
Linker and Libraries Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 817–1983–10
December 2003

Copyright 2003 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or service marks
of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2003 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, ou
marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des
marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques
SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

030822@6671

Contents

Preface 13

1 Introduction to the Solaris Linkers 17

Link-Editing 18
Runtime Linking 19
Related Topics 20

Dynamic Linking 20
Application Binary Interfaces 20
32–Bit and 64–Bit Environments 20
Environment Variables 21
Support Tools 21

2 Link-Editor 23

Invoking the Link-Editor 24
Direct Invocation 24
Using a Compiler Driver 25

Specifying the Link-Editor Options 25
Input File Processing 26

Archive Processing 27
Shared Object Processing 28
Linking With Additional Libraries 29
Initialization and Termination Sections 34

Symbol Processing 36
Symbol Resolution 36
Undefined Symbols 40

3

Tentative Symbol Order Within the Output File 44

Defining Additional Symbols 44

Reducing Symbol Scope 49

External Bindings 53

String Table Compression 54

Generating the Output File 54

Relocation Processing 55

Displacement Relocations 56

Debugging Aids 57

3 Runtime Linker 61

Shared Object Dependencies 62

Locating Shared Object Dependencies 62

Directories Searched by the Runtime Linker 62

Configuring the Default Search Paths 65

Dynamic String Tokens 65

Relocation Processing 65

Symbol Lookup 66

When Relocations Are Performed 68

Relocation Errors 70

Loading Additional Objects 71

Lazy Loading of Dynamic Dependencies 72

Initialization and Termination Routines 73

Initialization and Termination Order 75

Security 77

Runtime Linking Programming Interface 78

Loading Additional Objects 79

Relocation Processing 81

Obtaining New Symbols 87

Feature Checking 90

Debugging Aids 90

Debugging Library 90

Debugger Module 93

4 Shared Objects 97

Naming Conventions 98

Recording a Shared Object Name 99

4 Linker and Libraries Guide • December 2003

Shared Objects With Dependencies 101

Dependency Ordering 102

Shared Objects as Filters 103

Generating a Standard Filter 103

Generating an Auxiliary Filter 106

Filtee Processing 107

Performance Considerations 107

Analyzing Files 108

Underlying System 110

Lazy Loading of Dynamic Dependencies 110

Position-Independent Code 111

Remove Unused Material 113

Maximizing Shareability 114

Minimizing Paging Activity 116

Relocations 116

Using -B symbolic 121

Profiling Shared Objects 121

5 Application Binary Interfaces and Versioning 125

Interface Compatibility 126

Internal Versioning 127

Creating a Version Definition 127

Binding to a Version Definition 132

Specifying a Version Binding 136

Version Stability 140

Relocatable Objects 141

External Versioning 141

Coordination of Versioned Filenames 142

6 Support Interfaces 145

Link-Editor Support Interface 145

Invoking the Support Interface 146

Support Interface Functions 147

Support Interface Example 149

Runtime Linker Auditing Interface 151

Establishing a Namespace 152

Creating an Audit Library 152

Contents 5

Invoking the Auditing Interface 153
Recording Local Auditors 154
Audit Interface Functions 154
Audit Interface Example 159
Audit Interface Demonstrations 159
Audit Interface Limitations 160

Runtime Linker Debugger Interface 160
Interaction Between Controlling and Target Process 161
Debugger Interface Agents 162
Debugger Exported Interface 163
Debugger Import Interface 171

7 Object File Format 173

File Format 173
Data Representation 175
ELF Header 176
ELF Identification 180
Data Encoding 182
Sections 183
Special Sections 194
COMDAT Section 199
Group Section 199
Hash Table Section 201
Move Section 202
Note Section 204
Relocation Sections 205
String Table Section 215
Symbol Table Section 216
Syminfo Table Section 224
Thread-Local Storage Section 225
Versioning Sections 226

Dynamic Linking 230
Program Header 231
Program Loading (Processor-Specific) 236
Runtime Linker 242
Dynamic Section 243
Global Offset Table (Processor-Specific) 255

6 Linker and Libraries Guide • December 2003

Procedure Linkage Table (Processor-Specific) 256

8 Mapfile Option 265

Mapfile Structure and Syntax 265
Segment Declarations 266
Mapping Directives 270
Section-Within-Segment Ordering 271
Size-Symbol Declarations 272
File Control Directives 272

Mapping Example 272
Mapfile Option Defaults 274
Internal Map Structure 275

A Link-Editor Quick Reference 279

Static Mode 279
Creating a Relocatable Object 280
Creating a Static Executable 280

Dynamic Mode 280
Creating a Shared Object 280
Creating a Dynamic Executable 282

B Versioning Quick Reference 283

Naming Conventions 283
Defining a Shared Object’s Interface 285
Versioning a Shared Object 285

Versioning an Existing (Non-versioned) Shared Object 286
Updating a Versioned Shared Object 287

Adding New Symbols 287
Internal Implementation Changes 288
New Symbols and Internal Implementation Changes 288
Migrating Symbols to a Standard Interface 289

C Establishing Dependencies with Dynamic String Tokens 293

Instruction Set Specific Shared Objects 293
Reducing Filtee Searches 294

System Specific Shared Objects 295

Contents 7

Locating Associated Dependencies 295

Dependencies Between Unbundled Products 297

Security 298

D New Linker and Libraries Features and Updates 301

Solaris 9 12/03 Release 301

Solaris 9 8/03 Release 301

Solaris 9 12/02 Release 302

Solaris 9 Release 302

Solaris 8 07/01 Release 303

Solaris 8 01/01 Release 303

Solaris 8 10/00 Release 303

Solaris 8 Release 304

Solaris 7 Release 305

Solaris 2.6 Release 305

Index 307

8 Linker and Libraries Guide • December 2003

Tables

TABLE 5–1 Interface Compatibility Examples 126
TABLE 7–1 ELF 32–Bit Data Types 175
TABLE 7–2 ELF 64–Bit Data Types 175
TABLE 7–3 ELF File Identifiers 177
TABLE 7–4 ELF Machines 177
TABLE 7–5 ELF Versions 178
TABLE 7–6 SPARC: ELF Flags 178
TABLE 7–7 ELF Identification Index 180
TABLE 7–8 ELF Magic Number 180
TABLE 7–9 ELF File Class 181
TABLE 7–10 ELF Data Encoding 181
TABLE 7–11 ELF Special Section Indexes 183
TABLE 7–12 ELF Section Types, sh_type 187
TABLE 7–13 ELF Section Header Table Entry: Index 0 190
TABLE 7–14 ELF Section Attribute Flags 191
TABLE 7–15 ELF sh_link and sh_info Interpretation 193
TABLE 7–16 ELF Special Sections 194
TABLE 7–17 ELF Group Section Flag 200
TABLE 7–18 SPARC: ELF Relocation Types 210
TABLE 7–19 64-bit SPARC: ELF Relocation Types 213
TABLE 7–20 x86: ELF Relocation Types 214
TABLE 7–21 ELF String Table Indexes 216
TABLE 7–22 ELF Symbol Binding, ELF32_ST_BIND and ELF64_ST_BIND 218
TABLE 7–23 ELF Symbol Types, ELF32_ST_TYPE and ELF64_ST_TYPE 219
TABLE 7–24 ELF Symbol Visibility 221
TABLE 7–25 ELF Symbol Table Entry: Index 0 222

9

TABLE 7–26 SPARC: ELF Symbol Table Entry: Register Symbol 223

TABLE 7–27 SPARC: ELF Register Numbers 223

TABLE 7–28 ELF si_boundto Reserved Values 224

TABLE 7–29 ELF Syminfo Flags 225

TABLE 7–30 ELF PT_TLS program entry 225

TABLE 7–31 ELF Version Definition Structure Versions 227

TABLE 7–32 ELF Version Definition Section Flags 227

TABLE 7–33 ELF Version Dependency Indexes 228

TABLE 7–34 ELF Version Dependency Structure Versions 229

TABLE 7–35 ELF Version Dependency Structure Flags 230

TABLE 7–36 ELF Segment Types 232

TABLE 7–37 ELF Segment Flags 235

TABLE 7–38 ELF Segment Permissions 235

TABLE 7–39 SPARC: ELF Program Header Segments (64K alignment) 237

TABLE 7–40 x86: ELF Program Header Segments (64K alignment) 238

TABLE 7–41 SPARC: ELF Example Shared Object Segment Addresses 242

TABLE 7–42 x86: ELF Example Shared Object Segment Addresses 242

TABLE 7–43 ELF Dynamic Array Tags 244

TABLE 7–44 ELF Dynamic Flags, DT_FLAGS 251

TABLE 7–45 ELF Dynamic Flags, DT_FLAGS_1 252

TABLE 7–46 ELF Dynamic Position Flags, DT_POSFLAG_1 254

TABLE 7–47 ELF Dynamic Feature Flags, DT_FEATURE_1 255

TABLE 7–48 SPARC: Procedure Linkage Table Example 257

TABLE 7–49 64-bit SPARC: Procedure Linkage Table Example 260

TABLE 7–50 x86: Absolute Procedure Linkage Table Example 263

TABLE 7–51 x86: Position-Independent Procedure Linkage Table Example 263

TABLE 8–1 Mapfile Segment Attributes 267

TABLE 8–2 Section Attributes 270

10 Linker and Libraries Guide • December 2003

Figures

FIGURE 1–1 Static or Dynamic Link-Editing 18

FIGURE 3–1 A Single dlopen() Request 82

FIGURE 3–2 Multiple dlopen() Requests 84

FIGURE 3–3 Multiple dlopen() Requests With A Common Dependency 84

FIGURE 6–1 rtld-debugger Information Flow 161

FIGURE 7–1 Object File Format 173

FIGURE 7–2 Data Encoding ELFDATA2LSB 182

FIGURE 7–3 Data Encoding ELFDATA2MSB 182

FIGURE 7–4 Symbol Hash Table 201

FIGURE 7–5 Note Information 204

FIGURE 7–6 Example Note Segment 205

FIGURE 7–7 ELF String Table 216

FIGURE 7–8 SPARC: Executable File (64K alignment) 237

FIGURE 7–9 x86: Executable File (64K alignment) 238

FIGURE 7–10 SPARC: Process Image Segments 239

FIGURE 7–11 x86: Process Image Segments 240

FIGURE 8–1 Simple Map Structure 275

FIGURE C–1 Unbundled Dependencies 295

FIGURE C–2 Unbundled Co-Dependencies 297

11

12 Linker and Libraries Guide • December 2003

Preface

In the Solaris™ operating environment, application developers can create applications
and libraries using the link-editor ld(1), and execute these objects with the aid of the
runtime linker ld.so.1(1). This manual is for those who want to understand more
fully the concepts involved in using the Solaris linkers.

About This Manual
This manual describes the operations of the Solaris link-editor and runtime linker.
Special emphasis is placed on the generation and use of dynamic executables and
shared objects because of their importance in a dynamic runtime environment.

Intended Audience
This manual is intended for a range of programmers who are interested in the Solaris
linkers, from the curious beginner to the advanced user.

� Beginners learn the principle operations of the link-editor and runtime linker.
� Intermediate programmers learn to create, and use, efficient custom libraries.
� Advanced programmers, such as language-tools developers, learn how to interpret

and generate object files.

Not many programmers should need to read this manual from cover to cover.

13

Organization
Chapter 1 gives an overview of the linking processes under the Solaris operating
environment, together with an introduction of new features added with this release.
This chapter is intended for all programmers.

Chapter 2 describes the functions of the link-editor, its two modes of linking (static and
dynamic), scope and forms of input, and forms of output. This chapter is intended for
all programmers.

Chapter 3 describes the execution environment and program-controlled runtime
binding of code and data. This chapter is intended for all programmers.

Chapter 4 provides definitions of shared objects, describes their mechanisms, and
explains how to create and use them. This chapter is intended for all programmers.

Chapter 5 describes how to manage the evolution of an interface provided by a
dynamic object. This chapter is intended for all programmers.

Chapter 6 describes interfaces for monitoring, and in some cases modifying,
link-editor and runtime linker processing. This chapter is intended for advanced
programmers.

Chapter 7 is a reference chapter on ELF files. This chapter is intended for advanced
programmers.

Chapter 8 describes the mapfile directives to the link-editor, which specify the layout
of the output file. This chapter is intended for advanced programmers.

Appendix A provides an overview of the most commonly used link-editor options,
and is intended for all programmers.

Appendix B provides naming conventions and guidelines for versioning shared
objects, and is intended for all programmers.

Appendix C provides examples of how to use reserved dynamic string tokens to
define dynamic dependencies, and is intended for all programmers.

Appendix D provides an overview of new features and updates that have been added
to the link-editors and indicates to which release they were added.

Throughout this document, all command-line examples use sh(1) syntax, and all
programming examples are written in the C language.

Note – In this document the term “x86” refers to the Intel 32–bit family of
microprocessor chips compatible microprocessor chips made by AMD.

14 Linker and Libraries Guide • December 2003

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com.

Typographic Conventions
The following table describes the typographic changes used in this book.

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; on-screen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace with
a real name or value

To delete a file, type rm
filename.

AaBbCc123 Book titles, new words, or terms, or
words to be emphasized.

Read Chapter 6 in User’s Guide.

These are called class options.

You must be root to do this.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

Preface 15

http://docs.sun.com

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

16 Linker and Libraries Guide • December 2003

CHAPTER 1

Introduction to the Solaris Linkers

This manual describes the operations of the Solaris link-editor and runtime linker,
together with the objects on which they operate. The basic operation of the Solaris
linkers involves the combination of objects. The symbolic references from one object
are connected to the symbolic definitions within another object. This operation is often
referred to as binding.

This manual expands the following areas:

Link-Editor
The link-editor, ld(1), concatenates and interprets data from one or more input
files. These files can be relocatable objects, shared objects, or archive libraries. From
these input files, one output file is created. This file is either a relocatable object, an
executable application, or a shared object. The link-editor is most commonly
invoked as part of the compilation environment.

Runtime Linker
The runtime linker, ld.so.1(1), processes dynamic executables and shared objects
at runtime, and binds them to create a runnable process.

Shared Objects
Shared objects are one form of output from the link-edit phase. Shared objects are
sometimes referred to as Shared Libraries. Shared objects are importance in creating a
powerful, flexible runtime environment.

Object Files
The Solaris linkers work with files that conform to the executable and linking
format (ELF).

These areas, although separable into individual topics, have a great deal of overlap.
While explaining each area, this document brings together the connecting principles.

17

Link-Editing
Link-editing takes a variety of input files, typically generated from compilers,
assemblers, or ld(1). The link-editor concatenates and interprets the data within these
input files to form a single output file. Although the link-editor provides numerous
options, the output file that it produces is one of four basic types:

� Relocatable object – A concatenation of input relocatable objects that can be used in
subsequent link-edit phases.

� Static executable – A concatenation of input relocatable objects that has all symbolic
references bound to the executable, and thus represents a ready-to-run process.

� Dynamic executable – A concatenation of input relocatable objects that requires
intervention by the runtime linker to produce a runnable process. A dynamic
executable might still need symbolic references bound at runtime, and can have
one or more dependencies in the form of shared objects.

� Shared object – A concatenation of input relocatable objects that provides services
that might be bound to a dynamic executable at runtime. The shared object can
have dependencies on other shared objects.

These output files, and the key link-editor options used to create them, are shown in
Figure 1–1.

Dynamic executables and shared objects are often referred to jointly as dynamic objects.
Dynamic objects are the main focus of this document.

ld

-dn

-r

Relocatable
object

Static
executable

-dy

-G

Dynamic
executable

Shared
object

FIGURE 1–1 Static or Dynamic Link-Editing

18 Linker and Libraries Guide • December 2003

Runtime Linking
Runtime linking involves the binding of objects, usually generated from one or more
previous link-edits, to generate a runnable process. During the generation of these
objects by the link-editor, the binding requirements are verified and appropriate
bookkeeping information is added to each object to enable the runtime linker to load,
relocate, and complete the binding process.

During process execution the facilities of the runtime linker are made available, and
can be used to extend the process’ address space by adding additional shared objects
on demand. The two most common components involved in runtime linking are
dynamic executables and shared objects.

Dynamic executables are applications that are executed under the control of a runtime
linker. These applications usually have dependencies in the form of shared objects,
which are located and bound by the runtime linker to create a runnable process.
Dynamic executables are the default output file generated by the link-editor.

Shared objects provide the key building block to a dynamically linked system. A
shared object is similar to a dynamic executable; however, shared objects have not yet
been assigned a virtual address.

Dynamic executables usually have dependencies on one or more shared objects. That
is, the shared object(s) must be bound to the dynamic executable to produce a
runnable process. Because shared objects can be used by many applications, aspects of
their construction directly affect shareability, versioning, and performance.

You can distinguish the processing of shared objects by either the link-editor or the
runtime linker by referring to the environments in which the shared objects are being
used:

compilation environment
Shared objects are processed by the link-editor to generate dynamic executables or
other shared objects. The shared objects become dependencies of the output file
being generated.

runtime environment
Shared objects are processed by the runtime linker, together with a dynamic
executable, to produce a runnable process.

Chapter 1 • Introduction to the Solaris Linkers 19

Related Topics

Dynamic Linking
Dynamic linking is a term often used to embrace those portions of the link-editing
process that generate dynamic executables and shared objects, together with the
runtime linking of these objects to generate a runnable process. Dynamic linking
enables multiple applications to use the code provided by a shared object by enabling
the application to bind to the shared object at runtime.

By separating an application from the services of standard libraries, dynamic linking
also increases the portability and extensibility of an application. This separation
between the interface of a service and its implementation enables the system to evolve
while maintaining application stability. Dynamic linking is a crucial factor in
providing an application binary interface (ABI), and is the preferred compilation method
for Solaris applications.

Application Binary Interfaces
Binary interfaces between system and application components are defined to enable
the asynchronous evolution of these facilities. The Solaris linkers operate upon these
interfaces to assemble applications for execution. Although all components handled by
the Solaris linkers have binary interfaces, the whole set of interfaces provided by the
system is referred to as the Solaris ABI.

The Solaris ABI is a technological descendent for work on ABIs that started with the
System V Application Binary Interface and the successor work performed by SPARC™
International for SPARC processors called the SPARC® Compliance Definition (SCD).

32–Bit and 64–Bit Environments
The link-editors operate on 32–bit objects, and on SPARCV9 systems are also capable
of operating on 64–bit objects. On SPARC systems, the 64–bit link-editor (ld(1)) is
capable of generating 32–bit objects and the 32–bit link-editor is capable of generating
64–bit objects. In the latter case, the size of the generated object, not including the
.bss, is restricted to 2 Gbytes.

No command-line option is required to distinguish a 32–bit or 64–bit link-edit. The
link-editor uses the ELF class of the first input relocatable object file it sees on the
command-line to govern the mode in which it will operate. Specialized link-edits, such

20 Linker and Libraries Guide • December 2003

as linking solely from a mapfile or an archive library, are uninfluenced by their input
files, and will default to a 32–bit mode. In these cases a 64–bit link-edit can be enforced
with the -64 option. Intermixing of 32–bit and 64–bit objects is not permitted.

The operations of the link-editors on 32–bit and 64–bit objects is identical. This
document typically uses 32–bit examples. Cases where 64–bit processing differs from
the 32–bit processing are highlighted.

For more information regarding 64–bit applications, refer to the Solaris 64-bit
Developer’s Guide.

Environment Variables
The link-editors support a number of environment variables that begin with the
characters LD_, for example LD_LIBRARY_PATH. Each environment variable can exist
in its generic form, or can be specified with a _32 or _64 suffix, for example
LD_LIBRARY_PATH_64. This suffix makes the environment variable specific,
respectively, to 32-bit or 64–bit processes. This suffix also overrides any generic,
non-suffixed, version of the environment variable that may be in effect.

Throughout this document, any reference to link-editor environment variables uses
the generic, non-suffixed, variant. For a list of all supported environment variables
refer to the ld(1) and ld.so.1(1) man pages.

Support Tools
The Solaris operating environment also provides several support tools and libraries.
These tools provide for the analysis and inspection of these objects and the linking
processes. These tools include elfdump(1), nm(1), dump(1), ldd(1), pvs(1), elf(3ELF),
and a linker debugging support library. Throughout this document, many discussions
are augmented with examples of these tools.

Chapter 1 • Introduction to the Solaris Linkers 21

22 Linker and Libraries Guide • December 2003

CHAPTER 2

Link-Editor

The link-editing process creates an output file from one or more input files. The
creation of the output file is directed by the options supplied to the link-editor
together with the input sections provided by the input files.

All files are represented in the executable and linking format (ELF). For a complete
description of the ELF format see Chapter 7. For this introduction, however, it is first
necessary to introduce two ELF structures, sections and segments.

Sections are the smallest indivisible units that can be processed within an ELF file.
Segments are a collection of sections that represent the smallest individual units that
can be mapped to a memory image by exec(2) or by the runtime linker ld.so.1(1).

Although there are many types of ELF sections, they all fall into two categories with
respect to the link-editing phase:

� Sections that contain program data, whose interpretation is meaningful only to the
application itself, such as the program instructions .text and the associated data
.data and .bss.

� Sections that contain link-editing information, such as the symbol table information
found from .symtab and .strtab, and relocation information such as
.rela.text.

Basically, the link-editor concatenates the program data sections into the output file. The
link-editing information sections are interpreted by the link-editor to modify other
sections or to generate new output information sections used in later processing of the
output file.

The following simple breakdown of link-editor functionality introduces the topics
covered in this chapter:

� It verifies and checks for consistency all the options passed to it.
� It concatenates sections of the same characteristics (for example, type, attributes,

and name) from the input relocatable objects to form new sections within the
output file. These concatenated sections can in turn be associated to output

23

segments.
� It reads symbol table information from both relocatable objects and shared objects

to verify and unite references with definitions, and usually generates a new symbol
table, or tables, within the output file.

� It reads relocation information from the input relocatable objects and applies this
information to the output file by updating other input sections. In addition, output
relocation sections might be generated for use by the runtime linker.

� It generates program headers that describe all segments created.
� It generates dynamic linking information sections if necessary, which provide

information such as shared object dependencies and symbol bindings to the
runtime linker.

The process of concatenating like sections and associating sections to segments is carried
out using default information within the link-editor. The default section and segment
handling provided by the link-editor is usually sufficient for most link-edits. However,
these defaults can be manipulated using the -M option with an associated mapfile.
See Chapter 8.

Invoking the Link-Editor
You can either run the link-editor directly from the command line or have a compiler
driver invoke it for you. In the following two sections the description of both methods
are expanded. However, using the compiler driver is the preferred choice. The
compilation environment is often the consequence of a complex and occasionally
changing series of operations known only to compiler drivers.

Direct Invocation
When you invoke the link-editor directly, you have to supply every object file and
library required to create the intended output. The link-editor makes no assumptions
about the object modules or libraries that you meant to use in creating the output. For
example, when you issue the command:

$ ld test.o

the link-editor creates a dynamic executable named a.out using only the input file
test.o. For the a.out to be a useful executable, it should include startup and exit
processing code. This code can be language or operating system specific, and is
usually provided through files supplied by the compiler drivers.

24 Linker and Libraries Guide • December 2003

Additionally, you can also supply your own initialization and termination code. This
code must be encapsulated and labeled correctly for it to be correctly recognized and
made available to the runtime linker. This encapsulation and labeling can also be
provided through files supplied by the compiler drivers.

When creating runtime objects such as executables and shared objects, you should use
a compiler driver to invoke the link-editor. Invoking the link-editor directly is
recommended only when creating intermediate relocatable objects when using the -r
option.

Using a Compiler Driver
The conventional way to use the link-editor is through a language-specific compiler
driver. You supply the compiler driver, cc(1), CC(1), and so forth, with the input files
that make up your application. The compiler driver adds additional files and default
libraries to complete the link-edit. These additional files can be seen by expanding the
compilation invocation, for example:

$ cc -# -o prog main.o
/usr/ccs/bin/ld -dy /opt/COMPILER/crti.o /opt/COMPILER/crt1.o \
/usr/ccs/lib/values-Xt.o -o prog main.o \
-YP,/opt/COMPILER/lib:/usr/ccs/lib:/usr/lib -Qy -lc \

/opt/COMPILER/crtn.o

Note – The actual files included by your compiler driver and the mechanism used to
display the link-editor invocation might differ.

Specifying the Link-Editor Options
Most options to the link-editor can be passed through the compiler driver command
line. For the most part the compiler and the link-editor options do not conflict. Where
a conflict arises, the compiler drivers usually provide a command-line syntax you can
use to pass specific options to the link-editor. You can also provide options to the
link-editor by setting the LD_OPTIONS environment variable. For example:

$ LD_OPTIONS="-R /home/me/libs -L /home/me/libs" cc -o prog main.c -lfoo

The -R and -L options are interpreted by the link-editor and prepended to any
command-line options received from the compiler driver.

Chapter 2 • Link-Editor 25

The link-editor parses the entire option list for any invalid options or any options with
invalid associated arguments. When either of these cases is found, a suitable error
message is generated. If the error is deemed fatal, the link-edit terminates. In the
following example, the illegal option -X is identified, and the illegal argument to the
-z option is caught by the link-editor’s checking.

$ ld -X -z sillydefs main.o
ld: illegal option -- X

ld: fatal: option -z has illegal argument ‘sillydefs’

If an option requiring an associated argument is mistakenly specified twice, the
link-editor will provide a suitable warning but will continue with the link-edit. For
example:

$ ld -e foo -e bar main.o

ld: warning: option -e appears more than once, first setting taken

The link-editor also checks the option list for any fatal inconsistencies. For example:

$ ld -dy -a main.o

ld: fatal: option -dy and -a are incompatible

After processing all options, if no fatal error conditions have been detected, the
link-editor proceeds to process the input files.

See Appendix A for the most commonly used link-editor options, and the ld(1) man
page for a complete description of all link-editor options.

Input File Processing
The link-editor reads input files in the order in which they appear on the command
line. Each file is opened and inspected to determine its ELF file type and therefore
determine how it must be processed. The file types that apply as input for the link-edit
are determined by the binding mode of the link-edit, either static or dynamic.

Under static mode, the link-editor accepts only relocatable objects or archive libraries
as input files. Under dynamic mode, the link-editor also accepts shared objects.

Relocatable objects represent the most basic input file type to the link-editing process.
The program data sections within these files are concatenated into the output file image
being generated. The link-edit information sections are organized for later use, but do
not become part of the output file image, as new sections are generated to take their
places. Symbols are gathered into an internal symbol table for verification and
resolution. This table is then used to create one or more symbol tables in the output
image.

26 Linker and Libraries Guide • December 2003

Although any input file can be specified directly on the link-edit command-line,
archive libraries and shared objects are commonly specified using the -l option. See
“Linking With Additional Libraries” on page 29 for coverage of this mechanism and
how it relates to the two different linking modes. However, even though shared
objects are often referred to as shared libraries, and both of these objects can be
specified using the same option, the interpretation of shared objects and archive
libraries is quite different. The next two sections expand upon these differences.

Archive Processing
Archives are built using ar(1), and usually consist of a collection of relocatable objects
with an archive symbol table. This symbol table provides an association of symbol
definitions with the objects that supply these definitions. By default, the link-editor
provides selective extraction of archive members. When the link-editor reads an
archive, it uses information within the internal symbol table it is creating to select only
the objects from the archive it requires to complete the binding process. You can also
explicitly extract all members of an archive.

The link-editor extracts a relocatable object from an archive if:

� The archive member contains a symbol definition that satisfies a symbol reference,
sometimes referred to as an undefined symbol, presently held in the link-editor’s
internal symbol table.

� The archive member contains a data symbol definition that satisfies a tentative
symbol definition presently held in the link-editor’s internal symbol table. An
example of this is a FORTRAN COMMON block definition, which causes the extraction
of a relocatable object that defines the same DATA symbol.

� The link-editors -z allextract is in effect. This option suspends selective
archive extraction and causes all archive members to be extracted from the archive
being processed.

Under selective archive extraction, a weak symbol reference does not extract an object
from an archive unless the -z weakextract option is in effect. See “Simple
Resolutions” on page 37 for more information.

Note – The options -z weakextract, -z allextract, and -z defaultextract
enable you to toggle the archive extraction mechanism among multiple archives.

With selective archive extraction, the link-editor makes multiple passes through an
archive to extract relocatable objects as needed to satisfy the symbol information being
accumulated in the link-editor internal symbol table. After the link-editor has made a
complete pass through the archive without extracting any relocatable objects, it moves
on to process the next input file.

Chapter 2 • Link-Editor 27

By extracting from the archive only the relocatable objects needed at the time the
archive was encountered, the position of the archive within the input file list can be
significant. See “Position of an Archive on the Command Line” on page 30.

Note – Although the link-editor makes multiple passes through an archive to resolve
symbols, this mechanism can be quite costly for large archives containing random
organizations of relocatable objects. In these cases, you should use tools like
lorder(1) and tsort(1) to order the relocatable objects within the archive and so
reduce the number of passes the link-editor must carry out.

Shared Object Processing
Shared objects are indivisible whole units that have been generated by a previous
link-edit of one or more input files. When the link-editor processes a shared object, the
entire contents of the shared object become a logical part of the resulting output file
image. This logical inclusion means that all symbol entries defined in the shared object
are made available to the link-editing process. The shared object is actually copied
during process execution.

The shared object’s program data sections and most of the link-editing information
sections are unused by the link-editor. These sections are interpreted by the runtime
linker when the shared object is bound to generate a runnable process. However, the
occurrence of a shared object is remembered, and information is stored in the output
file image to indicate that this object is a dependency and must be made available at
runtime.

By default, all shared objects specified as part of a link-edit are recorded as
dependencies in the object being built. This recording is made regardless of whether
the object being built actually references symbols offered by the shared object. To
minimize runtime linking overhead, specify only those dependencies required to
resolve symbol references from the object being built as part of the link-edit. The
link-editor’s debugging capabilities, and ldd(1) with the -u option, can be used to
determine unused dependencies. Alternatively, the link-editor’s -z ignore option
can suppress the dependency recording of unused shared objects.

If a shared object has dependencies on other shared objects, these dependencies are
also processed. This processing occurs after all command-line input files have been
processed. These shared objects will be used to complete the symbol resolution
process; however, their names will not be recorded as dependencies in the output file
image being generated.

Although the position of a shared object on the link-edit command-line has less
significance than it does for archive processing, the position can have a global effect.
Multiple symbols of the same name are allowed to occur between relocatable objects
and shared objects, and between multiple shared objects. See “Symbol Resolution”
on page 36.

28 Linker and Libraries Guide • December 2003

The order of shared objects processed by the link-editor is maintained in the
dependency information stored in the output file image. As the runtime linker reads
this information, it loads the specified shared objects in the same order. Therefore, the
link-editor and the runtime linker select the first occurrence of a symbol of a
multiply-defined series of symbols.

Note – Multiple symbol definitions, and thus the information to describe the
interposing of one definition of a symbol for another, are reported in the load map
output generated using the -m option.

Linking With Additional Libraries
Although the compiler drivers often ensure that appropriate libraries are specified to
the link-editor, frequently you must supply your own. Shared objects and archives can
be specified by explicitly naming the input files required to the link-editor, but a more
common and more flexible method involves using the link-editor’s -l option.

Library Naming Conventions
By convention, shared objects are usually designated by the prefix lib and the suffix
.so, and archives are designated by the prefix lib and the suffix .a. For example,
libc.so is the shared object version of the standard C library made available to the
compilation environment, and libc.a is the library’s archive version.

These conventions are recognized by the -l option of the link-editor. This option is
commonly used to supply additional libraries to a link-edit. The following example
directs the link-editor to search for libfoo.so. If the link-editor does not find
libfoo.so, it searches for libfoo.a before moving on to the next directory to be
searched.

$ cc -o prog file1.c file2.c -lfoo

Note – There is a naming convention regarding the compilation environment and the
runtime environment use of shared objects. The compilation environment uses the
simple .so suffix, whereas the runtime environment commonly uses the suffix with an
additional version number. See “Naming Conventions” on page 98 and
“Coordination of Versioned Filenames” on page 142.

When link-editing in dynamic mode, you can choose to link with a mix of shared
objects and archives. When link-editing in static mode, only archive libraries are
acceptable for input.

Chapter 2 • Link-Editor 29

When in dynamic mode and using the -l option to enable a library search, the
link-editor will first search in a given directory for a shared object that matches the
specified name. If no match is found, the link-editor looks for an archive library in the
same directory. When in static mode and using the -l option, only archive libraries
are sought.

Linking With a Mix of Shared Objects and Archives
The library search mechanism in dynamic mode searches a given directory for a
shared object, and then searches an archive library. Finer control of the type of search
required is possible through the -B option.

By specifying the -B dynamic and -B static options on the command line as many
times as required, you can toggle the library search between shared objects or archives
respectively. For example, to link an application with the archive libfoo.a and the
shared object libbar.so, issue the following command:

$ cc -o prog main.o file1.c -Bstatic -lfoo -Bdynamic -lbar

The -B static and -B dynamic keywords are not exactly symmetrical. When you
specify -B static, the link-editor does not accept shared objects as input until the
next occurrence of -B dynamic. However, when you specify -B dynamic, the
link-editor first looks for shared objects and then archive library’s in any given
directory.

The precise description of the previous example is that the link-editor first searches for
libfoo.a, and then for libbar.so, and if that search fails, for libbar.a. Finally, it
searches for libc.so, and if that search fails, libc.a.

Position of an Archive on the Command Line
The position of an archive on the command line can affect the output file being
produced. The link-editor searches an archive only to resolve undefined or tentative
external references it has previously seen. After this search is completed and any
required members have been extracted, the link-editor moves onto the next input file
on the command line.

Therefore by default, the archive is not available to resolve any new references from
the input files that follow the archive on the command line. For example, the following
command directs the link-editor to search libfoo.a only to resolve symbol
references that have been obtained from file1.c. The libfoo.a archive is not
available to resolve symbol references from file2.c or file3.c.

$ cc -o prog file1.c -Bstatic -lfoo file2.c file3.c -Bdynamic

30 Linker and Libraries Guide • December 2003

Note – You should specify any archives at the end of the command line unless
multiple-definition conflicts require you to do otherwise.

In some instances users have interdependencies between archives such that the
extraction of members from one archive is resolved by extracting members from
another archive. If these dependencies are cyclic, the archives must be specified
repeatedly on the command line to satisfy previous references. For example:

$ cc -o prog -lA -lB -lC -lA -lB -lC -lA

The determination, and maintenance, of repeated archive specifications can be tedious.
The -z rescan option makes this process simpler. Following all input file processing,
this option causes the entire archive list to be reprocessed in an attempt to locate
additional archive members that resolve symbol references. This archive rescanning
continues until a pass over the archive list occurs in which no new members are
extracted. The previous example could therefore be simplified to:

$ cc -o prog -z rescan -lA -lB -lC

Directories Searched by the Link-Editor
All previous examples assume the link-editor knows where to search for the libraries
listed on the command line. By default, when linking 32–bit objects, the link-editor
knows of only two standard directories in which to look for libraries, /usr/ccs/lib
and /usr/lib. When linking 64–bit objects, only one standard directory is used,
/usr/lib/64. All other directories to be searched must be added to the link-editor’s
search path explicitly.

You can change the link-editor search path in two ways: using a command-line option,
or using an environment variable.

Using a Command-Line Option

You can use the -L option to add a new path name to the library search path. This
option affects the search path at the point it is encountered on the command line. For
example, the following command searches path1, then /usr/ccs/lib and
/usr/lib, to find libfoo. It searches path1 and then path2, and then
/usr/ccs/lib and /usr/lib, to find libbar.

$ cc -o prog main.o -Lpath1 file1.c -lfoo file2.c -Lpath2 -lbar

Path names defined using the -L option are used only by the link-editor. These path
names are not recorded in the output file image created for use by the runtime linker.

Chapter 2 • Link-Editor 31

Note – You must specify -L if you want the link-editor to search for libraries in your
current directory. You can use a period (.) to represent the current directory.

You can use the -Y option to change the default directories searched by the link-editor.
The argument supplied with this option takes the form of a colon separated list of
directories. For example, the following command searches for libfoo only in the
directories /opt/COMPILER/lib and /home/me/lib.

$ cc -o prog main.c -YP,/opt/COMPILER/lib:/home/me/lib -lfoo

The directories specified using the -Y option can be supplemented by using the -L
option.

Using an Environment Variable

You can also use the environment variable LD_LIBRARY_PATH, which takes a
colon-separated list of directories, to add to the link-editor’s library search path. In its
most general form, LD_LIBRARY_PATH takes two directory lists separated by a
semicolon. The first list is searched before the lists supplied on the command line, and
the second list is searched after.

The following example shows the combined effect of setting LD_LIBRARY_PATH and
calling the link-editor with several -L occurrences:

$ LD_LIBRARY_PATH=dir1:dir2;dir3
$ export LD_LIBRARY_PATH

$ cc -o prog main.c -Lpath1 ... -Lpath2 ... -Lpathn -lfoo

The effective search path is dir1:dir2:path1:path2...
pathn:dir3:/usr/ccs/lib:/usr/lib.

If no semicolon is specified as part of the LD_LIBRARY_PATH definition, the specified
directory list is interpreted after any -L options. In the following example, the effective
search path is path1:path2... pathn:dir1:dir2:/usr/ccs/lib:/usr/lib.

$ LD_LIBRARY_PATH=dir1:dir2
$ export LD_LIBRARY_PATH

$ cc -o prog main.c -Lpath1 ... -Lpath2 ... -Lpathn -lfoo

Note – This environment variable can also be used to augment the search path of the
runtime linker. See “Directories Searched by the Runtime Linker” on page 62. To
prevent this environment variable from influencing the link-editor, use the -i option.

32 Linker and Libraries Guide • December 2003

Directories Searched by the Runtime Linker
The runtime linker only looks in one default location for dependencies. This location is
/usr/lib when processing 32–bit objects, and /usr/lib/64 when processing 64–bit
objects. All other directories to be searched must be added to the runtime linker’s
search path explicitly.

When a dynamic executable or shared object is linked with additional shared objects,
these shared objects are recorded as dependencies. These dependencies must be
located during process execution by the runtime linker. During the link-edit, one or
more search paths can be recorded in the output file. These search paths are used by
the runtime linker to locate any dependencies. These recorded search paths are
referred to as a runpath.

Specialized objects may be built with the -z nodefaultlib option to suppress any
search of the default location at runtime. Use of this option implies that all the
dependencies of an object can be located using its runpaths. Without this option, no
matter how you augment the runtime linker’s search path, its last element is always
the default location. /usr/lib for 32–bit objects and /usr/lib/64 for 64–bit objects.

Note – The default search path can be administrated using a runtime configuration file.
See “Configuring the Default Search Paths” on page 65. However, the creator of an
object should not rely on the existence of this file. You should always ensure that an
object can locate its dependencies with only its runpaths or the default location.

You can use the -R option, which takes a colon-separated list of directories, to record a
runpath in a dynamic executable or shared object. The following example records the
runpath /home/me/lib:/home/you/lib in the dynamic executable prog.

$ cc -o prog main.c -R/home/me/lib:/home/you/lib -Lpath1 \

-Lpath2 file1.c file2.c -lfoo -lbar

The runtime linker uses these paths, followed by the default location, to obtain any
shared object dependencies. In this case, this runpath is used to locate libfoo.so.1
and libbar.so.1.

The link-editor accepts multiple -R options. These multiple specifications are
concatenate together, separated by a colon. Thus, the previous example can also be
expressed as follows.

$ cc -o prog main.c -R/home/me/lib -Lpath1 -R/home/you/lib \

-Lpath2 file1.c file2.c -lfoo -lbar

For objects that may be installed in various locations, the $ORIGIN dynamic string
token provides a flexible means of recording a runpath. See “Locating Associated
Dependencies” on page 295.

Chapter 2 • Link-Editor 33

Note – A historic alternative to specifying the -R option is to set the environment
variable LD_RUN_PATH, and make this available to the link-editor. The scope and
function of LD_RUN_PATH and -R are identical, but when both are specified, -R
supersedes LD_RUN_PATH.

Initialization and Termination Sections
Dynamic objects may supply code that provides for runtime initialization and
termination processing. This code can be encapsulated in one of two section types,
either an array of function pointers or a single code block. Each of these section types
is built from a concatenation of like sections from the input relocatable objects.

The sections .preinit_array, .init_array and .fini_array provide arrays of
runtime pre-initialization, initialization, and termination functions, respectively. When
creating a dynamic object, the link-editor identifies these arrays with the .dynamic
tag pairs DT_PREINIT_[ARRAY/ARRAYSZ], DT_INIT_[ARRAY/ARRAYSZ], and
DT_FINI_[ARRAY/ARRAYSZ] accordingly. These tags identify the associated sections
so they may be called by the runtime linker. A pre-initialization array is applicable to
dynamic executables only.

The sections .init and .fini provide a runtime initialization and termination code
block, respectively. However, the compiler drivers typically supply .init and .fini
sections with files they add to the beginning and end of your input file list. These files
have the effect of encapsulating the .init and .fini code into individual functions.
These functions are identified by the reserved symbol names _init and _fini
respectively. When creating a dynamic object, the link-editor identifies these symbols
with the .dynamic tags DT_INIT and DT_FINI accordingly. These tags identify the
associated sections so they may be called by the runtime linker.

For more information regarding the execution of initialization and termination code at
runtime see “Initialization and Termination Routines” on page 73.

The registration of initialization and termination functions can be carried out directly
by the link-editor using the -z initarray and -z finiarray options. For
example, the following command places the address of foo() in an .initarray
element, and the address of bar() in a .finiarray element.

$ cat main.c
#include <stdio.h>

void foo()
{

(void) printf("initializing: foo()\n");
}

void bar()

34 Linker and Libraries Guide • December 2003

{
(void) printf("finalizing: bar()\n");

}

main()
{

(void) printf("main()\n");
return (0);

}

$ cc -o main -zinitarray=foo -zfiniarray=bar main.c
$ main
initializing: foo()
main()

finalizing: bar()

The creation of initialization and termination sections can be carried out directly using
an assembler. However, most compilers offer special primitives to simplify their
declaration. For example, the previous code example can be rewritten using the
following #pragma definitions. These definitions result in a call to foo() being
placed in an .init section, and a call to bar() being placed in a .fini section.

$ cat main.c
#include <stdio.h>

#pragma init (foo)
#pragma fini (bar)

.......
$ cc -o main main.c
$ main
initializing: foo()
main()

finalizing: bar()

Initialization and termination code, spread throughout several relocatable objects, can
result in different behavior when included in an archive library or shared object. The
link-edit of an application using this archive might extract only a fraction of the objects
contained in the archive. These objects might provide only a portion of the
initialization and termination code spread throughout the members of the archive. At
runtime, only this portion of code is executed. The same application built against the
shared object will have all the accumulated initialization and termination code
executed when the dependency is loaded at runtime.

To determine the order of executing initialization and termination code within a
process at runtime is a complex issue involving dependency analysis. Limiting the
content of initialization and termination code can simplifying this analysis, while
providing both flexible, and predictable runtime behavior. See “Initialization and
Termination Order” on page 75 for more details.

Data initialization should be independent if the initialization code is involved with a
dynamic object whose memory can be dumped using dldump(3DL).

Chapter 2 • Link-Editor 35

Symbol Processing
During input file processing, all local symbols from the input relocatable objects are
passed through to the output file image. All global symbols are accumulated internally
within the link-editor. Each global symbol supplied by a relocatable object is searched
for within this internal symbol table. If a symbol with the same name has already been
encountered from a previous input file, a symbol resolution process is called. This
symbol resolution process determines which of the two entries is kept.

On completing input file processing, and providing no fatal error conditions have
been encountered during symbol resolution, the link-editor determines if any
unresolved symbol references remain. Unresolved symbol references can cause the
link-edit to terminate.

Finally, the link-editor’s internal symbol table is added to the symbol tables of the
image being created.

The following sections expand upon symbol resolution and undefined symbol
processing.

Symbol Resolution
Symbol resolution runs the entire spectrum, from simple and intuitive to complex and
perplexing. Resolutions can be carried out silently by the link-editor, can be
accompanied by warning diagnostics, or can result in a fatal error condition.

The resolution of two symbols depends on their attributes, the type of file providing
the symbol, and the type of file being generated. For a complete description of symbol
attributes, see “Symbol Table Section” on page 216. For the following discussions,
however, it is worth identifying three basic symbol types:

� Undefined – Symbols that have been referenced in a file but have not been assigned
a storage address.

� Tentative – Symbols that have been created within a file but have not yet been sized
or allocated in storage. They appear as uninitialized C symbols, or FORTRAN
COMMON blocks within the file.

� Defined – Symbols that have been created and assigned storage addresses and space
within the file.

In its simplest form, symbol resolution involves the use of a precedence relationship
that has defined symbols dominating tentative symbols, which in turn dominate
undefined symbols.

36 Linker and Libraries Guide • December 2003

The following C code example shows how these symbol types can be generated.
Undefined symbols are prefixed with u_, tentative symbols are prefixed with t_, and
defined symbols are prefixed with d_.

$ cat main.c
extern int u_bar;
extern int u_foo();

int t_bar;
int d_bar = 1;

d_foo()
{

return (u_foo(u_bar, t_bar, d_bar));
}
$ cc -o main.o -c main.c
$ nm -x main.o

[Index] Value Size Type Bind Other Shndx Name
...............
[8] |0x00000000|0x00000000|NOTY |GLOB |0x0 |UNDEF |u_foo
[9] |0x00000000|0x00000040|FUNC |GLOB |0x0 |2 |d_foo
[10] |0x00000004|0x00000004|OBJT |GLOB |0x0 |COMMON |t_bar
[11] |0x00000000|0x00000000|NOTY |GLOB |0x0 |UNDEF |u_bar

[12] |0x00000000|0x00000004|OBJT |GLOB |0x0 |3 |d_bar

Simple Resolutions
Simple symbol resolutions are by far the most common, and result when two symbols
with similar characteristics are detected and one symbol takes precedence over the
other. This symbol resolution is carried out silently by the link-editor. For example, for
symbols with the same binding, a reference to an undefined symbol from one file is
bound to, or satisfied by, a defined or tentative symbol definition from another file. Or,
a tentative symbol definition from one file is bound to a defined symbol definition
from another file.

Symbols that undergo resolution can have either a global or weak binding. Weak
bindings have lower precedence than global binding, so symbols with different
bindings are resolved according to a slight alteration of the basic rules.

Weak symbols can usually be defined via the compiler, either individually or as aliases
to global symbols. One mechanism uses a #pragma definition:

$ cat main.c
#pragma weak bar
#pragma weak foo = _foo

int bar = 1;

_foo()
{

return (bar);

Chapter 2 • Link-Editor 37

}
$ cc -o main.o -c main.c
$ nm -x main.o
[Index] Value Size Type Bind Other Shndx Name
...............
[7] |0x00000000|0x00000004|OBJT |WEAK |0x0 |3 |bar
[8] |0x00000000|0x00000028|FUNC |WEAK |0x0 |2 |foo

[9] |0x00000000|0x00000028|FUNC |GLOB |0x0 |2 |_foo

Notice that the weak alias foo is assigned the same attributes as the global symbol
_foo. This relationship is maintained by the link-editor and results in the symbols
being assigned the same value in the output image. In symbol resolution, weak
defined symbols are silently overridden by any global definition of the same name.

Another form of simple symbol resolution, interposition, occurs between relocatable
objects and shared objects, or between multiple shared objects. In these cases, when a
symbol is multiply-defined, the relocatable object, or the first definition between
multiple shared objects, is silently taken by the link-editor. The relocatable object’s
definition, or the first shared object’s definition, is said to interpose on all other
definitions. This interposition can be used to override the functionality provided by
one shared object, by a dynamic executable, or by another shared object.

The combination of weak symbols and interposition provides a useful programming
technique. For example, the standard C library provides several services that you are
allowed to redefine. However, ANSI C defines a set of standard services that must be
present on the system and cannot be replaced in a strictly conforming program.

The function fread(3C), for example, is an ANSI C library function, whereas the
system function read(2) is not. A conforming ANSI C program must be able to
redefine read(2) and still use fread(3C) in a predictable way.

The problem here is that read(2) underlies the fread(3C) implementation in the
standard C library. Therefore, a program that redefines read(2) might confuse the
fread(3C) implementation. To guard against this occurrence, ANSI C states that an
implementation cannot use a name that is not reserved for it. Using the following
#pragma directive you can define just such a reserved name, and from it generate an
alias for the function read(2).

#pragma weak read = _read

Thus, you can quite freely define your own read() function without compromising
the fread(3C) implementation, which in turn is implemented to use the _read()
function.

The link-editor will not have difficulty with your redefinition of read(), either when
linking against the shared object or archive version of the standard C library. In the
former case, interposition takes its course. In the latter case, the fact that the C library’s
definition of read(2) is weak allows that definition to be quietly overridden.

You can use the link-editor’s -m option to write a list of all interposed symbol
references, along with section load address information, to the standard output.

38 Linker and Libraries Guide • December 2003

Complex Resolutions
Complex resolutions occur when two symbols of the same name are found with
differing attributes. In these cases, the link-editor selects the most appropriate symbol
and generates a warning message indicating the symbol, the attributes that conflict,
and the identity of the file from which the symbol definition is taken. In the following
example two files with a definition of the data item array have different size
requirements.

$ cat foo.c
int array[1];

$ cat bar.c
int array[2] = { 1, 2 };

$ cc -dn -r -o temp.o foo.c bar.c
ld: warning: symbol ‘array’ has differing sizes:

(file foo.o value=0x4; file bar.o value=0x8);

bar.o definition taken

A similar diagnostic is produced if the symbol’s alignment requirements differ. In both
of these cases, the diagnostic can be suppressed by using the link-editor’s -t option.

Another form of attribute difference is the symbol’s type. In the following example the
symbol bar() has been defined as both a data item and a function.

$ cat foo.c
bar()
{

return (0);
}
$ cc -o libfoo.so -G -K pic foo.c
$ cat main.c
int bar = 1;

main()
{

return (bar);
}
$ cc -o main main.c -L. -lfoo
ld: warning: symbol ‘bar’ has differing types:

(file main.o type=OBJT; file ./libfoo.so type=FUNC);

main.o definition taken

Note – Symbol types in this context are classifications that can be expressed in ELF.
They are not related to the data types as employed by the programming language,
except in the crudest fashion.

Chapter 2 • Link-Editor 39

In cases like the previous example, the relocatable object definition is taken when the
resolution occurs between a relocatable object and a shared object, or the first
definition is taken when the resolution occurs between two shared objects. When such
resolutions occur between symbols of different bindings (weak or global), a warning is
also produced.

Inconsistencies between symbol types are not suppressed by the link-editor’s -t
option.

Fatal Resolutions
Symbol conflicts that cannot be resolved result in a fatal error condition. In this case,
an appropriate error message is provided indicating the symbol name together with
the names of the files that provided the symbols, and no output file is generated.
Although the fatal condition is sufficient to terminate the link-edit, all input file
processing is first completed. In this manner, all fatal resolution errors can be
identified.

The most common fatal error condition exists when two relocatable objects both define
symbols of the same name, and neither symbol is a weak definition:

$ cat foo.c
int bar = 1;

$ cat bar.c
bar()
{

return (0);
}

$ cc -dn -r -o temp.o foo.c bar.c
ld: fatal: symbol ‘bar’ is multiply-defined:

(file foo.o and file bar.o);

ld: fatal: File processing errors. No output written to int.o

foo.c and bar.c have conflicting definitions for the symbol bar. Because the
link-editor cannot determine which should dominate, the link-edit usually terminates
with an error message. You can use the link-editor’s -z muldefs option to suppress
this error condition, and allow the first symbol definition to be taken.

Undefined Symbols
After all of the input files have been read and all symbol resolution is complete, the
link-editor searches the internal symbol table for any symbol references that have not
been bound to symbol definitions. These symbol references are referred to as undefined
symbols. The effect of these undefined symbols on the link-edit process can vary
according to the type of output file being generated, and possibly the type of symbol.

40 Linker and Libraries Guide • December 2003

Generating an Executable Output File
When the link-editor is generating an executable output file, the link-editor’s default
behavior is to terminate with an appropriate error message should any symbols
remain undefined. A symbol remains undefined when a symbol reference in a
relocatable object is never matched to a symbol definition:

$ cat main.c
extern int foo();

main()
{

return (foo());
}
$ cc -o prog main.c
Undefined first referenced
symbol in file
foo main.o

ld: fatal: Symbol referencing errors. No output written to prog

In a similar manner, a symbol reference within a shared object that is never matched to
a symbol definition when the shared object is being used to create a dynamic
executable will also result in an undefined symbol:

$ cat foo.c
extern int bar;
foo()
{

return (bar);
}

$ cc -o libfoo.so -G -K pic foo.c
$ cc -o prog main.c -L. -lfoo
Undefined first referenced
symbol in file
bar ./libfoo.so

ld: fatal: Symbol referencing errors. No output written to prog

If you want to allow undefined symbols, as in cases like the previous example, then
the default fatal error condition can be suppressed by using the link-editor’s
-z nodefs option.

Note – Take care when using the -z nodefs option. If an unavailable symbol
reference is required during the execution of a process, a fatal runtime relocation error
occurs. It may be possible to detect this error during the initial execution and testing of
an application. However, more complex execution paths can result in this error
condition taking much longer to detect, which can be time consuming and costly.

Chapter 2 • Link-Editor 41

Symbols can also remain undefined when a symbol reference in a relocatable object is
bound to a symbol definition in an implicitly defined shared object. For example,
continuing with the files main.c and foo.c used in the previous example:

$ cat bar.c
int bar = 1;

$ cc -o libbar.so -R. -G -K pic bar.c -L. -lfoo
$ ldd libbar.so

libfoo.so => ./libfoo.so

$ cc -o prog main.c -L. -lbar
Undefined first referenced
symbol in file
foo main.o (symbol belongs to implicit \

dependency ./libfoo.so)

ld: fatal: Symbol referencing errors. No output written to prog

prog is built with an explicit reference to libbar.so. libbar.so has a dependency
on libfoo.so, and therefore an implicit reference to libfoo.so from prog is
established.

Because main.c made a specific reference to the interface provided by libfoo.so,
prog really has a dependency on libfoo.so. However, only explicit shared object
dependencies are recorded in the output file being generated. Thus, prog fails to run
if a new version of libbar.so is developed that no longer has a dependency on
libfoo.so.

For this reason, bindings of this type are deemed fatal, and the implicit reference must
be made explicit by referencing the library directly during the link-edit of prog. The
required reference is hinted at in the fatal error message shown in the preceding
example.

Generating a Shared Object Output File
When the link-editor is generating a shared object output file, it allows undefined
symbols to remain at the end of the link-edit. This default behavior allows the shared
object to import symbols from either relocatable objects or from other shared objects
when the object is used to create a dynamic executable.

The link-editor’s -z defs option can be used to force a fatal error if any undefined
symbols remain. This option is recommended when creating any shared objects.
Shared objects that reference symbols from an application can use the -z defs option
and define the applications symbols using the extern mapfile directive, as
described in “Defining Additional Symbols” on page 44.

A self-contained shared object, in which all references to external symbols are satisfied
by named dependencies, provides maximum flexibility. The shared object can be
employed by many users without those users having to determine and establish
dependencies to satisfy the shared object’s requirements.

42 Linker and Libraries Guide • December 2003

Weak Symbols
Weak symbol references that are not bound during a link-edit do not result in a fatal
error condition, no matter what output file type is being generated.

If a static executable is being generated, the symbol is converted to an absolute symbol
and assigned a value of zero.

If a dynamic executable or shared object is being produced, the symbol is left as an
undefined weak reference and assigned the value zero. During process execution, the
runtime linker searches for this symbol. If the runtime linker does not find a match, it
binds the reference to an address of zero instead of generating a fatal runtime
relocation error.

Historically, these undefined weak referenced symbols have been employed as a
mechanism to test for the existence of functionality. For example, the following C code
fragment might have been used in the shared object libfoo.so.1:

#pragma weak foo

extern void foo(char *);

void bar(char * path)
{

void (* fptr)(char *);

if ((fptr = foo) != 0)
(* fptr)(path);

}

When an application is built that references libfoo.so.1, the link-edit will complete
successfully regardless of whether a definition for the symbol foo is found. If during
execution of the application the function address tests nonzero, the function is called.
However, if the symbol definition is not found, the function address tests zero and so
it is not called.

Compilation systems view this address comparison technique as having undefined
semantics, which can result in the test statement being removed under optimization.
In addition, the runtime symbol binding mechanism places other restrictions on the
use of this technique, which prevents a consistent model from being available for all
dynamic objects.

Note – Undefined weak references in this manner are discouraged. Instead, you should
use dlsym(3DL) with the RTLD_DEFAULT flag as a means of testing for a symbol’s
existence. See “Testing for Functionality” on page 88.

