed from the result.
A radix character appears only if it is followed by a digit.

c The integer argument is converted to an unsigned char and the
resulting byte is written.

s The argument is taken to be a string and bytes from the string are
written until the end of the string or the number of bytes indicated
by the precision specification of the argument is reached. If the
precision is omitted from the argument, it is taken to be infinite, so
all bytes up to the end of the string are written.

% Write a % character; no argument is converted.

In no case does a non-existent or insufficient field width cause truncation of a field; if
the result of a conversion is wider than the field width, the field is simply expanded to
contain the conversion result. The term field width should not be confused with the
term precision used in the description of %s.

formats(5)

94 man pages section 5: Standards, Environments, and Macros • Last Revised 28 Mar 1995

One difference from the C function printf() is that the l and h conversion characters
are not used. There is no differentiation between decimal values for type int, type
long, or type short. The specifications %d or %i should be interpreted as an
arbitrary length sequence of digits. Also, no distinction is made between single
precision and double precision numbers (float or double in C). These are simply
referred to as floating point numbers.

Many of the output descriptions use the term line, such as:

"%s", <input line>

Since the definition of line includes the trailing newline character already, there is no
need to include a \n in the format; a double newline character would otherwise result.

EXAMPLE 1 To represent the output of a program that prints a date and time in the form
Sunday, July 3, 10:02, where <weekday> and <month> are strings:

"%s,⁄\%s⁄\%d,⁄\%d:%.2d\n",<weekday>,<month>,<day>,<hour>,<min>

EXAMPLE 2 To show pi written to 5 decimal places:

"pi⁄\=⁄\%.5f\n",<value of pi>

EXAMPLE 3 To show an input file format consisting of five colon-separated fields:

"%s:%s:%s:%s:%s\n",<arg1>,<arg2>,<arg3>,<arg4>,<arg5>

awk(1), printf(1), printf(3C), scanf(3C)

formats(5)

EXAMPLES

SEE ALSO

Standards, Environments, and Macros 95

fsattr – extended file attributes

Attributes are logically supported as files within the file system. The file system is
therefore augmented with an orthogonal name space of file attributes. Any file
(including attribute files) can have an arbitrarily deep attribute tree associated with it.
Attribute values are accessed by file descriptors obtained through a special attribute
interface. This logical view of "attributes as files" allows the leveraging of existing file
system interface functionality to support the construction, deletion, and manipulation
of attributes.

The special files "." and ". ." retain their accustomed semantics within the attribute
hierarchy. The "." attribute file refers to the current directory and the ". ." attribute file
refers to the parent directory. The unnamed directory at the head of each attribute tree
is considered the "child" of the file it is associated with and the ". ." file refers to the
associated file. For any non-directory file with attributes, the ". ." entry in the unnamed
directory refers to a file that is not a directory.

Conceptually, the attribute model is fully general. Extended attributes can be any type
of file (doors, links, directories, and so forth) and can even have their own attributes
(fully recursive). As a result, the attributes associated with a file could be an arbitrarily
deep directory hierarchy where each attribute could have an equally complex attribute
tree associated with it. Not all implementations are able to, or want to, support the full
model. Implementation are therefore permitted to reject operations that are not
supported. For example, the implementation for the UFS file system allows only
regular files as attributes (for example, no sub-directories) and rejects attempts to place
attributes on attributes.

The following list details the operations that are rejected in the current
implementation:

link Any attempt to create links between attribute and
non-attribute space is rejected to prevent
security-related or otherwise sensitive attributes from
being exposed, and therefore manipulable, as regular
files.

rename Any attempt to rename between attribute and
non-attribute space is rejected to prevent an already
linked file from being renamed and thereby
circumventing the link restriction above.

mkdir, symlink, mknod Any attempt to create a "non-regular" file in attribute
space is rejected to reduce the functionality, and
therefore exposure and risk, of the initial
implementation.

fsattr(5)

NAME

DESCRIPTION

96 man pages section 5: Standards, Environments, and Macros • Last Revised 1 Aug 2001

The entire available name space has been allocated to "general use" to bring the
implementation in line with the NFSv4 draft standard [NFSv4]. That standard defines
"named attributes" (equivalent to Solaris Extended Attributes) with no naming
restrictions. All Sun applications making use of opaque extended attributes will use
the prefix "SUNW".

The command interface for extended attributes is the set of applications provided by
Solaris for the manipulation of attributes from the command line. This interface
consists of a set of existing utilities that have been extended to be "attribute-aware",
plus the runat utility designed to "expose" the extended attribute space so that
extended attributes can be manipulated as regular files.

The -@ option enable utilities to manipulate extended attributes. As a rule, this option
enables the utility to enter into attribute space when the utility is performing a
recursive traversal of file system space. This is a fully recursive concept. If the
underlying file system supports recursive attributes and directory structures, the -@
option opens these spaces to the file tree-walking algorithms.

The following utilities accommodate extended attributes (see the individual manual
pages for details):

cp By default, cp ignores attributes and copies only file
data. This is intended to maintain the semantics
implied by cp currently, where attributes (such as
owner and mode) are not copied unless the -p option
is specified. With the -@ (or -p) option, cp attempts to
copy all attributes along with the file data.

cpio The -@ option informs cpio to archive attributes, but
by default cpio ignores extended attributes. See
Extended Archive Formats below for a description
of the new archive records.

du File sizes computed include the space allocated for any
extended attributes present.

find By default, find ignores attributes. The -xattr
expression provides support for searches involving
attribute space. It returns true if extended attributes are
present on the current file.

fsck The fsck utility manages extended attribute data on
the disk. A file system with extended attributes can be
mounted on versions of Solaris that are not
attribute-aware (versions prior to Solaris 9), but the
attributes will not be accessible and fsck will strip
them from the files and place them in lost+found.
Once the attributes have been stripped the file system
is completely stable on Solaris versions that are not
attribute-aware, but would now be considered

fsattr(5)

Shell-level API

Standards, Environments, and Macros 97

corrupted on attribute-aware versions of Solaris. The
attribute-aware fsck utility should be run to stabilize
the file system before using it in an attribute-aware
environment.

fsdb This fsdb utility is able to find the inode for the
"hidden" extended attribute directory.

ls The ls -@ command displays an "@" following the
mode information when extended attributes are
present. More precisely, the output line for a given file
contains an "@" character following the mode
characters if the pathconf(2) variable XATTR_EXISTS
is set to true. See the pathconf() section below. The
-@ option uses the same general output format as the
-l option.

mv When a file is moved, all attributes are carried along
with the file rename. When a file is moved across a file
system boundary, the copy command invoked is
similar to the cp -p variant described above and
extended attributes are "moved". If the extended file
attributes cannot be replicated, the move operation fails
and the source file is not removed.

pax The -@ option informs pax to archive attributes, but by
default pax ignores extended attributes. The pax(1)
utility is a generic replacement for both tar(1) and
cpio(1) and is able to produce either output format in
its archive. See Extended Archive Formats below
for a description of the new archive records.

tar In the default case, tar does not attempt to place
attributes in the archive. If the -@ option is specified,
however, tar traverses into the attribute space of all
files being placed in the archive and attempts to add
the attributes to the archive. A new record type has
been introduced for extended attribute entries in tar
archive files (the same is true for pax and cpio
archives) similar to the way ACLs records were
defined. See Extended Archive Formats below for
a description of the new archive records.

There is a class of utilities (chmod, chown, chgrp) that one might expect to be
modified in a manner similar to those listed above. For example, one might expect that
performing chmod on a file would not only affect the file itself but would also affect at
least the extended attribute directory if not any existing extended attribute files. This is
not the case. The model chosen for extended attributes implies that the attribute
directory and the attributes themselves are all file objects in their own right, and can
therefore have independent file status attributes associated with them (a given

fsattr(5)

98 man pages section 5: Standards, Environments, and Macros • Last Revised 1 Aug 2001

implementation cannot support this, for example, for intrinsic attributes). The
relationship is left undefined and a fine-grained control mechanism (runat(1)) is
provided to allow manipulation of extended attribute status attributes as necessary.

The runat utility has the following syntax:

runat filename [command]

The runat utility executes the supplied command in the context of the "attribute
space" associated with the indicated file. If no command argument is supplied, a shell
is invoked. See runat(1) for details.

The primary interface required to access extended attributes at the programmatic level
is the openat(2) function. Once a file descriptor has been obtained for an attribute file
by an openat() call, all normal file system semantics apply. There is no attempt to
place special semantics on read(2), write(2), ftruncate(3C), or other functions
when applied to attribute file descriptors relative to "normal" file descriptors.

The set of existing attributes can be browsed by calling openat() with "." as the file
name and the O_XATTR flag set, resulting in a file descriptor for the attribute directory.
The list of attributes is obtained by calls to getdents(2) on the returned file
descriptor. If the target file did not previously have any attributes associated with it,
an empty top-level attribute directory is created for the file and subsequent
getdents() calls will return only "." and ". .". While the owner of the parent file
owns the extended attribute directory, it is not charged against its quota if the
directory is empty. Attribute files themselves, however, are charged against the user
quota as any other regular file.

Additional system calls have been provided as convenience functions. These include
the fchownat(2), fstatat(2), futimesat(2), renameat(2), unlinkat(2). These
new functions, along with openat(), provide a mechanism to access files relative to
an arbitrary point in the file system, rather than only the current working directory.
This mechanism is particularly useful in situations when a file descriptor is available
with no path. The openat() function, in particular, can be used in many contexts
where chdir() or fchdir() is currently required. See chdir(2).

Open a file relative to a file descriptor

int openat (int fd, const char *path, int oflag [, mode_t mode])

The openat(2) function behaves exactly as open(2) except when given a relative path.
Where open() resolves a relative path from the current working directory, openat()
resolves the path based on the vnode indicated by the supplied file descriptor. When
oflag is O_XATTR, openat() interprets the path argument as an extended attribute
reference. The following code fragment uses openat() to examine the attributes of
some already opened file:

dfd = openat(fd, ".", O_RDONLY|O_XATTR);

(void)getdents(dfd, buf, nbytes);

fsattr(5)

Application-level
API

Standards, Environments, and Macros 99

If openat() is passed the special value AT_FDCWD as its first (fd) argument, its
behavior is identical to open() and the relative path arguments are interpreted
relative to the current working directory. If the O_XATTR flag is provided to
openat() or to open(), the supplied path is interpreted as a reference to an
extended attribute on the current working directory.

Unlink a file relative to a directory file descriptor

int unlinkat (int dirfd, const char *pathflag, int flagflag)

The unlinkat(2) function deletes an entry from a directory. The path argument
indicates the name of the entry to remove. If path an absolute path, the dirfd argument
is ignored. If it is a relative path, it is interpreted relative to the directory indicated by
the dirfd argument. If dirfd does not refer to a valid directory, the function returns
ENOTDIR. If the special value AT_FDCWD is specified for dirfd, a relative path argument
is resolved relative to the current working directory. If the flag argument is 0, all other
semantics of this function are equivalent to unlink(2). If flag is set to AT_REMOVEDIR,
all other semantics of this function are equivalent to rmdir(2).

Rename a file relative to directories

int renameat (int fromfd, const char *old, int tofd, const char *new)

The renameat(2) function renames an entry in a directory, possibly moving the entry
into a different directory. The old argument indicates the name of the entry to rename.
If this argument is a relative path, it is interpreted relative to the directory indicated by
the fd argument. If it is an absolute path, the fromfd argument is ignored. The new
argument indicates the new name for the entry. If this argument is a relative path, it is
interpreted relative to the directory indicated by the tofd argument. If it is an absolute
path, the tofd argument is ignored.

In the relative path cases, if the directory file descriptor arguments do not refer to a
valid directory, the function returns ENOTDIR. All other semantics of this function are
equivalent to rename(2).

If a special value AT_FDCWD is specified for either the fromfd or tofd arguments, their
associated path arguments (old and new) are interpreted relative to the current
working directory if they are not specified as absolute paths. Any attempt to use
renameat() to move a file that is not an extended attribute into an extended attribute
directory (so that it becomes an extended attribute) will fail. The same is true for an
attempt to move a file that is an extended attribute into a directory that is not an
extended attribute directory.

Obtain information about a file

int fstatat (int fd, const char *path, struct stat* buf, int flag)

The fstatat(2) function obtains information about a file. If the path argument is
relative, it is resolved relative to the fd argument file descriptor, otherwise the fd
argument is ignored. If the fd argument is a special value AT_FDCWD the path is
resolved relative to the current working directory. If the path argument is a null

fsattr(5)

100 man pages section 5: Standards, Environments, and Macros • Last Revised 1 Aug 2001

pointer, the function returns information about the file referenced by the fd argument.
In all other relative path cases, if the fd argument does not refer to a valid directory,
the function returns ENOTDIR. If the flag argument is set to AT_SYMLINK_NOFOLLOW,
the function will not automatically traverse a symbolic link at the position of the path.
The fstatat() function is a multi-purpose function that can be used in place of
stat(), lstat(), or fstat(). See stat(2).

The function call stat(path, buf) is identical to fstatat(AT_FDCWD, path, buf,
0).

The function call lstat(path, buf) is identical to fstatat(AT_FDCWD, path, buf,
AT_SYMLINK_NOFOLLOW)

The function call fstat(fildes, buf) is identical to fstatat(fildes, NULL, buf, 0).

Set owner and group ID

int fchownat (int fd, const char *path, uid_t owner, gid_t group, int flag)

The fchownat(2) function sets the owner ID and group ID for a file. If the path
argument is relative, it is resolved relative to the fd argument file descriptor, otherwise
the fd argument is ignored. If the fd argument is a special value AT_FDCWD the path is
resolved relative to the current working directory. If the path argument is a null
pointer, the function sets the owner and group ID of the file referenced by the fd
argument. In all other relative path cases, if the fd argument does not refer to a valid
directory, the function returns ENOTDIR. If the flag argument is set to
AT_SYMLINK_NOFOLLOW, the function will not automatically traverse a symbolic link
at the position of the path. The fchownat() function is a multi-purpose function that
can be used in place of chown(), lchown(), or fchown(). See chown(2).

The function call chown(path, owner, group) is equivalent to fchownat
(AT_FDCWD, path, owner, group, 0).

The function call lchown(path, owner, group) is equivalent to fchownat
(AT_FDCWD, path, owner, group, AT_SYMLINK_NOFOLLOW).

Set file access and modification times

int futimesat (int fd, const char *path, const struct timeval times[2])

The futimesat(2) function sets the access and modification times for a file. If the path
argument is relative, it is resolved relative to the fd argument file descriptor; otherwise
the fd argument is ignored. If the fd argument is the special value AT_FDCWD, the path
is resolved relative to the current working directory. If the path argument is a null
pointer, the function sets the access and modification times of the file referenced by the
fd argument. In all other relative path cases, if the fd argument does not refer to a valid
directory, the function returns ENOTDIR. The futimesat() function can be used in
place of utimes(2).

The function call utimes(path, times) is equivalent to futimesat(AT_FDCWD,
path, times).

fsattr(5)

Standards, Environments, and Macros 101

New pathconf() functionality

long int pathconf(const char *path, int name)

Two variables have been added to pathconf(2) to provide enhanced support for
extended attribute manipulation. The XATTR_ENABLED variable allows an application
to determine if attribute support is currently enabled for the file in question. The
XATTR_EXISTS variable allows an application to determine whether there are any
extended attributes associated with the supplied path.

Open/Create an attribute file

int attropen (const char *path, const char *attrpath, int oflag [, mode_t mode])

The attropen(3C) function returns a file descriptor for the named attribute, attrpath,
of the file indicated by path. The oflag and mode arguments are identical to the open(2)
arguments and are applied to the open operation on the attribute file (for example,
using the O_CREAT flag creates a new attribute). Once opened, all normal file system
operations can be used on the attribute file descriptor. The attropen() function is a
convenience function and is equivalent to the following sequence of operations:

fd = open (path, O_RDONLY);
attrfd = openat(fd, attrpath, oflag|O_XATTR, mode);

close(fd);

The set of existing attributes can be browsed by calling attropen() with "." as the
attribute name. The list of attributes is obtained by calling getdents(2) (or
fdopendir(3C) followed by readdir(3C), see below) on the returned file descriptor.

Convert an open file descriptor for a directory into a directory descriptor

DIR * fdopendir (const int fd)

The fdopendir(3C) function promotes a file descriptor for a directory to a directory
pointer suitable for use with the readdir(3C) function. The originating file descriptor
should not be used again following the call to fdopendir(). The directory pointer
should be closed with a call to closedir(3C). If the provided file descriptor does not
reference a directory, the function returns ENOTDIR. This function is useful in
circumstances where the only available handle on a directory is a file descriptor. See
attropen(3C) and openat(2).

Using the API

The following examples demonstrate how the API might be used to perform basic
operations on extended attributes:

EXAMPLE 1 List extended attributes on a file.

attrdirfd = attropen("test", ".", O_RDONLY);
dirp = fdopendir(attrdirfd);
while (dp = readdir(dirp)) {

...

fsattr(5)

102 man pages section 5: Standards, Environments, and Macros • Last Revised 1 Aug 2001

EXAMPLE 2 Open an extended attribute.

attrfd = attropen("test", dp->d_name, O_RDONLY);

or

attrfd = openat(attrdirfd, dp->d_name, O_RDONLY);

EXAMPLE 3 Read from an extended attribute.

while (read(attrfd, buf, 512) > 0) {

...

EXAMPLE 4 Create an extended attribute.

newfd = attropen("test", "attr", O_CREAT|O_RDWR);

or

newfd = openat(attrdirfd, "attr", O_CREAT|O_RDWR);

EXAMPLE 5 Write to an extended attribute.

count = write(newfd, buf, length);

EXAMPLE 6 Delete an extended attribute.

error = unlinkat(attrdirfd, "attr");

Applications intending to access the interfaces defined here as well as the POSIX and
X/Open specification-conforming interfaces should define the macro
_ATFILE_SOURCE to be 1 and set whichever feature test macros are appropriate to
obtain the desired environment. See standards(5).

As noted above in the description of command utilities modified to provide support
for extended attributes, the archive formats for tar(1) and cpio(1) have been
extended to provide support for archiving extended attributes. This section describes
the specifics of the archive format extensions.

Extended tar format

The tar archive is made up of a series of 512 byte blocks. Each archived file is
represented by a header block and zero or more data blocks containing the file
contents. The header block is structured as shown in the following table.

Field Name Length (in Octets) Description

Name 100 File name string

Mode 8 12 file mode bits

fsattr(5)

Extended Archive
Formats

Standards, Environments, and Macros 103

Field Name Length (in Octets) Description

Uid 8 User ID of file owner

Gid 8 Group ID of file owner

Size 12 Size of file

Mtime 12 File modification time

Chksum 8 File contents checksum

Typeflag 1 File type flag

Linkname 100 Link target name if file linked

Magic 6 "ustar"

Version 2 "00"

Uname 32 User name of file owner

Gname 32 Group name of file owner

Devmajor 8 Major device ID if special file

Devminor 8 Minor device ID if special file

Prefix 155 Path prefix string for file

The extended attribute project extends the above header format by defining a new
header type (for the Typeflag field). The type ’E’ is defined to be used for all
extended attribute files. Attribute files are stored in the tar archive as a sequence of
two <header ,data> pairs. The first file contains the data necessary to locate and
name the extended attribute in the file system. The second file contains the actual
attribute file data. Both files use an ’E’ type header. The prefix and name fields in
extended attribute headers are ignored, though they should be set to meaningful
values for the benefit of archivers that do not process these headers. Solaris archivers
set the prefix field to “/dev/null” to prevent archivers that do not understand the
type ’E’ header from trying to restore extended attribute files in inappropriate places.

Extended cpio format

The cpio archive format is octet-oriented rather than block-oriented. Each file entry in
the archive includes a header that describes the file, followed by the file name,
followed by the contents of the file. These data are arranged as described in the
following table.

Field Name Length (in Octets) Description

c_magic 6 70707

c_dev 6 First half of unique file ID

fsattr(5)

104 man pages section 5: Standards, Environments, and Macros • Last Revised 1 Aug 2001

Field Name Length (in Octets) Description

c_ino 6 Second half of unique file ID

c_mode 6 File mode bits

c_uid 6 User ID of file owner

c_gid 6 Group ID of file owner

c_nlink 6 Number of links referencing
file

c_rdev 6 Information for special files

c_mtime 11 Modification time of file

c_namesize 6 Length of file pathname

c_filesize 11 Length of file content

c_name c_namesize File pathname

c_filedata c_filesize File content

The basic archive file structure is not changed for extended attributes. The file type
bits stored in the c_mode field for an attribute file are set to 0xB000. As with the tar
archive format, extended attributes are stored in cpio archives as two consecutive file
entries. The first file describes the location/name for the extended attribute. The
second file contains the actual attribute file content. The c_name field in extended
attribute headers is ignored, though it should be set to a meaningful value for the
benefit of archivers that do not process these headers. Solaris archivers start the
pathname with "/dev/null/" to prevent archivers that do not understand the type
’E’ header from trying to restore extended attribute files in inappropriate places.

Attribute identification data format

Both the tar and cpio archive formats can contain the special files described above,
always paired with the extended attribute data record, for identifying the precise
location of the extended attribute. These special data files are necessary because there
is no simple naming mechanism for extended attribute files. Extended attributes are
not visible in the file system name space. The extended attribute name space must be
"tunneled into" using the openat() function. The attribute identification data must
support not only the flat naming structure for extended attributes, but also the
possibility of future extensions allowing for attribute directory hierarchies and
recursive attributes. The data file is therefore composed of a sequence of records. It
begins with a fixed length header describing the content. The following table describes
the format of this data file.

fsattr(5)

Standards, Environments, and Macros 105

Field Name Length (in Octets) Description

h_version 7 Name file version

h_size 10 Length of data file

h_component_len 10 Total length of all path segments

h_link_comp_len 10 Total length of all link segments

path h_component_len Complex path

link_path h_link_comp_len Complex link path

As demonstrated above, the header is followed by a record describing the "path" to the
attribute file. This path is composed of two or more path segments separated by a null
character. Each segment describes a path rooted at the hidden extended attribute
directory of the leaf file of the previous segment, making it possible to name attributes
on attributes. The first segment is always the path to the parent file that roots the
entire sequence in the normal name space. The following table describes the format of
each segment.

Field Name Length (in Octets) Description

h_namesz 7 Length of segment path

h_typeflag 1 Actual file type of attribute file

h_names h_namesz Parent path + segment path

If the attribute file is linked to another file, the path record is followed by a second
record describing the location of the referencing file. The structure of this record is
identical to the record described above.

cp(1), cpio(1), find(1), ls(1), mv(1), pax(1), runat(1), tar(1), du(1), fsck(1M),
chown(2), link(2), open(2), pathconf(2), rename(2), stat(2), unlink(2),
utimes(2), attropen(3C), standards(5)

fsattr(5)

SEE ALSO

106 man pages section 5: Standards, Environments, and Macros • Last Revised 1 Aug 2001

iconv_1250 – code set conversion tables for MS 1250 (Windows Latin 2)

The following code set conversions are supported:

Code Set Conversions Supported

Code Symbol Target Code Symbol Target Output

MS 1250 win2 ISO 8859-2 iso2 ISO Latin 2

MS 1250 win2 MS 852 dos2 MS-DOS Latin 2

MS 1250 win2 Mazovia maz Mazovia

MS 1250 win2 DHN dhn Dom Handlowy Nauki

The conversions are performed according to the following tables. All values in the
tables are given in octal.

For the conversion of MS 1250 to ISO 8859-2, all characters not in the following table
are mapped unchanged.

Conversions Performed

MS 1250 ISO 8859-2 MS 1250 ISO 8859-2

24-211 40 235 273

212 251 236 276

213 40 237 274

214 246 241 267

215 253 245 241

216 256 246-267 40

217 254 271 261

221-231 40 273 40

232 271 274 245

233 40 276 265

234 266 247 365

For the conversion of MS 1250 to MS 852, all characters not in the following table are
mapped unchanged.

iconv_1250(5)

NAME

DESCRIPTION

CONVERSIONS

MS 1250 to ISO
8859-2

MS 1250 to MS 852

Standards, Environments, and Macros 107

Conversions Performed

MS 1250 MS 852 MS 1250 MS 852

200-211 40 311 220

212 346 312 250

213 40 313 323

214 227 314 267

215 233 315 326

216 246 316 327

217 215 317 322

220-231 40 320 321

232 347 321 343

233 40 322 325

234 230 323 340

235 234 324 342

236 247 325 212

237 253 326 231

240 377 327 236

241 363 330 374

242 364 331 336

243 235 332 351

244 317 333 353

245 244 334 232

246 40 335 355

247 365 336 335

250 371 337 341

251 40 340 352

252 270 341 240

253 256 342 203

254 252 343 307

255 360 344 204

iconv_1250(5)

108 man pages section 5: Standards, Environments, and Macros • Last Revised 18 Apr 1997

Conversions Performed

MS 1250 MS 852 MS 1250 MS 852

256 40 345 222

257 275 346 206

260 370 347 207

261 40 350 237

262 362 351 202

263 210 352 251

264 357 353 211

265-267 40 354 330

270 367 355 241

271 245 356 214

272 255 357 324

273 257 360 320

274 225 361 344

275 361 362 345

276 226 363 242

277 276 364 223

300 350 365 213

301 265 366 224

302 266 367 366

303 306 370 375

304 216 371 205

305 221 372 243

306 217 374 201

307 200 375 354

310 254 376 356

For the conversion of MS 1250 to Mazovia, all characters not in the following table are
mapped unchanged.

iconv_1250(5)

MS 1250 to
Mazovia

Standards, Environments, and Macros 109

Conversions Performed

MS 1250 Mazovia MS 1250 Mazovia

200-213 40 310-311 40

214 230 312 220

215-216 40 313-320 40

217 240 321 245

220-233 40 322 40

234 236 323 243

235-236 40 324-325 40

237 246 326 231

240 377 327-333 40

241-242 40 334 232

243 234 335-336 40

244 40 337 341

245 217 340-341 40

246-252 40 342 203

253 256 343 40

254 252 344 204

255-256 40 345 40

257 241 346 215

260 370 347 207

261 361 350 40

262 40 351 202

263 222 352 221

264 40 353 211

265 346 354-355 40

266 40 356 214

267 372 357-360 40

270 40 361 244

271 206 362 40

iconv_1250(5)

110 man pages section 5: Standards, Environments, and Macros • Last Revised 18 Apr 1997

Conversions Performed

MS 1250 Mazovia MS 1250 Mazovia

272 40 363 242

273 257 364 223

274-276 40 365 40

277 247 366 224

300-303 40 367 366

304 216 370-373 40

305 40 374 201

306 225 375-376 40

307 200

For the conversion of MS 1250 to DHN, all characters not in the following table are
mapped unchanged.

Conversions Performed

MS 1250 DHN MS 1250 DHN

200-213 40 306 201

214 206 307-311 40

215-216 40 312 202

217 207 313-320 40

220-233 40 321 204

234 217 322 40

235-236 40 323 205

237 220 324-325 40

240 377 326 231

241-242 40 327-333 40

243 203 334 232

244 40 335-336 40

245 200 337 341

246-252 40 340 40

iconv_1250(5)

MS 1250 to DHN

Standards, Environments, and Macros 111

Conversions Performed

MS 1250 DHN MS 1250 DHN

253 256 341 240

254 252 342-345 40

255-256 40 346 212

257 210 347-351 40

260 370 352 213

261 361 353-354 40

262 40 355 241

263 214 356-360 40

264 40 361 215

265 346 362 40

266 40 363 216

267 372 364 223

270 40 365 40

271 211 366 224

272 40 367 366

273 257 370-371 40

274-276 40 372 243

277 221 373-376 40

300-305 40

/usr/lib/iconv/*.so conversion modules

/usr/lib/iconv/*.t conversion tables

/usr/lib/iconv/iconv_data list of conversions supported by conversion
tables

iconv(1), iconv(3C), iconv(5)

iconv_1250(5)

FILES

SEE ALSO

112 man pages section 5: Standards, Environments, and Macros • Last Revised 18 Apr 1997

iconv_1251 – code set conversion tables for MS 1251 (Windows Cyrillic)

The following code set conversions are supported:

Code Set Conversions Supported

Code Symbol Target Code Symbol Target Output

MS 1251 win5 ISO 8859-5 iso5 ISO 8859-5 Cyrillic

MS 1251 win5 KOI8-R koi8 KOI8-R

MS 1251 win5 PC Cyrillic alt Alternative PC Cyrillic

MS 1251 win5 Mac Cyrillic mac Macintosh Cyrillic

The conversions are performed according to the following tables. All values in the
tables are given in octal.

For the conversion of MS 1251 to ISO 8859-5, all characters not in the following table
are mapped unchanged.

Conversions Performed

MS 1251 ISO 8859-5 MS 1251 ISO 8859-5

24 4 310 270

200 242 311 271

201 243 312 272

202 40 313 273

203 363 314 274

204-207 40 315 275

210 255 316 276

211 40 317 277

212 251 320 300

213 40 321 301

214 252 322 302

215 254 323 303

216 253 324 304

217 257 325 305

iconv_1251(5)

NAME

DESCRIPTION

CONVERSIONS

MS 1251 to ISO
8859-5

Standards, Environments, and Macros 113

Conversions Performed

MS 1251 ISO 8859-5 MS 1251 ISO 8859-5

220 362 326 306

221-227 40 327 307

230 255 330 310

231 40 331 311

232 371 332 312

233 40 333 313

234 372 334 314

235 374 335 315

236 373 336 316

237 377 337 317

241 256 340 320

242 376 341 321

243 250 342 322

244-247 40 343 323

250 241 344 324

251 40 345 325

252 244 346 326

253-254 40 347 327

255 55 350 330

256 40 351 331

257 247 352 332

260-261 40 353 333

262 246 354 334

263 366 355 335

264-267 40 356 336

270 361 357 337

271 360 360 340

272 364 361 341

iconv_1251(5)

114 man pages section 5: Standards, Environments, and Macros • Last Revised 18 Apr 1997

Conversions Performed

MS 1251 ISO 8859-5 MS 1251 ISO 8859-5

273 40 362 342

274 370 363 343

275 245 364 344

276 365 365 345

277 367 366 346

300 260 367 347

301 261 370 350

302 262 371 351

303 263 372 352

304 264 373 353

305 265 374 354

306 266 375 355

307 267 376 356

For the conversion of MS 1251 to KOI8-R , all characters not in the following table are
mapped unchanged.

Conversions Performed

MS 1251 KOI8-R MS 1251 KOI8-R

24 4 310 351

200 261 311 352

201 262 312 353

202 40 313 354

203 242 314 355

204-207 40 315 356

210 255 316 357

211 40 317 360

212 271 320 362

213 40 321 363

iconv_1251(5)

MS 1251 to
KOI8-R

Standards, Environments, and Macros 115

Conversions Performed

MS 1251 KOI8-R MS 1251 KOI8-R

214 272 322 364

215 274 323 365

216 273 324 346

217 277 325 350

220 241 326 343

221-227 40 327 376

230 255 330 373

231 40 331 375

232 251 332 377

233 40 333 371

234 252 334 370

235 254 335 374

236 253 336 340

237 257 337 361

241 276 340 301

242 256 341 302

243 270 342 327

244-247 40 343 307

250 263 344 304

251 40 345 305

252 264 346 326

253-254 40 347 332

255 55 350 311

256 40 351 312

257 267 352 313

260-261 40 353 314

262 266 354 315

263 246 355 316

iconv_1251(5)

116 man pages section 5: Standards, Environments, and Macros • Last Revised 18 Apr 1997

Conversions Performed

MS 1251 KOI8-R MS 1251 KOI8-R

264-267 40 356 317

270 243 357 320

271 260 360 322

272 244 361 323

273 40 362 324

274 250 363 325

275 265 364 306

276 245 365 310

277 247 366 303

300 341 367 336

301 342 370 333

302 367 371 335

303 347 372 337

304 344 373 331

305 345 374 330

306 366 375 334

307 372 376 300

For the conversion of MS 1251 to PC Cyrillic, all characters not in the following table
are mapped unchanged.

Conversions Performed

MS 1251 PC Cyrillic MS 1251 PC Cyrillic

24 4 332 232

200-207 40 333 233

210 260 334 234

211-227 40 335 235

230 260 336 236

231-247 40 337 237

iconv_1251(5)

MS 1251 to PC
Cyrillic

Standards, Environments, and Macros 117

Conversions Performed

MS 1251 PC Cyrillic MS 1251 PC Cyrillic

250 360 340 240

251-254 40 341 241

255 55 342 242

256-267 40 343 243

270 361 344 244

271-277 40 345 245

300 200 346 246

301 201 347 247

302 202 350 250

303 203 351 251

304 204 352 252

305 205 353 253

306 206 354 254

307 207 355 255

310 210 356 256

311 211 357 257

312 212 360 340

313 213 361 341

314 214 362 342

315 215 363 343

316 216 364 344

317 217 365 345

320 220 366 346

321 221 367 347

322 222 370 350

323 223 371 351

324 224 372 352

325 225 373 353

iconv_1251(5)

118 man pages section 5: Standards, Environments, and Macros • Last Revised 18 Apr 1997

Conversions Performed

MS 1251 PC Cyrillic MS 1251 PC Cyrillic

326 226 374 354

327 227 375 355

330 230 376 356

331 231

For the conversion of MS 1251 to Mac Cyrillic, all characters not in the following table
are mapped unchanged.

Conversions Performed

MS 1251 Mac Cyrillic MS 1251 Mac Cyrillic

24 4 260 241

200 253 262 247

201 256 263 264

202 40 264 266

203 257 266 246

204 327 267 245

205 311 270 336

206 240 271 334

207-211 40 272 271

212 274 273 310

213 40 274 300

214 276 275 301

215 315 276 317

216 40 277 273

217 332 300 200

220 254 301 201

221 324 302 202

222 325 303 203

223 322 304 204

iconv_1251(5)

MS 1251 to Mac
Cyrillic

Standards, Environments, and Macros 119

Conversions Performed

MS 1251 Mac Cyrillic MS 1251 Mac Cyrillic

224 323 305 205

225 40 306 206

226 320 307 207

227 321 310 210

230 40 311 211

231 252 312 212

232 275 313 213

233 40 314 214

234 277 315 215

235 316 316 216

236 40 317 217

237 333 320 220

240 312 321 221

241 330 322 222

242 331 323 223

243 267 324 224

244 377 325 225

245 242 326 226

246 40 327 227

247 244 330 230

250 335 331 231

252 270 332 232

253 307 333 233

254 302 334 234

255 55 335 235

256 250 336 236

257 272 337 237

355 316

iconv_1251(5)

120 man pages section 5: Standards, Environments, and Macros • Last Revised 18 Apr 1997

/usr/lib/iconv/*.so conversion modules

/usr/lib/iconv/*.t conversion tables

/usr/lib/iconv/iconv_data list of conversions supported by conversion
tables

iconv(1), iconv(3C), iconv(5)

iconv_1251(5)

FILES

SEE ALSO

Standards, Environments, and Macros 121

iconv – code set conversion tables

The following code set conversions are supported:

Code Set Conversions Supported

Code Symbol Target Code Symbol Target Output

ISO 646 646 ISO 8859-1 8859 US ASCII
ISO 646de 646de ISO 8859-1 8859 German
ISO 646da 646da ISO 8859-1 8859 Danish
ISO 646en 646en ISO 8859-1 8859 English ASCII
ISO 646es 646es ISO 8859-1 8859 Spanish
ISO 646fr 646fr ISO 8859-1 8859 French
ISO 646it 646it ISO 8859-1 8859 Italian
ISO 646sv 646sv ISO 8859-1 8859 Swedish
ISO 8859-1 8859 ISO 646 646 7 bit ASCII
ISO 8859-1 8859 ISO 646de 646de German
ISO 8859-1 8859 ISO 646da 646da Danish
ISO 8859-1 8859 ISO 646en 646en English ASCII
ISO 8859-1 8859 ISO 646es 646es Spanish
ISO 8859-1 8859 ISO 646fr 646fr French
ISO 8859-1 8859 ISO 646it 646it Italian
ISO 8859-1 8859 ISO 646sv 646sv Swedish
ISO 8859-16 iso16 ISO 8859-2 iso2 ISO Latin 2
ISO 8859-2 iso2 ISO 8859-16 iso16 ISO Latin 10
ISO 8859-16 iso16 IBM 850 ibm850 IBM 850 code page
ISO 8859-16 iso16 IBM 870 ibm870 IBM 870 code page
ISO 8859-2 iso2 MS 1250 win2 Windows Latin 2
ISO 8859-2 iso2 MS 852 dos2 MS-DOS Latin 2
ISO 8859-2 iso2 Mazovia maz Mazovia
IBM 850 ibm850 ISO 8859-16 iso16 ISO Latin 10
IBM 870 ibm870 ISO 8859-16 iso16 ISO Latin 10
MS 1250 win2 DHN dhn Dom Handlowy Nauki
MS 852 dos2 ISO 8859-2 iso2 ISO Latin 2
MS 852 dos2 MS 1250 win2 Windows Latin 2
MS 852 dos2 Mazovia maz Mazovia
MS 852 dos2 DHN dhn Dom Handlowy Nauki
Mazovia maz ISO 8859-2 iso2 ISO Latin 2
Mazovia maz MS 1250 win2 Windows Latin 2
Mazovia maz MS 852 dos2 MS-DOS Latin 2
Mazovia maz DHN dhn Dom Handlowy Nauki
DHN dhn ISO 8859-2 iso2 ISO Latin 2
DHN dhn MS 1250 win2 Windows Latin 2
DHN dhn MS 852 dos2 MS-DOS Latin 2
DHN dhn Mazovia maz Mazovia
ISO 8859-5 iso5 KOI8-R koi8 KOI8-R
ISO 8859-5 iso5 PC Cyrillic alt Alternative PC Cyrillic
ISO 8859-5 iso5 MS 1251 win5 Windows Cyrillic
ISO 8859-5 iso5 Mac Cyrillic mac Macintosh Cyrillic
KOI8-R koi8 ISO 8859-5 iso5 ISO 8859-5 Cyrillic
KOI8-R koi8 PC Cyrillic alt Alternative PC Cyrillic
KOI8-R koi8 MS 1251 win5 Windows Cyrillic
KOI8-R koi8 Mac Cyrillic mac Macintosh Cyrillic
PC Cyrillic alt ISO 8859-5 iso5 ISO 8859-5 Cyrillic
PC Cyrillic alt KOI8-R koi8 KOI8-R
PC Cyrillic alt MS 1251 win5 Windows Cyrillic

iconv(5)

NAME

DESCRIPTION

122 man pages section 5: Standards, Environments, and Macros • Last Revised 5 Dec 2001

PC Cyrillic alt Mac Cyrillic mac Macintosh Cyrillic
MS 1251 win5 ISO 8859-5 iso5 ISO 8859-5 Cyrillic
MS 1251 win5 KOI8-R koi8 KOI8-R
MS 1251 win5 PC Cyrillic alt Alternative PC Cyrillic
MS 1251 win5 Mac Cyrillic mac Macintosh Cyrillic
Mac Cyrillic mac ISO 8859-5 iso5 ISO 8859-5 Cyrillic
Mac Cyrillic mac KOI8-R koi8 KOI8-R
Mac Cyrillic mac PC Cyrillic alt Alternative PC Cyrillic

Mac Cyrillic mac MS 1251 win5 Windows Cyrillic

The conversions are performed according to the tables contained in the manual pages
cross-referenced in the Index of Conversion Code Tables below.

Index of Conversion Code Tables

Code Target Code See Manual Page

ISO 646 ISO 8859-1 iconv_646 (5)

ISO 646de ISO 8859-1

ISO 646da ISO 8859-1

ISO 646en ISO 8859-1

ISO 646es ISO 8859-1

ISO 646fr ISO 8859-1

ISO 646it ISO 8859-1

ISO 646sv ISO 8859-1

ISO 8859-1 ISO 646 iconv_8859-1 (5)

ISO 8859-1 ISO 646de

ISO 8859-1 ISO 646da

ISO 8859-1 ISO 646en

ISO 8859-1 ISO 646es

ISO 8859-1 ISO 646fr

ISO 8859-1 ISO 646it

ISO 8859-1 ISO 646sv

ISO 8859-2 MS 1250 iconv_8859-2 (5)

ISO 8859-2 MS 852

ISO 8859-2 Mazovia

ISO 8859-2 DHN

iconv(5)

CONVERSIONS

Standards, Environments, and Macros 123

Index of Conversion Code Tables

MS 1250 ISO 8859-2 iconv_1250 (5)

MS 1250 MS 852

MS 1250 Mazovia

MS 1250 DHN

MS 852 ISO 8859-2 iconv_852 (5)

MS 852 MS 1250

MS 852 Mazovia

MS 852 DHN

Mazovia ISO 8859-2 iconv_maz (5)

Mazovia MS 1250

Mazovia MS 852

Mazovia DHN

Index of Conversion Code Tables

Code Target Code See Manual Page

DHN ISO 8859-2 iconv_dhn (5)

DHN MS 1250

DHN MS 852

DHN Mazovia

ISO 8859-5 KOI8-R iconv_8859-5 (5)

ISO 8859-5 PC Cyrillic

ISO 8859-5 MS 1251

ISO 8859-5 Mac Cyrillic

KOI8-R ISO 8859-5 iconv_koi8-r (5)

KOI8-R PC Cyrillic

KOI8-R MS 1251

KOI8-R Mac Cyrillic

PC Cyrillic ISO 8859-5 iconv_pc_cyr (5)

PC Cyrillic KOI8-R

iconv(5)

124 man pages section 5: Standards, Environments, and Macros • Last Revised 5 Dec 2001

Index of Conversion Code Tables

PC Cyrillic MS 1251

PC Cyrillic Mac Cyrillic

MS 1251 ISO 8859-5 iconv_1251 (5)

MS 1251 KOI8-R

MS 1251 PC Cyrillic

MS 1251 Mac Cyrillic

Mac Cyrillic ISO 8859-5 iconv_mac_cyr (5)

Mac Cyrillic KOI8-R

Mac Cyrillic PC Cyrillic

Mac Cyrillic MS 1251

/usr/lib/iconv/*.so
conversion modules

/usr/lib/iconv/*.t
Conversion tables.

/usr/lib/iconv/geniconvtbl/binarytables/*.bt
Conversion binary tables.

/usr/lib/iconv/iconv_data
List of conversions supported by conversion tables.

iconv(1), iconv(3C), iconv_1250(5), iconv_1251(5), iconv_646(5),
iconv_852(5), iconv_8859-1(5), iconv_8859-2(5), iconv_8859-5(5),
iconv_dhn(5), iconv_koi8-r(5), iconv_mac_cyr(5), iconv_maz(5),
iconv_pc_cyr(5), iconv_unicode(5)

iconv(5)

FILES

SEE ALSO

Standards, Environments, and Macros 125

iconv_646 – code set conversion tables for ISO 646

The following code set conversions are supported:

Code Set Conversions Supported

Code Symbol Target Code Symbol Target Output

ISO 646 646 ISO 8859-1 8859 US ASCII

ISO
646de

646de ISO 8859-1 8859 German

ISO
646da

646da ISO 8859-1 8859 Danish

ISO
646en

646en ISO 8859-1 8859 English ASCII

ISO 646es 646es ISO 8859-1 8859 Spanish

ISO 646fr 646fr ISO 8859-1 8859 French

ISO 646it 646it ISO 8859-1 8859 Italian

ISO
646sv

646sv ISO 8859-1 8859 Swedish

The conversions are performed according to the following tables. All values in the
tables are given in octal.

For the conversion of ISO 646 to ISO 8859-1, all characters in ISO 646 can be mapped
unchanged to ISO 8859-1

For the conversion of ISO 646de to ISO 8859-1, all characters not in the following table
are mapped unchanged.

Conversions Performed

ISO 646de ISO 8859-1 ISO 646de ISO 8859-1

100 247 173 344

133 304 174 366

134 326 175 374

135 334 176 337

For the conversion of ISO 646da to ISO 8859-1, all characters not in the following table
are mapped unchanged.

iconv_646(5)

NAME

DESCRIPTION

CONVERSIONS

ISO 646 (US
ASCII) to ISO

8859-1
ISO 646de

(GERMAN) to ISO
8859-1

ISO 646da
(DANISH) to ISO

8859-1

126 man pages section 5: Standards, Environments, and Macros • Last Revised 28 Apr 1997

Conversions Performed

ISO 646da ISO 8859-1 ISO 646da ISO 8859-1

133 306 173 346

134 330 174 370

135 305 175 345

For the conversion of ISO 646en to ISO 8859-1, all characters not in the following table
are mapped unchanged.

Conversions Performed

ISO 646en ISO 8859-1

043 243

For the conversion of ISO 646es to ISO 8859-1, all characters not in the following table
are mapped unchanged.

Conversions Performed

ISO 646es ISO 8859-1 ISO 646es ISO 8859-1

100 247 173 260

133 241 174 361

134 321 175 347

135 277

For the conversion of ISO 646fr to ISO 8859-1, all characters not in the following table
are mapped unchanged.

Conversions Performed

ISO 646fr ISO 8859-1 ISO 646fr ISO 8859-1

043 243 173 351

100 340 174 371

133 260 175 350

134 347 176 250

iconv_646(5)

ISO 646en
(ENGLISH ASCII)

to ISO 8859-1

ISO 646es
(SPANISH) to ISO

8859-1

ISO 646fr
(FRENCH) to ISO

8859-1

Standards, Environments, and Macros 127

Conversions Performed

ISO 646fr ISO 8859-1 ISO 646fr ISO 8859-1

135 247

For the conversion of ISO 646it to ISO 8859-1, all characters not in the following table
are mapped unchanged.

Conversions Performed

ISO 646it ISO 8859-1 ISO 646it ISO 8859-1

043 243 140 371

100 247 173 340

133 260 174 362

134 347 175 350

135 351 176 354

For the conversion of ISO 646sv to ISO 8859-1, all characters not in the following table
are mapped unchanged.