Chapter 2 • Link-Editor 43

Tentative Symbol Order Within the Output File
Contributions from input files usually appear in the output file in the order of their
contribution. An exception occurs when processing tentative symbols and their
associated storage. These symbols are not fully defined until their resolution is
complete. If the resolution occurs as a result of encountering a defined symbol from a
relocatable object, then the order of appearance is that which would have occurred for
the definition.

If you need to control the ordering of a group of symbols, then any tentative definition
should be redefined to a zero-initialized data item. For example, the following
tentative definitions result in a reordering of the data items within the output file,
compared to the original order described in the source file foo.c:

$ cat foo.c
char A_array[0x10];
char B_array[0x20];
char C_array[0x30];

$ cc -o prog main.c foo.c
$ nm -vx prog | grep array
[32] |0x00020754|0x00000010|OBJT |GLOB |0x0 |15 |A_array
[34] |0x00020764|0x00000030|OBJT |GLOB |0x0 |15 |C_array

[42] |0x00020794|0x00000020|OBJT |GLOB |0x0 |15 |B_array

By defining these symbols as initialized data items, the relative ordering of these
symbols within the input file is carried over to the output file:

$ cat foo.c
char A_array[0x10] = { 0 };
char B_array[0x20] = { 0 };
char C_array[0x30] = { 0 };

$ cc -o prog main.c foo.c
$ nm -vx prog | grep array
[32] |0x000206bc|0x00000010|OBJT |GLOB |0x0 |12 |A_array
[42] |0x000206cc|0x00000020|OBJT |GLOB |0x0 |12 |B_array

[34] |0x000206ec|0x00000030|OBJT |GLOB |0x0 |12 |C_array

Defining Additional Symbols
Besides the symbols provided from input files, you can supply additional symbol
references or definitions to a link-edit. In the simplest form, symbol references can be
generated using the link-editor’s -u option. Greater flexibility is provided with the
link-editor’s -M option and an associated mapfile that enables you to define symbol
references and a variety of symbol definitions.

44 Linker and Libraries Guide • December 2003

The -u option provides a mechanism for generating a symbol reference from the
link-edit command line. This option can be used to perform a link-edit entirely from
archives, or to provide additional flexibility in selecting the objects to extract from
multiple archives. See section “Archive Processing” on page 27 for an overview of
archive extraction.

For example, perhaps you want to generate a dynamic executable from the relocatable
object main.o, which refers to the symbols foo and bar. You want to obtain the
symbol definition foo from the relocatable object foo.o contained in lib1.a, and
the symbol definition bar from the relocatable object bar.o, contained in lib2.a.

However, the archive lib1.a also contains a relocatable object defining the symbol
bar. This relocatable object is presumably of differing functionality to the relocatable
object provided in lib2.a. To specify the required archive extraction, you can use the
following link-edit:

$ cc -o prog -L. -u foo -l1 main.o -l2

The -u option generates a reference to the symbol foo. This reference causes
extraction of the relocatable object foo.o from the archive lib1.a. The first reference
to the symbol bar occurs in main.o, which is encountered after lib1.a has been
processed. Therefore, the relocatable object bar.o is obtained from the archive
lib2.a.

Note – This simple example assumes that the relocatable object foo.o from lib1.a
does not directly or indirectly reference the symbol bar. If it does then the relocatable
object bar.o is also extracted from lib1.a during its processing. See “Archive
Processing” on page 27 for a discussion of the link-editor’s multi-pass processing of an
archive.

A more extensive set of symbol definitions can be provided using the link-editor’s -M
option and an associated mapfile. The syntax for these mapfile entries is:

[name] {
scope:

symbol [= [type] [value] [size] [extern]];

} [dependency];

name
A label for this set of symbol definitions, if present, identifies a version definition
within the image. See Chapter 5.

scope
Indicates the visibility of the symbols’ binding within the output file being
generated. All symbols defined with a mapfile are treated as global in scope
during the link-edit process. That is, they are resolved against any other symbols of
the same name obtained from any of the input files. The following definitions, and
aliases, define a symbols’ visibility in the object being created:

Chapter 2 • Link-Editor 45

default / global
Symbols of this scope remain visible to other external objects. References to such
symbols from within the object are bound at runtime, thus allowing interposition
to take place.

protected / symbolic
Symbols of this scope remain visible to other external objects. References to these
symbols from within the object are bound at link-edit, thus preventing runtime
interposition. This scope definition has the same affect as a symbol with
STV_PROTECTED visibility. See Table 7–24.

hidden / local
Symbols of this scope are reduced to symbols with a local binding. Symbols of
this scope are not visible to other external objects. This scope definition has the
same affect as a symbol with STV_HIDDEN visibility. See Table 7–24.

eliminate
Symbols of this scope are hidden. Their symbol table entries are eliminated.

symbol
The name of the symbol required. If the name is not followed by one of the symbol
attributes, type, value, size or extern, a symbol reference is created. This reference is
exactly the same as would be generated using the -u option discussed earlier in
this section. If the symbol name is followed by any symbol attributes, then a
symbol definition is generated using the associated attributes.

When in local scope, this symbol name can be defined as the special auto-reduction
directive “*”. This directive results in all global symbols, not explicitly defined to be
global in the mapfile, receiving a local binding within any dynamic object file
being generated.

type
Indicates the symbol type attribute. This attribute can be either data, function,
or COMMON. The former two type attributes result in an absolute symbol definition.
See “Symbol Table Section” on page 216. The latter type attribute results in a
tentative symbol definition.

value
Indicates the value attribute and takes the form of Vnumber.

size
Indicates the size attribute and takes the form of Snumber.

extern
This keyword indicates the symbol is defined externally to the object being created.
Undefined symbols flagged with the -z defs option can be suppressed with this
option.

dependency
Represents a version definition that is inherited by this definition. See Chapter 5.

46 Linker and Libraries Guide • December 2003

If either a version definition or the auto-reduction directive is specified, then
versioning information is recorded in the image created. If this image is an executable
or shared object, then any symbol reduction is also applied.

If the image being created is a relocatable object, then by default, no symbol reduction
is applied. In this case, any symbol reductions are recorded as part of the versioning
information. These reductions are applied when the relocatable object is finally used to
generate an executable or shared object. The link-editor’s -B reduce option can be
used to force symbol reduction when generating a relocatable object.

A more detailed description of the versioning information is provided in Chapter 5.

Note – To ensure interface definition stability, no wildcard expansion is provided for
defining symbol names.

This section presents several examples of using the mapfile syntax.

The following example shows how three symbol references can be defined. These
references are then used to extract members of an archive. Although this archive
extraction can be achieved by specifying multiple -u options to the link-edit, this
example also shows how the eventual scope of a symbol can be reduced to local.

$ cat foo.c
foo()
{

(void) printf("foo: called from lib.a\n");
}
$ cat bar.c
bar()
{

(void) printf("bar: called from lib.a\n");
}
$ cat main.c
extern void foo(), bar();

main()
{

foo();
bar();

}
$ ar -rc lib.a foo.o bar.o main.o
$ cat mapfile
{

local:
foo;
bar;

global:
main;

};
$ cc -o prog -M mapfile lib.a

Chapter 2 • Link-Editor 47

$ prog
foo: called from lib.a
bar: called from lib.a
$ nm -x prog | egrep "main$|foo$|bar$"
[28] |0x00010604|0x00000024|FUNC |LOCL |0x0 |7 |foo
[30] |0x00010628|0x00000024|FUNC |LOCL |0x0 |7 |bar

[49] |0x0001064c|0x00000024|FUNC |GLOB |0x0 |7 |main

The significance of reducing symbol scope from global to local is covered in more
detail in the section “Reducing Symbol Scope” on page 49.

The following example shows how two absolute symbol definitions can be defined.
These definitions are then used to resolve the references from the input file main.c.

$ cat main.c
extern int foo();
extern int bar;

main()
{

(void) printf("&foo = %x\n", &foo);
(void) printf("&bar = %x\n", &bar);

}
$ cat mapfile
{

global:
foo = FUNCTION V0x400;
bar = DATA V0x800;

};
$ cc -o prog -M mapfile main.c
$ prog
&foo = 400 &bar = 800
$ nm -x prog | egrep "foo$|bar$"
[37] |0x00000800|0x00000000|OBJT |GLOB |0x0 |ABS |bar

[42] |0x00000400|0x00000000|FUNC |GLOB |0x0 |ABS |foo

When obtained from an input file, symbol definitions for functions or data items are
usually associated with elements of data storage. A mapfile definition is insufficient
to be able to construct this data storage, so these symbols must remain as absolute
values.

However, a mapfile can also be used to define a COMMON, or tentative, symbol.
Unlike other types of symbol definition, tentative symbols do not occupy storage
within a file, but define storage that must be allocated at runtime. Therefore, symbol
definitions of this kind can contribute to the storage allocation of the output file being
generated.

A feature of tentative symbols that differs from other symbol types is that their value
attribute indicates their alignment requirement. A mapfile definition can therefore be
used to realign tentative definitions obtained from the input files of a link-edit.

48 Linker and Libraries Guide • December 2003

The following example shows the definition of two tentative symbols. The symbol foo
defines a new storage region whereas the symbol bar is actually used to change the
alignment of the same tentative definition within the file main.c.

$ cat main.c
extern int foo;
int bar[0x10];

main()
{

(void) printf("&foo = %x\n", &foo);
(void) printf("&bar = %x\n", &bar);

}
$ cat mapfile
{

global:
foo = COMMON V0x4 S0x200;
bar = COMMON V0x100 S0x40;

};
$ cc -o prog -M mapfile main.c
ld: warning: symbol ‘bar’ has differing alignments:

(file mapfile value=0x100; file main.o value=0x4);
largest value applied

$ prog
&foo = 20940
&bar = 20900
$ nm -x prog | egrep "foo$|bar$"
[37] |0x00020900|0x00000040|OBJT |GLOB |0x0 |16 |bar

[42] |0x00020940|0x00000200|OBJT |GLOB |0x0 |16 |foo

Note – This symbol resolution diagnostic can be suppressed by using the link-editor’s
-t option.

Reducing Symbol Scope
Symbol definitions defined to have local scope within a mapfile can be used to
reduce the symbol’s eventual binding. This mechanism can play an important role in
reducing the symbol’s visibility to future link-edits that use the generated file as part
of their input. In fact, this mechanism can provide for the precise definition of a file’s
interface, and so restrict the functionality made available to others.

For example, say you want to generate a simple shared object from the files foo.c
and bar.c. The file foo.c contains the global symbol foo, which provides the
service that you want to make available to others. The file bar.c contains the symbols
bar and str, which provide the underlying implementation of the shared object. The
creation of a simple shared object usually results in all three of these symbols having
global scope.

$ cat foo.c
extern const char * bar();

Chapter 2 • Link-Editor 49

const char * foo()
{

return (bar());
}
$ cat bar.c
const char * str = "returned from bar.c";

const char * bar()
{

return (str);
}
$ cc -o lib.so.1 -G foo.c bar.c
$ nm -x lib.so.1 | egrep "foo$|bar$|str$"
[29] |0x000104d0|0x00000004|OBJT |GLOB |0x0 |12 |str
[32] |0x00000418|0x00000028|FUNC |GLOB |0x0 |6 |bar

[33] |0x000003f0|0x00000028|FUNC |GLOB |0x0 |6 |foo

You can now use the functionality offered by this shared object as part of the link-edit
of another application. References to the symbol foo are bound to the implementation
provided by the shared object.

Because of their global binding, direct reference to the symbols bar and str is also
possible. This can have dangerous consequences, as you might later change the
implementation underlying the function foo. In so doing, you could unintentionally
cause an existing application that had bound to bar or str to fail or misbehave.

Another consequence of the global binding of the symbols bar and str is that they
can be interposed upon by symbols of the same name. The interposition of symbols
within shared objects is covered in section “Simple Resolutions” on page 37. This
interposition can be intentional and be used as a means of circumventing the intended
functionality offered by the shared object. On the other hand, this interposition can be
unintentional, the result of the same common symbol name used for both the
application and the shared object.

When developing the shared object, you can protect against this scenario by reducing
the scope of the symbols bar and str to a local binding. In the following example, the
symbols bar and str are no longer available as part of the shared objects interface.
Thus, these symbols cannot be referenced, or interposed upon, by an external object.
You have effectively defined an interface for the shared object. This interface can be
managed while hiding the details of the underlying implementation.

$ cat mapfile
{

local:
bar;
str;

};
$ cc -o lib.so.1 -M mapfile -G foo.c bar.c
$ nm -x lib.so.1 | egrep "foo$|bar$|str$"
[27] |0x000003dc|0x00000028|FUNC |LOCL |0x0 |6 |bar
[28] |0x00010494|0x00000004|OBJT |LOCL |0x0 |12 |str

[33] |0x000003b4|0x00000028|FUNC |GLOB |0x0 |6 |foo

50 Linker and Libraries Guide • December 2003

This symbol scope reduction has an additional performance advantage. The symbolic
relocations against the symbols bar and str that would have been necessary at
runtime are now reduced to relative relocations. This reduces the runtime overhead of
initializing and processing the shared object. See “When Relocations are Performed”
on page 117 for details of symbolic relocation overhead.

As the number of symbols processed during a link-edit increases, the ability to define
each local scope reduction within a mapfile becomes harder to maintain. An
alternative and more flexible mechanism enables you to define the shared objects
interface in terms of the global symbols that should be maintained, and instructs the
link-editor to reduce all other symbols to local binding. This mechanism is achieved
using the special auto-reduction directive “*”. For example, the previous mapfile
definition can be rewritten to define foo as the only global symbol required in the
output file generated:

$ cat mapfile
lib.so.1.1
{

global:
foo;

local:
*;

};
$ cc -o lib.so.1 -M mapfile -G foo.c bar.c
$ nm -x lib.so.1 | egrep "foo$|bar$|str$"
[30] |0x00000370|0x00000028|FUNC |LOCL |0x0 |6 |bar
[31] |0x00010428|0x00000004|OBJT |LOCL |0x0 |12 |str

[35] |0x00000348|0x00000028|FUNC |GLOB |0x0 |6 |foo

This example also defines a version name, lib.so.1.1, as part of the mapfile
directive. This version name establishes an internal version definition that defines the
file’s symbolic interface. The creation of a version definition is recommended. The
definition forms the foundation of an internal versioning mechanism that can be used
throughout the evolution of the file. See Chapter 5.

Note – If a version name is not supplied, the output file name is used to label the
version definition. The versioning information created within the output file can be
suppressed using the link-editor’s -z noversion option.

Whenever a version name is specified, all global symbols must be assigned to a
version definition. If any global symbols remain unassigned to a version definition, the
link-editor generates a fatal error condition:

$ cat mapfile
lib.so.1.1 {

global:
foo;

};
$ cc -o lib.so.1 -M mapfile -G foo.c bar.c

Chapter 2 • Link-Editor 51

Undefined first referenced
symbol in file
str bar.o (symbol has no version assigned)
bar bar.o (symbol has no version assigned)

ld: fatal: Symbol referencing errors. No output written to lib.so.1

The -B local option can be used to assert the auto-reduction directive “*” from the
command line. The previous example could be compiled successfully with:

$ cc -o lib.so.1 -M mapfile -B local -G foo.c bar.c

When generating an executable or shared object, any symbol reduction results in the
recording of version definitions within the output image, together with the reduction
of the appropriate symbols. When generating a relocatable object, the version
definitions are created but the symbol reductions are not processed. The result is that
the symbol entries for any symbol reductions still remain global. For example, using
the previous mapfile with the auto-reduction directive and associated relocatable
objects, an intermediate relocatable object is created that shows no symbol reduction.

$ cat mapfile
lib.so.1.1 {

global:
foo;

local:
*;

};
$ ld -o lib.o -M mapfile -r foo.o bar.o
$ nm -x lib.o | egrep "foo$|bar$|str$"
[17] |0x00000000|0x00000004|OBJT |GLOB |0x0 |3 |str
[19] |0x00000028|0x00000028|FUNC |GLOB |0x0 |1 |bar

[20] |0x00000000|0x00000028|FUNC |GLOB |0x0 |1 |foo

The version definitions created within this image show that symbol reductions are
required. When the relocatable object is used eventually to generate an executable or
shared object, the symbol reductions occur. In other words, the link-editor reads and
interprets symbol reduction information contained in relocatable objects in the same
manner as it processes the data from a mapfile.

Thus, the intermediate relocatable object produced in the previous example can now
be used to generate a shared object:

$ ld -o lib.so.1 -G lib.o
$ nm -x lib.so.1 | egrep "foo$|bar$|str$"
[22] |0x000104a4|0x00000004|OBJT |LOCL |0x0 |14 |str
[24] |0x000003dc|0x00000028|FUNC |LOCL |0x0 |8 |bar

[36] |0x000003b4|0x00000028|FUNC |GLOB |0x0 |8 |foo

Symbol reduction at the point at which an executable or shared object is created is
typically the most common requirement. However, symbol reductions can be forced to
occur when creating a relocatable object by using the link-editor’s -B reduce option.

$ ld -o lib.o -M mapfile -B reduce -r foo.o bar.o
$ nm -x lib.o | egrep "foo$|bar$|str$"
[15] |0x00000000|0x00000004|OBJT |LOCL |0x0 |3 |str

52 Linker and Libraries Guide • December 2003

[16] |0x00000028|0x00000028|FUNC |LOCL |0x0 |1 |bar

[20] |0x00000000|0x00000028|FUNC |GLOB |0x0 |1 |foo

Symbol Elimination
An extension to symbol reduction is the elimination of a symbol entry from an object’s
symbol table. Local symbols are only maintained in an object’s .symtab symbol table.
This entire table can be removed from the object using the link-editor’s -s option, or
strip(1). On occasion, you might want to maintain the .symtab symbol table but
remove selected local symbol definitions from it.

Symbol elimination can be carried out using the mapfile directive eliminate. As
with the local directive, symbols can be individually defined, or the symbol name
can be defined as the special auto-elimination directive “*”. The following example
shows the elimination of the symbol bar for the previous symbol reduction example.

$ cat mapfile
lib.so.1.1
{

global:
foo;

local:
str;

eliminate:
*;

};
$ cc -o lib.so.1 -M mapfile -G foo.c bar.c
$ nm -x lib.so.1 | egrep "foo$|bar$|str$"
[31] |0x00010428|0x00000004|OBJT |LOCL |0x0 |12 |str

[35] |0x00000348|0x00000028|FUNC |GLOB |0x0 |6 |foo

The -B eliminate option can be used to assert the auto-elimination directive “*” from
the command line.

External Bindings
When a symbol reference from the object being created is satisfied by a definition
within a shared object, the symbol remains undefined. The relocation information
associated with the symbol provides for its lookup at runtime. The shared object that
provided the definition typically becomes a dependency.

The runtime linker employs a default search model to locate this definition at runtime.
It typically searches each object, starting with the dynamic executable, and progressing
through each dependency in the same order in which the objects were loaded.

Objects can also be created using the link-editor’s -B direct option. With this option
the relationship between the referenced symbol and the object that provides the
symbol’s definition is maintained within the object being created. The runtime linker
uses this information to directly bind the reference to the object that defines the

Chapter 2 • Link-Editor 53

symbol, thus bypassing the default symbol search model. Direct binding information
can only be established to dependencies specified with the link-edit. Therefore, use of
the -z defs option is recommended. Direct binding can significantly reduce the
symbol lookup processing required at runtime. See “Direct Binding” on page 68 for
more details on this runtime binding model.

String Table Compression
String tables are compressed by the link-editor by removing duplicate entries and tail
substrings. This compression can significantly reduce the size of any string tables. A
compressed .dynstr table can produce a smaller text segment and hence reduce
runtime paging activity. Because of these benefits, string table compression is enabled
by default.

Linking objects that contribute a very large number of symbols may increase the
link-edit time due to the string table compression. To avoid this cost during
development use the link-editors -z nocompstrtab option. Any string table
compression performed during a link-edit can be displayed using the link-editors
debugging tokens -D strtab,detail.

Generating the Output File
After all input file processing and symbol resolution is completed with no fatal errors,
the link-editor can start generating the output file. The link-editor establishes the
additional sections that must be generated to complete the output file. These sections
include the symbol tables that contain local symbol definitions from the input files,
together with the global and weak symbol information that has been collected in the
link-editor’s internal symbol table.

Also included are any output relocation and dynamic information sections required by
the runtime linker. After all the output section information has been established, the
total output file size is calculated and the output file image is created accordingly.

When creating a dynamic executable or shared object, two symbol tables are usually
generated. The .dynsym table and its associated string table .dynstr contain register
(even if these are local), global, weak, and section symbols. These sections become part
of the text segment that is mapped as part of the process image at runtime (see the
mmap(2) man page). This enables the runtime linker to read these sections and perform
any necessary relocations.

The .symtab table, and its associated string table .strtab contain all the symbols
collected from the input file processing. These sections are not mapped as part of the
process image. They can even be stripped from the image using the link-editor’s -s
option, or after the link-edit using strip(1).

54 Linker and Libraries Guide • December 2003

During the generation of the symbol tables, reserved symbols are created. These
symbols have special meaning to the linking process and should not be defined in
your code.

_etext
The first location after the text segment.

_edata
The first location after initialized data.

_end
The first location after all data.

_DYNAMIC
The address of the dynamic information section (the .dynamic section).

END
The same as _end. The symbol has local scope and, together with _START_,
provides a means of establishing an object’s address range.

_GLOBAL_OFFSET_TABLE_
The position-independent reference to a link-editor supplied table of addresses, the
.got section. This table is constructed from position-independent data references
occurring in objects that have been compiled with the -K pic option. See
“Position-Independent Code” on page 111.

_PROCEDURE_LINKAGE_TABLE_
The position-independent reference to a link-editor supplied table of addresses, the
.plt section. This table is constructed from position-independent function
references occurring in objects that have been compiled with the -K pic option.
See “Position-Independent Code” on page 111.

START
The first location within the text segment. The symbol has local scope and, together
with _END_, provides a means of establishing an object’s address range.

When generating an executable, the link-editor looks for additional symbols to define
the executable’s entry point. If a symbol was specified using the link-editor’s -e
option, that symbol is used. Otherwise the link-editor looks for the reserved symbol
names _start, and then main. If none of these symbols exists, the first address of the
text segment is used.

Relocation Processing
After you have created the output file, all data sections from the input files are copied
to the new image. Any relocations specified by the input files are applied to the output
image. Any additional relocation information that must be generated is also written to
the new image.

Chapter 2 • Link-Editor 55

Relocation processing is normally uneventful, although error conditions might arise
that are accompanied by specific error messages. Two conditions are worth more
discussion. The first condition involves text relocations that result from
position-dependent code. This condition is covered in more detail in
“Position-Independent Code” on page 111. The second condition can arise from
displacement relocations, which is described more fully in the next section.

Displacement Relocations
Error conditions might occur if displacement relocations are applied to a data item,
which itself can be used in a copy relocation. The details of copy relocations are
covered in “Copy Relocations” on page 118.

A displacement relocation remains valid when both the relocated offset and the target
to which it is relocated remain separated by the same displacement. A copy relocation
is one where a global data item within a shared object is copied to the .bss of an
executable, to preserve the executable’s read-only text segment. If the copied data has
a displacement relocation applied to it, or an external relocation is a displacement into
the copied data, the displacement relocation becomes invalidated.

The areas to address in trying to catch these sorts of errors are:

� When generating a shared object, flag any potential copy relocatable data items
that can be problematic if they are involved in a displacement relocation. During
construction of a shared object, the link-editor has no knowledge of what
references might be made to it. Thus, all that can be flagged are potential problems.

� When generating an executable, flag the creation of a copy relocation whose data is
involved in a displacement relocation.

However, displacement relocations applied to a shared object might be completed
during its creation at link-edit time. Therefore, a link-edit of an application that
references this shared object has no knowledge of a displacement being in effect in
any copy-relocated data.

To help diagnose these problem areas, the link-editor indicates the displacement
relocation use of a dynamic object with one or more dynamic DT_FLAGS_1 flags, as
shown in Table 7–45. In addition, the link-editor’s -z verbose option can be used to
display suspicious relocations.

For example, say you create a shared object with a global data item, bar[], which has
a displacement relocation applied to it. This item could be copy-relocated if referenced
from a dynamic executable. The link-editor warns of this condition with:

$ cc -G -o libfoo.so.1 -z verbose -K pic foo.o
ld: warning: relocation warning: R_SPARC_DISP32: file foo.o: symbol foo: \

displacement relocation to be applied to the symbol bar: at 0x194: \

displacement relocation will be visible in output image

56 Linker and Libraries Guide • December 2003

If you now create an application that references the data item bar[], a copy relocation
will be created which results in the displacement relocation being invalidated. Because
the link-editor can explicitly discover this situation, an error message is generated
regardless of the use of the -z verbose option.

$ cc -o prog prog.o -L. -lfoo
ld: warning: relocation error: R_SPARC_DISP32: file foo.so: symbol foo: \

displacement relocation applied to the symbol bar at: 0x194: \

the symbol bar is a copy relocated symbol

Note – ldd(1), when used with either the -d or -r options, uses the displacement
dynamic flags to generate similar relocation warnings.

These error conditions can be avoided by ensuring that the symbol definition being
relocated (offset) and the symbol target of the relocation are both local. Use static
definitions or the link-editor’s scoping technology. See “Reducing Symbol Scope”
on page 49. Relocation problems such as these can be avoided by accessing data
within shared objects using functional interfaces.

Debugging Aids
A debugging library is provided with the Solaris linkers. This library enables you to
trace the link-editing process in more detail. This library helps you understand, or
debug, the link-edit of your own applications or libraries. Although the type of
information displayed using this library is expected to remain constant, the exact
format of the information might change slightly from release to release.

Some of the debugging output might be unfamiliar if you do not have an intimate
knowledge of the ELF format. However, many aspects might be of general interest to
you.

Debugging is enabled by using the -D option, and all output produced is directed to
the standard error. This option must be augmented with one or more tokens to
indicate the type of debugging required. The tokens available can be displayed by
typing -D help at the command line.

$ ld -Dhelp
debug:
debug: For debugging the link-editing of an application:
debug: LD_OPTIONS=-Dtoken1,token2 cc -o prog ...
debug: or,
debug: ld -Dtoken1,token2 -o prog ...
debug: where placement of -D on the command line is significant
debug: and options can be switched off by prepending with ‘!’.

Chapter 2 • Link-Editor 57

debug:
debug:
debug: args display input argument processing
debug: basic provide basic trace information/warnings
debug: detail provide more information in conjunction with other options
debug: entry display entrance criteria descriptors
debug: files display input file processing (files and libraries)
debug: got display GOT symbol information
debug: help display this help message
debug: libs display library search paths; detail flag shows actual
debug: library lookup (-l) processing
debug: map display map file processing
debug: move display move section processing
debug: reloc display relocation processing
debug: sections display input section processing
debug: segments display available output segments and address/offset
debug: processing; detail flag shows associated sections
debug: statistics display processing statistics
debug: strtab display information about string table compression; detail
debug: shows layout of string tables
debug: support display support library processing
debug: symbols display symbol table processing; detail flag shows
debug: internal symbol table addition and resolution (ld only)
debug: tls display TLS processing info
debug: unused display unused/unreferenced files; detail flag shows
debug: unused sections (ld only)

debug: versions display version processing

Note – This listing is an example, and shows the options meaningful to the link-editor.
The exact options might differ from release to release.

Most compiler drivers interpret the -D option during their preprocessing phase.
Therefore, the LD_OPTIONS environment variable is a suitable mechanism for passing
this option to the link-editor.

The following example shows how input files can be traced. This syntax can be
especially useful in determining what libraries have been located, or what relocatable
objects have been extracted from an archive during a link-edit.

$ LD_OPTIONS=-Dfiles cc -o prog main.o -L. -lfoo
............
debug: file=main.o [ET_REL]
debug: file=./libfoo.a [archive]
debug: file=./libfoo.a(foo.o) [ET_REL]
debug: file=./libfoo.a [archive] (again)

............

58 Linker and Libraries Guide • December 2003

Here the member foo.o is extracted from the archive library libfoo.a to satisfy the
link-edit of prog. Notice that the archive is searched twice to verify that the extraction
of foo.o did not warrant the extraction of additional relocatable objects. More than
one “(again)” display indicates that the archive is a candidate for ordering using
lorder(1) and tsort(1).

By using the symbols token, you can determine which symbol caused an archive
member to be extracted, and which object made the initial symbol reference.

$ LD_OPTIONS=-Dsymbols cc -o prog main.o -L. -lfoo
............
debug: symbol table processing; input file=main.o [ET_REL]
............
debug: symbol[7]=foo (global); adding
debug:
debug: symbol table processing; input file=./libfoo.a [archive]
debug: archive[0]=bar
debug: archive[1]=foo (foo.o) resolves undefined or tentative symbol
debug:
debug: symbol table processing; input file=./libfoo(foo.o) [ET_REL]

.............

The symbol foo is referenced by main.o and is added to the link-editor’s internal
symbol table. This symbol reference causes the extraction of the relocatable object
foo.o from the archive libfoo.a.

Note – This output has been simplified for this document.

By using the detail token together with the symbols token, the details of symbol
resolution during input file processing can be observed.

$ LD_OPTIONS=-Dsymbols,detail cc -o prog main.o -L. -lfoo
............
debug: symbol table processing; input file=main.o [ET_REL]
............
debug: symbol[7]=foo (global); adding
debug: entered 0x000000 0x000000 NOTY GLOB UNDEF REF_REL_NEED
debug:
debug: symbol table processing; input file=./libfoo.a [archive]
debug: archive[0]=bar
debug: archive[1]=foo (foo.o) resolves undefined or tentative symbol
debug:
debug: symbol table processing; input file=./libfoo.a(foo.o) [ET_REL]
debug: symbol[1]=foo.c
.............
debug: symbol[7]=bar (global); adding
debug: entered 0x000000 0x000004 OBJT GLOB 3 REF_REL_NEED
debug: symbol[8]=foo (global); resolving [7][0]
debug: old 0x000000 0x000000 NOTY GLOB UNDEF main.o
debug: new 0x000000 0x000024 FUNC GLOB 2 ./libfoo.a(foo.o)
debug: resolved 0x000000 0x000024 FUNC GLOB 2 REF_REL_NEED

Chapter 2 • Link-Editor 59

............

The original undefined symbol foo from main.o has been overridden with the
symbol definition from the extracted archive member foo.o. The detailed symbol
information reflects the attributes of each symbol.

In the previous example, you can see that using some of the debugging tokens can
produce a wealth of output. In cases where you are interested only in the activity
around a subset of the input files, the -D option can be placed directly in the link-edit
command-line, and toggled on and off. In the following example the display of symbol
processing is switched on only during the processing of the library libbar.

$ ld -o prog main.o -L. -Dsymbols -lbar -D!symbols

Note – To obtain the link-edit command line you might have to expand the
compilation line from any driver being used. See “Using a Compiler Driver”
on page 25.

60 Linker and Libraries Guide • December 2003

CHAPTER 3

Runtime Linker

As part of the initialization and execution of a dynamic executable, an interpreter is
called to complete the binding of the application to its dependencies. In the Solaris
operating environment, this interpreter is referred to as the runtime linker.

During the link-editing of a dynamic executable, a special .interp section, together
with an associated program header, are created. This section contains a path name
specifying the program’s interpreter. The default name supplied by the link-editor is
that of the runtime linker: /usr/lib/ld.so.1 for a 32–bit executable and
/usr/lib/64/ld.so.1 for a 64–bit executable.

Note – ld.so.1 is a special case of a shared object. Here, a version number of 1 is
used. However, later Solaris releases might provide higher version numbers.

During the process of executing a dynamic object the kernel loads the file and reads
the program header information. See “Program Header” on page 231. From this
information the kernel locates the name of the required interpreter. The kernel loads
this interpreter and transfers control to it, passing sufficient information to enable the
interpreter to continue binding the application and run it.

In addition to initializing an application, the runtime linker provides services that
enable the application to extend its address space. This process involves loading
additional objects and binding to symbols within them.

The runtime linker:

� Analyzes the executable’s dynamic information section (.dynamic) and
determines what dependencies are required.

� Locates and loads in these dependencies, and analyzes their dynamic information
sections to determine if any additional dependencies are required.

� Performs any necessary relocations to bind these objects in preparation for process
execution.

61

� Calls any initialization functions provided by the dependencies.

� Passes control to the application.

� Can be called upon during the application’s execution, to perform any delayed
function binding.

� Can be called upon by the application to acquire additional objects with
dlopen(3DL), and bind to symbols within these objects with dlsym(3DL).

Shared Object Dependencies
When the runtime linker creates the memory segments for a program, the
dependencies tell what shared objects are needed to supply the program’s services. By
repeatedly connecting referenced shared objects and their dependencies, the runtime
linker generates a complete process image.

Note – Even when a shared object is referenced multiple times in the dependency list,
the runtime linker connects the object only once to the process.

Locating Shared Object Dependencies
During the link-edit of a dynamic executable, one or more shared objects are explicitly
referenced. These objects are recorded as dependencies within the dynamic executable.

The runtime linker uses this dependency information to locate, and load, the
associated objects. These dependencies are processed in the same order as they were
referenced during the link-edit of the executable.

Once all the dynamic executable’s dependencies are loaded, they too are inspected, in
the order they are loaded, to locate any additional dependencies. This process
continues until all dependencies are located and loaded. This technique results in a
breadth-first ordering of all dependencies.

Directories Searched by the Runtime Linker
The runtime linker looks in one default location for dependencies. This location is
/usr/lib when processing 32–bit objects, and /usr/lib/64 when processing 64–bit
objects. Any dependency specified as a simple file name is prefixed with this default
directory name. The resulting path name is used to locate the actual file.

62 Linker and Libraries Guide • December 2003

The dependencies of a dynamic executable or shared object can be displayed using
ldd(1). For example, the file /usr/bin/cat has the following dependencies:

$ ldd /usr/bin/cat
libc.so.1 => /usr/lib/libc.so.1

libdl.so.1 => /usr/lib/libdl.so.1

The file /usr/bin/cat has a dependency, or needs, the files libc.so.1 and
libdl.so.1.

The dependencies recorded in an object can be inspected using dump(1). Use this
command to display the file’s .dynamic section, and look for entries that have a
NEEDED tag. In the following example, the dependency libdl.so.1, displayed in the
previous ldd(1) example, is not recorded in the file /usr/bin/cat. ldd(1) shows the
total dependencies of the specified file, and libdl.so.1 is actually a dependency of
/usr/lib/libc.so.1.

$ dump -Lvp /usr/bin/cat

/usr/bin/cat:
[INDEX] Tag Value
[1] NEEDED libc.so.1

.........

In the previous dump(1) example, the dependencies are expressed as simple file names.
In other words, there is no ‘/’ in the name. The use of a simple file name requires the
runtime linker to generate the path name from a set of rules. File names that contain
an embedded ‘/’, are used as provided.

The simple file name recording is the standard, most flexible mechanism of recording
dependencies. The -h option of the link-editor records a simple name within the
dependency. See “Naming Conventions” on page 98 and “Recording a Shared Object
Name” on page 99.

Frequently, dependencies are distributed in directories other than /usr/lib or
/usr/lib/64. If a dynamic executable or shared object needs to locate dependencies
in another directory, the runtime linker must explicitly be told to search this directory.

You can specify additional search path, on a per-object basis, by recording a runpath
during the link-edit of an object. See “Directories Searched by the Runtime Linker”
on page 33 for details on recording this information.

Any runpath recording can be displayed using dump(1). Reference the .dynamic
entry that has the RUNPATH tag. In the following example, prog has a dependency on
libfoo.so.1. The runtime linker must search directories /home/me/lib and
/home/you/lib before it looks in the default location.

$ dump -Lvp prog

prog:
[INDEX] Tag Value
[1] NEEDED libfoo.so.1

Chapter 3 • Runtime Linker 63

[2] NEEDED libc.so.1
[3] RUNPATH /home/me/lib:/home/you/lib

.........

Another way to add to the runtime linker’s search path is to set the environment
variable LD_LIBRARY_PATH. This environment variable, which is analyzed once at
process startup, can be set to a colon-separated list of directories. These directories are
searched by the runtime linker before any runpath specification or default directory.

These environment variables are well suited to debugging purposes, such as forcing
an application to bind to a local dependency. In the following example, the file prog
from the previous example is bound to libfoo.so.1, found in the present working
directory.

$ LD_LIBRARY_PATH=. prog

Although useful as a temporary mechanism of influencing the runtime linker’s search
path, the use of LD_LIBRARY_PATH is strongly discouraged in production software.
Any dynamic executables that can reference this environment variable will have their
search paths augmented. This augmentation can result in an overall degradation in
performance. Also, as pointed out in “Using an Environment Variable” on page 32 and
“Directories Searched by the Runtime Linker” on page 33, LD_LIBRARY_PATH affects
the link-editor.

Environmental search paths can result in a 64–bit executable searching a path that
contains a 32–bit library matching the name being looked for. Or, vice versa. The
runtime linker rejects the mismatched 32–bit library and continues down its search
path looking for a valid 64–bit match. If no match is found, an error message is
generated. This can be observed in detail by setting the LD_DEBUG environment
variable to include the files token. See “Debugging Library” on page 90.

$ LD_LIBRARY_PATH=/usr/bin/64 LD_DEBUG=files /usr/bin/ls
...
00283: file=libc.so.1; needed by /usr/bin/ls
00283:
00283: file=/usr/lib/64/libc.so.1 rejected: ELF class mismatch: \
00283: 32-bit/64-bit
00283:
00283: file=/usr/lib/libc.so.1 [ELF]; generating link map
00283: dynamic: 0xef631180 base: 0xef580000 size: 0xb8000
00283: entry: 0xef5a1240 phdr: 0xef580034 phnum: 3
00283: lmid: 0x0
00283:
00283: file=/usr/lib/libc.so.1; analyzing [RTLD_GLOBAL RTLD_LAZY]

...

If a dependency cannot be located, ldd(1) indicates that the object cannot be found.
Any attempt to execute the application results in an appropriate error message from
the runtime linker:

$ ldd prog
libfoo.so.1 => (file not found)
libc.so.1 => /usr/lib/libc.so.1

64 Linker and Libraries Guide • December 2003

libdl.so.1 => /usr/lib/libdl.so.1
$ prog

ld.so.1: prog: fatal: libfoo.so.1: open failed: No such file or directory

Configuring the Default Search Paths
The default search paths used by the runtime linker are /usr/lib or /usr/lib/64.
These search paths can be administered using a runtime configuration file created by
the crle(1) utility. This file is often a useful aid for establishing search paths for
applications that have not been built with the correct runpaths.

A configuration file can be constructed in the default location /var/ld/ld.config,
for 32–bit applications, or /var/ld/64/ld.config, for 64–bit applications. This file
affects all applications of the respective type on a system. Configuration files can also
be created in other locations, and the runtime linker’s LD_CONFIG environment
variable used to select these files. This latter method is useful for testing a
configuration file before installing it in the default location.

Dynamic String Tokens
The runtime linker allows for the expansion of various dynamic string tokens. These
tokens may be applicable for filter, runpath and dependency definitions.

� $ISALIST – Expands to the native instruction sets executable on this platform. See
“Instruction Set Specific Shared Objects” on page 293.

� $ORIGIN – Provides the directory the object was loaded from. See “Locating
Associated Dependencies” on page 295.

� $OSNAME – Expands to the name of the operating system. See “System Specific
Shared Objects” on page 295.

� $OSREL – Expands to the operating system release level. See “System Specific
Shared Objects” on page 295.

� $PLATFORM – Expands to the processor type of the current machine. See “System
Specific Shared Objects” on page 295.

Relocation Processing
After the runtime linker has loaded all the dependencies required by an application,
the linker processes each object and performs all necessary relocations.

During the link-editing of an object, any relocation information supplied with the
input relocatable objects is applied to the output file. However, when creating a
dynamic executable or shared object, many of the relocations cannot be completed at

Chapter 3 • Runtime Linker 65

link-edit time because they require logical addresses that are known only when the
objects are loaded into memory. In these cases the link-editor generates new relocation
records as part of the output file image. The runtime linker must then process these
new relocation records.

For a more detailed description of the many relocation types, see “Relocation Types
(Processor-Specific)” on page 207. There are two basic types of relocations:

� Non-symbolic relocations
� Symbolic relocations

The relocation records for an object can be displayed by using dump(1). In the
following example, the file libbar.so.1 contains two relocation records that
indicate that the global offset table (the .got section) must be updated.

$ dump -rvp libbar.so.1

libbar.so.1:

.rela.got:
Offset Symndx Type Addend

0x10438 0 R_SPARC_RELATIVE 0

0x1043c foo R_SPARC_GLOB_DAT 0

The first relocation is a simple relative relocation that can be seen from its relocation
type and the symbol index (Symndx) field being zero. This relocation needs to use the
base address at which the object was loaded into memory to update the associated
.got offset.

The second relocation requires the address of the symbol foo. To complete this
relocation, the runtime linker must locate this symbol from either the dynamic
executable or one of its dependencies.

Symbol Lookup
When an object requires a symbol, the runtime linker searches for that symbol based
upon the requesting object’s symbol search scope, and the symbol visibility offered by
each object within the process. These attributes are applied as defaults to an object at
the time the object is loaded, as specific modes to dlopen(3DL), and in some cases can
be recorded within the object at the time it is built.

Typically, an average user becomes familiar with the default symbol search models
that are applied to a dynamic executable and its dependencies, and to objects obtained
through dlopen(3DL). The former is outlined in the next section “Default Lookup”
on page 67, and the latter, which is also able to exploit the various symbol lookup
attributes, is discussed in “Symbol Lookup” on page 81.

66 Linker and Libraries Guide • December 2003

An alternative model for symbol lookup is provided when a dynamic object is created
with the link-editors -B direct option. This model directs the runtime linker to
search for a symbol directly in the object that provided the symbol at link-edit time.
This model is discussed in more detail in “Direct Binding” on page 68.

Default Lookup
A dynamic executable and all the dependencies loaded with it are assigned world
search scope, and global symbol visibility. See “Symbol Lookup” on page 81. When
the runtime linker looks up a symbol for a dynamic executable or for any of the
dependencies loaded with the executable, it does so by searching each object. The
runtime linker starts with the dynamic executable, and progresses through each
dependency in the same order in which the objects were loaded.

As discussed in previous sections, ldd(1) lists the dependencies of a dynamic
executable in the order in which they are loaded. Therefore, if the shared object
libbar.so.1 requires the address of symbol foo to complete its relocation, and this
shared object is a dependency of the dynamic executable prog:

$ ldd prog
libfoo.so.1 => /home/me/lib/libfoo.so.1

libbar.so.1 => /home/me/lib/libbar.so.1

The runtime linker first looks for foo in the dynamic executable prog, then in the
shared object /home/me/lib/libfoo.so.1, and finally in the shared object
/home/me/lib/libbar.so.1.

Note – Symbol lookup can be an expensive operation, especially when the size of
symbol names increases and the number of dependencies increases. This aspect of
performance is discussed in more detail in “Performance Considerations” on page 107.
See “Direct Binding” on page 68 for an alternative lookup model.

Interposition
The runtime linker’s default mechanism of searching for a symbol first in the dynamic
executable and then in each of the dependencies means that the first occurrence of the
required symbol will satisfy the search. Therefore, if more than one instance of the
same symbol exists, the first instance interposes on all others. See also “Shared Object
Processing” on page 28.

Chapter 3 • Runtime Linker 67

Direct Binding
When creating an object using the link-editor’s -B direct option, the relationship
between the referenced symbol and the dependency that provided the definition is
recorded in the object. The runtime linker uses this information to search directly for
the symbol in the associated object, rather than carry out the default symbol search
model.

Note – The use of -B direct also enables lazy loading, which is equivalent to adding
the option -z lazyload to the front of the link-edit command line. See “Lazy
Loading of Dynamic Dependencies” on page 72.

The direct binding model can significantly reduce the symbol lookup overhead within
a dynamic process that has many symbolic relocations and many dependencies. This
model also enables multiple symbols of the same name to be located from different
objects that have been bound to directly.

Direct binding can circumvent the traditional use of interposition symbols because it
bypasses the default search model. The default model ensures that all references to a
symbol bind to one definition.

Interposition can still be achieved in a direct binding environment, on a per-object
basis, if an object is identified as an interposer. Any object loaded using the
environment variable LD_PRELOAD or created with the link-editor’s -z interpose
option, is identified as an interposer. When the runtime linker searches for a directly
bound symbol, it first looks in any object identified as an interposer before it looks in
the object that supplies the symbol definition.

Note – Direct bindings can be disabled at runtime by setting the environment variable
LD_NODIRECT to a non-null value.

When Relocations Are Performed
Relocations can be distinguish by when they are performed. This distinction arises due
to the type of reference being made to the relocated offset, and is either:

� An immediate reference
� A lazy reference

An immediate reference refers to a relocation that must be determined immediately
when an object is loaded. These references are typically to data items used by the
object code, pointers to functions, and even calls to functions made from

68 Linker and Libraries Guide • December 2003

position-dependent shared objects. These relocations cannot provide the runtime
linker with knowledge of when the relocated item is referenced. Therefore, all
immediate relocations must be carried out when an object is loaded, and before the
application gains, or regains, control.

A lazy reference refers to a relocation that can be determined as an object executes.
These references are typically calls to global functions made from
position-independent shared objects, or calls to external functions made from a
dynamic executable. During the compilation and link-editing of any dynamic module
that provide these references, the associated function calls become calls to a procedure
linkage table entry. These entries make up the .plt section. Each procedure linkage
table entry becomes a lazy reference with a relocation associated with it.

Procedure linkage table entries are constructed so that when they are first called,
control is passed to the runtime linker. The runtime linker looks up the required
symbol and rewrites information in the associated object so that any future calls to this
procedure linkage table entry go directly to the function. This mechanism enables
relocations of this type to be deferred until the first instance of a function is called.
This process is sometimes referred to as lazy binding.

The runtime linker’s default mode is to perform lazy binding whenever procedure
linkage table relocations are provided. This default can be overridden by setting the
environment variable LD_BIND_NOW to any non-null value. This environment variable
setting causes the runtime linker to perform both immediate and lazy reference
relocations when an object is loaded, and before the application gains, or regains,
control. For example, setting the environment variable as follows means that all
relocations within the file prog and within its dependencies, will be processed before
control is transferred to the application.

$ LD_BIND_NOW=1 prog

Objects can also be accessed with dlopen(3DL) with the mode defined as RTLD_NOW.
Objects can also be built using the link-editor’s -z now option to indicate that they
require complete relocation processing at the time they are loaded. This relocation
requirement is also propagated to any dependencies of the marked object at runtime.

Note – Although the preceding examples of immediate and lazy references are typical,
the creation of procedure linkage table entries is ultimately controlled by the relocation
information provided by the relocatable object files used as input to a link-edit.
Relocation records such as R_SPARC_WPLT30 and R_386_PLT32 instruct the
link-editor to create a procedure linkage table entry are common for
position-independent code. However, as a dynamic executable has a fixed location,
external function references that can be determined at link-edit time can be converted
to procedure linkage table entries regardless of the original relocation records.

Chapter 3 • Runtime Linker 69

Relocation Errors
The most common relocation error occurs when a symbol cannot be found. This
condition results in an appropriate runtime linker error message and the termination
of the application. For example:

$ ldd prog
libfoo.so.1 => ./libfoo.so.1
libc.so.1 => /usr/lib/libc.so.1
libbar.so.1 => ./libbar.so.1
libdl.so.1 => /usr/lib/libdl.so.1

$ prog
ld.so.1: prog: fatal: relocation error: file ./libfoo.so.1: \

symbol bar: referenced symbol not found

The symbol bar, which is referenced in the file libfoo.so.1, cannot be located.

During the link-edit of a dynamic executable, any potential relocation errors of this
sort are flagged as fatal undefined symbols. See “Generating an Executable Output
File” on page 41 for examples. This runtime relocation error can occur if the link-edit
of main used a different version of the shared object libbar.so.1 that contained a
symbol definition for bar, or if the -z nodefs option was used as part of the
link-edit.

If a relocation error of this type occurs because a symbol used as an immediate
reference cannot be located, the error condition will occur immediately during process
initialization. Because of the default mode of lazy binding, if a symbol used as a lazy
reference cannot be found, the error condition will occur after the application has
gained control. This latter case can take minutes or months, or might never occur,
depending on the execution paths exercised throughout the code.

To guard against errors of this kind, the relocation requirements of any dynamic
executable or shared object can be validated using ldd(1).

When the -d option is specified with ldd(1), all dependencies will be printed and all
immediate reference relocations will be processed. If a reference cannot be resolved, a
diagnostic message is produced. From the previous example this option would result
in:

$ ldd -d prog
libfoo.so.1 => ./libfoo.so.1
libc.so.1 => /usr/lib/libc.so.1
libbar.so.1 => ./libbar.so.1
libdl.so.1 => /usr/lib/libdl.so.1

symbol not found: bar (./libfoo.so.1)

When the -r option is specified with ldd(1), all immediate and lazy reference
relocations are processed. If either type of relocation cannot be resolved, a diagnostic
message is produced.

70 Linker and Libraries Guide • December 2003

Loading Additional Objects
The runtime linker provides an additional level of flexibility by enabling you to
introduce new objects during process initialization.

The environment variable LD_PRELOAD can be initialized to a shared object or
relocatable object file name, or a string of file names separated by white space. These
objects are loaded after the dynamic executable and before any dependencies. These
objects are assigned world search scope, and global symbol visibility.

$ LD_PRELOAD=./newstuff.so.1 prog

The dynamic executable prog is loaded, followed by the shared object
newstuff.so.1, and then by the dependencies defined within prog.

The order in which these objects are processed can be displayed using ldd(1):

$ LD_PRELOAD=./newstuff.so.1 ldd prog
./newstuff.so.1 => ./newstuff.so

libc.so.1 => /usr/lib/libc.so.1

In another example the preloading is a little more complex and time consuming.

$ LD_PRELOAD="./foo.o ./bar.o" prog

The runtime linker first link-edits the relocatable objects foo.o and bar.o to generate
a shared object that is maintained in memory. This memory image is then inserted
between the dynamic executable and its dependencies in the same manner as the
shared object newstuff.so.1 was preloaded in the previous example. Again, the
order in which these objects are processed can be displayed with ldd(1):

$ LD_PRELOAD="./foo.o ./bar.o" ldd prog
./foo.o => ./foo.o
./bar.o => ./bar.o

libc.so.1 => /usr/lib/libc.so.1

These mechanisms of inserting an object after a dynamic executable take the concept
of interposition to another level. You can use these mechanisms to experiment with a
new implementation of a function that resides in a standard shared object. If you
preload an object containing this function, the object interposes on the original. Thus
the old functionality can be completely hidden with the new preloaded version.

Another use of preloading is to augment a function that resides in a standard shared
object. The intention is to interpose the new symbol on the original, enabling the new
function to carry out some additional processing while calling through to the original
function. This mechanism requires either a symbol alias that is to be associated with
the original function or the ability to look up the original symbol’s address.

Chapter 3 • Runtime Linker 71

Lazy Loading of Dynamic Dependencies
When a dynamic object is loaded into memory, it is examined for any additional
dependencies. By default, if any dependencies exist they are immediately loaded. This
cycle continues until the full dependency tree is exhausted. At which point all
inter-object references, specified by relocations, are resolved.

Under this default model, all the dependencies of an application are loaded into
memory, and all data relocations are performed. These operations are performed
regardless of whether the code in these dependencies is referenced by the application
during its execution.

Under a lazy loading model, any dependencies that are labeled for lazy loading are
loaded only when explicitly referenced. By taking advantage of a function call’s lazy
binding, the loading of a dependency is delayed until it is first referenced. In fact,
objects that are never referenced are never loaded.

A relocation reference can be immediate or lazy. Because immediate references must
be resolved when an object is initialized, any dependency that satisfies this reference
must be immediately loaded. Therefore, identifying such a dependency as lazy
loadable has little effect. See “When Relocations Are Performed” on page 68.
Immediate references between dynamic objects are generally discouraged.

Lazy loading is used by the link-editor itself, which references a debugging library,
liblddbg. Because debugging is only called upon infrequently, loading this library
every time the link-editor is invoked is unnecessary and expensive. By indicating that
this library can be lazily loaded, the expense of processing it can be moved to those
invocations that ask for debugging output.

The alternate method of achieving a lazy loading model is to use dlopen() and
dlsym() to load and bind to a dependency when needed. This is ideal if the number
of dlsym() references is small, or the dependency name or location is not known at
link-edit time. For more complex interactions with known dependencies, coding to
normal symbol references and designating the dependency to be lazily loaded is
simpler.

An object is designated as lazily or normally loaded through the link-editor options
-z lazyload and -z nolazyload respectfully. These options are
position-dependent on the link-edit command line. Any dependency found following
the option takes on the loading attribute specified by the option. By default, the
-z nolazyload option is in effect.

The following simple program has a dependency on libdebug.so.1. The dynamic
section (.dynamic), shows libdebug.so.1 is marked for lazy loading. The symbol
information section (.SUNW_syminfo), shows the symbol reference that triggers
libdebug.so.1 loading.

72 Linker and Libraries Guide • December 2003

$ cc -o prog prog.c -L. -zlazyload -ldebug -znolazyload -R’$ORIGIN’
$ elfdump -d prog

Dynamic Section: .dynamic
index tag value
[0] POSFLAG_1 0x1 [LAZY]
[1] NEEDED 0x123 libdebug.so.1
[2] NEEDED 0x131 libc.so.1
[3] RUNPATH 0x13b $ORIGIN
...

$ elfdump -y prog

Syminfo section: .SUNW_syminfo
index flgs boundto symbol

...

[52] DL [1] libdebug.so.1 debug

The POSFLAG_1 with the value of LAZY designates that the following NEEDED entry,
libdebug.so.1, should be lazily loaded. Because libc.so.1 has no preceding
LAZY flag it is loaded at the initial startup of the program.

The use of lazy loading can require a precise declaration of dependencies and
runpaths through out the objects used by an application. For example, suppose two
objects, libA.so and libB.so, both make reference to symbols in libX.so.
libA.so declares it has a dependency on libX.so, but libB.so does not. Typically,
when libA.so and libB.so are used together, libB.so can reference libX.so
because libA.so made it available. But, if libA.so declares libX.so to be lazy
loaded, it is possible that libX.so may not be loaded when libB.so makes
reference to it. A similar failure can occur if libB.so declares libX.so as a
dependency but fails to provide a runpath necessary to locate it.

Regardless of lazy loading, it is recommended that dynamic objects declare all their
dependencies and how to locate them. With lazy loading, this dependency
information becomes even more important.

Note – Lazy loading can be disabled at runtime by setting the environment variable
LD_NOLAZYLOAD to a non-null value.

Initialization and Termination Routines
Before transferring control to an application, the runtime linker processes any
initialization sections found in the application and any loaded dependencies. The
initialization sections .preinit_array, .init_array, and .init are created by
the link-editor when a dynamic object is built.

Chapter 3 • Runtime Linker 73

The runtime linker executes functions whose addresses are contained in the
.preinit_array and .init_array sections. These functions are executed in the
same order in which their addresses appear in the array. The runtime linker executes
an .init section as an individual function. If an object contains both .init and
.init_array sections, the .init section is processed before the functions defined
by the .init_array section for that object.

A dynamic executable may provide pre-initialization functions in a .preinit_array
section. These functions are executed after the runtime linker has built the process
image and performed relocations but before any other initialization functions.
Pre-initialization functions are not permitted in shared objects.

Note – Any .init section within the dynamic executable is called from the
application itself by the process startup mechanism supplied by the compiler driver.
The .init section within the dynamic executable is called last, after all dependency
initialization sections are executed.

Dynamic objects can also provide termination sections. The termination sections
.fini_array and .fini are created by the link-editor when a dynamic object is
built.

Any termination sections are organized such that they can be recorded by
atexit(3C). These routines are called when the process calls exit(2), or when objects
are removed from the running process with dlclose(3DL).

The runtime linker executes functions whose addresses are contained in the
.fini_array section. These functions are executed in the reverse order in which
their addresses appear in the array. The runtime linker executes a .fini section as an
individual function. If an object contains both .fini and .fini_array sections, the
functions defined by the .fini_array section are processed before the .fini
section for that object.

Note – Any .fini section within the dynamic executable is called from the
application itself by the process termination mechanism supplied by the compiler
driver. The .fini section of the dynamic executable is called first, before all
dependency termination sections are executed.

For more information regarding the creation of initialization and termination sections
by the link-editor see “Initialization and Termination Sections” on page 34.

74 Linker and Libraries Guide • December 2003

Initialization and Termination Order
To determine the order of executing initialization and termination code within a
process at runtime is a complex issue involving dependency analysis. This process has
evolved substantially from the original inception of initialization and termination
sections. This process attempts to fulfill the expectations of modern languages and
current programming techniques. However, scenarios can exist, where user
expectations are hard to meet. Understanding these scenarios, and limiting the content
of initialization and termination code can provide both flexible and predictable
runtime behavior.

Prior to the Solaris 2.6 release, dependency initialization routines were called in reverse
load order, which is the reverse order of the dependencies displayed with ldd(1).
Similarly, dependency termination routines were called in load order. However, as
dependency hierarchies became more complex, this simple ordering approach became
inadequate.

Starting with the Solaris 2.6 release, the runtime linker constructs a topologically
sorted list of objects that have been loaded. This list is built from the dependency
relationship expressed by each object, together with any symbol bindings that occur
outside of the expressed dependencies.

Initialization sections are executed in the reverse topological order of the
dependencies. If cyclic dependencies are found, the objects that form the cycle cannot
be topologically sorted. The initialization sections of any cyclic dependencies are
executed in their reverse load order. Similarly, termination routines are called in the
topological order of dependencies and any cyclic dependencies are executed in their
load order.

Use ldd(1) with the -i option to display the initialization order of an object’s
dependencies. For example, the following dynamic executable and its dependencies
exhibit a cyclic dependency:

$ dump -Lv B.so.1 | grep NEEDED
[1] NEEDED C.so.1
$ dump -Lv C.so.1 | grep NEEDED
[1] NEEDED B.so.1
$ dump -Lv main | grep NEEDED
[1] NEEDED A.so.1
[2] NEEDED B.so.1
[3] NEEDED libc.so.1
$ ldd -i main

A.so.1 => ./A.so.1
B.so.1 => ./B.so.1
libc.so.1 => /usr/lib/libc.so.1
C.so.1 => ./C.so.1
libdl.so.1 => /usr/lib/libdl.so.1

cyclic dependencies detected, group[1]:
./libC.so.1
./libB.so.1

Chapter 3 • Runtime Linker 75

init object=/usr/lib/libc.so.1
init object=./A.so.1
init object=./C.so.1 - cyclic group [1], referenced by:

./B.so.1
init object=./B.so.1 - cyclic group [1], referenced by:

./C.so.1

Caution – Prior to Solaris 8 10/00, the environment variable LD_BREADTH could be set
to a non-null value to force the runtime linker to execute initialization and termination
sections in pre-Solaris 2.6 order. This functionality has since been disabled, as the
initialization dependencies of many applications have become complex and mandate
topological sorting. Any LD_BREADTH setting is now silently ignored.

Initialization processing is repeated for any objects added to the running process with
dlopen(3DL). Termination processing is also carried out for any objects unloaded
from the process as a result of a call to dlclose(3DL).

Symbol bindings are incorporated as part of dependency analysis because many
shared objects exist that do not express their dependencies accurately. Incorporating
symbol bindings can therefore help produce a more accurate dependency relationship.
However, the addition of symbol binding information to objects that do not express all
their dependencies, may still be insufficient to determine an objects complete
dependencies. The most common model of loading objects uses lazy binding. With
this model, only immediate reference symbol bindings are processed before initialization
processing. Symbol bindings from lazy references may still be pending, and may extend
the dependency relationships so far established.

As the dependency analysis of an object may be incomplete, and as cyclic
dependencies often exist, the runtime linker also provides for dynamic initialization.
This initialization attempts to execute any initialization sections before any functions
in the same object are called. During lazy symbol binding, the runtime linker
determines whether the initialization sections of the object being bound to have been
called. If not, the runtime linker calls them before returning from the symbol binding
procedure.

Dynamic initialization can not be revealed with ldd(1). However, the exact sequence
of initialization calls can be observed at runtime by setting the LD_DEBUG
environment variable to include the token basic. See “Debugging Library” on page 90.

Dynamic initialization is only available when processing lazy references. Use of the
environment variable LD_BIND_NOW, objects built with the -z now option, or objects
referenced by dlopen(3DL) with mode RTLD_NOW, circumvent any dynamic
initialization.

76 Linker and Libraries Guide • December 2003

Note – Objects that are pending initialization, and are referenced through
dlopen(3DL), will be initialized prior to returning control from this function.

The preceding sections describe the various techniques employed to execute
initialization and termination sections in a manner that attempts to meet user
expectations. However, coding style and link-editing practices should also be
employed to simplify the initialization and termination relationships between
dependencies. This simplification, helps keep initialization and termination processing
predictable, and less prone to any side affects of unexpected dependency ordering.

Keep the content of initialization and termination sections to a minimum. Avoid global
constructors by initializing objects at runtime. Reduce the dependency of initialization
and termination code on other dependencies. Define the dependency requirements of
all dynamic objects. See “Generating a Shared Object Output File” on page 42. Do not
express dependencies that are not required. See “Shared Object Processing”
on page 28. Avoid cyclic dependencies. Do not depend on the order of an initialization
or termination sequence. The ordering of objects can be affected by both shared object
and application development. See “Dependency Ordering” on page 102.

Security
Secure processes have some restrictions applied to the evaluation of their
dependencies and runpaths to prevent malicious dependency substitution or symbol
interposition.

The runtime linker categorizes a process as secure if the user is not a super-user, and
the real user and effective user identifiers are not equal. Similarly, if the user is not a
super-user and the real group and effective group identifiers are not equal, the process
is deemed secure. See the getuid(2), geteuid(2), getgid(2) and getegid(2) man
pages.

The default trusted directory known to the runtime linker is /usr/lib/secure for
32–bit objects or /usr/lib/secure/64 for 64–bit objects. The utility crle(1) may be
used to specify additional trusted directories applicable for secure applications.
Administrators who use this technique should ensure that the target directories are
suitably protected from malicious intrusion.

If an LD_LIBRARY_PATH family environment variable is in effect for a secure process,
only the trusted directories specified by this variable are used to augment the runtime
linker’s search rules. See “Directories Searched by the Runtime Linker” on page 62.

Chapter 3 • Runtime Linker 77

In a secure process, any runpath specifications provided by the application or any of
its dependencies is used, provided it is a full pathname, that is, the pathname starts
with a ‘/’).

In a secure process, the expansion of the $ORIGIN string is allowed only if it expands
to a trusted directory. See “Security” on page 298.

In a secure process, LD_CONFIG is ignored. A secure process uses the default
configuration file, if it exists. See crle(1).

In a secure process, LD_SIGNAL is ignored.

Additional objects can be loaded with a secure process using the LD_PRELOAD or
LD_AUDIT environment variables. These objects must be specified as full path names
or simple file names. Full path names are restricted to known trusted directories.
Simple file names, in which no ‘/’ appears in the name, are located subject to the
search path restrictions previously described. Simple file names resolve only to known
trusted directories.

In a secure process, any dependencies that consist of simple file names are processed
using the path name restrictions previously described. Dependencies expressed as full
or relative path names are used as is. Therefore, the developer of a secure process
should ensure that the target directory referenced as a full or relative path name
dependency is suitably protected from malicious intrusion.

When creating a secure process, do not use relative path names to express
dependencies or to construct dlopen(3DL) path names. This restriction should be
applied to the application and to all dependencies.

Runtime Linking Programming Interface
Dependencies specified during the link-edit of an application are processed by the
runtime linker during process initialization. In addition to this mechanism, the
application can extend its address space during its execution by binding to additional
objects. The application can request the same services of the runtime linker that are
used to process the dependencies specified during the link-edit of the application.

This delayed object binding has several advantages:

� By processing an object when it is required rather than during the initialization of
an application, startup time can be greatly reduced. In fact, the object might not be
required if its services are not needed during a particular run of the application,
such as for help or debugging information.

� The application can choose between several different objects, depending on the
exact services required, such as for a networking protocol.

78 Linker and Libraries Guide • December 2003

� Any objects added to the process address space during execution can be freed after
use.

An application can use the following typical scenario to access an additional shared
object.

� A shared object is located and added to the address space of a running application
using dlopen(3DL). Any dependencies that this shared object has are located and
added at this time.

� The added shared object and its dependencies are relocated. Any initialization
sections within these objects are called.

� The application locates symbols within the added objects using dlsym(3DL). The
application can then reference the data or call the functions defined by these new
symbols.

� After the application has finished with the objects, the address space can be freed
using dlclose(3DL). Any termination sections within the objects being freed is
called at this time.

� Any error conditions that occur as a result of using these runtime linker interface
routines can be displayed using dlerror(3DL).

The services of the runtime linker are defined in the header file dlfcn.h and are
made available to an application by the shared object libdl.so.1. In the following
example, the file main.c can make reference to any of the dlopen(3DL) family of
routines, and the application prog can bind to these routines at runtime.

$ cc -o prog main.c -ldl

Loading Additional Objects
Additional objects can be added to a running process’s address space using
dlopen(3DL). This function takes a path name and a binding mode as arguments, and
returns a handle to the application. This handle can be used to locate symbols for use
by the application using dlsym(3DL).

If the path name is specified as a simple file name, one with no ‘/’ in the name, then
the runtime linker will use a set of rules to generate an appropriate path name. Path
names that contain a ‘/’ will be used as provided.

These search path rules are exactly the same as are used to locate any initial
dependencies. See “Directories Searched by the Runtime Linker” on page 62. For
example, if the file main.c contains the following code fragment:

#include <stdio.h>
#include <dlfcn.h>

main(int argc, char ** argv)
{

void * handle;

Chapter 3 • Runtime Linker 79

.....

if ((handle = dlopen("foo.so.1", RTLD_LAZY)) == NULL) {
(void) printf("dlopen: %s\n", dlerror());
exit (1);

}

.....

then to locate the shared object foo.so.1, the runtime linker uses any
LD_LIBRARY_PATH definition present at process initialization, followed by any
runpath specified during the link-edit of prog. Finally, the runtime linker uses the
default location /usr/lib for 32–bit objects, and /usr/lib/64 for 64–bit objects.

If the path name is specified as:

if ((handle = dlopen("./foo.so.1", RTLD_LAZY)) == NULL) {

then the runtime linker searches for the file only in the current working directory of
the process.

Note – Any shared object specified using dlopen(3DL) should be referenced by its
versioned file name. For more information on versioning, see “Coordination of
Versioned Filenames” on page 142.

If the required object cannot be located, dlopen(3DL) returns a NULL handle. In this
case dlerror(3DL) can be used to display the true reason for the failure. For example:

$ cc -o prog main.c -ldl
$ prog
dlopen: ld.so.1: prog: fatal: foo.so.1: open failed: No such \

file or directory

If the object being added by dlopen(3DL) has dependencies on other objects, they too
are brought into the process’s address space. This process continues until all the
dependencies of the specified object are loaded. This dependency tree is referred to as
a group.

If the object specified by dlopen(3DL), or any of its dependencies, are already part of
the process image, then the objects are not processed any further. A valid handle is
returned to the application. This mechanism prevents the same object from being
loaded more than once, and enables an application to obtain a handle to itself. For
example, if the previous main.c example contained the following dlopen() call:

if ((handle = dlopen((const char *)0, RTLD_LAZY)) == NULL) {

then the handle returned from dlopen(3DL) can be used to locate symbols within the
application itself, within any of the dependencies loaded as part of the process’s
initialization, or within any objects added to the process’s address space, using a
dlopen(3DL) that specified the RTLD_GLOBAL flag.

80 Linker and Libraries Guide • December 2003

Relocation Processing
As described in Chapter 3, after locating and loading any objects, the runtime linker
must process each object and perform any necessary relocations. Any objects brought
into the process’s address space with dlopen(3DL) must also be relocated in the same
manner.

For simple applications this process is straightforward. However, for users who have
more complex applications with many dlopen(3DL) calls involving many objects,
possibly with common dependencies, this process can be quite important.

Relocations can be categorized according to when they occur. The default behavior of
the runtime linker is to process all immediate reference relocations at initialization and
all lazy references during process execution, a mechanism commonly referred to as
lazy binding.

This same mechanism is applied to any objects added with dlopen(3DL) when the
mode is defined as RTLD_LAZY. An alternative is to require all relocations of an object
to be performed immediately when the object is added. You can use a mode of
RTLD_NOW, or record this requirement in the object when it is built using the
link-editor’s -z now option. This relocation requirement is propagated to any
dependencies of the object being opened.

Relocations can also be categorized into non-symbolic and symbolic. The remainder of
this section covers issues regarding symbolic relocations, regardless of when these
relocations occur, with a focus on some of the subtleties of symbol lookup.

Symbol Lookup
If an object acquired by dlopen(3DL) refers to a global symbol, the runtime linker
must locate this symbol from the pool of objects that make up the process. In the
absence of direct binding, a default symbol search model is applied to objects obtained
by dlopen(3DL). However, the mode of a dlopen(3DL), combined with the attributes
of the objects that make up the process, provide for alternative symbol search models.

Objects that required direct binding, although maintaining all the attributes described
later, search for symbols directly in the associated dependency. See “Direct Binding”
on page 68.

Two attributes of an object affect symbol lookup. The first is the requesting object’s
symbol search scope, and the second is the symbol visibility offered by each object
within the process. An object’s search scope can be:

world
The object can look in any other global object within the process.

group
The object can look only in an object of the same group. The dependency tree
created from an object obtained with dlopen(3DL), or from an object built using

Chapter 3 • Runtime Linker 81

the link-editor’s -B group option, forms a unique group.

The visibility of a symbol from an object can be:

global
The object’s symbols can be referenced from any object having world search scope.

local
The object’s symbols can be referenced only from other objects that make up the
same group.

By default, objects obtained with dlopen(3DL) are assigned world symbol search
scope, and local symbol visibility. The section, “Default Symbol Lookup Model”
on page 82, uses this default model to illustrate typical object group interactions. The
sections “Defining a Global Object” on page 85, “Isolating a Group” on page 86, and
“Object Hierarchies” on page 86 show examples of using dlopen(3DL) modes and
file attributes to extend the default symbol lookup model.

Default Symbol Lookup Model

For each object added by dlopen(3DL) the runtime linker first looks for the symbol in
the dynamic executable. The runtime linker then looks in each of the objects provided
during the initialization of the process. If the symbol is still not found, the runtime
linker continues the search, looking in the object acquired through the dlopen(3DL)
and in any of its dependencies.

In the following example, the dynamic executable prog and the shared object B.so.1
each have the following (simplified) dependencies:

$ ldd prog
A.so.1 => ./A.so.1

$ ldd B.so.1

C.so.1 => ./C.so.1

If prog acquires the shared object B.so.1 by dlopen(3DL), then any symbol
required to relocate the shared objects B.so.1 and C.so.1 will first be looked for in
prog, followed by A.so.1, followed by B.so.1, and finally in C.so.1. In this
simple case, think of the shared objects acquired through the dlopen(3DL) as if they
had been added to the end of the original link-edit of the application. For example, the
objects referenced in the previous listing can be expressed diagrammatically as shown
in the following figure.

82 Linker and Libraries Guide • December 2003

prog A.so.1 B.so.1 C.so.1

FIGURE 3–1 A Single dlopen() Request

Any symbol lookup required by the objects acquired from the dlopen(3DL), shown as
shaded blocks, proceeds from the dynamic executable prog through to the final
shared object C.so.1.

This symbol lookup is established by the attributes assigned to the objects as they
were loaded. Recall that the dynamic executable and all the dependencies loaded with
it are assigned global symbol visibility, and that the new objects are assigned world
symbol search scope. Therefore, the new objects are able to look for symbols in the
original objects. The new objects also form a unique group in which each object has
local symbol visibility. Therefore, each object within the group can look for symbols
within the other group members.

These new objects do not affect the normal symbol lookup required by either the
application or its initial object dependencies. For example, if A.so.1 requires a
function relocation after the above dlopen(3DL) has occurred, the runtime linker’s
normal search for the relocation symbol is to look in prog and then A.so.1. The
runtime linker does not follow through and look in B.so.1 or C.so.1.

This symbol lookup is again a result of the attributes assigned to the objects as they
were loaded. The world symbol search scope is assigned to the dynamic executable
and all the dependencies loaded with it. This scope does not allow them to look for
symbols in the new objects that only offer local symbol visibility.

These symbol search and symbol visibility attributes maintain associations between
objects based on their introduction into the process address space, and on any
dependency relationship between the objects. Assigning the objects associated with a
given dlopen(3DL) to a unique group ensures that only objects associated with the
same dlopen(3DL) are allowed to look up symbols within themselves and their
related dependencies.

This concept of defining associations between objects becomes more clear in
applications that carry out more than one dlopen(3DL). For example, suppose the
shared object D.so.1 has the following dependency:

$ ldd D.so.1

E.so.1 => ./E.so.1

Chapter 3 • Runtime Linker 83

and the prog application used dlopen(3DL) to load this shared object in addition to
the shared object B.so.1. The following figure illustrates the symbol lookup
releationship between the objects.

prog A.so.1

B.so.1 C.so.1

D.so.1 E.so.1

FIGURE 3–2 Multiple dlopen() Requests

Suppose that both B.so.1 and D.so.1 contain a definition for the symbol foo, and
both C.so.1 and E.so.1 contain a relocation that requires this symbol. Because of
the association of objects to a unique group, C.so.1 is bound to the definition in
B.so.1, and E.so.1 is bound to the definition in D.so.1. This mechanism is
intended to provide the most intuitive binding of objects obtained from multiple calls
to dlopen(3DL).

When objects are used in the scenarios that have so far been described, the order in
which each dlopen(3DL) occurs has no effect on the resulting symbol binding.
However, when objects have common dependencies, the resultant bindings can be
affected by the order in which the dlopen(3DL) calls are made.

In the following example, the shared objects O.so.1 and P.so.1 have the same
common dependency.

$ ldd O.so.1
Z.so.1 => ./Z.so.1

$ ldd P.so.1

Z.so.1 => ./Z.so.1

In this example, the prog application will dlopen(3DL) each of these shared objects.
Because the shared object Z.so.1 is a common dependency of both O.so.1 and
P.so.1, Z.so.1 is assigned to both of the groups that are associated with the two
dlopen(3DL) calls. This relationship is shown in the following figure.

84 Linker and Libraries Guide • December 2003

prog A.so.1 Z.so.1

O.so.1

P.so.1

FIGURE 3–3 Multiple dlopen() Requests With A Common Dependency

Z.so.1 is available for both O.so.1 and P.so.1 to look up symbols. More
importantly, as far as dlopen(3DL) ordering is concerned, Z.so.1 is also be able to
look up symbols in both O.so.1 and P.so.1.

Therefore, if both O.so.1 and P.so.1 contain a definition for the symbol foo, which
is required for a Z.so.1 relocation, the actual binding that occurs is unpredictable
because it is affected by the order of the dlopen(3DL) calls. If the functionality of
symbol foo differs between the two shared objects in which it is defined, the overall
outcome of executing code within Z.so.1 might vary depending on the application’s
dlopen(3DL) ordering.

Defining a Global Object

The default assignment of local symbol visibility to the objects obtained by a
dlopen(3DL) can be promoted to global by augmenting the mode argument with the
RTLD_GLOBAL flag. Under this mode, any objects obtained through a dlopen(3DL)
can be used by any other objects with world symbol search scope to locate symbols.

In addition, any object obtained by dlopen(3DL) with the RTLD_GLOBAL flag is
available for symbol lookup using dlopen() with a path name whose value is 0.

Note – If a member of a group having local symbol visibility is referenced by another
group requiring global symbol visibility, the object’s visibility will become a
concatenation of both local and global. This promotion of attributes remains even if
the global group reference is later removed.

Chapter 3 • Runtime Linker 85

Isolating a Group

The default assignment of world symbol search scope to the objects obtained by a
dlopen(3DL) can be reduced to group by augmenting the mode argument with the
RTLD_GROUP flag. Under this mode, any objects obtained through a dlopen(3DL)
will only be allowed to look for symbols within their own group.

Using the link-editor’s -B group option, you can assign the group symbol search
scope to objects when they are built.

Note – If a member of a group, having group search capability, is referenced by another
group requiring world search capability, the object’s search capability will become a
concatenation of both group and world. This promotion of attributes remains even if
the world group reference is later removed.

Object Hierarchies

If an initial object, obtained from a dlopen(3DL), was to use dlopen(3DL) to open a
secondary object, both objects would be assigned to a unique group. This situation can
prevent either object from locating symbols from one another.

In some implementations the initial object has to export symbols for the relocation of
the secondary object. This requirement can be satisfied by one of two mechanisms:

� Making the initial object an explicit dependency of the second object
� Use the RTLD_PARENT mode flag to dlopen(3DL) the secondary object

If the initial object is an explicit dependency of the secondary object, the initial object
is assigned to the secondary objects’ group. The initial object is therefore able to
provide symbols for the secondary objects’ relocation.

If many objects can use dlopen(3DL) to open the secondary object, and each of these
initial objects must export the same symbols to satisfy the secondary objects’
relocation, then the secondary object cannot be assigned an explicit dependency. In
this case, the dlopen(3DL) mode of the secondary object can be augmented with the
RTLD_PARENT flag. This flag causes the propagation of the secondary objects’ group
to the initial object in the same manner as an explicit dependency would do.

There is one small difference between these two techniques. If you specify an explicit
dependency, the dependency itself becomes part of the secondary objects’
dlopen(3DL) dependency tree, and thus becomes available for symbol lookup with
dlsym(3DL). If you obtain the secondary object with RTLD_PARENT, the initial object
does not become available for symbol lookup with dlsym(3DL).

When a secondary object is obtained by dlopen(3DL) from an initial object with
global symbol visibility, the RTLD_PARENT mode is both redundant and harmless.
This case commonly occurs when dlopen(3DL) is called from an application or from
one of the dependencies of the application.

86 Linker and Libraries Guide • December 2003

Obtaining New Symbols
A process can obtain the address of a specific symbol using dlsym(3DL). This function
takes a handle and a symbol name, and returns the address of the symbol to the caller.
The handle directs the search for the symbol in the following manner:

� A handle can be returned from a dlopen(3DL) of a named object. This handle
enables symbols to be obtained from the named object and the objects that define
its dependency tree. A handle returned using the mode RTLD_FIRST, enables
symbols to be obtained only from the named object.

� A handle can be returned from a dlopen(3DL) of a path name whose value is 0.
This handle enables symbols to be obtained from the initiating object of the
associated link-map and the objects that define its dependency tree. Typically, the
initiating object is the dynamic executable. This handle also enables symbols to be
obtained from any object obtained by a dlopen(3DL) with the RTLD_GLOBAL
mode, on the associated link-map. A handle returned using the mode
RTLD_FIRST, enables symbols to be obtained only from the initiating object of the
associated link-map.

� The special handle RTLD_DEFAULT enables symbols to be obtained from the
initiating object of the associated link-map and objects that define its dependency
tree. This handle also enables symbols to be obtained from any object obtained by a
dlopen(3DL) that belongs to the same group as the caller. Use of RTLD_DEFAULT
follows the same model as used to resolve a symbolic relocation from the calling
object.

� The special handle RTLD_NEXT enables symbols to be obtained from the next
associated object on the callers link-map list.

In the following example, which is probably the most common, an application adds
additional objects to its address space. The application then uses dlsym(3DL) to locate
function or data symbols. The application then uses these symbols to call upon
services provided in these new objects. The file main.c contains the following code:

#include <stdio.h>
#include <dlfcn.h>

main()
{

void * handle;
int * dptr, (* fptr)();

if ((handle = dlopen("foo.so.1", RTLD_LAZY)) == NULL) {
(void) printf("dlopen: %s\n", dlerror());
exit (1);

}

if (((fptr = (int (*)())dlsym(handle, "foo")) == NULL) ||
((dptr = (int *)dlsym(handle, "bar")) == NULL)) {

(void) printf("dlsym: %s\n", dlerror());
exit (1);

}

Chapter 3 • Runtime Linker 87

return ((*fptr)(*dptr));

}

The symbols foo and bar are searched for in the file foo.so.1, followed by any
dependencies that are associated with this file. The function foo is then called with
the single argument bar as part of the return() statement.

The application prog, built using the above file main.c, contains the following
dependencies:

$ ldd prog
libdl.so.1 => /usr/lib/libdl.so.1

libc.so.1 => /usr/lib/libc.so.1

If the file name specified in the dlopen(3DL) had the value 0, the symbols foo and
bar are searched for in prog, followed by /usr/lib/libdl.so.1, and finally
/usr/lib/libc.so.1.

Once the handle has indicated the root at which to start a symbol search, the search
mechanism follows the same model as described in “Symbol Lookup” on page 66.

If the required symbol cannot be located, dlsym(3DL) returns a NULL value. In this
case, dlerror(3DL) can be used to indicate the true reason for the failure. In the
following example, the application prog is unable to locate the symbol bar.

$ prog

dlsym: ld.so.1: main: fatal: bar: can’t find symbol

Testing for Functionality
The special handle RTLD_DEFAULT enables an application to test for the existence of
another symbol. The symbol search follows the same model as used to relocate the
calling object. See “Default Symbol Lookup Model” on page 82. For example, if the
application prog contained the following code fragment:

if ((fptr = (int (*)())dlsym(RTLD_DEFAULT, "foo")) != NULL)

(*fptr)();

then foo is searched for in prog, followed by /usr/lib/libdl.so.1, and then
/usr/lib/libc.so.1. If this code fragment was contained in the file B.so.1 from
the example shown in Figure 3–1, then the search for foo continues into B.so.1 and
then C.so.1.

This mechanism provides a robust and flexible alternative to the use of undefined
weak references, discussed in “Weak Symbols” on page 43.

88 Linker and Libraries Guide • December 2003

Using Interposition
The special handle RTLD_NEXT enables an application to locate the next symbol in a
symbol scope. For example, if the application prog contained the following code
fragment:

if ((fptr = (int (*)())dlsym(RTLD_NEXT, "foo")) == NULL) {
(void) printf("dlsym: %s\n", dlerror());
exit (1);

}

return ((*fptr)());

then foo is searched for in the shared objects associated with prog, which in this case
are /usr/lib/libdl.so.1 and then /usr/lib/libc.so.1. If this code fragment
was contained in the file B.so.1 from the example shown in Figure 3–1, then foo is
searched for in the associated shared object C.so.1 only.

Use of RTLD_NEXT provides a means to exploit symbol interposition. For example, a
function within an object can be interposed upon by a preceding object, which can
then augment the processing of the original function. For example, the following code
fragment is placed in the shared object malloc.so.1:

#include <sys/types.h>
#include <dlfcn.h>
#include <stdio.h>

void *
malloc(size_t size)
{

static void * (* fptr)() = 0;
char buffer[50];

if (fptr == 0) {
fptr = (void * (*)())dlsym(RTLD_NEXT, "malloc");
if (fptr == NULL) {

(void) printf("dlopen: %s\n", dlerror());
return (0);

}
}

(void) sprintf(buffer, "malloc: %#x bytes\n", size);
(void) write(1, buffer, strlen(buffer));
return ((*fptr)(size));

}

This shared object can be interposed before the system library /usr/lib/libc.so.1
where malloc(3C) usually resides. Any calls to malloc() are now interposed upon
before the original function is called to complete the allocation:

$ cc -o malloc.so.1 -G -K pic malloc.c
$ cc -o prog file1.o file2.o -R. malloc.so.1
$ prog
malloc: 0x32 bytes

Chapter 3 • Runtime Linker 89

malloc: 0x14 bytes

..........

Alternatively, this same interposition can be achieved using the following:

$ cc -o malloc.so.1 -G -K pic malloc.c
$ cc -o prog main.c
$ LD_PRELOAD=./malloc.so.1 prog
malloc: 0x32 bytes
malloc: 0x14 bytes

..........

Note – Users of any interposition technique must be careful to handle any possibility of
recursion. The previous example formats the diagnostic message using sprintf(3C),
instead of using printf(3C) directly, to avoid any recursion caused by printf(3C)’s
possible use of malloc(3C).

The use of RTLD_NEXT within a dynamic executable or preloaded object, provides a
predictable and useful interposition technique. Be careful when using this technique in
a generic object dependency, as the actual load order of objects is not always
predictable.

Feature Checking
Dynamic objects built by the link-editor sometimes require new runtime linker
features. The function _check_rtld_feature() can be used to check if the runtime
features required for execution are supported by the running runtime linker. The
runtime features currently identified are listed in Table 7–47.

Debugging Aids
A debugging library and mdb(1) module are provided with the Solaris linkers. The
debugging library enables you to trace the runtime linking process in more detail. The
mdb(1) module enables interactive process debugging.

Debugging Library
This debugging library helps you understand, or debug, the execution of applications
and dependencies. Although the type of information displayed using this library is
expected to remain constant, the exact format of the information might change slightly
from release to release.

90 Linker and Libraries Guide • December 2003

Some of the debugging output might be unfamiliar to those who do not have an
intimate knowledge of the runtime linker. However, many aspects may be of general
interest to you.

Debugging is enabled by using the environment variable LD_DEBUG. All debugging
output is prefixed with the process identifier and by default is directed to the standard
error. This environment variable must be augmented with one or more tokens to
indicate the type of debugging required.

The tokens available with this debugging option can be displayed by using
LD_DEBUG=help. Any dynamic executable can be used to solicit this information, as
the process itself terminates following the display of the information. For example:

$ LD_DEBUG=help prog
11693:
11693: For debugging the runtime linking of an application:
11693: LD_DEBUG=token1,token2 prog
11693: enables diagnostics to the stderr. The additional
11693: option:
11693: LD_DEBUG_OUTPUT=file
11693: redirects the diagnostics to an output file created
11593: using the specified name and the process id as a
11693: suffix. All diagnostics are prepended with the
11693: process id.
11693:
11693:
11693: audit display runtime link-audit processing
11693: basic provide basic trace information/warnings
11693: bindings display symbol binding; detail flag shows
11693: absolute:relative addresses
11693: detail provide more information in conjunction with other
11693: options
11693: files display input file processing (files and libraries)
11693: help display this help message
11693: libs display library search paths
11693: move display move section processing
11693: reloc display relocation processing
11693: symbols display symbol table processing
11693: tls display TLS processing info
11693: unused display unused/unreferenced files

11693: versions display version processing

This example shows the options meaningful to the runtime linker. The exact options
might differ from release to release.

The environment variable LD_DEBUG_OUTPUT can be used to specify an output file
for use instead of the standard error. The process identifier is added as a suffix to the
output file.

Debugging of secure applications is not allowed.

Chapter 3 • Runtime Linker 91

One of the most useful debugging options is to display the symbol bindings that occur
at runtime. The following example uses a very trivial dynamic executable that has a
dependency on two local shared objects.

$ cat bar.c
int bar = 10;
$ cc -o bar.so.1 -K pic -G bar.c

$ cat foo.c
foo(int data)
{

return (data);
}
$ cc -o foo.so.1 -K pic -G foo.c

$ cat main.c
extern int foo();
extern int bar;

main()
{

return (foo(bar));
}

$ cc -o prog main.c -R/tmp:. foo.so.1 bar.so.1

The runtime symbol bindings can be displayed by setting LD_DEBUG=bindings:

$ LD_DEBUG=bindings prog
11753:
11753: binding file=prog to file=./bar.so.1: symbol bar
11753:
11753: transferring control: prog
11753:
11753: binding file=prog to file=./foo.so.1: symbol foo

11753:

The symbol bar, which is required by an immediate relocation, is bound before the
application gains control. Whereas the symbol foo, which is required by a lazy
relocation, is bound after the application gains control when the function is first called.
This demonstrates the default mode of lazy binding. If the environment variable
LD_BIND_NOW is set, all symbol bindings occur before the application gains control.

Setting LD_DEBUG=bindings,detail, provides additional information regarding
the real and relative addresses of the actual binding locations.

When the runtime linker performs a function relocation, it rewrites data associated
with the functions .plt so that any subsequent calls will go directly to the function.
The environment variable LD_BIND_NOT can be set to any value to prevent this data
update. By using this variable together with the debugging request for detailed
bindings, you can get a complete runtime account of all function binding. The output
from this combination can be excessive, in which case the performance of the
application is degraded.

92 Linker and Libraries Guide • December 2003

You can use LD_DEBUG to display the various search paths used. For example, the
search path mechanism used to locate any dependencies can be displayed by setting
LD_DEBUG=libs.

$ LD_DEBUG=libs prog
11775:
11775: find object=foo.so.1; searching
11775: search path=/tmp:. (RPATH from file prog)
11775: trying path=/tmp/foo.so.1
11775: trying path=./foo.so.1
11775:
11775: find object=bar.so.1; searching
11775: search path=/tmp:. (RPATH from file prog)
11775: trying path=/tmp/bar.so.1
11775: trying path=./bar.so.1

11775:

The runpath recorded in the application prog affects the search for the two
dependencies foo.so.1 and bar.so.1.

In a similar manner, the search paths of each symbol lookup can be displayed by
setting LD_DEBUG=symbols. If this is combined with a bindings request, you can
obtain a complete picture of the symbol relocation process.

$ LD_DEBUG=bindings,symbols
11782:
11782: symbol=bar; lookup in file=./foo.so.1 [ELF]
11782: symbol=bar; lookup in file=./bar.so.1 [ELF]
11782: binding file=prog to file=./bar.so.1: symbol bar
11782:
11782: transferring control: prog
11782:
11782: symbol=foo; lookup in file=prog [ELF]
11782: symbol=foo; lookup in file=./foo.so.1 [ELF]
11782: binding file=prog to file=./foo.so.1: symbol foo

11782:

In the previous example, the symbol bar is not searched for in the application prog.
This is due to an optimization used when processing copy relocations. See “Copy
Relocations” on page 118 for more details of this relocation type.

Debugger Module
The debugger module provides a set of dcmds and walkers that can be loaded under
mdb(1). This module can be used to inspect various internal data structures of the
runtime linker. Much of this information requires familiarity with the internals of the
runtime linker, and may change from release to release. However, some elements of
these data structures reveal the basic components of a dynamically linked process and
may aid general debugging.

Chapter 3 • Runtime Linker 93

The following examples show some simple scenarios of using mdb(1) with the runtime
linker debugger module.

$ cat main.c
#include <dlfnc.h>

int main()
{

void * handle;
void (* fptr)();

if ((handle = dlopen("foo.so.1", RTLD_LAZY)) == NULL)
return (1);

if ((fptr = (void (*)())dlsym(handle, "foo")) == NULL)
return (1);

(*fptr)();
return (0);

}

$ cc -o main main.c -R. -ldl

If mdb(1) has not automatically loaded the debugger module, ld.so, explicitly do so.
The capabilities of the debugger module can then be inspected.

$ mdb main
> ::load ld.so
> ::dmods -l ld.so

ld.so

dcmd Bind - Display a Binding descriptor
dcmd Callers - Display Rt_map CALLERS binding descriptors
dcmd Depends - Display Rt_map DEPENDS binding descriptors
dcmd ElfDyn - Display Elf_Dyn entry
dcmd ElfEhdr - Display Elf_Ehdr entry
dcmd ElfPhdr - Display Elf_Phdr entry
dcmd Groups - Display Rt_map GROUPS group handles
dcmd GrpDesc - Display a Group Descriptor
dcmd GrpHdl - Display a Group Handle
dcmd Handles - Display Rt_map HANDLES group descriptors
dcmd List - Display entries in a List
dcmd ListRtmap - Display a List of Rt_Map’s
dcmd Lm_list - Display ld.so.1 Lm_list structure
dcmd Rt_map - Display ld.so.1 Rt_map structure
dcmd Rt_maps - Display list of Rt_map structures
walk List - Walk a List
walk Rt_maps - Walk a List of Rt_maps

> ::bp main

> :r

Each dynamic object within a process is expressed as a link-map, Rt_map, which is
maintained on a link-map list. All link-maps for the process can be displayed with
Rt_maps.

94 Linker and Libraries Guide • December 2003

> ::Rt_maps
Link-map lists (dynlm_list): 0xffbfe0d0
--
Lm_list: 0xff3f6f60 (LM_ID_BASE)
--
Link-map* ADDR() NAME()
--
0xff3f9040 0x00010000 main
0xff3f9460 0xff3b0000 /lib/libdl.so.1
0xff3f977c 0xff280000 /lib/libc.so.1

--
Lm_list: 0xff3f6f88 (LM_ID_LDSO)
--

0xff3f8cc0 0xff3c0000 /lib/ld.so.1

An individual link-map can be displayed with Rt_map.

> 0xff3f9040::Rt_map
Rt_map located at: 0xff3f9040

NAME: main
ADDR: 0x00010000 DYN: 0x000207bc
NEXT: 0xff3f9460 PREV: 0x00000000
FCT: 0xff3f6f18 TLSMODID: 0
INIT: 0x00010710 FINI: 0x0001071c

GROUPS: 0x00000000 HANDLES: 0x00000000
DEPENDS: 0xff3f96e8 CALLERS: 0x00000000

.....

The object’s .dynamic section can be displayed with the ElfDyn dcmd. The
following example shows the first 4 entries.

> 0x000207bc,4::ElfDyn
Elf_Dyn located at: 0x207bc

0x207bc NEEDED 0x0000010f
Elf_Dyn located at: 0x207c4

0x207c4 NEEDED 0x00000124
Elf_Dyn located at: 0x207cc

0x207cc INIT 0x00010710
Elf_Dyn located at: 0x207d4

0x207d4 FINI 0x0001071c

mdb(1) is also very useful for setting deferred break points. In this example, it might be
useful to put a break point on the function foo(). However, until the dlopen(3DL) of
foo.so.1 occurs, this symbol isn’t known to the debugger. A deferred break point
instructs the debugger to set a real breakpoint when the dynamic object is loaded.

> ::bp foo.so.1‘foo
> :c
> mdb: You’ve got symbols!
> mdb: stop at foo.so.1‘foo
mdb: target stopped at:

foo.so.1‘foo: save %sp, -0x68, %sp

At this point, new objects have been loaded:

Chapter 3 • Runtime Linker 95

> *ld.so‘lml_main::Rt_maps
Link-map* ADDR() NAME()
--
0xff3f9040 0x00010000 main
0xff3f9460 0xff3b0000 /lib/libdl.so.1
0xff3f977c 0xff280000 /lib/libc.so.1
0xff3f9ca4 0xff380000 ./foo.so.1

0xff37006c 0xff260000 ./bar.so.1

The link-map for foo.so.1 shows the handle returned by dlopen(3DL). You can
expand this structure using Handles.

> 0xff3f9ca4::Handles -v
HANDLES for ./foo.so.1
--
HANDLE: 0xff3f9f60 Alist[used 1: total 1]
--
Group Handle located at: 0xff3f9f28
--

owner: ./foo.so.1
flags: 0x00000000 [0]
refcnt: 1 depends: 0xff3f9fa0 Alist[used 2: total 4]
--
Group Descriptor located at: 0xff3f9fac

depend: 0xff3f9ca4 ./foo.so.1
flags: 0x00000003 [AVAIL-TO-DLSYM,ADD-DEPENDENCIES]

--
Group Descriptor located at: 0xff3f9fd8

depend: 0xff37006c ./bar.so.1

flags: 0x00000003 [AVAIL-TO-DLSYM,ADD-DEPENDENCIES]

The dependencies of a handle are a list of link-maps that represent the objects of the
handle that can satisfy a dlsym(3DL) request. In this case, the dependencies are
foo.so.1 and bar.so.1.

Note – The above examples provide a basic guide to the debugger module capabilities,
but the exact commands, usage, and output may change from release to release. Refer
to usage and help information for the exact capabilities available on your system.

96 Linker and Libraries Guide • December 2003

CHAPTER 4

Shared Objects

Shared objects are one form of output created by the link-editor and are generated by
specifying the -G option. In the following example, the shared object libfoo.so.1 is
generated from the input file foo.c.

$ cc -o libfoo.so.1 -G -K pic foo.c

A shared object is an indivisible unit generated from one or more relocatable objects.
Shared objects can be bound with dynamic executables to form a runable process. As
their name implies, shared objects can be shared by more than one application.
Because of this potentially far-reaching effect, this chapter describes this form of
link-editor output in greater depth than has been covered in previous chapters.

For a shared object to be bound to a dynamic executable or another shared object, it
must first be available to the link-edit of the required output file. During this link-edit,
any input shared objects are interpreted as if they had been added to the logical
address space of the output file being produced. All the functionality of the shared
object is made available to the output file.

These shared objects become dependencies of this output file. A small amount of
bookkeeping information is maintained within the output file to describe these
dependencies. The runtime linker interprets this information and completes the
processing of these shared objects as part of creating a runable process.

The following sections expand upon the use of shared objects within the compilation
and runtime environments. These environments are introduced in “Runtime Linking”
on page 19.

97

Naming Conventions
Neither the link-editor nor the runtime linker interprets any file by virtue of its file
name. All files are inspected to determine their ELF type (see “ELF Header”
on page 176). This information enables the link-editor to deduce the processing
requirements of the file. However, shared objects usually follow one of two naming
conventions, depending on whether they are being used as part of the compilation
environment or the runtime environment.

When used as part of the compilation environment, shared objects are read and
processed by the link-editor. Although these shared objects can be specified by explicit
file names as part of the command passed to the link-editor, the -l option is usually
used to take advantage of the link-editor’s library search capabilities. See “Shared
Object Processing” on page 28.

A shared object applicable to this link-editor processing should be designated with the
prefix lib and the suffix .so. For example, /usr/lib/libc.so is the shared object
representation of the standard C library made available to the compilation
environment. By convention, 64–bit shared objects are placed in a subdirectory of the
lib directory called 64. For example, the 64–bit counterpart of
/usr/lib/libc.so.1, is /usr/lib/64/libc.so.1.

When used as part of the runtime environment, shared objects are read and processed
by the runtime linker. To allow for change in the exported interface of the shared
object over a series of software releases, provide the shared object as a versioned file
name.

A versioned file name commonly takes the form of a .so suffix followed by a version
number. For example, /usr/lib/libc.so.1 is the shared object representation of
version one of the standard C library made available to the runtime environment.

If a shared object is never intended for use within a compilation environment, its
name might drop the conventional lib prefix. Examples of shared objects that fall into
this category are those used solely with dlopen(3DL). A suffix of .so is still
recommended to indicate the actual file type, and a version number is strongly
recommended to provide for the correct binding of the shared object across a series of
software releases. Chapter 5 describes versioning in more detail.

Note – The shared object name used in a dlopen(3DL) is usually represented as a
simple file name, those with no ‘/’ in the name. The runtime linker can then use a set of
rules to locate the actual file. See “Loading Additional Objects” on page 71 for more
details.

98 Linker and Libraries Guide • December 2003

Recording a Shared Object Name
The recording of a dependency in a dynamic executable or shared object will, by
default, be the file name of the associated shared object as it is referenced by the
link-editor. For example, the following dynamic executables, built against the same
shared object libfoo.so, result in different interpretations of the same dependency:

$ cc -o ../tmp/libfoo.so -G foo.o
$ cc -o prog main.o -L../tmp -lfoo
$ dump -Lv prog | grep NEEDED
[1] NEEDED libfoo.so

$ cc -o prog main.o ../tmp/libfoo.so
$ dump -Lv prog | grep NEEDED
[1] NEEDED ../tmp/libfoo.so

$ cc -o prog main.o /usr/tmp/libfoo.so
$ dump -Lv prog | grep NEEDED

[1] NEEDED /usr/tmp/libfoo.so

As these examples show, this mechanism of recording dependencies can result in
inconsistencies due to different compilation techniques. Also, the location of a shared
object as referenced during the link-edit might differ from the eventual location of the
shared object on an installed system. To provide a more consistent means of specifying
dependencies, shared objects can record within themselves the file name by which
they should be referenced at runtime.

During the link-edit of a shared object, its runtime name can be recorded within the
shared object itself by using the -h option. In the following example, the shared
object’s runtime name libfoo.so.1, is recorded within the file itself. This
identification is known as an soname.

$ cc -o ../tmp/libfoo.so -G -K pic -h libfoo.so.1 foo.c

The following example shows how the soname recording can be displayed using
dump(1) and referring to the entry that has the SONAME tag.

$ dump -Lvp ../tmp/libfoo.so

../tmp/libfoo.so:
[INDEX] Tag Value
[1] SONAME libfoo.so.1

.........

When the link-editor processes a shared object that contains an soname, this is the
name that is recorded as a dependency within the output file being generated.

If this new version of libfoo.so is used during the creation of the dynamic
executable prog from the previous example, all three methods of creating the
executable result in the same dependency recording.

$ cc -o prog main.o -L../tmp -lfoo
$ dump -Lv prog | grep NEEDED

Chapter 4 • Shared Objects 99

[1] NEEDED libfoo.so.1

$ cc -o prog main.o ../tmp/libfoo.so
$ dump -Lv prog | grep NEEDED
[1] NEEDED libfoo.so.1

$ cc -o prog main.o /usr/tmp/libfoo.so
$ dump -Lv prog | grep NEEDED

[1] NEEDED libfoo.so.1

In the previous examples, the -h option is used to specify a simple file name, one that
has no ‘/’ in the name. This convention enables the runtime linker to use a set of rules
to locate the actual file. See “Locating Shared Object Dependencies” on page 62 for
more details.

Inclusion of Shared Objects in Archives
The mechanism of recording an soname within a shared object is essential if the shared
object is ever processed from an archive library.

An archive can be built from one or more shared objects and then used to generate a
dynamic executable or shared object. Shared objects can be extracted from the archive
to satisfy the requirements of the link-edit. Unlike the processing of relocatable objects,
which are concatenated to the output file being created, any shared objects extracted
from the archive will be recorded as dependencies. See “Archive Processing”
on page 27 for more details on the criteria for archive extraction.

The name of an archive member is constructed by the link-editor and is a
concatenation of the archive name and the object within the archive. For example:

$ cc -o libfoo.so.1 -G -K pic foo.c
$ ar -r libfoo.a libfoo.so.1
$ cc -o main main.o libfoo.a
$ dump -Lv main | grep NEEDED

[1] NEEDED libfoo.a(libfoo.so.1)

Because a file with this concatenated name is unlikely to exist at runtime, providing an
soname within the shared object is the only means of generating a meaningful runtime
file name for the dependency.

Note – The runtime linker does not extract objects from archives. Therefore, in the
above example the required shared object dependencies must be extracted from the
archive and made available to the runtime environment.

100 Linker and Libraries Guide • December 2003

Recorded Name Conflicts
When shared objects are used to create a dynamic executable or another shared object,
the link-editor performs several consistency checks to ensure that any dependency
names that will be recorded in the output file are unique.

Conflicts in dependency names can occur if two shared objects used as input files to a
link-edit both contain the same soname. For example:

$ cc -o libfoo.so -G -K pic -h libsame.so.1 foo.c
$ cc -o libbar.so -G -K pic -h libsame.so.1 bar.c
$ cc -o prog main.o -L. -lfoo -lbar
ld: fatal: recording name conflict: file ‘./libfoo.so’ and \

file ‘./libbar.so’ provide identical dependency names: libsame.so.1

ld: fatal: File processing errors. No output written to prog

A similar error condition will occur if the file name of a shared object that does not
have a recorded soname matches the soname of another shared object used during the
same link-edit.

If the runtime name of a shared object being generated matches one of its
dependencies, the link-editor also reports a name conflict. For example:

$ cc -o libbar.so -G -K pic -h libsame.so.1 bar.c -L. -lfoo
ld: fatal: recording name conflict: file ‘./libfoo.so’ and \

-h option provide identical dependency names: libsame.so.1

ld: fatal: File processing errors. No output written to libbar.so

Shared Objects With Dependencies
Shared objects can have their own dependencies. The search rules used by the runtime
linker to locate shared object dependencies are covered in “Directories Searched by the
Runtime Linker” on page 62. If a shared object does not reside in the default directory
/usr/lib (for 32–bit objects), or /usr/lib/64 (for 64–bit objects), then the runtime
linker must explicitly be told where to look. The preferred mechanism of indicating
any requirement of this kind is to record a runpath in the object that has the
dependencies by using the link-editor’s -R option.

In the following example, the shared object libfoo.so has a dependency on
libbar.so, which is expected to reside in the directory /home/me/lib at runtime
or, failing that, in the default location.

$ cc -o libbar.so -G -K pic bar.c
$ cc -o libfoo.so -G -K pic foo.c -R/home/me/lib -L. -lbar
$ dump -Lv libfoo.so

libfoo.so:

Chapter 4 • Shared Objects 101

**** DYNAMIC SECTION INFORMATION ****
.dynamic:
[INDEX] Tag Value
[1] NEEDED libbar.so
[2] RUNPATH /home/me/lib

.........

The shared object is responsible for specifying any runpath required to locate its
dependencies. Any runpath specified in the dynamic executable is only used to locate
the dependencies of the dynamic executable. These runpaths are not used to locate
any dependencies of the shared objects.

The environment variable LD_LIBRARY_PATH has a more global scope. Any path
names specified using this variable are used by the runtime linker to search for any
shared object dependencies. Although useful as a temporary mechanism that
influences the runtime linker’s search path, the use of this environment variable is
strongly discouraged in production software. See “Directories Searched by the
Runtime Linker” on page 62 for a more extensive discussion.

Dependency Ordering
When dynamic executables and shared objects have dependencies on the same
common shared objects, the order in which the objects are processed can become less
predictable.

For example, assume a shared object developer generates libfoo.so.1 with the
following dependencies:

$ ldd libfoo.so.1
libA.so.1 => ./libA.so.1
libB.so.1 => ./libB.so.1

libC.so.1 => ./libC.so.1

If you create a dynamic executable, prog, using this shared object, and also define an
explicit dependency on libC.so.1, then the resulting shared object order will be:

$ cc -o prog main.c -R. -L. -lC -lfoo
$ ldd prog

libC.so.1 => ./libC.so.1
libfoo.so.1 => ./libfoo.so.1
libA.so.1 => ./libA.so.1

libB.so.1 => ./libB.so.1

Any requirement on the order of processing the shared object libfoo.so.1
dependencies would be compromised by the construction of the dynamic executable
prog.

102 Linker and Libraries Guide • December 2003

Developers who place special emphasis on symbol interposition and .init section
processing should be aware of this potential change in shared object processing order.

Shared Objects as Filters
A filter is a special form of shared object used to provide indirection to an alternative
shared object. Two forms of shared object filter exist: a standard filter and an auxiliary
filter.

A standard filter, in essence, consists solely of a symbol table, and provides a
mechanism of abstracting the compilation environment from the runtime
environment. A link-edit using the filter will reference the symbols provided by the
filter itself; however, the implementation of the symbol reference is provided from an
alternative source at runtime.

Standard filters are identified using the link-editor’s -F flag. This flag takes an
associated file name indicating the shared object that supplies symbol references at
runtime. This shared object is referred to as the filtee. Multiple use of the -F flag
enables multiple filtees to be recorded.

If the filtee cannot be processed at runtime, or any symbol defined by the filter cannot
be located within the filtees, a fatal error condition results.

An auxiliary filter has a similar mechanism, except that the filter itself contains an
implementation corresponding to its symbols. A link-edit using the filter references the
symbols provided by the filter itself. The implementation of the symbol reference can
be provided from an alternative source at runtime.

Auxiliary filters are identified using the link-editor’s -f flag. This flag takes an
associated file name indicating the shared object that can be used to supply symbols at
runtime. This shared object is referred to as the filtee. Multiple use of the -f flag allows
multiple filtees to be recorded.

If the filtee cannot be processed at runtime, or any symbol defined by the filter cannot
be located within the filtee, the implementation of the symbol within the filter will be
used.

Generating a Standard Filter
To generate a standard filter, you first define a filtee, libbar.so.1, on which this
filter technology is applied. This filtee might be built from several relocatable objects.
In the following example, one of these objects originates from the file bar.c, and
supplies the symbols foo and bar.

Chapter 4 • Shared Objects 103

$ cat bar.c
char * bar = "bar";

char * foo()
{

return("defined in bar.c");
}

$ cc -o libbar.so.1 -G -K pic bar.c

In the following example a standard filter, libfoo.so.1, is generated for the symbols
foo and bar, and indicates the association to the filtee libbar.so.1. The
environment variable LD_OPTIONS is used to circumvent the compiler driver from
interpreting the -F option as one of its own.

$ cat foo.c
char * bar = 0;

char * foo(){}

$ LD_OPTIONS=’-F libbar.so.1’ \
cc -o libfoo.so.1 -G -K pic -h libfoo.so.1 -R. foo.c
$ ln -s libfoo.so.1 libfoo.so
$ dump -Lv libfoo.so.1 | egrep "SONAME|FILTER"
[1] SONAME libfoo.so.1

[2] FILTER libbar.so.1

If the link-editor references the standard filter libfoo.so.1 to create a dynamic
executable or shared object, it will use the information from the filter’s symbol table
during symbol resolution. See “Symbol Resolution” on page 36 for more details.

At runtime, any reference to the symbols of the filter result in the additional loading of
the filtee libbar.so.1. The runtime linker uses this filtee to resolve any symbols
defined by libfoo.so.1.

For example, the following dynamic executable, prog, references the symbols foo and
bar, which are resolved during link-edit from the filter libfoo.so.1.

$ cat main.c
extern char * bar, * foo();

main()
{

(void) printf("foo() is %s: bar=%s\n", foo(), bar);
}
$ cc -o prog main.c -R. -L. -lfoo
$ prog

foo() is defined in bar.c: bar=bar

The execution of the dynamic executable prog results in the function foo(), and the
data item bar, being obtained from the filtee libbar.so.1, not from the filter
libfoo.so.1.

104 Linker and Libraries Guide • December 2003

In this example, the filtee libbar.so.1 is uniquely associated to the filter
libfoo.so.1 and is not available to satisfy symbol lookup from any other objects
that might be loaded as a consequence of executing prog.

Standard filters provide a mechanism for defining a subset interface of an existing
shared object, or an interface group spanning a number of existing shared objects.
Several filters are used in the Solaris operating environment.

The /usr/lib/libsys.so.1 filter provides a subset of the standard C library
/usr/lib/libc.so.1. This subset represents the ABI-conforming functions and
data items that reside in the C library that must be imported by a conforming
application.

The /usr/lib/libdl.so.1 filter defines the user interface to the runtime linker
itself. This interface provides an abstraction between the symbols referenced in a
compilation environment from libdl.so.1 and the actual implementation binding
produced within the runtime environment from ld.so.1.

The /usr/lib/libxnet.so.1 filter uses multiple filtees. This library provides
socket and XTI interfaces from /usr/lib/libsocket.so.1,
/usr/lib/libnsl.so.1, and /usr/lib/libc.so.1.

Because the code in a standard filter is never referenced at runtime, there is no point in
adding content to any functions defined within the filter. Filter code might require
relocation, which would result in an unnecessary overhead when processing the filter
at runtime. Functions are best defined as empty routines, or directly from a mapfile.
See “Defining Additional Symbols” on page 44.

When generating data symbols within a filter, you should always initialize the data
items to ensure that they result in references from dynamic executables.

Some of the more complex symbol resolutions carried out by the link-editor require
knowledge of a symbol’s attributes, including the symbol’s size. See “Symbol
Resolution” on page 36 for more details. Therefore, you should generate the symbols
in the filter so that their attributes match those of the symbols in the filtee. This
ensures that the link-editing process analyzes the filter in a manner compatible with
the symbol definitions used at runtime.

Note – The link-editor uses the ELF class of the first input relocatable file it sees to
govern the class of object it creates. Use the link-editor’s -64 option to create a 64–bit
filter solely from a mapfile.

Chapter 4 • Shared Objects 105

Generating an Auxiliary Filter
The creation of an auxiliary filter is essentially the same as creating a standard filter
(see “Generating a Standard Filter” on page 103 for more details). First define a filtee,
libbar.so.1, on which this filter technology is applied. This filtee might be built
from several relocatable objects. One of these objects originates from the file bar.c,
and supplies the symbol foo:

$ cat bar.c
char * foo()
{

return("defined in bar.c");
}

$ cc -o libbar.so.1 -G -K pic bar.c

In the following example, an auxiliary filter, libfoo.so.1, is generated for the
symbols foo and bar, and indicates the association to the filtee libbar.so.1. The
environment variable LD_OPTIONS is used to circumvent the compiler driver from
interpreting the -f option as one of its own.

$ cat foo.c
char * bar = "foo";

char * foo()
{

return ("defined in foo.c");
}
$ LD_OPTIONS=’-f libbar.so.1’ \
cc -o libfoo.so.1 -G -K pic -h libfoo.so.1 -R. foo.c
$ ln -s libfoo.so.1 libfoo.so
$ dump -Lv libfoo.so.1 | egrep "SONAME|AUXILIARY"
[1] SONAME libfoo.so.1

[2] AUXILIARY libbar.so.1

If the link-editor references the auxiliary filter libfoo.so.1 to create a dynamic
executable or shared object, it will use the information from the filter’s symbol table
during symbol resolution. See “Symbol Resolution” on page 36 for more details.

At runtime, any reference to the symbols of the filter result in a search for the filtee
libbar.so.1. If this filtee is found, the runtime linker uses the filtee to resolve any
symbols defined by libfoo.so.1. If the filtee is not found, or a symbol from the
filter is not found in the filtee, then the original value of the symbol within the filter is
used.

For example, the following dynamic executable, prog, references the symbols foo and
bar, which are resolved during link-edit from the filter libfoo.so.1.

$ cat main.c
extern char * bar, * foo();

main()
{

(void) printf("foo() is %s: bar=%s\n", foo(), bar);

106 Linker and Libraries Guide • December 2003

}
$ cc -o prog main.c -R. -L. -lfoo
$ prog

foo() is defined in bar.c: bar=foo

When the dynamic executable prog is executed, the function foo() is obtained from
the filtee libbar.so.1, not from the filter libfoo.so.1. However, the data item
bar is obtained from the filter libfoo.so.1, as this symbol has no alternative
definition in the filtee libbar.so.1.