Conversions Performed

ISO 646sv ISO 8859-1 ISO 646sv ISO 8859-1

100 311 140 351

133 304 173 344

134 326 174 366

135 305 175 345

136 334 176 374

/usr/lib/iconv/*.so conversion modules

/usr/lib/iconv/*.t conversion tables

/usr/lib/iconv/iconv_data list of conversions supported by conversion
tables

iconv(1), iconv(3C), iconv(5)

iconv_646(5)

ISO 646it
(ITALIAN) to ISO

8859-1

ISO 646sv
(SWEDISH) to ISO

8859-1

FILES

SEE ALSO

128 man pages section 5: Standards, Environments, and Macros • Last Revised 28 Apr 1997

iconv_852 – code set conversion tables for MS 852 (MS-DOS Latin 2)

The following code set conversions are supported:

Code Set Conversions Supported

Code Symbol Target Code Symbol Target Output

MS 852 dos2 ISO 8859-2 iso2 ISO Latin 2

MS 852 dos2 MS 1250 win2 Windows Latin 2

MS 852 dos2 Mazovia maz Mazovia

MS 852 dos2 DHN dhn Dom Handlowy Nauki

The conversions are performed according to the following tables. All values in the
tables are given in octal.

For the conversion of MS 852 to ISO 8859-2, all characters not in the following table are
mapped unchanged.

Conversions Performed

MS 852 ISO 8859-2 MS 852 ISO 8859-2

24-177 40 271-274 40

200 307 275 257

201 374 276 277

202 351 277-305 40

203 342 306 303

204 344 307 343

205 371 310-316 40

206 346 317 244

207 347 320 360

210 263 321 320

211 353 322 317

212 325 323 313

213 365 324 357

214 356 325 322

iconv_852(5)

NAME

DESCRIPTION

CONVERSIONS

MS 852 to ISO
8859-2

Standards, Environments, and Macros 129

Conversions Performed

MS 852 ISO 8859-2 MS 852 ISO 8859-2

215 254 326 315

216 304 327 316

217 306 330 354

220 311 331-334 40

221 305 335 336

222 345 336 331

223 364 337 40

224 366 340 323

225 245 341 337

226 265 342 324

227 246 343 321

230 266 344 361

231 326 345 362

232 334 346 251

233 253 347 271

234 273 350 300

235 243 351 332

236 327 352 340

237 350 353 333

240 341 354 375

241 355 355 335

242 363 356 376

243 372 357 264

244 241 360 255

245 261 361 275

246 256 362 262

247 276 363 267

250 312 364 242

iconv_852(5)

130 man pages section 5: Standards, Environments, and Macros • Last Revised 18 Apr 1997

Conversions Performed

MS 852 ISO 8859-2 MS 852 ISO 8859-2

251 352 365 247

252 40 366 367

253 274 367 270

254 310 370 260

255 272 371 250

256-264 40 372 377

265 301 374 330

266 302 375 370

267 314 376 40

270 252

For the conversion of MS 852 to MS 1250, all characters not in the following table are
mapped unchanged.

Conversions Performed

MS 852 MS 1250 MS 852 MS 1250

200 307 270 252

201 374 271-274 40

202 351 275 257

203 342 276 277

204 344 277-305 40

205 371 306 303

206 346 307 343

207 347 310-316 40

210 263 317 244

211 353 320 360

212 325 321 320

213 365 322 317

214 356 323 313

iconv_852(5)

MS 852 to MS 1250

Standards, Environments, and Macros 131

Conversions Performed

MS 852 MS 1250 MS 852 MS 1250

215 217 324 357

216 304 325 322

217 306 326 315

220 311 327 316

221 305 330 354

222 345 331-334 40

223 364 335 336

224 366 336 331

225 274 337 40

226 276 340 323

227 214 341 337

230 234 342 324

231 326 343 321

232 334 344 361

233 215 345 362

234 235 346 212

235 243 347 232

236 327 350 300

237 350 351 332

240 341 352 340

241 355 353 333

242 363 354 375

243 372 355 335

244 245 356 376

245 271 357 264

246 216 360 255

247 236 361 275

250 312 362 262

iconv_852(5)

132 man pages section 5: Standards, Environments, and Macros • Last Revised 18 Apr 1997

Conversions Performed

MS 852 MS 1250 MS 852 MS 1250

251 352 363 241

252 254 364 242

253 237 365 247

254 310 366 367

255 272 367 270

256 253 370 260

257 273 371 250

260-264 40 372 377

265 301 374 330

266 302 375 370

267 314 376 40

For the conversion of MS 852 to Mazovia, all characters not in the following table are
mapped unchanged.

Conversions Performed

MS 852 Mazovia MS 852 Mazovia

205 40 246-247 40

206 215 250 220

210 222 251 221

212-213 40 253 246

215 240 254-270 40

217 225 275 241

220-226 40 276 247

227 230 306-336 40

230 236 340 243

233-234 40 342 40

235 234 343 245

236-243 40 344 244

iconv_852(5)

MS 852 to Mazovia

Standards, Environments, and Macros 133

Conversions Performed

MS 852 Mazovia MS 852 Mazovia

244 217 345-375 40

245 206

For the conversion of MS 852 to DHN, all characters not in the following table are
mapped unchanged.

Conversions Performed

MS 852 DHN MS 852 DHN

200-205 40 244 200

206 212 245 211

207 40 246-247 40

210 214 250 202

211-214 40 251 213

215 207 253 220

216 40 254-270 40

217 201 275 210

220-226 40 276 221

227 206 306-336 40

230 217 340 205

233-234 40 342 40

235 203 343 204

236-237 40 344 215

242 216 345-375 40

252 254

/usr/lib/iconv/*.so conversion modules

/usr/lib/iconv/*.t conversion tables

/usr/lib/iconv/iconv_data list of conversions supported by conversion
tables

iconv(1), iconv(3C), iconv(5)

iconv_852(5)

MS 852 to DHN

FILES

SEE ALSO

134 man pages section 5: Standards, Environments, and Macros • Last Revised 18 Apr 1997

iconv_8859-1 – code set conversion tables for ISO 8859-1 (Latin 1)

The following code set conversions are supported:

Code Set Conversions Supported

Code Symbol Target Code Symbol Target Output

ISO 8859-1 8859 ISO 646 646 7 bit ASCII

ISO 8859-1 8859 ISO 646de 646de German

ISO 8859-1 8859 ISO 646da 646da Danish

ISO 8859-1 8859 ISO 646en 646en English ASCII

ISO 8859-1 8859 ISO 646es 646es Spanish

ISO 8859-1 8859 ISO 646fr 646fr French

ISO 8859-1 8859 ISO 646it 646it Italian

ISO 8859-1 8859 ISO 646sv 646sv Swedish

The conversions are performed according to the following tables. All values in the
tables are given in octal.

For the conversion of ISO 8859-1 to ISO 646, all characters not in the following table
are mapped unchanged.

Converted to Underscore ’_’ (137)

200 201 202 203 204 205 206 207
210 211 212 213 214 215 216 217
220 221 222 223 224 225 226 227
230 231 232 233 234 235 236 237
240 241 242 243 244 245 246 247
250 251 252 253 254 255 256 257
260 261 262 263 264 265 266 267
270 271 272 273 274 275 276 277
300 301 302 303 304 305 306 307
310 311 312 313 314 315 316 317
320 321 322 323 324 325 326 327
330 331 332 333 334 335 336 337
340 341 342 343 344 345 346 347
350 351 352 353 354 355 356 357
360 361 362 363 364 365 366 367
370 371 372 373 374 375 376 377

For the conversion of ISO 8859-1 to ISO 646de, all characters not in the following
tables are mapped unchanged.

iconv_8859-1(5)

NAME

DESCRIPTION

CONVERSIONS

ISO 8859-1 to ISO
646 (7-bit ASCII)

ISO 8859-1 to ISO
646de (GERMAN)

Standards, Environments, and Macros 135

Conversions Performed

ISO 8859-1 ISO 646de ISO 8859-1 ISO 646de

247 100 337 176

304 133 344 173

326 134 366 174

334 135 374 175

Converted to Underscore ’_’ (137)

100 133 134 135 173 174 175 176
200 201 202 203 204 205 206 207
210 211 212 213 214 215 216 217
220 221 222 223 224 225 226 227
230 231 232 233 234 235 236 237
240 241 242 243 244 245 246
250 251 252 253 254 255 256 257
260 261 262 263 264 265 266 267
270 271 272 273 274 275 276 277
300 301 302 303 305 306 307
310 311 312 313 314 315 316 317
320 321 322 323 324 325 327
330 331 332 333 335 336 337
340 341 342 343 345 346 347
350 351 352 353 354 355 356 357
360 361 362 363 364 365 367
370 371 372 373 375 376 377

For the conversion of ISO 8859-1 to ISO 646da, all characters not in the following
tables are mapped unchanged.

Conversions Performed

ISO 8859-1 ISO 646da ISO 8859-1 ISO 646da

305 135 345 175

306 133 346 173

330 134 370 174

Converted to Underscore ’_’ (137)

133 134 135 173 174 175
200 201 202 203 204 205 206 207
210 211 212 213 214 215 216 217
220 221 222 223 224 225 226 227
230 231 232 233 234 235 236 237
240 241 242 243 244 245 246 247
250 251 252 253 254 255 256 257
260 261 262 263 264 265 266 267
270 271 272 273 274 275 276 277
300 301 302 303 304 307

iconv_8859-1(5)

ISO 8859-1 to ISO
646da (DANISH)

136 man pages section 5: Standards, Environments, and Macros • Last Revised 28 Apr 1997

310 311 312 313 314 315 316 317
320 321 322 323 324 325 326 327

331 332 333 334 335 336 337
340 341 342 343 344 347
350 351 352 353 354 355 356 357
360 361 362 363 364 365 366 367
371 372 373 374 376 377

For the conversion of ISO 8859-1 to ISO 646en, all characters not in the following
tables are mapped unchanged.

Conversions Performed

ISO 8859-1 ISO 646en

243 043

Converted to Underscore ’_’ (137)

043
200 201 202 203 204 205 206 207
210 211 212 213 214 215 216 217
220 221 222 223 224 225 226 227
230 231 232 233 234 235 236 237
240 241 242 244 245 246 247
250 251 252 253 254 255 256 257
260 261 262 263 264 265 266 267
270 271 272 273 274 275 276 277
300 301 302 303 304 305 306 307
310 311 312 313 314 315 316 317
320 321 322 323 324 325 326 327
330 331 332 333 334 335 336 337
340 341 342 343 344 345 346 347
350 351 352 353 354 355 356 357
360 361 362 363 364 365 366 367
370 371 372 373 374 375 376 377

For the conversion of ISO 8859-1 to ISO 646fr, all characters not in the following tables
are mapped unchanged.

Conversions Performed

ISO 8859-1 ISO 646fr ISO 8859-1 ISO 646fr

243 043 347 134

247 135 350 175

250 176 351 173

260 133 371 174

340 100

iconv_8859-1(5)

ISO 8859-1 to ISO
646en (ENGLISH

ASCII)

ISO 8859-1 to ISO
646fr (FRENCH)

Standards, Environments, and Macros 137

Converted to Underscore ’_’ (137)

043
100 133 134 135 173 174 175 176
200 201 202 203 204 205 206 207
210 211 212 213 214 215 216 217
220 221 222 223 224 225 226 227
230 231 232 233 234 235 236 237
240 241 242 244 245 246

251 252 253 254 255 256 257
261 262 263 264 265 266 267

270 271 272 273 274 275 276 277
300 301 302 303 304 305 306 307
310 311 312 313 314 315 316 317
320 321 322 323 324 325 326 327
330 331 332 333 334 335 336 337

341 342 343 344 345 346
352 353 354 355 356 357

360 361 362 363 364 365 366 367
370 372 373 374 375 376 377

For the conversion of ISO 8859-1 to ISO 646it, all characters not in the following tables
are mapped unchanged.

Conversions Performed

ISO 8859-1 ISO 646it ISO 8859-1 ISO 646it

243 043 350 175

247 100 351 135

260 133 354 176

340 173 362 174

347 134 371 140

Converted to Underscore ’_’ (137)

043
100 133 134 135 173 174 175 176
200 201 202 203 204 205 206 207
210 211 212 213 214 215 216 217
220 221 222 223 224 225 226 227
230 231 232 233 234 235 236 237
240 241 242 244 245 246
250 251 252 253 254 255 256 257

261 262 263 264 265 266 267
270 271 272 273 274 275 276 277
300 301 302 303 304 305 306 307
310 311 312 313 314 315 316 317
320 321 322 323 324 325 326 327
330 331 332 333 334 335 336 337

341 342 343 344 345 346
352 353 354 355 356 357

iconv_8859-1(5)

ISO 8859-1 to ISO
646it (ITALIAN)

138 man pages section 5: Standards, Environments, and Macros • Last Revised 28 Apr 1997

360 361 362 363 364 365 366 367
370 372 373 374 375 376 377

For the conversion of ISO 8859-1 to ISO 646es, all characters not in the following tables
are mapped unchanged.

Conversions Performed

ISO 8859-1 ISO 646es ISO 8859-1 ISO 646es

241 133 321 134

247 100 347 175

260 173 361 174

277 135

Converted to Underscore ’_’ (137)

100 133 134 135 173 174 175
200 201 202 203 204 205 206 207
210 211 212 213 214 215 216 217
220 221 222 223 224 225 226 227
230 231 232 233 234 235 236 237
240 242 243 244 245 246
250 251 252 253 254 255 256 257

261 262 263 264 265 266 267
270 271 272 273 274 275 276
300 301 302 303 304 305 306 307
310 311 312 313 314 315 316 317
320 322 323 324 325 326 327
330 331 332 333 334 335 336 337
340 341 342 343 344 345 346
350 351 352 353 354 355 356 357
360 362 363 364 365 366 367
370 371 372 373 374 375 376 377

For the conversion of ISO 8859-1 to ISO 646sv, all characters not in the following tables
are mapped unchanged.

Conversions Performed

ISO 8859-1 ISO 646sv ISO 8859-1 ISO 646sv

304 133 344 173

305 135 345 175

311 100 351 140

326 134 366 174

334 136 374 176

iconv_8859-1(5)

ISO 8859-1 to ISO
646es (SPANISH)

ISO 8859-1 to ISO
646sv (SWEDISH)

Standards, Environments, and Macros 139

Converted to Underscore ’_’ (137)

100 133 134 135 136 140
173 174 175 176
200 201 202 203 204 205 206 207
210 211 212 213 214 215 216 217
220 221 222 223 224 225 226 227
230 231 232 233 234 235 236 237
240 241 242 243 244 245 246 247
250 251 252 253 254 255 256 257
260 261 262 263 264 265 266 267
270 271 272 273 274 275 276 277
300 301 302 303 306 307
310 312 313 314 315 316 317
320 321 322 323 324 325 327
330 331 332 333 335 336 337
340 341 342 343 346 347
350 352 353 354 355 356 357
360 361 362 363 364 365 367
370 371 372 373 375 376 377

/usr/lib/iconv/*.so conversion modules

/usr/lib/iconv/*.t conversion tables

/usr/lib/iconv/iconv_data list of conversions supported by conversion
tables

iconv(1), iconv(3C), iconv(5)

iconv_8859-1(5)

FILES

SEE ALSO

140 man pages section 5: Standards, Environments, and Macros • Last Revised 28 Apr 1997

iconv_8859-2 – code set conversion tables for ISO 8859-2 (Latin 2)

The following code set conversions are supported:

Code Set Conversions Supported

Code Symbol Target Code Symbol Target Output

ISO 8859-2 iso2 MS 1250 win2 Windows Latin 2

ISO 8859-2 iso2 MS 852 dos2 MS-DOS Latin 2

ISO 8859-2 iso2 Mazovia maz Mazovia

ISO 8859-2 iso2 DHN dhn Dom Handlowy Nauki

The conversions are performed according to the following tables. All values in the
tables are given in octal.

For the conversion of ISO 8859-2 to MS 1250, all characters not in the following table
are mapped unchanged.

Conversions Performed

ISO 8859-2 MS 1250 ISO 8859-2 MS 1250

24 4 261 271

177-237 40 265 276

241 245 266 234

245 274 267 241

246 214 271 232

251 212 273 235

253 215 274 237

254 217 276 236

256 216 266 236

For the conversion of ISO 8859-2 to MS 852, all characters not in the following table are
mapped unchanged.

iconv_8859-2(5)

NAME

DESCRIPTION

CONVERSIONS

ISO 8859-2 to MS
1250

ISO 8859-2 to MS
852

Standards, Environments, and Macros 141

Conversions Performed

ISO 8859-2 MS 852 ISO 8859-2 MS 852

24 4 316 327

177-237 40 317 322

240 377 320 321

241 244 321 343

242 364 322 325

243 235 323 340

244 317 324 342

245 225 325 212

246 227 326 231

247 365 327 236

250 371 330 374

251 346 331 336

252 270 332 351

253 233 333 353

254 215 334 232

255 360 335 355

256 246 336 335

257 275 337 341

260 370 340 352

261 245 341 240

262 362 342 203

263 210 343 307

264 357 344 204

265 226 345 222

266 230 346 206

267 363 347 207

270 367 350 237

271 347 351 202

iconv_8859-2(5)

142 man pages section 5: Standards, Environments, and Macros • Last Revised 18 Apr 1997

Conversions Performed

ISO 8859-2 MS 852 ISO 8859-2 MS 852

272 255 352 251

273 234 353 211

274 253 354 330

275 361 355 241

276 247 356 214

277 276 357 324

300 350 360 320

301 265 361 344

302 266 362 345

303 306 363 242

304 216 364 223

305 221 365 213

306 217 366 224

307 200 367 366

310 254 370 375

311 220 371 205

312 250 372 243

313 323 374 201

314 267 375 354

315 326 376 356

366 367

For the conversion of ISO 8859-2 to Mazovia, all characters not in the following table
are mapped unchanged.

Conversions Performed

ISO 8859-2 Mazovia ISO 8859-2 Mazovia

24 4 323 243

177-237 40 324-325 40

iconv_8859-2(5)

ISO 8859-2 to
Mazovia

Standards, Environments, and Macros 143

Conversions Performed

ISO 8859-2 Mazovia ISO 8859-2 Mazovia

240 377 326 231

241 217 327-333 40

242 40 334 232

243 234 335-336 40

244-245 40 337 341

246 230 340-341 40

247-253 40 342 203

254 240 343 40

255-256 40 344 204

257 241 345 40

260 370 346 215

261 206 347 207

262 40 350 40

263 222 351 202

264-265 40 352 221

266 236 353 211

267-273 40 354-355 40

274 246 356 214

275-276 40 357-360 40

277 247 361 244

300-303 40 362 40

304 216 363 242

305 40 364 223

306 225 365 40

307 200 366 224

310-311 40 367 366

312 220 370-373 40

313-320 40 374 201

iconv_8859-2(5)

144 man pages section 5: Standards, Environments, and Macros • Last Revised 18 Apr 1997

Conversions Performed

ISO 8859-2 Mazovia ISO 8859-2 Mazovia

321 245 375-376 40

322 40

For the conversion of ISO 8859-2 to DHN, all characters not in the following table are
mapped unchanged.

Conversions Performed

ISO 8859-2 DHN ISO 8859-2 DHN

24 4 322 40

177-237 40 323 205

240 377 324-325 40

241 200 326 231

242 40 327-333 40

243 203 334 232

244-245 40 335-336 40

246 206 337 341

247-253 40 340 40

254 207 341 240

255-256 40 342-345 40

257 210 346 212

260 370 347-351 40

261 211 352 213

262 40 353-354 40

263 214 355 241

264-265 40 356-360 40

266 217 361 215

267-273 40 362 40

274 220 363 216

275-276 40 364 223

iconv_8859-2(5)

ISO 8859-2 to
DHN

Standards, Environments, and Macros 145

Conversions Performed

ISO 8859-2 DHN ISO 8859-2 DHN

277 221 365 40

300-305 40 366 224

306 201 367 366

307-311 40 370-371 40

312 202 372 243

313-320 40 373-376 40

321 204

/usr/lib/iconv/*.so conversion modules

/usr/lib/iconv/*.t conversion tables

/usr/lib/iconv/iconv_data list of conversions supported by conversion
tables

iconv(1), iconv(3C), iconv(5)

iconv_8859-2(5)

FILES

SEE ALSO

146 man pages section 5: Standards, Environments, and Macros • Last Revised 18 Apr 1997

iconv_8859-5 – code set conversion tables for ISO 8859-5 (Cyrillic)

The following code set conversions are supported:

Code Set Conversions Supported

Code Symbol Target Code Symbol Target Output

ISO 8859-5 iso5 KOI8-R koi8 KOI8-R

ISO 8859-5 iso5 PC Cyrillic alt Alternative PC Cyrillic

ISO 8859-5 iso5 MS 1251 win5 Windows Cyrillic

ISO 8859-5 iso5 Mac Cyrillic mac Macintosh Cyrillic

The conversions are performed according to the following tables. All values in the
tables are given in octal.

For the conversion of ISO 8859-5 to KOI8-R, all characters not in the following table
are mapped unchanged.

Conversions Performed

ISO 8859-5 KOI8-R ISO 8859-5 KOI8-R

24 4 320 301

241 263 321 302

242 261 322 327

243 262 323 307

244 264 324 304

245 265 325 305

246 266 327 332

247 267 330 311

250 270 331 312

251 271 332 313

252 272 333 314

253 273 334 315

254 274 335 316

256 276 336 317

iconv_8859-5(5)

NAME

DESCRIPTION

CONVERSIONS

ISO 8859-5 to
KOI8-R

Standards, Environments, and Macros 147

Conversions Performed

ISO 8859-5 KOI8-R ISO 8859-5 KOI8-R

257 277 337 320

260 341 340 322

261 342 341 323

262 367 342 324

263 347 343 325

264 344 344 306

265 345 345 310

266 366 346 303

267 372 347 336

270 351 350 333

271 352 351 335

272 353 352 337

273 354 353 331

274 355 354 330

275 356 355 334

276 357 356 300

277 360 357 321

300 362 360 260

301 363 361 243

302 364 362 241

303 365 363 242

304 346 364 244

305 350 365 245

306 343 366 246

307 376 367 247

310 373 370 250

311 375 371 251

312 377 372 252

iconv_8859-5(5)

148 man pages section 5: Standards, Environments, and Macros • Last Revised 18 Apr 1997

Conversions Performed

ISO 8859-5 KOI8-R ISO 8859-5 KOI8-R

313 371 373 253

314 370 374 254

315 374 375 255

316 340 376 256

317 361

For the conversion of ISO 8859-5 to PC Cyrillic, all characters not in the following table
are mapped unchanged.

Conversions Performed

ISO 8859-5 PC Cyrillic ISO 8859-5 PC Cyrillic

24 4 307 227

200-240 40 310 230

241 360 311 231

242-254 40 312 232

255 260 313 233

256-257 40 314 234

260 200 315 235

261 201 316 236

262 202 317 237

263 203 320 240

264 204 321 241

265 205 322 242

266 206 323 243

267 207 324 244

270 210 325 245

271 211 326 246

272 212 327 247

273 213 330 250

iconv_8859-5(5)

ISO 8859-5 to PC
Cyrillic

Standards, Environments, and Macros 149

Conversions Performed

ISO 8859-5 PC Cyrillic ISO 8859-5 PC Cyrillic

274 214 331 251

275 215 332 252

276 216 333 253

277 217 334 254

300 220 335 255

301 221 336 256

302 222 337 257

303 223 360-374 40

304 224 375 260

305 225 376 40

306 226 365 40

For the conversion of ISO 8859-5 to MS 1251, all characters not in the following table
are mapped unchanged.

Conversions Performed

ISO 8859-5 MS 1251 ISO 8859-5 MS 1251

24 4 317 337

200-237 40 320 340

241 250 321 341

242 200 322 342

243 201 323 343

244 252 324 344

245 275 325 345

246 262 326 346

247 257 327 347

250 243 330 350

251 212 331 351

252 214 332 352

iconv_8859-5(5)

ISO 8859-5 to MS
1251

150 man pages section 5: Standards, Environments, and Macros • Last Revised 18 Apr 1997

Conversions Performed

ISO 8859-5 MS 1251 ISO 8859-5 MS 1251

253 216 333 353

254 215 334 354

255 210 335 355

256 241 336 356

257 217 337 357

260 300 340 360

261 301 341 361

262 302 342 362

263 303 343 363

264 304 344 364

265 305 345 365

266 306 346 366

267 307 347 367

270 310 350 370

271 311 351 371

272 312 352 372

273 313 353 373

274 314 354 374

275 315 355 375

276 316 356 376

277 317 357 377

300 320 360 271

301 321 361 270

302 322 362 220

303 323 363 203

304 324 364 272

305 325 365 276

306 326 366 263

iconv_8859-5(5)

Standards, Environments, and Macros 151

Conversions Performed

ISO 8859-5 MS 1251 ISO 8859-5 MS 1251

307 327 367 277

310 330 370 274

311 331 371 232

312 332 372 234

313 333 373 236

314 334 374 235

315 335 375 210

316 336 376 242

376 331

For the conversion of ISO 8859-5 to Mac Cyrillic, all characters not in the following
table are mapped unchanged.

Conversions Performed

ISO 8859-5 Mac Cyrillic ISO 8859-5 Mac Cyrillic

24 4 317 237

200-237 40 320 340

240 312 321 341

241 335 322 342

242 253 323 343

243 256 324 344

244 270 325 345

245 301 326 346

246 247 327 347

247 272 330 350

250 267 331 351

251 274 332 352

252 276 333 353

253 40 334 354

iconv_8859-5(5)

ISO 8859-5 to Mac
Cyrillic

152 man pages section 5: Standards, Environments, and Macros • Last Revised 18 Apr 1997

Conversions Performed

ISO 8859-5 Mac Cyrillic ISO 8859-5 Mac Cyrillic

254 315 335 355

255 40 336 356

256 330 337 357

257 332 340 360

260 200 341 361

261 201 342 362

262 202 343 363

263 203 344 364

264 204 345 365

265 205 346 366

266 206 347 367

267 207 350 370

270 210 351 371

271 211 352 372

272 212 353 373

273 213 354 374

274 214 355 375

275 215 356 376

276 216 357 337

277 217 360 334

300 220 361 336

301 221 362 254

302 222 363 257

303 223 364 271

304 224 365 317

305 225 366 264

306 226 367 273

307 227 370 300

iconv_8859-5(5)

Standards, Environments, and Macros 153

Conversions Performed

ISO 8859-5 Mac Cyrillic ISO 8859-5 Mac Cyrillic

310 230 371 275

311 231 372 277

312 232 373 40

313 233 374 316

314 234 375 40

315 235 376 331

316 236

/usr/lib/iconv/*.so conversion modules

/usr/lib/iconv/*.t conversion tables

/usr/lib/iconv/iconv_data list of conversions supported by conversion
tables

iconv(1), iconv(3C), iconv(5)

iconv_8859-5(5)

FILES

SEE ALSO

154 man pages section 5: Standards, Environments, and Macros • Last Revised 18 Apr 1997

iconv_dhn – code set conversion tables for DHN (Dom Handlowy Nauki)

The following code set conversions are supported:

Code Set Conversions Supported

Code Symbol Target Code Symbol Target Output

DHN dhn ISO 8859-2 iso2 ISO Latin 2

DHN dhn MS 1250 win2 Windows Latin 2

DHN dhn MS 852 dos2 MS-DOS Latin 2

DHN dhn Mazovia maz Mazovia

The conversions are performed according to the following tables. All values in the
tables are given in octal.

For the conversion of DHN to ISO 8859-2, all characters not in the following table are
mapped unchanged.

Conversions Performed

DHN ISO 8859-2 DHN ISO 8859-2

24-177 40 222 40

200 241 223 364

201 306 224 366

202 312 225-230 40

203 243 231 326

204 321 232 334

205 323 233-237 40

206 246 240 341

207 254 241 355

210 257 242 363

211 261 243 372

212 346 244-340 40

213 352 341 337

214 263 342-365 40

iconv_dhn(5)

NAME

DESCRIPTION

CONVERSIONS

DHN to ISO
8859-2

Standards, Environments, and Macros 155

Conversions Performed

DHN ISO 8859-2 DHN ISO 8859-2

215 361 366 367

216 363 367 40

217 266 370 260

220 274 371-376 40

221 277

For the conversion of DHN to MS 1250, all characters not in the following table are
mapped unchanged.

Conversions Performed

DHN MS 1250 DHN MS 1250

200 245 233-237 40

201 306 240 341

202 312 241 355

203 243 242 363

204 321 243 372

205 323 244-251 40

206 214 252 254

207 217 253-255 40

210 257 256 253

211 271 257 273

212 346 260-340 40

213 352 341 337

214 263 342-345 40

215 361 346 265

216 363 347-360 40

217 234 361 261

220 237 362-365 40

221 277 366 367

iconv_dhn(5)

DHN to MS 1250

156 man pages section 5: Standards, Environments, and Macros • Last Revised 18 Apr 1997

Conversions Performed

DHN MS 1250 DHN MS 1250

222 40 367 40

223 364 370 260

224 366 371 40

225-230 40 372 267

231 326 373-376 40

232 334

For the conversion of DHN to MS 852, all characters not in the following table are
mapped unchanged.

Conversions Performed

DHN MS 852 DHN MS 852

200 244 212 206

201 217 213 251

202 250 214 210

203 235 215 344

204 343 216 242

205 340 217 230

206 227 220 253

207 215 221 276

210 275 222-375 40

211 245

For the conversion of DHN to Mazovia, all characters not in the following table are
mapped unchanged.

Conversions Performed

DHN Mazovia DHN Mazovia

200 217 212 215

iconv_dhn(5)

DHN to MS 852

DHN to Mazovia

Standards, Environments, and Macros 157

Conversions Performed

DHN Mazovia DHN Mazovia

201 225 213 221

202 220 214 222

203 234 215 244

204 245 216 242

205 243 217 236

206 230 220 246

207 240 221 247

210 241 222-247 40

211 206

/usr/lib/iconv/*.so conversion modules

/usr/lib/iconv/*.t conversion tables

/usr/lib/iconv/iconv_data list of conversions supported by conversion
tables

iconv(1), iconv(3C), iconv(5)

iconv_dhn(5)

FILES

SEE ALSO

158 man pages section 5: Standards, Environments, and Macros • Last Revised 18 Apr 1997

iconv_koi8-r – code set conversion tables for KOI8-R

The following code set conversions are supported:

Code Set Conversions Supported

Code Symbol Target Code Symbol Target Output

KOI8-R koi8 ISO 8859-5 iso5 ISO 8859-5 Cyrillic

KOI8-R koi8 PC Cyrillic alt Alternative PC Cyrillic

KOI8-R koi8 MS 1251 win5 Windows Cyrillic

KOI8-R koi8 Mac Cyrillic mac Macintosh Cyrillic

The conversions are performed according to the following tables. All values in the
tables are given in octal.

For the conversion of KOI8-R to ISO 8859-5, all characters not in the following table
are mapped unchanged.

Conversions Performed

KOI8-R ISO 8859-5 KOI8-R ISO 8859-5

24 4 320 337

241 362 321 357

242 363 322 340

243 361 323 341

244 364 324 342

245 365 325 343

246 366 327 322

247 367 330 354

250 370 331 353

251 371 332 327

252 372 333 350

253 373 334 355

254 374 335 351

256 376 336 347

iconv_koi8-r(5)

NAME

DESCRIPTION

CONVERSIONS

KOI8-R to ISO
8859-5

Standards, Environments, and Macros 159

Conversions Performed

KOI8-R ISO 8859-5 KOI8-R ISO 8859-5

257 377 337 352

260 360 340 316

261 242 341 260

262 243 342 261

263 241 343 306

264 244 344 264

265 245 345 265

266 246 346 304

267 247 347 263

270 250 350 305

271 251 351 270

272 252 352 271

273 253 353 272

274 254 354 273

275 255 355 274

276 256 356 275

277 257 357 276

300 356 360 277

301 320 361 317

302 321 362 300

303 346 363 301

304 324 364 302

305 325 365 303

306 344 366 266

307 323 367 262

310 345 370 314

311 330 371 313

312 331 372 267

iconv_koi8-r(5)

160 man pages section 5: Standards, Environments, and Macros • Last Revised 18 Apr 1997

Conversions Performed

KOI8-R ISO 8859-5 KOI8-R ISO 8859-5

313 332 373 310

314 333 374 315

315 334 375 311

316 335 376 307

317 336

For the conversion of KOI8-R to PC Cyrillic, all characters not in the following table
are mapped unchanged.

Conversions Performed

KOI8-R PC Cyrillic KOI8-R PC Cyrillic

24 4 333 350

200-242 40 334 355

243 361 335 351

244-254 40 336 347

255 260 337 352

256-262 40 340 236

263 360 341 200

264-274 40 342 201

275 260 343 226

276-277 40 344 204

300 356 345 205

301 240 346 224

302 241 347 203

303 346 350 225

304 244 351 210

305 245 352 211

306 344 353 212

307 243 354 213

iconv_koi8-r(5)

KOI8-R to PC
Cyrillic

Standards, Environments, and Macros 161

Conversions Performed

KOI8-R PC Cyrillic KOI8-R PC Cyrillic

310 345 355 214

311 250 356 215

312 251 357 216

313 252 360 217

314 253 361 237

315 254 362 220

316 255 363 221

317 256 364 222

320 257 365 223

321 357 366 206

322 340 367 202

323 341 370 234

324 342 371 233

325 343 372 207

326 246 373 230

327 242 374 235

330 354 375 231

331 353 376 227

332 247

For the conversion of KOI8-R to MS 1251, all characters not in the following table are
mapped unchanged.

Conversions Performed

KOI8-R MS 1251 KOI8-R MS 1251

24 4 317 356

200-237 40 320 357

241 220 321 377

242 203 322 360

iconv_koi8-r(5)

KOI8-R to MS
1251

162 man pages section 5: Standards, Environments, and Macros • Last Revised 18 Apr 1997

Conversions Performed

KOI8-R MS 1251 KOI8-R MS 1251

243 270 323 361

244 272 324 362

245 276 325 363

246 263 326 346

247 277 327 342

250 274 330 374

251 232 331 373

252 234 332 347

253 236 333 370

254 235 334 375

255 210 335 371

256 242 336 367

257 237 337 372

260 271 340 336

261 200 341 300

262 201 342 301

263 250 343 326

264 252 344 304

265 275 345 305

266 262 346 324

267 257 347 303

270 243 350 325

271 212 351 310

272 214 352 311

273 216 353 312

274 215 354 313

275 210 355 314

276 241 356 315

iconv_koi8-r(5)

Standards, Environments, and Macros 163

Conversions Performed

KOI8-R MS 1251 KOI8-R MS 1251

277 217 357 316

300 376 360 317

301 340 361 337

302 341 362 320

303 366 363 321

304 344 364 322

305 345 365 323

306 364 366 306

307 343 367 302

310 365 370 334

311 350 371 333

312 351 372 307

313 352 373 330

314 353 374 335

315 354 375 331

316 355 376 327

376 227

For the conversion of KOI8-R to Mac Cyrillic, all characters not in the following table
are mapped unchanged.

Conversions Performed

KOI8-R Mac Cyrillic KOI8-R Mac Cyrillic

24 4 317 356

200-237 40 320 357

240 312 321 337

241 254 322 360

242 257 323 361

243 336 324 362

iconv_koi8-r(5)

KOI8-R to Mac
Cyrillic

164 man pages section 5: Standards, Environments, and Macros • Last Revised 18 Apr 1997

Conversions Performed

KOI8-R Mac Cyrillic KOI8-R Mac Cyrillic

244 271 325 363

245 317 326 346

246 264 327 342

247 273 330 374

250 300 331 373

251 275 332 347

252 277 333 370

253 40 334 375

254 316 335 371

255 40 336 367

256 331 337 372

257 333 340 236

260 334 341 200

261 253 342 201

262 256 343 226

263 335 344 204

264 270 345 205

265 301 346 224

266 247 347 203

267 272 350 225

270 267 351 210

271 274 352 211

272 276 353 212

273 40 354 213

274 315 355 214

275 40 356 215

276 330 357 216

277 332 360 217

iconv_koi8-r(5)

Standards, Environments, and Macros 165

Conversions Performed

KOI8-R Mac Cyrillic KOI8-R Mac Cyrillic

300 376 361 237

301 340 362 220

302 341 363 221

303 366 364 222

304 344 365 223

305 345 366 206

306 364 367 202

307 343 370 234

310 365 371 233

311 350 372 207

312 351 373 230

313 352 374 235

314 353 375 231

315 354 376 227

316 355

/usr/lib/iconv/*.so conversion modules

/usr/lib/iconv/*.t conversion tables

/usr/lib/iconv/iconv_data list of conversions supported by conversion
tables

iconv(1), iconv(3C), iconv(5)

iconv_koi8-r(5)

FILES

SEE ALSO

166 man pages section 5: Standards, Environments, and Macros • Last Revised 18 Apr 1997

iconv_mac_cyr – code set conversion tables for Macintosh Cyrillic

The following code set conversions are supported:

Code Set Conversions Supported

Code Symbol Target Code Symbol Target Output

Mac Cyrillic mac ISO 8859-5 iso5 ISO 8859-5 Cyrillic

Mac Cyrillic mac KOI8-R koi8 KOI8-R

Mac Cyrillic mac PC Cyrillic alt Alternative PC Cyrillic

Mac Cyrillic mac MS 1251 win5 Windows Cyrillic

The conversions are performed according to the following tables. All values in the
tables are given in octal.

For the conversion of Mac Cyrillic to ISO 8859-5, all characters not in the following
table are mapped unchanged.

Conversions Performed

Mac Cyrillic ISO 8859-5 Mac Cyrillic ISO 8859-5

24 4 276 252

200 260 277 372

201 261 300 370

202 262 301 245

203 263 302-311 40

204 264 312 240

205 265 313 242

206 266 314 362

207 267 315 254

210 270 316 374

211 271 317 365

212 272 320-327 40

213 273 330 256

214 274 331 376

iconv_mac_cyr(5)

NAME

DESCRIPTION

CONVERSIONS

Mac Cyrillic to
ISO 8859-5

Standards, Environments, and Macros 167

Conversions Performed

Mac Cyrillic ISO 8859-5 Mac Cyrillic ISO 8859-5

215 275 332 257

216 276 333 377

217 277 334 360

220 300 335 241

221 301 336 361

222 302 337 357

223 303 340 320

224 304 341 321

225 305 342 322

226 306 343 323

227 307 344 324

230 310 345 325

231 311 346 326

232 312 347 327

233 313 350 330

234 314 351 331

235 315 352 332

236 316 353 333

237 317 354 334

240-246 40 355 335

247 246 356 336

250-252 40 357 337

253 242 360 340

254 362 361 341

255 40 362 342

256 243 363 343

257 363 364 344

260-263 40 365 345

iconv_mac_cyr(5)

168 man pages section 5: Standards, Environments, and Macros • Last Revised 18 Apr 1997

Conversions Performed

Mac Cyrillic ISO 8859-5 Mac Cyrillic ISO 8859-5

264 366 366 346

265-266 40 367 347

267 250 370 350

270 244 371 351

271 364 372 352

272 247 373 353

273 367 374 354

274 251 375 355

275 371 376 356

375 370

For the conversion of Mac Cyrillic to KOI8-R, all characters not in the following table
are mapped unchanged.

Conversions Performed

Mac Cyrillic KOI8-R Mac Cyrillic KOI8-R

24 4 276 272

200 341 277 252

201 342 300 250

202 367 301 265

203 347 302-311 40

204 344 312 240

205 345 313 261

206 366 314 241

207 372 315 274

210 351 316 254

211 352 317 245

212 353 320-327 40

213 354 330 276

iconv_mac_cyr(5)

Mac Cyrillic to
KOI8-R

Standards, Environments, and Macros 169

Conversions Performed

Mac Cyrillic KOI8-R Mac Cyrillic KOI8-R

214 355 331 256

215 356 332 277

216 357 333 257

217 360 334 260

220 362 335 263

221 363 336 243

222 364 337 321

223 365 340 301

224 346 341 302

225 350 342 327

226 343 343 307

227 376 344 304

230 373 345 305

231 375 346 326

232 377 347 332

233 371 350 311

234 370 351 312

235 374 352 313

236 340 353 314

237 361 354 315

240-246 40 355 316

247 266 356 317

250-252 40 357 320

253 261 360 322

254 241 361 323

255 40 362 324

256 262 363 325

257 242 364 306

iconv_mac_cyr(5)

170 man pages section 5: Standards, Environments, and Macros • Last Revised 18 Apr 1997

Conversions Performed

Mac Cyrillic KOI8-R Mac Cyrillic KOI8-R

260-263 40 365 310

264 246 366 303

265-266 40 367 336

267 270 370 333

270 264 371 335

271 244 372 337

272 267 373 331

273 247 374 330

274 271 375 334

275 251 376 300

375 370

For the conversion of Mac Cyrillic to PC Cyrillic, all characters not in the following
table are mapped unchanged.

Conversions Performed

Mac Cyrillic PC Cyrillic Mac Cyrillic PC Cyrillic

24 4 355 255

240-334 40 356 256

335 360 357 257

336 361 360 340

337 357 361 341

340 240 362 342

341 241 363 343

342 242 364 344

343 243 365 345

344 244 366 346

345 245 367 347

346 246 370 350

iconv_mac_cyr(5)

Mac Cyrillic to PC
Cyrillic

Standards, Environments, and Macros 171

Conversions Performed

Mac Cyrillic PC Cyrillic Mac Cyrillic PC Cyrillic

347 247 371 351

350 250 372 352

351 251 373 353

352 252 374 354

353 253 375 355

354 254 376 356

303 366

For the conversion of Mac Cyrillic to MS 1251, all characters not in the following table
are mapped unchanged.

Conversions Performed

Mac Cyrillic MS 1251 Mac Cyrillic MS 1251

24 4 255 40

200 300 256 201

201 301 257 203

202 302 260-263 40

203 303 264 263

204 304 266 264

205 305 267 243

206 306 270 252

207 307 271 272

210 310 272 257

211 311 273 277

212 312 274 212

213 313 275 232

214 314 276 214

215 315 277 234

216 316 300 274

iconv_mac_cyr(5)

Mac Cyrillic to MS
1251

172 man pages section 5: Standards, Environments, and Macros • Last Revised 18 Apr 1997

Conversions Performed

Mac Cyrillic MS 1251 Mac Cyrillic MS 1251

217 317 301 275

220 320 302 254

221 321 303-306 40

222 322 307 253

223 323 310 273

224 324 311 205

225 325 312 240

226 326 313 200

227 327 314 220

230 330 315 215

231 331 316 235

232 332 317 276

233 333 320 226

234 334 321 227

235 335 322 223

236 336 323 224

237 337 324 221

240 206 325 222

241 260 326 40

242 245 327 204

243 40 330 241

244 247 331 242

245 267 332 217

246 266 333 237

247 262 334 271

250 256 335 250

252 231 336 270

253 200 337 377

iconv_mac_cyr(5)

Standards, Environments, and Macros 173

Conversions Performed

Mac Cyrillic MS 1251 Mac Cyrillic MS 1251

254 220 362 324

/usr/lib/iconv/*.so conversion modules

/usr/lib/iconv/*.t conversion tables

/usr/lib/iconv/iconv_data list of conversions supported by conversion
tables

iconv(1), iconv(3C), iconv(5)

iconv_mac_cyr(5)

FILES

SEE ALSO

174 man pages section 5: Standards, Environments, and Macros • Last Revised 18 Apr 1997

iconv_maz – code set conversion tables for Mazovia

The following code set conversions are supported:

Code Set Conversions Supported

Code Symbol Target Code Symbol Target Output

Mazovia maz ISO 8859-2 iso2 ISO Latin 2

Mazovia maz MS 1250 win2 Windows Latin 2

Mazovia maz MS 852 dos2 MS-DOS Latin 2

Mazovia maz DHN dhn Dom Hanlowy Nauki

The conversions are performed according to the following tables. All values in the
tables are given in octal.

For the conversion of Mazovia to ISO 8859-2, all characters not in the following table
are mapped unchanged.

Conversions Performed

Mazovia ISO 8859-2 Mazovia ISO 8859-2

24–177 40 230 246

200 307 231 326

201 374 232 334

202 351 233 40

203 342 234 243

204 344 235 40

205 40 236 266

206 261 237 40

207 347 240 254

210 40 241 257

211 353 242 363

212-213 40 243 323

214 356 244 361

215 346 245 321

iconv_maz(5)

NAME

DESCRIPTION

CONVERSIONS

Mazovia to ISO
8859-2

Standards, Environments, and Macros 175

Conversions Performed

Mazovia ISO 8859-2 Mazovia ISO 8859-2

216 304 246 274

217 241 247 277

220 312 250-340 40

221 352 341 337

222 263 342-365 40

223 364 366 367

224 366 367 40

225 306 370 260

226-227 40 371-376 40

256 201

For the conversion of Mazovia to MS 1250, all characters not in the following table are
mapped unchanged.

Mazovia MS 1250 Mazovia MS 1250

200 307 236 234

201 374 237 40

202 351 240 217

203 342 241 257

204 344 242 363

205 40 243 323

206 271 244 361

207 347 245 321

210 40 246 237

211 353 247 277

212-213 40 250-251 40

214 356 252 254

215 346 253-255 40

216 304 256 253

iconv_maz(5)

Mazovia to MS
1250

176 man pages section 5: Standards, Environments, and Macros • Last Revised 18 Apr 1997

Mazovia MS 1250 Mazovia MS 1250

217 245 257 273

220 312 260-340 40

221 352 341 337

222 263 342-345 40

223 364 346 265

224 366 347-360 40

225 306 361 261

226-227 40 362-365 0

230 214 366 367

231 326 367 40

232 334 370 260

233 40 371 40

234 243 372 267

235 40 373-376 40

274 212

For the conversion of Mazovia to MS 852, all characters not in the following table are
mapped unchanged.

Conversions Performed

Mazovia MS 852 Mazovia MS 852

205 40 234 235

206 245 235 40

210-213 40 236 230

215 206 237 40

217 244 240 215

220 250 241 275

221 251 243 340

222 210 244 344

225 217 245 343

iconv_maz(5)

Mazovia to MS 852

Standards, Environments, and Macros 177

Conversions Performed

Mazovia MS 852 Mazovia MS 852

226-227 40 246 253

230 227 247 276

233 40 250-375 40

227 327

For the conversion of Mazovia to DHN, all characters not in the following table are
mapped unchanged.