Auxiliary filters provide a mechanism for defining an alternative interface of an
existing shared object. This mechanism is used in the Solaris operating environment to
provide optimized functionality within platform specific shared objects. See
“Instruction Set Specific Shared Objects” on page 293 and “System Specific Shared
Objects” on page 295 for examples.

Note – The environment variable LD_NOAUXFLTR can be set to disable the runtime
linkers auxiliary filter processing. Because auxiliary filters are frequently employed to
provide platform specific optimizations, this option can be useful in evaluating a
filtee’s use and performance impact.

Filtee Processing
The runtime linker’s processing of a filter defers the loading of a filtee until a reference
to a symbol within the filter has occurred. This implementation is analogous to the
filter performing a dlopen(3DL) on each of its filtees as they are required. This
implementation accounts for differences in dependency reporting that can be
produced by tools such as ldd(1).

The link-editor’s -z loadfltr option can be used when creating a filter to cause the
immediate processing of its filtees at runtime. In addition, the immediate processing of
any filtees within a process can be triggered by setting the LD_LOADFLTR environment
variable to any value.

Performance Considerations
A shared object can be used by multiple applications within the same system. The
performance of a shared object affects the applications that use it and the system as a
whole.

Chapter 4 • Shared Objects 107

Although the actual code within a shared object will directly affect the performance of
a running process, the performance issues focused upon here target the runtime
processing of the shared object itself. The following sections investigate this processing
in more detail by looking at aspects such as text size and purity, together with
relocation overhead.

Analyzing Files
Various tools are available to analyze the contents of an ELF file. To display the size of
a file use the size(1) command. For example:

$ size -x libfoo.so.1
59c + 10c + 20 = 0x6c8

$ size -xf libfoo.so.1
..... + 1c(.init) + ac(.text) + c(.fini) + 4(.rodata) + \

..... + 18(.data) + 20(.bss)

The first example indicates the size of the shared objects text, data, and bss, a
categorization used in previous releases of the SunOS operating system.

The ELF format provides a finer granularity for expressing data within a file by
organizing the data into sections. The second example displays the size of each of the
file’s loadable sections.

Sections are allocated to units known as segments, some of which describe how
portions of a file are mapped into memory (see the mmap(2) man page). These loadable
segments can be displayed by using the dump(1) command and examining the LOAD
entries. For example:

$ dump -ov libfoo.so.1

libfoo.so.1:
***** PROGRAM EXECUTION HEADER *****
Type Offset Vaddr Paddr
Filesz Memsz Flags Align

LOAD 0x94 0x94 0x0
0x59c 0x59c r-x 0x10000

LOAD 0x630 0x10630 0x0

0x10c 0x12c rwx 0x10000

There are two loadable segments in the shared object libfoo.so.1, commonly
referred to as the text and data segments. The text segment is mapped to allow reading
and execution of its contents (r-x), whereas the data segment is mapped to also allow
its contents to be modified (rwx). The memory size (Memsz) of the data segment
differs from the file size (Filesz). This difference accounts for the .bss section,
which is part of the data segment, and is dynamically created when the segment is
loaded.

108 Linker and Libraries Guide • December 2003

Programmers usually think of a file in terms of the symbols that define the functions
and data elements within their code. These symbols can be displayed using nm(1). For
example:

$ nm -x libfoo.so.1

[Index] Value Size Type Bind Other Shndx Name
.........
[39] |0x00000538|0x00000000|FUNC |GLOB |0x0 |7 |_init
[40] |0x00000588|0x00000034|FUNC |GLOB |0x0 |8 |foo
[41] |0x00000600|0x00000000|FUNC |GLOB |0x0 |9 |_fini
[42] |0x00010688|0x00000010|OBJT |GLOB |0x0 |13 |data
[43] |0x0001073c|0x00000020|OBJT |GLOB |0x0 |16 |bss

.........

The section that contains a symbol can be determined by referencing the section index
(Shndx) field from the symbol table and by using dump(1) to display the sections
within the file. For example:

$ dump -hv libfoo.so.1

libfoo.so.1:
**** SECTION HEADER TABLE ****

[No] Type Flags Addr Offset Size Name
.........
[7] PBIT -AI 0x538 0x538 0x1c .init

[8] PBIT -AI 0x554 0x554 0xac .text

[9] PBIT -AI 0x600 0x600 0xc .fini
.........
[13] PBIT WA- 0x10688 0x688 0x18 .data

[16] NOBI WA- 0x1073c 0x73c 0x20 .bss

.........

The output from both the previous nm(1) and dump(1) examples shows the association
of the functions _init, foo, and _fini to the sections .init, .text and .fini.
These sections, because of their read-only nature, are part of the text segment.

Similarly, the data arrays data, and bss are associated with the sections .data and
.bss respectively. These sections, because of their writable nature, are part of the data
segment.

Note – The previous dump(1) display has been simplified for this example.

Chapter 4 • Shared Objects 109

Underlying System
When an application is built using a shared object, the entire loadable contents of the
object are mapped into the virtual address space of that process at runtime. Each
process that uses a shared object starts by referencing a single copy of the shared
object in memory.

Relocations within the shared object are processed to bind symbolic references to their
appropriate definitions. This results in the calculation of true virtual addresses that
could not be derived at the time the shared object was generated by the link-editor.
These relocations usually result in updates to entries within the process’s data
segments.

The memory management scheme underlying the dynamic linking of shared objects
shares memory among processes at the granularity of a page. Memory pages can be
shared as long as they are not modified at runtime. If a process writes to a page of a
shared object when writing a data item, or relocating a reference to a shared object, it
generates a private copy of that page. This private copy will have no effect on other
users of the shared object. However, this page has lost any benefit of sharing between
other processes. Text pages that become modified in this manner are referred to as
impure.

The segments of a shared object that are mapped into memory fall into two basic
categories; the text segment, which is read-only, and the data segment, which is
read-write. See “Analyzing Files” on page 108 on how to obtain this information from
an ELF file. An overriding goal when developing a shared object is to maximize the
text segment and minimize the data segment. This optimizes the amount of code
sharing while reducing the amount of processing needed to initialize and use a shared
object. The following sections present mechanisms that can help achieve this goal.

Lazy Loading of Dynamic Dependencies
You can defer the loading of a shared object dependency until the dependency is first
referenced by establishing the object as lazy loadable. See “Lazy Loading of Dynamic
Dependencies” on page 72.

For small applications a typical thread of execution may reference all the applications
dependencies. The application loads all of its dependencies whether they are defined
lazy loadable or not. However, under lazy loading, dependency processing may be
deferred from process startup and spread throughout the process’s execution.

For applications with many dependencies, lazy loading often results in some
dependencies not being loaded at all. These dependencies are those not referenced for
the particular thread of execution.

110 Linker and Libraries Guide • December 2003

Position-Independent Code
The compiler can generate position-independent code under the -K pic option.
Whereas the code within a dynamic executable is usually tied to a fixed address in
memory, position-independent code can be loaded anywhere in the address space of a
process. Because the code is not tied to a specific address, it will execute correctly
without page modification at a different address in each process that uses it. This code
creates programs that require the smallest amount of page modification at runtime.

When you use position-independent code, relocatable references are generated as an
indirection that use data in the shared object’s data segment. The text segment code
remains read-only, and all relocation updates are applied to corresponding entries
within the data segment. See “Global Offset Table (Processor-Specific)” on page 255
and “Procedure Linkage Table (Processor-Specific)” on page 256 for more details on
the use of these two sections.

If a shared object is built from code that is not position-independent, the text segment
will usually require a large number of relocations to be performed at runtime.
Although the runtime linker is equipped to handle this, the system overhead this
creates can cause serious performance degradation.

You can identify a shared object that requires relocations against its text segment. Use
dump(1) and inspect the output for any TEXTREL entry. For example:

$ cc -o libfoo.so.1 -G -R. foo.c
$ dump -Lv libfoo.so.1 | grep TEXTREL

[9] TEXTREL 0

Note – The value of the TEXTREL entry is irrelevant. Its presence in a shared object
indicates that text relocations exist.

To prevent the creation of a shared object that contains text relocations use the
link-editor’s -z text flag. This flag causes the link-editor to generate diagnostics
indicating the source of any non-position-independent code used as input. Such code
results in a failure to generate the intended shared object. For example:

$ cc -o libfoo.so.1 -z text -G -R. foo.c
Text relocation remains referenced

against symbol offset in file
foo 0x0 foo.o
bar 0x8 foo.o
ld: fatal: relocations remain against allocatable but \

non-writable sections

Two relocations are generated against the text segment because of the
non-position-independent code generated from the file foo.o. Where possible, these
diagnostics indicate any symbolic references that are required to carry out the
relocations. In this case, the relocations are against the symbols foo and bar.

Chapter 4 • Shared Objects 111

Another common cause of creating text relocations when generating a shared object is
by including hand-written assembler code that has not been coded with the
appropriate position-independent prototypes.

Note – You may want to experiment with some simple source files to determine coding
sequences that enable position-independence. Use the compilers ability to generate
intermediate assembler output.

SPARC: -K pic and -K PIC Options
For SPARC binaries, a subtle difference between the -K pic option and an alternative
-K PIC option affects references to global offset table entries. See “Global Offset Table
(Processor-Specific)” on page 255.

The global offset table is an array of pointers, the size of whose entries are constant for
32–bit (4–bytes) and 64–bit (8–bytes). The following code sequence makes reference to
an entry under -K pic:

ld [%l7 + j], %o0 ! load &j into %o0

Where %l7 is the precomputed value of the symbol _GLOBAL_OFFSET_TABLE_ of the
object making the reference.

This code sequence provides a 13–bit displacement constant for the global offset table
entry. This displacement therefore provides for 2048 unique entries for 32–bit objects,
and 1024 unique entries for 64–bit objects. If an object is built that requires more than
the available number of entries, the link-editor produces a fatal error:

$ cc -K pic -G -o lobfoo.so.1 a.o b.o ... z.o
ld: fatal: too many symbols require ‘small’ PIC references:

have 2050, maximum 2048 -- recompile some modules -K PIC.

To overcome this error condition, compile some of the input relocatable objects with
the -K PIC option. This option provides a 32–bit constant for the global offset table
entry:

sethi %hi(j), %g1
or %g1, %lo(j), %g1 ! get 32-bit constant GOT offset

ld [%l7 + %g1], %o0 ! load &j into %o0

You can investigate the global offset table requirements of an object using elfdump(1)
with the -G option. You can also examine the processing of these entries during a
link-edit using the link-editors debugging tokens -D got,detail.

Ideally, frequently accessed data items benefit from using the -K pic model. You can
reference a single entry using both models. However, determining which relocatable
objects should be compiled with either option can be time consuming, and the
performance improvement realized small. A recompilation of all relocatable objects
with the -K PIC option is typically easier.

112 Linker and Libraries Guide • December 2003

Remove Unused Material
The inclusion of functions and data that are not used by the object being built, is
wasteful. This material bloats the object, which can result in unnecessary relocation
overhead and associated paging activity. References to unused dependencies are also
wasteful. These references result in the unnecessary loading and processing of other
shared objects.

Unused sections are displayed during a link-edit when using the link-editors
debugging token -D unused. Sections identified as unused should be removed from
the link-edit, or eliminated using the link-editors -z ignore option.

The link-editor identifies a section from a relocatable object as unused if:

� The section is allocatable
� No other sections bind to (relocate) to this section
� The section provides no global symbols

You can improve the link-editors ability to eliminate sections by defining the shared
objects external interfaces. By defining an interface, global symbols that are not
defined as part of the interface are reduced to locals. These reduced symbols, if
unreferenced from other objects, are now clearly identified as candidates for
elimination.

Individual functions and data variables can be eliminated by the link-editor if these
items are assigned to their own sections. This section refinement is achieved using
compiler options such as -xF. Earlier compilers only provided for the assignment of
functions to their own sections. Newer compilers have extended the -xF syntax to
assign data variables to their own sections. Earlier compilers required C++ exception
handling to be disabled when using -xF. This restriction has been dropped with later
compilers.

If all allocatable sections from a relocatable object can be eliminated, the entire file is
discarded from the link-edit.

In addition to input file elimination, the link-editor also identifies unused
dependencies. A dependency is deemed unused if it is not bound to by the object
being produced. An object built with the -z ignore option, will have no unused
dependencies recorded in it.

The -z ignore option applies only to the files that follow the option on the link-edit
command line. The -z ignore option is cancelled with -z record.

Chapter 4 • Shared Objects 113

Maximizing Shareability
As mentioned in “Underlying System” on page 110, only a shared object’s text
segment is shared by all processes that use it. The object’s data segment typically is
not shared. Each process using a shared object, generates a private memory copy of its
entire data segment as data items within the segment are written to. Reduce the data
segment, either by moving data elements that are never written to the text segment, or
by removing the data items completely.

The following sections describe several mechanisms that can be used to reduce the
size of the data segment.

Move Read-Only Data to Text
Data elements that are read-only should be moved into the text segment using const
declarations. For example, the following character string resides in the .data section,
which is part of the writable data segment:

char * rdstr = "this is a read-only string";

In contrast, the following character string resides in the .rodata section, which is the
read-only data section contained within the text segment:

const char * rdstr = "this is a read-only string";

Reducing the data segment by moving read-only elements into the text segment is
admirable. However, moving data elements that require relocations can be
counterproductive. For example, examine the following array of strings:

char * rdstrs[] = { "this is a read-only string",

"this is another read-only string" };

A better definition might seem to be:

const char * const rdstrs[] = { };

This definition ensures that the strings and the array of pointers to these strings are
placed in a .rodata section. Unfortunately, although the user perceives the array of
addresses as read-only, these addresses must be relocated at runtime. This definition
therefore results in the creation of text relocations. Representing it as:

const char * rdstrs[] = { };

insures the array pointers are maintained in the writable data segment where they can
be relocated. The array strings are maintained in the read-only text segment.

114 Linker and Libraries Guide • December 2003

Note – Some compilers, when generating position-independent code, can detect
read-only assignments that result in runtime relocations. These compilers arrange for
placing such items in writable segments. For example, .picdata.

Collapse Multiply-Defined Data
Data can be reduced by collapsing multiply-defined data. A program with multiple
occurrences of the same error messages can be better off by defining one global datum,
and have all other instances reference this. For example:

const char * Errmsg = "prog: error encountered: %d";

foo()
{

......
(void) fprintf(stderr, Errmsg, error);

......

The main candidates for this sort of data reduction are strings. String usage in a
shared object can be investigated using strings(1). The following example generates
a sorted list of the data strings within the file libfoo.so.1. Each entry in the list is
prefixed with the number of occurrences of the string.

$ strings -10 libfoo.so.1 | sort | uniq -c | sort -rn

Use Automatic Variables
Permanent storage for data items can be removed entirely if the associated
functionality can be designed to use automatic (stack) variables. Any removal of
permanent storage usually results in a corresponding reduction in the number of
runtime relocations required.

Allocate Buffers Dynamically
Large data buffers should usually be allocated dynamically rather than being defined
using permanent storage. Often this results in an overall saving in memory, as only
those buffers needed by the present invocation of an application are allocated.
Dynamic allocation also provides greater flexibility by enabling the buffer’s size to
change without affecting compatibility.

Chapter 4 • Shared Objects 115

Minimizing Paging Activity
Any process that accesses a new page causes a page fault, which is an expensive
operation. Because shared objects can be used by many processes, any reduction in the
number of page faults generated by accessing a shared object will benefit the process
and the system as a whole.

Organizing frequently used routines and their data to an adjacent set of pages
frequently improves performance because it improves the locality of reference. When a
process calls one of these functions, the function might already be in memory because
of its proximity to the other frequently used functions. Similarly, grouping interrelated
functions improves locality of references. For example, if every call to the function
foo() results in a call to the function bar(), place these functions on the same page.
Tools like cflow(1), tcov(1), prof(1) and gprof(1) are useful in determining code
coverage and profiling.

Isolate related functionality to its own shared object. The standard C library has
historically been built containing many unrelated functions. Only rarely, for example,
will any single executable use everything in this library. Because of widespread use,
determining what set of functions are really the most frequently used is also
somewhat difficult. In contrast, when designing a shared object from scratch, maintain
only related functions within the shared object. This will improve locality of reference
and has the side effect of reducing the object’s overall size.

Relocations
In “Relocation Processing” on page 65, the mechanisms by which the runtime linker
relocates dynamic executables and shared objects to create a runable process was
covered. “Symbol Lookup” on page 66 and “When Relocations Are Performed”
on page 68 categorized this relocation processing into two areas to simplify and help
illustrate the mechanisms involved. These same two categorizations are also ideally
suited for considering the performance impact of relocations.

Symbol Lookup
When the runtime linker needs to look up a symbol, by default it does so by searching
in each object. The runtime linker starts with the dynamic executable, and progresses
through each shared object in the same order that the objects are loaded. In many
instances, the shared object that requires a symbolic relocation turns out to be the
provider of the symbol definition.

In this situation, if the symbol used for this relocation is not required as part of the
shared object’s interface, then this symbol is a strong candidate for conversion to a
static or automatic variable. A symbol reduction can also be applied to removed

116 Linker and Libraries Guide • December 2003

symbols from a shared objects interface. See “Reducing Symbol Scope” on page 49 for
more details. By making these conversions, the link-editor incurs the expense of
processing any symbolic relocation against these symbols during the shared object’s
creation.

The only global data items that should be visible from a shared object are those that
contribute to its user interface. Historically this has been a hard goal to accomplish,
because global data are often defined to allow reference from two or more functions
located in different source files. By applying symbol reduction, unnecessary global
symbols can be removed. See “Reducing Symbol Scope” on page 49. Any reduction in
the number of global symbols exported from a shared object results in lower relocation
costs and an overall performance improvement.

The use of direct bindings can also significantly reduce the symbol lookup overhead
within a dynamic process that has many symbolic relocations and many
dependencies. See “Direct Binding” on page 68.

When Relocations are Performed
All immediate reference relocations must be carried out during process initialization
before the application gains control. However, any lazy reference relocations can be
deferred until the first instance of a function being called. Immediate relocations
typically result from data references. Therefore, reducing the number of data
references also reduces the runtime initialization of a process.

Initialization relocation costs can also be deferred by converting data references into
function references. For example, you can return data items by a functional interface.
This conversion usually results in a perceived performance improvement because the
initialization relocation costs are effectively spread throughout the process’s execution.
Some of the functional interfaces might never be called by a particular invocation of a
process, thus removing their relocation overhead altogether.

The advantage of using a functional interface can be seen in the section, “Copy
Relocations” on page 118. This section examines a special, and somewhat expensive,
relocation mechanism employed between dynamic executables and shared objects. It
also provides an example of how this relocation overhead can be avoided.

Combined Relocation Sections
Relocations by default are grouped by the sections against which they are to be
applied. However, when an object is built with the -z combreloc option, all but the
procedure linkage table relocations are placed into a single common section named
.SUNW_reloc. See “Procedure Linkage Table (Processor-Specific)” on page 256.

Chapter 4 • Shared Objects 117

Combining relocation records in this manner enables all RELATIVE relocations to be
grouped together. All symbolic relocations are sorted by symbol name. The grouping
of RELATIVE relocations permits optimized runtime processing using the
DT_RELACOUNT/DT_RELCOUNT .dynamic entries. Sorted symbolic entries help
reduce runtime symbol lookup.

Copy Relocations
Shared objects are usually built with position-independent code. References to
external data items from code of this type employs indirect addressing through a set of
tables. See “Position-Independent Code” on page 111 for more details. These tables are
updated at runtime with the real address of the data items. These updated tables
enable access to the data without the code itself being modified.

Dynamic executables, however, are generally not created from position-independent
code. Any references to external data they make can seemingly only be achieved at
runtime by modifying the code that makes the reference. Modifying a read-only text
segment is to be avoided. The copy relocation technique can solve this reference.

Suppose the link-editor is used to create a dynamic executable, and a reference to a
data item is found to reside in one of the dependent shared objects. Space is allocated
in the dynamic executable’s .bss, equivalent in size to the data item found in the
shared object. This space is also assigned the same symbolic name as defined in the
shared object. Along with this data allocation, the link-editor generates a special copy
relocation record that will instruct the runtime linker to copy the data from the shared
object to this allocated space within the dynamic executable.

Because the symbol assigned to this space is global, it is used to satisfy any references
from any shared objects. The dynamic executable inherits the data item. Any other
objects within the process that make reference to this item are bound to this copy. The
original data from which the copy is made effectively becomes unused.

The following example of this mechanism uses an array of system error messages that
is maintained within the standard C library. In previous SunOS operating system
releases, the interface to this information was provided by two global variables,
sys_errlist[], and sys_nerr. The first variable provided the array of error
message strings, while the second conveyed the size of the array itself. These variables
were commonly used within an application in the following manner:

$ cat foo.c
extern int sys_nerr;
extern char * sys_errlist[];

char *
error(int errnumb)
{

if ((errnumb < 0) || (errnumb >= sys_nerr))
return (0);

return (sys_errlist[errnumb]);

118 Linker and Libraries Guide • December 2003

}

The application uses the function error to provide a focal point to obtain the system
error message associated with the number errnumb.

Examining a dynamic executable built using this code shows the implementation of
the copy relocation in more detail:

$ cc -o prog main.c foo.c
$ nm -x prog | grep sys_
[36] |0x00020910|0x00000260|OBJT |WEAK |0x0 |16 |sys_errlist
[37] |0x0002090c|0x00000004|OBJT |WEAK |0x0 |16 |sys_nerr
$ dump -hv prog | grep bss
[16] NOBI WA- 0x20908 0x908 0x268 .bss
$ dump -rv prog

**** RELOCATION INFORMATION ****

.rela.bss:
Offset Symndx Type Addend

0x2090c sys_nerr R_SPARC_COPY 0
0x20910 sys_errlist R_SPARC_COPY 0

..........

The link-editor has allocated space in the dynamic executable’s .bss to receive the
data represented by sys_errlist and sys_nerr. These data are copied from the C
library by the runtime linker at process initialization. Thus, each application that uses
these data gets a private copy of the data in its own data segment.

There are two drawbacks to this technique. First, each application pays a performance
penalty for the overhead of copying the data at runtime. Second, the size of the data
array sys_errlist has now become part of the C library’s interface. Suppose the
size of this array were to change, prehaps as new error messages are added. Any
dynamic executables that reference this array have to undergo a new link-edit to be
able to access any of the new error messages. Without this new link-edit, the allocated
space within the dynamic executable is insufficient to hold the new data.

These drawbacks can be eliminated if the data required by a dynamic executable are
provided by a functional interface. The ANSI C function strerror(3C) returns a
pointer to the appropriate error string, based on the error number supplied to it. One
implementation of this function might be:

$ cat strerror.c
static const char * sys_errlist[] = {

"Error 0",
"Not owner",
"No such file or directory",
......

};
static const int sys_nerr =

sizeof (sys_errlist) / sizeof (char *);

Chapter 4 • Shared Objects 119

char *
strerror(int errnum)
{

if ((errnum < 0) || (errnum >= sys_nerr))
return (0);

return ((char *)sys_errlist[errnum]);

}

The error routine in foo.c can now be simplified to use this functional interface. This
simplification in turn removes any need to perform the original copy relocations at
process initialization.

Additionally, because the data are now local to the shared object, the data are no
longer part of its interface. The shared object therefore has the flexibility of changing
the data without adversely effecting any dynamic executables that use it. Eliminating
data items from a shared object’s interface generally improves performance while
making the shared object’s interface and code easier to maintain.

ldd(1), when used with either the -d or -r options, can verify any copy relocations
that exist within a dynamic executable.

For example, suppose the dynamic executable prog had originally been built against
the shared object libfoo.so.1 and the following two copy relocations had been
recorded:

$ nm -x prog | grep _size_
[36] |0x000207d8|0x40|OBJT |GLOB |15 |_size_gets_smaller
[39] |0x00020818|0x40|OBJT |GLOB |15 |_size_gets_larger
$ dump -rv size | grep _size_
0x207d8 _size_gets_smaller R_SPARC_COPY 0

0x20818 _size_gets_larger R_SPARC_COPY 0

A new version of this shared object is supplied that contains different data sizes for
these symbols:

$ nm -x libfoo.so.1 | grep _size_
[26] |0x00010378|0x10|OBJT |GLOB |8 |_size_gets_smaller

[28] |0x00010388|0x80|OBJT |GLOB |8 |_size_gets_larger

Running ldd(1) against the dynamic executable reveals:

$ ldd -d prog
libfoo.so.1 => ./libfoo.so.1
...........
copy relocation sizes differ: _size_gets_smaller

(file prog size=40; file ./libfoo.so.1 size=10);
./libfoo.so.1 size used; possible insufficient data copied

copy relocation sizes differ: _size_gets_larger
(file prog size=40; file ./libfoo.so.1 size=80);

./prog size used; possible data truncation

ldd(1) shows that the dynamic executable will copy as much data as the shared object
has to offer, but only accepts as much as its allocated space allows.

120 Linker and Libraries Guide • December 2003

Copy relocations can be eliminated by building the application from
position-independent code. See “Position-Independent Code” on page 111.

Using -B symbolic
The link-editor’s -B symbolic option enables you to bind symbol references to their
global definitions within a shared object. This option is historic, in that it was designed
for use in creating the runtime linker itself.

Defining an object’s interface and reducing non-public symbols to local is preferable to
using the -B symbolic option. See “Reducing Symbol Scope” on page 49. Using
-B symbolic can often result in some non-intuitive side effects.

If a symbolically bound symbol is interposed upon, then references to the symbol from
outside of the symbolically bound object bind to the interposer. The object itself is
already bound internally. Essentially, two symbols with the same name are now being
referenced from within the process. A symbolically bound data symbol that results in a
copy relocation creates the same interposition situation. See “Copy Relocations”
on page 118.

Note – Symbolically bound shared objects are identified by the .dynamic flag
DF_SYMBOLIC. This flag is informational only. The runtime linker processes symbol
lookups from these objects in the same manner as any other object. Any symbolic
binding is assumed to have been created at the link-edit phase.

Profiling Shared Objects
The runtime linker can generate profiling information for any shared objects that are
processed during the running of an application. The runtime linker is responsible for
binding shared objects to an application and is therefore able to intercept any global
function bindings. These bindings take place through .plt entries. See “When
Relocations Are Performed” on page 68 for details of this mechanism.

The LD_PROFILE environment variable specifies the name of a shared object to
profile. You can analyze one shared object at a time using this environment variable.
The setting of the environment variable can be used to analyze the use of the shared
object by one or more applications. In the following example, the use of libc by the
single invocation of the command ls(1) is analyzed:

$ LD_PROFILE=libc.so.1 ls -l

In the following example, the environment variable setting is recorded in a
configuration file. This setting causes any application’s use of libc to accumulate the
analyzed information:

Chapter 4 • Shared Objects 121

crle -e LD_PROFILE=libc.so.1
$ ls -l
$ make

$...

When profiling is enabled, a profile data file is created, if it does not already exist. The
file is mapped by the runtime linker. In the above examples, this data file is
/var/tmp/libc.so.1.profile. 64–bit libraries require an extended profile format
and are written using the .profilex suffix. You can also specify an alternative
directory to store the profile data using the LD_PROFILE_OUTPUT environment
variable.

This profile data file is used to deposit profil(2) data and call count information
related to the use of the specified shared object. This profiled data can be directly
examined with gprof(1).

Note – gprof(1) is most commonly used to analyze the gmon.out profile data created
by an executable that has been compiled with the -xpg option of cc(1). The runtime
linker’s profile analysis does not require any code to be compiled with this option.
Applications whose dependent shared objects are being profiled should not make calls
to profil(2), because this system call does not provide for multiple invocations
within the same process. For the same reason, these applications must not be compiled
with the -xpg option of cc(1). This compiler-generated mechanism of profiling is also
built on top of profil(2).

One of the most powerful features of this profiling mechanism is to enable the analysis
of a shared object as used by multiple applications. Frequently, profiling analysis is
carried out using one or two applications. However, a shared object, by its very
nature, can be used by a multitude of applications. Analyzing how these applications
use the shared object can offer insights into where energy might be spent to
improvement the overall performance of the shared object.

The following example shows a performance analysis of libc over a creation of
several applications within a source hierarchy.

$ LD_PROFILE=libc.so.1 ; export LD_PROFILE
$ make
$ gprof -b /usr/lib/libc.so.1 /var/tmp/libc.so.1.profile
.....

granularity: each sample hit covers 4 byte(s)

called/total parents
index %time self descendents called+self name index

called/total children
.....

0.33 0.00 52/29381 _gettxt [96]
1.12 0.00 174/29381 _tzload [54]

122 Linker and Libraries Guide • December 2003

10.50 0.00 1634/29381 <external>
16.14 0.00 2512/29381 _opendir [15]
160.65 0.00 25009/29381 _endopen [3]

[2] 35.0 188.74 0.00 29381 _open [2]

.....
granularity: each sample hit covers 4 byte(s)

% cumulative self self total
time seconds seconds calls ms/call ms/call name
35.0 188.74 188.74 29381 6.42 6.42 _open [2]
13.0 258.80 70.06 12094 5.79 5.79 _write [4]
9.9 312.32 53.52 34303 1.56 1.56 _read [6]
7.1 350.53 38.21 1177 32.46 32.46 _fork [9]

....

The special name <external> indicates a reference from outside of the address range of
the shared object being profiled. Thus, in the above example, 1634 calls to the function
open(2) within libc occurred from the dynamic executables, or from other shared
objects, bound with libc while the profiling analysis was in progress.

Note – The profiling of shared objects is multithread safe, except in the case where one
thread calls fork(2) while another thread is updating the profile data information.
The use of fork1(2) removes this restriction.

Chapter 4 • Shared Objects 123

124 Linker and Libraries Guide • December 2003

CHAPTER 5

Application Binary Interfaces and
Versioning

ELF objects processed by the link-editors provide many global symbols to which other
objects can bind. These symbols describe the object’s application binary interface
(ABI). During the evolution of an object, this interface can change due to the addition
or deletion of global symbols. In addition, the object’s evolution can involve internal
implementation changes.

Versioning refers to several techniques that can be applied to an object to indicate
interface and implementation changes. These techniques provide for the object’s
controlled evolution while maintaining backward compatibility.

This chapter describes how an object’s ABI can be defined and classifies how changes
to this interface can affect backward compatibility. It also presents models by which
interface and implementation changes can be incorporated into new releases of the
object.

The focus of this chapter is on the runtime interfaces of dynamic executables and
shared objects. The techniques used to describe and manage changes within these
dynamic objects are presented in generic terms. A common set of naming conventions
and versioning scenarios as applied to shared objects can be found in Appendix B.

Developers of dynamic objects must be aware of the ramifications of an interface
change and understand how such changes can be managed, especially in regards to
maintaining backward compatibility with previously shipped objects.

The global symbols made available by any dynamic object represent the object’s public
interface. Frequently, the number of global symbols remaining in an object at the end
of a link-edit are more than you would like to make public. These global symbols
result from the relationship required between relocatable objects used to create the
object. They represent private interfaces within the object itself.

Before defining an object’s binary interface, you should first determine those global
symbols you wish to make publicly available from the object being created. These
public symbols can be established using the link-editor’s -M option and an associated
mapfile as part of the final link-edit. This technique is introduced in “Reducing

125

Symbol Scope” on page 49. This public interface establishes one or more version
definitions within the object being created. These definitions form the foundation for
the addition of new interfaces as the object evolves.

The following sections build upon this initial public interface. First though, you
should understand how various changes to an interface can be categorized so that
they can be managed appropriately.

Interface Compatibility
Many types of change can be made to an object. In their simplest terms, these changes
can be categorized into one of two groups:

� Compatible updates. These updates are additive, in that all previously available
interfaces remain intact.

� Incompatible updates. These updates have changed the existing interface in such a
way that existing users of the interface can fail or behave incorrectly.

The following table categorizes some common object changes.

TABLE 5–1 Interface Compatibility Examples

Object Change Update Type

The addition of a symbol Compatible

The removal of a symbol Incompatible

The addition of an argument to a non-varargs(3HEAD) function Incompatible

The removal of an argument from a function Incompatible

The change of size, or content, of a data item to a function or as an
external definition

Incompatible

A bug fix, or internal enhancement to a function, providing the
semantic properties of the object remain unchanged

Compatible

A bug fix, or internal enhancement to a function when the semantic
properties of the object change

Incompatible

Because of interposition, the addition of a symbol can constitute an incompatible
update, such that the new symbol might conflict with an applications use of that
symbol. However, this does seem rare in practice as source-level name space
management is commonly used.

126 Linker and Libraries Guide • December 2003

Compatible updates can be accommodated by maintaining version definitions internal
to the object being generated. Incompatible updates can be accommodated by
producing a new object with a new external versioned name. Both of these versioning
techniques enable the selective binding of applications. They also enable verification of
correct version binding at runtime. These two techniques are explored in more detail
in the following sections.

Internal Versioning
A dynamic object can have one or more internal version definitions associated with it.
Each version definition is commonly associated with one or more symbol names. A
symbol name can only be associated with one version definition. However, a version
definition can inherit the symbols from other version definitions. Thus, a structure
exists to define one or more independent, or related, version definitions within the
object being created. As new changes are made to the object, new version definitions
can be added to express these changes.

There are two consequences of providing version definitions within a shared object:

� Dynamic objects that are built against a versioned shared object can record their
dependency on the version definitions bound to. These version dependencies are
verified at runtime to ensure that the appropriate interfaces, or functionality, are
available for the correct execution of an application.

� Dynamic objects can select the version definitions of a shared object to bind to
during their link-edit. This mechanism enables developers to control their
dependency on a shared object to the interfaces, or functionality, that provide the
most flexibility.

Creating a Version Definition
Version definitions commonly consist of an association of symbol names to a unique
version name. These associations are established within a mapfile and supplied to
the final link-edit of an object using the link-editor’s -M option. This technique is
introduced in the section “Reducing Symbol Scope” on page 49.

A version definition is established whenever a version name is specified as part of the
mapfile directive. In the following example, two source files are combined, together
with mapfile directives, to produce an object with a defined public interface:

$ cat foo.c
extern const char * _foo1;

void foo1()

Chapter 5 • Application Binary Interfaces and Versioning 127

{
(void) printf(_foo1);

}

$ cat data.c
const char * _foo1 = "string used by foo1()\n";

$ cat mapfile
SUNW_1.1 { # Release X

global:
foo1;

local:
*;

};
$ cc -o libfoo.so.1 -M mapfile -G foo.o data.o
$ nm -x libfoo.so.1 | grep "foo.$"
[33] |0x0001058c|0x00000004|OBJT |LOCL |0x0 |17 |_foo1

[35] |0x00000454|0x00000034|FUNC |GLOB |0x0 |9 |foo1

The symbol foo1 is the only global symbol defined to provide the shared object’s
public interface. The special auto-reduction directive “*” causes the reduction of all
other global symbols to have local binding within the object being generated. This
directive is introduced in “Defining Additional Symbols” on page 44. The associated
version name, SUNW_1.1, causes the generation of a version definition. Thus, the
shared object’s public interface consists of the internal version definition SUNW_1.1,
associated with the global symbol foo1.

Whenever a version definition, or the auto-reduction directive, are used to generate an
object, a base version definition is also created. This base version is defined using the
name of the file itself, and is used to associate any reserved symbols generated by the
link-editor. See “Generating the Output File” on page 54 for a list of these reserved
symbols.

The version definitions contained within an object can be displayed using pvs(1) with
the -d option:

$ pvs -d libfoo.so.1
libfoo.so.1;

SUNW_1.1;

The object libfoo.so.1 has an internal version definition named SUNW_1.1,
together with a base version definition libfoo.so.1.

Note – The link-editor’s -z noversion option allows symbol reduction to be directed
by a mapfile but suppresses the creation of version definitions.

Starting with this initial version definition, the object can evolve by adding new
interfaces and updated functionality. For example, a new function, foo2, together
with its supporting data structures, can be added to the object by updating the source
files foo.c and data.c:

128 Linker and Libraries Guide • December 2003

$ cat foo.c
extern const char * _foo1;
extern const char * _foo2;

void foo1()
{

(void) printf(_foo1);
}

void foo2()
{

(void) printf(_foo2);
}

$ cat data.c
const char * _foo1 = "string used by foo1()\n";

const char * _foo2 = "string used by foo2()\n";

A new version definition, SUNW_1.2, can be created to define a new interface
representing the symbol foo2. In addition, this new interface can be defined to inherit
the original version definition SUNW_1.1.

The creation of this new interface is important as it identifies the evolution of the
object and enables users to verify and select the interfaces to which they bind. These
concepts are covered in more detail in “Binding to a Version Definition” on page 132
and in “Specifying a Version Binding” on page 136.

The following example shows the mapfile directives that create these two interfaces.

$ cat mapfile
SUNW_1.1 { # Release X

global:
foo1;

local:
*;

};

SUNW_1.2 { # Release X+1
global:

foo2;
} SUNW_1.1;

$ cc -o libfoo.so.1 -M mapfile -G foo.o data.o
$ nm -x libfoo.so.1 | grep "foo.$"
[33] |0x00010644|0x00000004|OBJT |LOCL |0x0 |17 |_foo1
[34] |0x00010648|0x00000004|OBJT |LOCL |0x0 |17 |_foo2
[36] |0x000004bc|0x00000034|FUNC |GLOB |0x0 |9 |foo1

[37] |0x000004f0|0x00000034|FUNC |GLOB |0x0 |9 |foo2

The symbols foo1 and foo2 are both defined to be part of the shared object’s public
interface. However, each of these symbols is assigned to a different version definition;
foo1 is assigned to SUNW_1.1, and foo2 is assigned to SUNW_1.2.

Chapter 5 • Application Binary Interfaces and Versioning 129

These version definitions, their inheritance, and their symbol association can be
displayed using pvs(1) together with the -d, -v and -s options:

$ pvs -dsv libfoo.so.1
libfoo.so.1:

_end;
_GLOBAL_OFFSET_TABLE_;
_DYNAMIC;
_edata;
_PROCEDURE_LINKAGE_TABLE_;
_etext;

SUNW_1.1:
foo1;
SUNW_1.1;

SUNW_1.2: {SUNW_1.1}:
foo2;

SUNW_1.2

The version definition SUNW_1.2 has a dependency on the version definition
SUNW_1.1.

The inheritance of one version definition by another is a useful technique that reduces
the version information that will eventually be recorded by any object that binds to a
version dependency. Version inheritance is covered in more detail in the section
“Binding to a Version Definition” on page 132.

Any internal version definition has an associated version definition symbol created. As
shown in the previous pvs(1) example, these symbols are displayed when using the
-v option.

Creating a Weak Version Definition
Internal changes to an object that do not require the introduction of a new interface
definition can be defined by creating a weak version definition. Examples of such
changes are bug fixes or performance improvements.

Such a version definition is empty, in that it has no global interface symbols associated
with it.

For example, suppose the data file data.c, used in the previous examples, is updated
to provide more detailed string definitions:

$ cat data.c
const char * _foo1 = "string used by function foo1()\n";

const char * _foo2 = "string used by function foo2()\n";

A weak version definition can be introduced to identify this change:

$ cat mapfile
SUNW_1.1 { # Release X

global:
foo1;

130 Linker and Libraries Guide • December 2003

local:
*;

};

SUNW_1.2 { # Release X+1
global:

foo2;
} SUNW_1.1;

SUNW_1.2.1 { } SUNW_1.2; # Release X+2

$ cc -o libfoo.so.1 -M mapfile -G foo.o data.o
$ pvs -dv libfoo.so.1

libfoo.so.1;
SUNW_1.1;
SUNW_1.2: {SUNW_1.1};

SUNW_1.2.1 [WEAK]: {SUNW_1.2};

The empty version definition is signified by the weak label. These weak version
definitions enable applications to verify the existence of a particular implementation
by binding to the version definition associated with that functionality. The section
“Binding to a Version Definition” on page 132 illustrates how these definitions can be
used in more detail.

Defining Unrelated Interfaces
The previous examples show how new version definitions added to an object inherit
any existing version definitions. You can also create version definitions that are unique
and independent. In the following example, two new files, bar1.c and bar2.c, are
added to the object libfoo.so.1. These files contribute two new symbols, bar1 and
bar2, respectively:

$ cat bar1.c
extern void foo1();

void bar1()
{

foo1();
}
$ cat bar2.c
extern void foo2();

void bar2()
{

foo2();

}

These two symbols are intended to define two new public interfaces. Neither of these
new interfaces are related to each other. However, each expresses a dependency on the
original SUNW_1.2 interface.

The following mapfile definition creates this required association:

Chapter 5 • Application Binary Interfaces and Versioning 131

$ cat mapfile
SUNW_1.1 { # Release X

global:
foo1;

local:
*;

};

SUNW_1.2 { # Release X+1
global:

foo2;
} SUNW_1.1;

SUNW_1.2.1 { } SUNW_1.2; # Release X+2

SUNW_1.3a { # Release X+3
global:

bar1;
} SUNW_1.2;

SUNW_1.3b { # Release X+3
global:

bar2;

} SUNW_1.2;

Again, the version definitions created in libfoo.so.1 when using this mapfile,
and their related dependencies, can be inspected using pvs(1):

$ cc -o libfoo.so.1 -M mapfile -G foo.o bar1.o bar2.o data.o
$ pvs -dv libfoo.so.1

libfoo.so.1;
SUNW_1.1;
SUNW_1.2: {SUNW_1.1};
SUNW_1.2.1 [WEAK]: {SUNW_1.2};
SUNW_1.3a: {SUNW_1.2};

SUNW_1.3b: {SUNW_1.2};

The following sections explore how these version definition recordings can be used to
verify runtime binding requirements and control the binding of an object during its
creation.

Binding to a Version Definition
When a dynamic executable or shared object is built against other shared objects, these
dependencies are recorded in the resulting object. See “Shared Object Processing”
on page 28 and “Recording a Shared Object Name” on page 99 for more details. If
these shared object dependencies also contain version definitions, then an associated
version dependency is recorded in the object being built.

The following example takes the data files from the previous section and generates a
shared object suitable for a compile time environment. This shared object,
libfoo.so.1, is used in the succeeding binding examples.

132 Linker and Libraries Guide • December 2003

$ cc -o libfoo.so.1 -h libfoo.so.1 -M mapfile -G foo.o bar.o \
data.o
$ ln -s libfoo.so.1 libfoo.so
$ pvs -dsv libfoo.so.1

libfoo.so.1:
_end;
_GLOBAL_OFFSET_TABLE_;
_DYNAMIC;
_edata;
_PROCEDURE_LINKAGE_TABLE_;
_etext;

SUNW_1.1:
foo1;
SUNW_1.1;

SUNW_1.2: {SUNW_1.1}:
foo2;
SUNW_1.2;

SUNW_1.2.1 [WEAK]: {SUNW_1.2}:
SUNW_1.2.1;

SUNW_1.3a: {SUNW_1.2}:
bar1;
SUNW_1.3a;

SUNW_1.3b: {SUNW_1.2}:
bar2;

SUNW_1.3b

In effect, there are six public interfaces being offered by the shared object. Four of these
interfaces, SUNW_1.1, SUNW_1.2, SUNW_1.3a, and SUNW_1.3b, define exported
symbol names. One interface, SUNW_1.2.1, describes an internal implementation
change to the shared object, and one interface, libfoo.so.1, defines several reserved
labels. Dynamic objects created with this shared object as a dependency, record the
version names of the interfaces the dynamic object binds to.

The following example creates an application that references symbols foo1 and foo2.
The versioning dependency information recorded in the application can be examined
using pvs(1) with the -r option.

$ cat prog.c
extern void foo1();
extern void foo2();

main()
{

foo1();
foo2();

}
$ cc -o prog prog.c -L. -R. -lfoo
$ pvs -r prog

libfoo.so.1 (SUNW_1.2, SUNW_1.2.1);

In this example, the application prog has bound to the two interfaces SUNW_1.1 and
SUNW_1.2. These interfaces provided the global symbols foo1 and foo2 respectively.

Chapter 5 • Application Binary Interfaces and Versioning 133

Because version definition SUNW_1.1 is defined within libfoo.so.1 as being
inherited by the version definition SUNW_1.2, you also need to record the latter
version dependency. This normalization of version definition dependencies reduces
the amount of version information maintained within an object, and reduces the
processing required at runtime.

Because the application prog was built against the shared object’s implementation
containing the weak version definition SUNW_1.2.1, this dependency is also
recorded. Even though this version definition is defined to inherit the version
definition SUNW_1.2, the version’s weak nature precludes its normalization with
SUNW_1.1, and results in a separate dependency recording.

Had there been multiple weak version definitions that inherited from each other, then
these definitions will be normalized in the same manner as non-weak version
definitions are.

Note – The recording of a version dependency can be suppressed by the link-editor’s
-z noversion option.

Having recorded these version definition dependencies, the runtime linker validates
the existence of the required version definitions in the objects that are bound to when
the application is executed. This validation can be displayed using ldd(1) with the -v
option. For example, by running ldd(1) on the application prog, the version
definition dependencies are shown to be found correctly in the shared object
libfoo.so.1:

$ ldd -v prog

find object=libfoo.so.1; required by prog
libfoo.so.1 => ./libfoo.so.1

find version=libfoo.so.1;
libfoo.so.1 (SUNW_1.2) => ./libfoo.so.1
libfoo.so.1 (SUNW_1.2.1) => ./libfoo.so.1

....

Note – ldd(1) with the -v option implies verbose output. A recursive list of all
dependencies, together with all versioning requirements, is generated.

If a non-weak version definition dependency cannot be found, a fatal error occurs
during application initialization. Any weak version definition dependency that cannot
be found is silently ignored. For example, if the application prog is run in an
environment in which libfoo.so.1 only contains the version definition SUNW_1.1,
then the following fatal error occurs:

$ pvs -dv libfoo.so.1
libfoo.so.1;

134 Linker and Libraries Guide • December 2003

SUNW_1.1;
$ prog
ld.so.1: prog: fatal: libfoo.so.1: version ‘SUNW_1.2’ not \

found (required by file prog)

Had the application prog not recorded any version definition dependencies, the
nonexistence of the required interface symbol foo2 would have manifested itself
some time during the execution of the application as a fatal relocation error. This
relocation error might occur at process initialization, during process execution, or
might not occur at all if the execution path of the application did not call the function
foo2. See “Relocation Errors” on page 70.

Recording version definition dependencies provides an alternative and immediate
indication of the availability of the interfaces required by the application.

If the application prog is run in an environment in which libfoo.so.1 only
contains the version definitions SUNW_1.1 and SUNW_1.2, then all non-weak version
definition requirements will be satisfied. The absence of the weak version definition
SUNW_1.2.1 is deemed nonfatal, and so no runtime error condition is generated.
However, ldd(1) can be used to display all version definitions that cannot be found:

$ pvs -dv libfoo.so.1
libfoo.so.1;
SUNW_1.1;
SUNW_1.2: {SUNW_1.1};

$ prog
string used by foo1()
string used by foo2()
$ ldd prog

libfoo.so.1 => ./libfoo.so.1
libfoo.so.1 (SUNW_1.2.1) => (version not found)

...........

Note – If an object requires a version definition from a given dependency, and at
runtime an implementation of that dependency is found that contains no version
definition information, the version verification of the dependency will be silently
ignored. This policy provides a level of backward compatibility as a transition from
non-versioned to versioned shared objects occurs. ldd(1), however, can still be used to
display any version requirement discrepancies. The environment variable
LD_NOVERSION can be used to suppress all runtime versioning verification.

Verifying Versions in Additional Objects
Version definition symbols also provide a mechanism for verifying the version
requirements of an object obtained by dlopen(3DL). Any object added to the process’s
address space using this function will have no automatic version dependency
verification carried out by the runtime linker. Thus, the caller of this function is
responsible for verifying that any versioning requirements are met.

Chapter 5 • Application Binary Interfaces and Versioning 135

The presence of a required version definition can be verified by looking up the
associated version definition symbol using dlsym(3DL). The following example adds
the shared object libfoo.so.1 to a process using dlopen(3DL), and verifies the
interface SUNW_1.2 is available.

#include <stdio.h>
#include <dlfcn.h>

main()
{

void * handle;
const char * file = "libfoo.so.1";
const char * vers = "SUNW_1.2";
....

if ((handle = dlopen(file, (RTLD_LAZY | RTLD_FIRST))) == NULL) {
(void) printf("dlopen: %s\n", dlerror());
exit (1);

}

if (dlsym(handle, vers) == NULL) {
(void) printf("fatal: %s: version ‘%s’ not found\n",

file, vers);
exit (1);

}

....

Specifying a Version Binding
When creating a dynamic object against a shared object containing version definitions,
you can instruct the link-editor to limit the binding to specific version definitions.
Effectively, the link-editor enables you to control an object’s binding to specific
interfaces.

An object’s binding requirements can be controlled using a file control directive. This
directive is supplied using the link-editor’s -M option and an associated mapfile. The
following syntax for file control directives is available:

name - version [version ...] [$ADDVERS=version];

� name – Represents the name of the shared object dependency. This name should
match the shared object’s compilation environment name as used by the
link-editor. See “Library Naming Conventions” on page 29.

� version – Represents the version definition name within the shared object that
should be made available for binding. Multiple version definitions can be specified.

� $ADDVERS – Allows for additional version definitions to be recorded.

This binding control can be useful in the following scenarios:

136 Linker and Libraries Guide • December 2003

� When a shared object defines independent, unique versions. This versioning is
possible when defining different standards interfaces. An object can be built with
binding controls to ensure it only binds to a specific interface.

� When a shared object has been versioned over several software releases. An object
can be built with binding controls to restrict its binding to the interfaces available
in a previous software release. Thus, an object can run with an old release of the
shared object dependency, after being built using the latest release of the shared
object.

The following example illustrates the use of the version control mechanism. This
example uses the shared object libfoo.so.1 containing the following version
interface definitions:

$ pvs -dsv libfoo.so.1
libfoo.so.1:

_end;
_GLOBAL_OFFSET_TABLE_;
_DYNAMIC;
_edata;
_PROCEDURE_LINKAGE_TABLE_;
_etext;

SUNW_1.1:
foo1;
foo2;
SUNW_1.1;

SUNW_1.2: {SUNW_1.1}:

bar;

The version definitions SUNW_1.1 and SUNW_1.2 represent interfaces within
libfoo.so.1 that were made available in software Release X and Release X+1
respectively.

An application can be built to bind only to the interfaces available in Release X by
using the following version control mapfile directive:

$ cat mapfile

libfoo.so - SUNW_1.1;

For example, suppose you develop an application, prog, and want to ensure that the
application can run on Release X. The application can then only use the interfaces
available in that release. If the application mistakenly references the symbol bar, then
the application is not compliant with the required interface. This condition is signalled
by the link-editor as an undefined symbol error:

$ cat prog.c
extern void foo1();
extern void bar();

main()
{

foo1();
bar();

}

Chapter 5 • Application Binary Interfaces and Versioning 137

$ cc -o prog prog.c -M mapfile -L. -R. -lfoo
Undefined first referenced
symbol in file
bar prog.o (symbol belongs to unavailable \

version ./libfoo.so (SUNW_1.2))

ld: fatal: Symbol referencing errors. No output written to prog

To be compliant with the SUNW_1.1 interface, you must remove the reference to bar.
You can either rework the application to remove the requirement on bar, or add an
implementation of bar to the creation of the application.

Note – By default, shared object dependencies encountered as part of a link-edit, are
also verified against any file control directives. Use the environment variable
LD_NOVERSION to suppress the version verification of any shared object
dependencies.

Binding to Additional Version Definitions
To record more version dependencies than would be produced from the normal
symbol binding of an object, use the $ADDVERS file control directive. This section
describes scenarios where this additional binding might be useful.

From the previous libfoo.so.1 example, assume that in Release X+2, the
version definition SUNW_1.1 is subdivided into two standard releases, STAND_A and
STAND_B. To preserve compatibility, the SUNW_1.1 version definition must be
maintained. In this example, this version definition is expressed as inheriting the two
standard definitions:

$ pvs -dsv libfoo.so.1
libfoo.so.1:

_end;
_GLOBAL_OFFSET_TABLE_;
_DYNAMIC;
_edata;
_PROCEDURE_LINKAGE_TABLE_;
_etext;

SUNW_1.1: {STAND_A, STAND_B}:
SUNW_1.1;

SUNW_1.2: {SUNW_1.1}:
bar;

STAND_A:
foo1;
STAND_A;

STAND_B:
foo2;

STAND_B;

138 Linker and Libraries Guide • December 2003

If the only requirement of application prog is the interface symbol foo1, the
application will have a single dependency on the version definition STAND_A. This
precludes running prog on a system where libfoo.so.1 is less than Release X+2.
The version definition STAND_A did not exist in previous releases, even though the
interface foo1 did.

The application prog can be built to align its requirement with previous releases by
creating a dependency on SUNW_1.1:

$ cat mapfile
libfoo.so - SUNW_1.1 $ADDVERS=SUNW_1.1;
$ cat prog
extern void foo1();

main()
{

foo1();
}
$ cc -M mapfile -o prog prog.c -L. -R. -lfoo
$ pvs -r prog

libfoo.so.1 (SUNW_1.1);

This explicit dependency is sufficient to encapsulate the true dependency
requirements. This dependency satisfies compatibility with older releases.

“Creating a Weak Version Definition” on page 130 described how weak version
definitions can be used to mark an internal implementation change. These version
definitions are well suited to indicate bug fixes and performance improvements made
to an object. If the existence of a weak version is required, an explicit dependency on
this version definition can be generated. The creation of such a dependency can be
important when a bug fix, or performance improvement, is critical for the object to
function correctly.

From the previous libfoo.so.1 example, assume a bug fix is incorporated as the
weak version definition SUNW_1.2.1 in software Release X+3:

$ pvs -dsv libfoo.so.1
libfoo.so.1:

_end;
_GLOBAL_OFFSET_TABLE_;
_DYNAMIC;
_edata;
_PROCEDURE_LINKAGE_TABLE_;
_etext;

SUNW_1.1: {STAND_A, STAND_B}:
SUNW_1.1;

SUNW_1.2: {SUNW_1.1}:
bar;

STAND_A:
foo1;
STAND_A;

STAND_B:
foo2;

Chapter 5 • Application Binary Interfaces and Versioning 139

STAND_B;
SUNW_1.2.1 [WEAK]: {SUNW_1.2}:

SUNW_1.2.1;

Normally, if an application is built against this shared object, the application records a
weak dependency on the version definition SUNW_1.2.1. This dependency is
informational only. This dependency does not cause termination of the application
should the version definition not exist in the libfoo.so.1 used at runtime.

The file control directive $ADDVERS can be used to generate an explicit dependency on
a version definition. If this definition is weak, then this explicit reference also causes
the version definition to be promoted to a strong dependency.

The application prog can be built to enforce the requirement that the SUNW_1.2.1
interface be available at runtime by using the following file control directive:

$ cat mapfile
libfoo.so - SUNW_1.1 $ADDVERS=SUNW_1.2.1;
$ cat prog
extern void foo1();

main()
{

foo1();
}
$ cc -M mapfile -o prog prog.c -L. -R. -lfoo
$ pvs -r prog

libfoo.so.1 (SUNW_1.2.1);

prog has been built with an explicit dependency on the interface STAND_A. Because
the version definition SUNW_1.2.1 is promoted to a strong version, it is also
normalized with the dependency STAND_A. At runtime, if the version definition
SUNW_1.2.1 cannot be found, a fatal error is generated.

Note – When working with a small number of dependencies, you can use the
link-editor’s -u option to explicitly bind to a version definition. Use this option to
reference the version definition symbol. However, a symbol reference is nonselective.
When working with multiple dependencies, that might contain similarly named
version definitions, this technique may be insufficient to create explicit bindings.

Version Stability
The various models for binding to versions within an object only remain intact if the
individual version definitions remain constant over the life time of the object.

140 Linker and Libraries Guide • December 2003

Once a version definition for an object has been created and made public, it must exist
in subsequent releases of that object unchanged. Both the version name and the
symbols associated with it must remain constant. For this reason, wildcard expansion
of the symbol names defined within a version definition is not supported. The number
of symbols matching the wildcard might differ over the course of an objects evolution.

Relocatable Objects
Version information can be recorded and used within dynamic objects. Relocatable
objects can maintain versioning information in a similar manner. However, there are
some subtle differences in how this information is used.

Any version definitions supplied to the link-edit of a relocatable object are recorded in
the same format as they are when building dynamic executables or shared objects.
However, by default, symbol reduction is not carried out on the object being created.
Instead, when the relocatable object is finally used as input to the generation of a
dynamic object, the version recording itself will be used to determine the symbol
reductions to apply.

In addition, any version definitions found in relocatable objects are propagated to the
dynamic object. For an example of version processing in relocatable objects, see
“Reducing Symbol Scope” on page 49.

External Versioning
Runtime references to a shared object should always refer to the file’s version file
name. This is usually expressed as a file name with a version number suffix. When a
shared object’s interface changes in an incompatible manner, such that it will break old
applications, a new shared object should be distributed with a new versioned file
name. In addition, the original versioned file name must still be distributed to provide
the interfaces required by the old applications.

You should provide shared objects as separate versioned file names within the runtime
environment when building applications over a series of software releases. You can
then guarantee that the interface against which the applications were built is available
for them to bind during their execution.

The following section describes how to coordinate the binding of an interface between
the compilation and runtime environments.

Chapter 5 • Application Binary Interfaces and Versioning 141

Coordination of Versioned Filenames
During a link-edit, the most common method to input shared objects is to use the -l
option. This option uses the link-editor’s library search mechanism to locate shared
objects that are prefixed with lib and suffixed with .so.

However, at runtime, any shared object dependencies should exist in their versioned
name form. Instead of maintaining two distinct shared objects that follow these
naming conventions, create file system links between the two file names.

To make the runtime shared object libfoo.so.1 available to the compilation
environment, provide a symbolic link from the compilation file name to the runtime
file name. For example:

$ cc -o libfoo.so.1 -G -K pic foo.c
$ ln -s libfoo.so.1 libfoo.so
$ ls -l libfoo*
lrwxrwxrwx 1 usr grp 11 1991 libfoo.so -> libfoo.so.1

-rwxrwxr-x 1 usr grp 3136 1991 libfoo.so.1

Either a symbolic link or hard link can be used. However, as a documentation and
diagnostic aid, symbolic links are more useful.

The shared object libfoo.so.1 has been generated for the runtime environment.
Generating a symbolic link libfoo.so, has also enabled this file’s use in a
compilation environment. For example:

$ cc -o prog main.o -L. -lfoo

The link-editor processes the relocatable object main.o with the interface described by
the shared object libfoo.so.1, which is found by following the symbolic link
libfoo.so.

Over a series of software releases, new versions of this shared object may be
distributed with changed interfaces. The compilation environment can be constructed
to use the interface that is applicable by changing the symbolic link. For example:

$ ls -l libfoo*
lrwxrwxrwx 1 usr grp 11 1993 libfoo.so -> libfoo.so.3
-rwxrwxr-x 1 usr grp 3136 1991 libfoo.so.1
-rwxrwxr-x 1 usr grp 3237 1992 libfoo.so.2

-rwxrwxr-x 1 usr grp 3554 1993 libfoo.so.3

Three major versions of the shared object are available. Two of these shared objects,
libfoo.so.1 and libfoo.so.2, provide the dependencies for existing
applications. libfoo.so.3 offers the latest major release for creating and running
new applications.

142 Linker and Libraries Guide • December 2003

Using this symbolic link mechanism itself is insufficient to coordinate the correct
binding of a shared object from its use in the compilation environment to its
requirement in the runtime environment. As the example presently stands, the
link-editor records in the dynamic executable prog the file name of the shared object it
has processed. In this case, that file name is the compilation environment file name.

$ dump -Lv prog

prog:
**** DYNAMIC SECTION INFORMATION ****
.dynamic:
[INDEX] Tag Value
[1] NEEDED libfoo.so

.........

When the application prog is executed, the runtime linker searches for the
dependency libfoo.so. prog binds to the file to which this symbolic link is
pointing.

To provide the correct runtime name to be recorded as a dependency, the shared object
libfoo.so.1 should be built with an soname definition. This definition identifies the
shared object’s runtime name. This name is used as the dependency name by any
object that links against this shared object. This definition can be provided using the
-h option during the link-edit of the shared object itself. For example:

$ cc -o libfoo.so.1 -G -K pic -h libfoo.so.1 foo.c
$ ln -s libfoo.so.1 libfoo.so
$ cc -o prog main.o -L. -lfoo
$ dump -Lv prog

prog:
**** DYNAMIC SECTION INFORMATION ****
.dynamic:
[INDEX] Tag Value
[1] NEEDED libfoo.so.1

.........

This symbolic link and the soname mechanism have established a robust coordination
between the shared-object naming conventions of the compilation and runtime
environment. The interface processed during the link-edit is accurately recorded in the
output file generated. This recording ensures that the intended interface are furnished
at runtime.

Chapter 5 • Application Binary Interfaces and Versioning 143

Caution – Creating a new externally versioned shared object is a major change. Be sure
you understand the complete dependencies of any processes that use this shared
object.

For example, an application might have dependencies on libfoo.so.1 and an
externally delivered object libISV.so.1. This latter object might also have a
dependency on libfoo.so.1. If the application is redesigned to use the new
interfaces in libfoo.so.2 without any change to its use of the external object
libISV.so.1, then both major versions of libfoo.so will be brought into the
running process. Because the only reason to change the version of libfoo.so is to
mark an incompatible change, having both versions of the object within a process can
lead to incorrect symbol binding and hence undesirable interactions.

144 Linker and Libraries Guide • December 2003

CHAPTER 6

Support Interfaces

The link-editors provide a number of support interfaces that enable the monitoring,
and in some cases modification, of link-editor and runtime linker processing. These
interfaces typically require a more advanced understanding of link-editing concepts
than has been described in previous chapters. The following interfaces are described
in this chapter:

� ld-support – “Link-Editor Support Interface” on page 145
� rtld-audit – “Runtime Linker Auditing Interface” on page 151
� rtld-debugger – “Runtime Linker Debugger Interface” on page 160

Link-Editor Support Interface
The link-editor performs many operations including the opening of files and the
concatenation of sections from these files. Monitoring, and sometimes modifying,
these operations can often be beneficial to components of a compilation system.

This section describes the ld-support interface for input file inspection, and to some
degree, input file data modification of those files that compose a link-edit. Two
applications that employ this interface are the link-editor itself, which uses it to
process debugging information within relocatable objects, and the make(1S) utility,
which uses it to save state information.

The ld-support interface is composed of a support library that offers one or more
support interface routines. This library is loaded as part of the link-edit process, and
any support routines found are called at various stages of link-editing.

You should be familiar with the elf(3ELF) structures and file format when using this
interface.

145

Invoking the Support Interface
The link-editor accepts one or more support libraries provided by either the
SGS_SUPPORT environment variable or with the link-editor’s -S option. The
environment variable consists of a colon separated list of support libraries:

$ SGS_SUPPORT=./support.so.1:libldstab.so.1 cc ...

The -S option specifies a single support library. Multiple -S options can be specified:

$ LD_OPTIONS="-S./support.so.1 -Slibldstab.so.1" cc ...

A support library is a shared object. The link-editor opens each support library, in the
order they are specified, using dlopen(3DL). If both the environment variable and -S
option are encountered, then the support libraries specified with the environment
variable are processed first. Each support library is then searched, using dlsym(3DL),
for any support interface routines. These support routines are then called at various
stages of link-editing.

A support library must be consistent with the ELF class of the link-editor being
invoked, either 32–bit or 64–bit. See “32–Bit and 64–Bit Environments” on page 146 for
more details.

Note – By default, the Solaris support library libldstab.so.1 is used by the
link-editor to process, and compact, compiler-generated debugging information
supplied within input relocatable objects. This default processing is suppressed if you
invoke the link-editor with any support libraries specified using the -S option. If the
default processing of libldstab.so.1 is required in addition to your support
library services, add libldstab.so.1 explicitly to the list of support libraries
supplied to the link-editor.

32–Bit and 64–Bit Environments
As described in “32–Bit and 64–Bit Environments” on page 20, the 64–bit link-editor
(ld(1)) is capable of generating 32–bit objects and the 32–bit link-editor is capable of
generating 64–bit objects. Each of these objects has an associated support interface
defined.

The support interface for 64–bit objects is similar to that of 32–bit objects, but ends in a
64 suffix, for example ld_start() and ld_start64(). This convention allows both
implementations of the support interface to reside in a single shared object
libldstab.so.1 of each class, 32–bit and 64–bit.

The SGS_SUPPORT environment variable can be specified with a _32 or _64 suffix,
and the link-editor options -z ld32 and -z ld64 can be used to define -S option
requirements. These definitions will only be interpreted, respectively, by the 32–bit or
64–bit class of the link-editor. This enables both classes of support library to be
specified when the class of the link-editor may not be known.

146 Linker and Libraries Guide • December 2003

Support Interface Functions
All ld-support interfaces are defined in the header file link.h. All interface arguments
are basic C types or ELF types. The ELF data types can be examined with the ELF
access library libelf. See elf(3ELF) for a description of libelf contents. The
following interface functions are provided by the ld-support interface, and are
described in their expected order of use.

ld_version()
This function provides the initial handshake between the link-editor and the
support library.

uint_t ld_version(uint_t version);

The link-editor calls this interface with the highest version of the ld-support interface
it is capable of supporting. The support library can verify that this version is
sufficient for its use, and return the version it expects to use. This version is
normally LD_SUP_VCURRENT.

If the support library does not provide this interface, the initial support level
LD_SUP_VERSION1 is assumed.

If the support library returns a version of zero, or a value greater than the ld-support
interface the link-editor supports, the support library will not be used.

ld_start()
This function is called after initial validation of the link-editor command line, and
indicates the start of input file processing.

void ld_start(const char * name, const Elf32_Half type,
const char * caller);

void ld_start64(const char * name, const Elf64_Half type,
const char * caller);

name is the output file name being created. type is the output file type, which is
either ET_DYN, ET_REL, or ET_EXEC, as defined in sys/elf.h. caller is the
application calling the interface, which is normally /usr/ccs/bin/ld.

ld_file()
This function is called for each input file before any processing of the files data is
carried out.

void ld_file(const char * name, const Elf_Kind kind, int flags,
Elf * elf);

void ld_file64(const char * name, const Elf_Kind kind, int flags,
Elf * elf);

name is the input file about to be processed. kind indicates the input file type, which
is either ELF_K_AR, or ELF_K_ELF, as defined in libelf.h. flags indicates how
the link-editor obtained the file, and can be one or more of the following definitions:

Chapter 6 • Support Interfaces 147

� LD_SUP_DERIVED – The file name was not explicitly named on the command
line. It was either derived from a -l expansion, or it identifies an extracted
archive member.

� LD_SUP_EXTRACTED – The file was extracted from an archive.
� LD_SUP_INHERITED – The file was obtained as a dependency of a

command-line shared object.

If no flags values are specified then the input file has been explicitly named on the
command line. elf is a pointer to the file’s ELF descriptor.

ld_input_section()
This function is called for each section of the input file. This function is called
before the link-editor has determined whether the section should be propagated to
the output file. This function differs from ld_section() processing, which is only
called for sections that contribute to the output file.

void ld_input_section(const char * name, Elf32_Shdr ** shdr,
Elf32_Word sndx, Elf_Data * data, Elf * elf, unit_t flags);

void ld_input_section64(const char * name, Elf64_Shdr ** shdr,
Elf64_Word sndx, Elf_Data * data, Elf * elf, uint_t flags);

name is the input section name. shdr is a pointer to the associated section header.
sndx is the section index within the input file. data is a pointer to the associated data
buffer. elf is a pointer to the file’s ELF descriptor. flags is reserved for future use.

Modification of the section header is permitted by reallocating a section header and
reassigning the *shdr to the new header. The link-editor uses the section header
information that *shdr points to upon return from ld_input_section() to
process the section.

You can modify the data by reallocating the data and reassigning the Elf_Data
buffer’s d_buf pointer. Any modification to the data should ensure the correct
setting of the Elf_Data buffer’s d_size element. For input sections that become
part of the output image, setting the d_size element to zero effectively removes
the data from the output image.

The flags field points to a uint_t data field that is initially zero filled. No flags are
currently assigned, although the ability to assign flags in future updates, by the
link-editor or the support library, is provided.

ld_section()
This function is called for each section of the input file that will be propagated to
the output file, but before any processing of the section data is carried out.

void ld_section(const char * name, Elf32_Shdr * shdr,
Elf32_Word sndx, Elf_Data * data, Elf * elf);

void ld_section64(const char * name, Elf64_Shdr * shdr,
Elf64_Word sndx, Elf_Data * data, Elf * elf);

148 Linker and Libraries Guide • December 2003

name is the input section name. shdr is a pointer to the associated section header.
sndx is the section index within the input file. data is a pointer to the associated data
buffer. elf is a pointer to the files ELF descriptor.

You can modify the data by reallocating the data itself and reassigning the
Elf_Data buffer’s d_buf pointer. Any modification to the data should ensure the
correct setting of the Elf_Data buffer’s d_size element. For input sections that
will become part of the output image, setting the d_size element to zero will
effectively remove the data from the output image.

Note – Any sections that are stripped by use of the link-editor’s -s option, or
discarded due to SHT_SUNW_COMDAT processing or SHF_EXCLUDE identification
(see Table 7–14), are not reported to ld_section(). See “COMDAT Section”
on page 199.

ld_input_done()
This function is called when input file processing is complete but before the output
file is laid out.

void ld_input_done(uint_t flags);

The flags field points to a uint_t data field that is initially zero filled. No flags are
currently assigned, although the ability to assign flags in future updates, by the
link-editor or the support library, is provided.

ld_atexit()
This function is called when the link-edit is complete.

void ld_atexit(int status);

void ld_atexit64(int status);

status is the exit(2) code that will be returned by the link-editor and is either
EXIT_FAILURE or EXIT_SUCCESS, as defined in stdlib.h.

Support Interface Example
The following example creates a support library that prints the section name of any
relocatable object file processed as part of a 32–bit link-edit.

$ cat support.c
#include <link.h>
#include <stdio.h>

static int indent = 0;

void
ld_start(const char * name, const Elf32_Half type,

Chapter 6 • Support Interfaces 149

const char * caller)
{

(void) printf("output image: %s\n", name);
}

void
ld_file(const char * name, const Elf_Kind kind, int flags,

Elf * elf)
{

if (flags & LD_SUP_EXTRACTED)
indent = 4;

else
indent = 2;

(void) printf("%*sfile: %s\n", indent, "", name);
}

void
ld_section(const char * name, Elf32_Shdr * shdr, Elf32_Word sndx,

Elf_Data * data, Elf * elf)
{

Elf32_Ehdr * ehdr = elf32_getehdr(elf);

if (ehdr->e_type == ET_REL)
(void) printf("%*s section [%ld]: %s\n", indent,

"", (long)sndx, name);

}

This support library is dependent upon libelf to provide the ELF access function
elf32_getehdr(3ELF) that is used to determine the input file type. The support
library is built using:

$ cc -o support.so.1 -G -K pic support.c -lelf -lc

The following example shows the section diagnostics resulting from the construction
of a trivial application from a relocatable object and a local archive library. The
invocation of the support library, in addition to default debugging information
processing, is brought about by the -S option usage.

$ LD_OPTIONS="-S./support.so.1 -Slibldstab.so.1" \
cc -o prog main.c -L. -lfoo

output image: prog
file: /opt/COMPILER/crti.o

section [1]: .shstrtab
section [2]: .text
.......

file: /opt/COMPILER/crt1.o
section [1]: .shstrtab
section [2]: .text
.......

file: /opt/COMPILER/values-xt.o
section [1]: .shstrtab
section [2]: .text
.......

150 Linker and Libraries Guide • December 2003

file: main.o
section [1]: .shstrtab
section [2]: .text
.......

file: ./libfoo.a
file: ./libfoo.a(foo.o)

section [1]: .shstrtab
section [2]: .text
.......

file: /usr/lib/libc.so
file: /opt/COMPILER/crtn.o

section [1]: .shstrtab
section [2]: .text
.......

file: /usr/lib/libdl.so.1

Note – The number of sections displayed in this example have been reduced to
simplify the output. Also, the files included by the compiler driver can vary.

Runtime Linker Auditing Interface
The rtld-audit interface enables a process to access runtime linking information
regarding itself. An example of using this mechanism is the runtime profiling of
shared objects described in “Profiling Shared Objects” on page 121.

The rtld-audit interface is implemented as an audit library that offers one or more
auditing interface routines. If this library is loaded as part of a process, the audit
routines are called by the runtime linker at various stages of process execution. These
interfaces enable the audit library to access:

� The search for dependencies. Search paths may be substituted by the audit library.
� Information regarding loaded objects.
� Symbol bindings that occur between loaded objects. These bindings can be altered

by the audit library.
� Exploitation of the lazy binding mechanism provided by procedure linkage table

entries to allow auditing of function calls and their return values. The arguments to
a function and its return value can be modified by the audit library. See “Procedure
Linkage Table (Processor-Specific)” on page 256.

Some of these facilities can be achieved by preloading specialized shared objects.
However, a preloaded object exists within the same namespace as the objects of a
process. This often restricts or complicates the implementation of the preloaded shared

Chapter 6 • Support Interfaces 151

object. The rtld-audit interface offers the user a unique namespace in which to execute
their audit libraries. This namespace ensures that the audit library does not intrude
upon the normal bindings that occur within the process.

Establishing a Namespace
When the runtime linker binds a dynamic executable with its dependencies, it
generates a linked list of link-maps to describe the process. The link-map structure,
defined in /usr/include/sys/link.h, describes each object within the process.
The symbol search mechanism required to bind objects of an application traverses this
list of link-maps. This link-map list is said to provide the namespace for process symbol
resolution.

The runtime linker itself is also described by a link-map. This link-map is maintained
on a different list from that of the application objects. The runtime linker therefore
resides in its own unique name space, which prevents any direct binding of the
application to services within the runtime linker. An application can only call upon the
public services of the runtime linker by the filter libdl.so.1.

The rtld-audit interface employs its own link-map list on which it maintains any audit
libraries. The audit libraries are thus isolated from the symbol binding requirements of
the application. Inspection of the application link-map list is possible with
dlmopen(3DL). When used with the RTLD_NOLOAD flag, dlmopen(3DL) allows the
audit library to query an object’s existence without causing its loading.

Two identifiers are defined in /usr/include/link.h to define the application and
runtime linker link-map lists:

#define LM_ID_BASE 0 /* application link-map list */

#define LM_ID_LDSO 1 /* runtime linker link-map list */

Each rtld-audit support library is assigned a unique new link-map identifier.

Creating an Audit Library
An audit library is built like any other shared object. Its unique namespace within a
process requires some additional care.

� The library must provide all dependency requirements.
� The library should not use system interfaces that do not provide for multiple

instances of the interface within a process.

If the audit library calls printf(3C), then the audit library must define a dependency
on libc. See “Generating a Shared Object Output File” on page 42. Because the audit
library has a unique namespace, symbol references cannot be satisfied by the libc
present in the application being audited. If an audit library has a dependency on

152 Linker and Libraries Guide • December 2003

libc, then two versions of libc.so.1 are loaded into the process. One version
satisfies the binding requirements of the application link-map list. The other version
satisfies the binding requirements of the audit link-map list.

To ensure that audit libraries are built with all dependencies recorded, use the
link-editors -z defs option.

Some system interfaces assume that they are the only instance of their implementation
within a process, for example, signals and malloc(3C). Audit libraries should avoid
using such interfaces, as doing so can inadvertently alter the behavior of the
application.

Note – An audit library can allocate memory using mapmalloc(3MALLOC), as this
allocation method can exist with any allocation scheme normally employed by the
application.

Invoking the Auditing Interface
The rtld-audit interface is enabled by one of two means. Each method implies a scope
to the objects that are audited.

� Global auditing is enabled using the environment variable LD_AUDIT. The audit
libraries made available by this method are provided with information regarding
all dynamic objects used by the process.

� Local auditing is enabled through dynamic entries recorded within an object at the
time it was built. The audit libraries made available by this method are provided
with information regarding those dynamic objects identified for auditing.

Either method of invocation consists of a string that contains a colon-separated list of
shared objects that are loaded by dlmopen(3DL). Each object is loaded onto its own
audit link-map list. Each object is searched for audit routines using dlsym(3DL).
Audit routines that are found are called at various stages during the applications
execution.

The rtld-audit interface enables multiple audit libraries to be supplied. Audit libraries
that expect to be employed in this fashion should not alter the bindings that would
normally be returned by the runtime linker. Alteration of these bindings can produce
unexpected results from audit libraries that follow.

Secure applications can only obtain audit libraries from trusted directories. By default,
the only trusted directory known to the runtime linker for 32–bit objects is
/usr/lib/secure. For 64–bit objects, the trusted directory is
/usr/lib/secure/64.

Chapter 6 • Support Interfaces 153

Recording Local Auditors
Local auditing requirements can be established when an object is built using the
link-editor options -p or -P. For example, to audit libfoo.so.1, with the audit
library audit.so.1, record the requirement at link-edit time using the -p option:

$ cc -G -o libfoo.so.1 -Wl,-paudit.so.1 -K pic foo.c
$ dump -Lv libfoo.so.1 | fgrep AUDIT
[3] AUDIT audit.so.1

At runtime, the existence of this audit identifier results in the audit library being
loaded and information being passed to it regarding the identifying object.

With this mechanism alone, information such as searching for the identifying object
has occurred prior to the audit library being loaded. To provide as much auditing
information as possible, the existence of an object requiring local auditing is
propagated to users of that object. For example, if an application is built that depends
on libfoo.so.1, then the application is identified to indicate its dependencies
require auditing:

$ cc -o main main.c libfoo.so.1
$ dump -Lv main | fgrep AUDIT
[5] DEPAUDIT audit.so.1

The auditing enabled via this mechanism results in the audit library being passed
information regarding all of the applications explicit dependencies. This dependency
auditing can also be recorded directly when creating an object by using the
link-editor’s -P option:

$ cc -o main main.c -Wl,-Paudit.so.1
$ dump -Lv main | fgrep AUDIT
[5] DEPAUDIT audit.so.1

Note – Auditing can be disabled at runtime by setting the environment variable
LD_NOAUDIT to a non-null value.

Audit Interface Functions
The following functions are provided by the rtld-audit interface and are described in
their expected order of use.

Note – References to architecture, or object class specific interfaces are reduced to their
generic name to simplify the discussions. For example, a reference to
la_symbind32() and la_symbind64() is specified as la_symbind().

154 Linker and Libraries Guide • December 2003

la_version()
This function provides the initial handshake between the runtime linker and the
audit library. This interface must be provided for the audit library to be loaded.

uint_t la_version(uint_t version);

The runtime linker calls this interface with the highest version of the rtld-audit
interface it is capable of supporting. The audit library can verify that this version is
sufficient for its use, and return the version it expects to use. This version is
normally LAV_CURRENT, which is defined in /usr/include/link.h.

If the audit library return is zero, or a version greater than the rtld-audit interface the
runtime linker supports, the audit library is discarded.

la_activity()
This function informs an auditor that link-map activity is occurring.

void la_activity(uintptr_t * cookie, uint_t flags);

cookie identifies the object heading the link-map. flags indicates the type of activity
as defined in /usr/include/link.h:

� LA_ACT_ADD – Objects are being added to the link-map list.
� LA_ACT_DELETE – Objects are being deleted from the link-map list.
� LA_ACT_CONSISTENT – Object activity has been completed.

la_objsearch()
This function informs an auditor that an object is about to be searched for.

char * la_objsearch(const char * name, uintptr_t * cookie, uint_t flags);

name indicates the file or path name being searched for. cookie identifies the object
initiating the search. flags identifies the origin and creation of name as defined in
/usr/include/link.h:

� LA_SER_ORIG – This is the initial search name. Typically, this indicates the file
name that is recorded as a DT_NEEDED entry, or the argument supplied to
dlmopen(3DL).

� LA_SER_LIBPATH – The path name has been created from a
LD_LIBRARY_PATH component.

� LA_SER_RUNPATH – The path name has been created from a runpath
component.

� LA_SER_DEFAULT – The path name has been created from a default search path
component.

� LA_SER_CONFIG – The path component originated from a configuration file.
See the crle(1) man page.

� LA_SER_SECURE – The path component is specific to secure objects.

The return value indicates the search path name that the runtime linker should
continue to process. A value of zero indicates that this path should be ignored. An
audit library that simply monitors search paths should return name.

Chapter 6 • Support Interfaces 155

la_objopen()
This function is called each time a new object is loaded by the runtime linker.

uint_t la_objopen(Link_map * lmp, Lmid_t lmid, uintptr_t * cookie);

lmp provides the link-map structure that describes the new object. lmid identifies the
link-map list to which the object has been added. cookie provides a pointer to an
identifier. This identifier is initialized to the objects lmp. This identifier can be
modified by the audit library to better identify the object to other rtld-audit interface
routines

The la_objopen() function returns a value that indicates the symbol bindings of
interest for this object. These values can result in later calls to la_symbind(). The
return value is a mask of the following values defined in/usr/include/link.h:

� LA_FLG_BINDTO – Audit symbol bindings to this object.
� LA_FLG_BINDFROM – Audit symbol bindings from this object.

See the la_symbind() function for more details on the use of these two flags.

A return value of zero indicates that binding information is of no interest for this
object.

la_preinit()
This function is called once after all objects have been loaded for the application,
but before transfer of control to the application occurs.

void la_preinit(uintptr_t * cookie);

cookie identifies the primary object that started the process, normally the dynamic
executable.

la_symbind()
This function is called when a binding occurs between two objects that have been
tagged for binding notification from la_objopen().

uintptr_t la_symbind32(Elf32_Sym * sym, uint_t ndx,
uintptr_t * refcook, uintptr_t * defcook, uint_t * flags);

uintptr_t la_symbind64(Elf64_Sym * sym, uint_t ndx,
uintptr_t * refcook, uintptr_t * defcook, uint_t * flags,
const char * sym_name);

sym is a constructed symbol structure, whose sym->st_value indicates the
address of the symbol definition being bound. See /usr/include/sys/elf.h.
la_symbind32() adjusts the sym->st_name to point to the actual symbol name.
la_symbind64() leaves sym->st_name to be the index into the bound objects
string table.

156 Linker and Libraries Guide • December 2003

ndx indicates the symbol index within the bound object’s dynamic symbol table.
refcook describes the object making reference to this symbol. This identifier is the
same identifier as passed to the la_objopen() function that returned
LA_FLG_BINDFROM. defcook describes the object defining this symbol. This
identifier is the same as passed to the la_objopen() that returned
LA_FLG_BINDTO.

flags points to a data item that can convey information regarding the binding. This
data item can be used to modify the continued auditing of procedure linkage table
entries. This value is a mask of the following flags defined in
/usr/include/link.h:

� LA_SYMB_NOPLTENTER – The la_pltenter() function is not called for this
symbol.

� LA_SYMB_NOPLTEXIT – The la_pltexit() function is not called for this
symbol.

� LA_SYMB_DLSYM – The symbol binding occurred as a result of calling
dlsym(3DL).

� LA_SYMB_ALTVALUE (LAV_VERSION2) – An alternate value was returned for
the symbol value by a previous call to la_symbind().

By default, if la_pltenter() or la_pltexit() functions exist, they are called
after la_symbind() for procedure linkage table entries each time the symbol is
referenced. See also “Audit Interface Limitations” on page 160.

The return value indicates the address to which control should be passed following
this call. An audit library that simply monitors symbol binding should return the
value of sym->st_value so that control is passed to the bound symbol definition.
An audit library can intentionally redirect a symbol binding by returning a different
value.

sym_name, which is applicable for la_symbind64() only, contains the name of the
symbol being processed. This name is available in the sym->st_name field for the
32–bit interface.

la_pltenter()
These functions are called on a SPARC and x86 system respectively. These functions
are called when a procedure linkage table entry, between two objects that have been
tagged for binding notification, is called.

uintptr_t la_sparcv8_pltenter(Elf32_Sym * sym, uint_t ndx,
uintptr_t * refcook, uintptr_t * defcook,
La_sparcv8_regs * regs, uint_t * flags);

uintptr_t la_sparcv9_pltenter(Elf64_Sym * sym, uint_t ndx,
uintptr_t * refcook, uintptr_t * defcook,
La_sparcv9_regs * regs, uint_t * flags,
const char * sym_name);

uintptr_t la_i86_pltenter(Elf32_Sym * sym, uint_t ndx,
uintptr_t * refcook, uintptr_t * defcook,
La_i86_regs * regs, uint_t * flags);

Chapter 6 • Support Interfaces 157

sym, ndx, refcook, defcook and sym_name provide the same information as passed to
la_symbind().

regs points to the out registers on a SPARC system, and the stack and frame
registers on a x86 system, as defined in /usr/include/link.h.

flags points to a data item that can convey information regarding the binding. This
data can be used to modify the continuing auditing of this procedure linkage table
entry. This data item is the same as pointed to by the flags from la_symbind().
This value is a mask of the following flags defined in /usr/include/link.h:

� LA_SYMB_NOPLTENTER – la_pltenter() is not be called again for this
symbol.

� LA_SYMB_NOPLTEXIT – la_pltexit() is not be called for this symbol.

The return value indicates the address to which control should be passed following
this call. An audit library that simply monitors symbol binding should return the
value of sym->st_value so that control is passed to the bound symbol definition.
An audit library can intentionally redirect a symbol binding by returning a different
value.

la_pltexit()
This function is called when a procedure linkage table entry, between two objects
that have been tagged for binding notification, returns. This function is called
before control reaches the caller.

uintptr_t la_pltexit(Elf32_Sym * sym, uint_t ndx, uintptr_t * refcook,
uintptr_t * defcook, uintptr_t retval);

uintptr_t la_pltexit64(Elf64_Sym * sym, uint_t ndx, uintptr_t * refcook,
uintptr_t * defcook, uintptr_t retval, const char * sym_name);

sym, ndx, refcook, defcook and sym_name provide the same information as passed to
la_symbind(). retval is the return code from the bound function. An audit library
that simply monitors symbol binding should return retval. An audit library can
intentionally return a different value.

Note – The la_pltexit() interface is experimental. See “Audit Interface
Limitations” on page 160.

la_objclose()
This function is called after any termination code for an object has been executed
and prior to the object being unloaded.

uint_t la_objclose(uintptr_t * cookie);

cookie identifies the object, and was obtained from a previous la_objopen(). Any
return value is presently ignored.

158 Linker and Libraries Guide • December 2003

Audit Interface Example
The following simple example creates an audit library that prints the name of each
shared object dependency loaded by the dynamic executable date(1).

$ cat audit.c
#include <link.h>
#include <stdio.h>

uint_t
la_version(uint_t version)
{

return (LAV_CURRENT);
}

uint_t
la_objopen(Link_map * lmp, Lmid_t lmid, uintptr_t * cookie)
{

if (lmid == LM_ID_BASE)
(void) printf("file: %s loaded\n", lmp->l_name);

return (0);
}
$ cc -o audit.so.1 -G -K pic -z defs audit.c -lmapmalloc -lc
$ LD_AUDIT=./audit.so.1 date
file: date loaded
file: /usr/lib/libc.so.1 loaded
file: /usr/lib/libdl.so.1 loaded
file: /usr/lib/locale/en_US/en_US.so.2 loaded

Thur Aug 10 17:03:55 PST 2000

Audit Interface Demonstrations
A number of demonstration applications that use the rtld-audit interface are provided
in the SUNWosdem package under /usr/demo/link_audit:

sotruss
This demo provides tracing of procedure calls between the dynamic objects of a
named application.

whocalls
This demo provides a stack trace for a specified function whenever called by a
named application.

perfcnt
This demo traces the amount of time spent in each function for a named
application.

symbindrep
This demo reports all symbol bindings performed to load a named application.

Chapter 6 • Support Interfaces 159

sotruss(1) and whocalls(1) are included in the SUNWtoo package. perfcnt and
symbindrep are example programs. They are not intended for use in a production
environment.

Audit Interface Limitations
There are some limitations to the use of the la_pltexit() family. These limitations
stem from the need to insert an extra stack frame between the caller and callee to
provide a la_pltexit() return value. This requirement is not a problem when
calling just the la_pltenter() routines, as. In this case, any intervening stack can be
cleaned up prior to transferring control to the destination function.

Because of these limitations, la_pltexit() should be considered an experimental
interface. When in doubt, avoid the use of the la_pltexit() routines.

Functions That Directly Inspect the Stack
A small number of functions exist that directly inspect the stack or make assumptions
of its state. Some examples of these functions are the setjmp(3C) family, vfork(2),
and any function that returns a structure, not a pointer to a structure. These functions
are compromised by the extra stack created to support la_pltexit().

The runtime linker cannot detect functions of this type, and thus the audit library
creator is responsible for disabling la_pltexit() for such routines.

Runtime Linker Debugger Interface
The runtime linker performs many operations including the mapping of objects into
memory and the binding of symbols. Debugging programs often need to access
information that describes these runtime linker operations as part of analyzing an
application. These debugging programs run as a separate process to the application
they are analyzing.

This section describes the rtld-debugger interface for monitoring and modifying a
dynamically linked application from another process. The architecture of this interface
follows the model used in libthread_db(3THR).

When using the rtld-debugger interface, at least two processes are involved:

� One or more target processes. The target processes must be dynamically linked and
use the runtime linker /usr/lib/ld.so.1 for 32–bit processes, or
/usr/lib/64/ld.so.1 for 64–bit processes.

160 Linker and Libraries Guide • December 2003

� A controlling process links with the rtld-debugger interface library and uses it to
inspect the dynamic aspects of the target processes. A 64–bit controlling process
can debug both 64–bit and 32–bit targets. However, a 32–bit controlling process is
limited to 32–bit targets.

The most anticipated use of the rtld-debugger interface is when the controlling process
is a debugger and its target is a dynamic executable.

The rtld-debugger interface enables the following activities with a target process:

� Initial rendezvous with the runtime linker.
� Notification of the loading and unloading of dynamic objects.
� Retrieval of information regarding any loaded objects.
� Stepping over procedure linkage table entries.
� Enabling object padding.

Interaction Between Controlling and Target Process
To be able to inspect and manipulate a target process, the rtld-debugger interface
employs an exported interface, an imported interface, and agents for communicating
between these interfaces.

The controlling process is linked with the rtld-debugger interface provided by
librtld_db.so.1, and makes requests of the interface exported from this library.
This interface is defined in /usr/include/rtld_db.h. In turn, librtld_db.so.1
makes requests of the interface imported from the controlling process. This interaction
allows the rtld-debugger interface to:

� Look up symbols in a target process.
� Read and write memory in the target process.

The imported interface consists of a number of proc_service routines that most
debuggers already employ to analyze processes. These routines are described in
“Debugger Import Interface” on page 171.

The rtld-debugger interface assumes that the process being analyzed is stopped when
requests are made of the rtld-debugger interface. If this halt does not occur, data
structures within the runtime linker of the target process might not be in a consistent
state for examination.

The flow of information between librtld_db.so.1, the controlling process
(debugger) and the target process (dynamic executable) is diagrammed in the
following figure.

Chapter 6 • Support Interfaces 161

rtld_db

/proc

Debugger

Linker info request

Process data

Linker
 info

R/W process
request

Dynamic
application

Controlling
process

Target
process

FIGURE 6–1 rtld-debugger Information Flow

Note – The rtld-debugger interface is dependent upon the proc_service interface,
/usr/include/proc_service.h, which is considered experimental. The
rtld-debugger interface might have to track changes in the proc_service interface as
it evolves.

A sample implementation of a controlling process that uses the rtld-debugger interface
is provided in the SUNWosdem package under /usr/demo/librtld_db. This
debugger, rdb, provides an example of using the proc_service imported interface,
and shows the required calling sequence for all librtld_db.so.1 exported
interfaces. The following sections describe the rtld-debugger interfaces. More detailed
information can be obtained by examining the sample debugger.

Debugger Interface Agents
An agent provides an opaque handle that can describe internal interface structures.
The agent also provides a mechanism of communication between the exported and
imported interfaces. The rtld-debugger interface is intended to be used by a debugger
which can manipulate several processes at the same time, these agents are used to
identify the process.

162 Linker and Libraries Guide • December 2003

struct ps_prochandle
Is an opaque structure that is created by the controlling process to identify the
target process that is passed between the exported and imported interface.

struct rd_agent
Is an opaque structure created by the rtld-debugger interface that identifies the target
process that is passed between the exported and imported interface.

Debugger Exported Interface
This section describes the various interfaces exported by the
/usr/lib/librtld_db.so.1 audit library. It is broken down into functional
groups.

Agent Manipulation Interfaces
rd_init()

This function establishes the rtld-debugger version requirements. The base version is
defined as RD_VERSION1. The current version is always defined by RD_VERSION.

rd_err_e rd_init(int version);

Version RD_VERSION2, added in Solaris 8 10/00, extends the rd_loadobj_t
structure. See the rl_flags, rl_bend and rl_dynamic fields in “Scanning
Loadable Objects” on page 164.

Version RD_VERSION3, added in Solaris 8 01/01, extends the rd_plt_info_t
structure. See the pi_baddr and pi_flags fields in “Procedure Linkage Table
Skipping” on page 168.

If the version requirement of the controlling process is greater than the rtld-debugger
interface available, then RD_NOCAPAB is returned.

rd_new()
This function creates a new exported interface agent.

rd_agent_t * rd_new(struct ps_prochandle * php);

php is a cookie created by the controlling process to identify the target process. This
cookie is used by the imported interface offered by the controlling process to
maintain context, and is opaque to the rtld-debugger interface.

rd_reset()
This function resets the information within the agent based off the same
ps_prochandle structure given to rd_new().

rd_err_e rd_reset(struct rd_agent * rdap);

This function is called when a target process is restarted.

Chapter 6 • Support Interfaces 163

rd_delete()
This function deletes an agent and frees any state associated with it.

void rd_delete(struct rd_agent * rdap);

Error Handling
The following error states can be returned by the rtld-debugger interface (defined in
rtld_db.h):

typedef enum {
RD_ERR,
RD_OK,
RD_NOCAPAB,
RD_DBERR,
RD_NOBASE,
RD_NODYNAM,
RD_NOMAPS

} rd_err_e;

The following interfaces can be used to gather the error information.

rd_errstr()
This function returns a descriptive error string describing the error code rderr.

char * rd_errstr(rd_err_e rderr);

rd_log()
This function turns logging on (1) or off (0).

void rd_log(const int onoff);

When logging is turned on, the imported interface function ps_plog() provided
by the controlling process, is called with more detailed diagnostic information.

Scanning Loadable Objects
You can obtain information for each object maintained on the runtime linkers
link-map is achieved by using the following structure, defined in rtld_db.h:

typedef struct rd_loadobj {
psaddr_t rl_nameaddr;
unsigned rl_flags;
psaddr_t rl_base;
psaddr_t rl_data_base;
unsigned rl_lmident;
psaddr_t rl_refnameaddr;
psaddr_t rl_plt_base;
unsigned rl_plt_size;
psaddr_t rl_bend;
psaddr_t rl_padstart;
psaddr_t rl_padend;

164 Linker and Libraries Guide • December 2003

psaddt_t rl_dynamic;

} rd_loadobj_t;

Notice that all addresses given in this structure, including string pointers, are
addresses in the target process and not in the address space of the controlling process
itself.

rl_nameaddr
A pointer to a string that contains the name of the dynamic object.

rl_flags
With revision RD_VERSION2, dynamically loaded relocatable objects are identified
with RD_FLG_MEM_OBJECT.

rl_base
The base address of the dynamic object.

rl_data_base
The base address of the data segment of the dynamic object.

rl_lmident
The link-map identifier (see “Establishing a Namespace” on page 152).

rl_refnameaddr
If the dynamic object is a filter, then this points to the name of the filtees.

rl_plt_base, rl_plt_size
These elements are present for backward compatibility and are currently unused.

rl_bend
The end address of the object (text + data + bss). With revision RD_VERSION2,
a dynamically loaded relocatable object will cause this element to point to the end
of the created object, which will include its section headers.

rl_padstart
The base address of the padding before the dynamic object (refer to “Dynamic
Object Padding” on page 170).

rl_padend
The base address of the padding after the dynamic object (refer to “Dynamic Object
Padding” on page 170).

rl_dynamic
This field, added with RD_VERSION2, provides the base address of the object’s
dynamic section, which allows reference to such entries as DT_CHECKSUM (see Table
7–43).

The rd_loadobj_iter() routine uses this object data structure to access
information from the runtime linker’s link-map lists:

rd_loadobj_iter()
This function iterates over all dynamic objects currently loaded in the target
process.

Chapter 6 • Support Interfaces 165

typedef int rl_iter_f(const rd_loadobj_t *, void *);

rd_err_e rd_loadobj_iter(rd_agent_t * rap, rl_iter_f * cb,
void * clnt_data);

On each iteration the imported function specified by cb is called. clnt_data can be
used to pass data to the cb call. Information about each object is returned via a
pointer to a volatile (stack allocated) rd_loadobj_t structure.

Return codes from the cb routine are examined by rd_loadobj_iter() and have
the following meaning:

� 1 – continue processing link-maps.
� 0 – stop processing link-maps and return control to the controlling process.

rd_loadobj_iter() returns RD_OK on success. A return of RD_NOMAPS indicates
the runtime linker has not yet loaded the initial link-maps.

Event Notification
A controlling process can track certain events that occur within the scope of the
runtime linker that. These events are:

RD_PREINIT
The runtime linker has loaded and relocated all the dynamic objects and is about to
start calling the .init sections of each object loaded.

RD_POSTINIT
The runtime linker has finished calling all of the .init sections and is about to
transfer control to the primary executable.

RD_DLACTIVITY
The runtime linker has been invoked to either load or unload a dynamic object.

These events can be monitored using the following interface, defined in sys/link.h
and rtld_db.h:

typedef enum {
RD_NONE = 0,
RD_PREINIT,
RD_POSTINIT,
RD_DLACTIVITY

} rd_event_e;

/*
* Ways that the event notification can take place:
*/
typedef enum {

RD_NOTIFY_BPT,
RD_NOTIFY_AUTOBPT,
RD_NOTIFY_SYSCALL

} rd_notify_e;

166 Linker and Libraries Guide • December 2003

/*
* Information on ways that the event notification can take place:
*/
typedef struct rd_notify {

rd_notify_e type;
union {

psaddr_t bptaddr;
long syscallno;

} u;

} rd_notify_t;

The following functions track events:

rd_event_enable()
This function enables (1) or disables (0) event monitoring.

rd_err_e rd_event_enable(struct rd_agent * rdap, int onoff);

Note – Presently, for performance reasons, the runtime linker ignores event
disabling. The controlling process should not assume that a given break-point can
not be reached because of the last call to this routine.

rd_event_addr()
This function specifies how the controlling program is notified of a given event.

rd_err_e rd_event_addr(rd_agent_t * rdap, rd_event_e event,
rd_notify_t * notify);

Depending on the event type, the notification of the controlling process takes place
by calling a benign, cheap system call that is identified by notify-
>u.syscallno, or executing a break point at the address specified by
notify->u.bptaddr. The controlling process is responsible for tracing the system
call or place the actual break-point.

When an event has occurred, additional information can be obtained by this interface,
defined in rtld_db.h:

typedef enum {
RD_NOSTATE = 0,
RD_CONSISTENT,
RD_ADD,
RD_DELETE

} rd_state_e;

typedef struct rd_event_msg {
rd_event_e type;
union {

rd_state_e state;
} u;

} rd_event_msg_t;

Chapter 6 • Support Interfaces 167

The rd_state_e values are:

RD_NOSTATE
There is no additional state information available.

RD_CONSISTANT
The link-maps are in a stable state and can be examined.

RD_ADD
A dynamic object is in the process of being loaded and the link-maps are not in a
stable state. They should not be examined until the RD_CONSISTANT state is
reached.

RD_DELETE
A dynamic object is in the process of being deleted and the link-maps are not in a
stable state. They should not be examined until the RD_CONSISTANT state is
reached.

The rd_event_getmsg() function is used to obtain this event state information.

rd_event_getmsg()
This function provides additional information concerning an event.

rd_err_e rd_event_getmsg(struct rd_agent * rdap, rd_event_msg_t * msg);

The following table shows the possible state for each of the different event types.

RD_PREINIT RD_POSTINIT RD_DLACTIVITY

RD_NOSTATE RD_NOSTATE RD_CONSISTANT

RD_ADD

RD_DELETE

Procedure Linkage Table Skipping
The rtld-debugger interface enables a controlling process to skip over procedure linkage
table entries. When a controlling process, such as a debugger, is asked to step into a
function for the first time, the procedure linkage table processing, causes control to be
passed to the runtime linker to search for the function definition.

The following interface enables a controlling process to step over the runtime linker’s
procedure linkage table processing. The controlling process can determine when a
procedure linkage table entry is encountered based on external information provided
in the ELF file.

Once a target process has stepped into a procedure linkage table entry, the process
calls the rd_plt_resolution() interface:

168 Linker and Libraries Guide • December 2003

rd_plt_resolution()
This function returns the resolution state of the current procedure linkage table
entry and information on how to skip it.

rd_err_e rd_plt_resolution(rd_agent_t * rdap, paddr_t pc,
lwpid_t lwpid, paddr_t plt_base, rd_plt_info_t * rpi);

pc represents the first instruction of the procedure linkage table entry. lwpid
provides the lwp identifier and plt_base provides the base address of the procedure
linkage table. These three variables provide information sufficient for various
architectures to process the procedure linkage table.

rpi provides detailed information regarding the procedure linkage table entry as
defined in the following data structure, defined in rtld_db.h:

typedef enum {
RD_RESOLVE_NONE,
RD_RESOLVE_STEP,
RD_RESOLVE_TARGET,
RD_RESOLVE_TARGET_STEP

} rd_skip_e;

typedef struct rd_plt_info {
rd_skip_e pi_skip_method;
long pi_nstep;
psaddr_t pi_target;
psaddr_t pi_baddr;
unsigned int pi_flags;

} rd_plt_info_t;

#define RD_FLG_PI_PLTBOUND 0x0001

The elements of the rd_plt_info_tstructure are:

pi_skip_method
Identifies how the procedure linkage table entry can be traversed. This method is
set to one of the rd_skip_e values.

pi_nstep
Identifies how many instructions to step over when RD_RESOLVE_STEP or
RD_RESOLVE_TARGET_STEP are returned.

pi_target
Specifies the address at which to set a breakpoint when
RD_RESOLVE_TARGET_STEP or RD_RESOLVE_TARGET are returned.

pi_baddr
The procedure linkage table destination address, added with RD_VERSION3. When
the RD_FLG_PI_PLTBOUND flag of the pi_flags field is set, this element identifies
the resolved (bound) destination address.

pi_flags
A flags field, added with RD_VERSION3. The flag RD_FLG_PI_PLTBOUND identifies
the procedure linkage entry as having been resolved (bound) to its destination

Chapter 6 • Support Interfaces 169

address, which is available in the pi_baddr field.

The following scenarios are possible from the rd_plt_info_t return values:

� The first call through this procedure linkage table must be resolved by the runtime
linker. In this case, the rd_plt_info_t contains:

{RD_RESOLVE_TARGET_STEP, M, <BREAK>, 0, 0}

The controlling process sets a breakpoint at BREAK and continues the target process.
When the breakpoint is reached, the procedure linkage table entry processing has
finished. The controlling process can then step M instructions to the destination
function. Notice that the bound address (pi_baddr) has not been set since this is
the first call through a procedure linkage table entry.

� On the Nth time through this procedure linkage table, rd_plt_info_t contains:

{RD_RESOLVE_STEP, M, 0, <BoundAddr>, RD_FLG_PI_PLTBOUND}

The procedure linkage table entry has already been resolved and the controlling
process can step M instructions to the destination function. The address that the
procedure linkage table entry is bound to is <BoundAddr> and the
RD_FLG_PI_PLTBOUND bit has been set in the flags field.

Dynamic Object Padding
The default behavior of the runtime linker relies on the operating system to load
dynamic objects where they can be most efficiently referenced. Some controlling
processes benefit from the existence of padding around the objects loaded into
memory of the target process. This interface enables a controlling process to request
this padding.

rd_objpad_enable()
This function enables or disables the padding of any subsequently loaded objects
with the target process. Padding occurs on both sides of the loaded object.

rd_err_e rd_objpad_enable(struct rd_agent * rdap, size_t padsize);

padsize specifies the size of the padding, in bytes, to be preserved both before and
after any objects loaded into memory. This padding is reserved as a memory
mapping using mmap(2) with PROT_NONE permissions and the MAP_NORESERVE
flag. Effectively, the runtime linker reserves areas of the virtual address space of the
target process adjacent to any loaded objects. These areas can later be utilized by the
controlling process.

A padsize of 0 disables any object padding for later objects.

170 Linker and Libraries Guide • December 2003

Note – Reservations obtained using mmap(2) from /dev/zero with MAP_NORESERVE
can be reported using the proc(1) facilities and by referring to the link-map
information provided in rd_loadobj_t.

Debugger Import Interface
The imported interface that a controlling process must provide to librtld_db.so.1
is defined in /usr/include/proc_service.h. A sample implementation of these
proc_service functions can be found in the rdb demonstration debugger. The
rtld-debugger interface uses only a subset of the proc_service interfaces available.
Future versions of the rtld-debugger interface might take advantage of additional
proc_service interfaces without creating an incompatible change.

The following interfaces are currently being used by the rtld-debugger interface:

ps_pauxv()
This function returns a pointer to a copy of the auxv vector.

ps_err_e ps_pauxv(const struct ps_prochandle * ph, auxv_t ** aux);

Because the auxv vector information is copied to an allocated structure, the pointer
remains as long as the ps_prochandle is valid.

ps_pread()
This function reads data from the target process.

ps_err_e ps_pread(const struct ps_prochandle * ph, paddr_t addr,
char * buf, int size);

From address addr in the target process, size bytes are copied to buf.

ps_pwrite()
This function writes data to the target process.

ps_err_e ps_pwrite(const struct ps_prochandle * ph, paddr_t addr,
char * buf, int size);

size bytes from buf are copied into the target process at address addr.

ps_plog()
This function is called with additional diagnostic information from the rtld-debugger
interface.

void ps_plog(const char * fmt, ...);

The controlling process determines where, or if, to log this diagnostic information.
The arguments to ps_plog() follow the printf(3C) format.

ps_pglobal_lookup()
This function searches for the symbol in the target process.

Chapter 6 • Support Interfaces 171

ps_err_e ps_pglobal_lookup(const struct ps_prochandle * ph,
const char * obj, const char * name, ulong_t * sym_addr);

The symbol named name is searched for within the object named obj within the
target process ph. If the symbol is found, the symbol address is stored in sym_addr.

ps_pglobal_sym()
This function searches for the symbol in the target process.

ps_err_e ps_pglobal_sym(const struct ps_prochandle * ph,
const char * obj, const char * name, ps_sym_t * sym_desc);

The symbol named name is searched for within the object named obj within the
target process ph. If the symbol is found, the symbol descriptor is stored in
sym_desc.

In the event that the rtld-debugger interface needs to find symbols within the
application or runtime linker prior to any link-map creation, the following reserved
values for obj are available:

#define PS_OBJ_EXEC ((const char *)0x0) /* application id */

#define PS_OBJ_LDSO ((const char *)0x1) /* runtime linker id */

The controlling process can use the procfs file system for these objects, using the
following pseudo code:

ioctl(.., PIOCNAUXV, ...) - obtain AUX vectors
ldsoaddr = auxv[AT_BASE];
ldsofd = ioctl(..., PIOCOPENM, &ldsoaddr);

/* process elf information found in ldsofd ... */

execfd = ioctl(.., PIOCOPENM, 0);

/* process elf information found in execfd ... */

Once the file descriptors are found, the ELF files can be examined for their symbol
information by the controlling program.

172 Linker and Libraries Guide • December 2003

CHAPTER 7

Object File Format

This chapter describes the executable and linking format (ELF) of the object files
produced by the assembler and link-editor. There are three main types of object files:

� A relocatable file holds sections containing code and data. These files are suitable to
be linked with other object files to create executable files, shared object files, or
another relocatable object.

� An executable file holds a program that is ready to execute. The file specifies how
exec(2) creates a program’s process image.

� A shared object file holds code and data suitable to be linked in two contexts. First,
the link-editor can process this file with other relocatable and shared object files to
create other object files. Second, the runtime linker combines this file with a
dynamic executable file and other shared objects to create a process image.

The first section in this chapter, “File Format” on page 173, focuses on the format of
object files and how that pertains to creating programs. The second section, “Dynamic
Linking” on page 230, focuses on how the format pertains to loading programs.

Programs manipulate object files with the functions contained in the ELF access
library, libelf. Refer to the elf(3ELF) man page for a description of libelf
contents. Sample source code that uses libelf is provided in the SUNWosdem
package under the /usr/demo/ELF directory.

File Format
Object files participate in both program linking and program execution. For
convenience and efficiency, the object file format provides parallel views of a file’s
contents, reflecting the differing needs of these activities. The following figure shows
an object file’s organization.

173

Linking view

Segment 1

Program header
table (optional)

Section header
table

ELF header

Section 1

. . .

Section n

. . .

. . .

Execution view

Program header
table

Section header
table (optional)

ELF header

. . .

Segment 2

FIGURE 7–1 Object File Format

An ELF header resides at the beginning of an object file and holds a road map
describing the file’s organization.

Note – Only the ELF header has a fixed position in the file. The flexibility of the ELF
format requires no specified order for header tables, sections or segments. However,
this figure is typical of the layout used in Solaris.

Sections represent the smallest indivisible units that can be processed within an ELF
file. Segments are a collection of sections that represent the smallest individual units
that can be mapped to a memory image by exec(2) or by the runtime linker.

Sections hold the bulk of object file information for the linking view: instructions, data,
symbol table, relocation information, and so on. Descriptions of sections appear in the
first part of this chapter. The second part of this chapter discusses segments and the
program execution view of the file.

A program header table, if present, tells the system how to create a process image.
Files used to generate a process image, executables and shared objects, must have a
program header table; relocatable objects do not need such a table.

174 Linker and Libraries Guide • December 2003

A section header table contains information describing the file’s sections. Every section
has an entry in the table. Each entry gives information such as the section name, the
section size, and so forth. Files used in link-editing must have a section header table;
other object files might or might not have one.

Data Representation
The object file format supports various processors with 8-bit bytes, 32–bit and 64–bit
architectures. Nevertheless, it is intended to be extensible to larger (or smaller)
architectures. Table 7–1 and Table 7–2 list the 32–bit and 64–bit data types.

Object files represent some control data with a machine-independent format. making it
possible to identify object files and interpret their contents in a common way. The
remaining data in an object file use the encoding of the target processor, regardless of
the machine on which the file was created.

TABLE 7–1 ELF 32–Bit Data Types

Name Size Alignment Purpose

Elf32_Addr 4 4 Unsigned program address

Elf32_Half 2 2 Unsigned medium integer

Elf32_Off 4 4 Unsigned file offset

Elf32_Sword 4 4 Signed integer

Elf32_Word 4 4 Unsigned integer

unsigned char 1 1 Unsigned small integer

TABLE 7–2 ELF 64–Bit Data Types

Name Size Alignment Purpose

Elf64_Addr 8 8 Unsigned program address

Elf64_Half 2 2 Unsigned medium integer

Elf64_Off 8 8 Unsigned file offset

Elf64_Sword 4 4 Signed integer

Elf64_Word 4 4 Unsigned integer

Elf64_Xword 8 8 Unsigned long integer

Elf64_Sxword 8 8 Signed long integer

unsigned char 1 1 Unsigned small integer

Chapter 7 • Object File Format 175

All data structures that the object file format defines follow the natural size and
alignment guidelines for the relevant class. If necessary, data structures contain
explicit padding to ensure 4-byte alignment for 4-byte objects, to force structure sizes
to a multiple of 4, and so forth. Data also have suitable alignment from the beginning
of the file. Thus, for example, a structure containing an Elf32_Addr member will be
aligned on a 4-byte boundary within the file, and a structure containing an
Elf64_Addr member will be aligned on an 8–byte boundary.

Note – For portability, ELF uses no bit-fields.

ELF Header
Some object file control structures can grow because the ELF header contains their
actual sizes. If the object file format changes, a program can encounter control
structures that are larger or smaller than expected. Programs might therefore ignore
extra information. The treatment of missing information depends on context and will
be specified if and when extensions are defined.

The ELF header has the following structure, defined in sys/elf.h:

#define EI_NIDENT 16

typedef struct {
unsigned char e_ident[EI_NIDENT];
Elf32_Half e_type;
Elf32_Half e_machine;
Elf32_Word e_version;
Elf32_Addr e_entry;
Elf32_Off e_phoff;
Elf32_Off e_shoff;
Elf32_Word e_flags;
Elf32_Half e_ehsize;
Elf32_Half e_phentsize;
Elf32_Half e_phnum;
Elf32_Half e_shentsize;
Elf32_Half e_shnum;
Elf32_Half e_shstrndx;

} Elf32_Ehdr;

typedef struct {
unsigned char e_ident[EI_NIDENT];
Elf64_Half e_type;
Elf64_Half e_machine;
Elf64_Word e_version;
Elf64_Addr e_entry;
Elf64_Off e_phoff;
Elf64_Off e_shoff;
Elf64_Word e_flags;
Elf64_Half e_ehsize;

176 Linker and Libraries Guide • December 2003

Elf64_Half e_phentsize;
Elf64_Half e_phnum;
Elf64_Half e_shentsize;
Elf64_Half e_shnum;
Elf64_Half e_shstrndx;

} Elf64_Ehdr;

The elements of this structure are:

e_ident
The initial bytes mark the file as an object file and provide machine-independent
data with which to decode and interpret the file’s contents. Complete descriptions
appear in “ELF Identification” on page 180.

e_type
Identifies the object file type, as listed in the following table.