Conversions Performed

Mazovia DHN Mazovia DHN

200-205 40 234 203

206 211 236 217

207-214 40 240 207

215 212 241 210

216 40 242 216

217 200 243 205

220 202 244 215

221 214 246 220

225 201 247 221

230 206

/usr/lib/iconv/*.so conversion modules

/usr/lib/iconv/*.t conversion tables

/usr/lib/iconv/iconv_data list of conversions supported by conversion
tables

iconv(1), iconv(3C), iconv(5)

iconv_maz(5)

Mazovia to DHN

FILES

SEE ALSO

178 man pages section 5: Standards, Environments, and Macros • Last Revised 18 Apr 1997

iconv_pc_cyr – code set conversion tables for Alternative PC Cyrillic

The following code set conversions are supported:

Code Set Conversions Supported

Code Symbol Target Code Symbol Target Output

PC Cyrillic alt ISO 8859-5 iso5 ISO 8859-5 Cyrillic

PC Cyrillic alt KOI8-R koi8 KOI8-R

PC Cyrillic alt MS 1251 win5 Windows Cyrillic

PC Cyrillic alt Mac Cyrillic mac Macintosh Cyrillic

The conversions are performed according to the following tables. All values in the
tables are given in octal.

For the conversion of PC Cyrillic to ISO 8859-5, all characters not in the following table
are mapped unchanged.

Conversions Performed

PC Cyrillic ISO 8859-5 PC Cyrillic ISO 8859-5

24 4 231 311

200 260 232 312

201 261 233 313

202 262 234 314

203 263 235 315

204 264 236 316

205 265 237 317

206 266 240 320

207 267 241 321

210 270 242 322

211 271 243 323

212 272 244 324

213 273 245 325

214 274 246 326

iconv_pc_cyr(5)

NAME

DESCRIPTION

CONVERSIONS

PC Cyrillic to ISO
8859-5

Standards, Environments, and Macros 179

Conversions Performed

PC Cyrillic ISO 8859-5 PC Cyrillic ISO 8859-5

215 275 247 327

216 276 250 330

217 277 251 331

220 300 252 332

221 301 253 333

222 302 254 334

223 303 255 335

224 304 256 336

225 305 257 337

226 306 260-337 255

227 307 360 241

230 310 362-376 255

For the conversion of PC Cyrillic to KOI8-R, all characters not in the following table
are mapped unchanged.

Conversions Performed

PC Cyrillic KOI8-R PC Cyrillic KOI8-R

24 4 242 327

200 341 243 307

201 342 244 304

202 367 245 305

203 347 246 326

204 344 247 332

205 345 250 311

206 366 251 312

207 372 252 313

210 351 253 314

211 352 254 315

iconv_pc_cyr(5)

PC Cyrillic to
KOI8-R

180 man pages section 5: Standards, Environments, and Macros • Last Revised 18 Apr 1997

Conversions Performed

PC Cyrillic KOI8-R PC Cyrillic KOI8-R

212 353 255 316

213 354 256 317

214 355 257 320

215 356 260-337 255

216 357 340 322

217 360 341 323

220 362 342 324

221 363 343 325

222 364 344 306

223 365 345 310

224 346 346 303

225 350 347 336

226 343 350 333

227 376 351 335

230 373 352 337

231 375 353 331

232 377 354 330

233 371 355 334

234 370 356 300

235 374 357 321

236 340 360 263

237 361 361 243

240 301 362-376 255

241 302

For the conversion of PC Cyrillic to MS 1251, all characters not in the following table
are mapped unchanged.

iconv_pc_cyr(5)

PC Cyrillic to MS
1251

Standards, Environments, and Macros 181

Conversions Performed

PC Cyrillic MS 1251 PC Cyrillic MS 1251

24 4 242 342

200 300 243 343

201 301 244 344

202 302 245 345

203 303 246 346

204 304 247 347

205 305 250 350

206 306 251 351

207 307 252 352

210 310 253 353

211 311 254 354

212 312 255 355

213 313 256 356

214 314 257 357

215 315 260-337 210

216 316 340 360

217 317 341 361

220 320 342 362

221 321 343 363

222 322 344 364

223 323 345 365

224 324 346 366

225 325 347 367

226 326 350 370

227 327 351 371

230 330 352 372

231 331 353 373

232 332 354 374

iconv_pc_cyr(5)

182 man pages section 5: Standards, Environments, and Macros • Last Revised 18 Apr 1997

Conversions Performed

PC Cyrillic MS 1251 PC Cyrillic MS 1251

233 333 355 375

234 334 356 376

235 335 357 377

236 336 360 250

237 337 361 270

240 340 362-376 210

241 341

For the conversion of PC Cyrillic to Mac Cyrillic, all characters not in the following
table are mapped unchanged.

Conversions Performed

PC Cyrillic Mac Cyrillic PC Cyrillic Mac Cyrillic

24 4 341 361

240 340 342 362

241 341 343 363

242 342 344 364

243 343 345 365

244 344 346 366

245 345 347 367

246 346 350 370

247 347 351 371

250 350 352 372

251 351 353 373

252 352 354 374

253 353 355 375

254 354 356 376

255 355 357 337

256 356 360 335

iconv_pc_cyr(5)

PC Cyrillic to Mac
Cyrillic

Standards, Environments, and Macros 183

Conversions Performed

PC Cyrillic Mac Cyrillic PC Cyrillic Mac Cyrillic

257 357 361 336

260-337 40 362-376 40

340 360

/usr/lib/iconv/*.so conversion modules

/usr/lib/iconv/*.t conversion tables

/usr/lib/iconv/iconv_data list of conversions supported by conversion
tables

iconv(1), iconv(3C), iconv(5)

iconv_pc_cyr(5)

FILES

SEE ALSO

184 man pages section 5: Standards, Environments, and Macros • Last Revised 18 Apr 1997

iconv_unicode – code set conversion tables for Unicode

The following code set conversions are supported:

CODE SET CONVERSIONS SUPPORTED

FROM Code Set TO Code Set
Code FROM Target Code TO

Filename Filename
Element Element

ISO 8859-1 (Latin 1) 8859-1 UTF-8 UTF-8
ISO 8859-2 (Latin 2) 8859-2 UTF-8 UTF-8
ISO 8859-3 (Latin 3) 8859-3 UTF-8 UTF-8
ISO 8859-4 (Latin 4) 8859-4 UTF-8 UTF-8
ISO 8859-5 (Cyrillic) 8859-5 UTF-8 UTF-8
ISO 8859-6 (Arabic) 8859-6 UTF-8 UTF-8
ISO 8859-7 (Greek) 8859-7 UTF-8 UTF-8
ISO 8859-8 (Hebrew) 8859-8 UTF-8 UTF-8
ISO 8859-9 (Latin 5) 8859-9 UTF-8 UTF-8
ISO 8859-10 (Latin 6) 8859-10 UTF-8 UTF-8
Japanese EUC eucJP UTF-8 UTF-8
Chinese/PRC EUC
(GB 2312-1980) gb2312 UTF-8 UTF-8
ISO-2022 iso2022 UTF-8 UTF-8
Korean EUC ko_KR-euc Korean UTF-8 ko_KR-UTF-8
ISO-2022-KR ko_KR-iso2022-7 Korean UTF-8 ko_KR_UTF-8
Korean Johap
(KS C 5601-1987) ko_KR-johap Korean UTF-8 ko_KR-UTF-8
Korean Johap
(KS C 5601-1992) ko_KR-johap92 Korean UTF-8 ko_KR-UTF-8
Korean UTF-8 ko_KR-UTF-8 Korean EUC ko_KR-euc
Korean UTF-8 ko_KR-UTF-8 Korean Johap ko_KR-johap

(KS C 5601-1987)
Korean UTF-8 ko_KR-UTF-8 Korean Johap ko_KR-johap92

(KS C 5601-1992)
KOI8-R (Cyrillic) KOI8-R UCS-2 UCS-2
KOI8-R (Cyrillic) KOI8-R UTF-8 UTF-8
PC Kanji (SJIS) PCK UTF-8 UTF-8
PC Kanji (SJIS) SJIS UTF-8 UTF-8
UCS-2 UCS-2 KOI8-R (Cyrillic) KOI8-R
UCS-2 UCS-2 UCS-4 UCS-4

CODE SET CONVERSIONS SUPPORTED

FROM Code Set TO Code Set
Code FROM Target Code TO

Filename Filename
Element Element

UCS-2 UCS-2 UTF-7 UTF-7
UCS-2 UCS-2 UTF-8 UTF-8
UCS-4 UCS-4 UCS-2 UCS-2
UCS-4 UCS-4 UTF-16 UTF-16
UCS-4 UCS-4 UTF-7 UTF-7
UCS-4 UCS-4 UTF-8 UTF-8
UTF-16 UTF-16 UCS-4 UCS-4

iconv_unicode(5)

NAME

DESCRIPTION

Standards, Environments, and Macros 185

UTF-16 UTF-16 UTF-8 UTF-8
UTF-7 UTF-7 UCS-2 UCS-2
UTF-7 UTF-7 UCS-4 UCS-4
UTF-7 UTF-7 UTF-8 UTF-8
UTF-8 UTF-8 ISO 8859-1 (Latin 1) 8859-1
UTF-8 UTF-8 ISO 8859-2 (Latin 2) 8859-2
UTF-8 UTF-8 ISO 8859-3 (Latin 3) 8859-3
UTF-8 UTF-8 ISO 8859-4 (Latin 4) 8859-4
UTF-8 UTF-8 ISO 8859-5 (Cyrillic) 8859-5
UTF-8 UTF-8 ISO 8859-6 (Arabic) 8859-6
UTF-8 UTF-8 ISO 8859-7 (Greek) 8859-7
UTF-8 UTF-8 ISO 8859-8 (Hebrew) 8859-8
UTF-8 UTF-8 ISO 8859-9 (Latin 5) 8859-9
UTF-8 UTF-8 ISO 8859-10 (Latin 6) 8859-10
UTF-8 UTF-8 Japanese EUC eucJP
UTF-8 UTF-8 Chinese/PRC EUC gb2312

(GB 2312-1980)
UTF-8 UTF-8 ISO-2022 iso2022
UTF-8 UTF-8 KOI8-R (Cyrillic) KOI8-R
UTF-8 UTF-8 PC Kanji (SJIS) PCK
UTF-8 UTF-8 PC Kanji (SJIS) SJIS
UTF-8 UTF-8 UCS-2 UCS-2
UTF-8 UTF-8 UCS-4 UCS-4
UTF-8 UTF-8 UTF-16 UTF-16
UTF-8 UTF-8 UTF-7 UTF-7
UTF-8 UTF-8 Chinese/PRC EUC zh_CN.euc

(GB 2312-1980)

CODE SET CONVERSIONS SUPPORTED

FROM Code Set TO Code Set
Code FROM Target Code TO

Filename Filename
Element Element

UTF-8 UTF-8 ISO 2022-CN zh_CN.iso2022-7
UTF-8 UTF-8 Chinese/Taiwan Big5 zh_TW-big5
UTF-8 UTF-8 Chinese/Taiwan EUC zh_TW-euc

(CNS 11643-1992)
UTF-8 UTF-8 ISO 2022-TW zh_TW-iso2022-7
Chinese/PRC EUC zh_CN.euc UTF-8 UTF-8
(GB 2312-1980)
ISO 2022-CN zh_CN.iso2022-7 UTF-8 UTF-8
Chinese/Taiwan Big5 zh_TW-big5 UTF-8 UTF-8
Chinese/Taiwan EUC zh_TW-euc UTF-8 UTF-8
(CNS 11643-1992)
ISO 2022-TW zh_TW-iso2022-7 UTF-8 UTF-8

EXAMPLE 1 The library module filename

In the conversion library, /usr/lib/iconv (see iconv(3C)), the library module
filename is composed of two symbolic elements separated by the percent sign (%). The
first symbol specifies the code set that is being converted; the second symbol specifies
the target code, that is, the code set to which the first one is being converted.

iconv_unicode(5)

EXAMPLES

186 man pages section 5: Standards, Environments, and Macros • Last Revised 18 Apr 1997

EXAMPLE 1 The library module filename (Continued)

In the conversion table above, the first symbol is termed the "FROM Filename
Element". The second symbol, representing the target code set, is the "TO Filename
Element".

For example, the library module filename to convert from the Korean EUC code set to
the Korean UTF-8 code set is

ko_KR-euc%ko_KR-UTF-8

/usr/lib/iconv/*.so conversion modules

iconv(1), iconv(3C), iconv(5)

Chernov, A., Registration of a Cyrillic Character Set, RFC 1489, RELCOM Development
Team, July 1993.

Chon, K., H. Je Park, and U. Choi, Korean Character Encoding for Internet Messages, RFC
1557, Solvit Chosun Media, December 1993.

Goldsmith, D., and M. Davis, UTF-7 – A Mail-Safe Transformation Format of Unicode,
RFC 1642, Taligent, Inc., July 1994.

Lee, F., HZ – A Data Format for Exchanging Files of Arbitrarily Mixed Chinese and ASCII
characters, RFC 1843, Stanford University, August 1995.

Murai, J., M. Crispin, and E. van der Poel, Japanese Character Encoding for Internet
Messages, RFC 1468, Keio University, Panda Programming, June 1993.

Nussbacher, H., and Y. Bourvine, Hebrew Character Encoding for Internet Messages, RFC
1555, Israeli Inter-University, Hebrew University, December 1993.

Ohta, M., Character Sets ISO-10646 and ISO-10646-J-1, RFC 1815, Tokyo Institute of
Technology, July 1995.

Ohta, M., and K. Handa, ISO-2022-JP-2: Multilingual Extension of ISO-2022-JP, RFC
1554, Tokyo Institute of Technology, December 1993.

Reynolds, J., and J. Postel, ASSIGNED NUMBERS, RFC 1700, University of Southern
California/Information Sciences Institute, October 1994.

Simonson, K., Character Mnemonics & Character Sets, RFC 1345, Rationel Almen
Planlaegning, June 1992.

Spinellis, D., Greek Character Encoding for Electronic Mail Messages, RFC 1947, SENA
S.A., May 1996.

iconv_unicode(5)

FILES

SEE ALSO

Standards, Environments, and Macros 187

The Unicode Consortium, The Unicode Standard, Version 2.0, Addison Wesley
Developers Press, July 1996.

Wei, Y., Y. Zhang, J. Li, J. Ding, and Y. Jiang, ASCII Printable Characters-Based Chinese
Character Encoding for Internet Messages, RFC 1842, AsiaInfo Services Inc., Harvard
University, Rice University, University of Maryland, August 1995.

Yergeau, F., UTF-8, a transformation format of Unicode and ISO 10646, RFC 2044, Alis
Technologies, October 1996.

Zhu, H., D. Hu, Z. Wang, T. Kao, W. Chang, and M. Crispin, Chinese Character Encoding
for Internet Messages, RFC 1922, Tsinghua University, China Information Technology
Standardization Technical Committee (CITS), Institute for Information Industry (III),
University of Washington, March 1996.

ISO 8859 character sets using Latin alphabetic characters are distinguished as follows:

ISO 8859-1 (Latin 1)
For most West European languages, including:

Albanian Finnish Italian

Catalan French Norwegian

Danish German Portuguese

Dutch Galician Spanish

English Irish Swedish

Faeroese Icelandic

ISO 8859-2 (Latin 2)
For most Latin-written Slavic and Central European languages:

Czech Polish Slovak

German Rumanian Slovene

Hungarian Croatian

ISO 8859-3 (Latin 3)
Popularly used for Esperanto, Galician, Maltese, and Turkish.

ISO 8859-4 (Latin 4)
Introduces letters for Estonian, Latvian, and Lithuanian. It is an incomplete
predecessor of ISO 8859-10 (Latin 6).

iconv_unicode(5)

NOTES

188 man pages section 5: Standards, Environments, and Macros • Last Revised 18 Apr 1997

ISO 8859-9 (Latin 5)
Replaces the rarely needed Icelandic letters in ISO 8859-1 (Latin 1) with the Turkish
ones.

ISO 8859-10 (Latin 6)
Adds the last Inuit (Greenlandic) and Sami (Lappish) letters that were not included
in ISO 8859-4 (Latin 4) to complete coverage of the Nordic area.

iconv_unicode(5)

Standards, Environments, and Macros 189

isalist – the native instruction sets known to Solaris software

The possible instruction set names returned by isalist(1) and the SI_ISALIST
command of sysinfo(2) are listed here.

The list is ordered within an instruction set family in the sense that later names are
generally faster then earlier names; note that this is in the reverse order than listed by
isalist(1) and sysinfo(2). In the following list of values, numbered entries
generally represent increasing performance; lettered entries are either mutually
exclusive or cannot be ordered.

Where appropriate, correspondence with a given value of the –xarch option of Sun’s C
4.0 compiler is indicated. Other compilers may have similar options.

1a. sparc Indicates the SPARC V8 instruction set, as defined in
The SPARC Architecture Manual, Version 8,
Prentice-Hall, Inc., 1992. Some instructions (such as
integer multiply and divide, FSMULD, and all floating
point operations on quad operands) may be emulated
by the kernel on certain systems.

1b. sparcv7 Same as sparc. This corresponds to code produced with
the –xarch=v7 option of Sun’s C 4.0 compiler.

2. sparcv8–fsmuld Like sparc, except that integer multiply and divide
must be executed in hardware. This corresponds to
code produced with the –xarch=v8a option of Sun’s C
4.0 compiler.

3. sparcv8 Like sparcv8–fsmuld, except that FSMULD must also
be executed in hardware. This corresponds to code
produced with the –xarch=v8 option of Sun’s C 4.0
compiler.

4. sparcv8plus Indicates the SPARC V8 instruction set plus those
instructions in the SPARC V9 instruction set, as defined
in The SPARC Architecture Manual, Version 9,
Prentice-Hall, 1994, that can be used according to The
V8+ Technical Specification. This corresponds to code
produced with the –xarch=v8plus option of Sun’s C 4.0
compiler.

5a. sparcv8plus+vis Like sparcv8plus, with the addition of those
UltraSPARC I Visualization Instructions that can be
used according to The V8+ Technical Specification. This
corresponds to code produced with the –xarch=v8plusa
option of Sun’s C 4.0 compiler.

5b. sparcv8plus+fmuladd Like sparcv8plus, with the addition of the Hal
SPARC64 floating multiply-add and multiply-subtract
instructions.

isalist(5)

NAME

DESCRIPTION

SPARC Platforms

190 man pages section 5: Standards, Environments, and Macros • Last Revised 18 Feb 1997

6. sparcv9 Indicates the SPARC V9 instruction set, as defined in
The SPARC Architecture Manual, Version 9,
Prentice-Hall, 1994.

7a. sparcv9+vis Like sparcv9, with the addition of the UltraSPARC I
Visualization Instructions.

7b. sparcv9+fmuladd Like sparcv9, with the addition of the Hal SPARC64
floating multiply-add and multiply-subtract
instructions.

1. i386 The Intel 80386 instruction set, as described in The i386
Microprocessor Programmer’s Reference Manual.

2. i486 The Intel 80486 instruction set, as described in The i486
Microprocessor Programmer’s Reference Manual. (This
is effectively i386, plus the CMPXCHG, BSWAP, and
XADD instructions.)

3. pentium The Intel Pentium instruction set, as described in The
Pentium Processor User’s Manual. (This is effectively
i486, plus the CPU_ID instruction, and any features
that the CPU_ID instruction indicates are present.)

4. pentium+mmx Like pentium, with the MMX instructions guaranteed
present.

5. pentium_pro The Intel PentiumPro instruction set, as described in
The PentiumPro Family Developer’s Manual. (This is
effectively pentium, with the CMOVcc, FCMOVcc,
FCOMI, and RDPMC instructions guaranteed present.)

6. pentium_pro+mmx Like pentium_pro, with the MMX instructions
guaranteed present.

isalist(1), sysinfo(2)

isalist(5)

x86 Platforms

SEE ALSO

Standards, Environments, and Macros 191

largefile – large file status of utilities

A large file is a regular file whose size is greater than or equal to 2 Gbyte (231 bytes). A
small file is a regular file whose size is less than 2 Gbyte.

A utility is called large file aware if it can process large files in the same manner as it
does small files. A utility that is large file aware is able to handle large files as input
and generate as output large files that are being processed. The exception is where
additional files are used as system configuration files or support files that can augment
the processing. For example, the file utility supports the -m option for an alternative
"magic" file and the -f option for a support file that can contain a list of file names. It
is unspecified whether a utility that is large file aware will accept configuration or
support files that are large files. If a large file aware utility does not accept
configuration or support files that are large files, it will cause no data loss or
corruption upon encountering such files and will return an appropriate error.

The following /usr/bin utilities are large file aware:

adb awk bdiff cat chgrp

chmod chown cksum cmp compress

cp csh csplit cut dd

dircmp du egrep fgrep file

find ftp getconf grep head

join jsh ksh ln ls

mdb mkdir mkfifo more mv

nawk page paste pathchk pg

rcp remsh rksh rm rmdir

rsh sed sh sort split

sum tail tar tee test

touch tr uncompress uudecode uuencode

wc zcat

The following /usr/xpg4/bin utilities are large file aware:

awk cp du egrep fgrep

grep ln ls more mv

rm sed sh sort tail

largefile(5)

NAME

DESCRIPTION

Large file aware
utilities

192 man pages section 5: Standards, Environments, and Macros • Last Revised 13 Sep 2002

tr

The following /usr/sbin utilities are large file aware:

install mkfile mknod mvdir swap

See the USAGE section of the swap(1M) manual page for limitations of swap on block
devices greater than 2 Gbyte on a 32–bit operating system.

The following /usr/ucb utilities are large file aware:

chown from ln ls sed

sum touch

The /usr/bin/cpio and /usr/bin/pax utilities are large file aware, but cannot
archive a file whose size exceeds 8 Gbyte – 1 byte.

The /usr/sbin/crash and /usr/bin/truss utilities have been modified to read a
dump file and display information relevant to large files, such as offsets.

The following /usr/bin utilities are large file aware for cachefs file systems:

cachefspack cachefsstat

The following /usr/sbin utilities are large file aware for cachefs file systems:

cachefslog cachefswssize cfsadmin fsck

mount umount

The following utilities are large file aware for nfs file systems:

/usr/lib/autofs/automountd /usr/sbin/mount

/usr/lib/nfs/rquotad

The following /usr/bin utility is large file aware for ufs file systems:

df

largefile(5)

cachefs file
systems

nfs file systems

ufs file systems

Standards, Environments, and Macros 193

The following /usr/lib/nfs utility is large file aware for ufs file systems:

rquotad

The following /usr/xpg4/bin utility is large file aware for ufs file systems:

df

The following /usr/sbin utilities are large file aware for ufs file systems:

clri dcopy edquota ff fsck

fsdb fsirand fstyp labelit lockfs

mkfs mount ncheck newfs quot

quota quotacheck quotaoff quotaon repquota

tunefs ufsdump ufsrestore umount

A utility is called large file safe if it causes no data loss or corruption when it encounters
a large file. A utility that is large file safe is unable to process properly a large file, but
returns an appropriate error.

The following /usr/bin utilities are large file safe:

audioconvert audioplay audiorecord comm diff

diff3 diffmk ed lp mail

mailcompat mailstats mailx pack pcat

red rmail sdiff unpack vi

view

The following /usr/xpg4/bin utilities are large file safe:

ed vi view

The following /usr/sbin utilities are large file safe:

lpfilter lpforms

The following /usr/ucb utilities are large file safe:

largefile(5)

Large file safe
utilities

194 man pages section 5: Standards, Environments, and Macros • Last Revised 13 Sep 2002

Mail lpr

The following /usr/lib utility is large file safe:

sendmail

lf64(5), lfcompile(5), lfcompile64(5)

largefile(5)

SEE ALSO

Standards, Environments, and Macros 195

lf64 – transitional interfaces for 64-bit file offsets

The data types, interfaces, and macros described on this page provide explicit access
to 64-bit file offsets. They are accessible through the transitional compilation
environment described on the lfcompile64(5) manual page. The function prototype
and semantics of a transitional interface are equivalent to those of the standard version
of the call, except that relevant data types are 64-bit entities.

The following tables list the standard data or struct types in the left-hand column and
their corresponding explicit 64-bit file offset types in the right-hand column, grouped
by header. The absence of an entry in the left-hand column indicates that there is no
existing explicit 32-bit type that corresponds to the 64–bit type listed in the
right—hand column. Note that in a 64-bit application, the standard definition is
equivalent to the 64-bit file offset definition.

<aio.h>

struct aiocb struct aiocb64

off_t aio_offset; off64_t aio_offset;

<sys/dirent.h>

struct dirent struct dirent64

ino_t d_ino; ino64_t d_ino;

off_t d_off; off64_t d_off;

<sys/fcntl.h>

struct flock struct flock64

off_t l_start; off64_t l_start;

off_t l_len; off64_t l_len;

F_SETLK F_SETLK64

F_SETLKW F_SETLKW64

F_GETLK F_GETLK64

F_FREESP F_FREESP64

O_LARGEFILE

<sys/stdio.h>

lf64(5)

NAME

DESCRIPTION

Data Types

196 man pages section 5: Standards, Environments, and Macros • Last Revised 1 Aug 2001

fpos_t fpos64_t

<sys/resource.h>

rlim_t rlim64_t

struct rlimit struct rlimit64

rlim_t rlim_cur; rlim64_t rlim_cur;

rlim_t rlim_max; rlim64_t rlim_max;

RLIM_INFINITY RLIM64_INFINITY

RLIM_SAVED_MAX RLIM64_SAVED_MAX

RLIM_SAVED_CUR RLIM64_SAVED_CUR

<sys/stat.h>

struct stat struct stat64

ino_t st_ino; ino64_t st_ino;

off_t st_size; off64_t st_size;

blkcnt_t st_blocks; blkcnt64_t st_blocks;

<sys/statvfs.h>

struct statvfs struct statvfs64

fsblkcnt_t f_blocks; fsblkcnt64_t f_blocks;

fsblkcnt_t f_bfree; fsblkcnt64_t f_bfree;

fsblkcnt_t f_bavial; fsblkcnt64_t f_bavial;

fsfilcnt_t f_files; fsfilcnt64_t f_files;

fsfilcnt_t f_ffree; fsfilcnt64_t f_ffree;

fsfilcnt_t f_favail; fsfilcnt64_t f_favail;

<sys/types.h>

off_t; off64_t;

lf64(5)

Standards, Environments, and Macros 197

ino_t; ino64_t;

blkcnt_t; blkcnt64_t;

fsblkcnt_t; fsblkcnt64_t;

fsfilcnt_t; fsfilcnt64_t;

<unistd.h>

_LFS64_LARGEFILE

_LFS64_STDIO

<sys/unistd.h>

_CS_LFS64_CFLAGS

_CS_LFS64_LDFLAGS

_CS_LFS64_LIBS

_CS_LFS64_LINTFLAGS

The following tables display the standard API and the corresponding transitional
interfaces for 64-bit file offsets. The interfaces are grouped by header. The interface
name and the affected data types are displayed in courier font..

<aio.h>

int aio_cancel(. . ., int aio_cancel64(. . .,

struct aiocb *); struct aiocb64 *);

int aio_error(int aio_error64(

const struct aiocb *); const struct aiocb64 *);

int aio_fsync(. . ., int aio_fsync64(. . .,

struct aiocb *); struct aiocb64 *);

int aio_read(struct aiocb *); int aio_read64(struct aiocb64 *);

int aio_return(struct aiocb *); int aio_return64(struct aiocb64 *);

int aio_suspend(int aio_suspend64(

const struct aiocb *, . . .); const struct aiocb64 *, . . .);

lf64(5)

System Interfaces

198 man pages section 5: Standards, Environments, and Macros • Last Revised 1 Aug 2001

int aio_write(struct aiocb *); int aio_write64(struct aiocb64 *);

int lio_listio(. . ., int lio_listio64(. . .,

const struct aiocb *, . . .); const struct aiocb64 *, . . .);

<dirent.h>

struct dirent *readdir(); struct dirent64 *readdir64();

struct dirent *readdir_r(); struct dirent64 *readdir64_r();

<fcntl.h>

int attropen(); int attropen64();

int creat(); int creat64();

int open(); int open64();

int openat(); int openat64();

<ftw.h>

int ftw(. . ., int ftw64(. . .,

const struct stat *, const struct stat64 *,

. . .); . . .);

int nftw(. . int nftw64(. . .,

const struct stat *, const struct stat64 *,

. . .); . . .);

<libgen.h>

char *copylist(. . ., off_t); char *copylist64(. . .,

off64_t);

<stdio.h>

int fgetpos(); int fgetpos64();

lf64(5)

Standards, Environments, and Macros 199

FILE *fopen(); FILE *fopen64();

FILE *freopen(); FILE *freopen64();

int fseeko(. . ., int fseeko64(. . .,

off_t, . . .); off64_t, . . .);

int fsetpos(. . ., int fsetpos64(. . .,

const fpos_t *); const fpos64_t *);

off_t ftello(); off64_t ftello64();

FILE *tmpfile(); FILE *tmpfile64();

<stdlib.h>

int mkstemp(); int mkstemp64();

<sys/async.h>

int aioread(. . ., off_t, int aioread64(. . ., off64_t,

. . .); . . .);

int aiowrite(. . ., off_t, int aiowrite64(. . .,

. . .); off64_t, . . .);

<ucbinclude/sys/dir.h>

int alphasort(int alphasort64(

struct direct **, struct direct64 **,

struct direct **); struct direct64 **);

struct direct *readdir() struct direct64 *readdir64();

int scandir(. . ., int scandir64(. . .,

struct direct *(*[]);, struct direct64 *(*[]);,

. . .); . . .);

<sys/dirent.h>

lf64(5)

200 man pages section 5: Standards, Environments, and Macros • Last Revised 1 Aug 2001

int getdents(. . ., dirent); int getdents64(. . .,

dirent64);

<sys/mman.h>

void mmap(. . ., off_t); void mmap64(. . ., off64_t);

<sys/resource.h>

int getrlimit(. . ., int getrlimit64(. . .,

struct rlimit *); struct rlimit64 *);

int setrlimit(. . ., int setrlimit64(. . .,

const struct rlimit *); const struct rlimit64 *);

<sys/stat.h>

int fstat(. . ., int fstat64(. . .,

struct stat *); struct stat64 *);

int fstatat(. . ., int fstatat64(. . .,

struct stat *, int); struct stat64 *, int);

int lstat(. . ., int lstat64(. . .,

struct stat *); struct stat64 *);

int stat(. . ., int stat64(. . .,

struct stat *); struct stat64 *);

<sys/statvfs.h>

int statvfs(. . ., int statvfs64(. . .,

struct statvfs *); struct statvfs64 *);

int fstatvfs(. . ., int fstatvfs64(. . .,

struct statvfs *); struct statvfs64 *);

<unistd.h>

lf64(5)

Standards, Environments, and Macros 201

int lockf(. . ., off_t); int lockf64(. . .,

off64_t);

off_t lseek(. . ., off_t, off64_t lseek64(. . .,

. . .); off64_t, . . .);

int ftruncate(. . ., off_t); int ftruncate64(. . .,

off64_t);

ssize_t pread(. . ., off_t); ssize_t pread64(. . .,

off64_t);

ssize_t pwrite(. . ., off_t); ssize_t pwrite64(. . .,

off64_t);

int truncate(. . ., off_t); int truncate64(. . .,

off64_t);

lfcompile(5), lfcompile64(5)

lf64(5)

SEE ALSO

202 man pages section 5: Standards, Environments, and Macros • Last Revised 1 Aug 2001

lfcompile – large file compilation environment for 32-bit applications

All 64-bit applications can manipulate large files by default. The methods described on
this page allow 32-bit applications to manipulate large files.

In the large file compilation environment, source interfaces are bound to appropriate
64-bit functions, structures, and types. Compiling in this environment allows 32-bit
applications to access files whose size is greater than or equal to 2 Gbyte (231 bytes).

Each interface named xxx() that needs to access 64-bit entities to access large files
maps to a xxx64() call in the resulting binary. All relevant data types are defined to
be of correct size (for example, off_t has a typedef definition for a 64-bit entity).

An application compiled in this environment is able to use the xxx() source interfaces
to access both large and small files, rather than having to explicitly utilize the
transitional xxx64() interface calls to access large files. See the lfcompile64(5)
manual page for information regarding the transitional compilation environment.

Applications can be compiled in the large file compilation environment by using the
following methods:

� Use the getconf(1) utility with one or more of the arguments listed in the table
below. This method is recommended for portable applications.

argument purpose

LFS_CFLAGS obtain compilation flags necessary to enable the large file
compilation environment

LFS_LDFLAGS obtain link editor options

LFS_LIBS obtain link library names

LFS_LINTFLAGS obtain lint options

� Set the compile-time flag _FILE_OFFSET_BITS to 64 before including any
headers. Applications may combine objects produced in the large file compilation
environment with objects produced in the transitional compilation environment,
but must be careful with respect to interoperability between those objects.
Applications should not declare global variables of types whose sizes change
between compilation environments.

The fseek() and ftell() functions do not map to functions named fseek64() and
ftell64(); rather, the large file additions fseeko() and ftello(), have
functionality identical to fseek() and ftell() and do map to the 64-bit functions
fseeko64() and ftello64(). Applications wishing to access large files should use
fseeko() and ftello() in place of fseek() and ftell(). See the fseek(3C) and
ftell(3C) manual pages for information about fseeko() and ftello().

lfcompile(5)

NAME

DESCRIPTION

Access to
Additional Large

File Interfaces

Standards, Environments, and Macros 203

Applications wishing to access fseeko() and ftello() as well as the POSIX and
X/Open specification-conforming interfaces should define the macro
_LARGEFILE_SOURCE to be 1 and set whichever feature test macros are appropriate
to obtain the desired environment (see standards(5)).

In the following examples, the large file compilation environment is accessed by
invoking the getconf utility with one of the arguments listed in the table above. The
additional large file interfaces are accessed by specifying –D_LARGEFILE_SOURCE.

The examples that use the form of command substitution specifying the command
within parentheses preceded by a dollar sign can be executed only in a
POSIX-conforming shell such as the Korn Shell (see ksh(1)). In a shell that is not
POSIX-conforming, such as the Bourne Shell (see sh(1)) and the C Shell (see csh(1)),
the getconf calls must be enclosed within grave accent marks, as shown in the
second example.

EXAMPLE 1 An example of compiling a program with a “large” off_t, and that uses
fseeko(), ftello(), and yacc(1)

$ c89 -D_LARGEFILE_SOURCE \
-D_FILE_OFFSET_BITS=64 -o foo \
$(getconf LFS_CFLAGS) y.tab.c b.o \
$(getconf LFS_LDFLAGS) \

-ly $(getconf LFS_LIBS)

EXAMPLE 2 An example of compiling a program with a “large” off_t that does not use
fseeko() and ftello() and has no application specific libraries:

% c89 -D_FILE_OFFSET_BITS=64 \
`getconf LFS_CFLAGS` a.c \
`getconf LFS_LDFLAGS` \

`getconf LFS_LIBS` \

EXAMPLE 3 An example of compiling a program with a “default” off_t and that uses
fseeko() and ftello():

$ c89 –D_LARGEFILE_SOURCE a.c

csh(1), getconf(1), ksh(1), lint(1B), sh(1), fseek(3C), ftell(3C), lf64(5),
lfcompile64(5), standards(5)

Certain system-specific or non-portable interfaces are not usable in the large file
compilation environment. Known cases are:

� Kernel data structures read from /dev/kmem.
� Interfaces in the kernel virtual memory library, –lkvm.
� Interfaces in the ELF access library, –lelf.
� Interfaces to /proc defined in <procfs.h>.
� The ustat(2) system call.

Programs that use these interfaces should not be compiled in the large file compilation
environment. As a partial safeguard against making this mistake, including either of
the <libelf.h> or <sys/procfs.h> header files will induce a compilation error
when the large file compilation environment is enabled.

lfcompile(5)

EXAMPLES

SEE ALSO

NOTES

204 man pages section 5: Standards, Environments, and Macros • Last Revised 23 Jul 2001

In general, caution should be exercised when using any separately-compiled library
whose interfaces include data items of type off_t or the other redefined types either
directly or indirectly, such as with ’struct stat’. (The redefined types are off_t,
rlim_t, ino_t, blkcnt_t, fsblkcnt_t, and fsfilcnt_t.) For the large file
compilation environment to work correctly with such a library, the library interfaces
must include the appropriate xxx64() binary entry points and must have them
mapped to the corresponding primary functions when _FILE_OFFSET_BITS is set to
64.

Care should be exercised using any of the printf() or scanf() routines on
variables of the types mentioned above. In the large file compilation environment,
these variables should be printed or scanned using long long formats.

The lint(1B) utility will generate spurious error messages when
_FILE_OFFSET_BITS is set to 64. This is because the binary libc lint library,
/usr/lib/llib-lc.ln, is compiled only for the standard interfaces, not with
_FILE_OFFSET_BITS set to 64. This deficiency hampers static error-checking for
programs compiled in the large file compilation environment.

Symbolic formats analogous to those found in <sys/int_fmtio.h> do not exist for
printing or scanning variables of the types that are redefined in the large file
compilation environment.

lfcompile(5)

BUGS

Standards, Environments, and Macros 205

lfcompile64 – transitional compilation environment

All 64-bit applications can manipulate large files by default. The transitional interfaces
described on this page can be used by 32-bit and 64-bit applications to manipulate
large files.

In the transitional compilation environment, explicit 64-bit functions, structures, and
types are added to the API. Compiling in this environment allows both 32-bit and
64-bit applications to access files whose size is greater than or equal to 2 Gbyte (231

bytes).

The transitional compilation environment exports all the explicit 64-bit functions
(xxx64()) and types in addition to all the regular functions (xxx()) and types. Both
xxx() and xxx64() functions are available to the program source. A 32-bit application
must use the xxx64() functions in order to access large files. See the lf64(5) manual
page for a complete listing of the 64-bit transitional interfaces.

The transitional compilation environment differs from the large file compilation
environment, wherein the underlying interfaces are bound to 64-bit functions,
structures, and types. An application compiled in the large file compilation
environment is able to use the xxx() source interfaces to access both large and small
files, rather than having to explicitly utilize the transitional xxx64() interface calls to
access large files. See the lfcompile(5) manual page for more information regarding
the large file compilation environment.

Applications may combine objects produced in the large file compilation environment
with objects produced in the transitional compilation environment, but must be
careful with respect to interoperability between those objects. Applications should not
declare global variables of types whose sizes change between compilation
environments.

For applications that do not wish to conform to the POSIX or X/Open specifications,
the 64-bit transitional interfaces are available by default. No compile-time flags need
to be set.

Applications that wish to access the transitional interfaces as well as the POSIX or
X/Open specification-conforming interfaces should use the following compilation
methods and set whichever feature test macros are appropriate to obtain the desired
environment (see standards(5)).

� Set the compile-time flag _LARGEFILE64_SOURCE to 1 before including any
headers.

� Use the getconf(1) command with one or more of the following arguments:

argument purpose

LFS64_CFLAGS obtain compilation flags necessary to enable the transitional
compilation environment

lfcompile64(5)

NAME

DESCRIPTION

Access to
Additional Large

File Interfaces

206 man pages section 5: Standards, Environments, and Macros • Last Revised 26 Jan 1998

argument purpose

LFS64_LDFLAGS obtain link editor options

LFS64_LIBS obtain link library names

LFS64_LINTFLAGS obtain lint options

In the following examples, the transitional compilation environment is accessed by
invoking the getconf utility with one of the arguments listed in the table above. The
additional large file interfaces are accessed either by specifying
–D_LARGEFILE64_SOURCE or by invoking the getconf utility with the arguments
listed above.

The example that uses the form of command substitution specifying the command
within parentheses preceded by a dollar sign can be executed only in a
POSIX-conforming shell such as the Korn Shell (see ksh(1)). In a shell that is not
POSIX-conforming, such as the Bourne Shell (see sh(1)) and the C Shell (see csh(1)),
the command must be enclosed within grave accent marks.

EXAMPLE 1 An example of compiling a program using transitional interfaces such as
lseek64() and fopen64():

$ c89 -D_LARGEFILE64_SOURCE \
$(getconf LFS64_CFLAGS) a.c \
$(getconf LFS64_LDFLAGS) \

$(getconf LFS64_LIBS)

EXAMPLE 2 An example of running lint on a program using transitional interfaces:

% lint -D_LARGEFILE64_SOURCE \
`getconf LFS64_LINTFLAGS` ... \

`getconf LFS64_LIBS`

getconf(1), lseek(2), fopen(3C), lf64(5), standards(5)

lfcompile64(5)

EXAMPLES

SEE ALSO

Standards, Environments, and Macros 207

live_upgrade – overview of Live Upgrade feature

The Live Upgrade feature of the Solaris operating environment enables you to
maintain multiple operating system images on a single system. An image—called a
boot environment, or BE—represents a set of operating system and application
software packages. The BEs might contain different operating system and/or
application versions.

On a system with the Solaris Live Upgrade software, your currently booted OS
environment is referred to as your active, or current BE. You have one active, or
current BE; all others are inactive. You can perform any number of modifications to
inactive BEs on the same system, then boot from one of those BEs. If there is a failure
or some undesired behavior in the newly booted BE, Live Upgrade software makes it
easy for you to fall back to the previously running BE.

Live Upgrade software includes a full suite of commands, listed below and described
in individual man pages, which implement all of the Live Upgrade features and
functions. The software also includes a Forms and Menu Language Interpreter-based
user interface named lu(1M). (See fmli(1) for a description of the Forms and Menu
Language Interpreter.) The FMLI interface implements a subset of Live Upgrade
functions. Unlike the command-line interfaces, output from the FMLI interface is not
internationalizable.

The following are some of the tasks you can perform with Live Upgrade software:

� You can make one or more copies of the currently running system.
� You can upgrade to a new OS version on a second boot environment, then boot

from that environment. If you choose, you can then fall back to your original boot
environment or boot from yet another environment.

� You can install application or OS packages to a boot environment, then boot from
that environment.

� You can install OS patches to a boot environment, then boot from that
environment.

� From a flash archive, you can install an OS to a boot environment, then boot from
that environment. See flar(1M) for information on administering flash archives.

� You can split and rejoin file systems in a new BE. For example, you can separate
/usr, /var, and /opt from /, putting them on their own partitions. Conversely,
you could join these file systems on a single partition under /.

� You can mount any or all of the filesystems of a BE that is not active, compare the
files in any pair of BEs, delete or rename a BE, and perform other administrative
tasks.

The Live Upgrade software supports upgrade from any valid Solaris installation
medium, including a CD-ROM, an NFS or UFS directory, or a flash archive. (See
flash_archive(4) for a description of the flash archive feature.)

live_upgrade(5)

NAME

DESCRIPTION

208 man pages section 5: Standards, Environments, and Macros • Last Revised 14 Mar 2003

In simplest terms, a BE, for Live Upgrade, consists of the disk slice containing a root
file system and the file system/device (usually disk) slice entries specified in
vfstab(4). This set of slices is not limited to a single disk. This means that you can
have multiple BEs on a single device, or have a BE spread across slices on multiple
devices.

The minimal requirement for a Live Upgrade BE is the same as for any Solaris boot
environment: you must have root (/) and usr filesystems (which might both reside on
/). All filesystems except for /, /usr, /var, and /opt can be shared among multiple
BEs, if you choose.

Each BE must have a unique copy of the file systems that contain the OS—/, /usr,
/var, and /opt. For Live Upgrade purposes, these are referred to as non–shareable
(sometimes referred to as critical) file systems. With other file systems, such as
/export or /home, you have the option of copying the files to a new BE or, the
default, sharing them among BEs. These are referred to as shareable file systems. A BE
is made up of a unique copy of one or more non–shareable file systems and zero or
more copies of shareable file systems.

Live Upgrade commands support an option (-X) that enables XML output.
Characteristics of the XML are specified in a DTD shipped with the product. XML
output enables programmatic parsing of portions of the command output.

Live Upgrade supports the notion of a BE description, an optional attribute of a BE. A
BE description can be of any length and format. It might be a text string or a binary
file. See ludesc(1M) for details.

Below is an example set of steps that you might follow in the use of Live Upgrade
software. These steps specify the use of commands rather than lu(1M), the FMLI
interface. Many Live Upgrade functions are accessible through lu. Except where lu
does not support a function, the choice between lu and Live Upgrade commands is a
matter of your requirements and preferences. The following example is by no means
exhaustive of the possibilities of the use of the Live Upgrade software.

1. You create a new BE, using lucreate(1M). The first time you create a BE on a
given system, you must designate the current Solaris operating environment as a
BE (give it a name). You then specify a name and a set of device (disk) slices you
want to use for the new BE. The lucreate command copies the contents of the
current Solaris operating environment (now a BE) to the new BE.

After you have created additional BEs, you can use a BE other than the current BE
as the source for a new BE. Also, you can create an empty BE onto which you can
later install a flash archive.

2. Using luupgrade(1M), you upgrade the OS version on your new BE (or on yet
another BE you created with lucreate). The luupgrade enables you to upgrade
an OS (from any valid Solaris installation medium, including a flash archive), add
or remove packages (OS or application), and add or remove patches.

3. You use luactivate(1M) to make the new BE bootable. The next time you reboot
your system, you will come up in the new BE.

live_upgrade(5)

Standards, Environments, and Macros 209

4. Using lucompare(1M), you compare the system files on two different BEs. This
utility gives you a comprehensive list of the files that have differences.

5. Using lumount(1M), you mount the filesystems of a BE that is not active, enabling
you to make changes. When you are finished with the changes, use luumount(1M)
to unmount the BE’s file systems.

6. Upon booting a new BE, you discover a failure or some other undesirable behavior.
Using the procedure specified in luactivate, you can fall back to the previous
BE.

7. Using ludelete then lucreate, you reassign file systems on the now-deleted BE
to different disk slices. You separate /opt and /var from / on the new BE. Also,
you specify that swap be spread over slices on multiple disks.