TABLE 7–3 ELF File Identifiers

Name Value Meaning

ET_NONE 0 No file type

ET_REL 1 Relocatable file

ET_EXEC 2 Executable file

ET_DYN 3 Shared object file

ET_CORE 4 Core file

ET_LOPROC 0xff00 Processor-specific

ET_HIPROC 0xffff Processor-specific

Although the core file contents are unspecified, type ET_CORE is reserved to mark
the file. Values from ET_LOPROC through ET_HIPROC (inclusive) are reserved for
processor-specific semantics. Other values are reserved and will be assigned to new
object file types as necessary.

e_machine
Specifies the required architecture for an individual file. Relevant architectures are
listed in the following table.

TABLE 7–4 ELF Machines

Name Value Meaning

EM_NONE 0 No machine

EM_SPARC 2 SPARC

EM_386 3 Intel 80386

Chapter 7 • Object File Format 177

TABLE 7–4 ELF Machines (Continued)
Name Value Meaning

EM_SPARC32PLUS 18 Sun SPARC 32+

EM_SPARCV9 43 SPARC V9

Other values are reserved and will be assigned to new machines as necessary (see
sys/elf.h). Processor-specific ELF names use the machine name to distinguish
them. For example, the flags defined in Table 7–5 use the prefix EF_. A flag named
WIDGET for the EM_XYZ machine would be called EF_XYZ_WIDGET.

e_version
Identifies the object file version, as listed in the following table.

TABLE 7–5 ELF Versions

Name Value Meaning

EV_NONE 0 Invalid version

EV_CURRENT >=1 Current version

The value 1 signifies the original file format. The value of EV_CURRENT changes as
necessary to reflect the current version number.

e_entry
The virtual address to which the system first transfers control, thus starting the
process. If the file has no associated entry point, this member holds zero.

e_phoff
The program header table’s file offset in bytes. If the file has no program header
table, this member holds zero.

e_shoff
The section header table’s file offset in bytes. If the file has no section header table,
this member holds zero.

e_flags
Processor-specific flags associated with the file. Flag names take the form
EF_machine_flag. This member is presently zero for x86. The SPARC flags are
listed in the following table.

TABLE 7–6 SPARC: ELF Flags

Name Value Meaning

EF_SPARC_EXT_MASK 0xffff00 Vendor Extension mask

EF_SPARC_32PLUS 0x000100 Generic V8+ features

178 Linker and Libraries Guide • December 2003

TABLE 7–6 SPARC: ELF Flags (Continued)
Name Value Meaning

EF_SPARC_SUN_US1 0x000200 Sun UltraSPARC™ 1 Extensions

EF_SPARC_HAL_R1 0x000400 HAL R1 Extensions

EF_SPARC_SUN_US3 0x000800 Sun UltraSPARC 3 Extensions

EF_SPARCV9_MM 0x3 Mask for Memory Model

EF_SPARCV9_TSO 0x0 Total Store Ordering

EF_SPARCV9_PSO 0x1 Partial Store Ordering

EF_SPARCV9_RMO 0x2 Relaxed Memory Ordering

e_ehsize
The ELF header’s size in bytes.

e_phentsize
The size in bytes of one entry in the file’s program header table. All entries are the
same size.

e_phnum
The number of entries in the program header table. The product of e_phentsize
and e_phnum gives the table’s size in bytes. If a file has no program header table,
e_phnum holds the value zero.

e_shentsize
A section header’s size in bytes. A section header is one entry in the section header
table. All entries are the same size.

e_shnum
The number of entries in the section header table. The product of e_shentsize
and e_shnum gives the section header table’s size in bytes. If a file has no section
header table, e_shnum holds the value zero.

If the number of sections is greater than or equal to SHN_LORESERVE (0xff00),
this member has the value zero and the actual number of section header table
entries is contained in the sh_size field of the section header at index 0.
Otherwise, the sh_size member of the initial entry contains 0.

e_shstrndx
The section header table index of the entry that is associated with the section name
string table. If the file has no section name string table, this member holds the value
SHN_UNDEF.

If the section name string table section index is greater than or equal to
SHN_LORESERVE (0xff00), this member has the value SHN_XINDEX (0xffff)
and the actual index of the section name string table section is contained in
thesh_link field of the section header at index 0. Otherwise, the sh_link
member of the initial entry contains 0.

Chapter 7 • Object File Format 179

ELF Identification
ELF provides an object file framework to support multiple processors, multiple data
encoding, and multiple classes of machines. To support this object file family, the
initial bytes of the file specify how to interpret the file. These bytes are independent of
the processor on which the inquiry is made and independent of the file’s remaining
contents.

The initial bytes of an ELF header and an object file correspond to the e_ident
member.

TABLE 7–7 ELF Identification Index

Name Value Purpose

EI_MAG0 0 File identification

EI_MAG1 1 File identification

EI_MAG2 2 File identification

EI_MAG3 3 File identification

EI_CLASS 4 File class

EI_DATA 5 Data encoding

EI_VERSION 6 File version

EI_OSABI 7 Operating system/ABI identification

EI_ABIVERSION 8 ABI version

EI_PAD 9 Start of padding bytes

EI_NIDENT 16 Size of e_ident[]

These indexes access bytes that hold the values described below.

EI_MAG0 - EI_MAG3
A 4–byte magic number, identifying the file as an ELF object file, as listed in the
following table.

TABLE 7–8 ELF Magic Number

Name Value Position

ELFMAG0 0x7f e_ident[EI_MAG0]

ELFMAG1 ’E’ e_ident[EI_MAG1]

ELFMAG2 ’L’ e_ident[EI_MAG2]

180 Linker and Libraries Guide • December 2003

TABLE 7–8 ELF Magic Number (Continued)
Name Value Position

ELFMAG3 ’F’ e_ident[EI_MAG3]

EI_CLASS
Byte e_ident[EI_CLASS] identifies the file’s class, or capacity, as listed in the
following table.

TABLE 7–9 ELF File Class

Name Value Meaning

ELFCLASSNONE 0 Invalid class

ELFCLASS32 1 32–bit objects

ELFCLASS64 2 64–bit objects

The file format is designed to be portable among machines of various sizes, without
imposing the sizes of the largest machine on the smallest. The class of the file
defines the basic types used by the data structures of the object file container itself.
The data contained in object file sections may follow a different programming
model.

Class ELFCLASS32 supports machines with files and virtual address spaces up to 4
gigabytes. It uses the basic types defined in Table 7–1.

Class ELFCLASS64 is reserved for 64–bit architectures such as SPARC. It uses the
basic types defined in Table 7–2.

EI_DATA
Byte e_ident[EI_DATA] specifies the data encoding of the processor-specific data
in the object file, as listed in the following table.

TABLE 7–10 ELF Data Encoding

Name Value Meaning

ELFDATANONE 0 Invalid data encoding

ELFDATA2LSB 1 See Figure 7–2.

ELFDATA2MSB 2 See Figure 7–3.

More information on these encodings appears in the section “Data Encoding”
on page 182. Other values are reserved and will be assigned to new encodings as
necessary.

Chapter 7 • Object File Format 181

EI_VERSION
Byte e_ident[EI_VERSION] specifies the ELF header version number. Currently,
this value must be EV_CURRENT.

EI_OSABI
Byte e_ident[EI_OSABI] identifies the operating system and ABI to which the
object is targeted. Some fields in other ELF structures have flags and values that
have operating system or ABI specific meanings. The interpretation of those fields
is determined by the value of this byte.

EI_ABIVERSION
Byte e_ident[EI_ABIVERSION] identifies the version of the ABI to which the
object is targeted. This field is used to distinguish among incompatible versions of
an ABI. The interpretation of this version number is dependent on the ABI
identified by the EI_OSABI field. If no values are specified for the EI_OSABI field
for the processor, or no version values are specified for the ABI determined by a
particular value of the EI_OSABI byte, the value 0 is used to indicate unspecified.

EI_PAD
This value marks the beginning of the unused bytes in e_ident. These bytes are
reserved and set to zero. Programs that read object files should ignore them.

Data Encoding
A file’s data encoding specifies how to interpret the basic objects in a file. Class
ELFCLASS32 files use objects that occupy 1, 2, and 4 bytes. Class ELFCLASS64 files
use objects that occupy 1, 2, 4, and 8 bytes. Under the defined encodings, objects are
represented as shown below. Byte numbers appear in the upper left corners.

Encoding ELFDATA2LSB specifies 2’s complement values, with the least significant
byte occupying the lowest address.

0x01020304
0

04
1

03
2

02
3

01

0x0102
0

02
1

01

0x01
0

01

FIGURE 7–2 Data Encoding ELFDATA2LSB

Encoding ELFDATA2MSB specifies 2’s complement values, with the most significant
byte occupying the lowest address.

182 Linker and Libraries Guide • December 2003

0x01020304
0

01
1

02
2

03
3

04

0x0102
0

01
1

02

0x01
0

01

FIGURE 7–3 Data Encoding ELFDATA2MSB

Sections
An object file’s section header table helps you locate all of the sections of the file. The
section header table is an array of Elf32_Shdr or Elf64_Shdr structures, as
described below. A section header table index is a subscript into this array. The ELF
header’s e_shoff member gives the byte offset from the beginning of the file to the
section header table; e_shnum tells how many entries the section header table
contains; e_shentsize gives the size in bytes of each entry.

If the number of sections is greater than or equal to SHN_LORESERVE (0xff00),
e_shnum has the value SHN_UNDEF (0) and the actual number of section header table
entries is contained in the sh_size field of the section header at index 0. Otherwise,
the sh_size member of the initial entry contains 0.

Some section header table indexes are reserved in contexts where index size is
restricted. For example, the st_shndx member of a symbol table entry and the
e_shnum and e_shstrndx members of the ELF header. In such contexts, the reserved
values do not represent actual sections in the object file. Also in such contexts, an
escape value indicates that the actual section index is to be found elsewhere, in a
larger field.

TABLE 7–11 ELF Special Section Indexes

Name Value

SHN_UNDEF 0

SHN_LORESERVE 0xff00

SHN_LOPROC 0xff00

SHN_BEFORE 0xff00

SHN_AFTER 0xff01

SHN_HIPROC 0xff1f

Chapter 7 • Object File Format 183

TABLE 7–11 ELF Special Section Indexes (Continued)
Name Value

SHN_LOOS 0xff20

SHN_HIOS 0xff3f

SHN_ABS 0xfff1

SHN_COMMON 0xfff2

SHN_XINDEX 0xffff

SHN_HIRESERVE 0xffff

Note – Although index 0 is reserved as the undefined value, the section header table
contains an entry for index 0. That is, if the e_shnum member of the ELF header says a
file has 6 entries in the section header table, they have the indexes 0 through 5. The
contents of the initial entry are specified later in this section.

SHN_UNDEF
An undefined, missing, irrelevant, or otherwise meaningless section reference. For
example, a symbol defined relative to section number SHN_UNDEF is an undefined
symbol.

SHN_LORESERVE
The lower boundary of the range of reserved indexes.

SHN_LOPROC - SHN_HIPROC
Values in this inclusive range are reserved for processor-specific semantics.

SHN_LOOS - SHN_HIOS
Values in this inclusive range are reserved for operating system-specific semantics.

SHN_BEFORE, SHN_AFTER
Provide for initial and final section ordering in conjunction with the
SHF_LINK_ORDER and SHF_ORDERED section flags, listed in Table 7–14.

SHN_ABS
Absolute values for the corresponding reference. For example, symbols defined
relative to section number SHN_ABS have absolute values and are not affected by
relocation.

SHN_COMMON
Symbols defined relative to this section are common symbols, such as FORTRAN
COMMON or unallocated C external variables. These symbols are sometimes referred
to as tentative.

184 Linker and Libraries Guide • December 2003

SHN_XINDEX
An escape value indicating that the actual section header index is too large to fit in
the containing field. The header section index is found in another location specific
to the structure where it appears.

SHN_HIRESERVE
The upper boundary of the range of reserved indexes. The system reserves indexes
between SHN_LORESERVE and SHN_HIRESERVE, inclusive. The values do not
reference the section header table. The section header table does not contain entries
for the reserved indexes.

Sections contain all information in an object file except the ELF header, the program
header table, and the section header table. Moreover, the sections in object files satisfy
several conditions:

� Every section in an object file has exactly one section header describing it. Section
headers can exist that do not have a section.

� Each section occupies one contiguous, possibly empty, sequence of bytes within a
file.

� Sections in a file cannot overlap. No byte in a file resides in more than one section.
� An object file can have inactive space. The various headers and the sections might

not cover every byte in an object file. The contents of the inactive data are
unspecified.

A section header has the following structure, defined in sys/elf.h:

typedef struct {
Elf32_Word sh_name;
Elf32_Word sh_type;
Elf32_Word sh_flags;
Elf32_Addr sh_addr;
Elf32_Off sh_offset;
Elf32_Word sh_size;
Elf32_Word sh_link;
Elf32_Word sh_info;
Elf32_Word sh_addralign;
Elf32_Word sh_entsize;

} Elf32_Shdr;

typedef struct {
Elf64_Word sh_name;
Elf64_Word sh_type;
Elf64_Xword sh_flags;
Elf64_Addr sh_addr;
Elf64_Off sh_offset;
Elf64_Xword sh_size;
Elf64_Word sh_link;
Elf64_Word sh_info;
Elf64_Xword sh_addralign;
Elf64_Xword sh_entsize;

} Elf64_Shdr;

Chapter 7 • Object File Format 185

The elements of this structure are:

sh_name
The name of the section. Its value is an index into the section header string table
section giving the location of a null-terminated string. Section names and their
descriptions are listed in Table 7–16.

sh_type
Categorizes the section’s contents and semantics. Section types and their
descriptions are listed in Table 7–12.

sh_flags
Sections support 1-bit flags that describe miscellaneous attributes. Flag definitions
are listed in Table 7–14.

sh_addr
If the section is to appear in the memory image of a process, this member gives the
address at which the section’s first byte should reside. Otherwise, the member
contains 0.

sh_offset
The byte offset from the beginning of the file to the first byte in the section. Section
type SHT_NOBITS occupies no space in the file. Its sh_offset member locates the
conceptual placement in the file.

sh_size
The section’s size in bytes. Unless the section type is SHT_NOBITS, the section
occupies sh_size bytes in the file. A section of type SHT_NOBITS can have a
nonzero size, but it occupies no space in the file.

sh_link
A section header table index link, whose interpretation depends on the section type.
Table 7–15 describes the values.

sh_info
Extra information, whose interpretation depends on the section type. Table 7–15
describes the values.

sh_addralign
Some sections have address alignment constraints. For example, if a section holds a
double-word, the system must ensure double-word alignment for the entire section.
That is, the value of sh_addr must be congruent to 0, modulo the value of
sh_addralign. Currently, only 0 and positive integral powers of two are allowed.
Values 0 and 1 mean the section has no alignment constraints.

sh_entsize
Some sections hold a table of fixed-size entries, such as a symbol table. For such a
section, this member gives the size in bytes of each entry. The member contains 0 if
the section does not hold a table of fixed-size entries.

A section header’s sh_type member specifies the section’s semantics, as shown in the
following table.

186 Linker and Libraries Guide • December 2003

TABLE 7–12 ELF Section Types, sh_type

Name Value

SHT_NULL 0

SHT_PROGBITS 1

SHT_SYMTAB 2

SHT_STRTAB 3

SHT_RELA 4

SHT_HASH 5

SHT_DYNAMIC 6

SHT_NOTE 7

SHT_NOBITS 8

SHT_REL 9

SHT_SHLIB 10

SHT_DYNSYM 11

SHT_INIT_ARRAY 14

SHT_FINI_ARRAY 15

SHT_PREINIT_ARRAY 16

SHT_GROUP 17

SHT_SYMTAB_SHNDX 18

SHT_LOOS 0x60000000

SHT_SUNW_move 0x6ffffffa

SHT_SUNW_COMDAT 0x6ffffffb

SHT_SUNW_syminfo 0x6ffffffc

SHT_SUNW_verdef 0x6ffffffd

SHT_SUNW_verneed 0x6ffffffe

SHT_SUNW_versym 0x6fffffff

SHT_HIOS 0x6fffffff

SHT_LOPROC 0x70000000

SHT_HIPROC 0x7fffffff

SHT_LOUSER 0x80000000

Chapter 7 • Object File Format 187

TABLE 7–12 ELF Section Types, sh_type (Continued)
Name Value

SHT_HIUSER 0xffffffff

SHT_NULL
Identifies the section header as inactive. This section header does not have an
associated section. Other members of the section header have undefined values.

SHT_PROGBITS
Identifies information defined by the program, whose format and meaning are
determined solely by the program.

SHT_SYMTAB, SHT_DYNSYM
Identifies a symbol table. Typically, a SHT_SYMTAB section provides symbols for
link-editing. As a complete symbol table, it can contain many symbols unnecessary
for dynamic linking. Consequently, an object file can also contain a SHT_DYNSYM
section, which holds a minimal set of dynamic linking symbols, to save space. See
“Symbol Table Section” on page 216 for details.

SHT_STRTAB, SHT_DYNSTR
Identifies a string table. An object file can have multiple string table sections. See
“String Table Section” on page 215 for details.

SHT_RELA
Identifies relocation entries with explicit addends, such as type Elf32_Rela for the
32–bit class of object files. An object file can have multiple relocation sections. See
“Relocation Sections” on page 205 for details.

SHT_HASH
Identifies a symbol hash table. A dynamically linked object file must contain a
symbol hash table. Currently, an object file can have only one hash table, but this
restriction might be relaxed in the future. See “Hash Table Section” on page 201 for
details.

SHT_DYNAMIC
Identifies information for dynamic linking. Currently, an object file can have only
one dynamic section. See “Dynamic Section” on page 243 for details.

SHT_NOTE
Identifies information that marks the file in some way. See “Note Section”
on page 204 for details.

SHT_NOBITS
Identifies a section that occupies no space in the file but otherwise resembles
SHT_PROGBITS. Although this section contains no bytes, the sh_offset member
contains the conceptual file offset.

SHT_REL
Identifies relocation entries without explicit addends, such as type Elf32_Rel for
the 32–bit class of object files. An object file can have multiple relocation sections.
See “Relocation Sections” on page 205 for details.

188 Linker and Libraries Guide • December 2003

SHT_SHLIB
Identifies a reserved section which has unspecified semantics. Programs that
contain a section of this type do not conform to the ABI.

SHT_INIT_ARRAY
Identifies a section containing an array of pointers to initialization functions. Each
pointer in the array is taken as a parameterless procedure with a void return. See
“Initialization and Termination Sections” on page 34 for details.

SHT_FINI_ARRAY
Identifies a section containing an array of pointers to termination functions. Each
pointer in the array is taken as a parameterless procedure with a void return. See
“Initialization and Termination Sections” on page 34 for details.

SHT_PREINIT_ARRAY
Identifies a section containing an array of pointers to functions that are invoked
before all other initialization functions. Each pointer in the array is taken as a
parameterless procedure with a void return. See “Initialization and Termination
Sections” on page 34 for details.

SHT_GROUP
Identifies a section group. A section group identifies a set of related sections that
must be treated as a unit by the link-editor. Sections of type SHT_GROUP may
appear only in relocatable objects. See “Group Section” on page 199 for details.

SHT_SYMTAB_SHNDX
Identifies a section containing extended section indexes, that is associated with a
symbol table. If any section header indexes referenced by a symbol table, contain
the escape value SHN_XINDEX, an associated SHT_SYMTAB_SHNDX is required.

The SHT_SYMTAB_SHNDX section is an array of Elf32_Word values. There is one
value for every entry in the associated symbol table entry. The values represent the
section header indexes against which the symbol table entries are defined. Only if
corresponding symbol table entry’s st_shndx field contains the escape value
SHN_XINDEX will the matching Elf32_Word hold the actual section header index.
Otherwise, the entry must be SHN_UNDEF (0).

SHT_LOOS – SHT_HIOS
Values in this inclusive range are reserved for operating system-specific semantics.

SHT_SUNW_move
Identifies data to handle partially initialized symbols. See “Move Section”
on page 202 for details.

SHT_SUNW_COMDAT
Identifies a section that allows multiple copies of the same data to be reduced to a
single copy. See “COMDAT Section” on page 199 for details.

SHT_SUNW_syminfo
Identifies additional symbol information. See “Syminfo Table Section” on page 224
for details.

Chapter 7 • Object File Format 189

SHT_SUNW_verdef
Identifies fine-grained versions defined by this file. See “Version Definition Section”
on page 226 for details.

SHT_SUNW_verneed
Identifies fine-grained dependencies required by this file. See “Version Dependency
Section” on page 228 for details.

SHT_SUNW_versym
Identifies a table describing the relationship of symbols to the version definitions
offered by the file. See “Version Symbol Section” on page 228 for details.

SHT_LOPROC - SHT_HIPROC
Values in this inclusive range are reserved for processor-specific semantics.

SHT_LOUSER
Specifies the lower boundary of the range of indexes reserved for application
programs.

SHT_HIUSER
Specifies the upper boundary of the range of indexes reserved for application
programs. Section types between SHT_LOUSER and SHT_HIUSER can be used by
the application without conflicting with current or future system-defined section
types.

Other section-type values are reserved. As mentioned before, the section header for
index 0 (SHN_UNDEF) exists, even though the index marks undefined section
references. The following table shows the values.

TABLE 7–13 ELF Section Header Table Entry: Index 0

Name Value Note

sh_name 0 No name

sh_type SHT_NULL Inactive

sh_flags 0 No flags

sh_addr 0 No address

sh_offset 0 No file offset

sh_size 0 No size

sh_link SHN_UNDEF No link information

sh_info 0 No auxiliary information

sh_addralign 0 No alignment

sh_entsize 0 No entries

A section header’s sh_flags member holds 1-bit flags that describe the section’s
attributes:

190 Linker and Libraries Guide • December 2003

TABLE 7–14 ELF Section Attribute Flags

Name Value

SHF_WRITE 0x1

SHF_ALLOC 0x2

SHF_EXECINSTR 0x4

SHF_MERGE 0x10

SHF_STRINGS 0x20

SHF_INFO_LINK 0x40

SHF_LINK_ORDER 0x80

SHF_OS_NONCONFORMING 0x100

SHF_GROUP 0x200

SHF_TLS 0x400

SHF_MASKOS 0x0ff00000

SHF_ORDERED 0x40000000

SHF_EXCLUDE 0x80000000

SHF_MASKPROC 0xf0000000

If a flag bit is set in sh_flags, the attribute is on for the section. Otherwise, the
attribute is off or does not apply. Undefined attributes are reserved and set to zero.

SHF_WRITE
Identifies a section that should be writable during process execution.

SHF_ALLOC
Identifies a section that occupies memory during process execution. Some control
sections do not reside in the memory image of an object file. This attribute is off for
those sections.

SHF_EXECINSTR
Identifies a section that contains executable machine instructions.

SHF_MERGE
Identifies a section containing data that may be merged to eliminate duplication.
Unless the SHF_STRINGS flag is also set, the data elements in the section are of a
uniform size. The size of each element is specified in the section header’s
sh_entsize field. If the SHF_STRINGS flag is also set, the data elements consist of
null-terminated character strings. The size of each character is specified in the
section header’s sh_entsize field.

Chapter 7 • Object File Format 191

SHF_STRINGS
Identifies a section that consists of null-terminated character strings. The size of
each character is specified in the section header’s sh_entsize field.

SHF_INFO_LINK
This section headers sh_info field holds a section header table index.

SHF_LINK_ORDER
This section adds special ordering requirements to the link-editor. The requirements
apply if the sh_link field of this section’s header references another section, the
linked-to section. If this section is combined with other sections in the output file,
the section appears in the same relative order with respect to those sections.
Similarly the linked-to section appears with respect to sections the linked-to section
is combined with.

The special sh_link values SHN_BEFORE and SHN_AFTER (see Table 7–11) imply
that the sorted section is to precede or follow, respectively, all other sections in the
set being ordered. Input file link-line order is preserved if multiple sections in an
ordered set have one of these special values.

A typical use of this flag is to build a table that references text or data sections in
address order.

In the absence of the sh_link ordering information, sections from a single input
file combined within one section of the output file will be contiguous and have the
same relative ordering as they did in the input file. The contributions from multiple
input files appear in link-line order.

SHF_OS_NONCONFORMING
This section requires special OS-specific processing beyond the standard linking
rules to avoid incorrect behavior. If this section has either an sh_type value or
contains sh_flags bits in the OS-specific ranges for those fields, and the
link-editor does not recognize these values, then the link-editor will reject the object
file containing this section with an error.

SHF_GROUP
This section is a member, perhaps the only one, of a section group. The section must
be referenced by a section of type SHT_GROUP. The SHF_GROUP flag can be set only
for sections contained in relocatable objects. See “Group Section” on page 199 for
details.

SHF_TLS
This section holds thread-local storage, meaning that each separate execution flow
has its own distinct instance of this data. See “Thread-Local Storage Section”
on page 225 for details.

SHF_MASKOS
All bits included in this mask are reserved for operating system-specific semantics.

192 Linker and Libraries Guide • December 2003

SHF_ORDERED
This section requires ordering in relation to other sections of the same type. Ordered
sections are combined within the section pointed to by the sh_link entry. The
sh_link entry of an ordered section can point to itself.

If the sh_info entry of the ordered section is a valid section within the same input
file, the ordered section will be sorted based on the relative ordering within the
output file of the section pointed to by the sh_info entry.

The special sh_info values SHN_BEFORE and SHN_AFTER (see Table 7–11) imply
that the sorted section is to precede or follow, respectively, all other sections in the
set being ordered. Input file link-line order is preserved if multiple sections in an
ordered set have one of these special values.

In the absence of the sh_info ordering information, sections from a single input
file combined within one section of the output file will be contiguous and have the
same relative ordering as they did in the input file. The contributions from multiple
input files appear in link-line order.

SHF_EXCLUDE
This section is excluded from input to the link-edit of an executable or shared
object. This flag is ignored if the SHF_ALLOC flag is also set, or if relocations exist
against the section.

SHF_MASKPROC
All bits included in this mask are reserved for processor-specific semantics.

Two members in the section header, sh_link and sh_info, hold special information,
depending on section type.

TABLE 7–15 ELF sh_link and sh_info Interpretation

sh_type sh_link sh_info

SHT_DYNAMIC The section header index of the
associated string table.

0

SHT_HASH The section header index of the
associated symbol table.

0

SHT_REL

SHT_RELA

The section header index of the
associated symbol table.

The section header index of the
section to which the relocation
applies. See also Table 7–16 and
“Relocation Sections”
on page 205.

SHT_SYMTAB

SHT_DYNSYM

The section header index of the
associated string table.

One greater than the symbol
table index of the last local
symbol (binding STB_LOCAL).

Chapter 7 • Object File Format 193

TABLE 7–15 ELF sh_link and sh_info Interpretation (Continued)
sh_type sh_link sh_info

SHT_GROUP The section header index of the
associated symbol table.

The symbol table index of an
entry in the associated symbol
table. The name of the specified
symbol table entry provides a
signature for the section group.

SHT_SYMTAB_SHNDX The section header index of the
associated symbol table.

0

SHT_SUNW_move The section header index of the
associated symbol table.

0

SHT_SUNW_COMDAT 0 0

SHT_SUNW_syminfo The section header index of the
associated symbol table.

The section header index of the
associated .dynamic section.

SHT_SUNW_verdef The section header index of the
associated string table.

The number of version
definitions within the section.

SHT_SUNW_verneed The section header index of the
associated string table.

The number of version
dependencies within the
section.

SHT_SUNW_versym The section header index of the
associated symbol table.

0

Special Sections
Various sections hold program and control information. Sections in the following table
are used by the system and have the indicated types and attributes.

TABLE 7–16 ELF Special Sections

Name Type Attribute

.bss SHT_NOBITS SHF_ALLOC + SHF_WRITE

.comment SHT_PROGBITS None

.data SHT_PROGBITS SHF_ALLOC + SHF_WRITE

.data1 SHT_PROGBITS SHF_ALLOC + SHF_WRITE

.dynamic SHT_DYNAMIC SHF_ALLOC + SHF_WRITE

.dynstr SHT_STRTAB SHF_ALLOC

.dynsym SHT_DYNSYM SHF_ALLOC

194 Linker and Libraries Guide • December 2003

TABLE 7–16 ELF Special Sections (Continued)
Name Type Attribute

.fini SHT_PROGBITS SHF_ALLOC + SHF_EXECINSTR

.fini_array SHT_FINI_ARRAY SHF_ALLOC + SHF_WRITE

.got SHT_PROGBITS See “Global Offset Table
(Processor-Specific)” on page 255

.hash SHT_HASH SHF_ALLOC

.init SHT_PROGBITS SHF_ALLOC + SHF_EXECINSTR

.init_array SHT_INIT_ARRAY SHF_ALLOC + SHF_WRITE

.interp SHT_PROGBITS See “Program Interpreter”
on page 242

.note SHT_NOTE None

.plt SHT_PROGBITS See “Procedure Linkage Table
(Processor-Specific)” on page 256

.preinit_array SHT_PREINIT_ARRAY SHF_ALLOC + SHF_WRITE

.rela SHT_RELA None

.relname SHT_REL See “Relocation Sections”
on page 205

.relaname SHT_RELA See “Relocation Sections”
on page 205

.rodata SHT_PROGBITS SHF_ALLOC

.rodata1 SHT_PROGBITS SHF_ALLOC

.shstrtab SHT_STRTAB None

.strtab SHT_STRTAB See description below

.symtab SHT_SYMTAB See “Symbol Table Section”
on page 216

.symtab_shndx SHT_SYMTAB_SHNDX See “Symbol Table Section”
on page 216

.tbss SHT_NOBITS SHF_ALLOC + SHF_WRITE +
SHF_TLS

.tdata SHT_PROGBITS SHF_ALLOC + SHF_WRITE +
SHF_TLS

.tdata1 SHT_PROGBITS SHF_ALLOC + SHF_WRITE +
SHF_TLS

.text SHT_PROGBITS SHF_ALLOC + SHF_EXECINSTR

Chapter 7 • Object File Format 195

TABLE 7–16 ELF Special Sections (Continued)
Name Type Attribute

.SUNW_bss SHT_NOBITS SHF_ALLOC + SHF_WRITE

.SUNW_heap SHT_PROGBITS SHF_ALLOC + SHF_WRITE

.SUNW_move SHT_SUNW_move SHF_ALLOC

.SUNW_reloc SHT_REL

SHT_RELA

SHF_ALLOC

.SUNW_syminfo SHT_SUNW_syminfo SHF_ALLOC

.SUNW_version SHT_SUNW_verdef

SHT_SUNW_verneed

SHT_SUNW_versym

SHF_ALLOC

.bss
Uninitialized data that contribute to the program’s memory image. By definition,
the system initializes the data with zeros when the program begins to run. The
section occupies no file space, as indicated by the section type SHT_NOBITS.

.comment
Comment information, typically contributed by the components of the compilation
system. This section can be manipulated by mcs(1).

.data, .data1
Initialized data that contribute to the program’s memory image.

.dynamic
Dynamic linking information. See “Dynamic Section” on page 243 for details.

.dynstr
Strings needed for dynamic linking, most commonly the strings that represent the
names associated with symbol table entries.

.dynsym
Dynamic linking symbol table. See “Symbol Table Section” on page 216 for details.

.fini
Executable instructions that contribute to a single termination function for the
executable or shared object containing the section. See “Initialization and
Termination Routines” on page 73 for details.

.fini_array
An array of function pointers that contribute to a single termination array for the
executable or shared object containing the section. See “Initialization and
Termination Routines” on page 73 for details.

196 Linker and Libraries Guide • December 2003

.got
The global offset table. See “Global Offset Table (Processor-Specific)” on page 255
for details.

.hash
Symbol hash table. See “Hash Table Section” on page 201 for details.

.init
Executable instructions that contribute to a single initialization function for the
executable or shared object containing the section. See “Initialization and
Termination Routines” on page 73 for details.

.init_array
An array of function pointers that contributes to a single initialization array for the
executable or shared object containing the section. See “Initialization and
Termination Routines” on page 73 for details.

.interp
The path name of a program interpreter. See “Program Interpreter” on page 242 for
details.

.note
Information in the format described in “Note Section” on page 204.

.plt
The procedure linkage table. See “Procedure Linkage Table (Processor-Specific)”
on page 256 for details.

.preinit_array
An array of function pointers that contribute to a single pre-initialization array for
the executable or shared object containing the section. See “Initialization and
Termination Routines” on page 73 for details.

.rela
Relocations that do not apply to a particular section. One use of this section is for
register relocations. See “Register Symbols” on page 223 for details.

.relname, .relaname
Relocation information, as “Relocation Sections” on page 205 describes. If the file
has a loadable segment that includes relocation, the sections’ attributes include the
SHF_ALLOC bit. Otherwise, that bit is off. Conventionally, name is supplied by the
section to which the relocations apply. Thus, a relocation section for .text
normally will have the name .rel.text or .rela.text.

.rodata, .rodata1
Read-only data that typically contribute to a non-writable segment in the process
image. See “Program Header” on page 231 for details.

.shstrtab
Section names.

Chapter 7 • Object File Format 197

.strtab
Strings, most commonly the strings that represent the names associated with
symbol table entries. If the file has a loadable segment that includes the symbol
string table, the section’s attributes include the SHF_ALLOC bit. Otherwise, that bit
is turned off.

.symtab
Symbol table, as “Symbol Table Section” on page 216 describes. If the file has a
loadable segment that includes the symbol table, the section’s attributes include the
SHF_ALLOC bit. Otherwise, that bit is turned off.

.symtab_shndx
This section holds the special symbol table section index array, as described by
.symtab. The section’s attributes will include the SHF_ALLOC bit if the associated
symbol table section does. Otherwise, that bit is turned off.

.tbss
This section holds uninitialized thread-local data that contribute to the program’s
memory image. By definition, the system initializes the data with zeros when the
data is instantiated for each new execution flow. The section occupies no file space,
as indicated by the section type, SHT_NOBITS. See “Thread-Local Storage Section”
on page 225 for details.

.tdata, .tdata1
These sections hold initialized thread-local data that contribute to the program’s
memory image. A copy of its contents is instantiated by the system for each new
execution flow. See “Thread-Local Storage Section” on page 225 for details.

.text
The text or executable instructions of a program.

.SUNW_bss
Partially initialized data for shared objects that contribute to the program’s memory
image. The data is initialized at runtime. The section occupies no file space, as
indicated by the section type SHT_NOBITS.

.SUNW_heap
The heap of a dynamic executable created from dldump(3DL).

.SUNW_move
Additional information for partially initialized data. See “Move Section”
on page 202 for details.

.SUNW_reloc
Relocation information, as “Relocation Sections” on page 205 describes. This section
is a concatenation of relocation sections that provides better locality of reference of
the individual relocation records. Only the offset of the relocation record itself is
meaningful, thus the section sh_info value is zero.

.SUNW_syminfo
Additional symbol table information. See “Syminfo Table Section” on page 224 for
details.

198 Linker and Libraries Guide • December 2003

.SUNW_version
Versioning information. See “Versioning Sections” on page 226 for details.

Section names with a dot (.) prefix are reserved for the system, although applications
can use these sections if their existing meanings are satisfactory. Applications can use
names without the prefix to avoid conflicts with system sections. The object file format
enables you to define sections not in the list above. An object file can have more than
one section with the same name.

Section names reserved for a processor architecture are formed by placing an
abbreviation of the architecture name ahead of the section name. The name should be
taken from the architecture names used for e_machine. For example, .Foo.psect is
the psect section defined by the FOO architecture.

Existing extensions use their historical names

COMDAT Section
COMDAT sections are uniquely identified by their section name (sh_name). If the
link-editor encounters multiple sections of type SHT_SUNW_COMDAT, with the same
section name, the first section is retained and the rest discarded. Any relocations
applied to a discarded SHT_SUNW_COMDAT section are ignored. Any symbols defined
in a discarded section are removed.

Additionally, the link-editor supports the section naming convention used for section
reordering when the compiler is invoked with the -xF option. If a function is placed
in a section with the name .sectname%funcname, the final SHT_SUNW_COMDAT sections
that are retained are coalesced into a section identified by .sectname. Using this
method, the SHT_SUNW_COMDAT sections are placed into the .text, .data, or any
other section as their final destination.

Group Section
Some sections occur in interrelated groups. For example, an out-of-line definition of an
inline function might require additional information besides the section containing
executable instructions. This additional information can be a read-only data section
containing literals referenced, one or more debugging information sections, or other
informational sections. Furthermore, there may be internal references among these
sections. These references make no sense if one of the sections were removed, or one of
the sections were replaced, by a duplicate from another object. Therefore, these groups
are included, or these groups are omitted, from the linked object as a unit.

A section of type SHT_GROUP defines such a grouping of sections. The name of a
symbol from one of the containing object’s symbol tables provides a signature for the
section group. The section header of the SHT_GROUP section specifies the identifying

Chapter 7 • Object File Format 199

symbol entry. The sh_link member contains the section header index of the symbol
table section that contains the entry. The sh_info member contains the symbol table
index of the identifying entry. The sh_flags member of the section header contains
0. The name of the section (sh_name) is not specified.

The section data of a SHT_GROUP section is an array of Elf32_Word entries. The first
entry is a flag word. The remaining entries are a sequence of section header indices.

The following flag is currently defined:

TABLE 7–17 ELF Group Section Flag

Name Value

GRP_COMDAT 0x1

GRP_COMDAT
GRP_COMDAT is a COMDAT group. It may duplicate another COMDAT group in
another object file, where duplication is defined as having the same group
signature. In such cases, only one of the duplicate groups is retained by the
link-editor. The members of the remaining groups are discarded.

The section header indices in the SHT_GROUP section, identify the sections that make
up the group. These sections must have the SHF_GROUP flag set in their sh_flags
section header member. If the link-editor decides to remove the section group, the
link-editor removes all members of the group.

To facilitate removing a group without leaving dangling references and with only
minimal processing of the symbol table, the following rules are followed:

� References to the sections comprising a group from sections outside of the group
must be made through symbol table entries with STB_GLOBAL or STB_WEAK
binding and section index SHN_UNDEF. If there is a definition of the same symbol
in the object containing the references, it must have a separate symbol table entry
from the references. Sections outside of the group may not reference symbols with
STB_LOCAL binding for addresses contained in the group’s sections, including
symbols with type STT_SECTION.

� Non-symbol references to the sections comprising a group are not allowed from
outside the group. For example, you cannot use a group member’s section header
index in an sh_link or sh_info member.

� A symbol table entry defined relative to one of the group’s sections may be
removed if the group members are discarded. This removal occurs if the symbol
table entry is contained in a symbol table section that is not part of the group.

200 Linker and Libraries Guide • December 2003

Hash Table Section
A hash table consists of Elf32_Word or Elf64_Word objects that provide for symbol
table access. The SHT_HASH section provides this hash table. The symbol table to
which the hashing is associated is specified in the sh_link entry of the hash table’s
section header. Labels appear below to help explain the hash table organization, but
they are not part of the specification.

bucket [0]
...

bucket [nbucket-1]

chain [0]
...

chain [nchain-1]

nchain

nbucket

FIGURE 7–4 Symbol Hash Table

The bucket array contains nbucket entries, and the chain array contains nchain
entries. Indexes start at 0. Both bucket and chain hold symbol table indexes. Chain
table entries parallel the symbol table. The number of symbol table entries should
equal nchain, so symbol table indexes also select chain table entries.

A hashing function that accepts a symbol name, returns a value to compute a bucket
index. Consequently, if the hashing function returns the value x for some name,
bucket [x%nbucket] gives an index y. This is an index into both the symbol table
and the chain table. If the symbol table entry is not the name desired, chain[y] gives
the next symbol table entry with the same hash value.

The chain links can be followed until the selected symbol table entry holds the
desired name, or the chain entry contains the value STN_UNDEF.

The hash function is as follows:

unsigned long
elf_Hash(const unsigned char *name)
{

unsigned long h = 0, g;

while (*name)
{

h = (h << 4) + *name++;
if (g = h & 0xf0000000)

h ^= g >> 24;
h &= ~g;

Chapter 7 • Object File Format 201

}
return h;

}

Move Section
Typically, within ELF files, initialized data variables are maintained within the object
file. If a data variable is very large, and contains only a small number of initialized
(nonzero) elements, the entire variable is still maintained in the object file.

Objects that contain large partially initialized data variables, such as FORTRAN
COMMON blocks, can result in a significant disk space overhead. The SHT_SUNW_move
section provides a mechanism of compressing these data variables. This compression
reduces the disk size of the associated object.

The SHT_SUNW_move section contains multiple entries of the type ELF32_Move or
Elf64_Move. These entries allow data variables to be defined as tentative items
(.bss), thus occupying no space in the object file but contributing to the object’s
memory image at runtime. The move records establish how the memory image is
initialized with data to construct the complete data variable.

ELF32_Move and Elf64_Move entries are defined as follows:

typedef struct {
Elf32_Lword m_value;
Elf32_Word m_info;
Elf32_Word m_poffset;
Elf32_Half m_repeat;
Elf32_Half m_stride;

} Elf32_Move;

#define ELF32_M_SYM(info) ((info)>>8)
#define ELF32_M_SIZE(info) ((unsigned char)(info))
#define ELF32_M_INFO(sym, size) (((sym)<<8)+(unsigned char)(size))

typedef struct {
Elf64_Lword m_value;
Elf64_Xword m_info;
Elf64_Xword m_poffset;
Elf64_Half m_repeat;
Elf64_Half m_stride;

} Elf64_Move;

#define ELF64_M_SYM(info) ((info)>>8)
#define ELF64_M_SIZE(info) ((unsigned char)(info))

#define ELF64_M_INFO(sym, size) (((sym)<<8)+(unsigned char)(size))

The elements of these structures are as follows:

m_value
The initialization value, which is the value that is moved into the memory image.

202 Linker and Libraries Guide • December 2003

m_info
The symbol table index, with respect to which the initialization is applied, together
with the size, in bytes, of the offset being initialized. The lower 8 bits of the member
define the size, which can be 1, 2, 4 or 8. The upper bytes define the symbol index.

m_poffset
The offset relative to the associated symbol to which the initialization is applied.

m_repeat
A repetition count.

m_stride
The stride count. This value indicates the number of units that should be skipped
when performing a repetitive initialization. A unit is the size of an initialization
object as defined by m_info. An m_stride value of 0 indicates that the
initialization be performed contiguously for m_repeat units.

The following data definition would traditionally consume 0x8000 bytes within an
object file:

typedef struct {
int one;
char two;

} Data

Data move[0x1000] = {
{0, 0}, {1, ’1’}, {0, 0},
{0xf, ’F’}, {0xf, ’F’}, {0, 0},
{0xe, ’E’}, {0, 0}, {0xe, ’E’}

};

Using an SHT_SUNW_move section the data item can be moved to the .bss section
and initialized with the associated move entries:

$ elfdump -s data | fgrep move
[17] 0x00020868 0x00008000 OBJT GLOB 0 .bss move

$ elfdump -m data

Move Section: .SUNW_move
offset ndx size repeat stride value with respect to
0x8 0x17 4 1 0 0x1 move
0xc 0x17 1 1 0 0x31 move
0x18 0x17 4 2 2 0xf move
0x1c 0x17 1 2 8 0x46 move
0x28 0x17 4 2 4 0xe move
0x2c 0x17 1 2 16 0x45 move

Move sections supplied from relocatable objects are concatenated and output in the
object being created by the link-editor. However, the following conditions cause the
link-editor to process the move entries and expand their contents into a traditional
data item:

� The output file is a static executable.

Chapter 7 • Object File Format 203

� The size of the move entries is greater than the size of the symbol into which the
move data would be expanded.

� The -z nopartial option is in effect.

Note Section
Sometimes a vendor or system engineer needs to mark an object file with special
information that other programs will check for conformance, compatibility, and so
forth. Sections of type SHT_NOTE and program header elements of type PT_NOTE can
be used for this purpose.

The note information in sections and program header elements holds any number of
entries, as shown in the following figure. For 64– and 32–bit objects, each entry is an
array of 4-byte words in the format of the target processor. Labels are shown in Figure
7–6 to help explain note information organization, but they are not part of the
specification.

name
...

desc
...

namesz

descsz

type

FIGURE 7–5 Note Information

The elements of the structure are:

namesz and name
The first namesz bytes in name contain a null-terminated character representation
of the entry’s owner or originator. There is no formal mechanism for avoiding name
conflicts. By convention, vendors use their own name, such as “XYZ Computer
Company,” as the identifier. If no name is present, namesz contains 0. Padding is
present, if necessary, to ensure 4-byte alignment for the descriptor. Such padding is
not included in namesz.

descsz and desc
The first descsz bytes in desc hold the note descriptor. If no descriptor is present,
descsz contains 0. Padding is present, if necessary, to ensure 4-byte alignment for
the next note entry. Such padding is not included in descsz.

204 Linker and Libraries Guide • December 2003

type
Provides the interpretation of the descriptor. Each originator controls its own types.
Multiple interpretations of a single type value can exist. A program must recognize
both the name and the type to understand a descriptor. Types currently must be
nonnegative.

The note segment shown in the following figure holds two entries.

name

namesz

descsz No descriptor

type

7

0

1

X Y Z

C o \0 pad

name

namesz

descsz

type

7

8

3

desc word0

word1

X Y Z

C o \0 pad

+0 +1 +2 +3

FIGURE 7–6 Example Note Segment

Note – The system reserves note information with no name (namesz == 0) and with a
zero-length name (name[0] == ’\0’) but currently defines no types. All other
names must have at least one non-null character.

Relocation Sections
Relocation is the process of connecting symbolic references with symbolic definitions.
For example, when a program calls a function, the associated call instruction must
transfer control to the proper destination address at execution. Relocatable files must
have information that describes how to modify their section contents, thus allowing
executable and shared object files to hold the right information for a process’s program
image. Relocation entries are these data.

Chapter 7 • Object File Format 205

Relocation entries can have the following structure, defined in sys/elf.h:

typedef struct {
Elf32_Addr r_offset;
Elf32_Word r_info;

} Elf32_Rel;

typedef struct {
Elf32_Addr r_offset;
Elf32_Word r_info;
Elf32_Sword r_addend;

} Elf32_Rela;

typedef struct {
Elf64_Addr r_offset;
Elf64_Xword r_info;

} Elf64_Rel;

typedef struct {
Elf64_Addr r_offset;
Elf64_Xword r_info;
Elf64_Sxword r_addend;

} Elf64_Rela;

The elements of this structure are:

r_offset
This member gives the location at which to apply the relocation action. Different
object files have slightly different interpretations for this member.

For a relocatable file, the value indicates a section offset. The relocation section itself
describes how to modify another section in the file. Relocation offsets designate a
storage unit within the second section.

For an executable or shared object, the value indicates the virtual address of the
storage unit affected by the relocation. This information makes the relocation
entries more useful for the runtime linker.

Although the interpretation of the member changes for different object files to allow
efficient access by the relevant programs, the meanings of the relocation types stay
the same.

r_info
This member gives both the symbol table index, with respect to which the
relocation must be made, and the type of relocation to apply. For example, a call
instruction’s relocation entry holds the symbol table index of the function being
called. If the index is STN_UNDEF, the undefined symbol index, the relocation uses
0 as the symbol value.

Relocation types are processor-specific. A relocation entry’s relocation type or
symbol table index is the result of applying ELF32_R_TYPE or ELF32_R_SYM,
respectively, to the entry’s r_info member:

206 Linker and Libraries Guide • December 2003

#define ELF32_R_SYM(info) ((info)>>8)
#define ELF32_R_TYPE(info) ((unsigned char)(info))
#define ELF32_R_INFO(sym, type) (((sym)<<8)+(unsigned char)(type))

#define ELF64_R_SYM(info) ((info)>>32)
#define ELF64_R_TYPE(info) ((Elf64_Word)(info))
#define ELF64_R_INFO(sym, type) (((Elf64_Xword)(sym)<<32)+ \

(Elf64_Xword)(type))

For Elf64_Rel and Elf64_Rela structures, the r_info field is further broken
down into an 8–bit type identifier and a 24–bit type dependent data field:

#define ELF64_R_TYPE_DATA(info) (((Elf64_Xword)(info)<<32)>>40)
#define ELF64_R_TYPE_ID(info) (((Elf64_Xword)(info)<<56)>>56)
#define ELF64_R_TYPE_INFO(data, type) (((Elf64_Xword)(data)<<8)+ \

(Elf64_Xword)(type))

r_addend
This member specifies a constant addend used to compute the value to be stored
into the relocatable field.

Rela entries contain an explicit addend. Entries of type Rel store an implicit addend
in the location to be modified. 32–bit and 64–bit SPARC use only Elf32_Rela and
Elf64_Rela relocation entries respectively. Thus, the r_addend member serves as
the relocation addend. x86 uses only Elf32_Rel relocation entries. The field to be
relocated holds the addend. In all cases, the addend and the computed result use the
same byte order.

A relocation section can reference two other sections: a symbol table, identified by the
sh_info section header entry, and a section to modify, identified by the sh_link
section header entry. “Sections” on page 183 specifies these relationships. An sh_link
entry is required when a relocation section exists in a relocatable object, but is optional
for executables and shared objects. The relocation offset is sufficient to perform the
relocation.

Relocation Types (Processor-Specific)
Relocation entries describe how to alter instruction and data fields in the following
figures. Bit numbers appear in the lower box corners.

On the SPARC platform, relocation entries apply to bytes (byte8), half-words
(half16), or words (the others).

Chapter 7 • Object File Format 207

imm22

31 021

byte8

half16

word32

disp30

disp22

7 0

15 0

31 0

31 0

31 0

31 0

31 0

31 0

31 0

31 0

31 0

29

21

simm13

12

simm11

10

simm10

9

disp19

19

disp14

21 19

d2

13

simm7

6

On 64–bit SPARC, relocations also apply to extended-words (xword64):

63 0
xword64

208 Linker and Libraries Guide • December 2003

On x86, relocation entries apply to words (word32):

word32

31 0

word32 specifies a 32–bit field occupying 4 bytes with an arbitrary byte alignment.
These values use the same byte order as other word values in the x86 architecture:

31
01

3
02

2
03 04 0x01020304

1

0

0

In all cases, the r_offset value designates the offset or virtual address of the first
byte of the affected storage unit. The relocation type specifies which bits to change and
how to calculate their values.

Calculations for the following relocation types assume the actions are transforming a
relocatable file into either an executable or a shared object file. Conceptually, the
link-editor merges one or more relocatable files to form the output. The link-editor
first decides how to combine and locate the input files. Then it updates the symbol
values. Finally the link-editor performs the relocation. Relocations applied to
executable or shared object files are similar and accomplish the same result.
Descriptions in the tables in this section use the following notation:

A The addend used to compute the value of the relocatable field.

B The base address at which a shared object is loaded into memory during
execution. Generally, a shared object file is built with a 0 base virtual address,
but the execution address is different. See “Program Header” on page 231.

G The offset into the global offset table at which the address of the relocation
entry’s symbol resides during execution. See “Global Offset Table
(Processor-Specific)” on page 255.

GOT The address of the global offset table. See “Global Offset Table
(Processor-Specific)” on page 255.

L The section offset or address of the procedure linkage table entry for a symbol.
See “Procedure Linkage Table (Processor-Specific)” on page 256.

P The section offset or address of the storage unit being relocated, computed
using r_offset.

S The value of the symbol whose index resides in the relocation entry.

Chapter 7 • Object File Format 209

SPARC: Relocation Types

Field names in the following table tell whether the relocation type checks for
overflow. A calculated relocation value can be larger than the intended field, and a
relocation type can verify (V) the value fits or truncate (T) the result. As an example,
V-simm13 means that the computed value can not have significant, nonzero bits
outside the simm13 field.

TABLE 7–18 SPARC: ELF Relocation Types

Name Value Field Calculation

R_SPARC_NONE 0 None None

R_SPARC_8 1 V-byte8 S + A

R_SPARC_16 2 V-half16 S + A

R_SPARC_32 3 V-word32 S + A

R_SPARC_DISP8 4 V-byte8 S + A - P

R_SPARC_DISP16 5 V-half16 S + A - P

R_SPARC_DISP32 6 V-disp32 S + A - P

R_SPARC_WDISP30 7 V-disp30 (S + A - P) >> 2

R_SPARC_WDISP22 8 V-disp22 (S + A - P) >> 2

R_SPARC_HI22 9 T-imm22 (S + A) >> 10

R_SPARC_22 10 V-imm22 S + A

R_SPARC_13 11 V-simm13 S + A

R_SPARC_LO10 12 T-simm13 (S + A) & 0x3ff

R_SPARC_GOT10 13 T-simm13 G & 0x3ff

R_SPARC_GOT13 14 V-simm13 G

R_SPARC_GOT22 15 T-simm22 G >> 10

R_SPARC_PC10 16 T-simm13 (S + A - P) & 0x3ff

R_SPARC_PC22 17 V-disp22 (S + A - P) >> 10

R_SPARC_WPLT30 18 V-disp30 (L + A - P) >> 2

R_SPARC_COPY 19 None None

R_SPARC_GLOB_DAT 20 V-word32 S + A

R_SPARC_JMP_SLOT 21 None See R_SPARC_JMP_SLOT,

R_SPARC_RELATIVE 22 V-word32 B + A

210 Linker and Libraries Guide • December 2003

TABLE 7–18 SPARC: ELF Relocation Types (Continued)
Name Value Field Calculation

R_SPARC_UA32 23 V-word32 S + A

R_SPARC_PLT32 24 V-word32 L + A

R_SPARC_HIPLT22 25 T-imm22 (L + A) >> 10

R_SPARC_LOPLT10 26 T-simm13 (L + A) & 0x3ff

R_SPARC_PCPLT32 27 V-word32 L + A - P

R_SPARC_PCPLT22 28 V-disp22 (L + A - P) >> 10

R_SPARC_PCPLT10 29 V-simm13 (L + A - P) & 0x3ff

R_SPARC_10 30 V-simm10 S + A

R_SPARC_11 31 V-simm11 S + A

R_SPARC_OLO10 33 V-simm13 ((S + A) & 0x3ff) + O

R_SPARC_HH22 34 V-imm22 (S + A) >> 42

R_SPARC_HM10 35 T-simm13 ((S + A) >> 32) & 0x3ff

R_SPARC_LM22 36 T-imm22 (S + A) >> 10

R_SPARC_PC_HH22 37 V-imm22 (S + A - P) >> 42

R_SPARC_PC_HM10 38 T-simm13 ((S + A - P) >> 32) & 0x3ff

R_SPARC_PC_LM22 39 T-imm22 (S + A - P) >> 10

R_SPARC_WDISP16 40 V-
d2/disp14

(S + A - P) >> 2

R_SPARC_WDISP19 41 V-disp19 (S + A - P) >> 2

R_SPARC_7 43 V-imm7 S + A

R_SPARC_5 44 V-imm5 S + A

R_SPARC_6 45 V-imm6 S + A

R_SPARC_HIX22 48 V-imm22 ((S + A) ^ 0xffffffffffffffff)
>> 10

R_SPARC_LOX10 49 T-simm13 ((S + A) & 0x3ff) | 0x1c00

R_SPARC_H44 50 V-imm22 (S + A) >> 22

R_SPARC_M44 51 T-imm10 ((S + A) >> 12) & 0x3ff

R_SPARC_L44 52 T-imm13 (S + A) & 0xfff

R_SPARC_REGISTER 53 V-word32 S + A

Chapter 7 • Object File Format 211

TABLE 7–18 SPARC: ELF Relocation Types (Continued)
Name Value Field Calculation

R_SPARC_UA16 55 V-half16 S + A

Some relocation types have semantics beyond simple calculation:

R_SPARC_GOT10
Resembles R_SPARC_LO10, except that it refers to the address of the symbol’s
global offset table entry. Additionally, R_SPARC_GOT10 instructs the link-editor to
create a global offset table.

R_SPARC_GOT13
Resembles R_SPARC_13, except that it refers to the address of the symbol’s global
offset table entry. Additionally, R_SPARC_GOT13 instructs the link-editor to create a
global offset table.

R_SPARC_GOT22
Resembles R_SPARC_22, except that it refers to the address of the symbol’s global
offset table entry. Additionally, R_SPARC_GOT22 instructs the link-editor to create a
global offset table.

R_SPARC_WPLT30
Resembles R_SPARC_WDISP30, except that it refers to the address of the symbol’s
procedure linkage table entry. Additionally, R_SPARC_WPLT30 instructs the
link-editor to create a procedure linkage table.

R_SPARC_COPY
Created by the link-editor for dynamic executables to preserve a read-only text
segment. Its offset member refers to a location in a writable segment. The symbol
table index specifies a symbol that should exist both in the current object file and in
a shared object. During execution, the runtime linker copies data associated with
the shared object’s symbol to the location specified by the offset. See “Copy
Relocations” on page 118.

R_SPARC_GLOB_DAT
Resembles R_SPARC_32, except that it sets a global offset table entry to the address
of the specified symbol. The special relocation type enables you to determine the
correspondence between symbols and global offset table entries.

R_SPARC_JMP_SLOT
Created by the link-editor for dynamic objects to provide lazy binding. Its offset
member gives the location of a procedure linkage table entry. The runtime linker
modifies the procedure linkage table entry to transfer control to the designated
symbol address.

R_SPARC_RELATIVE
Created by the link-editor for dynamic objects. Its offset member gives the location
within a shared object that contains a value representing a relative address. The
runtime linker computes the corresponding virtual address by adding the virtual

212 Linker and Libraries Guide • December 2003

address at which the shared object is loaded to the relative address. Relocation
entries for this type must specify 0 for the symbol table index.

R_SPARC_UA32
Resembles R_SPARC_32, except that it refers to an unaligned word. The word to be
relocated must be treated as four separate bytes with arbitrary alignment, not as a
word aligned according to the architecture requirements.

R_SPARC_OLO10
Resembles R_SPARC_LO10, except that an extra offset is added to make full use of
the 13-bit signed immediate field.

R_SPARC_LM22
Resembles R_SPARC_HI22, except that it truncates rather than validates.

R_SPARC_PC_LM22
Resembles R_SPARC_PC22, except that it truncates rather than validates.

R_SPARC_HIX22
Used with R_SPARC_LOX10 for executables that are confined to the uppermost 4
gigabytes of the 64–bit address space. Similar to R_SPARC_HI22, but supplies ones
complement of linked value.

R_SPARC_LOX10
Used with R_SPARC_HIX22. Similar to R_SPARC_LO10, but always sets bits 10
through 12 of the linked value.

R_SPARC_L44
Used with the R_SPARC_H44 and R_SPARC_M44 relocation types to generate a
44-bit absolute addressing model.

R_SPARC_REGISTER
Used to initialize a register symbol. Its offset member contains the register number
to be initialized. There must be a corresponding register symbol for this register of
type SHN_ABS.

64-bit SPARC: Relocation Types

The relocations listed in the following table extend, or alter, those define for 32–bit
SPARC. See “SPARC: Relocation Types” on page 210.

TABLE 7–19 64-bit SPARC: ELF Relocation Types

Name Value Field Calculation

R_SPARC_HI22 9 V-imm22 (S + A) >> 10

R_SPARC_GLOB_DAT 20 V-xword64 S + A

R_SPARC_RELATIVE 22 V-xword64 B + A

Chapter 7 • Object File Format 213

TABLE 7–19 64-bit SPARC: ELF Relocation Types (Continued)
Name Value Field Calculation

R_SPARC_64 32 V-xword64 S + A

R_SPARC_DISP64 46 V-xword64 S + A - P

R_SPARC_PLT64 47 V-xword64 L + A

R_SPARC_REGISTER 53 V-xword64 S + A

R_SPARC_UA64 54 V-xword64 S + A

x86: Relocation Types

The relocations listed in the following table are defined for 32–bit x86.

TABLE 7–20 x86: ELF Relocation Types

Name Value Field Calculation

R_386_NONE 0 none none

R_386_32 1 word32 S + A

R_386_PC32 2 word32 S + A - P

R_386_GOT32 3 word32 G + A

R_386_PLT32 4 word32 L + A - P

R_386_COPY 5 none none

R_386_GLOB_DAT 6 word32 S

R_386_JMP_SLOT 7 word32 S

R_386_RELATIVE 8 word32 B + A

R_386_GOTOFF 9 word32 S + A - GOT

R_386_GOTPC 10 word32 GOT + A - P

R_386_32PLT 11 word32 L + A

Some relocation types have semantics beyond simple calculation:

R_386_GOT32
Computes the distance from the base of the global offset table to the symbol’s
global offset table entry. It also instructs the link-editor to create a global offset table.

R_386_PLT32
Computes the address of the symbol’s procedure linkage table entry and instructs
the link-editor to create a procedure linkage table.

214 Linker and Libraries Guide • December 2003

R_386_COPY
Created by the link-editor for dynamic executables to preserve a read-only text
segment. Its offset member refers to a location in a writable segment. The symbol
table index specifies a symbol that should exist both in the current object file and in
a shared object. During execution, the runtime linker copies data associated with
the shared object’s symbol to the location specified by the offset. See “Copy
Relocations” on page 118.

R_386_GLOB_DAT
Used to set a global offset table entry to the address of the specified symbol. The
special relocation type enable you to determine the correspondence between
symbols and global offset table entries.

R_386_JMP_SLOT
Created by the link-editor for dynamic objects to provide lazy binding. Its offset
member gives the location of a procedure linkage table entry. The runtime linker
modifies the procedure linkage table entry to transfer control to the designated
symbol address.

R_386_RELATIVE
Created by the link-editor for dynamic objects. Its offset member gives the location
within a shared object that contains a value representing a relative address. The
runtime linker computes the corresponding virtual address by adding the virtual
address at which the shared object is loaded to the relative address. Relocation
entries for this type must specify 0 for the symbol table index.

R_386_GOTOFF
Computes the difference between a symbol’s value and the address of the global
offset table. It also instructs the link-editor to create the global offset table.

R_386_GOTPC
Resembles R_386_PC32, except that it uses the address of the global offset table in
its calculation. The symbol referenced in this relocation normally is
_GLOBAL_OFFSET_TABLE_, which also instructs the link-editor to create the global
offset table.

String Table Section
String table sections hold null-terminated character sequences, commonly called
strings. The object file uses these strings to represent symbol and section names. You
reference a string as an index into the string table section.

The first byte, which is index zero, holds a null character. Likewise, a string table’s last
byte holds a null character, ensuring null termination for all strings. A string whose
index is zero specifies either no name or a null name, depending on the context.

An empty string table section is permitted. The section header’s sh_size member
contains zero. Nonzero indexes are invalid for an empty string table.

Chapter 7 • Object File Format 215

A section header’s sh_name member holds an index into the section header string
table section, as designated by the e_shstrndx member of the ELF header. The
following figure shows a string table with 25 bytes and the strings associated with
various indexes.

0 \0 n a m e . \0 V a r
Index +0 +1 +2 +3 +4 +5 +6 +7 +8 +9

10 i a b l e \0 a b l e
20 \0 \0 x x \0

FIGURE 7–7 ELF String Table

The table below shows the strings of the string table shown in the preceding figure.

TABLE 7–21 ELF String Table Indexes

Index String

0 none

1 name

7 Variable

11 able

16 able

24 null string

As the example shows, a string table index can refer to any byte in the section. A string
can appear more than once. References to substrings can exist. A single string can be
referenced multiple times. Unreferenced strings also are allowed.

Symbol Table Section
An object file’s symbol table holds information needed to locate and relocate a
program’s symbolic definitions and references. A symbol table index is a subscript into
this array. Index 0 both designates the first entry in the table and serves as the
undefined symbol index. See Table 7–25.

A symbol table entry has the following format, defined in sys/elf.h:

typedef struct {
Elf32_Word st_name;
Elf32_Addr st_value;
Elf32_Word st_size;
unsigned char st_info;
unsigned char st_other;

216 Linker and Libraries Guide • December 2003

Elf32_Half st_shndx;
} Elf32_Sym;

typedef struct {
Elf64_Word st_name;
unsigned char st_info;
unsigned char st_other;
Elf64_Half st_shndx;
Elf64_Addr st_value;
Elf64_Xword st_size;

} Elf64_Sym;

The elements of this structure are:

st_name
An index into the object file’s symbol string table, which holds the character
representations of the symbol names. If the value is nonzero, it represents a string
table index that gives the symbol name. Otherwise, the symbol table entry has no
name.

st_value
The value of the associated symbol. Depending on the context, this can be an
absolute value, an address, and so forth. See “Symbol Values” on page 222.

st_size
Many symbols have associated sizes. For example, a data object’s size is the number
of bytes contained in the object. This member holds 0 if the symbol has no size or
an unknown size.

st_info
The symbol’s type and binding attributes. A list of the values and meanings
appears in Table 7–22. The following code shows how to manipulate the values,
defined in sys/elf.h:

#define ELF32_ST_BIND(info) ((info) >> 4)
#define ELF32_ST_TYPE(info) ((info) & 0xf)
#define ELF32_ST_INFO(bind, type) (((bind)<<4)+((type)&0xf))

#define ELF64_ST_BIND(info) ((info) >> 4)
#define ELF64_ST_TYPE(info) ((info) & 0xf)

#define ELF64_ST_INFO(bind, type) (((bind)<<4)+((type)&0xf))

st_other
A symbol’s visibility. A list of the values and meanings appears in Table 7–24. The
following code shows how to manipulate the values for both 32–bit and 64–bit
objects. Other bits contain 0 and have no defined meaning.

#define ELF32_ST_VISIBILITY(o) ((o)&0x3)

#define ELF64_ST_VISIBILITY(o) ((o)&0x3)

st_shndx
Every symbol table entry is defined in relation to some section. This member holds
the relevant section header table index. Some section indexes indicate special
meanings. See Table 7–11.

Chapter 7 • Object File Format 217

If this member contains SHN_XINDEX, then the actual section header index is too
large to fit in this field. The actual value is contained in the associated section of
type SHT_SYMTAB_SHNDX.

A symbol’s binding, determined from its st_info field, determines the linkage
visibility and behavior.

TABLE 7–22 ELF Symbol Binding, ELF32_ST_BIND and ELF64_ST_BIND

Name Value

STB_LOCAL 0

STB_GLOBAL 1

STB_WEAK 2

STB_LOOS 10

STB_HIOS 12

STB_LOPROC 13

STB_HIPROC 15

STB_LOCAL
Local symbol. These symbols are not visible outside the object file containing their
definition. Local symbols of the same name can exist in multiple files without
interfering with each other.

STB_GLOBAL
Global symbols. These symbols are visible to all object files being combined. One
file’s definition of a global symbol satisfies another file’s undefined reference to the
same global symbol.

STB_WEAK
Weak symbols. These symbols resemble global symbols, but their definitions have
lower precedence.

STB_LOOS - STB_HIOS
Values in this inclusive range are reserved for operating system-specific semantics.

STB_LOPROC - STB_HIPROC
Values in this inclusive range are reserved for processor-specific semantics.

Global symbols and weak symbols differ in two major ways:

� When the link-editor combines several relocatable object files, it does not allow
multiple definitions of STB_GLOBAL symbols with the same name. On the other
hand, if a defined global symbol exists, the appearance of a weak symbol with the
same name does not cause an error. The link-editor honors the global definition
and ignores the weak ones.

218 Linker and Libraries Guide • December 2003

Similarly, if a common symbol exists, the appearance of a weak symbol with the
same name does not cause an error. The link-editor uses the common definition
and ignores the weak one. A common symbol has the st_shndx field holding
SHN_COMMON. See “Symbol Resolution” on page 36.

� When the link-editor searches archive libraries it extracts archive members that
contain definitions of undefined or tentative global symbols. The member’s
definition can be either a global or a weak symbol.

The link-editor, by default, does not extract archive members to resolve undefined
weak symbols. Unresolved weak symbols have a zero value. The use of
-z weakextract overrides this default behavior. It enables weak references to
cause the extraction of archive members.

Note – Weak symbols are intended primarily for use in system software. Their use in
application programs is discouraged.

In each symbol table, all symbols with STB_LOCAL binding precede the weak and
global symbols. As “Sections” on page 183 describes, a symbol table section’s
sh_info section header member holds the symbol table index for the first non-local
symbol.

A symbol’s type, determined from its st_info field, provides a general classification
for the associated entity.

TABLE 7–23 ELF Symbol Types, ELF32_ST_TYPE and ELF64_ST_TYPE

Name Value

STT_NOTYPE 0

STT_OBJECT 1

STT_FUNC 2

STT_SECTION 3

STT_FILE 4

STT_COMMON 5

STT_TLS 6

STT_LOOS 10

STT_HIOS 12

STT_LOPROC 13

STT_SPARC_REGISTER 13

Chapter 7 • Object File Format 219

TABLE 7–23 ELF Symbol Types, ELF32_ST_TYPE and ELF64_ST_TYPE (Continued)
Name Value

STT_HIPROC 15

STT_NOTYPE
The symbol type is not specified.

STT_OBJECT
This symbol is associated with a data object, such as a variable, an array, and so
forth.

STT_FUNC
This symbol is associated with a function or other executable code.

STT_SECTION
This symbol is associated with a section. Symbol table entries of this type exist
primarily for relocation and normally have STB_LOCAL binding.

STT_FILE
Conventionally, the symbol’s name gives the name of the source file associated with
the object file. A file symbol has STB_LOCAL binding and its section index is
SHN_ABS. This symbol, if present, precedes the other STB_LOCAL symbols for the
file. Symbol index 1 of the SHT_SYMTAB is an STT_FILE symbol representing the
file itself. Conventionally, this symbols is followed by the files STT_SECTION
symbols, and any global symbols that have been reduced to locals.

STT_COMMON
This symbol labels an uninitialized common block. It is treated exactly the same as
STT_OBJECT.

STT_TLS
The symbol specifies a thread-local storage entity. When defined, it gives the
assigned offset for the symbol, not the actual address. Symbols of type STT_TLS
can be referenced by only special thread-local storage relocations and thread-local
storage relocations can only reference symbols with type STT_TLS. See
“Thread-Local Storage Section” on page 225 for details.

STT_LOOS - STT_HIOS
Values in this inclusive range are reserved for operating system-specific semantics.

STT_LOPROC - STT_HIPROC
Values in this inclusive range are reserved for processor-specific semantics.

A symbol’s visibility, determined from its st_other field, may be specified in a
relocatable object. This visibility defines how that symbol may be accessed once the
symbol has become part of an executable or shared object.

220 Linker and Libraries Guide • December 2003

TABLE 7–24 ELF Symbol Visibility

Name Value

STV_DEFAULT 0

STV_INTERNAL 1

STV_HIDDEN 2

STV_PROTECTED 3

STV_DEFAULT
The visibility of symbols with the STV_DEFAULT attribute is as specified by the
symbol’s binding type. That is, global and weak symbols are visible outside of their
defining component, the executable file or shared object. Local symbols are hidden.
Global and weak symbols can also be preempted, that is, they may by interposed
by definitions of the same name in another component.

STV_PROTECTED
A symbol defined in the current component is protected if it is visible in other
components but cannot be preempted. Any reference to such a symbol from within
the defining component must be resolved to the definition in that component, even
if there is a definition in another component that would interpose by the default
rules. A symbol with STB_LOCAL binding will not have STV_PROTECTED visibility.

STV_HIDDEN
A symbol defined in the current component is hidden if its name is not visible to
other components. Such a symbol is necessarily protected. This attribute is used to
control the external interface of a component. An object named by such a symbol
may still be referenced from another component if its address is passed outside.

A hidden symbol contained in a relocatable object is either removed or converted to
STB_LOCAL binding by the link-editor when the relocatable object is included in an
executable file or shared object.

STV_INTERNAL
This visibility attribute is currently reserved.

None of the visibility attributes affects the resolution of symbols within an executable
or shared object during link-editing. Such resolution is controlled by the binding type.
Once the link-editor has chosen its resolution, these attributes impose two
requirements. Both requirements are based on the fact that references in the code being
linked may have been optimized to take advantage of the attributes.

� First, all of the non-default visibility attributes, when applied to a symbol
reference, imply that a definition to satisfy that reference must be provided within
the current executable or shared object. If this type of symbol reference has no
definition within the component being linked, then the reference must have
STB_WEAK binding and is resolved to zero.

Chapter 7 • Object File Format 221

� Second, if any reference to or definition of a name is a symbol with a non-default
visibility attribute, the visibility attribute must be propagated to the resolving
symbol in the linked object. If different visibility attributes are specified for distinct
references to or definitions of a symbol, the most constraining visibility attribute
must be propagated to the resolving symbol in the linked object. The attributes,
ordered from least to most constraining, are STV_PROTECTED, STV_HIDDEN and
STV_INTERNAL.

If a symbol’s value refers to a specific location within a section, its section index
member, st_shndx, holds an index into the section header table. As the section
moves during relocation, the symbol’s value changes as well. References to the symbol
continue to point to the same location in the program. Some special section index
values give other semantics:

SHN_ABS
This symbol has an absolute value that does not change because of relocation.

SHN_COMMON
This symbol labels a common block that has not yet been allocated. The symbol’s
value gives alignment constraints, similar to a section’s sh_addralign member.
The link-editor allocates the storage for the symbol at an address that is a multiple
of st_value. The symbol’s size tells how many bytes are required.

SHN_UNDEF
This section table index means the symbol is undefined. When the link-editor
combines this object file with another that defines the indicated symbol, this file’s
references to the symbol will be bound to the actual definition.

As mentioned above, the symbol table entry for index 0 (STN_UNDEF) is reserved. This
entry holds the values listed in the following table.

TABLE 7–25 ELF Symbol Table Entry: Index 0

Name Value Note

st_name 0 No name

st_value 0 Zero value

st_size 0 No size

st_info 0 No type, local binding

st_other 0

st_shndx SHN_UNDEF No section

Symbol Values
Symbol table entries for different object file types have slightly different interpretations
for the st_value member.

222 Linker and Libraries Guide • December 2003

� In relocatable files, st_value holds alignment constraints for a symbol whose
section index is SHN_COMMON.

� In relocatable files, st_value holds a section offset for a defined symbol.
st_value is an offset from the beginning of the section that st_shndx identifies.

� In executable and shared object files, st_value holds a virtual address. To make
these files’ symbols more useful for the runtime linker, the section offset (file
interpretation) gives way to a virtual address (memory interpretation) for which
the section number is irrelevant.

Although the symbol table values have similar meanings for different object files, the
data allow efficient access by the appropriate programs.

Register Symbols
The SPARC architecture supports register symbols, which are symbols that initialize a
global register. A symbol table entry for a register symbol contains the entries listed in
the following table.

TABLE 7–26 SPARC: ELF Symbol Table Entry: Register Symbol

Field Meaning

st_name Index into string table of the name of the symbol, or 0 for a
scratch register.

st_value Register number. See the ABI manual for integer register
assignments.

st_size Unused (0).

st_info Bind is typically STB_GLOBAL, type must be
STT_SPARC_REGISTER.

st_other Unused (0).

st_shndx SHN_ABS if this object initializes this register symbol;
SHN_UNDEF otherwise.

The register values defined for SPARC are listed in the following table.

TABLE 7–27 SPARC: ELF Register Numbers

Name Value Meaning

STO_SPARC_REGISTER_G2 0x2 %g2

STO_SPARC_REGISTER_G3 0x3 %g3

Absence of an entry for a particular global register means that the particular global
register is not used at all by the object.

Chapter 7 • Object File Format 223

Syminfo Table Section
The syminfo section contains multiple entries of the type Elf32_Syminfo or
Elf64_Syminfo. There is one entry in the .SUNW_syminfo section for every entry
in the associated symbol table (sh_link).

If this section is present in an object, additional symbol information is to be found by
taking the symbol index from the associated symbol table and using that to find the
corresponding Elf32_Syminfo or Elf64_Syminfo entry in this section. The
associated symbol table and the Syminfo table will always have the same number of
entries.

Index 0 is used to store the current version of the Syminfo table, which is
SYMINFO_CURRENT. Since symbol table entry 0 is always reserved for the UNDEF
symbol table entry, this does not pose any conflicts.

An Symfino entry has the following format, defined in sys/link.h:

typedef struct {
Elf32_Half si_boundto;
Elf32_Half si_flags;

} Elf32_Syminfo;

typedef struct {
Elf64_Half si_boundto;
Elf64_Half si_flags;

} Elf64_Syminfo;

The elements of this structure are:

si_boundto
This index is to an entry in the .dynamic section, identified by the sh_info field,
that augments the Syminfo flags. For example, a DT_NEEDED entry identifies a
dynamic object associated with the Syminfo entry. The entries that follow are
reserved values for si_boundto.

TABLE 7–28 ELF si_boundto Reserved Values

Name Value Meaning

SYMINFO_BT_SELF 0xffff Symbol bound to self.

SYMINFO_BT_PARENT 0xfffe Symbol bound to parent. The parent is
the first object to cause this dynamic
object to be loaded.

si_flags
This bit-field can have flags set, as shown in the following table.

224 Linker and Libraries Guide • December 2003

TABLE 7–29 ELF Syminfo Flags

Name Value Meaning

SYMINFO_FLG_DIRECT 0x01 Has a direct reference to an external
object.

SYMINFO_FLG_COPY 0x04 Is the result of a copy-relocation.

SYMINFO_FLG_LAZYLOAD 0x08 Has a reference to an external, lazy
loadable object.

Thread-Local Storage Section
To permit association of separate copies of data allocated at compile-time with
individual threads of execution, thread-local storage sections can be used to specify
the size and initial contents of such data.

Sections of type SHF_TLS provide uninitialized and initialized thread-local storage.
The uninitialized section, .tbss, is allocated immediately following any initialized
sections, .tdata and .tdata1, subject to padding for proper alignment. The
combined sections together form a TLS template that is used to allocate thread-local
storage whenever a new thread is created.

The initialized portion of this template is called the TLS initialization image. All
relocations generated as a result of initialized thread-local variables are applied to this
template, so that the relocated values can be used when a new thread requires the
initial values.

A PT_TLS program entry describes a TLS template, and has the following members:

TABLE 7–30 ELF PT_TLS program entry

Member Value

p_offset File offset of the TLS initialization image

p_vaddr Virtual memory address of the TLS
initialization image

p_paddr Reserved

p_filesz Size of the TLS initialization image

p_memsz Total size of the TLS template

p_flags PF_R

p_align Alignment of the TLS template

Chapter 7 • Object File Format 225

Versioning Sections
Objects created by the link-editor can contain two types of versioning information:

� Version definitions provide associations of global symbols and are implemented
using sections of type SHT_SUNW_verdef and SHT_SUNW_versym.

� Version dependencies indicate the version definition requirements from other object
dependencies and are implemented using sections of type SHT_SUNW_verneed.

The structures that form these sections are defined in sys/link.h. Sections that
contain versioning information are named .SUNW_version.

Version Definition Section
This section is defined by the type SHT_SUNW_verdef. If this section exists, a
SHT_SUNW_versym section must also exist. Using these two structures, an association
of symbols-to-version definitions is maintained within the file. See “Creating a Version
Definition” on page 127. Elements of this section have the following structure:

typedef struct {
Elf32_Half vd_version;
Elf32_Half vd_flags;
Elf32_Half vd_ndx;
Elf32_Half vd_cnt;
Elf32_Word vd_hash;
Elf32_Word vd_aux;
Elf32_Word vd_next;

} Elf32_Verdef;

typedef struct {
Elf32_Word vda_name;
Elf32_Word vda_next;

} Elf32_Verdaux;

typedef struct {
Elf64_Half vd_version;
Elf64_Half vd_flags;
Elf64_Half vd_ndx;
Elf64_Half vd_cnt;
Elf64_Word vd_hash;
Elf64_Word vd_aux;
Elf64_Word vd_next;

} Elf64_Verdef;

typedef struct {
Elf64_Word vda_name;
Elf64_Word vda_next;

} Elf64_Verdaux;

The elements of this structure are:

226 Linker and Libraries Guide • December 2003

vd_version
This member identifies the version of the structure itself, as listed in the following
table.

TABLE 7–31 ELF Version Definition Structure Versions

Name Value Meaning

VER_DEF_NONE 0 Invalid version.

VER_DEF_CURRENT >=1 Current version.

The value 1 signifies the original section format. Extensions will create new
versions with higher numbers. The value of VER_DEF_CURRENT changes as
necessary to reflect the current version number.

vd_flags
This member holds version definition-specific information, as listed in the
following table.

TABLE 7–32 ELF Version Definition Section Flags

Name Value Meaning

VER_FLG_BASE 0x1 Version definition of the file itself.

VER_FLG_WEAK 0x2 Weak version identifier.

The base version definition is always present when version definitions, or symbol
auto-reduction, have been applied to the file. The base version provides a default
version for the files reserved symbols. A weak version definition has no symbols
associated with it. See “Creating a Weak Version Definition” on page 130.

vd_ndx
The version index. Each version definition has a unique index that is used to
associate SHT_SUNW_versym entries to the appropriate version definition.

vd_cnt
The number of elements in the Elf32_Verdaux array.

vd_hash
The hash value of the version definition name. This value is generated using the
same hashing function described in “Hash Table Section” on page 201.

vd_aux
The byte offset from the start of this Elf32_Verdef entry to the Elf32_Verdaux
array of version definition names. The first element of the array must exist. It points
to the version definition string this structure defines. Additional elements can be
present. The number of elements is indicated by the vd_cnt value. These elements
represent the dependencies of this version definition. Each of these dependencies
will have its own version definition structure.

Chapter 7 • Object File Format 227

vd_next
The byte offset from the start of this Elf32_Verdef structure to the next
Elf32_Verdef entry.

vda_name
The string table offset to a null-terminated string, giving the name of the version
definition.

vda_next
The byte offset from the start of this Elf32_Verdaux entry to the next
Elf32_Verdaux entry.

Version Symbol Section
The version symbol section is defined by the type SHT_SUNW_versym, and consists of
an array of elements having the following structure:

typedef Elf32_Half Elf32_Versym;

typedef Elf64_Half Elf64_Versym;

The number of elements of the array must equal the number of symbol table entries
contained in the associated symbol table. This number is determined by the section’s
sh_link value. Each element of the array contains a single index that can have the
values shown in the following table.

TABLE 7–33 ELF Version Dependency Indexes

Name Value Meaning

VER_NDX_LOCAL 0 Symbol has local scope.

VER_NDX_GLOBAL 1 Symbol has global scope (assigned to
base version definition).

>1 Symbol has global scope (assigned to
user-defined version definition).

Any index values greater than VER_NDX_GLOBAL must correspond to the vd_ndx
value of an entry in the SHT_SUNW_verdef section. If no index values greater than
VER_NDX_GLOBAL exist, then no SHT_SUNW_verdef section need be present.

Version Dependency Section
The version dependency section is defined by the type SHT_SUNW_verneed. This
section complements the dynamic dependency requirements of the file by indicating
the version definitions required from these dependencies. A recording is made in this
section only if a dependency contains version definitions. Elements of this section
have the following structure:

228 Linker and Libraries Guide • December 2003

typedef struct {
Elf32_Half vn_version;
Elf32_Half vn_cnt;
Elf32_Word vn_file;
Elf32_Word vn_aux;
Elf32_Word vn_next;

} Elf32_Verneed;

typedef struct {
Elf32_Word vna_hash;
Elf32_Half vna_flags;
Elf32_Half vna_other;
Elf32_Word vna_name;
Elf32_Word vna_next;

} Elf32_Vernaux;

typedef struct {
Elf64_Half vn_version;
Elf64_Half vn_cnt;
Elf64_Word vn_file;
Elf64_Word vn_aux;
Elf64_Word vn_next;

} Elf64_Verneed;

typedef struct {
Elf64_Word vna_hash;
Elf64_Half vna_flags;
Elf64_Half vna_other;
Elf64_Word vna_name;
Elf64_Word vna_next;

} Elf64_Vernaux;

The elements of this structure are:

vn_version
This member identifies the version of the structure itself, as listed in the following
table.

TABLE 7–34 ELF Version Dependency Structure Versions

Name Value Meaning

VER_NEED_NONE 0 Invalid version.

VER_NEED_CURRENT >=1 Current version.

The value 1 signifies the original section format. Extensions will create new
versions with higher numbers. The value of VER_NEED_CURRENT changes as
necessary to reflect the current version number.

vn_cnt
The number of elements in the Elf32_Vernaux array.

Chapter 7 • Object File Format 229

vn_file
The string table offset to a null-terminated string, that provides the file name
having a version dependency. This name matches one of the .dynamic
dependencies found in the file. See “Dynamic Section” on page 243.

vn_aux
The byte offset, from the start of this Elf32_Verneed entry, to the
Elf32_Vernaux array of version definitions required from the associated file
dependency. There must exist at least one version dependency. Additional version
dependencies can be present, the number being indicated by the vn_cnt value.

vn_next
The byte offset, from the start of this Elf32_Verneed entry, to the next
Elf32_Verneed entry.

vna_hash
The hash value of the version dependency name. This value is generated using the
same hashing function described in “Hash Table Section” on page 201.

vna_flags
Version dependency specific information, as listed in the following table.

TABLE 7–35 ELF Version Dependency Structure Flags

Name Value Meaning

VER_FLG_WEAK 0x2 Weak version identifier.

A weak version dependency indicates an original binding to a weak version
definition.

vna_other
Presently unused.

vna_name
The string table offset to a null-terminated string, giving the name of the version
dependency.

vna_next
The byte offset from the start of this Elf32_Vernaux entry to the next
Elf32_Vernaux entry.

Dynamic Linking
This section describes the object file information and system actions that create
running programs. Most information here applies to all systems. Information specific
to one processor resides in sections marked accordingly.

230 Linker and Libraries Guide • December 2003

Executable and shared object files statically represent application programs. To execute
such programs, the system uses the files to create dynamic program representations,
or process images. A process image has segments that contain its text, data, stack, and
so on. The major subsections of this section are:

� “Program Header” on page 231 describes object file structures that are directly
involved in program execution. The primary data structure, a program header
table, locates segment images in the file and contains other information needed to
create the memory image of the program.

� “Program Loading (Processor-Specific)” on page 236 describes the information
used to load a program into memory.

� “Runtime Linker” on page 242 describes the information used to specify and
resolve symbolic references among the object files of the process image.

Program Header
An executable or shared object file’s program header table is an array of structures,
each describing a segment or other information that the system needs to prepare the
program for execution. An object file segment contains one or more sections, as
described in “Segment Contents” on page 236.

Program headers are meaningful only for executable and shared object files. A file
specifies its own program header size with the ELF header’s e_phentsize and
e_phnum members..

A program header has the following structure, defined in sys/elf.h:

typedef struct {
Elf32_Word p_type;
Elf32_Off p_offset;
Elf32_Addr p_vaddr;
Elf32_Addr p_paddr;
Elf32_Word p_filesz;
Elf32_Word p_memsz;
Elf32_Word p_flags;
Elf32_Word p_align;

} Elf32_Phdr;

typedef struct {
Elf64_Word p_type;
Elf64_Word p_flags;
Elf64_Off p_offset;
Elf64_Addr p_vaddr;
Elf64_Addr p_paddr;
Elf64_Xword p_filesz;
Elf64_Xword p_memsz;
Elf64_Xword p_align;

} Elf64_Phdr;

The elements of this structure are:

Chapter 7 • Object File Format 231

p_type
The kind of segment this array element describes or how to interpret the array
element’s information. Type values and their meanings are specified in Table 7–36.

p_offset
The offset from the beginning of the file at which the first byte of the segment
resides.

p_vaddr
The virtual address at which the first byte of the segment resides in memory.

p_paddr
The segment’s physical address for systems in which physical addressing is
relevant. Because the system ignores physical addressing for application programs,
this member has unspecified contents for executable files and shared objects.

p_filesz
The number of bytes in the file image of the segment, which can be zero.

p_memsz
The number of bytes in the memory image of the segment, which can be zero.

p_flags
Flags relevant to the segment. Type values and their meanings are specified in Table
7–37.

p_align
Loadable process segments must have congruent values for p_vaddr and
p_offset, modulo the page size. This member gives the value to which the
segments are aligned in memory and in the file. Values 0 and 1 mean no alignment
is required. Otherwise, p_align should be a positive, integral power of 2, and
p_vaddr should equal p_offset, modulo p_align. See “Program Loading
(Processor-Specific)” on page 236.

Some entries describe process segments. Other entries give supplementary
information and do not contribute to the process image. Segment entries can appear in
any order, except as explicitly noted. Defined type values are listed in the following
table.

TABLE 7–36 ELF Segment Types

Name Value

PT_NULL 0

PT_LOAD 1

PT_DYNAMIC 2

PT_INTERP 3

PT_NOTE 4

232 Linker and Libraries Guide • December 2003

TABLE 7–36 ELF Segment Types (Continued)
Name Value

PT_SHLIB 5

PT_PHDR 6

PT_TLS 7

PT_LOSUNW 0x6ffffffa

PT_SUNWBSS 0x6ffffffa

PT_SUNWSTACK 0x6ffffffb

PT_HISUNW 0x6fffffff

PT_LOPROC 0x70000000

PT_HIPROC 0x7fffffff

PT_NULL
Unused; other members’ values are undefined. This type enables the program
header table to contain ignored entries.

PT_LOAD
Specifies a loadable segment, described by p_filesz and p_memsz. The bytes
from the file are mapped to the beginning of the memory segment. If the segment’s
memory size (p_memsz) is larger than the file size (p_filesz), the extra bytes are
defined to hold the value 0 and to follow the segment’s initialized area. The file size
can not be larger than the memory size. Loadable segment entries in the program
header table appear in ascending order, sorted on the p_vaddr member.

PT_DYNAMIC
Specifies dynamic linking information. See “Dynamic Section” on page 243.

PT_INTERP
Specifies the location and size of a null-terminated path name to invoke as an
interpreter. This segment type is mandatory for dynamic executable files and can
occur in shared objects. It cannot occur more than once in a file. This type, if
present, it must precede any loadable segment entry. See “Program Interpreter”
on page 242 for details.

PT_NOTE
Specifies the location and size of auxiliary information. See “Note Section”
on page 204 for details.

PT_SHLIB
Reserved but has unspecified semantics.

PT_PHDR
Specifies the location and size of the program header table itself, both in the file and
in the memory image of the program. This segment type cannot occur more than
once in a file. Moreover, it can occur only if the program header table is part of the

Chapter 7 • Object File Format 233

memory image of the program. This type, if present, must precede any loadable
segment entry. See “Program Interpreter” on page 242 for details.

PT_TLS
Specifies a thread-local storage template. See “Thread-Local Storage Section”
on page 225 for details.

PT_LOSUNW - PT_HISUNW
Values in this inclusive range are reserved for Sun-specific semantics.

PT_SUNWBSS
The same attributes as a PT_LOAD element and used to describe a .SUNW_bss
section.

PT_SUNWSTACK
Describes a process stack. Presently only one such element may exist, and only
access permissions, as defined in the p_flags field, are meaningful.

PT_LOPROC - PT_HIPROC
Values in this inclusive range are reserved for processor-specific semantics.

Note – Unless specifically required elsewhere, all program header segment types are
optional. A file’s program header table can contain only those elements relevant to its
contents.

Base Address
Executable and shared object files have a base address, which is the lowest virtual
address associated with the memory image of the program’s object file. One use of the
base address is to relocate the memory image of the program during dynamic linking.

An executable or shared object file’s base address is calculated during execution from
three values: the memory load address, the maximum page size, and the lowest
virtual address of a program’s loadable segment. The virtual addresses in the program
headers might not represent the actual virtual addresses of the program’s memory
image. See “Program Loading (Processor-Specific)” on page 236.

To compute the base address, you determine the memory address associated with the
lowest p_vaddr value for a PT_LOAD segment. You then obtain the base address by
truncating the memory address to the nearest multiple of the maximum page size.
Depending on the kind of file being loaded into memory, the memory address might
not match the p_vaddr values.

234 Linker and Libraries Guide • December 2003

Segment Permissions
A program to be loaded by the system must have at least one loadable segment,
although this is not required by the file format. When the system creates loadable
segment memory images, it gives access permissions, as specified in the p_flags
member. All bits included in the PF_MASKPROC mask are reserved for
processor-specific semantics.

TABLE 7–37 ELF Segment Flags

Name Value Meaning

PF_X 0x1 Execute

PF_W 0x2 Write

PF_R 0x4 Read

PF_MASKPROC 0xf0000000 Unspecified

If a permission bit is 0, that bit’s type of access is denied. Actual memory permissions
depend on the memory management unit, which can vary from one system to another.
Although all flag combinations are valid, the system can grant more access than
requested. In no case, however, will a segment have write permission unless it is
specified explicitly. The following table lists both the exact flag interpretation and the
allowable flag interpretation.

TABLE 7–38 ELF Segment Permissions

Flags Value Exact Allowable

None 0 All access denied All access denied

PF_X 1 Execute only Read, execute

PF_W 2 Write only Read, write, execute

PF_W + PF_X 3 Write, execute Read, write, execute

PF_R 4 Read only Read, execute

PF_R + PF_X 5 Read, execute Read, execute

PF_R + PF_W 6 Read, write Read, write, execute

PF_R + PF_W + PF_X 7 Read, write, execute Read, write, execute

For example, typical text segments have read and execute, but not write permissions.
Data segments normally have read, write, and execute permissions.

Chapter 7 • Object File Format 235

Segment Contents
An object file segment consists of one or more sections, though this fact is transparent
to the program header. Whether the file segment holds one or many sections also is
immaterial to program loading. Nonetheless, various data must be present for
program execution, dynamic linking, and so on. The diagrams below illustrate
segment contents in general terms. The order and membership of sections within a
segment can vary.

Text segments contain read-only instructions and data. Data segments contain writable
data and instructions. See Table 7–16 for a list of all special sections.

A PT_DYNAMIC program header element points at the .dynamic section. The .got
and .plt sections also hold information related to position-independent code and
dynamic linking.

The .plt can reside in a text or a data segment, depending on the processor. See
“Global Offset Table (Processor-Specific)” on page 255 and “Procedure Linkage Table
(Processor-Specific)” on page 256 for details.

The .bss section has the type SHT_NOBITS. Although it occupies no space in the file,
it contributes to the segment’s memory image. Normally, these uninitialized data
reside at the end of the segment, thereby making p_memsz larger than p_filesz in
the associated program header element.

Program Loading (Processor-Specific)
As the system creates or augments a process image, it logically copies a file’s segment
to a virtual memory segment. When, and if, the system physically reads the file
depends on the program’s execution behavior, system load, and so forth.

A process does not require a physical page unless it references the logical page during
execution, and processes commonly leave many pages unreferenced. Therefore,
delaying physical reads frequently obviates them, improving system performance. To
obtain this efficiency in practice, executable and shared object files must have segment
images whose file offsets and virtual addresses are congruent, modulo the page size.

Virtual addresses and file offsets for 32–bit segments are congruent modulo 64K
(0x10000). Virtual addresses and file offsets for 64–bit segments are congruent
modulo 1 megabyte (0x100000). By aligning segments to the maximum page size, the
files are suitable for paging regardless of physical page size.

By default, 64–bit SPARC programs are linked with a starting address of
0x100000000. The whole program is above 4 gigabytes, including its text, data, heap,
stack, and shared object dependencies. This helps ensure that 64–bit programs are
correct because the program will fault in the least significant 4 gigabytes of its address

236 Linker and Libraries Guide • December 2003

space if it truncates any of its pointers. While 64–bit programs are linked above 4
gigabytes, you can still link them below 4 gigabytes by using a mapfile and the -M
option to the compiler or link-editor. See /usr/lib/ld/sparcv9/map.below4G.

The following figure presents the SPARC version of the executable file.

. . .

Text segment

[ELF header]
[Program header]
[Other information]

. . .

0x3a82 bytes

Data segment

. . .

0x4f5 bytes

Other information

File offset File Virtual address

0x13a82

0x0 0x10000

0x24000

0x244f5

0x4000

0x44f5

FIGURE 7–8 SPARC: Executable File (64K alignment)

The following table defines the loadable segment elements for the previous figure.

TABLE 7–39 SPARC: ELF Program Header Segments (64K alignment)

Member Text Data

p_type PT_LOAD PT_LOAD

p_offset 0x0 0x4000

p_vaddr 0x10000 0x24000

p_paddr Unspecified Unspecified

p_filesize 0x3a82 0x4f5

p_memsz 0x3a82 0x10a4

p_flags PF_R + PF_X PF_R + PF_W + PF_X

p_align 0x10000 0x10000

Chapter 7 • Object File Format 237

The following figure presents the x86 version of the executable file.

. . .

Text segment

[ELF header]
[Program header]
[Other information]

. . .

0x32fd bytes

Data segment

. . .

0x3a0 bytes

Other information

File offset File Virtual address

0x80532fd

0x0 0x8050000

0x8064000

0x80643a0

0x4000

0x43a0

FIGURE 7–9 x86: Executable File (64K alignment)

The following table defines the loadable segment elements for the previous figure.

TABLE 7–40 x86: ELF Program Header Segments (64K alignment)

Member Text Data

p_type PT_LOAD PT_LOAD

p_offset 0x0 0x4000

p_vaddr 0x8050000 0x8064000

p_paddr Unspecified Unspecified

p_filesize 0x32fd 0x3a0

p_memsz 0x32fd 0xdc4

p_flags PF_R + PF_X PF_R + PF_W + PF_X

p_align 0x10000 0x10000

The example’s file offsets and virtual addresses are congruent modulo the maximum
page size for both text and data. Up to four file pages hold impure text or data
depending on page size and file system block size.

238 Linker and Libraries Guide • December 2003

� The first text page contains the ELF header, the program header table, and other
information.

� The last text page holds a copy of the beginning of data.

� The first data page has a copy of the end of text.

� The last data page can contain file information not relevant to the running process.
Logically, the system enforces the memory permissions as if each segment were
complete and separate The segments addresses are adjusted to ensure that each
logical page in the address space has a single set of permissions. In the examples
above, the region of the file holding the end of text and the beginning of data is
mapped twice: at one virtual address for text and at a different virtual address for
data.

Note – The examples above reflect typical Solaris system binaries that have their text
segments rounded.

The end of the data segment requires special handling for uninitialized data, which
the system defines to begin with zero values. If a file’s last data page includes
information not in the logical memory page, the extraneous data must be set to zero,
not the unknown contents of the executable file.

Impurities in the other three pages are not logically part of the process image. Whether
the system expunges these impurities is unspecified. The memory image for this
program is shown in the following figures, assuming 4 Kbyte (0x1000) pages. For
simplicity, these figures illustrate only one page size.

Chapter 7 • Object File Format 239

Text segment

. . .

0x3a82 bytes

Data padding
0x57e

Virtual address Contents Segment

Text

0x10000

0x13a82

Text padding
0x4000

Page padding
0xaf5c

Data segment

. . .

0x4f5 bytes

Uninitialized data
0xbaf

Data

0x24000

0x20000

0x244f5

0x250a4

FIGURE 7–10 SPARC: Process Image Segments

240 Linker and Libraries Guide • December 2003

Text segment

. . .

0x32fd bytes

Data padding
0xd03

Virtual address Contents Segment

Text

0x8050000

0x80532fd

Text padding
0x4000

Page padding
0xb23c

Data segment

. . .

3a0 bytes

Uninitialized data
0xa24

Data

0x8064000

0x8060000

0x80643a0

0x8064dc4

FIGURE 7–11 x86: Process Image Segments

One aspect of segment loading differs between executable files and shared objects.
Executable file segments typically contain absolute code. For the process to execute
correctly, the segments must reside at the virtual addresses used to create the
executable file. The system uses the p_vaddr values unchanged as virtual addresses.

On the other hand, shared object segments typically contain position-independent
code. This code enables a segment’s virtual address change from one process to
another, without invalidating execution behavior.

Though the system chooses virtual addresses for individual processes, it maintains the
relative positions of the segments. Because position-independent code uses relative
addressing between segments, the difference between virtual addresses in memory
must match the difference between virtual addresses in the file.

Chapter 7 • Object File Format 241

The following tables show possible shared object virtual address assignments for
several processes, illustrating constant relative positioning. The tables also include the
base address computations.

TABLE 7–41 SPARC: ELF Example Shared Object Segment Addresses

Source Text Data Base Address

File 0x0 0x4000 0x0

Process 1 0xc0000000 0xc0024000 0xc0000000

Process 2 0xc0010000 0xc0034000 0xc0010000

Process 3 0xd0020000 0xd0024000 0xd0020000

Process 4 0xd0030000 0xd0034000 0xd0030000

TABLE 7–42 x86: ELF Example Shared Object Segment Addresses

Source Text Data Base Address

File 0x0 0x4000 0x0

Process 1 0x8000000 0x8004000 0x80000000

Process 2 0x80081000 0x80085000 0x80081000

Process 3 0x900c0000 0x900c4000 0x900c0000

Process 4 0x900c6000 0x900ca000 0x900c6000

Program Interpreter
A dynamic executable or shared object that initiates dynamic linking can have one
PT_INTERP program header element. During exec(2), the system retrieves a path
name from the PT_INTERP segment and creates the initial process image from the
interpreter file’s segments. The interpreter is responsible for receiving control from the
system and providing an environment for the application program.

In the Solaris operating environment the interpreter is known as the runtime linker,
ld.so.1(1).

Runtime Linker
When creating a dynamic object that initiates dynamic linking, the link-editor adds a
program header element of type PT_INTERP to an executable file. This element
instructing the system to invoke the runtime linker as the program interpreter.
exec(2) and the runtime linker cooperate to create the process image for the program.

242 Linker and Libraries Guide • December 2003

The link-editor constructs various data for executable and shared object files that assist
the runtime linker. These data reside in loadable segments, making them available
during execution. These segments include:

� A .dynamic section with type SHT_DYNAMIC that holds various data. The
structure residing at the beginning of the section holds the addresses of other
dynamic linking information.

� The .got and .plt sections with type SHT_PROGBITS that hold two separate
tables: the global offset table and the procedure linkage table. Sections below
explain how the runtime linker uses and changes the tables to create memory
images for object files.

� The .hash section with type SHT_HASH that holds a symbol hash table.

Shared objects can occupy virtual memory addresses that are different from the
addresses recorded in the file’s program header table. The runtime linker relocates the
memory image, updating absolute addresses before the application gains control.

Dynamic Section
If an object file participates in dynamic linking, its program header table will have an
element of type PT_DYNAMIC. This segment contains the .dynamic section. A special
symbol, _DYNAMIC, labels the section, which contains an array of the following
structures, defined in sys/link.h:

typedef struct {
Elf32_Sword d_tag;
union {

Elf32_Word d_val;
Elf32_Addr d_ptr;
Elf32_Off d_off;

} d_un;
} Elf32_Dyn;

typedef struct {
Elf64_Xword d_tag;
union {

Elf64_Xword d_val;
Elf64_Addr d_ptr;

} d_un;

} Elf64_Dyn;

For each object with this type, d_tag controls the interpretation of d_un.

d_val
These objects represent integer values with various interpretations.

d_ptr
These objects represent program virtual addresses. A file’s virtual addresses might
not match the memory virtual addresses during execution. When interpreting
addresses contained in the dynamic structure, the runtime linker computes actual

Chapter 7 • Object File Format 243

addresses, based on the original file value and the memory base address. For
consistency, files do not contain relocation entries to correct addresses in the
dynamic structure.

To make interpreting the contents of dynamic section entries simpler for tools, the
value of each tag, except for those in two special compatibility ranges, will determine
the interpretation of the d_un union. A tag whose value is an even number indicates a
dynamic section entry that uses d_ptr. A tag whose value is an odd number indicates
a dynamic section entry that uses d_val or that uses neither d_ptr nor d_val. Tags
whose values are less than the special value DT_ENCODING and tags whose values fall
between DT_HIOS and DT_LOPROC do not follow these rules.

The following table summarizes the tag requirements for executable and shared object
files. If a tag is marked mandatory, then the dynamic linking array must have an entry
of that type. Likewise, optional means an entry for the tag can appear but is not
required.

TABLE 7–43 ELF Dynamic Array Tags

Name Value d_un Executable Shared Object

DT_NULL 0 Ignored Mandatory Mandatory

DT_NEEDED 1 d_val Optional Optional

DT_PLTRELSZ 2 d_val Optional Optional

DT_PLTGOT 3 d_ptr Optional Optional

DT_HASH 4 d_ptr Mandatory Mandatory

DT_STRTAB 5 d_ptr Mandatory Mandatory

DT_SYMTAB 6 d_ptr Mandatory Mandatory

DT_RELA 7 d_ptr Mandatory Optional

DT_RELASZ 8 d_val Mandatory Optional

DT_RELAENT 9 d_val Mandatory Optional

DT_STRSZ 10 d_val Mandatory Mandatory

DT_SYMENT 11 d_val Mandatory Mandatory

DT_INIT 12 d_ptr Optional Optional

DT_FINI 13 d_ptr Optional Optional

DT_SONAME 14 d_val Ignored Optional

DT_RPATH 15 d_val Optional Optional

DT_SYMBOLIC 16 Ignored Ignored Optional

244 Linker and Libraries Guide • December 2003

TABLE 7–43 ELF Dynamic Array Tags (Continued)
Name Value d_un Executable Shared Object

DT_REL 17 d_ptr Mandatory Optional

DT_RELSZ 18 d_val Mandatory Optional

DT_RELENT 19 d_val Mandatory Optional

DT_PLTREL 20 d_val Optional Optional

DT_DEBUG 21 d_ptr Optional Ignored

DT_TEXTREL 22 Ignored Optional Optional

DT_JMPREL 23 d_ptr Optional Optional

DT_BIND_NOW 24 Ignored Optional Optional

DT_INIT_ARRAY 25 d_ptr Optional Optional

DT_FINI_ARRAY 26 d_ptr Optional Optional

DT_INIT_ARRAYSZ 27 d_val Optional Optional

DT_FINI_ARRAYSZ 28 d_val Optional Optional

DT_RUNPATH 29 d_val Optional Optional

DT_FLAGS 30 d_val Optional Optional

DT_ENCODING 32 Unspecified Unspecified Unspecified

DT_PREINIT_ARRAY 32 d_ptr Optional Ignored

DT_PREINIT_ARRAYSZ 33 d_val Optional Ignored

DT_LOOS 0x6000000d Unspecified Unspecified Unspecified

DT_SUNW_RTLDINF 0x6000000e d_ptr Optional Optional

DT_HIOS 0x6ffff000 Unspecified Unspecified Unspecified

DT_VALRNGLO 0x6ffffd00 Unspecified Unspecified Unspecified

DT_CHECKSUM 0x6ffffdf8 d_val Optional Optional

DT_PLTPADSZ 0x6ffffdf9 d_val Optional Optional

DT_MOVEENT 0x6ffffdfa d_val Optional Optional

DT_MOVESZ 0x6ffffdfb d_val Optional Optional

DT_FEATURE_1 0x6ffffdfc d_val Optional Optional

DT_POSFLAG_1 0x6ffffdfd d_val Optional Optional

DT_SYMINSZ 0x6ffffdfe d_val Optional Optional

Chapter 7 • Object File Format 245

TABLE 7–43 ELF Dynamic Array Tags (Continued)
Name Value d_un Executable Shared Object

DT_SYMINENT 0x6ffffdff d_val Optional Optional

DT_VALRNGHI 0x6ffffdff Unspecified Unspecified Unspecified

DT_ADDRRNGLO 0x6ffffe00 Unspecified Unspecified Unspecified

DT_CONFIG 0x6ffffefa d_ptr Optional Optional

DT_DEPAUDIT 0x6ffffefb d_ptr Optional Optional

DT_AUDIT 0x6ffffefc d_ptr Optional Optional

DT_PLTPAD 0x6ffffefd d_ptr Optional Optional

DT_MOVETAB 0x6ffffefe d_ptr Optional Optional

DT_SYMINFO 0x6ffffeff d_ptr Optional Optional

DT_ADDRRNGHI 0x6ffffeff Unspecified Unspecified Unspecified

DT_RELACOUNT 0x6ffffff9 d_val Optional Optional

DT_RELCOUNT 0x6ffffffa d_val Optional Optional

DT_FLAGS_1 0x6ffffffb d_val Optional Optional

DT_VERDEF 0x6ffffffc d_ptr Optional Optional

DT_VERDEFNUM 0x6ffffffd d_val Optional Optional

DT_VERNEED 0x6ffffffe d_ptr Optional Optional

DT_VERNEEDNUM 0x6fffffff d_val Optional Optional

DT_LOPROC 0x70000000 Unspecified Unspecified Unspecified

DT_SPARC_REGISTER 0x70000001 d_val Optional Optional

DT_AUXILIARY 0x7ffffffd d_val Unspecified Optional

DT_USED 0x7ffffffe d_val Optional Optional

DT_FILTER 0x7fffffff d_val Unspecified Optional

DT_HIPROC 0x7fffffff Unspecified Unspecified Unspecified

DT_NULL
Marks the end of the _DYNAMIC array.

DT_NEEDED
The DT_STRTAB string table offset of a null-terminated string, giving the name of a
needed dependency. The dynamic array can contain multiple entries of this type.
The relative order of these entries is significant, though their relation to entries of
other types is not. See “Shared Object Dependencies” on page 62.

246 Linker and Libraries Guide • December 2003

DT_PLTRELSZ
The total size, in bytes, of the relocation entries associated with the procedure
linkage table. See “Procedure Linkage Table (Processor-Specific)” on page 256.

DT_PLTGOT
An address associated with the procedure linkage table or the global offset table.
See “Procedure Linkage Table (Processor-Specific)” on page 256 and “Global Offset
Table (Processor-Specific)” on page 255.

DT_HASH
The address of the symbol hash table. This table refers to the symbol table indicated
by the DT_SYMTAB element. See “Hash Table Section” on page 201.

DT_STRTAB
The address of the string table. Symbol names, dependency names, and other
strings required by the runtime linker reside in this table. See “String Table Section”
on page 215.

DT_SYMTAB
The address of the symbol table. See “Symbol Table Section” on page 216.

DT_RELA
The address of a relocation table. See “Relocation Sections” on page 205.

An object file can have multiple relocation sections. When creating the relocation
table for an executable or shared object file, the link-editor catenates those sections
to form a single table. Although the sections may remain independent in the object
file, the runtime linker sees a single table. When the runtime linker creates the
process image for an executable file or adds a shared object to the process image, it
reads the relocation table and performs the associated actions.

This element requires the DT_RELASZ and DT_RELAENT elements also be present.
When relocation is mandatory for a file, either DT_RELA or DT_REL can occur.

DT_RELASZ
The total size, in bytes, of the DT_RELA relocation table.

DT_RELAENT
The size, in bytes, of the DT_RELA relocation entry.

DT_STRSZ
The total size, in bytes, of the DT_STRTAB string table.

DT_SYMENT
The size, in bytes, of the DT_SYMTAB symbol entry.

DT_INIT
The address of an initialization function. See “Initialization and Termination
Sections” on page 34.

DT_FINI
The address of a termination function. See “Initialization and Termination Sections”
on page 34.

Chapter 7 • Object File Format 247

DT_SONAME
The DT_STRTAB string table offset of a null-terminated string, identifying the name
of the shared object. See “Recording a Shared Object Name” on page 99.

DT_RPATH
The DT_STRTAB string table offset of a null-terminated library search path string.
This element’s use has been superseded by DT_RUNPATH. See “Directories Searched
by the Runtime Linker” on page 62.

DT_SYMBOLIC
Indicates the object contains symbolic bindings that were applied during its
link-edit. This elements use has been superseded by the DF_SYMBOLIC flag. See
“Using -B symbolic” on page 121.

DT_REL
Similar to DT_RELA, except its table has implicit addends. This element requires
that the DT_RELSZ and DT_RELENT elements also be present.

DT_RELSZ
The total size, in bytes, of the DT_REL relocation table.

DT_RELENT
The size, in bytes, of the DT_REL relocation entry.

DT_PLTREL
Indicates the type of relocation entry to which the procedure linkage table refers,
either DT_REL or DT_RELA. All relocations in a procedure linkage table must use
the same relocation. See “Procedure Linkage Table (Processor-Specific)”
on page 256. This element requires a DT_JMPREL element also be present.

DT_DEBUG
Used for debugging.

DT_TEXTREL
Indicates that one or more relocation entries might request modifications to a
non-writable segment, and the runtime linker can prepare accordingly. This
element’s use has been superseded by the DF_TEXTREL flag. See
“Position-Independent Code” on page 111.

DT_JMPREL
The address of relocation entries associated solely with the procedure linkage table.
See “Procedure Linkage Table (Processor-Specific)” on page 256. Separating these
relocation entries enables the runtime linker to ignore them when the object is
loaded if lazy binding is enabled. This element requires the DT_PLTRELSZ and
DT_PLTREL elements also be present.

DT_POSFLAG_1
Various state flags which are applied to the DT_ element immediately following.
See Table 7–46.

DT_BIND_NOW
Indicates that all relocations for this object must be processed before returning
control to the program. The presence of this entry takes precedence over a directive

248 Linker and Libraries Guide • December 2003

to use lazy binding when specified through the environment or via dlopen(3DL).
This element’s use has been superseded by the DF_BIND_NOW flag. See “When
Relocations Are Performed” on page 68.

DT_INIT_ARRAY
The address of an array of pointers to initialization functions. This element requires
that a DT_INIT_ARRAYSZ element also be present. See “Initialization and
Termination Sections” on page 34.

DT_FINI_ARRAY
The address of an array of pointers to termination functions. This element requires
that a DT_FINI_ARRAYSZ element also be present. See “Initialization and
Termination Sections” on page 34.

DT_INIT_ARRAYSZ
The total size, in bytes, of the DT_INIT_ARRAY array.

DT_FINI_ARRAYSZ
The total size, in bytes, of the DT_FINI_ARRAY array.