The following is a summary of Live Upgrade commands. All commands require root
privileges.

lu
FMLI-based interface for creating and administering BEs.

luactivate
Designate a BE as the BE to boot from upon the next reboot of the system.

lucancel
Cancel a previously scheduled operation.

lucompare
Compare the contents of two BEs.

lucreate
Create a BE.

lucurr
Display the name of the current BE.

ludelete
Delete a BE.

ludesc
Add or change BE descriptions.

lufslist
List the file systems on a specified BE.

lumake
Re-create a BE based on the active BE.

lumount, luumount
Mount, unmount file systems of a specified BE.

lurename
Rename a BE.

live_upgrade(5)

210 man pages section 5: Standards, Environments, and Macros • Last Revised 14 Mar 2003

lustatus
For all BEs on a system, report on whether a BE is active, active upon the next
reboot, in the midst of a copy operation, and whether a copy operation is scheduled
for it.

luupgrade
Upgrade an OS and install application software on a BE. Such software includes
flash archives, complete OS installations, OS and application packages, and OS
patches.

/etc/lutab
list of BEs on the system

lu(1M), luactivate(1M), lucancel(1M), lucompare(1M), lucreate(1M),
lucurr(1M), ludelete(1M), ludesc(1M), lufslist(1M), lumake(1M),
lumount(1M), lurename(1M), lustatus(1M), luupgrade(1M), lutab(4)

As described in the following paragraph, Solaris Live Upgrade software is designed to
install and run on multiple versions of the Solaris operating environment. Correct
operation of Solaris Live Upgrade requires a certain level of patch cluster for a given
OS version. Consult http://www.sunsolve.sun.com for the correct revision level for a
patch cluster for your OS version.

Live Upgrade supports the release it is distributed on and up to three marketing
releases back. For example, if you obtained Live Upgrade with Solaris 9 (including a
Solaris 9 upgrade), that version of Live Upgrade supports Solaris versions 2.6, Solaris
7, and Solaris 8, in addition to Solaris 9. No version of Live Upgrade supports a Solaris
version prior to Solaris 2.6.

live_upgrade(5)

FILES

SEE ALSO

NOTES

Standards, Environments, and Macros 211

http://www.sunsolve.sun.com

locale – subset of a user’s environment that depends on language and cultural
conventions

A locale is the definition of the subset of a user’s environment that depends on
language and cultural conventions. It is made up from one or more categories. Each
category is identified by its name and controls specific aspects of the behavior of
components of the system. Category names correspond to the following environment
variable names:

LC_CTYPE Character classification and case conversion.

LC_COLLATE Collation order.

LC_TIME Date and time formats.

LC_NUMERIC Numeric formatting.

LC_MONETARY Monetary formatting.

LC_MESSAGES Formats of informative and diagnostic messages and
interactive responses.

The standard utilities base their behavior on the current locale, as defined in the
ENVIRONMENT section for each utility. The behavior of some of the C-language
functions will also be modified based on the current locale, as defined by the last call
to setlocale(3C).

Locales other than those supplied by the implementation can be created by the
application via the localedef(1) utility. The value that is used to specify a locale
when using environment variables will be the string specified as the name operand to
localedef when the locale was created. The strings "C" and "POSIX" are reserved as
identifiers for the POSIX locale.

Applications can select the desired locale by invoking the setlocale() function
with the appropriate value. If the function is invoked with an empty string, such as:

setlocale(LC_ALL, "");

the value of the corresponding environment variable is used. If the environment
variable is unset or is set to the empty string, the setlocale() function sets the
appropriate environment.

Locales can be described with the file format accepted by the localedef utility.

The locale definition file must contain one or more locale category source definitions,
and must not contain more than one definition for the same locale category.

A category source definition consists of a category header, a category body and a
category trailer. A category header consists of the character string naming of the
category, beginning with the characters LC_. The category trailer consists of the string
END, followed by one or more blank characters and the string used in the
corresponding category header.

locale(5)

NAME

DESCRIPTION

Locale Definition

212 man pages section 5: Standards, Environments, and Macros • Last Revised 20 Dec 1996

The category body consists of one or more lines of text. Each line contains an
identifier, optionally followed by one or more operands. Identifiers are either
keywords, identifying a particular locale element, or collating elements. Each keyword
within a locale must have a unique name (that is, two categories cannot have a
commonly-named keyword); no keyword can start with the characters LC_.
Identifiers must be separated from the operands by one or more blank characters.

Operands must be characters, collating elements or strings of characters. Strings must
be enclosed in double-quotes. Literal double-quotes within strings must be preceded
by the <escape character>, described below. When a keyword is followed by more than
one operand, the operands must be separated by semicolons; blank characters are
allowed both before and after a semicolon.

The first category header in the file can be preceded by a line modifying the comment
character. It has the following format, starting in column 1:

"comment_char %c\n",<comment character>

The comment character defaults to the number sign (#). Blank lines and lines
containing the <comment character> in the first position are ignored.

The first category header in the file can be preceded by a line modifying the escape
character to be used in the file. It has the following format, starting in column 1:

"escape_char %c\n",<escape character>

The escape character defaults to backslash.

A line can be continued by placing an escape character as the last character on the line;
this continuation character will be discarded from the input. Although the
implementation need not accept any one portion of a continued line with a length
exceeding {LINE_MAX} bytes, it places no limits on the accumulated length of the
continued line. Comment lines cannot be continued on a subsequent line using an
escaped newline character.

Individual characters, characters in strings, and collating elements must be
represented using symbolic names, as defined below. In addition, characters can be
represented using the characters themselves or as octal, hexadecimal or decimal
constants. When non-symbolic notation is used, the resultant locale definitions will in
many cases not be portable between systems. The left angle bracket (<) is a reserved
symbol, denoting the start of a symbolic name; when used to represent itself it must be
preceded by the escape character. The following rules apply to character
representation:

1. A character can be represented via a symbolic name, enclosed within angle
brackets < and >. The symbolic name, including the angle brackets, must exactly
match a symbolic name defined in the charmap file specified via the localedef
-f option, and will be replaced by a character value determined from the value
associated with the symbolic name in the charmap file. The use of a symbolic name

locale(5)

Standards, Environments, and Macros 213

not found in the charmap file constitutes an error, unless the category is LC_CTYPE
or LC_COLLATE, in which case it constitutes a warning condition (see
localedef(1) for a description of action resulting from errors and warnings). The
specification of a symbolic name in a collating-element or
collating-symbol section that duplicates a symbolic name in the charmap file
(if present) is an error. Use of the escape character or a right angle bracket within a
symbolic name is invalid unless the character is preceded by the escape character.

Example:

<c>;<c−cedilla> "<M><a><y>"

2. A character can be represented by the character itself, in which case the value of the
character is implementation-dependent. Within a string, the double-quote
character, the escape character and the right angle bracket character must be
escaped (preceded by the escape character) to be interpreted as the character itself.
Outside strings, the characters

, ; < > escape_charmust be escaped to be interpreted as the character itself.
Example:

c beta-char "May"

3. A character can be represented as an octal constant. An octal constant is specified
as the escape character followed by two or more octal digits. Each constant
represents a byte value. Multi-byte values can be represented by concatenated
constants specified in byte order with the last constant specifying the least
significant byte of the character.

Example:

\143;\347;\143\150 "\115\141\171"

4. A character can be represented as a hexadecimal constant. A hexadecimal constant
is specified as the escape character followed by an x followed by two or more
hexadecimal digits. Each constant represents a byte value. Multi-byte values can be
represented by concatenated constants specified in byte order with the last constant
specifying the least significant byte of the character.

Example:

\x63;\xe7;\x63\x68 "\x4d\x61\x79"

5. A character can be represented as a decimal constant. A decimal constant is
specified as the escape character followed by a d followed by two or more decimal
digits. Each constant represents a byte value. Multi-byte values can be represented
by concatenated constants specified in byte order with the last constant specifying
the least significant byte of the character.

locale(5)

214 man pages section 5: Standards, Environments, and Macros • Last Revised 20 Dec 1996

Example:

\d99;\d231;\d99\d104 "\d77\d97\d121"Only characters existing in the
character set for which the locale definition is created can be specified, whether
using symbolic names, the characters themselves, or octal, decimal or hexadecimal
constants. If a charmap file is present, only characters defined in the charmap can
be specified using octal, decimal or hexadecimal constants. Symbolic names not
present in the charmap file can be specified and will be ignored, as specified under
item 1 above.

The LC_CTYPE category defines character classification, case conversion and other
character attributes. In addition, a series of characters can be represented by three
adjacent periods representing an ellipsis symbol (. . .). The ellipsis specification is
interpreted as meaning that all values between the values preceding and following it
represent valid characters. The ellipsis specification is valid only within a single
encoded character set; that is, within a group of characters of the same size. An ellipsis
is interpreted as including in the list all characters with an encoded value higher than
the encoded value of the character preceding the ellipsis and lower than the encoded
value of the character following the ellipsis.

Example:

\x30;. . .;\x39;

includes in the character class all characters with encoded values between the
endpoints.

The following keywords are recognized. In the descriptions, the term ‘‘automatically
included’’ means that it is not an error either to include or omit any of the referenced
characters.

The character classes digit, xdigit, lower, upper, and space have a set of
automatically included characters. These only need to be specified if the character
values (that is, encoding) differ from the implementation default values.

cswidth Moved to extensions file (see extensions(5)).

upper Define characters to be classified as upper-case letters.

In the POSIX locale, the 26 upper-case letters are
included:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

In a locale definition file, no character specified for the
keywords cntrl, digit, punct, or space can be
specified. The upper-case letters A to Z are
automatically included in this class.

locale(5)

LC_CTYPE

Standards, Environments, and Macros 215

lower Define characters to be classified as lower-case letters.
In the POSIX locale, the 26 lower-case letters are
included:

a b c d e f g h i j k l m n o p q r s t u v w x y z

In a locale definition file, no character specified for the
keywords cntrl, digit, punct, or space can be
specified. The lower-case letters a to z of the portable
character set are automatically included in this class.

alpha Define characters to be classified as letters.

In the POSIX locale, all characters in the classes upper
and lower are included.

In a locale definition file, no character specified for the
keywords cntrl, digit, punct, or space can be
specified. Characters classified as either upper or
lower are automatically included in this class.

digit Define the characters to be classified as numeric digits.

In the POSIX locale, only

0 1 2 3 4 5 6 7 8 9

are included.

In a locale definition file, only the digits 0, 1, 2, 3, 4, 5,
6, 7, 8, and 9 can be specified, and in contiguous
ascending sequence by numerical value. The digits 0 to
9 of the portable character set are automatically
included in this class.

The definition of character class digit requires that
only ten characters; the ones defining digits can be
specified; alternative digits (for example, Hindi or
Kanji) cannot be specified here.

space Define characters to be classified as white-space
characters.

In the POSIX locale, at a minimum, the characters
SPACE, FORMFEED, NEWLINE, CARRIAGE RETURN,
TAB, and VERTICAL TAB are included.

locale(5)

216 man pages section 5: Standards, Environments, and Macros • Last Revised 20 Dec 1996

In a locale definition file, no character specified for the
keywords upper, lower, alpha, digit, graph, or
xdigit can be specified. The characters SPACE,
FORMFEED, NEWLINE, CARRIAGE RETURN, TAB, and
VERTICAL TAB of the portable character set, and any
characters included in the class blank are
automatically included in this class.

cntrl Define characters to be classified as control characters.

In the POSIX locale, no characters in classes alpha or
print are included.

In a locale definition file, no character specified for the
keywords upper, lower, alpha, digit, punct,
graph, print, or xdigit can be specified.

punct Define characters to be classified as punctuation
characters.

In the POSIX locale, neither the space character nor any
characters in classes alpha, digit, or cntrl are
included.

In a locale definition file, no character specified for the
keywords upper, lower, alpha, digit, cntrl,
xdigit or as the space character can be specified.

graph Define characters to be classified as printable
characters, not including the space character.

In the POSIX locale, all characters in classes alpha,
digit, and punct are included; no characters in class
cntrl are included.

In a locale definition file, characters specified for the
keywords upper, lower, alpha, digit, xdigit, and
punct are automatically included in this class. No
character specified for the keyword cntrl can be
specified.

print Define characters to be classified as printable
characters, including the space character.

In the POSIX locale, all characters in class graph are
included; no characters in class cntrl are included.

locale(5)

Standards, Environments, and Macros 217

In a locale definition file, characters specified for the
keywords upper, lower, alpha, digit, xdigit,
punct, and the space character are automatically
included in this class. No character specified for the
keyword cntrl can be specified.

xdigit Define the characters to be classified as hexadecimal
digits.

In the POSIX locale, only:

0 1 2 3 4 5 6 7 8 9 A B C D E F a b c d e fare included.

In a locale definition file, only the characters defined
for the class digit can be specified, in contiguous
ascending sequence by numerical value, followed by
one or more sets of six characters representing the
hexadecimal digits 10 to 15 inclusive, with each set in
ascending order (for example A, B, C, D, E, F, a, b, c, d,
e, f). The digits 0 to 9, the upper-case letters A to F and
the lower-case letters a to f of the portable character
set are automatically included in this class.

The definition of character class xdigit requires that
the characters included in character class digit be
included here also.

blank Define characters to be classified as blank characters.

In the POSIX locale, only the space and tab characters
are included.

In a locale definition file, the characters space and tab
are automatically included in this class.

charclass Define one or more locale-specific character class
names as strings separated by semi-colons. Each
named character class can then be defined
subsequently in the LC_CTYPE definition. A character
class name consists of at least one and at most
{CHARCLASS_NAME_MAX} bytes of alphanumeric
characters from the portable filename character set. The
first character of a character class name cannot be a
digit. The name cannot match any of the LC_CTYPE
keywords defined in this document.

charclass-name Define characters to be classified as belonging to the
named locale-specific character class. In the POSIX
locale, the locale-specific named character classes need

locale(5)

218 man pages section 5: Standards, Environments, and Macros • Last Revised 20 Dec 1996

not exist. If a class name is defined by a charclass
keyword, but no characters are subsequently assigned
to it, this is not an error; it represents a class without
any characters belonging to it. The charclass-name
can be used as the property argument to the
wctype(3C) function, in regular expression and shell
pattern-matching bracket expressions, and by the tr(1)
command.

toupper Define the mapping of lower-case letters to upper-case
letters.

In the POSIX locale, at a minimum, the 26 lower-case
characters:

a b c d e f g h i j k l m n o p q r s t u v w x y zare
mapped to the corresponding 26 upper-case characters:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

In a locale definition file, the operand consists of
character pairs, separated by semicolons. The
characters in each character pair are separated by a
comma and the pair enclosed by parentheses. The first
character in each pair is the lower-case letter, the
second the corresponding upper-case letter. Only
characters specified for the keywords lower and
upper can be specified. The lower-case letters a to z,
and their corresponding upper-case letters A to Z, of the
portable character set are automatically included in this
mapping, but only when the toupper keyword is
omitted from the locale definition.

tolower Define the mapping of upper-case letters to lower-case
letters.

In the POSIX locale, at a minimum, the 26 upper-case
characters:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
are mapped to the corresponding 26 lower-case
characters:

a b c d e f g h i j k l m n o p q r s t u v w x y z

locale(5)

Standards, Environments, and Macros 219

In a locale definition file, the operand consists of
character pairs, separated by semicolons. The
characters in each character pair are separated by a
comma and the pair enclosed by parentheses. The first
character in each pair is the upper-case letter, the
second the corresponding lower-case letter. Only
characters specified for the keywords lower and
upper can be specified. If the tolower keyword is
omitted from the locale definition, the mapping will be
the reverse mapping of the one specified for toupper.

The LC_COLLATE category provides a collation sequence definition for numerous
utilities (such as sort(1), uniq(1), and so forth), regular expression matching (see
regex(5)), and the strcoll(3C), strxfrm(3C), wcscoll(3C), and wcsxfrm(3C)
functions.

A collation sequence definition defines the relative order between collating elements
(characters and multi-character collating elements) in the locale. This order is
expressed in terms of collation values; that is, by assigning each element one or more
collation values (also known as collation weights). At least the following capabilities
are provided:

1. Multi-character collating elements. Specification of multi-character
collating elements (that is, sequences of two or more characters to be collated as an
entity).

2. User-defined ordering of collating elements. Each collating element is
assigned a collation value defining its order in the character (or basic) collation
sequence. This ordering is used by regular expressions and pattern matching and,
unless collation weights are explicity specified, also as the collation weight to be
used in sorting.

3. Multiple weights and equivalence classes. Collating elements can be
assigned one or more (up to the limit {COLL_WEIGHTS_MAX}) collating weights
for use in sorting. The first weight is hereafter referred to as the primary weight.

4. One-to-Many mapping. A single character is mapped into a string of collating
elements.

5. Equivalence class definition. Two or more collating elements have the
same collation value (primary weight).

6. Ordering by weights. When two strings are compared to determine their
relative order, the two strings are first broken up into a series of collating elements;
the elements in each successive pair of elements are then compared according to
the relative primary weights for the elements. If equal, and more than one weight
has been assigned, then the pairs of collating elements are recompared according to
the relative subsequent weights, until either a pair of collating elements compare
unequal or the weights are exhausted. The following keywords are recognized in a
collation sequence definition. They are described in detail in the following sections.

locale(5)

LC_COLLATE

220 man pages section 5: Standards, Environments, and Macros • Last Revised 20 Dec 1996

7. Define a collating-element symbol representing a multi-character collating element.
This keyword is optional.

8. Define a collating symbol for use in collation order statements. This keyword is
optional.

9. Define collation rules. This statement is followed by one or more collation order
statements, assigning character collation values and collation weights to collating
elements.

10. Specify the end of the collation-order statements.

In addition to the collating elements in the character set, the collating-element
keyword is used to define multi-character collating elements. The syntax is:

"collating-element %s from \"%s\"\n",<collating-symbol>,<string>

The <collating-symbol> operand is a symbolic name, enclosed between angle brackets
(< and >), and must not duplicate any symbolic name in the current charmap file (if
any), or any other symbolic name defined in this collation definition. The string
operand is a string of two or more characters that collates as an entity. A
<collating-element> defined via this keyword is only recognized with the LC_COLLATE
category.

Example:

collating-element <ch> from "<c><h>"
collating-element <e-acute> from "<acute><e>"
collating-element <ll> from "ll"

This keyword will be used to define symbols for use in collation sequence statements;
that is, between the order_start and the order_end keywords. The syntax is:

"collating-symbol %s\n",<collating-symbol>

The <collating-symbol> is a symbolic name, enclosed between angle brackets (< and >),
and must not duplicate any symbolic name in the current charmap file (if any), or any
other symbolic name defined in this collation definition.

A collating-symbol defined via this keyword is only recognized with the
LC_COLLATE category.

Example:

collating-symbol <UPPER_CASE>
collating-symbol <HIGH>

locale(5)

collating-element
keyword

collating-symbol
keyword

Standards, Environments, and Macros 221

The collating-symbol keyword defines a symbolic name that can be associated
with a relative position in the character order sequence. While such a symbolic name
does not represent any collating element, it can be used as a weight.

The order_start keyword must precede collation order entries and also defines the
number of weights for this collation sequence definition and other collation rules.

The syntax of the order_start keyword is:

"order_start %s;%s;. . .;%s\n",<sort-rules>,<sort-rules>

The operands to the order_start keyword are optional. If present, the operands
define rules to be applied when strings are compared. The number of operands define
how many weights each element is assigned; if no operands are present, one forward
operand is assumed. If present, the first operand defines rules to be applied when
comparing strings using the first (primary) weight; the second when comparing
strings using the second weight, and so on. Operands are separated by semicolons (;).
Each operand consists of one or more collation directives, separated by commas (,). If
the number of operands exceeds the {COLL_WEIGHTS_MAX} limit, the utility will
issue a warning message. The following directives will be supported:

forward Specifies that comparison operations for the weight
level proceed from start of string towards the end of
string.

backward Specifies that comparison operations for the weight
level proceed from end of string towards the beginning
of string.

position Specifies that comparison operations for the weight
level will consider the relative position of elements in
the strings not subject to IGNORE. The string
containing an element not subject to IGNORE after the
fewest collating elements subject to IGNORE from the
start of the compare will collate first. If both strings
contain a character not subject to IGNORE in the same
relative position, the collating values assigned to the
elements will determine the ordering. In case of
equality, subsequent characters not subject to IGNORE
are considered in the same manner.

The directives forward and backward are mutually exclusive.

Example:

order_start forward;backwardIf no operands are specified, a single forward
operand is assumed. The character (and collating element) order is defined by the
order in which characters and elements are specified between the order_start and
order_end keywords. This character order is used in range expressions in regular

locale(5)

order_start keyword

222 man pages section 5: Standards, Environments, and Macros • Last Revised 20 Dec 1996

expressions (see regex(5)). Weights assigned to the characters and elements define the
collation sequence; in the absence of weights, the character order is also the collation
sequence. The position keyword provides the capability to consider, in a compare,
the relative position of characters not subject to IGNORE. As an example, consider the
two strings ‘‘o-ring’’ and ‘‘or-ing’’. Assuming the hyphen is subject to IGNORE on the
first pass, the two strings will compare equal, and the position of the hyphen is
immaterial. On second pass, all characters except the hyphen are subject to IGNORE,
and in the normal case the two strings would again compare equal. By taking position
into account, the first collates before the second.

The order_start keyword is followed by collating identifier entries. The syntax for
the collating element entries is

"%s %s;%s;. . .;%s\n"<collating-identifier>,<weight>,<weight>, . . .

Each collating-identifier consists of either a character described in Locale
Definition above, a <collating-element>, a <collating-symbol>, an ellipsis, or the
special symbol UNDEFINED. The order in which collating elements are specified
determines the character order sequence, such that each collating element compares
less than the elements following it. The NUL character compares lower than any other
character.

A <collating-element> is used to specify multi-character collating elements, and
indicates that the character sequence specified via the <collating-element> is to be
collated as a unit and in the relative order specified by its place.

A <collating-symbol> is used to define a position in the relative order for use in
weights. No weights are specified with a <collating-symbol>.

The ellipsis symbol specifies that a sequence of characters will collate according to
their encoded character values. It is interpreted as indicating that all characters with a
coded character set value higher than the value of the character in the preceding line,
and lower than the coded character set value for the character in the following line, in
the current coded character set, will be placed in the character collation order between
the previous and the following character in ascending order according to their coded
character set values. An initial ellipsis is interpreted as if the preceding line specified
the NUL character, and a trailing ellipsis as if the following line specified the highest
coded character set value in the current coded character set. An ellipsis is treated as
invalid if the preceding or following lines do not specify characters in the current
coded character set.

The symbol UNDEFINED is interpreted as including all coded character set values not
specified explicitly or via the ellipsis symbol. Such characters are inserted in the
character collation order at the point indicated by the symbol, and in ascending order
according to their coded character set values. If no UNDEFINED symbol is specified,
and the current coded character set contains characters not specified in this section, the
utility will issue a warning message and place such characters at the end of the
character collation order.

locale(5)

Collation Order

Standards, Environments, and Macros 223

The optional operands for each collation-element are used to define the primary,
secondary, or subsequent weights for the collating element. The first operand specifies
the relative primary weight, the second the relative secondary weight, and so on. Two
or more collation-elements can be assigned the same weight; they belong to the same
equivalence class if they have the same primary weight. Collation behaves as if, for each
weight level, elements subject to IGNORE are removed, unless the position collation
directive is specified for the corresponding level with the order_start keyword.
Then each successive pair of elements is compared according to the relative weights
for the elements. If the two strings compare equal, the process is repeated for the next
weight level, up to the limit {COLL_WEIGHTS_MAX}.

Weights are expressed as characters described in Locale Definition above,
<collating-symbol>s, <collating-element>s, an ellipsis, or the special symbol IGNORE. A
single character, a <collating–symbol> or a <collating–element> represent the relative
position in the character collating sequence of the character or symbol, rather than the
character or characters themselves. Thus, rather than assigning absolute values to
weights, a particular weight is expressed using the relative order value assigned to a
collating element based on its order in the character collation sequence.

One-to-many mapping is indicated by specifying two or more concatenated characters
or symbolic names. For example, if the character <eszet> is given the string
"<s><s>" as a weight, comparisons are performed as if all occurrences of the character
<eszet> are replaced by <s><s> (assuming that <s> has the collating weight <s>).
If it is necessary to define <eszet> and <s><s> as an equivalence class, then a
collating element must be defined for the string ss.

All characters specified via an ellipsis will by default be assigned unique weights,
equal to the relative order of characters. Characters specified via an explicit or implicit
UNDEFINED special symbol will by default be assigned the same primary weight (that
is, belong to the same equivalence class). An ellipsis symbol as a weight is interpreted
to mean that each character in the sequence has unique weights, equal to the relative
order of their character in the character collation sequence. The use of the ellipsis as a
weight is treated as an error if the collating element is neither an ellipsis nor the
special symbol UNDEFINED.

The special keyword IGNORE as a weight indicates that when strings are compared
using the weights at the level where IGNORE is specified, the collating element is
ignored; that is, as if the string did not contain the collating element. In regular
expressions and pattern matching, all characters that are subject to IGNORE in their
primary weight form an equivalence class.

An empty operand is interpreted as the collating element itself.

For example, the order statement:

<a> <a>;<a>

is equal to:

locale(5)

224 man pages section 5: Standards, Environments, and Macros • Last Revised 20 Dec 1996

<a>

An ellipsis can be used as an operand if the collating element was an ellipsis, and is
interpreted as the value of each character defined by the ellipsis.

The collation order as defined in this section defines the interpretation of bracket
expressions in regular expressions.

Example:

order_start forward;backward

UNDEFINED IGNORE;IGNORE

<LOW>

<space> <LOW>;<space>

. . . <LOW>;. . .

<a> <a>;<a>

<a-acute> <a>;<a-acute>

<a-grave> <a>;<a-grave>

<A> <a>;<A>

<A-acute> <a>;<A-acute>

<A-grave> <a>;<A-grave>

<ch> <ch>;<ch>

<Ch> <ch>;<Ch>

<s> <s>;<s>

<eszet> "<s><s>";"<eszet><eszet>"

order_end

This example is interpreted as follows:

1. The UNDEFINED means that all characters not specified in this definition (explicitly
or via the ellipsis) are ignored for collation purposes; for regular expression
purposes they are ordered first.

2. All characters between <space> and <a> have the same primary equivalence class
and individual secondary weights based on their ordinal encoded values.

3. All characters based on the upper– or lower–case character a belong to the same
primary equivalence class.

locale(5)

Standards, Environments, and Macros 225

4. The multi-character collating element <ch> is represented by the collating symbol
<ch> and belongs to the same primary equivalence class as the multi-character
collating element <Ch>.

The collating order entries must be terminated with an order_end keyword.

The LC_MONETARY category defines the rules and symbols that are used to format
monetary numeric information. This information is available through the
localeconv(3C) function

The following items are defined in this category of the locale. The item names are the
keywords recognized by the localedef(1) utility when defining a locale. They are
also similar to the member names of the lconv structure defined in <locale.h>. The
localeconv function returns {CHAR_MAX} for unspecified integer items and the
empty string ("") for unspecified or size zero string items.

In a locale definition file the operands are strings. For some keywords, the strings can
contain only integers. Keywords that are not provided, string values set to the empty
string (""), or integer keywords set to –1, are used to indicate that the value is not
available in the locale.

int_curr_symbol The international currency symbol. The operand is a
four-character string, with the first three characters
containing the alphabetic international currency
symbol in accordance with those specified in the ISO
4217:1987 standard. The fourth character is the
character used to separate the international currency
symbol from the monetary quantity.

currency_symbol The string used as the local currency symbol.

mon_decimal_point The operand is a string containing the symbol that is
used as the decimal delimiter (radix character) in
monetary formatted quantities. In contexts where
standards (such as the ISO C standard) limit the
mon_decimal_point to a single byte, the result of
specifying a multi-byte operand is unspecified.

mon_thousands_sep The operand is a string containing the symbol that is
used as a separator for groups of digits to the left of the
decimal delimiter in formatted monetary quantities. In
contexts where standards limit the
mon_thousands_sep to a single byte, the result of
specifying a multi-byte operand is unspecified.

mon_grouping Define the size of each group of digits in formatted
monetary quantities. The operand is a sequence of
integers separated by semicolons. Each integer specifies
the number of digits in each group, with the initial
integer defining the size of the group immediately
preceding the decimal delimiter, and the following

locale(5)

order_end keyword

LC_MONETARY

226 man pages section 5: Standards, Environments, and Macros • Last Revised 20 Dec 1996

integers defining the preceding groups. If the last
integer is not –1, then the size of the previous group (if
any) will be repeatedly used for the remainder of the
digits. If the last integer is –1, then no further grouping
will be performed.

The following is an example of the interpretation of the
mon_grouping keyword. Assuming that the value to
be formatted is 123456789 and the
mon_thousands_sep is ’, then the following table
shows the result. The third column shows the
equivalent string in the ISO C standard that would be
used by the localeconv function to accommodate
this grouping.

mon_grouping Formatted
Value

ISO C String

3;−1 123456’789 "\3\177"

3 123’456’789 "\3"

3;2;−1 1234’56’789 "\3\2\177"

3;2 12’34’56’789 "\3\2"

−1 123456789 "\177"

In these examples, the octal value of {CHAR_MAX} is
177.

positive_sign A string used to indicate a non-negative-valued
formatted monetary quantity.

negative_sign A string used to indicate a negative-valued formatted
monetary quantity.

int_frac_digits An integer representing the number of fractional digits
(those to the right of the decimal delimiter) to be
written in a formatted monetary quantity using
int_curr_symbol.

frac_digits An integer representing the number of fractional digits
(those to the right of the decimal delimiter) to be
written in a formatted monetary quantity using
currency_symbol.

locale(5)

Standards, Environments, and Macros 227

p_cs_precedes An integer set to 1 if the currency_symbol or
int_curr_symbol precedes the value for a monetary
quantity with a non-negative value, and set to 0 if the
symbol succeeds the value.

p_sep_by_space An integer set to 0 if no space separates the
currency_symbol or int_curr_symbol from the
value for a monetary quantity with a non-negative
value, set to 1 if a space separates the symbol from the
value, and set to 2 if a space separates the symbol and
the sign string, if adjacent.

n_cs_precedes An integer set to 1 if the currency_symbol or
int_curr_symbol precedes the value for a monetary
quantity with a negative value, and set to 0 if the
symbol succeeds the value.

n_sep_by_space An integer set to 0 if no space separates the
currency_symbol or int_curr_symbol from the
value for a monetary quantity with a negative value,
set to 1 if a space separates the symbol from the value,
and set to 2 if a space separates the symbol and the
sign string, if adjacent.

p_sign_posn An integer set to a value indicating the positioning of
the positive_sign for a monetary quantity with a
non-negative value. The following integer values are
recognized for both p_sign_posn and n_sign_posn:

0 Parentheses enclose the quantity and the
currency_symbol or int_curr_symbol.

1 The sign string precedes the quantity and
the currency_symbol or
int_curr_symbol.

2 The sign string succeeds the quantity and
the currency_symbol or
int_curr_symbol.

3 The sign string precedes the
currency_symbol or int_curr_symbol.

4 The sign string succeeds the
currency_symbol or int_curr_symbol.

n_sign_posn An integer set to a value indicating the positioning of
the negative_sign for a negative formatted
monetary quantity.

The following table shows the result of various combinations:

locale(5)

228 man pages section 5: Standards, Environments, and Macros • Last Revised 20 Dec 1996

p_sep_by_space

2 1 0

p_cs_precedes= 1 p_sign_posn= 0 ($1.25) ($1.25) ($1.25)

p_sign_posn= 1 +$1.25 +$1.25 +$1.25

p_sign_posn= 2 $1.25+ $1.25+ $1.25+

p_sign_posn= 3 +$1.25 +$1.25 +$1.25

p_sign_posn= 4 $+1.25 $+1.25 $+1.25

p_cs_precedes= 0 p_sign_posn= 0 (1.25 $) (1.25 $) (1.25$)

p_sign_posn= 1 +1.25 $ +1.25 $ +1.25$

p_sign_posn= 2 1.25$ + 1.25 $+ 1.25$+

p_sign_posn= 3 1.25+ $ 1.25 +$ 1.25+$

p_sign_posn= 4 1.25$ + 1.25 $+ 1.25$+

The monetary formatting definitions for the POSIX locale follow; the code listing
depicting the localedef(1) input, the table representing the same information with
the addition of localeconv(3C) and nl_langinfo(3C) formats. All values are
unspecified in the POSIX locale.

LC_MONETARY
This is the POSIX locale definition for
the LC_MONETARY category.
#

int_curr_symbol ""

currency_symbol ""

mon_decimal_point ""

mon_thousands_sep ""

mon_grouping -1

positive_sign ""

negative_sign ""

int_frac_digits -1

p_cs_precedes -1

p_sep_by_space -1

n_cs_precedes -1

locale(5)

Standards, Environments, and Macros 229

n_sep_by_space -1

p_sign_posn -1

n_sign_posn -1

END LC_MONETARY

The entry n/a indicates that the value is not available in the POSIX locale.

The LC_NUMERIC category defines the rules and symbols that will be used to format
non-monetary numeric information. This information is available through the
localeconv(3C) function.

The following items are defined in this category of the locale. The item names are the
keywords recognized by the localedef utility when defining a locale. They are also
similar to the member names of the lconv structure defined in <locale.h>. The
localeconv() function returns {CHAR_MAX} for unspecified integer items and the
empty string ("") for unspecified or size zero string items.

In a locale definition file the operands are strings. For some keywords, the strings only
can contain integers. Keywords that are not provided, string values set to the empty
string (""), or integer keywords set to –1, will be used to indicate that the value is not
available in the locale. The following keywords are recognized:

decimal_point The operand is a string containing the symbol that is
used as the decimal delimiter (radix character) in
numeric, non-monetary formatted quantities. This
keyword cannot be omitted and cannot be set to the
empty string. In contexts where standards limit the
decimal_point to a single byte, the result of
specifying a multi-byte operand is unspecified.

thousands_sep The operand is a string containing the symbol that is
used as a separator for groups of digits to the left of the
decimal delimiter in numeric, non-monetary formatted
monetary quantities. In contexts where standards limit
the thousands_sep to a single byte, the result of
specifying a multi-byte operand is unspecified.

grouping Define the size of each group of digits in formatted
non-monetary quantities. The operand is a sequence of
integers separated by semicolons. Each integer specifies
the number of digits in each group, with the initial
integer defining the size of the group immediately
preceding the decimal delimiter, and the following
integers defining the preceding groups. If the last
integer is not −1, then the size of the previous group (if
any) will be repeatedly used for the remainder of the
digits. If the last integer is –1, then no further grouping

locale(5)

LC_NUMERIC

230 man pages section 5: Standards, Environments, and Macros • Last Revised 20 Dec 1996

will be performed. The non-monetary numeric
formatting definitions for the POSIX locale follow; the
code listing depicting the localedef input, the table
representing the same information with the addition of
localeconv values and nl_langinfo constants.

LC_NUMERIC
This is the POSIX locale definition for
the LC_NUMERIC category.
#
decimal_point "<period>"
thousands_sep ""
grouping -1
#
END LC_NUMERIC

POSIX locale langinfo localeconv() localedef

Item Value Constant Value Value

decimal_point "." RADIXCHAR "." .

thousands_sep n/a THOUSEP "" ""

grouping n/a - "" −1

The entry n/a indicates that the value is not available in the POSIX locale.

The LC_TIME category defines the interpretation of the field descriptors supported by
date(1) and affects the behavior of the strftime(3C), wcsftime(3C),
strptime(3C), and nl_langinfo(3C) functions. Because the interfaces for
C-language access and locale definition differ significantly, they are described
separately. For locale definition, the following mandatory keywords are recognized:

abday Define the abbreviated weekday names, corresponding to the %a
field descriptor (conversion specification in the strftime(),
wcsftime(), and strptime() functions). The operand consists
of seven semicolon-separated strings, each surrounded by
double-quotes. The first string is the abbreviated name of the day
corresponding to Sunday, the second the abbreviated name of the
day corresponding to Monday, and so on.

day Define the full weekday names, corresponding to the %A field
descriptor. The operand consists of seven semicolon-separated
strings, each surrounded by double-quotes. The first string is the
full name of the day corresponding to Sunday, the second the full
name of the day corresponding to Monday, and so on.

abmon Define the abbreviated month names, corresponding to the %b
field descriptor. The operand consists of twelve
semicolon-separated strings, each surrounded by double-quotes.

locale(5)

LC_TIME

Standards, Environments, and Macros 231

The first string is the abbreviated name of the first month of the
year (January), the second the abbreviated name of the second
month, and so on.

mon Define the full month names, corresponding to the %B field
descriptor. The operand consists of twelve semicolon-separated
strings, each surrounded by double-quotes. The first string is the
full name of the first month of the year (January), the second the
full name of the second month, and so on.

d_t_fmt Define the appropriate date and time representation,
corresponding to the %c field descriptor. The operand consists of a
string, and can contain any combination of characters and field
descriptors. In addition, the string can contain the escape
sequences \\, \a, \b, \f, \n, \r, \t, \v.

date_fmt Define the appropriate date and time representation,
corresponding to the %C field descriptor. The operand consists of a
string, and can contain any combination of characters and field
descriptors. In addition, the string can contain the escape
sequences \\, \a, \b, \f, \n, \r, \t, \v.

d_fmt Define the appropriate date representation, corresponding to the
%x field descriptor. The operand consists of a string, and can
contain any combination of characters and field descriptors. In
addition, the string can contain the escape sequences \\, \a, \b,
\f, \n, \r, \t, \v.

t_fmt Define the appropriate time representation, corresponding to the
%X field descriptor. The operand consists of a string, and can
contain any combination of characters and field descriptors. In
addition, the string can contain the escape sequences \\, \a, \b,
\f, \n, \r, \t, \v.

am_pm Define the appropriate representation of the ante meridiem and post
meridiem strings, corresponding to the %p field descriptor. The
operand consists of two strings, separated by a semicolon, each
surrounded by double-quotes. The first string represents the ante
meridiem designation, the last string the post meridiem designation.

t_fmt_ampm Define the appropriate time representation in the 12-hour clock
format with am_pm, corresponding to the %r field descriptor. The
operand consists of a string and can contain any combination of
characters and field descriptors. If the string is empty, the 12-hour
format is not supported in the locale.

era Define how years are counted and displayed for each era in a
locale. The operand consists of semicolon-separated strings. Each
string is an era description segment with the format:

direction:offset:start_date:end_date:era_name:era_format

locale(5)

232 man pages section 5: Standards, Environments, and Macros • Last Revised 20 Dec 1996

according to the definitions below. There can be as many era
description segments as are necessary to describe the different
eras.

The start of an era might not be the earliest point For example, the
Christian era B.C. starts on the day before January 1, A.D. 1, and
increases with earlier time.

direction Either a + or a – character. The + character
indicates that years closer to the start_date have
lower numbers than those closer to the
end_date. The – character indicates that years
closer to the start_date have higher numbers
than those closer to the end_date.

offset The number of the year closest to the start_date
in the era, corresponding to the %Eg and %Ey
field descriptors.

start_date A date in the form yyyy/mm/dd, where yyyy,
mm, and dd are the year, month and day
numbers respectively of the start of the era.
Years prior to A.D. 1 are represented as
negative numbers.

end_date The ending date of the era, in the same format
as the start_date, or one of the two special
values –* or +*. The value –* indicates that the
ending date is the beginning of time. The value
+* indicates that the ending date is the end of
time.

era_name A string representing the name of the era,
corresponding to the %EC field descriptor.

era_format A string for formatting the year in the era,
corresponding to the %EG and %EY field
descriptors.

era_d_fmt Define the format of the date in alternative era notation,
corresponding to the %Ex field descriptor.

era_t_fmt Define the locale’s appropriate alternative time format,
corresponding to the %EX field descriptor.

era_d_t_fmt Define the locale’s appropriate alternative date and time format,
corresponding to the %Ec field descriptor.

alt_digits Define alternative symbols for digits, corresponding to the %O field
descriptor modifier. The operand consists of semicolon-separated
strings, each surrounded by double-quotes. The first string is the
alternative symbol corresponding with zero, the second string the

locale(5)

Standards, Environments, and Macros 233

symbol corresponding with one, and so on. Up to 100 alternative
symbol strings can be specified. The %O modifier indicates that the
string corresponding to the value specified via the field descriptor
will be used instead of the value.

The following information can be accessed. These correspond to constants defined in
<langinfo.h> and used as arguments to the nl_langinfo(3C) function.

ABDAY_x The abbreviated weekday names (for example Sun),
where x is a number from 1 to 7.

DAY_x The full weekday names (for example Sunday), where
x is a number from 1 to 7.

ABMON_x The abbreviated month names (for example Jan), where
x is a number from 1 to 12.

MON_x The full month names (for example January), where x
is a number from 1 to 12.

D_T_FMT The appropriate date and time representation.

D_FMT The appropriate date representation.

T_FMT The appropriate time representation.

AM_STR The appropriate ante-meridiem affix.

PM_STR The appropriate post-meridiem affix.

T_FMT_AMPM The appropriate time representation in the 12-hour
clock format with AM_STR and PM_STR.

ERA The era description segments, which describe how
years are counted and displayed for each era in a
locale. Each era description segment has the format:

direction:offset:start_date:end_date:era_name:era_format

according to the definitions below. There will be as
many era description segments as are necessary to
describe the different eras. Era description segments are
separated by semicolons.

The start of an era might not be the earliest point For
example, the Christian era B.C. starts on the day before
January 1, A.D. 1, and increases with earlier time.

direction Either a + or a – character. The +
character indicates that years closer
to the start_date have lower
numbers than those closer to the
end_date. The – character indicates

locale(5)

LC_TIME
C-language Access

234 man pages section 5: Standards, Environments, and Macros • Last Revised 20 Dec 1996

that years closer to the start_date
have higher numbers than those
closer to the end_date.

offset The number of the year closest to
the start_date in the era.

start_date A date in the form yyyy/mm/dd,
where yyyy, mm, and dd are the
year, month and day numbers
respectively of the start of the era.
Years prior to AD 1 are represented
as negative numbers.

end_date The ending date of the era, in the
same format as the start_date, or
one of the two special values –* or
+*. The value –* indicates that the
ending date is the beginning of
time. The value +* indicates that the
ending date is the end of time.

era_name The era, corresponding to the %EC
conversion specification.

era_format The format of the year in the era,
corresponding to the %EY and %EY
conversion specifications.

ERA_D_FMT The era date format.

ERA_T_FMT The locale’s appropriate alternative time format,
corresponding to the %EX field descriptor.

ERA_D_T_FMT The locale’s appropriate alternative date and time
format, corresponding to the %Ec field descriptor.

ALT_DIGITS The alternative symbols for digits, corresponding to the
%O conversion specification modifier. The value
consists of semicolon-separated symbols. The first is
the alternative symbol corresponding to zero, the
second is the symbol corresponding to one, and so on.
Up to 100 alternative symbols may be specified. The
following table displays the correspondence between
the items described above and the conversion specifiers
used by date(1) and the strftime(3C),
wcsftime(3C), and strptime(3C) functions.

locale(5)

Standards, Environments, and Macros 235

localedef langinfo Conversion

Keyword Constant Specifier

abday ABDAY_x %a

day DAY_x %A

abmon ABMON_x %b

mon MON %B

d_t_fmt D_T_FMT %c

date_fmt DATE_FMT %C

d_fmt D_FMT %x

t_fmt T_FMT %X

am_pm AM_STR %p

am_pm PM_STR %p

t_fmt_ampm T_FMT_AMPM %r

era ERA %EC, %Eg,

%EG, %Ey, %EY

era_d_fmt ERA_D_FMT %Ex

era_t_fmt ERA_T_FMT %EX

era_d_t_fmt ERA_D_T_FMT %Ec

alt_digits ALT_DIGITS %O

Although certain of the field descriptors in the POSIX locale (such as the name of the
month) are shown with initial capital letters, this need not be the case in other locales.
Programs using these fields may need to adjust the capitalization if the output is going
to be used at the beginning of a sentence.

The LC_TIME descriptions of abday, day, mon, and abmon imply a Gregorian style
calendar (7-day weeks, 12-month years, leap years, and so forth). Formatting time
strings for other types of calendars is outside the scope of this document set.

As specified under date in Locale Definition and strftime(3C), the field
descriptors corresponding to the optional keywords consist of a modifier followed by
a traditional field descriptor (for instance %Ex). If the optional keywords are not
supported by the implementation or are unspecified for the current locale, these field
descriptors are treated as the traditional field descriptor. For instance, assume the
following keywords:

alt_digits "0th" ; "1st" ; "2nd" ; "3rd" ; "4th" ; "5th" ; \

locale(5)

LC_TIME General
Information

236 man pages section 5: Standards, Environments, and Macros • Last Revised 20 Dec 1996

"6th" ; "7th" ; "8th" ; "9th" ; "10th"

d_fmt "The %Od day of %B in %Y"

On 7/4/1776, the %x field descriptor would result in “The 4th day of July in 1776”
while 7/14/1789 would come out as “The 14 day of July in 1789” It can be noted that
the above example is for illustrative purposes only; the %O modifier is primarily
intended to provide for Kanji or Hindi digits in date formats.

The LC_MESSAGES category defines the format and values for affirmative and
negative responses.

The following keywords are recognized as part of the locale definition file. The
nl_langinfo(3C) function accepts upper-case versions of the first four keywords.

yesexpr The operand consists of an extended regular expression (see
regex(5)) that describes the acceptable affirmative response to a
question expecting an affirmative or negative response.

noexpr The operand consists of an extended regular expression that
describes the acceptable negative response to a question expecting
an affirmative or negative response.

yesstr The operand consists of a fixed string (not a regular expression)
that can be used by an application for composition of a message
that lists an acceptable affirmative response, such as in a prompt.

nostr The operand consists of a fixed string that can be used by an
application for composition of a message that lists an acceptable
negative response. The format and values for affirmative and
negative responses of the POSIX locale follow; the code listing
depicting the localedef input, the table representing the same
information with the addition of nl_langinfo() constants.

LC_MESSAGES
This is the POSIX locale definition for
the LC_MESSAGES category.
#
yesexpr "<circumflex><left-square-bracket><y><Y><right-square-bracket>"
#
noexpr "<circumflex><left-square-bracket><n><N><right-square-bracket>"
#
yesstr "yes"
nostr "no"
END LC_MESSAGES

localedef Keyword langinfo Constant POSIX Locale Value

yesexpr YESEXPR "^[yY]"

locale(5)

LC_MESSAGES

Standards, Environments, and Macros 237

noexpr NOEXPR "^[nN]"

yesstr YESSTR "yes"

nostr NOSTR "no"

date(1), locale(1), localedef(1), sort(1), tr(1), uniq(1), localeconv(3C),
nl_langinfo(3C), setlocale(3C), strcoll(3C), strftime(3C), strptime(3C),
strxfrm(3C), wcscoll(3C), wcsftime(3C), wcsxfrm(3C), wctype(3C),
attributes(5), charmap(5), extensions(5), regex(5)

locale(5)

SEE ALSO

238 man pages section 5: Standards, Environments, and Macros • Last Revised 20 Dec 1996

man – macros to format Reference Manual pages

nroff -man filename…

troff -man filename…

These macros are used to lay out the reference pages in this manual. Note: if filename
contains format input for a preprocessor, the commands shown above must be piped
through the appropriate preprocessor. This is handled automatically by the man(1)
command. See the ‘‘Conventions’’ section.

Any text argument t may be zero to six words. Quotes may be used to include SPACE
characters in a “word”. If text is empty, the special treatment is applied to the next
input line with text to be printed. In this way .I may be used to italicize a whole line,
or .SB may be used to make small bold letters.

A prevailing indent distance is remembered between successive indented paragraphs,
and is reset to default value upon reaching a non-indented paragraph. Default units
for indents i are ens.

Type font and size are reset to default values before each paragraph, and after
processing font and size setting macros.

These strings are predefined by -man:

*R ‘®’, ‘(Reg)’ in nroff.

*S Change to default type size.

* n.t.l. = next text line; p.i. = prevailing indent

Request Cause If no Explanation

Break Argument

.B t no t=n.t.l.* Text is in bold font.

.BI t no t=n.t.l. Join words, alternating bold and italic.

.BR t no t=n.t.l. Join words, alternating bold and roman.

.DT no .5i 1i... Restore default tabs.

.HP i yes i=p.i.* Begin paragraph with hanging indent.
Set prevailing indent to i.

.I t no t=n.t.l. Text is italic.

.IB t no t=n.t.l. Join words, alternating italic and bold.

.IP x i yes x="" Same as .TP with tag x.

.IR t no t=n.t.l. Join words, alternating italic and roman.

man(5)

NAME

SYNOPSIS

DESCRIPTION

Requests

Standards, Environments, and Macros 239

Request Cause If no Explanation

Break Argument

.IX t no - Index macro, for SunSoft internal use.

.LP yes - Begin left-aligned paragraph. Set
prevailing indent to .5i.

.P yes - Same as .LP.

.PD d no d=.4v Set vertical distance between
paragraphs.

.PP yes - Same as .LP.

.RE yes - End of relative indent. Restores
prevailing indent.

.RB t no t=n.t.l. Join words, alternating roman and bold.

.RI t no t=n.t.l. Join words, alternating roman and italic.

.RS i yes i=p.i. Start relative indent, increase indent by i.
Sets prevailing indent to .5i for nested
indents.

.SB t no - Reduce size of text by 1 point, make text
bold.

.SH t yes - Section Heading.

.SM t no t=n.t.l. Reduce size of text by 1 point.

.SS t yes t=n.t.l. Section Subheading.

.TH n s d f m yes - Begin reference page n, of of section s; d
is the date of the most recent change. If
present, f is the left page footer; m is the
main page (center) header. Sets
prevailing indent and tabs to .5i.

.TP i yes i=p.i. Begin indented paragraph, with the tag
given on the next text line. Set prevailing
indent to i.

.TX t p no - Resolve the title abbreviation t; join to
punctuation mark (or text) p.

When formatting a manual page, man examines the first line to determine whether it
requires special processing. For example a first line consisting of:

’\" t

indicates that the manual page must be run through the tbl(1) preprocessor.

man(5)

Conventions

240 man pages section 5: Standards, Environments, and Macros • Last Revised 30 Jan 1995

A typical manual page for a command or function is laid out as follows:

.TH title [1-9] The name of the command or function, which serves as
the title of the manual page. This is followed by the
number of the section in which it appears.

.SH NAME The name, or list of names, by which the command is
called, followed by a dash and then a one-line
summary of the action performed. All in roman font,
this section contains no troff(1) commands or
escapes, and no macro requests. It is used to generate
the windex database, which is used by the whatis(1)
command.

.SH SYNOPSIS

Commands:
The syntax of the command and its arguments, as
typed on the command line. When in boldface, a
word must be typed exactly as printed. When in
italics, a word can be replaced with an argument
that you supply. References to bold or italicized
items are not capitalized in other sections, even
when they begin a sentence.

Syntactic symbols appear in roman face:

[] An argument, when surrounded by
brackets is optional.

| Arguments separated by a vertical bar
are exclusive. You can supply only one
item from such a list.

. . . Arguments followed by an ellipsis can be
repeated. When an ellipsis follows a
bracketed set, the expression within the
brackets can be repeated.

Functions:
If required, the data declaration, or #include
directive, is shown first, followed by the function
declaration. Otherwise, the function declaration is
shown.

.SH DESCRIPTION A narrative overview of the command or function’s
external behavior. This includes how it interacts with
files or data, and how it handles the standard input,
standard output and standard error. Internals and
implementation details are normally omitted. This
section attempts to provide a succinct overview in
answer to the question, "what does it do?"

man(5)

Standards, Environments, and Macros 241

Literal text from the synopsis appears in constant
width, as do literal filenames and references to items
that appear elsewhere in the reference manuals.
Arguments are italicized.

If a command interprets either subcommands or an
input grammar, its command interface or input
grammar is normally described in a USAGE section,
which follows the OPTIONS section. The
DESCRIPTION section only describes the behavior of
the command itself, not that of subcommands.

.SH OPTIONS The list of options along with a description of how each
affects the command’s operation.

.SH RETURN VALUES A list of the values the library routine will return to the
calling program and the conditions that cause these
values to be returned.

.SH EXIT STATUS A list of the values the utility will return to the calling
program or shell, and the conditions that cause these
values to be returned.

.SH FILES A list of files associated with the command or function.

.SH SEE ALSO A comma-separated list of related manual pages,
followed by references to other published materials.

.SH DIAGNOSTICS A list of diagnostic messages and an explanation of
each.

.SH BUGS A description of limitations, known defects, and
possible problems associated with the command or
function.

/usr/share/lib/tmac/an

/usr/share/man/windex

man(1), nroff(1), troff(1), whatis(1)

Dale Dougherty and Tim O’Reilly, Unix Text Processing

man(5)

FILES

SEE ALSO

242 man pages section 5: Standards, Environments, and Macros • Last Revised 30 Jan 1995

mansun – macros to format Reference Manual pages

nroff -mansun filename…

troff -mansun filename…

These macros are used to lay out the reference pages in this manual. Note: if filename
contains format input for a preprocessor, the commands shown above must be piped
through the appropriate preprocessor. This is handled automatically by man(1). See the
‘‘Conventions’’ section.

Any text argument t may be zero to six words. Quotes may be used to include SPACE
characters in a “word”. If text is empty, the special treatment is applied to the next
input line with text to be printed. In this way .I may be used to italicize a whole line,
or .SB may be used to make small bold letters.

A prevailing indent distance is remembered between successive indented paragraphs,
and is reset to default value upon reaching a non-indented paragraph. Default units
for indents i are ens.

Type font and size are reset to default values before each paragraph, and after
processing font and size setting macros.

These strings are predefined by -mansun:

*R ‘®’, ‘(Reg)’ in nroff.

*S Change to default type size.

* n.t.l. = next text line; p.i. = prevailing indent

Request Cause If no Explanation

Break Argument

.B t no t=n.t.l.* Text is in bold font.

.BI t no t=n.t.l. Join words, alternating bold and italic.

.BR t no t=n.t.l. Join words, alternating bold and Roman.

.DT no .5i 1i... Restore default tabs.

.HP i yes i=p.i.* Begin paragraph with hanging indent.
Set prevailing indent to i.

.I t no t=n.t.l. Text is italic.

.IB t no t=n.t.l. Join words, alternating italic and bold.

.IP x i yes x="" Same as .TP with tag x.

.IR t no t=n.t.l. Join words, alternating italic and Roman.

mansun(5)

NAME

SYNOPSIS

DESCRIPTION

Requests

Standards, Environments, and Macros 243

Request Cause If no Explanation

Break Argument

.IX t no - Index macro, for SunSoft internal use.

.LP yes - Begin left-aligned paragraph. Set
prevailing indent to .5i.

.P yes - Same as .LP.

.PD d no d=.4v Set vertical distance between
paragraphs.

.PP yes - Same as .LP.

.RE yes - End of relative indent. Restores
prevailing indent.

.RB t no t=n.t.l. Join words, alternating Roman and bold.

.RI t no t=n.t.l. Join words, alternating Roman and italic.

.RS i yes i=p.i. Start relative indent, increase indent by i.
Sets prevailing indent to .5i for nested
indents.

.SB t no - Reduce size of text by 1 point, make text
bold.

.SH t yes - Section Heading.

.SM t no t=n.t.l. Reduce size of text by 1 point.

.SS t yes t=n.t.l. Section Subheading.

.TH n s d f m yes - Begin reference page n, of of section s; d
is the date of the most recent change. If
present, f is the left page footer; m is the
main page (center) header. Sets
prevailing indent and tabs to .5i.

.TP i yes i=p.i. Begin indented paragraph, with the tag
given on the next text line. Set prevailing
indent to i.

.TX t p no - Resolve the title abbreviation t; join to
punctuation mark (or text) p.

When formatting a manual page, mansun examines the first line to determine whether
it requires special processing. For example a first line consisting of:

’\" t

indicates that the manual page must be run through the tbl(1) preprocessor.

mansun(5)

Conventions

244 man pages section 5: Standards, Environments, and Macros • Last Revised 11 Jun 1992

A typical manual page for a command or function is laid out as follows:

.TH title [1-8] The name of the command or function, which serves as
the title of the manual page. This is followed by the
number of the section in which it appears.

.SH NAME The name, or list of names, by which the command is
called, followed by a dash and then a one-line
summary of the action performed. All in Roman font,
this section contains no troff(1) commands or
escapes, and no macro requests. It is used to generate
the windex database, which is used by the whatis(1)
command.

.SH SYNOPSIS

Commands:
The syntax of the command and its arguments, as
typed on the command line. When in boldface, a
word must be typed exactly as printed. When in
italics, a word can be replaced with an argument
that you supply. References to bold or italicized
items are not capitalized in other sections, even
when they begin a sentence.

Syntactic symbols appear in Roman face:

[] An argument, when surrounded by
brackets is optional.

| Arguments separated by a vertical bar
are exclusive. You can supply only one
item from such a list.

. . . Arguments followed by an ellipsis can be
repeated. When an ellipsis follows a
bracketed set, the expression within the
brackets can be repeated.

Functions:
If required, the data declaration, or #include
directive, is shown first, followed by the function
declaration. Otherwise, the function declaration is
shown.

.SH DESCRIPTION A narrative overview of the command or function’s
external behavior. This includes how it interacts with
files or data, and how it handles the standard input,
standard output and standard error. Internals and
implementation details are normally omitted. This
section attempts to provide a succinct overview in
answer to the question, "what does it do?"

mansun(5)

Standards, Environments, and Macros 245

Literal text from the synopsis appears in constant
width, as do literal filenames and references to items
that appear elsewhere in the reference manuals.
Arguments are italicized.

If a command interprets either subcommands or an
input grammar, its command interface or input
grammar is normally described in a USAGE section,
which follows the OPTIONS section. The
DESCRIPTION section only describes the behavior of
the command itself, not that of subcommands.

.SH OPTIONS The list of options along with a description of how each
affects the command’s operation.

.SH FILES A list of files associated with the command or function.

.SH SEE ALSO A comma-separated list of related manual pages,
followed by references to other published materials.

.SH DIAGNOSTICS A list of diagnostic messages and an explanation of
each.

.SH BUGS A description of limitations, known defects, and
possible problems associated with the command or
function.

/usr/share/lib/tmac/ansun

/usr/share/man/windex

man(1), nroff(1), troff(1), whatis(1)

Dale Dougherty and Tim O’Reilly, Unix Text Processing

mansun(5)

FILES

SEE ALSO

246 man pages section 5: Standards, Environments, and Macros • Last Revised 11 Jun 1992

me – macros for formatting papers

nroff -me [options] filename…

troff -me [options] filename…

This package of nroff and troff macro definitions provides a canned formatting
facility for technical papers in various formats. When producing 2-column output on a
terminal, filter the output through col(1).

The macro requests are defined below. Many nroff and troff requests are unsafe in
conjunction with this package, however, these requests may be used with impunity
after the first .pp:

.bp begin new page

.br break output line here

.sp n insert n spacing lines

.ls n (line spacing) n=1 single, n=2 double space

.na no alignment of right margin

.ce n center next n lines

.ul n underline next n lines

.sz +n add n to point size

Output of the eqn(1), neqn(1), refer(1), and tbl(1) preprocessors for equations and
tables is acceptable as input.

In the following list, “initialization” refers to the first .pp, .lp, .ip, .np, .sh, or
.uh macro. This list is incomplete.

Request Initial Cause Explanation

Value Break

.(c - yes Begin centered block.

.(d - no Begin delayed text.

.(f - no Begin footnote.

.(l - yes Begin list.

.(q - yes Begin major quote.

.(xx - no Begin indexed item in index x.

.(z - no Begin floating keep.

.)c - yes End centered block.

me(5)

NAME

SYNOPSIS

DESCRIPTION

REQUESTS

Standards, Environments, and Macros 247

Request Initial Cause Explanation

Value Break

.)d - yes End delayed text.

.)f - yes End footnote.

.)l - yes End list.

.)q - yes End major quote.

.)x - yes End index item.

.)z - yes End floating keep.

.++ m H - no Define paper section.

m defines the part of the paper,

and can be C (chapter), A (appendix), P (preliminary,
for instance,

abstract, table of contents, etc.),

B (bibliography), RC (chapters

renumbered from page one each

chapter), or RA (appendix renumbered

from page one).

.+c T - yes Begin chapter (or appendix, etc.,

as set by .++). T is

the chapter title.

.1c 1 yes One column format on a new page.

.2c 1 yes Two column format.

.EN - yes Space after equation produced by eqn

or neqn.

.EQ x y - yes Precede equation; break out and

add space. Equation number is y.

The optional argument x may be I

to indent equation (default),

L to left-adjust the equation, or

C to center the equation.

me(5)

248 man pages section 5: Standards, Environments, and Macros • Last Revised 25 Feb 1992

Request Initial Cause Explanation

Value Break

.GE - yes End gremlin picture.

.GS - yes Begin gremlin picture.

.PE - yes End pic picture.

.PS - yes Begin pic picture.

.TE - yes End table.

.TH - yes End heading section of table.

.TS x - yes Begin table; if x is H table

has repeated heading.

.ac A N - no Set up for ACM style output.

A is the Author’s name(s), N is the

total number of pages. Must be given

before the first initialization.

.b x no no Print x in boldface; if no argument

switch to boldface.

.ba +n 0 yes Augments the base indent by n.

This indent is used to set the indent

on regular text (like paragraphs).

.bc no yes Begin new column.

.bi x no no Print x in bold italics

(nofill only).

.bu - yes Begin bulleted paragraph.

.bx x no no Print x in a box (nofill only).

.ef ’x’y’z ’’’’’ no Set even footer to x y z.

.eh ’x’y’z ’’’’’ no Set even header to x y z.

.fo ’x’y’z ’’’’’ no Set footer to x y z.

.hx - no Suppress headers and footers on

next page.

.he ’x’y’z ’’’’’ no Set header to x y z.

me(5)

Standards, Environments, and Macros 249

Request Initial Cause Explanation

Value Break

.hl - yes Draw a horizontal line.

.i x no no Italicize x; if x missing, italic

text follows.

.ip x y no yes Start indented paragraph, with

hanging tag x. Indentation is

y ens (default 5).

.lp yes yes Start left-blocked paragraph.

.lo - no Read in a file of local macros

of the form .*x. Must be

given before initialization.

.np 1 yes Start numbered paragraph.

.of ’x’y’z ’’’’’ no Set odd footer to x y z.

.oh ’x’y’z ’’’’’ no Set odd header to x y z.

.pd - yes Print delayed text.

.pp no yes Begin paragraph. First line indented.

.r yes no Roman text follows.

.re - no Reset tabs to default values.

.sc no no Read in a file of special characters

and diacritical marks. Must be

given before initialization.

.sh n x - yes Section head follows, font

automatically bold. n is level

of section, x is title of section.

.sk no no Leave the next page blank.

Only one page is remembered ahead.

.sm x - no Set x in a smaller pointsize.

.sz +n 10p no Augment the point size by n points.

.th no no Produce the paper in thesis format.

me(5)

250 man pages section 5: Standards, Environments, and Macros • Last Revised 25 Feb 1992

Request Initial Cause Explanation

Value Break

Must be given before initialization.

.tp no yes Begin title page.

.u x - no Underline argument (even in troff).

(Nofill only).

.uh - yes Like .sh but unnumbered.

.xp x - no Print index x.

/usr/share/lib/tmac/e

/usr/share/lib/tmac/*.me

col(1), eqn(1), nroff(1), refer(1), tbl(1), troff(1)

me(5)

FILES

SEE ALSO

Standards, Environments, and Macros 251

mm – text formatting (memorandum) macros

nroff -mm [options] filename…

troff -mm [options] filename…

This package of nroff(1) and troff(1) macro definitions provides a formatting
facility for various styles of articles, theses, and books. When producing 2-column
output on a terminal or lineprinter, or when reverse line motions are needed, filter the
output through col(1). All external -mm macros are defined below.

Note: this -mm macro package is an extended version written at Berkeley and is a
superset of the standard -mm macro packages as supplied by Bell Labs. Some of the
Bell Labs macros have been removed; for instance, it is assumed that the user has little
interest in producing headers stating that the memo was generated at Whippany Labs.

Many nroff and troff requests are unsafe in conjunction with this package.
However, the first four requests below may be used with impunity after initialization,
and the last two may be used even before initialization:

.bp begin new page

.br break output line

.spn insert n spacing lines

.cen center next n lines

.lsn line spacing: n=1 single, n=2 double space

.na no alignment of right margin

Font and point size changes with \f and \s are also allowed; for example,
\fIword\fR will italicize word. Output of the tbl(1), eqn(1) and refer(1)
preprocessors for equations, tables, and references is acceptable as input.

Here is a table of macros.

Macro Name Initial Value
Break?
Reset? Explanation

.1C on y,y one column format on a new page

.2C [l] – y,y two column format l=line length

.AE – y end abstract

.AL [t] [i] [s] t=1;i=.Li;s=0 y Start automatic list type
t=[1,A,a,I,i] 1=arabic numbers;
A=uppercase letters a=lowercase
letters; I=uppercase Roman
numerals; i=lowercase Roman
numerals indentation i; separation s

mm(5)

NAME

SYNOPSIS

DESCRIPTION

REQUESTS

252 man pages section 5: Standards, Environments, and Macros • Last Revised 1 Jan 1997

Macro Name Initial Value
Break?
Reset? Explanation

.AS m [n] n=0 y begin abstract

.AU – y author’s name

.AV x – y signature and date line of verifier x

.B x – n embolden x; if no x, switch to
boldface

.BE – y end block text

.BI x y – n embolden x and underline y

.BL – y bullet list

.BR x y – n embolden x and use Roman font for
y

.BS – n start block text

.CN – y same as .DE (nroff)

.CS – y cover sheet

.CW – n same as .DS I (nroff)

.DE – y end display

.DF [p] [f] [rp] p=L;f=N y start floating display; position
p=[L,C,CB] L=left; I=indent;
C=center; CB=center block fill
f=[N,Y]; right position rp (fill only)

.DL [i] [s] – y start dash list

.DS [p] [f] [rp] p=L;f=N y begin static display (see .DF for
argument descriptions)

.EC x [n] n=1 y equation title; equation x; number n

.EF x – n even footer appears at the bottom of
even-numbered pages; x="l’c’r"
l=left; c=center; r=right

.EH x – n even header appears at the top of
even-numbered pages; x="l’c’r"
l=left; c=center; r=right

.EN – y end displayed equation produced
by eqn

.EQ – y break out equation produced by
eqn

.EX x [n] n=1 y exhibit title; exhibit x

mm(5)

Standards, Environments, and Macros 253

Macro Name Initial Value
Break?
Reset? Explanation

number n

.FD [f] [r] f=10;r=1 n set footnote style format f=[0-11];
renumber r=[0,1]

.FE – y end footnote

.FG x [n] n=1 y figure title; figure x; number n

.FS – n start footnote

.H l [t] – y produce numbered heading level
l=[1-7]; title t

.HU t – y produce unnumbered heading; title
t

.I x – n underline x

.IB x y – n underline x and embolden y

.IR x y – n underline x and use Roman font on
y

.LE [s] s=0 y end list; separation s

.LI [m] [p] – y start new list item; mark m

prefix p (mark only)

.ML m [i] [s] s=0 y start marked list; mark m
indentation i; separation s=[0,1]

.MT x y memo title; title x

.ND x n no date in page footer; x is date on
cover

.NE – y end block text

.NS – y start block text

.OF x – n odd footer appears at the bottom of
odd-numbered pages; x="l’c’r"
l=left; c=center; r=right

.OF x – n odd header appears at the top of
odd-numbered pages; x="l’c’r"
l=left; c=center; r=right

.OP – y skip to the top of an odd-number
page

.P [t] t=0 y,y begin paragraph; t=[0,1]
0=justified; 1=indented

mm(5)

254 man pages section 5: Standards, Environments, and Macros • Last Revised 1 Jan 1997

Macro Name Initial Value
Break?
Reset? Explanation

.PF x – n page footer appears at the bottom of
every page; x="l’c’r" l=left;
c=center; r=right

.PH x – n page header appears at the top of
every page; x="l’c’r" l=left;
c=center; r=right

.R on n return to Roman font

.RB x y – n use Roman on x and embolden y

.RI x y – n use Roman on x and underline y

.RP x - y,y released paper format ? x=no stops
title on first

.RS 5n y,y right shift: start level of relative
indentation

.S m n – n set character point size & vertical
space character point size m;
vertical space n

.SA x x=1 n justification; x=[0,1]

.SK x – y skip x pages

.SM – n smaller; decrease point size by 2

.SP [x] – y leave x blank lines

.TB x [n] n=1 y table title; table x; number n

.TC – y print table of contents (put at end of
input file)

.TE – y end of table processed by tbl

.TH – y end multi-page header of table

.TL – n title in boldface and two points
larger

.TM – n UC Berkeley thesis mode

.TP i y y i=p.i. Begin indented paragraph,
with the tag given on the next text
line. Set prevailing indent to i.

.TS x – y,y begin table; if x=H table has
multi-page header

.TY – y display centered title CONTENTS

mm(5)

Standards, Environments, and Macros 255

Macro Name Initial Value
Break?
Reset? Explanation

.VL i [m] [s] m=0;s=0 y start variable-item list; indentation i
mark-indentation m; separation s

Formatting distances can be controlled in -mm by means of built-in number registers.
For example, this sets the line length to 6.5 inches:

.nr LL 6.5i

Here is a table of number registers and their default values:

Name Register Controls Takes Effect Default

Cl contents level table of contents 2

De display eject display 0

Df display floating display 5

Ds display spacing display 1v

Hb heading break heading 2

Hc heading centering heading 0

Hi heading indent heading 1

Hi heading spacing heading 1

Hu heading unnumbered heading 2

Li list indentation list 6 (nroff)
5 (troff)

Ls list spacing list 6

Pi paragraph indent paragraph 5

Pt paragraph type paragraph 1

Si static indent display 5 (nroff)
3 (troff)

When resetting these values, make sure to specify the appropriate units. Setting the
line length to 7, for example, will result in output with one character per line. Setting
Pi to 0 suppresses paragraph indentation

Here is a list of string registers available in -mm; they may be used anywhere in the
text:

mm(5)

REGISTERS

256 man pages section 5: Standards, Environments, and Macros • Last Revised 1 Jan 1997

Name String’s Function

*Q quote (" in nroff, ‘‘ in troff)

*U unquote (" in nroff, ’’ in troff)

*– dash (-- in nroff, — in troff)

*(MO month (month of the year)

*(DY day (current date)

** automatically numbered footnote

*’ acute accent (before letter)

*‘ grave accent (before letter)

*^ circumflex (before letter)

*, cedilla (before letter)

*: umlaut (before letter)

*~ tilde (before letter)

\(BU bullet item

\(DT date (month day, yr)

\(EM em dash

\(Lf LIST OF FIGURES title

\(Lt LIST OF TABLES title

\(Lx LIST OF EXHIBITS title

\(Le LIST OF EQUATIONS title

\(Rp REFERENCES title

\(Tm trademark character (TM)

When using the extended accent mark definitions available with .AM, these strings
should come after, rather than before, the letter to be accented.

/usr/share/lib/tmac/m

/usr/share/lib/tmac/mm.[nt] nroff and troff definitions of mm.

mm(5)

FILES

Standards, Environments, and Macros 257

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdoc

col(1), eqn(1), nroff(1), refer(1), tbl(1), troff(1), attributes(5)

Floating keeps and regular keeps are diverted to the same space, so they cannot be
mixed together with predictable results.

mm(5)

ATTRIBUTES

SEE ALSO

BUGS

258 man pages section 5: Standards, Environments, and Macros • Last Revised 1 Jan 1997

ms – text formatting macros

nroff -ms [options] filename…

troff -ms [options] filename…

This package of nroff(1) and troff(1) macro definitions provides a formatting
facility for various styles of articles, theses, and books. When producing 2-column
output on a terminal or lineprinter, or when reverse line motions are needed, filter the
output through col(1). All external -ms macros are defined below.

Note: this -ms macro package is an extended version written at Berkeley and is a
superset of the standard -ms macro packages as supplied by Bell Labs. Some of the
Bell Labs macros have been removed; for instance, it is assumed that the user has little
interest in producing headers stating that the memo was generated at Whippany Labs.

Many nroff and troff requests are unsafe in conjunction with this package.
However, the first four requests below may be used with impunity after initialization,
and the last two may be used even before initialization:

.bp begin new page

.br break output line

.sp n insert n spacing lines

.ce n center next n lines

.ls n line spacing: n=1 single, n=2 double space

.na no alignment of right margin

Font and point size changes with \f and \s are also allowed; for example,
\fIword\fR will italicize word. Output of the tbl(1), eqn(1) and refer(1)
preprocessors for equations, tables, and references is acceptable as input.

Macro Name Initial Value
Break?
Reset? Explanation

.AB x – y begin abstract; if x=no do not label abstract

.AE – y end abstract

.AI – y author’s institution

.AM – n better accent mark definitions

.AU – y author’s name

.B x – n embolden x; if no x, switch to boldface

.B1 – y begin text to be enclosed in a box

.B2 – y end boxed text and print it

ms(5)

NAME

SYNOPSIS

DESCRIPTION

REQUESTS

Standards, Environments, and Macros 259

Macro Name Initial Value
Break?
Reset? Explanation

.BT date n bottom title, printed at foot of page

.BX x – n print word x in a box

.CM if t n cut mark between pages

.CT – y,y chapter title: page number moved to CF (TM only)

.DA x if n n force date x at bottom of page; today if no x

.DE – y end display (unfilled text) of any kind

.DS x y I y begin display with keep; x=I, L, C, B; y=indent

.ID y 8n,.5i y indented display with no keep; y=indent

.LD – y left display with no keep

.CD – y centered display with no keep

.BD – y block display; center entire block

.EF x – n even page footer x (3 part as for .tl)

.EH x – n even page header x (3 part as for .tl)

.EN – y end displayed equation produced by eqn

.EQ x y – y break out equation; x=L,I,C; y=equation number

.FE – n end footnote to be placed at bottom of page

.FP – n numbered footnote paragraph; may be redefined

.FS x – n start footnote; x is optional footnote label

.HD undef n optional page header below header margin

.I x – n italicize x; if no x, switch to italics

.IP x y – y,y indented paragraph, with hanging tag x; y=indent

.IX x y – y index words x y and so on (up to 5 levels)

.KE – n end keep of any kind

.KF – n begin floating keep; text fills remainder of page

.KS – y begin keep; unit kept together on a single page

.LG – n larger; increase point size by 2

.LP – y,y left (block) paragraph.

.MC x – y,y multiple columns; x=column width

.ND x if t n no date in page footer; x is date on cover

ms(5)

260 man pages section 5: Standards, Environments, and Macros • Last Revised 25 Feb 1992

Macro Name Initial Value
Break?
Reset? Explanation

.NH x y – y,y numbered header; x=level, x=0 resets, x=S sets to y

.NL 10p n set point size back to normal

.OF x – n odd page footer x (3 part as for .tl)

.OH x – n odd page header x (3 part as for .tl)

.P1 if TM n print header on first page

.PP – y,y paragraph with first line indented

.PT - % - n page title, printed at head of page

.PX x – y print index (table of contents); x=no suppresses title

.QP – y,y quote paragraph (indented and shorter)

.R on n return to Roman font

.RE 5n y,y retreat: end level of relative indentation

.RP x – n released paper format; x=no stops title on first page

.RS 5n y,y right shift: start level of relative indentation

.SH – y,y section header, in boldface

.SM – n smaller; decrease point size by 2

.TA 8n,5n n set TAB characters to 8n 16n . . . (nroff) or 5n 10n
. . . (troff)

.TC x – y print table of contents at end; x=no suppresses title

.TE – y end of table processed by tbl

.TH – y end multi-page header of table

.TL – y title in boldface and two points larger

.TM off n UC Berkeley thesis mode

.TS x – y,y begin table; if x=H table has multi-page header

.UL x – n underline x, even in troff

.UX x – n UNIX; trademark message first time; x appended

.XA x y – y another index entry; x=page or no for none;
y=indent

.XE – y end index entry (or series of .IX entries)

.XP – y,y paragraph with first line indented, others indented

ms(5)

Standards, Environments, and Macros 261

Macro Name Initial Value
Break?
Reset? Explanation

.XS x y – y begin index entry; x=page or no for none; y=indent

.1C on y,y one column format, on a new page

.2C – y,y begin two column format

.] – – n beginning of refer reference

.[0 – n end of unclassifiable type of reference

.[N – n N= 1:journal-article, 2:book, 3:book-article, 4:report

Formatting distances can be controlled in -ms by means of built-in number registers.
For example, this sets the line length to 6.5 inches:

.nr LL 6.5i

Here is a table of number registers and their default values:

Name Register Controls Takes Effect Default

PS point size paragraph 10

VS vertical spacing paragraph 12

LL line length paragraph 6i

LT title length next page same as LL

FL footnote length next .FS 5.5i

PD paragraph distance paragraph 1v (if n), .3v (if t)

DD display distance displays 1v (if n), .5v (if t)

PI paragraph indent paragraph 5n

QI quote indent next .QP 5n

FI footnote indent next .FS 2n

PO page offset next page 0 (if n), ≈1i (if t)

HM header margin next page 1i

FM footer margin next page 1i

FF footnote format next .FS 0 (1, 2, 3 available)

ms(5)

REGISTERS

262 man pages section 5: Standards, Environments, and Macros • Last Revised 25 Feb 1992

When resetting these values, make sure to specify the appropriate units. Setting the
line length to 7, for example, will result in output with one character per line. Setting
FF to 1 suppresses footnote superscripting; setting it to 2 also suppresses indentation
of the first line; and setting it to 3 produces an .IP-like footnote paragraph.

Here is a list of string registers available in -ms; they may be used anywhere in the
text:

Name String’s Function

*Q quote (" in nroff, “ in troff)

*U unquote (" in nroff, ” in troff)

*– dash (-- in nroff, — in troff)

*(MO month (month of the year)

*(DY day (current date)

** automatically numbered footnote

*’ acute accent (before letter)

*‘ grave accent (before letter)

*^ circumflex (before letter)

*, cedilla (before letter)

*: umlaut (before letter)

*~ tilde (before letter)

When using the extended accent mark definitions available with .AM, these strings
should come after, rather than before, the letter to be accented.

/usr/share/lib/tmac/s

/usr/share/lib/tmac/ms.???

col(1), eqn(1), nroff(1), refer(1), tbl(1), troff(1)

Floating keeps and regular keeps are diverted to the same space, so they cannot be
mixed together with predictable results.

ms(5)

FILES

SEE ALSO

BUGS

Standards, Environments, and Macros 263

nfssec – overview of NFS security modes

The mount_nfs(1M) and share_nfs(1M) commands each provide a way to specify
the security mode to be used on an NFS file system through the sec=mode option.
mode can be either sys, dh, krb5, krb5i, krb5p, or none. These security modes may
also be added to the automount maps. Note that mount_nfs(1M) and
automount(1M) do not support sec=none at this time.

The sec=mode option on the share_nfs(1M) command line establishes the security
mode of NFS servers. If the NFS connection uses the NFS Version 3 protocol, the NFS
clients must query the server for the appropriate mode to use. If the NFS connection
uses the NFS Version 2 protocol, then the NFS client will use the default security
mode, which is currently sys. NFS clients may force the use of a specific security
mode by specifying the sec=mode option on the command line. However, if the file
system on the server is not shared with that security mode, the client may be denied
access.

If the NFS client wants to authenticate the NFS server using a particular (stronger)
security mode, the client will want to specify the security mode to be used, even if the
connection uses the NFS Version 3 protocol. This guarantees that an attacker
masquerading as the server does not compromise the client.

The NFS security modes are described below. Of these, the krb5, krb5i, krb5p
modes use the Kerberos V5 protocol for authenticating and protecting the shared
filesystems. Before these can be used, the system must be configured to be part of a
Kerberos realm (see SEAM(5).

sys Use AUTH_SYS authentication. The user’s UNIX user-id and group-ids are
passed in the clear on the network, unauthenticated by the NFS server. This
is the simplest security method and requires no additional administration.
It is the default used by Solaris NFS Version 2 clients and Solaris NFS
servers.

dh Use a Diffie-Hellman public key system (AUTH_DES, which is referred to as
AUTH_DH in the forthcoming Internet RFC).

krb5 Use Kerberos V5 protocol to authenticate users before granting access to
the shared filesystem.

krb5i Use Kerberos V5 authentication with integrity checking (checksums) to
verify that the data has not been tampered with.

krb5p User Kerberos V5 authentication, integrity checksums, and privacy
protection (encryption) on the shared filesystem. This provides the most
secure filesystem sharing, as all traffic is encrypted. It should be noted that
performance might suffer on some systems when using krb5p, depending
on the computational intensity of the encryption algorithm and the amount
of data being transferred.

none Use null authentication (AUTH_NONE). NFS clients using AUTH_NONE have
no identity and are mapped to the anonymous user nobody by NFS

nfssec(5)

NAME

DESCRIPTION

264 man pages section 5: Standards, Environments, and Macros • Last Revised 10 Jul 2001

servers. A client using a security mode other than the one with which a
Solaris NFS server shares the file system will have its security mode
mapped to AUTH_NONE. In this case, if the file system is shared with
sec=none, users from the client will be mapped to the anonymous user.
The NFS security mode none is supported by share_nfs(1M), but not by
mount_nfs(1M) or automount(1M).

/etc/nfssec.conf NFS security service configuration file.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnfscr

automount(1M), mount_nfs(1M), share_nfs(1M), rpc_clnt_auth(3NSL),
secure_rpc(3NSL), attributes(5)

/etc/nfssec.conf lists the NFS security services. Do not edit this file. It is not
intended to be user-configurable.

nfssec(5)

FILES

ATTRIBUTES

SEE ALSO

NOTES

Standards, Environments, and Macros 265

pam_authtok_check – authentication and password management module

pam_authtok_check.so.1

pam_authtok_check provides functionality to the Password Management stack. The
implementation of pam_sm_chauthtok(), performs a number of checks on the
construction of the newly entered password. pam_sm_chauthtok() is invoked twice
by the PAM framework, once with flags set to PAM_PRELIM_CHECK, and once with
flags set to PAM_UPDATE_AUTHTOK. This module only performs its checks during the
first invocation. This module expects the current authentication token in the
PAM_OLDAUTHTOK item, the new (to be checked) password in the PAM_AUTHTOK item,
and the login name in the PAM_USER item. The checks performed by this module are:

length The password length should not be less that the minimum
specified in /etc/default/passwd.

circular shift The password should not be a circular shift of the login name.

complexity The password should contain at least two alpha characters and one
numeric or special character.

variation The old and new passwords must differ by at least three positions.

The following option may be passed to the module:

debug syslog(3C) debugging information at the LOG_DEBUG level

If the password in PAM_AUTHTOK passes all tests, PAM_SUCCESS is returned. If any of
the tests fail, PAM_AUTHTOK_ERR is returned.

/etc/default/passwd Contains the value for PASSLENGTH, the default
minimal password length.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT Level MT-Safe with exceptions

passwd(1), pam(3PAM), pam_chauthtok(3PAM), syslog(3C), libpam(3LIB),
pam.conf(4), attributes(5), pam_authtok_get(5), pam_authtok_store(5),
pam_dhkeys(5), pam_passwd_auth(5), pam_unix(5), pam_unix_account(5),
pam_unix_auth(5), pam_unix_session(5)

The interfaces in libpam(3LIB) are MT-Safe only if each thread within the
multi-threaded application uses its own PAM handle.

pam_authtok_check(5)

NAME

SYNOPSIS

DESCRIPTION

ERRORS

FILES

ATTRIBUTES

SEE ALSO

NOTES

266 man pages section 5: Standards, Environments, and Macros • Last Revised 21 Jan 2003

The pam_unix(5) module might not be supported in a future release. Similar
functionality is provided by pam_authtok_check(5), pam_authtok_get(5),
pam_authtok_store(5), pam_dhkeys(5), pam_passwd_auth(5),
pam_unix_account(5), pam_unix_auth(5), and pam_unix_session(5).

pam_authtok_check(5)

Standards, Environments, and Macros 267

pam_authtok_get – authentication and password management module

pam_authtok_get.so.1

The pam_authtok_get service module provides password prompting funtionality to
the PAM stack. It implements pam_sm_authenticate() and pam_sm_chauthtok
(), providing functionality to both the Authentication Stack and the Password
Management Stack.

The implementation of pam_sm_authenticate(3PAM) prompts the user name if not
set and then tries to get the authentication token from the pam handle. If the token is
not set, it then prompts the user for a password and stores it in the PAM item
PAM_AUTHTOK. This module is meant to be the first module on an authentication stack
where users are to authenticate using a keyboard.

Due to the nature of the PAM Password Management stack traversal mechanism, the
pam_sm_chauthtok(3PAM) function is called twice. Once with the
PAM_PRELIM_CHECK flag, and one with the PAM_UPDATE_AUTHTOK flag.

In the first (PRELIM) invocation, the implementation of pam_sm_chauthtok(3PAM)
moves the contents of the PAM_AUTHTOK (current authentication token) to
PAM_OLDAUTHTOK, and subsequentially prompts the user for a new password. This
new password is stored in PAM_AUTHTOK.

If a previous module has set PAM_AUTHTOK prior to the invocation of
pam_authtok_get, this module turns into a NO-OP and immediately returns
PAM_SUCCESS.

In the second (UPDATE) invocation, the user is prompted to Re-enter his password.
The pam_sm_chauthtok implementation verifies this reentered password with the
password stored in PAM_AUTHTOK. If the passwords match, the module returns
PAM_SUCCESS.

The following option can be passed to the module:

debug syslog(3C) debugging information at the LOG_DEBUG level

The authentication service returns the following error codes:

PAM_SUCCESS Successfully obtains authentication token

PAM_SYSTEM_ERR Fails to retrieve username, username is NULL or empty

The password management service returns the following error codes:

PAM_SUCCESS Successfully obtains authentication token

PAM_AUTHTOK_ERR Authentication token manipulation error

pam_authtok_get(5)

NAME

SYNOPSIS

DESCRIPTION

Authentication
Service

Password
Management

Service

ERRORS

268 man pages section 5: Standards, Environments, and Macros • Last Revised 21 Jan 2003

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT Level MT-Safe with exceptions

pam(3PAM), pam_authenticate(3PAM), syslog(3C), libpam(3LIB), pam.conf(4),
attributes(5), pam_authtok_check(5), pam_authtok_get(5),
pam_authtok_store(5), pam_dhkeys(5), pam_passwd_auth(5), pam_unix(5),
pam_unix_account(5), pam_unix_auth(5), pam_unix_session(5)

The interfaces in libpam(3LIB) are MT-Safe only if each thread within the
multi-threaded application uses its own PAM handle.

The pam_unix(5) module might not be supported in a future release. Similar
functionality is provided by pam_authtok_check(5), pam_authtok_get(5),
pam_authtok_store(5), pam_dhkeys(5), pam_passwd_auth(5),
pam_unix_account(5), pam_unix_auth(5), and pam_unix_session(5).

pam_authtok_get(5)

ATTRIBUTES

SEE ALSO

NOTES

Standards, Environments, and Macros 269

pam_authtok_store – password management module

pam_authtok_store.so.1

pam_authtok_store provides functionality to the PAM password management
stack. It provides one function: pam_sm_chauthtok().

When invoked with flags set to PAM_UPDATE_AUTHTOK, this module updates the
authentication token for the user specified by PAM_USER.

The authentication token PAM_OLDAUTHTOK can be used to authenticate the user
against repositories that need updating (NIS, LDAP). After successful updates, the
new authentication token stored in PAM_AUTHTOK is the user’s valid password.

This module honors the PAM_REPOSITORY item, which, if set, specifies which
repository is to be updated. If PAM_REPOSITORY is unset, it follows the
nsswitch.conf(4).

The following option can be passed to the module:

debug syslog(3C) debugging information at the LOG_DEBUG level

server_policy If the account authority for the user, as specified by PAM_USER, is a
server, do not encrypt the authentication token before updating.

PAM_SUCCESS Successfully obtains authentication token

PAM_SYSTEM_ERR Fails to get username, service name, old password or
new password, user name null or empty, or password
null.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT Level MT-Safe with exceptions

pam(3PAM), pam_authenticate(3PAM), pam_chauthtok(3PAM), syslog(3C),
libpam(3LIB), pam.conf(4), attributes(5), pam_authtok_check(5),
pam_authtok_get(5), pam_dhkeys(5), pam_passwd_auth(5), pam_unix(5),
pam_unix_account(5), pam_unix_auth(5), pam_unix_session(5)

The interfaces in libpam(3LIB) are MT-Safe only if each thread within the
multi-threaded application uses its own PAM handle.

The pam_unix(5) module might not be supported in a future release. Similar
functionality is provided by pam_authtok_check(5), pam_authtok_get(5),
pam_authtok_store(5), pam_dhkeys(5), pam_passwd_auth(5),
pam_unix_account(5), pam_unix_auth(5), and pam_unix_session(5).

pam_authtok_store(5)

NAME

SYNOPSIS

DESCRIPTION

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

270 man pages section 5: Standards, Environments, and Macros • Last Revised 21 Jan 2003

pam_dhkeys – authentication Diffie-Hellman keys management module

pam_dhkeys.so.1

The pam_dhkeys.so.1 service module provides functionality to two PAM services:
Secure RPC authentication and Secure RPC authentication token management.

Secure RPC authentication differs from regular unix authentication because NIS+ and
other ONC RPCs use Secure RPC as the underlying security mechanism.

The following options may be passed to the module:

debug syslog(3C)debugging information at LOG_DEBUG level

nowarn Turn off warning messages

If the user has Diffie-Hellman keys, pam_sm_authenticate() establishes secret
keys for the user specified by the PAM_USER (equivalent to running keylogin(1)),
using the authentication token found in the PAM_AUTHTOK item. Not being able to
establish the secret keys results in an authentication error if the NIS+ repository is
used to authenticate the user and the NIS+ table permissions require secure RPC
credentials to access the password field. If pam_sm_setcred() is called with
PAM_ESTABLISH_CRED and the user’s secure RPC credentials need to be established,
these credentials are set. This is equivalent to running keylogin(1).

If the credentials could not be set and PAM_SILENT is not specified, a diagnostic
message is displayed. If pam_setcred() is called with PAM_DELETE_CRED, the
user’s secure RPC credentials are unset. This is equivalent to running keylogout(1).

PAM_REINITIALIZE_CRED and PAM_REFRESH_CRED are not supported and return
PAM_IGNORE.

The pam_sm_chauthtok() implementation checks whether the old login password
decrypts the users secret keys. If it doesn’t this module prompts the user for an old
Secure RPC password and stores it in a pam data item called SUNW_OLDRPCPASS.
This data item can be used by the store module to effectively update the users secret
keys.

The authentication service returns the following error codes:

PAM_SUCCESS Credentials set successfully.

PAM_IGNORE Credentials not needed to access the password
repository.

PAM_USER_UNKNOWN PAM_USER is not set, or the user is unknown.

PAM_AUTH_ERR No secret keys were set. PAM_AUTHTOK is not set, no
credentials are present or there is a wrong password.

PAM_BUF_ERR Module ran out of memory.

PAM_SYSTEM_ERR NIS+ subsystem failed .

pam_dhkeys(5)

NAME

SYNOPSIS

DESCRIPTION

Authentication
Services

Authentication
Token

Management

ERRORS

Standards, Environments, and Macros 271

The authentication token management returns the following error codes:

PAM_SUCCESS Old rpc password is set in SUNW_OLDRPCPASS

PAM_USER_UNKNOWN User in PAM_USER is unknown.

PAM_AUTHTOK_ERR User did not provide a password that decrypts the
secret keys.

PAM_BUF_ERR Module ran out of memory.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT Level MT-Safe with exceptions

keylogin(1), keylogout(1), pam(3PAM), pam_authenticate(3PAM),
pam_chauthtok(3PAM), pam_setcred(3PAM), pam_get_item(3PAM),
pam_set_data(3PAM), pam_get_data(3PAM), syslog(3C), libpam(3LIB),
pam.conf(4), attributes(5), pam_authtok_check(5), pam_authtok_get(5),
pam_authtok_store(5), pam_passwd_auth(5), pam_unix(5),
pam_unix_account(5), pam_unix_auth(5), pam_unix_session(5)

The interfaces in libpam(3LIB) are MT-Safe only if each thread within the
multi-threaded application uses its own PAM handle.

The pam_unix(5) module might not be supported in a future release. Similar
functionality is provided by pam_authtok_check(5), pam_authtok_get(5),
pam_authtok_store(5), pam_dhkeys(5), pam_passwd_auth(5),
pam_unix_account(5), pam_unix_auth(5), and pam_unix_session(5).

pam_dhkeys(5)

ATTRIBUTES

SEE ALSO

NOTES

272 man pages section 5: Standards, Environments, and Macros • Last Revised 21 Jan 2003

pam_dial_auth – authentication management PAM module for dialups

/usr/lib/security/pam_dial_auth.so.1

The dialup PAM module, /usr/lib/security/pam_dial_auth.so.1,
authenticates a user according to the /etc/dialups and /etc/d_passwd files. Only
pam_sm_authenticate() is implemented within this module.
pam_sm_setcred() is a null function.
/usr/lib/security/pam_dial_auth.so.1 is designed to be stacked
immediately below the /usr/lib/security/pam_unix.so.1 module for the login
service.

pam_sm_authenticate() performs authentication only if both the /etc/dialups
and /etc/d_passwd files exist. The user’s terminal line is checked against entries in
the /etc/dialups file. If there is a match, the user’s shell is compared against entries
in the /etc/d_passwd file. If there is a matching entry, the user is prompted for a
password which is validated against the entry in the /etc/d_passwd file. If the
passwords match, the user is authenticated. The following option may be passed in to
this service module:

debug syslog(3C) debugging information at LOG_DEBUG level.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level MT-Safe with exceptions

pam(3PAM), pam_authenticate(3PAM), d_passwd(4), dialups(4), libpam(3LIB),
pam.conf(4), attributes(5), pam_authtok_check(5), pam_authtok_get(5),
pam_authtok_store(5), pam_dhkeys(5), pam_passwd_auth(5), pam_unix(5),
pam_unix_account(5), pam_unix_auth(5), pam_unix_session(5)

The interfaces in libpam(3LIB) are MT-Safe only if each thread within the
multi-threaded application uses its own PAM handle.

The pam_unix(5) module might not be supported in a future release. Similar
functionality is provided by pam_authtok_check(5), pam_authtok_get(5),
pam_authtok_store(5), pam_dhkeys(5), pam_passwd_auth(5),
pam_unix_account(5), pam_unix_auth(5), and pam_unix_session(5).

pam_dial_auth(5)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

NOTES

Standards, Environments, and Macros 273

pam_krb5 – authentication, account, session, and password management PAM
modules for Kerberos V5

/usr/lib/security/pam_krb5.so.1

The Kerberos V5 service module for PAM, /usr/lib/security/pam_krb5.so.1,
provides functionality for all four PAM modules: authentication, account
management, session management, and password management. The
pam_krb5.so.1 module is a shared object that can be dynamically loaded to provide
the necessary functionality upon demand. Its path is specified in the PAM
configuration file.

The Kerberos V5 authentication component provides functions to verify the identity of
a user, pam_sm_authenticate(), and to refresh the Kerberos credentials cache,
pam_sm_setcred(). pam_sm_authenticate() authenticates a user principal
though the Kerberos authentication service. If the authentication request is successful,
the authentication service sends a ticket-granting ticket (tgt) back to the
pam_krb5.so.1 module, which then verifies that the TGT came from a valid KDC by
attempting to get a service ticket for the local host service. For this to succeed, the local
host’s keytab file (/etc/krb5/krb5.keytab) must contain the entry for the local
host service (for example, host/hostname.com@REALM where hostname.com is the fully
qualified local hostname and REALM is the default realm of the local host as defined
in /etc/krb5/krb5.conf). Once the TGT is verified, it is stored in the credentials
cache for later use by Kerberized network applications. If the host entry is not found
in the keytab file, the authentication fails.

The following options can be passed to the Kerberos V5 authentication module:

acceptor Prevents the PAM module from performing the
authentication service exchange used to obtain the
initial ticket-granting ticket. This should be used on
Kerberos application servers since the initial ticket is
not needed.

debug Provides syslog(3C) debugging information at
LOG_DEBUG level.

nowarn Turns off warning messages.

use_first_pass Requests Kerberos V5 authentication with the user’s
initial password (entered when the user authenticated
to the first authentication module in the stack). If
Kerberos V5 authentication fails, or if no password has
been entered, it quits and does not prompt the user for
a password. This option should only be used if the
authentication service is designated as optional in
the pam.conf configuration file.

try_first_pass Requests Kerberos V5 authentication with the user’s
initial password (entered when the user authenticated
to the first authentication module in the stack). If

pam_krb5(5)

NAME

SYNOPSIS

DESCRIPTION

Kerberos
Authentication

Module

274 man pages section 5: Standards, Environments, and Macros • Last Revised 21 Jan 2003

Kerberos V5 authentication fails, or if no password has
been entered, the user is prompted for a password with
the prompt "Kerberos Password:".

use_xfn_pass Requests Kerberos V5 authentication with a mapped
password that has been stored under XFN. If Kerberos
V5 authentication fails, or if no password has been
entered, it quits and does not prompt the user for a
password. This option should only be used if the
authentication service is designated as optional in
the pam.conf configuration file.

try_xfn_Pass Requests Kerberos V5 authentication with a mapped
password that has been stored under XFN. If Kerberos
V5 authentication fails, or if no password has been
stored, the user is prompted for a password with the
prompt "Kerberos Password:".

The Kerberos account management component provides a function to perform
account management, pam_sm_acct_mgmt(). This function checks to see if the
pam_krb5 authentication module has noted that the user’s password has not expired.
The following options may be passed in to the Kerberos V5 service module:

debug Provides syslog(3C) debugging information at
LOG_DEBUG level

nowarn Turn off warning messages.

The Kerberos V5 session management component provides functions to initiate
pam_sm_open_session() and terminate pam_sm_close_session() Kerberos V5
sessions. For Kerberos V5, pam_sm_open_session is a null function.
pam_close_session destroys a principal’s credential cache as well as the kernel
Kerberos credentials if the session being closed is the last open session on this server
for the calling principal.

The Kerberos V5 password management component provides a function to change
passwords pam_sm_chauthtok() in the Key Distribution Center (KDC) database.
The following options can be passed in to the Kerberos V5 password module:

debug Provides syslog(3C) debugging information at
LOG_DEBUG level.

nowarn Turns off warning messages.

use_first_pass Requests Kerberos V5 authentication with the user’s
initial password (entered when the user authenticated
to the first authentication module in the stack). If
Kerberos V5 authentication fails, or if no password has
been entered, it quits and does not prompt the user for
a password. If authentication succeeds, the user is
prompted by "New KRB5 password:" for a new

pam_krb5(5)

Kerberos V5
Account

Management
Module

Kerberos V5
Session

Management
Module

Kerberos V5
Password

Management
Module

Standards, Environments, and Macros 275

password. The user is then prompted a second time for
the new password for verification and the KDC
database is updated with the new password if both
responses match.

try_first_pass Requests Kerberos V5 authentication with the user’s
initial password (entered when the user authenticated
to the first authentication module in the stack). If
Kerberos V5 authentication fails, or if no password has
been entered, the user is prompted for a password with
the prompt "Old KRB5 Password:". If authentication
succeeds, the user is prompted by "New KRB5
password:" for a new password. The user is then
prompted a second time for the new password for
verification and the KDC database is updated with the
new password if both responses match.

use_xfn_pass Requests Kerberos V5 authentication with a mapped
password that has been stored under XFN. If Kerberos
V5 authentication fails, or if no password has been
stored, it quits and does not prompt the user for a
password. If authentication succeeds, the user is
prompted by "New KRB5 password:" for a new
password. The user is then prompted a second time for
the new password for verification and the KDC
database is updated with the new password if both
responses match.

try_xfn_pass Requests Kerberos V5 authentication with a mapped
password that has been stored under XFN. If Kerberos
V5 authentication fails, or if no password has been
stored, the user is prompted for a password with the
prompt "Old KRB5 Password:". If authentication
succeeds, the user is prompted by "New KRB5
password:" for a new password. The user is then
prompted a second time for the new password for
verification and the KDC database is updated with the
new password if both responses match.

The following is a sample pam.conf configuration file with Kerberos V5 support.
Please note that this is only intended to give the flavor of the pam.conf Kerberos V5
entries and is not complete.

#
Authentication management
#
login auth required /usr/lib/security/$ISA/pam_unix.so.1
login auth optional /usr/lib/security/$ISA/pam_krb5.so.1 try_first_pass
#
Account management

pam_krb5(5)

Sample pam.conf
File

276 man pages section 5: Standards, Environments, and Macros • Last Revised 21 Jan 2003

#
dtlogin account required /usr/lib/security/$ISA/pam_unix.so.1
dtlogin account optional /usr/lib/security/$ISA/pam_krb5.so.1
#
Session management
#
other session required /usr/lib/security/$ISA/pam_unix.so.1
other session optional /usr/lib/security/$ISA/pam_krb5.so.1
#
Password management
#
other password required /usr/lib/security/$ISA/pam_unix.so.1

other password optional /usr/lib/security/$ISA/pam_krb5.so.1 try_first_pass

The Kerberos V5 module entries typically follow the Unix module entries. Thus, the
Kerberos V5 modules are "stacked" behind the Unix module. For the login service, the
Kerberos V5 authentication module runs after the Unix module. Its entry is
optional, so the user can still login if it fails, assuming that the previous Unix
module succeeded. If the entry designates required instead of optional, the user
cannot login if Kerberos V5 authentication fails. Because the try_first_pass option
is designated, it tries the user’s password entered for the Unix module. If Kerberos V5
authentication fails, or no password has been entered, the user is prompted for the
Kerberos V5 password. For all session related services, the Kerberos V5 session
module runs after the Unix module. For the dtlogin service, the Kerberos V5 account
management module runs after the Unix module. For all password changing related
services, the Kerberos V5 module runs after the Unix module. Because the
try_first_pass option is designated, if the initial password entered for the Unix
module authenticates Kerberos V5 successfully, the old Kerberos V5 password is not
requested from the user; only the new Kerberos V5 password is requested.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level MT-Safe with exceptions

Interface Stability Evolving

keylogin(1), ktutil(1), pam(3PAM), pam_authenticate(3PAM), syslog(3C),
libpam(3LIB), pam.conf(4), attributes(5), SEAM(5), pam_authtok_check(5),
pam_authtok_get(5), pam_authtok_store(5), pam_dhkeys(5),
pam_passwd_auth(5), pam_unix(5), pam_unix_account(5), pam_unix_auth(5),
pam_unix_session(5)

The interfaces in libpam(3LIB) are MT-Safe only if each thread within the
multi-threaded application uses its own PAM handle.

pam_krb5(5)

ATTRIBUTES

SEE ALSO

NOTES

Standards, Environments, and Macros 277

The pam_unix(5) module might not be supported in a future release. Similar
functionality is provided by pam_authtok_check(5), pam_authtok_get(5),
pam_authtok_store(5), pam_dhkeys(5), pam_passwd_auth(5),
pam_unix_account(5), pam_unix_auth(5), and pam_unix_session(5).

pam_krb5(5)

278 man pages section 5: Standards, Environments, and Macros • Last Revised 21 Jan 2003

pam_ldap – authentication, account, and password management PAM module for
LDAP

/usr/lib/security/pam_ldap.so.1

The pam_ldap module implements pam_sm_authenticate, pam_sm_setcred,
pam_sm_acct_mgmt, and pam_sm_chauthtok, the functions that provide
functionality for the PAM authentication, account management and password
management stacks. The pam_ldap module ties the authentication, account
management and password change functionality to the functionality of the supporting
LDAP server. For authentication, pam_ldap can authenticate the user directly to any
LDAP directory server by using any supported authentication mechanism, such as
DIGEST-MD5. However, the account management and password change components
of pam_ldap will only work with the bundled Sun ONE Directory Server. The Sun
ONE Directory Server user account management, that is, password and account
lockout policy, must be properly configured on the server before it can be used by
pam_ldap to provide the account management, password aging, and password
syntax checking controls. Refer to the Sun ONE Directory Server Administrator’s
Guide that is cited in the NOTES section.

pam_ldap must be used in conjunction with the modules that support the UNIX
authentication, password, and account management., which are
pam_authtok_check(5), pam_authtok_get(5), pam_authtok_store(5),
pam_passwd_auth(5), pam_unix_account(5), and pam_unix_auth(5). pam_ldap
is designed to be stacked directly below these modules. If other modules are designed
to be stacked in this manner, the modules can be stacked below the pam_ldap
module. The EXAMPLES section shows how the UNIX modules are stacked with
pam_ldap. When stacked together, the UNIX modules are used to control local
accounts, such as root. pam_ldap is used for control with the network accounts, that
is, LDAP users. For the stacks to work, pam_unix_auth, pam_unix_account,
pam_passwd_auth, and pam_authtok_store must to configured with the
binding control flag and the server_policy option. This configuration allows local
account override of a network account.

The LDAP authentication module verifies the identity of a user. The
pam_sm_authenticate function uses the password entered by the user to attempt
to authenticate to the LDAP server. If successful, the user is authenticated.

The authentication method used is either defined in the client profile , or the
authentication method is configured by using the ldapclient(1M) command. To
determine the authentication method to use, this module first attempts to use the
authentication method that is defined, for service pam_ldap, for example,
serviceAuthenticationMethod:pam_ldap:sasl/DIGEST-MD5. If no
authentication method is defined, pam_ldap uses the default authentication method. If
neither are set, the authentication fails. This module skips the configured
authentication method if the authentication method is set to none.

The pam_sm_setcred(3PAM) function does nothing. This function always returns
PAM_IGNORE.

pam_ldap(5)

NAME

SYNOPSIS

DESCRIPTION

LDAP
Authentication

Module

Standards, Environments, and Macros 279

The following options may be passed to the LDAP service module:

debug syslog(3C) debugging information at LOG_DEBUG
level.

nowarn Turn off warning messages.

These options are case sensitive, and the options must be used exactly as presented
here.

The LDAP account management module validates the user’s account. The
pam_sm_acct_mgmt(3PAM) function authenticates to the LDAP server to verify that
the user’s password has not expired, or that the user’s account has not been locked.
The following options may be passed to the LDAP service module:

debug syslog(3C) debugging information at LOG_DEBUG
level.

nowarn Turn off warning messages.

These options are case sensitive, and the options must be used exactly as presented
here.

The preferred way to configure password management for LDAP is by using the
pam_authtok_store(5) module and by specify ing the server_policy option.
Use the pam_authtok_store function instead of pam_ldap for password change. When
password management is configured this way, both the local and LDAP accounts are
handled. pam_authtok_store(5) updates the passwords in all the repositories
configured by nsswitch.conf(4). pam_ldap updates only the password in the
LDAP password database.

The LDAP password management module provides the pam_sm_chauthtok()
function to change passwords in the LDAP database.

The following options may be passed to the LDAP service module:

debug syslog(3C) debugging information at LOG_DEBUG
level.

nowarn Turn off warning messages.

These options are case sensitive , and the options must be used exactly as presented
here.

The authentication service returns the following error codes:

PAM_SUCCESS Authentication successful

PAM_MAXTRIES Maximum number of authentication attempts exceeded

PAM_AUTH_ERR Authentication failure

PAM_USER_UNKNOWN No account present for user

pam_ldap(5)

LDAP Account
Management

Module

LDAP Password
Management

Module

ERRORS

280 man pages section 5: Standards, Environments, and Macros • Last Revised 21 Jan 2003

PAM_BUF_ERR Memory buffer error

PAM_SYSTEM_ERR System error

The account management service returns the following error codes:

PAM_SUCCESS User allowed access to account

PAM_NEW_AUTHTOK_REQD New authentication token required

PAM_ACCT_EXPIRED User account has expired

PAM_PERM_DENIED User denied access to account at this time

PAM_USER_UNKNOWN No account present for user

PAM_BUF_ERROR Memory buffer error

PAM_SYSTEM_ERR System error

The password management service returns the following values:

PAM_SUCCESS Successfully updates authentication token

PAM_PERM_DENIED No permission to update authentication token

PAM_AUTHTOK_ERR Authentication token manipulation error

PAM_USER_UNKNOWN No account present for user

PAM_BUF_ERR Memory buffer error

PAM_SYSTEM_ERR System error

EXAMPLE 1 Using pam_ldap With Authentication

The following is a configuration for the login service when using pam_ldap. The
service name login can be substituted for any other authentication service such as
dtlogin or su. Lines that begin with the # symbol are comments, and these lines
ignored.

Authentication management for login service is stacked.
If pam_unix_auth succeeds, pam_ldap is not invoked.
The control flag "binding" provides a local overriding
remote (LDAP) control. The "server_policy" option is used
to tell pam_unix_auth.so.1 to ignore the LDAP users.

login auth requisite pam_authtok_get.so.1
login auth required pam_dhkeys.so.1
login auth binding pam_unix_auth.so.1 server_policy

login auth required pam_ldap.so.1

EXAMPLE 2 Using pam_ldap With Account Management

The following is a configuration for account management when using pam_ldap.
Lines that begin with the # symbol are ignored.

pam_ldap(5)

EXAMPLES

Standards, Environments, and Macros 281

EXAMPLE 2 Using pam_ldap With Account Management (Continued)

Account management for all services is stacked
If pam_unix_account succeeds, pam_ldap is not invoked.
The control flag "binding" provides a local overriding
remote (LDAP) control. The "server_policy" option is used
to tell pam_unix_account.so.1 to ignore the LDAP users.

other account requisite pam_roles.so.1
other account required pam_projects.so.1
other account binding pam_unix_account.so.1 server_policy

other account required pam_ldap.so.1

EXAMPLE 3 Using pam_authtok_store With Password Management For Both Local and
LDAP Accounts

The following is a configuration for password management when using
pam_authtok_store instead of pam_ldap. This configuration works because
pam_authtok_store updates password in all the repositories configured by
nsswitch.conf(4). Lines that begin with the # symbol are comments , and the lines
are ignored.

Password management (authentication)
passwd auth binding pam_passwd_auth.so.1 server_policy
passwd auth required pam_ldap.so.1

Password management (updates)
This is the preferred stack, since it updates
passwords stored both in the local /etc files and
in the LDAP directory. The "server_policy"
option is used to tell pam_authtok_store to
follow the LDAP server’s policy when updating
passwords stored in the LDAP directory

other password required pam_dhkeys.so.1
other password requisite pam_authtok_get.so.1
other password requisite pam_authtok_check.so.1

other password required pam_authtok_store.so.1 server_policy

EXAMPLE 4 Using pam_ldap With Password Management if There are no Local Accounts

Use the following configuration for password management when using pam_ldap.
Lines that begin with the # symbol are comments, and athe comments are ignored.

Password management (authentication)
The control flag "binding" provides a local overriding
remote (LDAP) control. The server_policy option is used
to tell pam_passwd_auth.so.1 to ignore the LDAP users.

passwd auth binding pam_passwd_auth.so.1 server_policy
passwd auth required pam_ldap.so.1

Password management (updates)
This stack is limited to updating password stored in the

pam_ldap(5)

282 man pages section 5: Standards, Environments, and Macros • Last Revised 21 Jan 2003

EXAMPLE 4 Using pam_ldap With Password Management if There are no Local
Accounts (Continued)

LDAP directory. The preferred method is shown in Example 3.

other password required pam_ldap.so.1

/var/ldap/ldap_client_file
/var/ldap/ldap_client_cred The LDAP configuration files of the client.

Do not manually modify these files, as these
files may not be human readable. Use
ldapclient(1M) to update these files.

/etc/pam.conf PAM configuration file.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

Stability Level Evolving

ldap(1), idsconfig(1M), ldap_cachemgr(1M), ldapclient(1M), libpam(3LIB),
pam(3PAM), pam_sm_authenticate(3PAM), pam_sm_chauthtok(3PAM),
pam_sm_setcred(3PAM), syslog(3C), pam.conf(4), attributes(5),
pam_authtok_check(5), pam_authtok_get(5), pam_authtok_store(5),
pam_passwd_auth(5), pam_unix_account(5), pam_unix_auth(5)

The interfaces in libpam(3LIB) are MT-Safe only if each thread within the
multi-threaded application uses its own PAM handle.

For information on how to configure the user account management, including
password and account lockout policy for the bundled Sun ONE Directory Server,
please browse the html file
/usr/iplanet/ds5/manual/en/slapd/ag/password.htm.

pam_ldap(5)

FILES

ATTRIBUTES

SEE ALSO

NOTES

Standards, Environments, and Macros 283

pam_passwd_auth – authentication module for password

pam_passwd_auth.so.1

pam_passwd_auth provides authentication functionality to the password service as
implemented by passwd(1). It differs from the standard PAM authentication modules
in its prompting behavior.

The name of the user whose password attributes are to be updated must be present in
the PAM_USER item. This can be accomplished due to a previous call to
pam_start(3PAM), or explicitly set by pam_set_item(3PAM). Based on the current
user-id and the repository that is to by updated, the module determines whether a
password is necessary for a successful update of the password repository, and if so,
which password is required.

The following option can be passed to the module:

debug syslog(3C) debugging information at the LOG_DEBUG
level

nowarn Turn off warning messages

server_policy If the account authority for the user, as specified by
PAM_USER, is a server, do not apply the Unix policy
from the passwd entry in the name service switch.

The following error codes are returned:

PAM_BUF_ERR Memory buffer error

PAM_IGNORE Ignore module, not participating in result

PAM_SUCCESS Successfully obtains authentication token

PAM_SYSTEM_ERR System error

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT Level MT-Safe with exceptions

passwd(1), pam(3PAM), pam_authenticate(3PAM), pam_start(3PAM),
pam_set_item(3PAM), syslog(3C), libpam(3LIB), pam.conf(4), attributes(5),
pam_authtok_check(5), pam_authtok_get(5), pam_authtok_store(5),
pam_dhkeys(5), pam_unix(5), pam_unix_account(5), pam_unix_auth(5),
pam_unix_session(5)

The interfaces in libpam(3LIB) are MT-Safe only if each thread within the
multi-threaded application uses its own PAM handle.

pam_passwd_auth(5)

NAME

SYNOPSIS

DESCRIPTION

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

284 man pages section 5: Standards, Environments, and Macros • Last Revised 21 Jan 2003

This module relies on the value of the current real UID, this module is only safe for
MT-applications that don’t change UIDs during the call to
pam_authenticate(3PAM).

The pam_unix(5) module might not be supported in a future release. Similar
functionality is provided by pam_authtok_check(5), pam_authtok_get(5),
pam_authtok_store(5), pam_dhkeys(5), pam_passwd_auth(5),
pam_unix_account(5), pam_unix_auth(5), and pam_unix_session(5).

pam_passwd_auth(5)

Standards, Environments, and Macros 285

pam_projects – account management PAM module for projects

/usr/lib/security/pam_projects.so.1

The projects service module for PAM, /usr/lib/security/pam_projects.so.1,
provides functionality for the account management PAM module. The
pam_projects.so.1 module is a shared object that can be dynamically loaded to
provide the necessary functionality upon demand. Its path is specified in the PAM
configuration file.

pam_projects.so.1 is designed to be stacked on top of the
pam_unix_account.so.1 module for all services. This module is normally
configured as “required”, implying that any user lacking a default project will be
denied login.

The project account management component provides a function to perform account
management, pam_sm_acct_mgmt(). This function uses the getdefaultproj()
function (see getprojent(3PROJECT)) to retrieve the user’s default project entry
from the project(4) database. It then sets the project ID attribute of the calling
process, using the settaskid(2) system call.

If the user does not belong to any project defined in the project(4) database, or if the
settaskid() system call failed to set the project ID attribute of the calling process,
the module will display an error message and will return error code
PAM_PERM_DENIED.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

settaskid(2), getprojent(3PROJECT), libpam(3LIB), pam(3PAM),
pam_acct_mgmt(3PAM), pam.conf(4), project(4), attributes(5)

, pam_authtok_check(5), pam_authtok_get(5), pam_authtok_store(5),
pam_dhkeys(5), pam_passwd_auth(5), pam_unix(5), pam_unix_account(5),
pam_unix_auth(5), pam_unix_session(5)

The interfaces in libpam(3LIB) are MT-Safe only if each thread within the
multi-threaded application uses its own PAM handle.

The pam_unix(5) module might not be supported in a future release. Similar
functionality is provided by pam_authtok_check(5), pam_authtok_get(5),
pam_authtok_store(5), pam_dhkeys(5), pam_passwd_auth(5),
pam_unix_account(5), pam_unix_auth(5), and pam_unix_session(5).

pam_projects(5)

NAME

SYNOPSIS

DESCRIPTION

Projects Account
Management

Module

ATTRIBUTES

SEE ALSO

NOTES

286 man pages section 5: Standards, Environments, and Macros • Last Revised 15 Dec 2001

pam_rhosts_auth – authentication management PAM module using ruserok()

/usr/lib/security/pam_rhosts_auth.so.1

The rhosts PAM module, /usr/lib/security/pam_rhosts_auth.so.1,
authenticates a user via the rlogin authentication protocol. Only
pam_sm_authenticate() is implemented within this module.
pam_sm_authenticate() uses the ruserok(3SOCKET) library function to
authenticate the rlogin or rsh user. pam_sm_setcred() is a null function.

/usr/lib/security/pam_rhosts_auth.so.1 is designed to be stacked on top of
the /usr/lib/security/pam_unix.so.1 module for both the rlogin and rsh
services. This module is normally configured as sufficient so that subsequent
authentication is performed only on failure of pam_sm_authenticate(). The
following option may be passed in to this service module:

debug syslog(3C) debugging information at LOG_DEBUG level.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level MT-Safe with exceptions

pam(3PAM), pam_authenticate(3PAM), ruserok(3SOCKET), syslog(3C),
libpam(3LIB), pam.conf(4), attributes(5)

The interfaces in libpam() are MT-Safe only if each thread within the multi-threaded
application uses its own PAM handle.

pam_rhosts_auth(5)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

NOTES

Standards, Environments, and Macros 287

pam_roles – Role Account Management PAM module for Solaris

/usr/lib/security/pam_roles.so.1

The Role Account Management module for PAM,
/usr/lib/security/pam_roles.so.1, provides functionality for one PAM
module: Account management. The pam_roles.so.1 is a shared object that can be
dynamically loaded to provide the necessary functionality upon demand. Its path is
specified in the PAM configuration file.

The Role account management component provides a function to check for
authorization to assume a role. It prevents direct logins to a role. It uses the
user_attr(4) database to specify which users can assume which roles.

The following options may be passed to the Role Authentication service module:

debug syslog(3C) debugging information at LOG_DEBUG level.

If PAM_USER (see pam_set_item(3PAM)) is specified as type normal in the
user_attr(4) database, the module returns PAM_IGNORE.

If PAM_RUSER (see pam_set_item(3PAM)) is not set, the uid of the process loading
the module is used to determine PAM_RUSER.

The module returns success if the user_attr(4) entry for PAM_RUSER has an entry in
the roles field for PAM_USER; otherwise it returns PAM_PERM_DENIED.

This module is generally stacked above the account management module
pam_unix.so.1. The error messages indicating that roles cannot be logged into
correctly are only issued if the user has entered the correct password.

Here are some sample entries from pam.conf(4) demonstrating the use of the
pam_roles.so.1 module:

dtlogin account requisite /usr/lib/security/$ISA/pam_roles.so.1
dtlogin account required /usr/lib/security/$ISA/pam_unix.so.1
#
su account requisite /usr/lib/security/$ISA/pam_roles.so.1
su account requisite /usr/lib/security/$ISA/pam_roles.so.1
#
rlogin account requisite /usr/lib/security/$ISA/pam_roles.so.1
rlogin account required /usr/lib/security/$ISA/pam_unix.so.1
#

The dtlogin program invokes pam_roles.so.1. PAM_RUSER is the username
corresponding to the uid of the dtlogin process, which is 0. The user_attr entry
for root user (uid 0) is empty, so all role logins are prevented through dtlogin. The
same rule applies to login.

The su program invokes pam_roles.so.1. PAM_RUSER is the username of the
userid of the shell that invokes su. A user needs the appropriate entry in the roles list
in user_attr(4) to be able to su to another user.

pam_roles(5)

NAME

SYNOPSIS

DESCRIPTION

Role Account
Management

Module

288 man pages section 5: Standards, Environments, and Macros • Last Revised 11 Dec 2001

In the example above, the rlogin program invokes the pam_roles.so.1 module.
The module checks for PAM_RUSER and determines whether the role being assumed,
PAM_RUSER, is in the roles list of the userattr entry for PAM_RUSER. If it is in the roles
list, the module returns PAM_SUCCESS; otherwise it returns PAM_PERM_DENIED.

keylogin(1), libpam(3LIB), pam(3PAM), pam_acct_mgmt(3PAM),
pam_setcred(3PAM), pam_set_item(3PAM), syslog(3C), pam.conf(4),
user_attr(4), attributes(5), pam_authtok_check(5), pam_authtok_get(5),
pam_authtok_store(5), pam_dhkeys(5), pam_passwd_auth(5), pam_unix(5),
pam_unix_account(5), pam_unix_auth(5), pam_unix_session(5)

The interfaces in libpam(3LIB) are MT-Safe only if each thread within the
multi-threaded application uses its own PAM handle.

The pam_unix(5) module might not be supported in a future release. Similar
functionality is provided by pam_authtok_check(5), pam_authtok_get(5),
pam_authtok_store(5), pam_dhkeys(5), pam_passwd_auth(5),
pam_unix_account(5), pam_unix_auth(5), and pam_unix_session(5).

pam_roles(5)

SEE ALSO

NOTES

Standards, Environments, and Macros 289

pam_sample – a sample PAM module

/usr/lib/security/pam_sample.so.1

The SAMPLE service module for PAM is divided into four components:
authentication, account management, password management, and session
management. The sample module is a shared object that is dynamically loaded to
provide the necessary functionality.

The SAMPLE authentication module, typically
/usr/lib/security/pam_sample.so.1, provides functions to test the PAM
framework functionality using the pam_sm_authenticate(3PAM) call. The
SAMPLE module implementation of the pam_sm_authenticate(3PAM) function
compares the user entered password with the password set in the pam.conf(4) file, or
the string "test" if a default test password has not been set. The following options may
be passed in to the SAMPLE Authentication module:

debug Syslog debugging information at the LOG_DEBUG level.

passwd=newone Sets the password to be "newone."

first_pass_good The first password is always good when used with the
use_first_pass or try_first_pass option.

first_pass_bad The first password is always bad when used with the
use_first_pass or try_first_pass option.

always_fail Always returns PAM_AUTH_ERR.

always_succeed Always returns PAM_SUCCESS.

always_ignore Always returns PAM_IGNORE.

use_first_pass Use the user’s initial password (entered when the user
is authenticated to the first authentication module in
the stack) to authenticate with the SAMPLE module. If
the passwords do not match, or if this is the first
authentication module in the stack, quit and do not
prompt the user for a password. It is recommended
that this option only be used if the SAMPLE
authentication module is designated as optional in the
pam.conf configuration file.

try_first_pass Use the user’s initial password (entered when the user
is authenticated to the first authentication module in
the stack) to authenticate with the SAMPLE module. If
the passwords do not match, or if this is the first
authentication module in the stack, prompt the user for
a password. The SAMPLE module
pam_sm_setcred(3PAM) function always returns
PAM_SUCCESS.

pam_sample(5)

NAME

SYNOPSIS

DESCRIPTION

SAMPLE
Authentication

Component

290 man pages section 5: Standards, Environments, and Macros • Last Revised 28 Oct 1996

The SAMPLE Account Management Component, typically pam_sample.so.1,
implements a simple access control scheme that limits machine access to a list of
authorized users. The list of authorized users is supplied as option arguments to the
entry for the SAMPLE account management PAM module in the pam.conf file. Note
that the module always permits access to the root super user.

The option field syntax to limit access is shown below: allow= name[,name] allow=
name [allow=name]

The example pam.conf show below permits only larry to login directly. rlogin is
allowed only for don and larry. Once a user is logged in, the user can use su if the
user are sam or eric.

login account require pam_sample.so.1 allow=larry

dtlogin account require pam_sample.so.1 allow=larry

rlogin account require pam_sample.so.1 allow=don
allow=larry

su account require pam_sample.so.1 allow=sam,eric

The debug and nowarn options are also supported.

The SAMPLE Password Management Component function (
pam_sm_chauthtok(3PAM)), always returns PAM_SUCCESS.

The SAMPLE Session Management Component functions (
pam_sm_open_session(3PAM), pam_sm_close_session(3PAM)) always return
PAM_SUCCESS.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level MT-Safe with exceptions

pam(3PAM), pam_sm_authenticate(3PAM), pam_sm_chauthtok(3PAM),
pam_sm_close_session(3PAM), pam_sm_open_session(3PAM),
pam_sm_setcred(3PAM), libpam(3LIB), pam.conf(4), attributes(5)

The interfaces in libpam() are MT-Safe only if each thread within the multi-threaded
application uses its own PAM handle.

pam_sample(5)

SAMPLE Account
Management

Component

SAMPLE
Password

Management
ComponentSAMPLE Session

Management
Component

ATTRIBUTES

SEE ALSO

NOTES

Standards, Environments, and Macros 291

pam_smartcard – PAM authentication module for Smart Card

/usr/lib/security/pam_smartcard.so

The Smart Card service module for PAM,
/usr/lib/security/pam_smartcard.so, provides functionality to obtain a
user’s information (such as user name and password) for a smart card. The
pam_smartcard.so module is a shared object that can be dynamically loaded to
provide the necessary functionality upon demand. Its path is specified in the PAM
configuration file pam.conf. See pam.conf(4).

The Smart Card authentication component provides the
pam_sm_authenticate(3PAM) function to verify the identity of a smart card user.

The pam_sm_authenticate() function collects as user input the PIN number. It
passes this data back to its underlying layer, OCF, to perform PIN verification. If
verification is successful, the module returns PAM_SUCCESS, and passes the username
and password from the smart card to PAM modules stacked below.pam_smartcard.

The following options can be passed to the Smart Card service module:

debug sysolg(3C) debugging information at LOG_DEBUG level.

nowarn Turn off warning messages.

verbose Turn on verbose authentication failure reporting to the user.

The PAM smart card module (pam_smartcard) can be configured in the PAM
configuration file (/etc/pam.conf). For example, the following configuration on on
the desktop (Common Desktop Environment) forces a user to use a smart card for
logging in.

The following are typical values set by ’smartcard -c enable’, if the command is
applied to the default configuration.

dtlogin auth requisite pam_smartcard.so.1
dtlogin auth required pam_authtok_get.so.1
dtlogin auth required pam_dhkeys.so.1
dtlogin auth required pam_unix_auth.so.1

dtsession auth requisite pam_smartcard.so.1
dtsession auth required pam_authtok_get.so.1
dtsession auth required pam_dhkeys.so.1

dtsession auth required pam_unix_auth.so.1

smartcard(1M), libpam(3LIB), pam(3PAM), pam_authenticate(3PAM),
pam_start(3PAM), pam.conf(4), pam_authtok_check(5), pam_authtok_get(5),
pam_authtok_store(5), pam_dhkeys(5), pam_passwd_auth(5), pam_unix(5),
pam_unix_account(5), pam_unix_auth(5), pam_unix_session(5)

pam_smartcard(5)

NAME

SYNOPSIS

DESCRIPTION

Smart Card
Authentication

Module

Smart Card
Module

Configuration

SEE ALSO

292 man pages section 5: Standards, Environments, and Macros • Last Revised 17 Dec 2001

The pam_unix(5) module might not be supported in a future release. Similar
functionality is provided by pam_authtok_check(5), pam_authtok_get(5),
pam_authtok_store(5), pam_dhkeys(5), pam_passwd_auth(5),
pam_unix_account(5), pam_unix_auth(5), and pam_unix_session(5).

pam_smartcard(5)

NOTES

Standards, Environments, and Macros 293

pam_unix – authentication, account, session, and password management PAM
modules for UNIX

/usr/lib/security/pam_unix.so.1

The UNIX service module for PAM, /usr/lib/security/pam_unix.so.1,
provides functionality for all four PAM modules: authentication, account
management, session management and password management. The pam_unix.so.1
module is a shared object that can be dynamically loaded to provide the necessary
functionality upon demand. Its path is specified in the PAM configuration file.

The UNIX authentication component provides functions to verify the identity of a
user, (pam_sm_authenticate()) and to set user specific credentials
(pam_sm_setcred()). pam_sm_authenticate() compares the user entered
password with the password from the UNIX password database. If the passwords
match, the user is authenticated. If the user also has secure RPC credentials and the
secure RPC password is the same as the UNIX password, then the secure RPC
credentials are also obtained.

The following options may be passed to the UNIX service module:

debug syslog(3C) debugging information at LOG_DEBUG
level.

nowarn Turn off warning messages.

use_first_pass It compares the password in the password database
with the user’s initial password (entered when the user
authenticated to the first authentication module in the
stack). If the passwords do not match, or if no
password has been entered, it quits and does not
prompt the user for a password. This option should
only be used if the authentication service is designated
as optional in the pam.conf configuration file.

try_first_pass It compares the password in the password database
with the user’s initial password (entered when the user
authenticated to the first authentication module in the
stack). If the passwords do not match, or if no
password has been entered, prompt the user for a
password. When prompting for the current password,
the UNIX authentication module will use the prompt,
"password:" unless one of the following scenarios
occur:

1. The option try_first_pass is specified and the
password entered for the first module in the stack
fails for the UNIX module.

pam_unix(5)

NAME

SYNOPSIS

DESCRIPTION

UNIX
Authentication

Module

294 man pages section 5: Standards, Environments, and Macros • Last Revised 11 Dec 2001

2. The option try_first_pass is not specified, and
the earlier authentication modules listed in the
pam.conf file have prompted the user for the
password.

In these two cases, the UNIX authentication module
will use the prompt "SYSTEM password:". The
pam_sm_setcred() function sets user specific
credentials. If the user had secure RPC credentials, but
the secure RPC password was not the same as the
UNIX password, then a warning message is printed. If
the user wants to get secure RPC credentials, then
keylogin(1) needs to be run.

The UNIX account management component provides a function to perform account
management, pam_sm_acct_mgmt(). The function retrieves the user’s password
entry from the UNIX password database and verifies that the user’s account and
password have not expired. The following options may be passed in to the UNIX
service module:

debug syslog(3C) debugging information at LOG_DEBUG level.

nowarn Turn off warning messages.

The UNIX session management component provides functions to initiate
pam_sm_open_session() and terminate pam_sm_close_session() UNIX
sessions. For UNIX, pam_open_session updates the /var/adm/lastlog file. The
account management module reads this file to determine the previous time the user
logged in. The following options may be passed in to the UNIX service module:

debug syslog(3C) debugging information at LOG_DEBUG level.

nowarn Turn off warning messages. pam_close_session is a null
function.

The UNIX password management component provides a function to change
passwords pam_sm_chauthtok() in the UNIX password database. This module
must be required in pam.conf. It cannot be optional or sufficient. The following options
may be passed in to the UNIX service module:

debug syslog(3C) Debugging information at LOG_DEBUG
level.

nowarn Turn off warning messages.

use_first_pass It compares the password in the password database
with the user’s old password (entered to the first
password module in the stack). If the passwords do not
match, or if no password has been entered, it quits and
does not prompt the user for the old password. It also
attempts to use the new password (entered to the first

pam_unix(5)

UNIX Account
Management

Module

UNIX Session
Management

Module

UNIX Password
Management

Module

Standards, Environments, and Macros 295

password module in the stack) as the new password
for this module. If the new password fails, it quits and
does not prompt the user for a new password.

try_first_pass It compares the password in the password database
with the user’s old password (entered to the first
password module in the stack). If the passwords do not
match, or if no password has been entered, it prompts
the user for the old password. It also attempts to use
the new password (entered to the first password
module in the stack) as the new password for this
module. If the new password fails, it prompts the user
for a new password. If the user’s password has expired,
the UNIX account module saves this information in the
authentication handle using pam_set_data(), with a
unique name, SUNW_UNIX_AUTHOK_DATA. The UNIX
password module retrieves this information from the
authentication handle using pam_get_data() to
determine whether or not to force the user to update
the user’s password.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level MT-Safe with exceptions

keylogin(1), pam(3PAM), pam_authenticate(3PAM), pam_setcred(3PAM),
syslog(3C), libpam(3LIB), pam.conf(4), attributes(5),
pam_authtok_check(5), pam_authtok_get(5), pam_authtok_store(5),
pam_dhkeys(5), pam_passwd_auth(5), pam_unix_account(5),
pam_unix_auth(5), pam_unix_session(5)

The interfaces in libpam(3LIB) are MT-Safe only if each thread within the
multi-threaded application uses its own PAM handle.

The pam_unix(5) module might not be supported in a future release. Similar
functionality is provided by pam_authtok_check(5), pam_authtok_get(5),
pam_authtok_store(5), pam_dhkeys(5), pam_passwd_auth(5),
pam_unix_account(5), pam_unix_auth(5), and pam_unix_session(5).

pam_unix(5)

ATTRIBUTES

SEE ALSO

NOTES

296 man pages section 5: Standards, Environments, and Macros • Last Revised 11 Dec 2001

pam_unix_account – PAM account management module for UNIX

pam_unix_account.so.1

pam_unix_account provides functionality to the PAM account management stack.
The function pam(3PAM) function retrieves password aging information from the
repositories specified in nsswitch.conf(4), and verifies that the user’s account and
password have not expired.

The following options can be passed to the module:

debug syslog(3C) debugging information at the LOG_DEBUG level

nowarn Turn off warning messages

server_policy If the account authority for the user, as specified by PAM_USER, is
a server, do not apply the Unix policy from the passwd entry in
the name service switch.

The following values are returned:

PAM_AUTHTOK_EXPIRED Password expired and no longer usable

PAM_BUF_ERR Memory buffer error

PAM_IGNORE Ignore module, not participating in result

PAM_NEW_AUTHTOK_REQD Obtain new authentication token from the user

PAM_SERVICE_ERR Error in underlying service module

PAM_SUCCESS Successfully obtains authentication token

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT Level MT-Safe with exceptions

pam(3PAM), pam_authenticate(3PAM), syslog(3C), libpam(3LIB), pam.conf(4),
nsswitch.conf(4), attributes(5), pam_authtok_check(5),
pam_authtok_get(5), pam_authtok_store(5), pam_dhkeys(5),
pam_passwd_auth(5), pam_unix(5), pam_unix_auth(5), pam_unix_session(5)

The interfaces in libpam(3LIB) are MT-Safe only if each thread within the
multi-threaded application uses its own PAM handle.

The pam_unix(5) module might not be supported in a future release. Similar
functionality is provided by pam_authtok_check(5), pam_authtok_get(5),
pam_authtok_store(5), pam_dhkeys(5), pam_passwd_auth(5),
pam_unix_account(5), pam_unix_auth(5), and pam_unix_session(5).

pam_unix_account(5)

NAME

SYNOPSIS

DESCRIPTION

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

Standards, Environments, and Macros 297

pam_unix_auth – PAM authentication module for UNIX

pam_unix_auth.so.1

The pam_unix_auth module implements pam_sm_authenticate(), which
provides functionality to the PAM authentication stack. It provides functions to verify
that the password contained in the PAM item PAM_AUTHTOK is the correct password
for the user specified in the item PAM_USER. If PAM_REPOSITORY is specified, then
user’s passwd is fetched from that repository. Otherwise the default
nsswitch.conf(4) repository is searched for that user.

The following options can be passed to the module:

server_policy If the account authority for the user, as specified by PAM_USER, is
a server, do not apply the Unix policy from the passwd entry in
the name service switch.

The following values are returned:

PAM_AUTH_ERR Authentication failure

PAM_BUF_ERR Memory buffer error

PAM_IGNORE Ignore module, not participating in result

PAM_PERM_DENIED Permission denied

PAM_SUCCESS Successfully obtains authentication token

PAM_SYSTEM_ERR System error

PAM_USER_UNKNOWN No account present for user

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT Level MT-Safe with exceptions

pam(3PAM), pam_authenticate(3PAM), syslog(3C), libpam(3LIB), pam.conf(4),
nsswitch.conf(4), attributes(5), pam_authtok_check(5),
pam_authtok_get(5), pam_authtok_store(5), pam_dhkeys(5),
pam_passwd_auth(5), pam_unix(5), pam_unix_account(5),
pam_unix_session(5)

The interfaces in libpam(3LIB) are MT-Safe only if each thread within the
multi-threaded application uses its own PAM handle.

pam_unix_auth(5)

NAME

SYNOPSIS

DESCRIPTION

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

298 man pages section 5: Standards, Environments, and Macros • Last Revised 21 Jan 2003

The pam_unix(5) module might not be supported in a future release. Similar
functionality is provided by pam_authtok_check(5), pam_authtok_get(5),
pam_authtok_store(5), pam_dhkeys(5), pam_passwd_auth(5),
pam_unix_account(5), pam_unix_auth(5), and pam_unix_session(5).

pam_unix_auth(5)

Standards, Environments, and Macros 299

pam_unix_session – session management PAM module for UNIX

pam_unix_session.so.1

pam_unix_session provides functions to initiate pam_sm_open_session(3PAM)
and to terminate pam_sm_close_session(3PAM).

pam_open_session updates the /var/adm/lastlog file. The account management
module reads this file to determine the previous time the user logged in.
pam_sm_close_session is a null function.

The following options can be passed to the module:

debug syslog(3C) debugging information at the LOG_DEBUG level

nowarn Turn off warning messages

The following values are returned:

PAM_SUCCESS Successful completiton

PAM_SESSION_ERR Can not make or remove the entry for the specified
session

PAM_USER_UNKNOWN No account is present for user

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT Level MT-Safe with exceptions

pam(3PAM), pam_authenticate(3PAM), syslog(3C), libpam(3LIB), pam.conf(4),
nsswitch.conf(4), attributes(5), pam_authtok_check(5),
pam_authtok_get(5), pam_authtok_store(5), pam_dhkeys(5),
pam_passwd_auth(5), pam_unix(5), pam_unix_account(5),pam_unix_auth(5),

The interfaces in libpam(3LIB) are MT-Safe only if each thread within the
multi-threaded application uses its own PAM handle.

The pam_unix(5) module might not be supported in a future release. Similar
functionality is provided by pam_authtok_check(5), pam_authtok_get(5),
pam_authtok_store(5), pam_dhkeys(5), pam_passwd_auth(5),
pam_unix_account(5), pam_unix_auth(5), and pam_unix_session(5).

pam_unix_session(5)

NAME

SYNOPSIS

DESCRIPTION

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

300 man pages section 5: Standards, Environments, and Macros • Last Revised 21 Jan 2003

prof – profile within a function

#define MARK

#include <prof.h>

void MARK(name);

MARK introduces a mark called name that is treated the same as a function entry point.
Execution of the mark adds to a counter for that mark, and program-counter time
spent is accounted to the immediately preceding mark or to the function if there are no
preceding marks within the active function.

name may be any combination of letters, numbers, or underscores. Each name in a
single compilation must be unique, but may be the same as any ordinary program
symbol.

For marks to be effective, the symbol MARK must be defined before the header prof.h
is included, either by a preprocessor directive as in the synopsis, or by a command line
argument:

cc –p –DMARK work.c

If MARK is not defined, the MARK(name) statements may be left in the source files
containing them and are ignored. prof –g must be used to get information on all
labels.

In this example, marks can be used to determine how much time is spent in each loop.
Unless this example is compiled with MARK defined on the command line, the marks
are ignored.

#include <prof.h>
work()
{

int i, j;
. . .
MARK(loop1);
for (i = 0; i < 2000; i++) {

. . .
}
MARK(loop2);
for (j = 0; j < 2000; j++) {

. . .
}

}

profil(2), monitor(3C)

prof(5)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

SEE ALSO

Standards, Environments, and Macros 301

rbac – role-based access control

The addition of role-based access control (RBAC) to the Solaris operating environment
gives developers the opportunity to deliver fine-grained security in new and modified
applications. RBAC is an alternative to the all-or-nothing security model of traditional
superuser-based systems. With RBAC, an administrator can assign privileged
functions to specific user accounts (or special accounts called roles).

There are two ways to give applications privileges:

1. Administrators can assign special attributes such as setUID to application binaries
(executable files).

2. Administrators can assign special attributes such as setUID to applications using
execution profiles.

Special attribute assignment along with the theory behind RBAC is discussed in detail
in “Role Based Access Control” chapter of the System Administration Guide: Advanced
Administration. This chapter describes what authorizations are and how to code for
them.

An authorization is a unique string that represents a user’s right to perform some
operation or class of operations. Authorization definitions are stored in a database
called auth_attr(4). For programming authorization checks, only the authorization
name is significant.

Some typical values in an auth_attr database are shown below.

solaris.jobs.:::Cron and At Jobs::help=JobHeader.html
solaris.admin:::Cron & At Administrator::help=JobsAdmin.html
solaris.grant:::Delegate Cron & At Administration::help=JobsGrant.html

solaris.jobs.user:::Cron & At User::help=JobsUser.html

Authorization name strings ending with the grant suffix are special authorizations
that give a user the ability to delegate authorizations with the same prefix and
functional area to other users.

To check authorizations, use the chkauthattr(3SECDB) library function, which
verifies whether or not a user has a given authorization. The synopsis is:

int chkauthattr(const char *authname, const char *username);

The chkauthattr() function checks the policy.conf(4), user_attr(4), and
prof_attr(4) databases in order for a match to the given authorization.

If you are modifying existing code that tests for root UID, you should find the test in
the code and replace it with the chkauthattr() function. A typical root UID check is
shown in the first code segment below. An authorization check replacing it is shown in
the second code segment; it uses the solaris.jobs.admin authorization and a
variable called real_login representing the user.

rbac(5)

NAME

DESCRIPTION

Authorizations

Creating
Authorization

Checks

302 man pages section 5: Standards, Environments, and Macros • Last Revised 16 Dec 1999

EXAMPLE 1 Standard root check

ruid = getuid();

if ((eflag || lflag || rflag) && argc == 1) {
if ((pwp = getpwnam(*argv)) == NULL)

crabort(INVALIDUSER);

if (ruid != 0) {
if (pwp->pw_uid != ruid)

crabort(NOTROOT);
else

pp = getuser(ruid);
} else

pp = *argv++;

} else {

EXAMPLE 2 Authorization check

ruid = getuid();
if ((pwp = getpwuid(ruid)) == NULL)

crabort(INVALIDUSER);

strcpy(real_login, pwp->pw_name);

if ((eflag || lflag || rflag) && argc == 1) {
if ((pwp = getpwnam(*argv)) == NULL)

crabort(INVALIDUSER);

if (!chkauthattr("solaris.jobs.admin", real_login)) {
if (pwp->pw_uid != ruid)

crabort(NOTROOT);
else

pp = getuser(ruid);
} else

pp = *argv++;

} else {

For new applications, find an appropriate location for the test and use
chkauthattr() as shown above. Typically the authorization check makes an access
decision based on the identity of the calling user to determine if a privileged action
(for example, a system call) should be taken on behalf of that user.

Applications that perform a test to restrict who can perform their security-relevant
functionality are generally setuid to root. Programs that were written prior to RBAC
and that are only available to the root user may not have such checks. In most cases,
the kernel requires an effective user ID of root to override policy enforcement.
Therefore, authorization checking is most useful in programs that are setuid to root.

For instance, if you want to write a program that allows authorized users to set the
system date, the command must be run with an effective user ID of root. Typically, this
means that the file modes for the file would be -rwsr-xr-x with root ownership.

rbac(5)

Standards, Environments, and Macros 303

Use caution, though, when making programs setuid to root. For example, the
effective UID should be set to the real UID as early as possible in the program’s
initialization function. The effective UID can then be set back to root after the
authorization check is performed and before the system call is made. On return from
the system call, the effective UID should be set back to the real UID again to adhere to
the principle of least privilege.

Another consideration is that LD_LIBRARY path is ignored for setuid programs (see
SECURITY section in ld.so.1(1)) and that shell scripts must be modified to work
properly when the effective and real UIDs are different. For example, the -p flag in
Bourne shell is required to avoid resetting the effective UID back to the real UID.

Using an effective UID of root instead of the real UID requires extra care when writing
shell scripts. For example, many shell scripts check to see if the user is root before
executing their functionality. With RBAC, these shell scripts may be running with the
effective UID of root and with a real UID of a user or role. Thus, the shell script should
check euid instead of uid. For example,

WHO=‘id | cut -f1 -d" "‘
if [! "$WHO" = "uid=0(root)"]
then

echo "$PROG: ERROR: you must be super-user to run this script."
exit 1

fi

should be changed to

WHO=‘/usr/xpg4/bin/id -n -u‘
if [! "$WHO" = "root"]
then

echo "$PROG: ERROR: you are not authorized to run this script."
exit 1

fi

Authorizations can be explicitly checked in shell scripts by piping the output of the
auths(1) utility to grep(1). For example,

AUTHS=‘auths‘
echo $AUTHS|grep "^solaris.date$"
if [$? -ne 0]
then

echo "$PROG: ERROR: you are not authorized to set the date."
exit 1

fi

ld.so.1(1), chkauthattr(3SECDB), auth_attr(4), policy.conf(4),
prof_attr(4), user_attr(4)

System Administration Guide: Advanced Administration

rbac(5)

SEE ALSO

304 man pages section 5: Standards, Environments, and Macros • Last Revised 16 Dec 1999

regex – internationalized basic and extended regular expression matching

Regular Expressions (REs) provide a mechanism to select specific strings from a set of
character strings. The Internationalized Regular Expressions described below differ
from the Simple Regular Expressions described on the regexp(5) manual page in the
following ways:

� both Basic and Extended Regular Expressions are supported
� the Internationalization features—character class, equivalence class, and

multi-character collation—are supported.

The Basic Regular Expression (BRE) notation and construction rules described in the
BASIC REGULAR EXPRESSIONS section apply to most utilities supporting regular
expressions. Some utilities, instead, support the Extended Regular Expressions (ERE)
described in the EXTENDED REGULAR EXPRESSIONS section; any exceptions for both
cases are noted in the descriptions of the specific utilities using regular expressions.
Both BREs and EREs are supported by the Regular Expression Matching interfaces
regcomp(3C) and regexec(3C).

A BRE ordinary character, a special character preceded by a backslash, or a period
matches a single character. A bracket expression matches a single character or a single
collating element. See RE Bracket Expression, below.

An ordinary character is a BRE that matches itself: any character in the supported
character set, except for the BRE special characters listed in BRE Special
Characters, below.

The interpretation of an ordinary character preceded by a backslash (\) is undefined,
except for:

1. the characters), (, {, and }
2. the digits 1 to 9 inclusive (see BREs Matching Multiple Characters, below)
3. a character inside a bracket expression.

A BRE special character has special properties in certain contexts. Outside those
contexts, or when preceded by a backslash, such a character will be a BRE that
matches the special character itself. The BRE special characters and the contexts in
which they have their special meaning are:

. [\ The period, left-bracket, and backslash are special except when used in a
bracket expression (see RE Bracket Expression, below). An expression
containing a [that is not preceded by a backslash and is not part of a
bracket expression produces undefined results.

* The asterisk is special except when used:

� in a bracket expression
� as the first character of an entire BRE (after an initial ^, if any)
� as the first character of a subexpression (after an initial ^, if any); see

BREs Matching Multiple Characters, below.

regex(5)

NAME

DESCRIPTION

BREs Matching a
Single Character

BRE Ordinary
Characters

BRE Special
Characters

Standards, Environments, and Macros 305

^ The circumflex is special when used:

� as an anchor (see BRE Expression Anchoring, below).
� as the first character of a bracket expression (see RE Bracket

Expression, below).

$ The dollar sign is special when used as an anchor.

A period (.), when used outside a bracket expression, is a BRE that matches any
character in the supported character set except NUL.

A bracket expression (an expression enclosed in square brackets, []) is an RE that
matches a single collating element contained in the non-empty set of collating
elements represented by the bracket expression.

The following rules and definitions apply to bracket expressions:

1. A bracket expression is either a matching list expression or a non-matching list
expression. It consists of one or more expressions: collating elements, collating
symbols, equivalence classes, character classes, or range expressions (see rule 7
below). Portable applications must not use range expressions, even though all
implementations support them. The right-bracket (]) loses its special meaning and
represents itself in a bracket expression if it occurs first in the list (after an initial
circumflex (^), if any). Otherwise, it terminates the bracket expression, unless it
appears in a collating symbol (such as [.].]) or is the ending right-bracket for a
collating symbol, equivalence class, or character class. The special characters:

. * [\

(period, asterisk, left-bracket and backslash, respectively) lose their special
meaning within a bracket expression. The character sequences:

[. [= [:

(left-bracket followed by a period, equals-sign, or colon) are special inside a bracket
expression and are used to delimit collating symbols, equivalence class
expressions, and character class expressions. These symbols must be followed by a
valid expression and the matching terminating sequence .], =] or :], as described in
the following items.

2. A matching list expression specifies a list that matches any one of the expressions
represented in the list. The first character in the list must not be the circumflex. For
example, [abc] is an RE that matches any of the characters a, b or c.

3. A non-matching list expression begins with a circumflex (^), and specifies a list that
matches any character or collating element except for the expressions represented
in the list after the leading circumflex. For example, [^abc] is an RE that matches
any character or collating element except the characters a, b, or c. The circumflex
will have this special meaning only when it occurs first in the list, immediately
following the left-bracket.

4. A collating symbol is a collating element enclosed within bracket-period ([..])
delimiters. Multi-character collating elements must be represented as collating
symbols when it is necessary to distinguish them from a list of the individual

regex(5)

Periods in BREs

RE Bracket
Expression

306 man pages section 5: Standards, Environments, and Macros • Last Revised 12 Jul 1999

characters that make up the multi-character collating element. For example, if the
string ch is a collating element in the current collation sequence with the
associated collating symbol <ch>, the expression [[.ch.]] will be treated as an RE
matching the character sequence ch, while [ch] will be treated as an RE matching c
or h. Collating symbols will be recognized only inside bracket expressions. This
implies that the RE [[.ch.]]*c matches the first to fifth character in the string
chchch. If the string is not a collating element in the current collating sequence
definition, or if the collating element has no characters associated with it, the
symbol will be treated as an invalid expression.

5. An equivalence class expression represents the set of collating elements belonging to
an equivalence class. Only primary equivalence classes will be recognised. The
class is expressed by enclosing any one of the collating elements in the equivalence
class within bracket-equal ([==]) delimiters. For example, if a, and belong to the
same equivalence class, then [[=a=]b], [[==]b] and [[==]b] will each be equivalent
to [ab]. If the collating element does not belong to an equivalence class, the
equivalence class expression will be treated as a collating symbol.

6. A character class expression represents the set of characters belonging to a character
class, as defined in the LC_CTYPE category in the current locale. All character
classes specified in the current locale will be recognized. A character class
expression is expressed as a character class name enclosed within bracket-colon
([::]) delimiters.

The following character class expressions are supported in all locales:

[:alnum:] [:cntrl:] [:lower:] [:space:]

[:alpha:] [:digit:] [:print:] [:upper:]

[:blank:] [:graph:] [:punct:] [:xdigit:]

In addition, character class expressions of the form:

[:name:]

are recognized in those locales where the name keyword has been given a
charclass definition in the LC_CTYPE category.

7. A range expression represents the set of collating elements that fall between two
elements in the current collation sequence, inclusively. It is expressed as the
starting point and the ending point separated by a hyphen (–).

Range expressions must not be used in portable applications because their
behavior is dependent on the collating sequence. Ranges will be treated according
to the current collating sequence, and include such characters that fall within the
range based on that collating sequence, regardless of character values. This,
however, means that the interpretation will differ depending on collating sequence.
If, for instance, one collating sequence defines as a variant of a, while another
defines it as a letter following z, then the expression [–z] is valid in the first
language and invalid in the second.

regex(5)

Standards, Environments, and Macros 307

In the following, all examples assume the collation sequence specified for the
POSIX locale, unless another collation sequence is specifically defined.

The starting range point and the ending range point must be a collating element or
collating symbol. An equivalence class expression used as a starting or ending
point of a range expression produces unspecified results. An equivalence class can
be used portably within a bracket expression, but only outside the range. For
example, the unspecified expression [[=e=]−f] should be given as [[=e=]e−f]. The
ending range point must collate equal to or higher than the starting range point;
otherwise, the expression will be treated as invalid. The order used is the order in
which the collating elements are specified in the current collation definition.
One-to-many mappings (see locale(5)) will not be performed. For example,
assuming that the character eszet is placed in the collation sequence after r and s,
but before t, and that it maps to the sequence ss for collation purposes, then the
expression [r−s] matches only r and s, but the expression [s−t] matches s, beta, or
t.

The interpretation of range expressions where the ending range point is also the
starting range point of a subsequent range expression (for instance [a−m−o]) is
undefined.

The hyphen character will be treated as itself if it occurs first (after an initial ^, if
any) or last in the list, or as an ending range point in a range expression. As
examples, the expressions [−ac] and [ac−] are equivalent and match any of the
characters a, c, or −; [^−ac] and [^ac−] are equivalent and match any characters
except a, c, or −; the expression [%− −] matches any of the characters between %
and − inclusive; the expression [− −@] matches any of the characters between − and
@ inclusive; and the expression [a− −@] is invalid, because the letter a follows the
symbol − in the POSIX locale. To use a hyphen as the starting range point, it must
either come first in the bracket expression or be specified as a collating symbol, for
example: [][.−.]−0], which matches either a right bracket or any character or
collating element that collates between hyphen and 0, inclusive.

If a bracket expression must specify both − and], the] must be placed first (after
the ^, if any) and the − last within the bracket expression.

Note: Latin-1 characters such as ` or ˆ are not printable in some locales, for example,
the ja locale.

The following rules can be used to construct BREs matching multiple characters from
BREs matching a single character:

1. The concatenation of BREs matches the concatenation of the strings matched by
each component of the BRE.

2. A subexpression can be defined within a BRE by enclosing it between the character
pairs \(and \) . Such a subexpression matches whatever it would have matched
without the \(and \), except that anchoring within subexpressions is optional
behavior; see BRE Expression Anchoring, below. Subexpressions can be
arbitrarily nested.

regex(5)

BREs Matching
Multiple

Characters

308 man pages section 5: Standards, Environments, and Macros • Last Revised 12 Jul 1999

3. The back-reference expression \n matches the same (possibly empty) string of
characters as was matched by a subexpression enclosed between \(and \)
preceding the \n. The character n must be a digit from 1 to 9 inclusive, nth
subexpression (the one that begins with the nth \(and ends with the
corresponding paired \)). The expression is invalid if less than n subexpressions
precede the \n. For example, the expression ^\(.*\)\1$ matches a line consisting
of two adjacent appearances of the same string, and the expression \(a\)*\1 fails to
match a. The limit of nine back-references to subexpressions in the RE is based on
the use of a single digit identifier. This does not imply that only nine
subexpressions are allowed in REs. The following is a valid BRE with ten
subexpressions:

\(\(\(ab\)*c\)*d\)\(ef\)*\(gh\)\{2\}\(ij\)*\(kl\)*\(mn\)*\(op\)*\(qr\)*

4. When a BRE matching a single character, a subexpression or a back-reference is
followed by the special character asterisk (*), together with that asterisk it matches
what zero or more consecutive occurrences of the BRE would match. For example,
[ab]* and [ab][ab] are equivalent when matching the string ab.

5. When a BRE matching a single character, a subexpression, or a back-reference is
followed by an interval expression of the format \{m\}, \{m,\} or \{m,n\}, together
with that interval expression it matches what repeated consecutive occurrences of
the BRE would match. The values of m and n will be decimal integers in the range
0 ≤ m ≤ n ≤ {RE_DUP_MAX}, where m specifies the exact or minimum number of
occurrences and n specifies the maximum number of occurrences. The expression
\{m\} matches exactly m occurrences of the preceding BRE, \{m,\} matches at least
m occurrences and \{m,n\} matches any number of occurrences between m and n,
inclusive.

For example, in the string abababccccccd, the BRE c\{3\} is matched by
characters seven to nine, the BRE \(ab\)\{4,\} is not matched at all and the BRE
c\{1,3\}d is matched by characters ten to thirteen.

The behavior of multiple adjacent duplication symbols (* and intervals) produces
undefined results.

The order of precedence is as shown in the following table:

BRE Precedence (from high to low)

collation-related bracket symbols [= =] [: :] [. .]

escaped characters \<special character>

bracket expression []

subexpressions/back-references \(\) \n

single-character-BRE duplication * \{m,n\}

concatenation

regex(5)

BRE Precedence

Standards, Environments, and Macros 309

anchoring ^ $

A BRE can be limited to matching strings that begin or end a line; this is called
anchoring. The circumflex and dollar sign special characters will be considered BRE
anchors in the following contexts:

1. A circumflex (^) is an anchor when used as the first character of an entire BRE.
The implementation may treat circumflex as an anchor when used as the first
character of a subexpression. The circumflex will anchor the expression to the
beginning of a string; only sequences starting at the first character of a string will
be matched by the BRE. For example, the BRE ^ab matches ab in the string
abcdef, but fails to match in the string cdefab. A portable BRE must escape a
leading circumflex in a subexpression to match a literal circumflex.

2. A dollar sign ($) is an anchor when used as the last character of an entire BRE.
The implementation may treat a dollar sign as an anchor when used as the last
character of a subexpression. The dollar sign will anchor the expression to the end
of the string being matched; the dollar sign can be said to match the end-of-string
following the last character.

3. A BRE anchored by both ^ and $ matches only an entire string. For example, the
BRE ^abcdef$ matches strings consisting only of abcdef.

4. ^ and $ are not special in subexpressions.

Note: The Solaris implementation does not support anchoring in BRE subexpressions.

The rules specififed for BREs apply to Extended Regular Expressions (EREs) with the
following exceptions:

� The characters |, +, and ? have special meaning, as defined below.
� The { and } characters, when used as the duplication operator, are not preceded by

backslashes. The constructs \{ and \} simply match the characters { and },
respectively.

� The back reference operator is not supported.
� Anchoring (^$) is supported in subexpressions.

An ERE ordinary character, a special character preceded by a backslash, or a period
matches a single character. A bracket expression matches a single character or a single
collating element. An ERE matching a single character enclosed in parentheses matches
the same as the ERE without parentheses would have matched.

An ordinary character is an ERE that matches itself. An ordinary character is any
character in the supported character set, except for the ERE special characters listed in
ERE Special Characters below. The interpretation of an ordinary character
preceded by a backslash (\) is undefined.

regex(5)

BRE Expression
Anchoring

EXTENDED
REGULAR

EXPRESSIONS

EREs Matching a
Single Character

ERE Ordinary
Characters

310 man pages section 5: Standards, Environments, and Macros • Last Revised 12 Jul 1999

An ERE special character has special properties in certain contexts. Outside those
contexts, or when preceded by a backslash, such a character is an ERE that matches
the special character itself. The extended regular expression special characters and the
contexts in which they have their special meaning are:

. [\ (The period, left-bracket, backslash, and left-parenthesis are special
except when used in a bracket expression (see RE Bracket
Expression, above). Outside a bracket expression, a
left-parenthesis immediately followed by a right-parenthesis
produces undefined results.

) The right-parenthesis is special when matched with a preceding
left-parenthesis, both outside a bracket expression.

* + ? { The asterisk, plus-sign, question-mark, and left-brace are special
except when used in a bracket expression (see RE Bracket
Expression, above). Any of the following uses produce
undefined results:

� if these characters appear first in an ERE, or immediately
following a vertical-line, circumflex or left-parenthesis

� if a left-brace is not part of a valid interval expression.

| The vertical-line is special except when used in a bracket
expression (see RE Bracket Expression, above). A vertical-line
appearing first or last in an ERE, or immediately following a
vertical-line or a left-parenthesis, or immediately preceding a
right-parenthesis, produces undefined results.

^ The circumflex is special when used:

� as an anchor (see ERE Expression Anchoring, below).
� as the first character of a bracket expression (see RE Bracket

Expression, above).

$ The dollar sign is special when used as an anchor.

A period (.), when used outside a bracket expression, is an ERE that matches any
character in the supported character set except NUL.

The rules for ERE Bracket Expressions are the same as for Basic Regular Expressions;
see RE Bracket Expression, above).

The following rules will be used to construct EREs matching multiple characters from
EREs matching a single character:

1. A concatenation of EREs matches the concatenation of the character sequences
matched by each component of the ERE. A concatenation of EREs enclosed in
parentheses matches whatever the concatenation without the parentheses matches.
For example, both the ERE cd and the ERE (cd) are matched by the third and
fourth character of the string abcdefabcdef.

regex(5)

ERE Special
Characters

Periods in EREs

ERE Bracket
Expression

EREs Matching
Multiple

Characters

Standards, Environments, and Macros 311

2. When an ERE matching a single character or an ERE enclosed in parentheses is
followed by the special character plus-sign (+), together with that plus-sign it
matches what one or more consecutive occurrences of the ERE would match. For
example, the ERE b+(bc) matches the fourth to seventh characters in the string
acabbbcde; [ab] + and [ab][ab]* are equivalent.

3. When an ERE matching a single character or an ERE enclosed in parentheses is
followed by the special character asterisk (*), together with that asterisk it matches
what zero or more consecutive occurrences of the ERE would match. For example,
the ERE b*c matches the first character in the string cabbbcde, and the ERE
b*cd matches the third to seventh characters in the string cabbbcdebbbbbbcdbc.
And, [ab]* and [ab][ab] are equivalent when matching the string ab.

4. When an ERE matching a single character or an ERE enclosed in parentheses is
followed by the special character question-mark (?), together with that
question-mark it matches what zero or one consecutive occurrences of the ERE
would match. For example, the ERE b?c matches the second character in the string
acabbbcde.

5. When an ERE matching a single character or an ERE enclosed in parentheses is
followed by an interval expression of the format {m}, {m,} or {m,n}, together with that
interval expression it matches what repeated consecutive occurrences of the ERE
would match. The values of m and n will be decimal integers in the range 0 ≤ m ≤ n
≤ {RE_DUP_MAX}, where m specifies the exact or minimum number of occurrences
and n specifies the maximum number of occurrences. The expression {m} matches
exactly m occurrences of the preceding ERE, {m,} matches at least m occurrences
and {m,n} matches any number of occurrences between m and n, inclusive.

For example, in the string abababccccccd the ERE c{3} is matched by characters
seven to nine and the ERE (ab){2,} is matched by characters one to six.

The behavior of multiple adjacent duplication symbols (+, *, ? and intervals)
produces undefined results.

Two EREs separated by the special character vertical-line (|) match a string that is
matched by either. For example, the ERE a((bc)|d) matches the string abc and the
string ad. Single characters, or expressions matching single characters, separated by
the vertical bar and enclosed in parentheses, will be treated as an ERE matching a
single character.

The order of precedence will be as shown in the following table:

ERE Precedence (from high to low)

collation-related bracket symbols [= =] [: :] [. .]

escaped characters \<special character>

bracket expression []

regex(5)

ERE Alternation

ERE Precedence

312 man pages section 5: Standards, Environments, and Macros • Last Revised 12 Jul 1999

grouping ()

single-character-ERE duplication * + ? {m,n}

concatenation

anchoring ^ $

alternation |

For example, the ERE abba | cde matches either the string abba or the string cde
(rather than the string abbade or abbcde, because concatenation has a higher order
of precedence than alternation).

An ERE can be limited to matching strings that begin or end a line; this is called
anchoring. The circumflex and dollar sign special characters are considered ERE
anchors when used anywhere outside a bracket expression. This has the following
effects:

1. A circumflex (^) outside a bracket expression anchors the expression or
subexpression it begins to the beginning of a string; such an expression or
subexpression can match only a sequence starting at the first character of a string.
For example, the EREs ^ab and (^ab) match ab in the string abcdef, but fail to
match in the string cdefab, and the ERE a^b is valid, but can never match because
the a prevents the expression ^b from matching starting at the first character.

2. A dollar sign ($) outside a bracket expression anchors the expression or
subexpression it ends to the end of a string; such an expression or subexpression
can match only a sequence ending at the last character of a string. For example, the
EREs ef$ and (ef$) match ef in the string abcdef, but fail to match in the string
cdefab, and the ERE e$f is valid, but can never match because the f prevents the
expression e$ from matching ending at the last character.

localedef(1), regcomp(3C), attributes(5), environ(5), locale(5), regexp(5)

regex(5)

ERE Expression
Anchoring

SEE ALSO

Standards, Environments, and Macros 313

regexp, compile, step, advance – simple regular expression compile and match
routines

#define INIT declarations
#define GETC(void) getc code
#define PEEKC(void) peekc code
#define UNGETC(void) ungetc code
#define RETURN(ptr) return code
#define ERROR(val) error code

extern char *loc1, *loc2, *locs;

#include <regexp.h>

char *compile(char *instring, char *expbuf, const char *endfug, int
eof);

int step(const char *string, const char *expbuf);

int advance(const char *string, const char *expbuf);

Regular Expressions (REs) provide a mechanism to select specific strings from a set of
character strings. The Simple Regular Expressions described below differ from the
Internationalized Regular Expressions described on the regex(5) manual page in the
following ways:

� only Basic Regular Expressions are supported
� the Internationalization features—character class, equivalence class, and

multi-character collation—are not supported.

The functions step(), advance(), and compile() are general purpose regular
expression matching routines to be used in programs that perform regular expression
matching. These functions are defined by the <regexp.h> header.

The functions step() and advance() do pattern matching given a character string
and a compiled regular expression as input.

The function compile() takes as input a regular expression as defined below and
produces a compiled expression that can be used with step() or advance().

A regular expression specifies a set of character strings. A member of this set of strings
is said to be matched by the regular expression. Some characters have special meaning
when used in a regular expression; other characters stand for themselves.

The following one-character REs match a single character:

1.1 An ordinary character (not one of those discussed in 1.2 below) is a
one-character RE that matches itself.

1.2 A backslash (\) followed by any special character is a one-character RE
that matches the special character itself. The special characters are:

regexp(5)

NAME

SYNOPSIS

DESCRIPTION

Basic Regular
Expressions

314 man pages section 5: Standards, Environments, and Macros • Last Revised 2 Apr 1996

a. ., *, [, and \ (period, asterisk, left square bracket, and
backslash, respectively), which are always special, except when
they appear within square brackets ([]; see 1.4 below).

b. ^ (caret or circumflex), which is special at the beginning of an
entire RE (see 4.1 and 4.3 below), or when it immediately follows
the left of a pair of square brackets ([]) (see 1.4 below).

c. $ (dollar sign), which is special at the end of an entire RE (see
4.2 below).

d. The character used to bound (that is, delimit) an entire RE,
which is special for that RE (for example, see how slash (/) is
used in the g command, below.)

1.3 A period (.) is a one-character RE that matches any character except
new-line.

1.4 A non-empty string of characters enclosed in square brackets ([]) is a
one-character RE that matches any one character in that string. If, however,
the first character of the string is a circumflex (^), the one-character RE
matches any character except new-line and the remaining characters in the
string. The ^ has this special meaning only if it occurs first in the string. The
minus (–) may be used to indicate a range of consecutive characters; for
example, [0–9] is equivalent to [0123456789]. The – loses this special
meaning if it occurs first (after an initial ^, if any) or last in the string. The
right square bracket (]) does not terminate such a string when it is the first
character within it (after an initial ^, if any); for example, []a–f]
matches either a right square bracket (]) or one of the ASCII letters a
through f inclusive. The four characters listed in 1.2.a above stand for
themselves within such a string of characters.

The following rules may be used to construct REs from one-character REs:

2.1 A one-character RE is a RE that matches whatever the
one-character RE matches.

2.2 A one-character RE followed by an asterisk (*) is a RE
that matches 0 or more occurrences of the
one-character RE. If there is any choice, the longest
leftmost string that permits a match is chosen.

2.3 A one-character RE followed by \{m\}, \{m,\}, or
\{m,n\} is a RE that matches a range of occurrences of
the one-character RE. The values of m and n must be
non-negative integers less than 256; \{m\} matches
exactly m occurrences; \{m,\} matches at least m
occurrences; \{m,n\} matches any number of
occurrences between m and n inclusive. Whenever a
choice exists, the RE matches as many occurrences as
possible.

regexp(5)

Standards, Environments, and Macros 315

2.4 The concatenation of REs is a RE that matches the
concatenation of the strings matched by each
component of the RE.

2.5 A RE enclosed between the character sequences \ (
and \) is a RE that matches whatever the unadorned
RE matches.

2.6 The expression \ n matches the same string of
characters as was matched by an expression enclosed
between \ (and \) earlier in the same RE. Here n is
a digit; the sub-expression specified is that beginning
with the n-th occurrence of \ (counting from the
left. For example, the expression ^ \ (. * \)
\ 1 $ matches a line consisting of two repeated

appearances of the same string.

An RE may be constrained to match words.

3.1 \ < constrains a RE to match the beginning of a string
or to follow a character that is not a digit, underscore,
or letter. The first character matching the RE must be a
digit, underscore, or letter.

3.2 \ > constrains a RE to match the end of a string or to
precede a character that is not a digit, underscore, or
letter.

An entire RE may be constrained to match only an initial segment or final segment of a
line (or both).

4.1 A circumflex (^) at the beginning of an entire RE
constrains that RE to match an initial segment of a line.

4.2 A dollar sign ($) at the end of an entire RE constrains
that RE to match a final segment of a line.

4.3 The construction ^entire RE $ constrains the entire RE
to match the entire line.

The null RE (for example, //) is equivalent to the last RE encountered.

Addresses are constructed as follows:

1. The character "." addresses the current line.

2. The character "$" addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the buffer.

4. ’x addresses the line marked with the mark name character x, which must be an
ASCII lower-case letter (a–z). Lines are marked with the k command described
below.

regexp(5)

Addressing with
REs

316 man pages section 5: Standards, Environments, and Macros • Last Revised 2 Apr 1996

5. A RE enclosed by slashes (/) addresses the first line found by searching forward
from the line following the current line toward the end of the buffer and stopping at
the first line containing a string matching the RE. If necessary, the search wraps
around to the beginning of the buffer and continues up to and including the
current line, so that the entire buffer is searched.

6. A RE enclosed in question marks (?) addresses the first line found by searching
backward from the line preceding the current line toward the beginning of the buffer
and stopping at the first line containing a string matching the RE. If necessary, the
search wraps around to the end of the buffer and continues up to and including the
current line.

7. An address followed by a plus sign (+) or a minus sign (–) followed by a decimal
number specifies that address plus (respectively minus) the indicated number of
lines. A shorthand for .+5 is .5.

8. If an address begins with + or –, the addition or subtraction is taken with respect to
the current line; for example, –5 is understood to mean .–5.

9. If an address ends with + or –, then 1 is added to or subtracted from the address,
respectively. As a consequence of this rule and of Rule 8, immediately above, the
address – refers to the line preceding the current line. (To maintain compatibility
with earlier versions of the editor, the character ^ in addresses is entirely
equivalent to –.) Moreover, trailing + and – characters have a cumulative effect, so
–– refers to the current line less 2.

10. For convenience, a comma (,) stands for the address pair 1,$, while a semicolon
(;) stands for the pair .,$.

Characters that have special meaning except when they appear within square brackets
([]) or are preceded by \ are: ., *, [, \ . Other special characters, such as $ have
special meaning in more restricted contexts.

The character ^ at the beginning of an expression permits a successful match only
immediately after a newline, and the character $ at the end of an expression requires a
trailing newline.

Two characters have special meaning only when used within square brackets. The
character – denotes a range, [c–c], unless it is just after the open bracket or before
the closing bracket, [–c] or [c–] in which case it has no special meaning. When
used within brackets, the character ^ has the meaning complement of if it immediately
follows the open bracket (example: [^c]); elsewhere between brackets (example:
[c^]) it stands for the ordinary character ^.

The special meaning of the \ operator can be escaped only by preceding it with
another \ , for example \\ .

Programs must have the following five macros declared before the #include
<regexp.h> statement. These macros are used by the compile() routine. The
macros GETC, PEEKC, and UNGETC operate on the regular expression given as input to
compile().

regexp(5)

Characters With
Special Meaning

Macros

Standards, Environments, and Macros 317

GETC This macro returns the value of the next character (byte) in the
regular expression pattern. Successive calls to GETC should return
successive characters of the regular expression.

PEEKC This macro returns the next character (byte) in the regular
expression. Immediately successive calls to PEEKC should return
the same character, which should also be the next character
returned by GETC.

UNGETC This macro causes the argument c to be returned by the next call
to GETC and PEEKC. No more than one character of pushback is
ever needed and this character is guaranteed to be the last
character read by GETC. The return value of the macro UNGETC(c)
is always ignored.

RETURN(ptr) This macro is used on normal exit of the compile() routine. The
value of the argument ptr is a pointer to the character after the last
character of the compiled regular expression. This is useful to
programs which have memory allocation to manage.

ERROR(val) This macro is the abnormal return from the compile() routine.
The argument val is an error number (see ERRORS below for
meanings). This call should never return.

The syntax of the compile() routine is as follows:

compile(instring, expbuf, endbuf, eof)

The first parameter, instring, is never used explicitly by the compile() routine but is
useful for programs that pass down different pointers to input characters. It is
sometimes used in the INIT declaration (see below). Programs which call functions to
input characters or have characters in an external array can pass down a value of
(char *)0 for this parameter.

The next parameter, expbuf, is a character pointer. It points to the place where the
compiled regular expression will be placed.

The parameter endbuf is one more than the highest address where the compiled
regular expression may be placed. If the compiled expression cannot fit in
(endbuf–expbuf) bytes, a call to ERROR(50) is made.

The parameter eof is the character which marks the end of the regular expression. This
character is usually a /.

Each program that includes the <regexp.h> header file must have a #define
statement for INIT. It is used for dependent declarations and initializations. Most
often it is used to set a register variable to point to the beginning of the regular
expression so that this register variable can be used in the declarations for GETC,
PEEKC, and UNGETC. Otherwise it can be used to declare external variables that might
be used by GETC, PEEKC and UNGETC. (See EXAMPLES below.)

regexp(5)

compile()

318 man pages section 5: Standards, Environments, and Macros • Last Revised 2 Apr 1996

The first parameter to the step() and advance() functions is a pointer to a string of
characters to be checked for a match. This string should be null terminated.

The second parameter, expbuf, is the compiled regular expression which was obtained
by a call to the function compile().

The function step() returns non-zero if some substring of string matches the regular
expression in expbuf and 0 if there is no match. If there is a match, two external
character pointers are set as a side effect to the call to step(). The variable loc1
points to the first character that matched the regular expression; the variable loc2
points to the character after the last character that matches the regular expression.
Thus if the regular expression matches the entire input string, loc1 will point to the
first character of string and loc2 will point to the null at the end of string.

The function advance() returns non-zero if the initial substring of string matches the
regular expression in expbuf. If there is a match, an external character pointer, loc2, is
set as a side effect. The variable loc2 points to the next character in string after the last
character that matched.

When advance() encounters a * or \{ \} sequence in the regular expression, it will
advance its pointer to the string to be matched as far as possible and will recursively
call itself trying to match the rest of the string to the rest of the regular expression. As
long as there is no match, advance() will back up along the string until it finds a
match or reaches the point in the string that initially matched the * or \{ \}. It is
sometimes desirable to stop this backing up before the initial point in the string is
reached. If the external character pointer locs is equal to the point in the string at
sometime during the backing up process, advance() will break out of the loop that
backs up and will return zero.

The external variables circf, sed, and nbra are reserved.

EXAMPLE 1 The following is an example of how the regular expression macros and calls
might be defined by an application program:

#define INIT register char *sp = instring;
#define GETC (*sp++)
#define PEEKC (*sp)
#define UNGETC(c) (––sp)
#define RETURN(*c) return;
#define ERROR(c) regerr
#include <regexp.h>
. . .

(void) compile(*argv, expbuf, &expbuf[ESIZE],’\0’);
. . .

if (step(linebuf, expbuf))

succeed;

The function compile() uses the macro RETURN on success and the macro ERROR on
failure (see above). The functions step() and advance() return non-zero on a
successful match and zero if there is no match. Errors are:

regexp(5)

step(), advance()

EXAMPLES

DIAGNOSTICS

Standards, Environments, and Macros 319

11 range endpoint too large.

16 bad number.

25 \ digit out of range.

36 illegal or missing delimiter.

41 no remembered search string.

42 \(\) imbalance.

43 too many \(.

44 more than 2 numbers given in \{ \}.

45 } expected after \.

46 first number exceeds second in \{ \}.

49 [] imbalance.

50 regular expression overflow.

regex(5)

regexp(5)

SEE ALSO

320 man pages section 5: Standards, Environments, and Macros • Last Revised 2 Apr 1996

SEAM – overview of Sun Enterprise Authentication Mechanism

SEAM (Sun Enterprise Authentication Mechanism) authenticates clients in a network
environment, allowing for secure transactions. (A client may be a user or a network
service) SEAM validates the identity of a client and the authenticity of transferred
data. SEAM is a single-sign-on system, meaning that a user needs to provice a
password only at the beginning of a session. SEAM is based on the Kerberos™ system
developed at MIT, and is compatible with Kerberos V5 systems over heterogeneous
networks.

SEAM works by granting clients tickets, which uniquely identify a client, and which
have a finite lifetime. A client possessing a ticket is automatically validated for
network services for which it is entitled; for example, a user with a valid SEAM ticket
may rlogin into another machine running SEAM without having to identify itself.
Because each client has a unique ticket, its identity is guaranteed.

To obtain tickets, a client must first initialize the SEAM session, either by using the
kinit(1) command or a PAM module. (See pam_krb5(5)). kinit prompts for a
password, and then communicates with a Key Distribution Center (KDC). The KDC
returns a Ticket-Granting Ticket (TGT) and prompts for a confirmation password. If the
client confirms the password, it can use the Ticket-Granting Ticket to obtain tickets for
specific network services. Because tickets are granted transparently, the user need not
worry about their management. Current tickets may be viewed by using the klist(1)
command.

Tickets are valid according to the system policy set up at installation time. For example,
tickets have a default lifetime for which they are valid. A policy may further dictate
that privileged tickets, such as those belonging to root, have very short lifetimes.
Policies may allow some defaults to be overruled; for example, a client may request a
ticket with a lifetime greater or less than the default.

Tickets can be renewed using kinit. Tickets are also forwardable, allowing you to use
a ticket granted on one machine on a different host. Tickets can be destroyed by using
kdestroy(1). It is a good idea to include a call to kdestroy in your .logout file.

Under SEAM, a client is referred to as a principal. A principal takes the following form:

primary/instance@REALM

primary A user, a host, or a service.

instance A qualification of the primary. If the primary is a host
— indicated by the keyword host— then the instance
is the fully-qualified domain name of that host. If the
primary is a user or service, then the instance is
optional. Some instances, such as admin or root, are
privileged.

SEAM(5)

NAME

DESCRIPTION

Standards, Environments, and Macros 321

realm The Kerberos equivalent of a domain; in fact, in most
cases the realm is directly mapped to a DNS domain
name. SEAM realms are given in upper-case only. For
examples of principal names, see the EXAMPLES.

By taking advantage of the General Security Services API (GSS-API), SEAM offers,
besides user authentication, two other types of security service: integrity, which
authenticates the validity of transmitted data, and privacy, which encrypts transmitted
data. Developers can take advantage of the GSS-API through the use of the
RPCSEC_GSS API interface (see rpcsec_gss(3NSL)).

EXAMPLE 1 Examples of valid principal names

The following are examples of valid principal names:

joe
joe/admin
joe@ENG.ACME.COM
joe/admin@ENG.ACME.COM
rlogin/bigmachine.eng.acme.com@ENG.ACME.COM

host/bigmachine.eng.acme.com@ENG.ACME.COM

The first four cases are user principals. In the first two cases, it is assumed that the user
joe is in the same realm as the client, so no realm is specified. Note that joeand
joe/admin are different principals, even if the same user uses them; joe/admin has
different privileges from joe. The fifth case is a service principal, while the final case is
a host principal. The word host is required for host principals. With host principals,
the instance is the fully qualified hostname. Note that the words admin and host are
reserved keywords.

kdestroy(1), kinit(1), klist(1), kpasswd(1), krb5.conf(5)

Sun Enterprise Authentication Mechanism Guide

If you enter your username and kinit responds with this message:

Principal unknown (kerberos)you haven’t been registered as a SEAM user. See your
system administrator or the Sun Enterprise Authentication Mechanism Guide.

SEAM(5)

EXAMPLES

SEE ALSO

NOTES

322 man pages section 5: Standards, Environments, and Macros • Last Revised 17 Nov 1999

sgml, solbook – Standard Generalized Markup Language

Standard Generalized Markup Language (SGML) is the ISO standard 8879:1986 that
describes a syntax for marking up documents with tags that describe the purpose of
the text rather than the appearance on the page. This form of markup facilitates
document interchange between different platforms and applications. SGML allows the
management of information as data objects rather than text on a page.

In an SGML document the main structural components are called elements. The
organization and structure of a document and the meaning of elements are described
in the Document Type Definition (DTD). Elements are the tags that identify the
content. Element names may be descriptive of the content for ease of use. For example
<para> for paragraphs. Elements can have attributes which are used to modify or
refine the properties or characteristics of the element. Within the DTD a valid context
for each element is defined and a framework is provided for the types of elements that
constitute a compliant document.

Another component of the DTD is entities. Entities are a collection of characters
that can be referenced as a unit. Entities are similar to constants in a programming
language such as C. They can be defined and referenced. An entity can represent one
character or symbol which does not appear on a standard keyboard, a word or group
of words, or an entire separate sgml marked-up file. Entities allow reuse of standard
text.

There is no single standard DTD , but the de facto standard for the computer industry
is the DocBook DTD , developed and maintained by the Davenport Group. Within
Sun, the SolBook DTD , which is a proper subset of DocBook DTD , is used when
writing reference manual pages. The SolBook DTD contains a number of tags that are
designed for the unique needs of the reference pages.

Elements are defined with a hierarchical structure that gives a structure to the
document. The following is a description of some of the elements from the SolBook
DTD which are used for reference pages.

The first line in an SGML file that identifies the location of the DTD that is used to
define the document. The <!DOCTYPE string is what the SGML -aware man(1)
command uses to identify that a file is formatted in SGML rather than nroff(1).

The top layer element that contains a reference page is <refentry>. All of the text
and other tags must be contained within this tag.

The next tag in a reference page is <refmeta>, which is a container for several other
tags. They are:

<refentrytitle> This is the title of the reference page. It is equivalent to the name of
the reference page’s file name, without the section number
extension.

<manvolnum> This is the section number that the reference page resides in. The
contents may be a text entity reference.

sgml(5)

NAME

DESCRIPTION

SolBook Elements

DOCTYPE

RefEntry

RefMeta

Standards, Environments, and Macros 323

<refmiscinfo> There are one or more <refmiscinfo> tags which contain meta
information. Meta information is information about the reference
page. The <refmiscinfo> tag has the class attribute. There are
four classes that are routinely used.

date This is the date that the file was last modified.
By consensus this date is changed only when
the technical information on the page changes
and not simply for an editorial change.

sectdesc This is the section title of the reference page;
for example User Commands. The value of
this attribute may be a text entity reference.

software This is the name of the software product that
the topic discussed on the reference page
belongs to. For example UNIX commands are
part of the SunOS x.x release. The value of this
attribute may be a text entity reference.

arch This is the architectural platform limitation of
the subject discussed on the reference page. If
there are no limitations the value used is
generic. Other values are sparc and x86.

copyright This attribute contains the Sun Microsystems
copyright. Any other copyrights that may
pertain to the individual reference page file
should be entered as separate
<refmiscinfo> entries. The value of this
attribute may be a text entity reference.

This tag contains the equivalent information to the .TH macro line in an nroff(1)
reference page. <refnamediv> contains three tags. These tags contain the text that is
before and after the ‘–’ (dash) on the NAME line.

<refname> These are the names of the topics that are discussed in the file.
There may be more than one <refname> for a page. The first
<refname> must match the name of the file and the
<refentrytitle>. If there are more than one <refname> tags,
each is separated by a ‘,’ (comma). The comma is generated by the
publisher of sgml files, so it should not be typed. This is referred to
as auto-generated text.

<refpurpose> The text after the dash on the NAME line is contained in this tag.
This is a short summary of what the object or objects described on
the reference page do or are used for. The dash is also
auto-generated and should not be typed in.

<refdiscriptor> In some cases the <refentrytitle> is a general topic descriptor
of a group of related objects that are discussed on the same page.

sgml(5)

RefNameDiv

324 man pages section 5: Standards, Environments, and Macros • Last Revised 7 Jan 1997

In this case the first tag after the <refnamediv> is a
<refdiscriptor>. The <refname> tags follow. Only one
<refdiscriptor> is allowed, and it should match the
<refentrytitle>.

The SYNOPSIS line of the reference page is contained by this tag. There is a <title>
that usually contains an entity reference. The text is the word SYNOPSIS. There are
several tags within <refsynopsisdiv> that are designed specifically for the type of
synopsis that is used in the different reference page sections. The three types are:

<cmdsynopsis> Used for commands and utilities pages.

<funcsynopsis> Used for programming interface pages.

<synopsis> Used for pages that do not fall into the other two categories.

This tag is equivalent to the .SH nroff macro. It contains a <title> element that is the
title of the reference page section. Section names are the standard names such as
DESCRIPTION, OPTIONS, PARAMETERS, SEE ALSO, and others. The contents of the
<title> may be a text entity reference.

This tag is equivalent to the .SS nroff macro. It contains a <title> element that
contains the text of the sub-section heading. <refsect2> tags may also be used
within a <refsynopsisdiv> as a sub-section heading for the SYNOPSIS section.

There are a number of block elements that are used for grouping text. This is a list of
some of these elements.

<para> This tag is used to contain a paragraph of text.

<variablelist> This tag is used to create two column lists. For example
descriptions for command options, where the first
column lists the option and the second column
describes the option.

<orderedlist> An list of items in a specific order.

<itemizedlist> A list of items that are marked with a character such as
a bullet or a dash.

<literallayout> Formatted program output as produced by a program
or command. This tag is a container for lines set off
from the main text in which line breaks, tabs, and
leading white space are significant.

<programlisting> A segment of program code. Line breaks and leading
white space are significant.

<table> This tag contains the layout and content for tabular
formatting of information. <table> has a required
<title>.

sgml(5)

RefSynopsisDiv

RefSect1

RefSect2

Block Elements

Standards, Environments, and Macros 325

<informaltable> This tag is the same as the <table> tag except the
<title> is not required.

<example> This tag contains examples of source code or usage of
commands. It contains a required <title>.

<informalexample> This tag is the same as the <example> tag except the
<title> is not required.

The inline elements are used for tagging text.

<command> An executable program or the entry a user makes to
execute a command.

<function> A subroutine in a program or external library.

<literal> Contains any literal string.

<parameter> An argument passed to a computer program by a
function or routine.

<inlineequation> An untitled mathematical equation occurring in-line.

<link> A hypertext link to text within a book, in the case of the
reference manual it is used to cross reference to another
reference page.

<olink> A hypertext link used to create cross references to
books other than the reference manual.

<xref> A cross reference to another part of the same reference
page.

man(1), nroff(1), man(5)

sgml(5)

Inline Elements

SEE ALSO

326 man pages section 5: Standards, Environments, and Macros • Last Revised 7 Jan 1997

smartcard – overview of smart card features on Solaris

The smart card framework provides a mechanism to abstract the details of interacting
with smart cards and smart cardreaders (called card terminals). The framework is
based on the OpenCard Framework V1.1 (OCF) with Sun extensions to allow OCF to
operate in a multi-user environment. The core OCF software protocol stack is
implemented as a system service daemon. This implementation allows smart cards
and card terminals to be shared cooperatively among many different clients on the
system while providing access control to the smart card and card terminal resources
on a per-UID basis.

An event dispatcher is provided to inform clients of events occuring on the card and at
the card terminal, such as card insertion and card removal.

A high-level authentication mechanism is provided to allow clients to perform smart
card-based authentications without requiring knowledge of specific card or reader
authentication features.

A set of applet administration tools is provided for JavaCards that support
downloading Java applets (although applet build tools are not provided).

Administration of the smart card framework is provided with the smartcard(1M)
command line administration utility and the smartcardguiadmin(1) GUI
administration tool.

Support for several card terminals is provided:

� Sun External Smart Card Reader I (see ocf_escr1(7D))
� Sun Internal Smart Card Reader I (see ocf_iscr1(7D))
� Dallas iButton Serial Reader (see ocf_ibutton(7D))

Additional card terminals can be supported by implementing smart card terminal
interfaces in a shared library.

Support for several smart cards is provided:

� Schlumberger Cyberflex Access JavaCard
� Schlumberger MicroPayflex
� Dallas Semiconductor Java iButton JavaCard

Each of the supported cards has a complete set of OCF card services that implement
the necessary functionality for authentication and secure storage of data. For the two
supported JavaCards, an authentication and secure data storage applet is provided
that can be loaded into these cards with the supplied applet administration tools. See
smartcard(1M).

A PAM smart card module is provided to allow PAM clients to use smart card-based
authentication. See pam_smartcard(5)

smartcard(5)

NAME

DESCRIPTION

Standards, Environments, and Macros 327

CDE is able to use the PAM smart card module for dtlogin and dtsession
authentication. CDE also uses the smart card framework event dispatcher to listen for
events on the card terminal and provide corresponding visual feedback to the user.

ocfserv(1M), smartcard(1M), libsmartcard(3LIB), pam_start(3PAM),
pam_smartcard(5), ocf_escr1(7D), ocf_ibutton(7D), ocf_iscr1(7D),
scmi2c(7D)

smartcard(5)

SEE ALSO

328 man pages section 5: Standards, Environments, and Macros • Last Revised 16 Oct 2002

standards, ANSI, C, C++, ISO, POSIX, POSIX.1, POSIX.2, SUS, SUSv2, SVID, SVID3,
XNS, XNS4, XNS5, XPG, XPG3, XPG4, XPG4v2 – standards and specifications
supported by Solaris

Solaris 9supports IEEE Std 1003.1 and IEEE Std 1003.2, commonly known as POSIX.1
and POSIX.2, respectively. The following table lists each version of these standards
with a brief description and the SunOS or Solaris release that first conformed to it.

POSIX Standard Description Release

POSIX.1-1988 system interfaces and headers SunOS 4.1

POSIX.1-1990 POSIX.1-1988 update Solaris 2.0

POSIX.1b-1993 realtime extensions Solaris 2.4

POSIX.1c-1996 threads extensions Solaris 2.6

POSIX.2-1992 shell and utilities Solaris 2.5

POSIX.2a-1992 interactive shell and utilities Solaris 2.5

Solaris 9also supports the X/Open Common Applications Environment (CAE)
Portability Guide Issue 3 (XPG3) and Issue 4 (XPG4), Single UNIX Specification (SUS,
also known as XPG4v2), and Single UNIX Specification, Version 2 (SUSv2). Both XPG4
and SUS include Networking Services Issue 4 (XNS4). SUSv2 includes Networking
Services Issue 5 (XNS5).

The following table lists each X/Open specification with a brief description and the
SunOS or Solaris release that first conformed to it.

X/Open CAE
Specification

Description Release

XPG3 superset of POSIX.1-1988 containing
utilities from SVID3

SunOS 4.1

XPG4 superset of POSIX.1-1990, POSIX.2-1992,
and POSIX.2a-1992 containing extensions
to POSIX standards from XPG3

Solaris 2.4

SUS (XPG4v2) superset of XPG4 containing historical
BSD interfaces widely used by common
application packages

Solaris 2.6

XNS4 sockets and XTI interfaces Solaris 2.6

SUSv2 superset of SUS extended to support
POSIX.1b-1993, POSIX.1c-1996, and
ISO/IEC 9899 (C Standard) Amendment 1

Solaris 7

standards(5)

NAME

DESCRIPTION

Standards, Environments, and Macros 329

X/Open CAE
Specification

Description Release

XNS5 superset and LP64-clean derivative of
XNS4.

Solaris 7

The XNS4 specification is safe for use only in ILP32 (32-bit) environments and should
not be used for LP64 (64-bit) application environments. Use XNS5, which has
LP64-clean interfaces that are portable across ILP32 and LP64 environments. Solaris
releases 7 through 9 support both the ILP32 and ILP64 enviornments.

Solaris releases 7 through 9 have been branded to conform to The Open Group’s UNIX
98 Product Standard.

Solaris releases 2.0 through 9 support the interfaces specified by the System V
Interface Definition, Third Edition, Volumes 1 through 4 (SVID3). Note, however, that
since the developers of this specification (UNIX Systems Laboratories) are no longer in
business and since this specification defers to POSIX and X/Open CAE specifications,
there is some disagreement about what is currently required for conformance to this
specification.

When Sun WorkShop Compiler™ C 4.2 is installed, Solaris releases 2.0 through 9
support the ANSI X3.159-1989 Programming Language - C and ISO/IEC 9899:1990
Programming Language - C (C) interfaces.

When Sun WorkShop Compiler™ C 5.0 is installed, Solaris releases 7 through 9
also support ISO/IEC 9899 Amendment 1: C Integrity.

When Sun WorkShop Compiler C++ 5.0 is installed, Solaris releases 2.5.1 through
9 support ISO/IEC 14882:1998 Programming Languages - C++. Unsupported features
of that standard are described in the compiler README file. The features of the C++
standard adopted from ISO/IEC 9899 Amendement 1 are not supported on Solaris
2.5.1, and are only partially supported on Solaris 2.6.

If the behavior required by POSIX.2, POSIX.2a, XPG4, SUS, or SUSv2 conflicts with
historical Solaris utility behavior, the original Solaris version of the utility is
unchanged; a new version that is standard-conforming has been provided in
/usr/xpg4/bin. For applications wishing to take advantage of POSIX.2, POSIX.2a,
XPG4, SUS, or SUSv2 features, the PATH (sh or ksh) or path (csh) environment
variables should be set with /usr/xpg4/bin preceding any other directories in
which utilities specified by those specifications are found, such as /bin, /usr/bin,
/usr/ucb, and /usr/ccs/bin.

Feature test macros are used by applications to indicate additional sets of features that
are desired beyond those specified by the C standard. If an application uses only those
interfaces and headers defined by a particular standard (such as POSIX or X/Open
CAE), then it need only define the appropriate feature test macro specified by that
standard. If the application is using interfaces and headers not defined by that
standard, then in addition to defining the appropriate standard feature test macro, it

standards(5)

Utilities

Feature Test
Macros

330 man pages section 5: Standards, Environments, and Macros • Last Revised 29 Aug 2001

must also define __EXTENSIONS__. Defining __EXTENSIONS__ provides the
application with access to all interfaces and headers not in conflict with the specified
standard. The application must define __EXTENSIONS__ either at compile time or
within the applicatio’n source files.

ANSI/ISO C

No feature test macros need to be defined to indicate that an application is a
conforming C application.

ANSI/ISO C++

ANSI/ISO C++ does not define any feature test macros. If the standard C++
announcement macro __cplusplus is predefined to value 199711 or greater, the
compiler operates in a standard-conforming mode, indicating C++ standards
conformance. The value 199711 indicates conformance to ISO/IEC 14882:1998, as
required by that standard. (As noted above, conformance to the standard is
incomplete.) A standard-conforming mode is not available with compilers prior to Sun
WorkShop C++ 5.0.

C++ bindings are not defined for POSIX or X/Open CAE, so specifying feature test
macros such as _POSIX_SOURCE and _XOPEN_SOURCE can result in compilation
errors due to conflicting requirements of standard C++ and those specifications.

POSIX

Applications that are intended to be conforming POSIX.1 applications must define the
feature test macros specified by the standard before including any headers. For the
standards listed below, applications must define the feature test macros listed.
Application writers must check the corresponding standards for other macros that can
be queried to determine if desired options are supported by the implementation.

POSIX Standard Feature Test Macros

POSIX.1-1990 _POSIX_SOURCE

POSIX.1-1990 and POSIX.2-1992 C-Language
Bindings Option

_POSIX_SOURCE and _POSIX_C_SOURCE=2

POSIX.1b-1993 _POSIX_C_SOURCE=199309L

POSIX.1c-1996 _POSIX_C_SOURCE=199506L

SVID3

The SVID3 specification does not specify any feature test macros to indicate that an
application is written to meet SVID3 requirements. The SVID3 specification was
written before the C standard was completed.

X/Open CAE

standards(5)

Standards, Environments, and Macros 331

To build or compile an application that conforms to one of the X/Open CAE
specifications, use the following guidelines. Applications need not set the POSIX
feature test macros if they require both CAE and POSIX functionality.

XPG3 The application must define _XOPEN_SOURCE with a value other
than 500 (preferably 1).

XPG4 The application must define _XOPEN_SOURCE with a value other
than 500 (preferably 1) and set _XOPEN_VERSION=4.

SUS (XPG4v2) The application must define _XOPEN_SOURCE with a value other
than 500 (preferably 1) and set _XOPEN_SOURCE_EXTENDED=1.

SUSv2 The application must define _XOPEN_SOURCE=500.

A POSIX.2-, XPG4-, SUS-, or SUSv2-conforming implementation must include an
ANSI X3.159-1989 (ANSI C Language) standard-conforming compilation system and
the cc and c89 utilities. Solaris 7 through 9 were tested with the cc and c89 utilities
and the compilation system provided by Sun WorkShop Compiler™ C 5.0 in the
SPARC and x86 environments. When cc is used to link applications,
/usr/ccs/lib/values-xpg4.o must be specified on any link/load command line,
but the preferred way to build applications is described below.

An XNS4- or XNS5-conforming application must include -l XNS on any link/load
command line in addition to defining the feature test macros specified for SUS or
SUSv2, respectively.

If the compiler suppports the redefine_extname pragma feature (the Sun
WorkShop Compiler™ C 4.2 and Sun WorkShop Compiler™ C 5.0 compilers
define the macro __PRAGMA_REDEFINE_EXTNAME to indicate that it supports this
feature), then the standard headers use #pragma redefine_extname directives to
properly map function names onto library entry point names. This mapping provides
full support for ISO C, POSIX, and X/Open namespace reservations. The Sun
WorkShop Compiler™ C 5.0 compiler was used for all branding and certification
tests for Solaris releases 7 through 9.

If this pragma feature is not supported by the compiler, the headers use the #define
directive to map internal function names onto appropriate library entry point names.
In this instance, applications should avoid using the explicit 64-bit file offset symbols
listed on the lf64(5) manual page, since these names are used by the implementation
to name the alternative entry points.

When using Sun WorkShop Compiler™ C 5.0, applications conforming to the
specifications listed above should be compiled using the utilities and flags indicated in
the following table:

Specification Compiler/FlagsFeature Test Macros

ANSI/ISO C c89 none

standards(5)

Compilation

332 man pages section 5: Standards, Environments, and Macros • Last Revised 29 Aug 2001

Specification Compiler/FlagsFeature Test Macros

SVID3 cc -Xt none

POSIX.1-1990 c89 _POSIX_SOURCE

POSIX.1-1990 and
POSIX.2-1992 C-Language
Bindings Option

c89 _POSIX_SOURCE and POSIX_C_SOURCE=2

POSIX.1b-1993 c89 _POSIX_C_SOURCE=199309L

POSIX.1c-1996 c89 _POSIX_C_SOURCE=199506L

CAE XPG3 cc -Xa _XOPEN_SOURCE

CAE XPG4 c89 _XOPEN_SOURCE and _XOPEN_VERSION=4

SUS (CAE XPG4v2) (includes
XNS4)

c89 _XOPEN_SOURCE and
_XOPEN_SOURCE_EXTENDED=1

SUSv2 (includes XNS5) c89 _XOPEN_SOURCE=500

For platforms supporting the LP64 (64-bit) programming environment where the
SC5.0 Compilers have been installed, SUSv2–conforming LP64 applications using
XNS5 library calls should be built with command lines of the form:

c89 $(getconf XBS5_LP64_OFF64_CFLAGS) -D_XOPEN_SOURCE=500 \
$(getconf XBS5_LP64_OFF64_LDFLAGS) foo.c -o foo \
$(getconf XBS5_LP64_OFF64_LIBS) -lxnet

sysconf(3C), environ(5), lf64(5)

standards(5)

SEE ALSO

Standards, Environments, and Macros 333

sticky – mark files for special treatment

The sticky bit (file mode bit 01000, see chmod(2)) is used to indicate special treatment
of certain files and directories. A directory for which the sticky bit is set restricts
deletion of files it contains. A file in a sticky directory may only be removed or
renamed by a user who has write permission on the directory, and either owns the file,
owns the directory, or is the super-user. This is useful for directories such as /tmp,
which must be publicly writable, but should deny users permission to arbitrarily
delete or rename the files of others.

If the sticky bit is set on a regular file and no execute bits are set, the system’s page
cache will not be used to hold the file’s data. This bit is normally set on swap files of
diskless clients so that accesses to these files do not flush more valuable data from the
system’s cache. Moreover, by default such files are treated as swap files, whose inode
modification times may not necessarily be correctly recorded on permanent storage.

Any user may create a sticky directory. See chmod for details about modifying file
modes.

/tmp

chmod(1), chmod(2), chown(2), mkdir(2)

mkdir(2) will not create a directory with the sticky bit set.

sticky(5)

NAME

DESCRIPTION

FILES

SEE ALSO

BUGS

334 man pages section 5: Standards, Environments, and Macros • Last Revised 13 Feb 1995

term – conventional names for terminals

Terminal names are maintained as part of the shell environment in the environment
variable TERM. See sh(1), profile(4), and environ(5). These names are used by
certain commands (for example, tabs, tput, and vi) and certain functions (for
example, see curses(3CURSES)).

Files under /usr/share/lib/terminfo are used to name terminals and describe
their capabilities. These files are in the format described in terminfo(4). Entries in
terminfo source files consist of a number of comma-separated fields. To print a
description of a terminal term, use the command infocmp -I term. See infocmp(1M).
White space after each comma is ignored. The first line of each terminal description in
the terminfo database gives the names by which terminfo knows the terminal,
separated by bar (|) characters. The first name given is the most common abbreviation
for the terminal (this is the one to use to set the environment variable TERMINFO in
$HOME/.profile; see profile(4)), the last name given should be a long name fully
identifying the terminal, and all others are understood as synonyms for the terminal
name. All names but the last should contain no blanks and must be unique in the first
14 characters; the last name may contain blanks for readability.

Terminal names (except for the last, verbose entry) should be chosen using the
following conventions. The particular piece of hardware making up the terminal
should have a root name chosen, for example, for the AT&T 4425 terminal, att4425.
This name should not contain hyphens, except that synonyms may be chosen that do
not conflict with other names. Up to 8 characters, chosen from the set a through z and
0 through 9, make up a basic terminal name. Names should generally be based on
original vendors rather than local distributors. A terminal acquired from one vendor
should not have more than one distinct basic name. Terminal sub-models, operational
modes that the hardware can be in, or user preferences should be indicated by
appending a hyphen and an indicator of the mode. Thus, an AT&T 4425 terminal in
132 column mode is att4425−w. The following suffixes should be used where
possible:

Suffix Meaning Example

−w Wide mode (more than 80
columns)

att4425−w

−am With auto. margins (usually
default)

vt100−am

−nam Without automatic margins vt100−nam

−n Number of lines on the screen aaa−60

−na No arrow keys (leave them in
local)

c100−na

−np Number of pages of memory c100−4p

term(5)

NAME

DESCRIPTION

Standards, Environments, and Macros 335

−rv Reverse video att4415−rv

To avoid conflicts with the naming conventions used in describing the different modes
of a terminal (for example, -w), it is recommended that a terminal’s root name not
contain hyphens. Further, it is good practice to make all terminal names used in the
terminfo(4) database unique. Terminal entries that are present only for inclusion in
other entries via the use= facilities should have a ’+’ in their name, as in 4415+nl.

Here are some of the known terminal names: (For a complete list, enter the command
ls -C /usr/share/lib/terminfo/?).

2621,hp2621 Hewlett-Packard 2621 series

2631 Hewlett-Packard 2631 line printer

2631−c Hewlett-Packard 2631 line printer, compressed mode

2631−e Hewlett-Packard 2631 line printer, expanded mode

2640,hp2640 Hewlett-Packard 2640 series

2645,hp2645 Hewlett-Packard 2645 series

3270 IBM Model 3270

33,tty33 AT&T Teletype Model 33 KSR

35,tty35 AT&T Teletype Model 35 KSR

37,tty37 AT&T Teletype Model 37 KSR

4000a Trendata 4000a

4014,tek4014 TEKTRONIX 4014

40,tty40 AT&T Teletype Dataspeed 40/2

43,tty43 AT&T Teletype Model 43 KSR

4410,5410 AT&T 4410/5410 in 80-column mode, version 2

4410−nfk,5410−nfk AT&T 4410/5410 without function keys, version 1

4410−nsl,5410−nsl AT&T 4410/5410 without pln defined

4410−w,5410−w AT&T 4410/5410 in 132-column mode

4410v1,5410v1 AT&T 4410/5410 in 80-column mode, version 1

4410v1−w,5410v1−w AT&T 4410/5410 in 132-column mode, version 1

4415,5420 AT&T 4415/5420 in 80-column mode

4415−nl,5420−nl AT&T 4415/5420 without changing labels

term(5)

336 man pages section 5: Standards, Environments, and Macros • Last Revised 3 Jul 1990

4415−rv,5420−rv AT&T 4415/5420 80 columns in reverse video

4415−rv−nl,5420−rv−nl AT&T 4415/5420 reverse video without changing labels

4415−w,5420−w AT&T 4415/5420 in 132-column mode

4415−w−nl,5420−w−nl AT&T 4415/5420 in 132-column mode without changing
labels

4415−w−rv,5420−w−rv AT&T 4415/5420 132 columns in reverse video

4418,5418 AT&T 5418 in 80-column mode

4418−w,5418−w AT&T 5418 in 132-column mode

4420 AT&T Teletype Model 4420

4424 AT&T Teletype Model 4424

4424-2 AT&T Teletype Model 4424 in display function group ii

4425,5425 AT&T 4425/5425

4425−fk,5425−fk AT&T 4425/5425 without function keys

4425−nl,5425−nl AT&T 4425/5425 without changing labels in 80-column
mode

4425−w,5425−w AT&T 4425/5425 in 132-column mode

4425−w−fk,5425−w−fk AT&T 4425/5425 without function keys in 132-column
mode

4425−nl−w,5425−nl−w AT&T 4425/5425 without changing labels in 132-column
mode

4426 AT&T Teletype Model 4426S

450 DASI 450 (same as Diablo 1620)

450−12 DASI 450 in 12-pitch mode

500,att500 AT&T-IS 500 terminal

510,510a AT&T 510/510a in 80-column mode

513bct,att513 AT&T 513 bct terminal

5320 AT&T 5320 hardcopy terminal

5420_2 AT&T 5420 model 2 in 80-column mode

5420_2−w AT&T 5420 model 2 in 132-column mode

5620,dmd AT&T 5620 terminal 88 columns

5620−24,dmd−24 AT&T Teletype Model DMD 5620 in a 24x80 layer

5620−34,dmd−34 AT&T Teletype Model DMD 5620 in a 34x80 layer

term(5)

Standards, Environments, and Macros 337

610,610bct AT&T 610 bct terminal in 80-column mode

610−w,610bct−w AT&T 610 bct terminal in 132-column mode

630,630MTG AT&T 630 Multi-Tasking Graphics terminal

7300,pc7300,unix_pc AT&T UNIX PC Model 7300

735,ti Texas Instruments TI735 and TI725

745 Texas Instruments TI745

dumb generic name for terminals that lack reverse line-feed and
other special escape sequences

hp Hewlett-Packard (same as 2645)

lp generic name for a line printer

pt505 AT&T Personal Terminal 505 (22 lines)

pt505−24 AT&T Personal Terminal 505 (24-line mode)

sync generic name for synchronous Teletype Model
4540-compatible terminals

Commands whose behavior depends on the type of terminal should accept arguments
of the form -Tterm where term is one of the names given above; if no such argument is
present, such commands should obtain the terminal type from the environment
variable TERM, which, in turn, should contain term.

/usr/share/lib/terminfo/?/* compiled terminal description database

sh(1), stty(1), tabs(1), tput(1), vi(1), infocmp(1M), curses(3CURSES),
profile(4), terminfo(4), environ(5)

term(5)

FILES

SEE ALSO

338 man pages section 5: Standards, Environments, and Macros • Last Revised 3 Jul 1990

vgrindefs – vgrind’s language definition data base

/usr/lib/vgrindefs

vgrindefs contains all language definitions for vgrind(1). Capabilities in
vgrindefs are of two types: Boolean capabilities which indicate that the language
has some particular feature and string capabilities which give a regular expression or
keyword list. Entries may continue onto multiple lines by giving a \ as the last
character of a line. Lines starting with # are comments.

The following table names and describes each capability.

Name Type Description

ab str Regular expression for the start of an alternate form comment

ae str Regular expression for the end of an alternate form comment

bb str Regular expression for the start of a block

be str Regular expression for the end of a lexical block

cb str Regular expression for the start of a comment

ce str Regular expression for the end of a comment

id str String giving characters other than letters and digits that may legally
occur in identifiers (default ‘_’)

kw str A list of keywords separated by spaces

lb str Regular expression for the start of a character constant

le str Regular expression for the end of a character constant

oc bool Present means upper and lower case are equivalent

pb str Regular expression for start of a procedure

pl bool Procedure definitions are constrained to the lexical level matched by the
‘px’ capability

px str A match for this regular expression indicates that procedure definitions
may occur at the next lexical level. Useful for lisp-like languages in
which procedure definitions occur as subexpressions of defuns.

sb str Regular expression for the start of a string

se str Regular expression for the end of a string

tc str Use the named entry as a continuation of this one

tl bool Present means procedures are only defined at the top lexical level

vgrindefs(5)

NAME

SYNOPSIS

DESCRIPTION

Capabilities

Standards, Environments, and Macros 339

vgrindefs uses regular expressions similar to those of ex(1) and lex(1). The
characters ‘^’, ‘$’, ‘:’, and ‘\’ are reserved characters and must be ‘quoted’ with a
preceding \ if they are to be included as normal characters. The metasymbols and
their meanings are:

$ The end of a line

^ The beginning of a line

\d A delimiter (space, tab, newline, start of line)

\a Matches any string of symbols (like ‘.*’ in lex)

\p Matches any identifier. In a procedure definition (the ‘pb’
capability) the string that matches this symbol is used as the
procedure name.

() Grouping

| Alternation

? Last item is optional

\e Preceding any string means that the string will not match an input
string if the input string is preceded by an escape character (\).
This is typically used for languages (like C) that can include the
string delimiter in a string by escaping it.

Unlike other regular expressions in the system, these match words and not characters.
Hence something like ‘(tramp|steamer)flies?’ would match ‘tramp’, ‘steamer’,
‘trampflies’, or ‘steamerflies’. Contrary to some forms of regular expressions,
vgrindef alternation binds very tightly. Grouping parentheses are likely to be
necessary in expressions involving alternation.

The keyword list is just a list of keywords in the language separated by spaces. If the
‘oc’ boolean is specified, indicating that upper and lower case are equivalent, then all
the keywords should be specified in lower case.

EXAMPLE 1 A sample program.

The following entry, which describes the C language, is typical of a language entry.

C|c|the C programming language:\
:pb=^\d?*?\d?\p\d?(\a?\)(\d|{):bb={:be=}:cb=/*:ce=*/:sb=":se=\e":\
:le=\e’:tl:\
:kw=asm auto break case char continue default do double else enum\
extern float for fortran goto if int long register return short\
sizeof static struct switch typedef union unsigned void while #define\
#else #endif #if #ifdef #ifndef #include #undef # define endif\
ifdef ifndef include undef defined:

Note that the first field is just the language name (and any variants of it). Thus the C
language could be specified to vgrind(1) as ‘c’ or ‘C’.

vgrindefs(5)

Regular
Expressions

Keyword List

EXAMPLES

340 man pages section 5: Standards, Environments, and Macros • Last Revised 10 Aug 1994

/usr/lib/vgrindefs file containing vgrind descriptions

ex(1), lex(1), troff(1), vgrind(1)

vgrindefs(5)

FILES

SEE ALSO

Standards, Environments, and Macros 341

wbem – Web-Based Enterprise Management

Web-Based Enterprise Management (WBEM) is a set of management and
Internet-related technologies intended to unify the management of enterprise
computing environments. Developed by the Distributed Management Task Force
(DMTF), WBEM enables organizations to deliver an integrated set of standards-based
management tools that support and promote World Wide Web technology. The DMTF
has developed a set of standards that make up WBEM. This set of standards includes:

� Common Information Model (CIM) - an object-oriented data model that describes
the overall management of information in an enterprise network environment.
CIM consists of a CIM specification and a CIM schema:

CIM Specification Consists of the language and methodology that
describes management data.

CIM Schema Provides actual model descriptions of systems,
applications, large area networks, and devices. The
CIM Schema enables applications from different
developers on different platforms to describe
management data in a standard format. As a result,
a variety of management applications can share this
information.

� CIM Operations Over HyperText Transport Protocol (HTTP) 1.1 is a transport
mechanism that maps CIM operations to HTTP to allow implementations of CIM
to interoperate in an open, standardized manner.

CIM Operations Over HTTP 1.1 uses eXtensible Markup Language (XML), which is
a markup language that represents management information in textual form.

In addition to the XML representation, CIM information is also represented
textually by the managed object format (MOF). These MOF representations are
typically stored as text files that developers compile into a CIM Object Manager.

Tools and services that enable developers to create and Services management
applications and instrumentation that manage heterogeneous computer environments
include:

� Solaris WBEM Services 2.5
� Solaris WBEM Software Development Kit 2.5

These services consist of a set of value-added Services 2.5 components. These services
make it easier for developers to create management applications that run in the Solaris
operating environment. They also make the Solaris operating environment easier to
manage. Solaris WBEM Services 2.5 consists of:

� CIM Object Manager, CIM Repository, and MOF Compiler

� CIM and Solaris Schema, which is an extension schema of CIM. CIM and Solaris
Schema is a collection of CIM classes that describe managed elements in the Solaris
operating environment. These classes are available from the CIM Object Manager
at start up.

wbem(5)

NAME

DESCRIPTION

WBEM Tools and
Services

Solaris WBEM
Services 2.5

342 man pages section 5: Standards, Environments, and Macros • Last Revised 5 Nov 2001

� Solaris Providers, which are programs that communicate information between the
Solaris operating environment and the CIM Object Manager (providers get and set
"dynamic" information about managed elements, acting as an intermediary
between the CIM Object Manager and the managed elements).

Solaris software providers have been developed for a variety of areas: users, roles,
file systems, and network configuration, for example. A remote provider is also
available to distribute agents away from the CIM Object Manager when required.
Because of the incremental development capabilities of the WBEM instrumentation
framework, developers can progressively and consistently add more providers for
additional Solaris software services.

� SNMP Adapter for WBEM, which enables Simple Network Management Protocol
(SNMP) management applications to access system management information that
is provided by Solaris WBEM Services. Used with the Solstice Enterprise Agent
(SEA) Master Agent snmpdx(1M), the SNMP Adapter for WBEM maps SNMP
requests into equivalent WBEM Common Information Model (CIM) properties or
instances.

The SNMP Adapter for WBEM also remaps the response from the CIM Object
Manager into an SNMP response, which is returned to the management
application.

A mapping file contains the corresponding Object Identifier (OID), class name,
property name, and Abstract Syntax Notation One (ASN.1) type for each object.
Developers can create their own mapping files.

� SNMP Provider, which enables WBEM services to deliver SNMP information.

This kit consists of a set of key application Software development tools that make it
easier for developers to write management applications that can communicate with
any WBEM-enabled management device. The Solaris WBEM Software Development
Kit includes examples, documentation, and CIM Workshop, a graphical user interface
through which developers can view and create classes and instances, through the
remote method invocation (RMI) or the XML/HTTP protocol.

Developers can also use this kit to write providers, which are programs that
communicate with managed elements to access data.

All management applications that developers create with the Solaris WBEM Software
Development Kit run on the Java platform. The Solaris 9 WBEM Software
Development Kit installs and runs in version 1.4 of the Java environment. Developers
can use the kit to write standalone applications or applications that run in conjunction
with Solaris WBEM Services.

The Solaris WBEM Software Development Kit is described in the Solaris WBEM SDK
Development Guide. Javadoc for the WBEM application programming interface is
located at /usr/sadm/lib/wbem/doc/index.html.

wbem(5)

Solaris WBEM
Software

Development Kit
2.5

Standards, Environments, and Macros 343

Adapters and converters enable Solaris WBEM Services of Solaris to work compatibly
with existing protocols by mapping WBEM information to these protocols. One such
protocol is Simple Network Management Protocol (SNMP).

Legacy management applications can administer WBEM-enabled software in the
Solaris operating environment. Developers can write agents or providers that convert
information from these protocols to WBEM, and they can write adapters that convert
WBEM information into these protocols.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SPARC and x86

Architecture SUNWwbapi, SUNWwbcor, SUNWwbcou,
SUNWwbdev, SUNWwbdoc, SUNWwbpro

CSI Enabled

appletviewer(1), cimworkshop(1M), init.wbem(1M), mofcomp(1M),
mofreg(1M), snmpdx(1M), wbemadmin(1M), wbemconfig(1M),
wbemlogviewer(1M), attributes(5)

wbem(5)

Compatibility of
Solaris WBEM

Services with
Existing Protocols

ATTRIBUTES

SEE ALSO

344 man pages section 5: Standards, Environments, and Macros • Last Revised 5 Nov 2001

Index

Numbers and Symbols
— pam_authtok_get, 268

l
large file status of utilities — largefile, 192

s
subset of a user’s environment that depends on

language and cultural conventions —
locale, 212

A
account management PAM module for projects

— pam_projects, 286
ANSI — standards and specifications supported

by Solaris, 329
architecture — attributes of interfaces, 18
ascii — ASCII character set, 16
attributes — attributes of interfaces, 18
attributes of interfaces — architecture, 18
attributes of interfaces — attributes, 18
attributes of interfaces — availability, 18
attributes of interfaces — CSI, 18
attributes of interfaces — MT-Level, 18
attributes of interfaces — stability, 18
attributes — characteristics of commands,

utilities, and device drivers

attributes — characteristics of commands,
utilities, and device drivers (Continued)

Architecture, 18
Availability, 18
Interface Stability, 19
MT-Level, 22

authentication, account, session, and password
management PAM modules for Kerberos V5
— pam_krb5, 274

authentication and password management
module — pam_authtok_check, 266

authentication module for password —
pam_passwd_auth, 284

availability — attributes of interfaces, 18

C
C — standards and specifications supported by

Solaris, 329
C++ — standards and specifications supported

by Solaris, 329
character set description file — charmap, 26
charmap — character set description file, 26

Decimal Constants, 28
Declarations, 26
Format, 27
Ranges of Symbolic Names, 28
Symbolic Names, 26

code set conversion tables — iconv, 122
code set conversion tables — iconv_1250, 107
code set conversion tables — iconv_1251, 113
code set conversion tables — iconv_646, 126

345

code set conversion tables — iconv_852, 129
code set conversion tables — iconv_8859-1, 135
code set conversion tables — iconv_8859-2, 141
code set conversion tables — iconv_8859-5, 147
code set conversion tables — iconv_dhn, 155
code set conversion tables — iconv_koi8-r, 159
code set conversion tables —

iconv_mac_cyr, 167
code set conversion tables — iconv_maz, 175
code set conversion tables — iconv_pc_cyr, 179
code set conversion tables —

iconv_unicode, 185
code set conversion tables

— iconv_1250, 107
— iconv_1251, 113
— iconv_646, 126
— iconv_852, 129
— iconv_8859-1, 135
— iconv_8859-2, 141
— iconv_8859-5, 147
— iconv_dhn, 155
— iconv_koi8-r, 159
— iconv_mac_cyr, 167
— iconv_maz, 175
— iconv_pc_cyr, 179

compilation environment, transitional —
lfcompile64, 206

crypt_unix — traditional UNIX crypt
algorithm, 32

CSI — attributes of interfaces, 18

D
data storage modules for the DHCP service —

dhcp_modules, 35
dhcp — Dynamic Host Configuration

Protocol, 33
dhcp_modules — data storage modules for the

DHCP service, 35
document production

man — macros to format manual pages, 239
mansun — macros to format manual

pages, 243
me — macros to format technical

papers, 247
mm — macros to format articles, theses and

books, 252

document production (Continued)
ms — macros to format articles, theses and
books, 259

Dynamic Host Configuration Protocol —
dhcp, 33

E
environ — user environment, 37
environment variables

HOME, 37
LANG, 37
LC_COLLATE, 37
LC_CTYPE, 37
LC_MESSAGES, 37
LC_MONETARY, 37
LC_NUMERIC, 37
LC_TIME, 37
MSGVERB, 37
NETPATH, 37
PATH, 37
SEV_LEVEL, 37
TERM, 37
TZ, 37

eqnchar — special character definitions for
eqn, 42

extended file attributes — fsattr, 96
extensions — localedef extensions description

file, 43

F
file format notation — formats, formats, 91
file name pattern matching — fnmatch, 63
filesystem — file system layout, 44
filesystem — file system organization, 44

Root File System, 44
/usr File System, 53

fnmatch — file name pattern matching, 63
fns — overview of FNS, 67

Composite Names, 67
FNS and Naming Systems, 68

FNS
overview — fns, 67
overview of FNS References —

fns_references, 85

346 man pages section 5: Standards, Environments, and Macros • August 2003

FNS (Continued)
overview over DNS implementation —
fns_dns, 69
overview over files implementation —

fns_files, 71
overview over NIS+ implementation —

fns_nis+, 77
overview over NIS (YP) implementation —

fns_nis, 79
overview over X.500 implementation —

fns_x500, 88
fns — overview of FNS

Why FNS?, 67
XFN, 67

fns_dns — overview of FNS over DNS
implementation, 69

fns_files — overview of FNS over files
implementation, 71

fns_files — overview of FNS over /etc files
implementation, FNS Policies and /etc
Files, 71

fns_initial_context — overview of the FNS
Initial Context, 73

fns_nis — overview of FNS over NIS (YP)
implementation, 79
Federating NIS with DNS or X.500, 79
FNS Policies and NIS, 79
NIS Security, 79

fns_nis+ — overview of FNS over NIS+
implementation, 77
FNS Policies and NIS+, 77

fns_policies — overview of the FNS Policies, 81
fns_references — overview of FNS

References, 85
Address Types, 85
Reference Types, 85

fns_x500 — overview of FNS over X.500
implementation, 88

formats — file format notation, 91
fsattr — extended file attributes, 96

I
iconv — code set conversion tables, 122
iconv_1250 — code set conversion tables for MS

1250 (Windows Latin 2), 107

iconv_1251 — code set conversion tables for MS
1251 (Windows Cyrillic), 113

iconv_646 — code set conversion tables for ISO
646, 126

iconv_852 — code set conversion tables for MS
852 (MS-DOS Latin 2), 129

iconv_8859-1 — code set conversion tables for
ISO 8859-1 (Latin 1), 135

iconv_8859-2 — code set conversion tables for
ISO 8859-2 (Latin 2), 141

iconv_8859-5 — code set conversion tables for
ISO 8859-5 (Cyrillic), 147

iconv_dhn — code set conversion tables for
DHN (Dom Handlowy Nauki), 155

iconv_koi8-r — code set conversion tables for
KOI8-R, 159

iconv_mac_cyr — code set conversion tables for
Macintosh Cyrillic, 167

iconv_maz — code set conversion tables for
Mazovia, 175

iconv_pc_cyr — code set conversion tables for
Alternative PC Cyrillic, 179

iconv_unicode — code set conversion tables for
Unicode, 185

internationalized basic and extended regular
expression matching — regex, 305

isalist — the native instruction sets known to
Solaris, 190

ISO — standards and specifications supported
by Solaris, 329

L
largefile — large file status of utilities, 192

Large file aware utilities, 192
Large file safe utilities, 194

lf64 — transitional interfaces for 64-bit file
offsets, 196
Data Types, 196
System Interfaces, 198

lfcompile — large file compilation environment,
Access to Additional Large File
Interfaces, 203

lfcompile64 — transitional compilation
environment, 206
Access to Additional Large File

Interfaces, 206

Index 347

live_upgrade, 208
locale — subset of a user’s environment that

depends on language and cultural
conventions, 212
collating-element keyword, 221
collating-symbol keyword, 221
Collation Order, 223
LC_COLLATE, 220
LC_CTYPE, 215
LC_MESSAGES, 237
LC_MONETARY, 226
LC_NUMERIC, 230
LC_TIME, 231
LC_TIME C-language Access, 234
LC_TIME General Information, 236
Locale Definition, 212
order_end keyword, 226
order_start keyword, 222

localedef extensions description file —
extensions, 43

M
macros

to format articles, theses and books —
mm, 252

to format articles, theses and books —
ms, 259

to format Manual pages — man, 239
to format Manual pages — mansun, 243
to format technical papers — me, 247

man — macros to format manual pages, 239
mansun — macros to format manual

pages, 243
manual pages

macros to format manual pages — man, 239
Sun macros to format manual pages —

mansun, 243
mark files for special treatment — sticky, 334
me — macros to format technical papers, 247
mm — macros to format articles, theses and

books, 252
ms — macros to format articles, theses and

books, 259
MT-Level — attributes of interfaces, 18

N
native instruction sets known to Solaris —

isalist, 190
NFS and sticky bits — sticky, 334
nfssec — overview of NFS security modes, 264

O
overview of FNS — fns, 67
overview of FNS over DNS implementation —

fns_dns, 69
overview of FNS over files implementation —

fns_files, 71
overview of FNS over NIS+ implementation —

fns_nis+, 77
overview of FNS over NIS (YP) implementation

— fns_nis, 79
overview of FNS over X.500 implementation —

fns_x500, 88
overview of FNS References —

fns_references, 85
overview of NFS security modes — nfssec, 264
overview of the FNS Initial Context —

fns_initial_context, 73
overview of the FNS Policies — fns_policies, 81

P
PAM account management module for UNIX —

pam_unix_account, 297
pam_authtok_check — authentication and

password management module, 266
pam_authtok_get —, 268
pam_authtok_store — password management

module, 270
pam_dial_auth — authentication management

for dialups, 273
pam_krb5 — authentication, account, session

and password management for Kerberos
V5, 274

pam_krb5 — authentication, account, session,
and password management PAM modules
for Kerberos V5, 274

pam_passwd_auth — authentication module
for password, 284

348 man pages section 5: Standards, Environments, and Macros • August 2003

pam_projects — account management PAM
module for projects, 286

pam_rhosts_auth — authentication
management using ruserok(), 287

pam_sample — sample module for PAM, 290
pam_unix — authentication, account, session

and password management for UNIX, 294
pam_unix_account — PAM account

management module for UNIX, 297
pam_unix_session — session management PAM

module for UNIX, 300
password management module —

pam_authtok_store, 270
POSIX — standards and specifications

supported by Solaris, 329
POSIX.1 — standards and specifications

supported by Solaris, 329
POSIX.2 — standards and specifications

supported by Solaris, 329
profiling utilities, profile within a function —

prof, 301

R
rbac — role-based access control, 302
regex — internationalized basic and extended

regular expression matching, 305
regular expression compile and match routines

— advance, 314
— compile, 314
— regexp, 314
— step, 314

role-based access control — rbac, 302

S
ftp — authentication system, 321
session management PAM module for UNIX —

pam_unix_session, 300
sgml — Standard Generalized Markup

Language, 323
sgml — Standard Generalized Markup

language, RefEntry, 323
sgml — Standard Generalized Markup

Language
RefMeta, 323

sgml — Standard Generalized Markup
Language (Continued)

RefNameDiv, 324
RefSect1, 325
RefSect2, 325
RefSynopsisDiv, 325

shell environment, conventional names for
terminals — term, 335

solbook — Standard Generalized Markup
Language, 323

special character definitions for eqn —
eqnchar, 42

stability — attributes of interfaces, 18
Standard Generalized Markup Language

— sgml, 323
— solbook, 323

standards — standards and specifications
supported by Solaris, 329

standards and specifications supported by
Solaris — ANSI, 329

standards and specifications supported by
Solaris — C++, 329

standards and specifications supported by
Solaris — C, 329

standards and specifications supported by
Solaris — ISO, 329

standards and specifications supported by
Solaris — POSIX.1, 329

standards and specifications supported by
Solaris — POSIX.2, 329

standards and specifications supported by
Solaris — POSIX, 329

standards and specifications supported by
Solaris — standards, 329

standards and specifications supported by
Solaris — SUS, 329

standards and specifications supported by
Solaris — SUSv2, 329

standards and specifications supported by
Solaris — SVID3, 329

standards and specifications supported by
Solaris — SVID, 329

standards and specifications supported by
Solaris — XNS4, 329

standards and specifications supported by
Solaris — XNS5, 329

standards and specifications supported by
Solaris — XNS, 329

Index 349

standards and specifications supported by
Solaris — XPG3, 329

standards and specifications supported by
Solaris — XPG4, 329

standards and specifications supported by
Solaris — XPG4v2, 329

standards and specifications supported by
Solaris — XPG, 329

sticky — mark files for special treatment, 334
SUS — standards and specifications supported

by Solaris, 329
SUSv2 — standards and specifications

supported by Solaris, 329
SVID — standards and specifications supported

by Solaris, 329
SVID3 — standards and specifications

supported by Solaris, 329

T
term — conventional names for terminals, 335
terminals, conventional names — term, 335
traditional UNIX crypt algorithm —

crypt_unix, 32
transitional compilation environment —

lfcompile64, 206
transitional interfaces for 64-bit file offsets —

lf64, 196

U
unicode, code set conversion tables —

iconv_unicode, 185
user environment, — environ, 37

V
vgrindefs — vgrind language definitions, 339

W
wbem — Web-Based Enterprise

Management, 342

Web-Based Enterprise Management —
wbem, 342

X
XNS — standards and specifications supported

by Solaris, 329
XNS4 — standards and specifications supported

by Solaris, 329
XNS5 — standards and specifications supported

by Solaris, 329
XPG — standards and specifications supported

by Solaris, 329
XPG3 — standards and specifications supported

by Solaris, 329
XPG4 — standards and specifications supported

by Solaris, 329
XPG4v2 — standards and specifications

supported by Solaris, 329

350 man pages section 5: Standards, Environments, and Macros • August 2003