DT_RUNPATH
The DT_STRTAB string table offset of a null-terminated library search path string.
See “Directories Searched by the Runtime Linker” on page 62.

DT_FLAGS
Flag values specific to this object. See Table 7–44.

DT_ENCODING
Values greater than or equal to DT_ENCODING and less than or equal to DT_HIOS
follow the rules for the interpretation of the d_un union.

DT_PREINIT_ARRAY
The address of an array of pointers to pre-initialization functions. This element
requires that a DT_PREINIT_ARRAYSZ element also be present. This array is
processed only in an executable file. It is ignored if contained in a shared object. See
“Initialization and Termination Sections” on page 34.

DT_PREINIT_ARRAYSZ
The total size, in bytes, of the DT_PREINIT_ARRAY array.

DT_LOOS - DT_HIOS
Values in this inclusive range are reserved for operating system-specific semantics.
All such values follow the rules for the interpretation of the d_un union.

DT_SUNW_RTLDINF
Reserved for internal use by the runtime-linker.

DT_SYMINFO
The address of the symbol information table. This element requires that the
DT_SYMINENT and DT_SYMINSZ elements also be present. See “Syminfo Table
Section” on page 224.

DT_SYMINENT
The size, in bytes, of the DT_SYMINFO information entry.

Chapter 7 • Object File Format 249

DT_SYMINSZ
The total size, in bytes, of the DT_SYMINFO table.

DT_VERDEF
The address of the version definition table. Elements within this table contain
indexes into the string table DT_STRTAB. This element requires that the
DT_VERDEFNUM element also be present. See “Version Definition Section”
on page 226.

DT_VERDEFNUM
The number of entries in the DT_VERDEF table.

DT_VERNEED
The address of the version dependency table. Elements within this table contain
indexes into the string table DT_STRTAB. This element requires that the
DT_VERNEEDNUM element also be present. See “Version Dependency Section”
on page 228.

DT_VERNEEDNUM
The number of entries in the DT_VERNEEDNUM table.

DT_RELACOUNT
Indicates that all Elf32_Rela (or Elf64_Rela) RELATIVE relocations have been
concatenated together, and specifies the RELATIVE relocation count. See
“Combined Relocation Sections” on page 117.

DT_RELCOUNT
Indicates that all Elf32_Rel RELATIVE relocations have been concatenated
together, and specifies the RELATIVE relocation count. See “Combined Relocation
Sections” on page 117.

DT_AUXILIARY
The DT_STRTAB string table offset of a null-terminated string that names one or
more auxiliary filtees. See “Generating an Auxiliary Filter” on page 106.

DT_FILTER
The DT_STRTAB string table offset of a null-terminated string that names one or
more standard filtees. See “Generating a Standard Filter” on page 103.

DT_CHECKSUM
A simple checksum of selected sections of the object. See gelf_checksum(3ELF).

DT_MOVEENT
The size, in bytes, of the DT_MOVETAB move entries.

DT_MOVESZ
The total size, in bytes, of the DT_MOVETAB table.

DT_MOVETAB
The address of a move table. This element requires that the DT_MOVEENT and
DT_MOVESZ elements also be present. See “Move Section” on page 202.

250 Linker and Libraries Guide • December 2003

DT_CONFIG
The DT_STRTAB string table offset of a null-terminated string defining a
configuration file. The configuration file is only meaningful in an executable, and is
typically unique to this object. See “Configuring the Default Search Paths”
on page 65.

DT_DEPAUDIT
The DT_STRTAB string table offset of a null-terminated string defining one or more
audit libraries. See “Runtime Linker Auditing Interface” on page 151.

DT_AUDIT
The DT_STRTAB string table offset of a null-terminated string defining one or more
audit libraries. See “Runtime Linker Auditing Interface” on page 151.

DT_FLAGS_1
Flag values specific to this object. See Table 7–45.

DT_FEATURE_1
Feature values specific to this object. See “Feature Checking” on page 90.

DT_VALRNGLO - DT_VALRNGHI
Values in this inclusive range use the d_un.d_val field of the dynamic structure.

DT_ADDRRNGLO - DT_ADDRRNGHI
Values in this inclusive range use the d_un.d_ptr field of the dynamic structure. If
any adjustment is made to the ELF object after it has been built, these entries must
be updated accordingly.

DT_SPARC_REGISTER
The index of an STT_SPARC_REGISTER symbol within the DT_SYMTAB symbol
table. There is one entry for every STT_SPARC_REGISTER symbol in the symbol
table. See “Register Symbols” on page 223.

DT_LOPROC - DT_HIPROC
Values in this inclusive range are reserved for processor-specific semantics.

Except for the DT_NULL element at the end of the dynamic array and the relative order
of DT_NEEDED and DT_POSFLAG_1 elements, entries can appear in any order. Tag
values not appearing in the table are reserved.

TABLE 7–44 ELF Dynamic Flags, DT_FLAGS

Name Value Meaning

DF_ORIGIN 0x1 $ORIGIN processing required

DF_SYMBOLIC 0x2 Symbolic symbol resolution required

DF_TEXTREL 0x4 Text relocations exist

DF_BIND_NOW 0x8 Non-lazy binding required

DF_STATIC_TLS 0x10 Object uses static thread-local storage scheme

Chapter 7 • Object File Format 251

DF_ORIGIN
Indicates that the object requires $ORIGIN processing. See “Locating Associated
Dependencies” on page 295.

DF_SYMBOLIC
Indicates that the object contains symbolic bindings that were applied during its
link-edit. See “Using -B symbolic” on page 121.

DF_TEXTREL
Indicates that one or more relocation entries might request modifications to a
non-writable segment, and the runtime linker can prepare accordingly. See
“Position-Independent Code” on page 111.

DF_BIND_NOW
Indicates that all relocations for this object must be processed before returning
control to the program. The presence of this entry takes precedence over a directive
to use lazy binding when specified through the environment or via dlopen(3DL).
See “When Relocations Are Performed” on page 68.

DF_STATIC_TLS
Indicates that the object contains code using a static thread-local storage scheme.
Static thread-local storage can not be used in objects that are dynamically loaded,
either using dlopen(3DL), or using lazy loading. Because of this restriction, the
link-editor does not support the creation of a shared object that requires static
thread-local storage.

TABLE 7–45 ELF Dynamic Flags, DT_FLAGS_1

Name Value Meaning

DF_1_NOW 0x1 Perform complete relocation processing.

DF_1_GLOBAL 0x2 Unused

DF_1_GROUP 0x4 Indicate object is a member of a group.

DF_1_NODELETE 0x8 Object cannot be deleted from a process.

DF_1_LOADFLTR 0x10 Ensure immediate loading of filtees.

DF_1_INITFIRST 0x20 Objects’ initialization occurs first.

DF_1_NOOPEN 0x40 Object can not be used with dlopen(3DL).

DF_1_ORIGIN 0x80 $ORIGIN processing required.

DF_1_DIRECT 0x100 Direct bindings enabled

DF_1_INTERPOSE 0x400 Object is an interposer

DF_1_NODEFLIB 0x800 Ignore default library search path

DF_1_NODUMP 0x1000 Object cannot be dumped with dldump(3DL)

252 Linker and Libraries Guide • December 2003

TABLE 7–45 ELF Dynamic Flags, DT_FLAGS_1 (Continued)
Name Value Meaning

DF_1_CONFALT 0x2000 Object is a configuration alternative.

DF_1_ENDFILTEE 0x4000 Filtee terminates filter’s search.

DF_1_DISPRELDNE 0x8000 Displacement relocation done.

DF_1_DISPRELPND 0x10000 Displacement relocation pending.

DF_1_NOW
Indicates that all relocations for this object must be processed before returning
control to the program. The presence of this flag takes precedence over a directive
to use lazy binding when specified through the environment or via dlopen(3DL).
See “When Relocations Are Performed” on page 68.

DF_1_GROUP
Indicates that the object is a member of a group. This flag is recorded in the object
using the link-editor’s -B group option. See “Object Hierarchies” on page 86.

DF_1_NODELETE
Indicates that the object cannot be deleted from a process. If the object is loaded in a
process, either directly or as a dependency, with dlopen(3DL), it cannot be
unloaded with dlclose(3DL). This flag is recorded in the object using the
link-editor’s -z nodelete option.

DF_1_LOADFLTR
Meaningful only for filters. Indicates that all associated filtees be processed
immediately. This flag is recorded in the object using the link-editor’s
-z loadfltr option. See “Filtee Processing” on page 107.

DF_1_INITFIRST
Indicates that this object’s initialization section be run before any other objects
loaded with it. This flag is intended for specialized system libraries only, and is
recorded in the object using the link-editor’s -z initfirst option.

DF_1_NOOPEN
Indicates that the object cannot be added to a running process with dlopen(3DL).
This flag is recorded in the object using the link-editor’s -z nodlopen option.

DF_1_ORIGIN
Indicates that the object requires $ORIGIN processing. See “Locating Associated
Dependencies” on page 295.

DF_1_DIRECT
Indicates that the object should use direct binding information. See “Direct
Binding” on page 68.

DF_1_INTERPOSE
Indicates that the objects symbol table is to interpose before all symbols except the
primary load object, which is typically the executable. This flag is recorded with the
link-editor’s -z interpose option. See “Direct Binding” on page 68.

Chapter 7 • Object File Format 253

DF_1_NODEFLIB
Indicates that the search for dependencies of this object ignores any default library
search paths. This flag is recorded in the object using the link-editor’s
-z nodefaultlib option. See “Directories Searched by the Runtime Linker”
on page 33.

DF_1_NODUMP
Indicates that this object is not dumped by dldump(3DL). Candidates for this
option include objects with no relocations that might get included when generating
alternative objects using crle(1). This flag is recorded in the object using the
link-editor’s -z nodump option.

DF_1_CONFALT
Identifies this object as a configuration alternative object generated by crle(1). This
flag triggers the runtime linker to search for a configuration file
$ORIGIN/ld.config.app-name.

DF_1_ENDFILTEE
Meaningful only for filtees. Terminates a filters search for any further filtees. This
flag is recorded in the object using the link-editor’s -z endfiltee option. See
“Reducing Filtee Searches” on page 294.

DF_1_DISPRELDNE
Indicates that this object has displacement relocations applied. The displacement
relocation records no longer exist within the object as they were discarded once the
relocation was applied. See “Displacement Relocations” on page 56.

DF_1_DISPRELPND
Indicates that this object has displacement relocations pending. The displacement
relocations exits within the object so they can be completed at runtime. See
“Displacement Relocations” on page 56.

TABLE 7–46 ELF Dynamic Position Flags, DT_POSFLAG_1

Name Value Meaning

DF_P1_LAZYLOAD 0x1 Identify lazy loaded dependency.

DF_P1_GROUPPERM 0x2 Identify group dependency.

DF_P1_LAZYLOAD
Identifies the following DT_NEEDED entry as an object to be lazy loaded. This flag is
recorded in the object using the link-editor’s -z lazyload option. See “Lazy
Loading of Dynamic Dependencies” on page 72.

DF_P1_GROUPPERM
Identifies the following DT_NEEDED entry as an object to be loaded as a group. This
flag is recorded in the object using the link-editor’s -z groupperm option. See
“Isolating a Group” on page 86.

254 Linker and Libraries Guide • December 2003

TABLE 7–47 ELF Dynamic Feature Flags, DT_FEATURE_1

Name Value Meaning

DTF_1_PARINIT 0x1 Partial initialization is required.

DTF_1_CONFEXP 0x2 A Configuration file is expected.

DTF_1_PARINIT
Indicates that the object requires partial initialization. See “Move Section”
on page 202.

DTF_1_CONFEXP
Identifies this object as a configuration alternative object generated by crle(1). This
flag triggers the runtime linker to search for a configuration file
$ORIGIN/ld.config.app-name. This flag has the same affect as DF_1_CONFALT.

Global Offset Table (Processor-Specific)
Position-independent code cannot, in general, contain absolute virtual addresses.
Global offset tables hold absolute addresses in private data. Addresses are therefore
available without compromising the position-independence and shareability of a
program’s text. A program references its global offset table using position-independent
addressing and extracts absolute values. This technique redirects
position-independent references to absolute locations.

Initially, the global offset table holds information as required by its relocation entries.
After the system creates memory segments for a loadable object file, the runtime linker
processes the relocation entries, some of which will be type R_SPARC_GLOB_DAT (for
SPARC), or R_386_GLOB_DAT (for x86), referring to the global offset table.

The runtime linker determines the associated symbol values, calculates their absolute
addresses, and sets the appropriate memory table entries to the proper values.
Although the absolute addresses are unknown when the link-editor creates an object
file, the runtime linker knows the addresses of all memory segments and can thus
calculate the absolute addresses of the symbols contained therein.

If a program requires direct access to the absolute address of a symbol, that symbol
will have a global offset table entry. Because the executable file and shared objects
have separate global offset tables, a symbol’s address can appear in several tables. The
runtime linker processes all the global offset table relocations before giving control to
any code in the process image. This processing ensures that absolute addresses are
available during execution.

Chapter 7 • Object File Format 255

The table’s entry zero is reserved to hold the address of the dynamic structure,
referenced with the symbol _DYNAMIC. This symbol enables a program, such as the
runtime linker, to find its own dynamic structure without having yet processed its
relocation entries. This method is especially important for the runtime linker, because
it must initialize itself without relying on other programs to relocate its memory
image.

The system can choose different memory segment addresses for the same shared
object in different programs. It can even choose different library addresses for different
executions of the same program. Nonetheless, memory segments do not change
addresses once the process image is established. As long as a process exists, its
memory segments reside at fixed virtual addresses.

A global offset table’s format and interpretation are processor-specific. For SPARC and
x86 processors, the symbol _GLOBAL_OFFSET_TABLE_ can be used to access the
table. This symbol can reside in the middle of the .got section, allowing both
negative and nonnegative subscripts into the array of addresses. The symbol type is an
array of Elf32_Addr for 32–bit code, and an array of Elf64_Addr for 64–bit code:

extern Elf32_Addr _GLOBAL_OFFSET_TABLE_[];

extern Elf64_Addr _GLOBAL_OFFSET_TABLE_[];

Procedure Linkage Table (Processor-Specific)
The global offset table converts position-independent address calculations to absolute
locations. Similarly the procedure linkage table converts position-independent
function calls to absolute locations. The link-editor cannot resolve execution transfers
such as function calls from one executable or shared object to another. So, the
link-editor arranges to have the program transfer control to entries in the procedure
linkage table. The runtime linker thus redirects the entries without compromising the
position-independence and shareability of the program’s text. Executable files and
shared object files have separate procedure linkage tables.

SPARC: 32–bit Procedure Linkage Table
For 32–bit SPARC dynamic objects, the procedure linkage table resides in private data.
The runtime linker determines the absolute addresses of the destinations and modifies
the procedure linkage table’s memory image accordingly.

The first four procedure linkage table entries are reserved. The original contents of
these entries are unspecified, despite the example shown in Table 7–48. Each entry in
the table occupies 3 words (12 bytes), and the last table entry is followed by a nop
instruction.

A relocation table is associated with the procedure linkage table. The DT_JMP_REL
entry in the _DYNAMIC array gives the location of the first relocation entry. The
relocation table has one entry, in the same sequence, for each non-reserved procedure

256 Linker and Libraries Guide • December 2003

linkage table entry. The relocation type of each of these entries is
R_SPARC_JMP_SLOT. The relocation offset specifies the address of the first byte of the
associated procedure linkage table entry. The symbol table index refers to the
appropriate symbol.

To illustrate procedure linkage tables, Table 7–48 shows four entries: two of the four
initial reserved entries, the third is a call to name101, and the fourth entry is a call to
name102. The example assumes that the entry for name102 is the table’s last entry
and shows the following nop instruction. The left column shows the instructions from
the object file before dynamic linking. The right column demonstrates a possible way
the runtime linker might fix the procedure linkage table entries.

TABLE 7–48 SPARC: Procedure Linkage Table Example

Object File Memory Segment

.PLT0:
unimp
unimp
unimp

.PLT1:
unimp
unimp
unimp

.PLT0:
save %sp, -64, %sp
call runtime_linker
nop

.PLT1:
.word identification
unimp
unimp

.PLT101:
sethi (.-.PLT0), %g1
ba,a .PLT0
nop

.PLT102:
sethi (.-.PLT0), %g1
ba,a .PLT0
nop

nop

.PLT101:
nop
ba,a name101
nop

.PLT102:
sethi (.-.PLT0), %g1
sethi %hi(name102), %g1
jmpl %g1+%lo(name102), %g0

nop

Following the steps below, the runtime linker and program jointly resolve the
symbolic references through the procedure linkage table. Again, the steps described
below are for explanation only. The precise execution-time behavior of the runtime
linker is not specified.

1. When first creating the memory image of the program, the runtime linker changes
the initial procedure linkage table entries, making them transfer control to one of
the runtime linker’s own routines. The runtime linker also stores a word of
identification information in the second entry. When the runtime linker receives
control, it can examine this word to find which object called it.

2. All other procedure linkage table entries initially transfer to the first entry, letting
the runtime linker to gain control at the first execution of each table entry. For
example, the program calls name101, which transfers control to the label
.PLT101.

Chapter 7 • Object File Format 257

3. The sethi instruction computes the distance between the current and the initial
procedure linkage table entries, .PLT101 and .PLT0, respectively. This value
occupies the most significant 22 bits of the %g1 register.

4. Next, the ba,a instruction jumps to .PLT0, establishing a stack frame and calls the
runtime linker.

5. With the identification value, the runtime linker gets its data structures for the
object, including the relocation table.

6. By shifting the %g1 value and dividing by the size of the procedure linkage table
entries, the runtime linker calculates the index of the relocation entry for name101.
Relocation entry 101 has type R_SPARC_JMP_SLOT, its offset specifies the address
of .PLT101, and its symbol table index refers to name101. Thus, the runtime
linker gets the symbol’s real value, unwinds the stack, modifies the procedure
linkage table entry, and transfers control to the desired destination.

The runtime linker does not have to create the instruction sequences under the
memory segment column. If it does, some points deserve more explanation.

� To make the code re-entrant, the procedure linkage table’s instructions are changed
in a particular sequence. If the runtime linker is fixing a function’s procedure
linkage table entry and a signal arrives, the signal handling code must be able to
call the original function with predictable and correct results.

� The runtime linker changes three words to convert an entry. The runtime linker can
update only a single word atomically with regard to instruction execution.
Therefore, re-entrancy is achieved by updating each word in reverse order. If a
re-entrant function call occurs just prior to the last patch, the runtime linker gains
control a second time. Although both invocations of the runtime linker modify the
same procedure linkage table entry, their changes do not interfere with each other.

� The first sethi instruction of a procedure linkage table entry can fill the delay slot
of the previous entry’s jmp1 instruction. Although the sethi changes the value of
the %g1 register, the previous contents can be safely discarded.

� After conversion, the last procedure linkage table entry, .PLT102, needs a delay
instruction for its jmp1. The required, trailing nop fills this delay slot.

Note – The different instruction sequences shown for .PLT101, and .PLT102
demonstrate how the update may be optimized for the associated destination.

The LD_BIND_NOW environment variable changes dynamic linking behavior. If its
value is non-null, the runtime linker processes R_SPARC_JMP_SLOT relocation entries
(procedure linkage table entries) before transferring control to the program.

258 Linker and Libraries Guide • December 2003

SPARC: 64–bit Procedure Linkage Table
For 64–bit SPARC dynamic objects, the procedure linkage table resides in private data.
The runtime linker determines the absolute addresses of the destinations and modifies
the procedure linkage table’s memory image accordingly.

The first four procedure linkage table entries are reserved. The original contents of
these entries are unspecified, despite the example shown in Table 7–49. Each of the
first 32,768 entries in the table occupies 8 words (32 bytes), and must be aligned on a
32–byte boundary. The table as a whole must be aligned on a 256–byte boundary. If
more than 32,768 entries are required, the remaining entries consist of 6 words (24
bytes) and 1 pointer (8 bytes). The instructions are collected together in blocks of 160
entries followed by 160 pointers. The last group of entries and pointers may contain
less than 160 items. No padding is required.

Note – The numbers 32,768 and 160 are based on the limits of branch and load
displacements respectively with the second rounded down to make the divisions
between code and data fall on 256–byte boundaries so as to improve cache
performance.

A relocation table is associated with the procedure linkage table. The DT_JMP_REL
entry in the _DYNAMIC array gives the location of the first relocation entry. The
relocation table has one entry, in the same sequence, for each non-reserved procedure
linkage table entry. The relocation type of each of these entries is
R_SPARC_JMP_SLOT. For the first 32,767 slots, the relocation offset specifies the
address of the first byte of the associated procedure linkage table entry, the addend
field is zero. The symbol table index refers to the appropriate symbol. For slots 32,768
and beyond, the relocation offset specifies the address of the first byte of the associated
pointer. The addend field is the unrelocated value -(.PLTN + 4). The symbol table
index refers to the appropriate symbol.

To illustrate procedure linkage tables, Table 7–49 shows several entries. The first three
show initial reserved entries. The following three show examples of the initial 32,768
entries together with possible resolved forms that might apply if the target address
was +/- 2 Gbytes of the entry, within the lower 4 Gbytes of the address space, or
anywhere respectively. The final two show examples of later entries, which consist of
instruction and pointer pairs. The left column shows the instructions from the object
file before dynamic linking. The right column demonstrates a possible way the
runtime linker might fix the procedure linkage table entries.

Chapter 7 • Object File Format 259

TABLE 7–49 64-bit SPARC: Procedure Linkage Table Example

Object File Memory Segment

.PLT0:
unimp
unimp
unimp
unimp
unimp
unimp
unimp
unimp

.PLT1:
unimp
unimp
unimp
unimp
unimp
unimp
unimp
unimp

.PLT2:
unimp

.PLT0:
save %sp, -176, %sp
sethi %hh(runtime_linker_0), %l0
sethi %lm(runtime_linker_0), %l1
or %l0, %hm(runtime_linker_0), %l0
sllx %l0, 32, %l0
or %l0, %l1, %l0
jmpl %l0+%lo(runtime_linker_0), %o1
mov %g1, %o0

.PLT1:
save %sp, -176, %sp
sethi %hh(runtime_linker_1), %l0
sethi %lm(runtime_linker_1), %l1
or %l0, %hm(runtime_linker_1), %l0
sllx %l0, 32, %l0
or %l0, %l1, %l0
jmpl %l0+%lo(runtime_linker_0), %o1
mov %g1, %o0

.PLT2:
.xword identification

.PLT101:
sethi (.-.PLT0), %g1
ba,a %xcc, .PLT1
nop
nop
nop; nop
nop; nop

.PLT102:
sethi (.-.PLT0), %g1
ba,a %xcc, .PLT1
nop
nop
nop; nop
nop; nop

.PLT103:
sethi (.-.PLT0), %g1
ba,a %xcc, .PLT1
nop
nop
nop
nop
nop
nop

.PLT101:
nop
mov %o7, %g1
call name101
mov %g1, %o7
nop; nop
nop; nop

.PLT102:
nop
sethi %hi(name102), %g1
jmpl %g1+%lo(name102), %g0
nop
nop; nop
nop; nop

.PLT103:
nop
sethi %hh(name103), %g1
sethi %lm(name103), %g5
or %hm(name103), %g1
sllx %g1, 32, %g1
or %g1, %g5, %g5
jmpl %g5+%lo(name103), %g0
nop

260 Linker and Libraries Guide • December 2003

TABLE 7–49 64-bit SPARC: Procedure Linkage Table Example (Continued)
Object File Memory Segment

.PLT32768:
mov %o7, %g5
call .+8
nop
ldx [%o7+.PLTP32768 -

(.PLT32768+4)], %g1
jmpl %o7+%g1, %g1
mov %g5, %o7

...

.PLT32927:
mov %o7, %g5
call .+8
nop
ldx [%o7+.PLTP32927 -

(.PLT32927+4)], %g1
jmpl %o7+%g1, %g1
mov %g5, %o7

.PLT32768:
<unchanged>
<unchanged>
<unchanged>
<unchanged>

<unchanged>
<unchanged>

...

.PLT32927:
<unchanged>
<unchanged>
<unchanged>
<unchanged>

<unchanged>
<unchanged>

.PLTP32768
.xword .PLT0 -

(.PLT32768+4)
...

.PLTP32927
.xword .PLT0 -

(.PLT32927+4)

.PLTP32768
.xword name32768 -

(.PLT32768+4)
...

.PLTP32927
.xword name32927 -

(.PLT32927+4)

Following the steps below, the runtime linker and program jointly resolve the
symbolic references through the procedure linkage table. Again, the steps described
below are for explanation only. The precise execution-time behavior of the runtime
linker is not specified.

1. When first creating the memory image of the program, the runtime linker changes
the initial procedure linkage table entries, making them transfer control to one of
the runtime linker’s own routines. The runtime linker also stores an extended word
of identification information in the third entry. When the runtime linker receives
control, it can examine this extended word to find which object called it.

2. All other procedure linkage table entries initially transfer to the first or second
entry. Those entries establish a stack frame and call the runtime linker.

3. With the identification value, the runtime linker gets its data structures for the
object, including the relocation table.

4. The runtime linker computes the index of the relocation entry for the table slot.

Chapter 7 • Object File Format 261

5. With the index information, the runtime linker gets the symbol’s real value,
unwinds the stack, modifies the procedure linkage table entry, and transfers control
to the desired destination.

The runtime linker does not have to create the instruction sequences under the
memory segment column, it might. If it does, some points deserve more explanation.

� To make the code re-entrant, the procedure linkage table’s instructions are changed
in a particular sequence. If the runtime linker is fixing a function’s procedure
linkage table entry and a signal arrives, the signal handling code must be able to
call the original function with predictable and correct results.

� The runtime linker may change up to eight words to convert an entry. The runtime
linker can update only a single word atomically with regard to instruction
execution. Therefore, re-entrancy is achieved by first overwriting the nop
instructions with their replacement instructions, and then patching the ba,a, and
the sethi if using a 64–bit store. If a re-entrant function call occurs just prior to the
last patch, the runtime linker gains control a second time. Although both
invocations of the runtime linker modify the same procedure linkage table entry,
their changes do not interfere with each other.

� If the initial sethi instruction is changed, it can only be replaced by a nop.

Changing the pointer as done for the second form of entry is done using a single
atomic 64–bit store.

Note – The different instruction sequences shown for .PLT101, .PLT102, and
.PLT103 demonstrate how the update may be optimized for the associated
destination.

The LD_BIND_NOW environment variable changes dynamic linking behavior. If its
value is non-null, the runtime linker processes R_SPARC_JMP_SLOT relocation entries
(procedure linkage table entries) before transferring control to the program.

x86: 32–bit Procedure Linkage Table
For 32–bit x86 dynamic objects, the procedure linkage table resides in shared text but
uses addresses in the private global offset table. The runtime linker determines the
absolute addresses of the destinations and modifies the global offset table’s memory
image accordingly. The runtime linker thus redirects the entries without
compromising the position-independence and shareability of the program’s text.
Executable files and shared object files have separate procedure linkage tables.

262 Linker and Libraries Guide • December 2003

TABLE 7–50 x86: Absolute Procedure Linkage Table Example

.PLT0:
pushl got_plus_4
jmp *got_plus_8
nop; nop
nop; nop

.PLT1:
jmp *name1_in_GOT
pushl $offset
jmp .PLT0@PC

.PLT2:
jmp *name2_in_GOT
pushl $offset
jmp .PLT0@PC

TABLE 7–51 x86: Position-Independent Procedure Linkage Table Example

.PLT0:
pushl 4(%ebx)
jmp *8(%ebx)
nop; nop
nop; nop

.PLT1:
jmp *name1@GOT(%ebx)
pushl $offset
jmp .PLT0@PC

.PLT2:
jmp *name2@GOT(%ebx)
pushl $offset
jmp .PLT0@PC

Note – As the preceding examples show, the procedure linkage table instructions use
different operand addressing modes for absolute code and for position-independent
code. Nonetheless, their interfaces to the runtime linker are the same.

Following the steps below, the runtime linker and program cooperate to resolve the
symbolic references through the procedure linkage table and the global offset table.

1. When first creating the memory image of the program, the runtime linker sets the
second and third entries in the global offset table to special values. The steps below
explain these values.

2. If the procedure linkage table is position-independent, the address of the global
offset table must be in %ebx. Each shared object file in the process image has its
own procedure linkage table, and control transfers to a procedure linkage table
entry only from within the same object file. So, the calling function must set the
global offset table base register before it calls the procedure linkage table entry.

Chapter 7 • Object File Format 263

3. For example, the program calls name1, which transfers control to the label .PLT1.

4. The first instruction jumps to the address in the global offset table entry for name1.
Initially, the global offset table holds the address of the following pushl
instruction, not the real address of name1.

5. The program pushes a relocation offset (offset) on the stack. The relocation offset
is a 32–bit, nonnegative byte offset into the relocation table. The designated
relocation entry has the type R_386_JMP_SLOT, and its offset specifies the global
offset table entry used in the previous jmp instruction. The relocation entry also
contains a symbol table index, which the runtime linker uses to get the referenced
symbol, name1.

6. After pushing the relocation offset, the program jumps to .PLT0, the first entry in
the procedure linkage table. The pushl instruction pushes the value of the second
global offset table entry (got_plus_4 or 4(%ebx)) on the stack, giving the
runtime linker one word of identifying information. The program then jumps to
the address in the third global offset table entry (got_plus_8 or 8(%ebx)), to
jump to the runtime linker.

7. The runtime linker unwinds the stack, checks the designated relocation entry, gets
the symbol’s value, stores the actual address of name1 in its global offset entry
table, and jumps to the destination.

8. Subsequent executions of the procedure linkage table entry transfer directly to
name1, without calling the runtime linker again. The jmp instruction at .PLT1
jumps to name1 instead of falling through to the pushl instruction.

The LD_BIND_NOW environment variable changes dynamic linking behavior. If its
value is non-null, the runtime linker processes R_386_JMP_SLOT relocation entries
(procedure linkage table entries) before transferring control to the program.

264 Linker and Libraries Guide • December 2003

CHAPTER 8

Mapfile Option

The link-editor automatically and intelligently maps input sections from relocatable
objects to segments in the output file being created. The -M option with an associated
mapfile enables you to change the default mapping provided by the link-editor. In
addition, new segments can be created, attributes modified, and symbol versioning
information can be supplied with the mapfile.

Note – When using a mapfile option, you can easily create an output file that does
not execute. The link-editor knows how to produce a correct output file without the
use of the mapfile option.

Sample mapfiles provided on the system reside in the /usr/lib/ld directory.

Mapfile Structure and Syntax
You can enter four basic types of directives into a mapfile:

� Segment declarations.
� Mapping directives.
� Section-to-segment ordering.
� Size-symbol declarations.
� File control directives.

Each directive can span more than one line and can have any amount of white space,
including new lines, as long as that white space is followed by a semicolon.

265

Typically, segment declarations are followed by mapping directives. You declare a
segment and then define the criteria by which a section becomes part of that segment.
If you enter a mapping directive or size-symbol declaration without first declaring the
segment to which you are mapping, except for built-in segments, the segment is given
default attributes. Such segment is an implicitly declared segment.

Size-symbol declarations and file control directives can appear anywhere in a
mapfile.

The following sections describe each directive type. For all syntax discussions, the
following notations apply:

� All entries in constant width, all colons, semicolons, equal signs, and at (@) signs
are typed in literally.

� All entries in italics are substitutable.

� { ... }* means “zero or more.”

� { ... }+ means “one or more.”

� [...] means “optional.”

� section_names and segment_names follow the same rules as C identifiers,
where a period (.) is treated as a letter. For example, .bss is a legal name.

� section_names, segment_names, file_names, and symbol_names are case
sensitive. Everything else is not case sensitive.

� Spaces, or new-lines, can appear anywhere except before a number or in the
middle of a name or value.

� Comments beginning with # and ending at a newline can appear anywhere that a
space can appear.

Segment Declarations
A segment declaration creates a new segment in the output file, or changes the
attribute values of an existing segment. An existing segment is one that you previously
defined or one of the four built-in segments described immediately following.

A segment declaration has the following syntax:

segment_name = {segment_attribute_value}*;

For each segment_name, you can specify any number of
segment_attribute_values in any order, each separated by a space. Only one
attribute value is allowed for each segment attribute. The segment attributes and their
valid values are as shown in the following table.

266 Linker and Libraries Guide • December 2003

TABLE 8–1 Mapfile Segment Attributes

Attribute Value

segment_type LOAD | NOTE | STACK

segment_flags ? [E] [N] [O] [R] [W] [X]

virtual_address Vnumber

physical_address Pnumber

length Lnumber

rounding Rnumber

alignment Anumber

There are four built-in segments with the following default attribute values:

� text – LOAD, ?RX, no virtual_address, physical_address, or length
specified, alignment values set to defaults per CPU type.

� data – LOAD, ?RWX, no virtual_address, physical_address, or length
specified, alignment values set to defaults per CPU type.

� bss – disabled, LOAD, ?RWX, no virtual_address, physical_address, or
length specified, alignment values set to defaults per CPU type.

� note – NOTE.

By default, the bss segment is disabled. Any sections of type SHT_NOBITS, which are
its sole input, are captured in the data segment. See Table 7–12 for a full description
of SHT_NOBITS sections. The simplest bss declaration:

bss =;

is sufficient to enable the creation of a bss segment. Any SHT_NOBITS sections is
captured by this segment, rather than captured in the data segment. In its simplest
form, this segment is aligned using the same defaults as applied to any other segment.
The declaration can also provide additional segment attributes that both enable the
segment creation and assign the specified attributes.

The link-editor behaves as if these segments are declared before your mapfile is read
in. See “Mapfile Option Defaults” on page 274.

Note the following when entering segment declarations:

� A number can be hexadecimal, decimal, or octal, following the same rules as in the
C language.

� No space is allowed between the V, P, L, R, or A and the number.
� The segment_type value can be either LOAD, NOTE or STACK. If unspecified it

defaults to LOAD.

Chapter 8 • Mapfile Option 267

� The segment_flags values are R for readable, W for writable, X for executable,
and O for order. No spaces are allowed between the question mark (?) and the
individual flags that make up the segment_flags value.

� The segment_flags value for a LOAD segment defaults to RWX.

� NOTE segments cannot be assigned any segment attribute value other than a
segment_type.

� One segment_type of value STACK is permitted. Only the access requirements of
the segment, selected from the segment_flags, can be specified.

� Implicitly declared segments default to segment_type value LOAD,
segment_flags value RWX, a default virtual_address, physical_address,
and alignment value, and have no length limit.

Note – The link-editor calculates the addresses and length of the current segment
based on the previous segment’s attribute values.

� LOAD segments can have an explicitly specified virtual_address value or
physical_address value, as well as a maximum segment length value.

� If a segment has a segment_flags value of ? with nothing following, the value
defaults to not readable, not writable, and not executable.

� The alignment value is used in calculating the virtual address of the beginning of
the segment. This alignment only affects the segment for which it is specified.
Other segments still have the default alignment unless their alignments are also
changed.

� If any of the virtual_address, physical_address, or length attribute
values are not set, the link-editor calculates these values as it creates the output file.

� If an alignment value is not specified for a segment, it is set to the built-in
default. This default differs from one CPU to another and might even differ
between software revisions.

� If both a virtual_address and an alignment value are specified for a segment,
the virtual_address value takes priority.

� If a virtual_address value is specified for a segment, the alignment field in
the program header contains the default alignment value.

� If the rounding value is set for a segment, that segment’s virtual address will be
rounded to the next address that conforms to the value given. This value only
effects the segments that it is specified for. If no value is given, no rounding is
performed.

268 Linker and Libraries Guide • December 2003

Note – If a virtual_address value is specified, the segment is placed at that virtual
address. For the system kernel, this method creates a correct result. For files that start
through exec(2), this method creates an incorrect output file because the segments do
not have correct offsets relative to their page boundaries.

The ?E flag allows the creation of an empty segment. This empty segment has no
sections associated with it. This segment can only be specified for executables, and
must be of type LOAD with a specified size and alignment. Multiple segment
definitions of this type are permitted.

The ?N flag enables you control whether the ELF header, and any program headers are
included as part of the first loadable segment. By default, the ELF header and program
headers are included with the first segment. The information in these headers is used
within the mapped image, typically by the runtime linker. The use of the ?N option
causes the virtual address calculations for the image to start at the first section of the
first segment.

The ?O flag enables you control the order of sections in the output file. This flag is
intended for use in conjunction with the -xF option to the compilers. When a file is
compiled with the -xF option, each function in that file is placed in a separate section
with the same attributes as the .text section. These sections are called
.text%function_name.

For example, a file containing three functions, main(), foo() and bar(), when
compiled with the -xF option, yields a relocatable object file with text for the three
functions being placed in sections called .text%main, .text%foo, and .text%bar.
Because the -xF option forces one function per section, the use of the ?O flag to control
the order of sections in effect controls the order of functions.

Consider the following user-defined mapfile:

text = LOAD ?RXO;
text: .text%foo;
text: .text%bar;

text: .text%main;

The first declaration associates the ?O flag with the default text segment.

If the order of function definitions in the source file is main, foo, and bar, then the
final executable contains functions in the order foo, bar, and main.

For static functions with the same name, the file names must also be used. The ?O flag
forces the ordering of sections as requested in the mapfile. For example, if a static
function bar() exists in files a.o and b.o, and function bar() from file a.o is to be
placed before function bar() from file b.o, then the mapfile entries should read:

text: .text%bar: a.o;

text: .text%bar: b.o;

Chapter 8 • Mapfile Option 269

Although the syntax allows for the entry:

text: .text%bar: a.o b.o;

this entry does not guarantee that function bar() from file a.o is placed before
function bar() from file b.o. The second format is not recommended as the results
are not reliable.

Mapping Directives
A mapping directive instructs the link-editor how to map input sections to output
segments. Basically, you name the segment that you are mapping to and indicate what
the attributes of a section must be in order to map into the named segment. The set of
section_attribute_values that a section must have to map into a specific
segment is called the entrance criteria for that segment. In order to be placed in a
specified segment of the output file, a section must meet the entrance criteria for a
segment exactly.

A mapping directive has the following syntax:

segment_name : {section_attribute_value}* [: {file_name}+];

For a segment_name, you specify any number of section_attribute_values in
any order, each separated by a space. At most, one section attribute value is allowed
for each section attribute. You can also specify that the section must come from a
certain .o file through a file_name declaration. The section attributes and their valid
values are shown in the following table.

TABLE 8–2 Section Attributes

Section Attribute Value

section_name Any valid section name

section_type $PROGBITS

$SYMTAB

$STRTAB

$REL

$RELA

$NOTE

$NOBITS

section_flags ? [[!]A] [[!]W] [[!]X]

Note the following points when entering mapping directives:

270 Linker and Libraries Guide • December 2003

� You must choose at most one section_type from the section_types listed
above. The section_types listed above are built-in types. For more information
on section_types, see “Sections” on page 183.

� The section_flags values are A for allocatable, W for writable, or X for
executable. If an individual flag is preceded by an exclamation mark (!), the
link-editor checks that the flag is not set. No spaces are allowed between the
question mark, exclamation marks, and the individual flags that make up the
section_flags value.

� file_name can be any legal file name, of the form *filename, or of the form
archive_name(component_name), for example, /usr/lib/libc.a
(printf.o). The link-editor does not check the syntax of file names.

� If a file_name is of the form *filename, the link-editor simulates a
basename(1) on the file from the command line and uses it to match against the
specified file name. In other words, the filename from the mapfile only
needs to match the last part of the file name from the command line. See “Mapping
Example” on page 272.

� If you use the -l option during a link-edit, and the library after the -l option is in
the current directory, you must precede the library with ./, or the entire path
name, in the mapfile in order to create a match.

� More than one directive line can appear for a particular output segment. For
example, the following set of directives is legal:

S1 : $PROGBITS;

S1 : $NOBITS;

Entering more than one mapping directive line for a segment is the only way to
specify multiple values of a section attribute.

� A section can match more than one entrance criteria. In this case, the first segment
encountered in the mapfile with that entrance criteria is used. For example, if a
mapfile reads:

S1 : $PROGBITS;

S2 : $PROGBITS;

the $PROGBITS sections are mapped to segment S1.

Section-Within-Segment Ordering
By using the following notation you can specify the order that sections are placed
within a segment:

segment_name | section_name1;
segment_name | section_name2;

segment_name | section_name3;

The sections that are named in the above form are placed before any unnamed
sections, and in the order they are listed in the mapfile.

Chapter 8 • Mapfile Option 271

Size-Symbol Declarations
Size-symbol declarations enable you to define a new global-absolute symbol that
represents the size, in bytes, of the specified segment. This symbol can be referenced in
your object files. A size-symbol declaration has the following syntax:

segment_name @ symbol_name;

symbol_name can be any legal C identifier. The link-editor does not check the syntax
of the symbol_name.

File Control Directives
File control directives enable you to specify which version definitions within shared
objects are to be made available during a link-edit. The file control definition has the
following syntax:

shared_object_name - version_name [version_name ...];

version_name is a version definition name contained within the specified
shared_object_name.

Mapping Example
The following example is a user-defined mapfile. The numbers on the left are
included in the example for tutorial purposes. Only the information to the right of the
numbers actually appears in the mapfile.

EXAMPLE 8–1 User-Defined Mapfile

1. elephant : .data : peanuts.o *popcorn.o;
2. monkey : $PROGBITS ?AX;
3. monkey : .data;
4. monkey = LOAD V0x80000000 L0x4000;
5. donkey : .data;
6. donkey = ?RX A0x1000;

7. text = V0x80008000;

Four separate segments are manipulated in this example. The implicitly declared
segment elephant (line 1) receives all of the .data sections from the files
peanuts.o and popcorn.o. Notice that *popcorn.o matches any popcorn.o file
that can be supplied to the link-edit. The file need not be in the current directory. On
the other hand, if /var/tmp/peanuts.o was supplied to the link-edit, it does not
match peanuts.o because it is not preceded by an *.

272 Linker and Libraries Guide • December 2003

The implicitly declared segment monkey (line 2) receives all sections that are both
$PROGBITS and allocatable-executable (?AX), as well as all sections not already in the
segment elephant with the name .data (line 3). The .data sections entering the
monkey segment need not be $PROGBITS or allocatable-executable because the
section_type and section_flags values are entered on a separate line from the
section_name value.

An “and” relationship exists between attributes on the same line as illustrated by
$PROGBITS “and” ?AX on line 2. An “or” relationship exists between attributes for the
same segment that span more than one line, as illustrated by $PROGBITS ?AX on line
2 “or” .data on line 3.

The monkey segment is implicitly declared in line 2 with segment_type value LOAD,
segment_flags value RWX, and no virtual_address, physical_address,
length or alignment values specified (defaults are used). In line 4 the
segment_type value of monkey is set to LOAD. Because the segment_type attribute
value does not change, no warning is issued. The virtual_address value is set to
0x80000000 and the maximum length value to 0x4000.

Line 5 implicitly declares the donkey segment. The entrance criteria are designed to
route all .data sections to this segment. Actually, no sections fall into this segment
because the entrance criteria for monkey in line 3 capture all of these sections. In line
6, the segment_flags value is set to ?RX and the alignment value is set to
0x1000. Because both of these attribute values changed, a warning is issued.

Line 7 sets the virtual_address value of the text segment to 0x80008000.

The example of a user-defined mapfile is designed to cause warnings for illustration
purposes. If you want to change the order of the directives to avoid warnings, use the
following example:

1. elephant : .data : peanuts.o *popcorn.o;
4. monkey = LOAD V0x80000000 L0x4000;
2. monkey : $PROGBITS ?AX;
3. monkey : .data;
6. donkey = ?RX A0x1000;
5. donkey : .data;

7. text = V0x80008000;

The following mapfile example uses the segment-within-section ordering:

1. text = LOAD ?RXN V0xf0004000;
2. text | .text;
3. text | .rodata;
4. text : $PROGBITS ?A!W;

5. data = LOAD ?RWX R0x1000;

The text and data segments are manipulated in this example. Line 1 declares the
text segment to have a virtual_address of 0xf0004000 and to not include the
ELF header or any program headers as part of this segment’s address calculations.

Chapter 8 • Mapfile Option 273

Lines 2 and 3 turn on section-within-segment ordering and specify that the .text and
.rodata sections are the first two sections in this segment. The result is that the
.text section have a virtual address of 0xf0004000, and the .rodata section
immediately follows that address.

Any other $PROGBITS section that makes up the text segment follows the .rodata
section. Line 5 declares the data segment and specifies that its virtual address must
begin on a 0x1000 byte boundary. The first section that constitutes the data segment
also resides on a 0x1000 byte boundary within the file image.

Mapfile Option Defaults
The link-editor defines four built-in segments (text, data, bss and note) with
default segment_attribute_values and corresponding default mapping
directives. Even though the link-editor does not use an actual mapfile to provide the
defaults, the model of a default mapfile helps illustrate what happens when the
link-editor encounters your mapfile.

The following example shows how a mapfile would appear for the link-editor
defaults. The link-editor begins execution behaving as if the mapfile has already
been read in. Then the link-editor reads your mapfile and either augments or makes
changes to the defaults.

text = LOAD ?RX;
text : ?A!W;
data = LOAD ?RWX;
data : ?AW;
note = NOTE;

note : $NOTE;

As each segment declaration in your mapfile is read in, it is compared to the existing
list of segment declarations as follows:

1. If the segment does not already exist in the mapfile but another with the same
segment-type value exists, the segment is added before all of the existing segments
of the same segment_type.

2. If none of the segments in the existing mapfile has the same segment_type
value as the segment just read in, then the segment is added by segment_type
value to maintain the following order:

INTERP

LOAD

DYNAMIC

NOTE

274 Linker and Libraries Guide • December 2003

3. If the segment is of segment_type LOAD and you have defined a
virtual_address value for this LOADable segment, the segment is placed before
any LOADable segments without a defined virtual_address value or with a
higher virtual_address value, but after any segments with a
virtual_address value that is lower.

As each mapping directive in a mapfile is read in, the directive is added after any
other mapping directives that you already specified for the same segment but before
the default mapping directives for that segment.

Internal Map Structure
One of the most important data structures in the ELF-based link-editor is the map
structure. A default map structure, corresponding to the model default mapfile, is
used by the link-editor. Any user mapfile augments or overrides certain values in
the default map structure.

A typical although somewhat simplified map structure is illustrated in Figure 8–1. The
“Entrance Criteria” boxes correspond to the information in the default mapping
directives. The “Segment Attribute Descriptors” boxes correspond to the information
in the default segment declarations. The “Output Section Descriptors” boxes give the
detailed attributes of the sections that fall under each segment. The sections
themselves are shown in circles.

Chapter 8 • Mapfile Option 275

Output
 section

descriptors

Sections
placed in
segments

NO MATCH –
appended to
end of a.out

$PROGBITS
?A!W

Entrance
criteria

$PROGBITS
?AW

$NOGBITS
?AW

$NOTE

text
LOAD
?RX

note
NOTE

Segment
attribute

descriptors

data
LOAD
?RWX

.data
$PROGBITS

?AWX

.data1
$PROBITS

?AWX

.data2
$PROGBITS

?AWX

.bss
$NOBITS

?AWX

.data
from
fido.o

.data1
from
fido.o

.data1
from

rover.o

.data1
from

sam.o

.data2
from
fido.o

.bss
from

rover.o

FIGURE 8–1 Simple Map Structure

The link-editor performs the following steps when mapping sections to segments:

1. When a section is read in, the link-editor checks the list of Entrance Criteria looking
for a match. All specified criteria must be matched.

In Figure 8–1, a section that falls into the text segment must have a
section_type value of $PROGBITS and have a section_flags value of ?A!W.
It need not have the name .text since no name is specified in the Entrance
Criteria. The section can be either X or !X in the section_flags value because
nothing was specified for the execute bit in the Entrance Criteria.

If no Entrance Criteria match is found, the section is placed at the end of the output
file after all other segments. No program header entry is created for this
information.

2. When the section falls into a segment, the link-editor checks the list of existing
Output Section Descriptors in that segment as follows:

If the section attribute values match those of an existing Output Section Descriptor
exactly, the section is placed at the end of the list of sections associated with that
Output Section Descriptor.

276 Linker and Libraries Guide • December 2003

For instance, a section with a section_name value of .data1, a section_type
value of $PROGBITS, and a section_flags value of ?AWX falls into the second
Entrance Criteria box in Figure 8–1, placing it in the data segment. The section
matches the second Output Section Descriptor box exactly (.data1, $PROGBITS,
?AWX) and is added to the end of the list associated with that box. The .data1
sections from fido.o, rover.o, and sam.o illustrate this point.

If no matching Output Section Descriptor is found but other Output Section
Descriptors of the same section_type exist, a new Output Section Descriptor is
created with the same attribute values as the section and that section is associated
with the new Output Section Descriptor. The Output Section Descriptor and the
section are placed after the last Output Section Descriptor of the same section type.
The .data2 section in Figure 8–1 was placed in this manner.

If no other Output Section Descriptors of the indicated section type exist, a new
Output Section Descriptor is created and the section is placed in that section.

Note – If the input section has a user-defined section type value between
SHT_LOUSER and SHT_HIUSER, it is treated as a $PROGBITS section. No method
exists for naming this section_type value in the mapfile, but these sections
can be redirected using the other attribute value specifications (section_flags,
section_name) in the entrance criteria.

3. If a segment contains no sections after all of the command line object files and
libraries are read in, no program header entry is produced for that segment.

Note – Input sections of type $SYMTAB, $STRTAB, $REL, and $RELA are used
internally by the link-editor. Directives that refer to these section types can only map
output sections produced by the link-editor to segments.

Chapter 8 • Mapfile Option 277

278 Linker and Libraries Guide • December 2003

APPENDIX A

Link-Editor Quick Reference

The following sections provide a simple overview, or cheat sheet, of the most
commonly used link-editor scenarios. See “Link-Editing” on page 18 for an
introduction to the kinds of output modules generated by the link-editor.

The examples provided show the link-editor options as supplied to a compiler driver,
this being the most common mechanism of invoking the link-editor. In these examples
we use cc(1). See “Using a Compiler Driver” on page 25.

The link-editor places no meaning on the name of any input file. Each file is opened
and inspected to determine the type of processing it requires. See “Input File
Processing” on page 26.

Shared objects that follow a naming convention of libx.so, and archive libraries that
follow a naming convention of libx.a, can be input using the -l option. See “Library
Naming Conventions” on page 29. This provides additional flexibility in allowing
search paths to be specified using the -L option. See “Directories Searched by the
Link-Editor” on page 31.

The link-editor basically operates in one of two modes, static or dynamic.

Static Mode
Static mode is selected when the -d n option is used, and enables you to create
relocatable objects and static executables. Under this mode, only relocatable objects
and archive libraries are acceptable forms of input. Use of the -l option results in a
search for archive libraries.

279

Creating a Relocatable Object
� To create a relocatable object use the -d n and -r options:

$ cc -dn -r -o temp.o file1.o file2.o file3.o

Creating a Static Executable
The use of static executables is limited. Static executables usually contain
platform-specific implementation details that restricts the ability of the executable to
be run on an alternative platform. Many implementations of Solaris libraries depend
on dynamic linking capabilities, such as dlopen(3DL) and dlsym(3DL). See “Loading
Additional Objects” on page 71. These capabilities are not available to static
executables.

� To create a static executable use the -d n option without the -r option:

$ cc -dn -o prog file1.o file2.o file3.o

The -a option is available to indicate the creation of a static executable. The use of
-d n without a -r implies -a.

Dynamic Mode
Dynamic mode is the default mode of operation for the link-editor. It can be enforced
by specifying the -d y option, but is implied when not using the -d n option.

Under this mode, relocatable objects, shared objects and archive libraries are
acceptable forms of input. Use of the -l option results in a directory search, where
each directory is searched for a shared object. If no shared object is found, the same
directory is then searched for an archive library. A search only for archive libraries can
be enforced by using the -B static option. See “Linking With a Mix of Shared
Objects and Archives” on page 30.

Creating a Shared Object
� To create a shared object use the -G option. -d y is optional as it is implied by

default.

� Input relocatable objects should be built from position-independent code. For
example, the C compiler generates position-independent code under the -K pic
option. See “Position-Independent Code” on page 111. Use the -z text option to
enforce this requirement.

280 Linker and Libraries Guide • December 2003

� Avoid including unused relocatable objects. Or, use the -z ignore option, which
instructs the link-editor to eliminate unreferenced ELF sections input as part of the
link-edit. See “Remove Unused Material” on page 113.

� If the shared object is intended for external use, make sure it uses no application
registers. Not using application registers provides the external user freedom to use
these registers without fear of compromising the shared object’s implementation.
For example, the SPARC C compiler does not use application registers under the
-xregs=no%appl option.

� Establish the shared objects public interface by defining the global symbols that
should be visible from the shared object, and reducing any other global symbols to
local scope. This definition is provided by the -M option together with an
associated mapfile. See Appendix B.

� Use a versioned name for the shared object to allow for future upgrades. See
“Coordination of Versioned Filenames” on page 142.

� Self-contained shared objects offer maximum flexibility. They are produced when
the object expresses all dependency needs. Use the -z defs to enforce this self
containment. See “Generating a Shared Object Output File” on page 42.

� Avoid unneeded dependencies. Use ldd with the -u option to detect and remove
unneeded dependencies. See “Shared Object Processing” on page 28. Or, use the
-z ignore option, which instructs the link-editor to record dependencies only to
objects that are referenced.

� If the shared object being generated has dependencies on other shared objects,
indicate they should be lazily loaded using the -z lazyload option. See “Lazy
Loading of Dynamic Dependencies” on page 72.

� If the shared object being generated has dependencies on other shared objects, and
these dependencies do not reside in /usr/lib for 32–bit objects, or /usr/lib/64
for 64–bit objects, record their path name in the output file using the -R option. See
“Shared Objects With Dependencies” on page 101.

� Optimize relocation processing by combining relocation sections into a single
.SUNW_reloc section. Use the -z combreloc option.

� If interposing symbols are not used on this object or its dependencies, establish
direct binding information with -B direct. See “External Bindings” on page 53.

The following example combines the above points:

$ cc -c -o foo.o -K pic -xregs=no%appl foo.c
$ cc -M mapfile -G -o libfoo.so.1 -z text -z defs -B direct -z lazyload \

-z combreloc -z ignore -R /home/lib foo.o -L. -lbar -lc

� If the shared object being generated is used as input to another link-edit, record
within it the shared object’s runtime name using the -h option. See “Recording a
Shared Object Name” on page 99.

� Make the shared object available to the compilation environment by creating a file
system link to a non-versioned shared object name. See “Coordination of Versioned
Filenames” on page 142.

Appendix A • Link-Editor Quick Reference 281

The following example combines the above points:

$ cc -M mapfile -G -o libfoo.so.1 -z text -z defs -B direct -z lazyload \
-z combreloc -z ignore -R /home/lib -h libfoo.so.1 foo.o -L. -lbar -lc

$ ln -s libfoo.so.1 libfoo.so

� Consider the performance implications of the shared object: Maximize shareability,
as described in “Maximizing Shareability” on page 114: Minimize paging activity,
as described in “Minimizing Paging Activity” on page 116: Reduce relocation
overhead, especially by minimizing symbolic relocations, as described in
“Reducing Symbol Scope” on page 49: Allow access to data via functional
interfaces, as described in “Copy Relocations” on page 118.

Creating a Dynamic Executable
� To create a dynamic executable don’t use the -G, or -d n options.

� Indicate that the dependencies of the dynamic executable should be lazily loaded
using the -z lazyload option. See “Lazy Loading of Dynamic Dependencies”
on page 72.

� If the dependencies of the dynamic executable do not reside in /usr/lib for
32–bit objects, or /usr/lib/64 for 64–bit objects, record their path name in the
output file using the -R option. See “Directories Searched by the Runtime Linker”
on page 33.

� Establish direct binding information using -B direct. See “External Bindings”
on page 53.

The following example combines the above points:

$ cc -o prog -R /home/lib -z ignore -z lazyload -B direct -L. \

-lfoo file1.o file2.o file3.o

282 Linker and Libraries Guide • December 2003

APPENDIX B

Versioning Quick Reference

ELF objects make available global symbols to which other objects can bind. Some of
these global symbols can be identified as providing the object’s public interface. Other
symbols are part of the object’s internal implementation and are not intended for
external use. An object’s interface can evolve from one software release to another. The
ability to identify this evolution is desirable.

In addition, identifying the internal implementation changes of an object from one
software release to another might be desirable.

Both interface and implementation identifications can be recorded within an object by
establishing internal version definitions. See Chapter 5 for a more complete introduction
to the concept of internal versioning.

Shared objects are prime candidates for internal versioning. This technique defines
their evolution, provides for interface validation during runtime processing (see
“Binding to a Version Definition” on page 132), and provides for the selective binding
of applications (see “Specifying a Version Binding” on page 136). Shared objects are
used as the examples throughout this appendix.

The following sections provide a simple overview, or cheat sheet, of the internal
versioning mechanism provided by the link-editors as applied to shared objects. The
examples recommend conventions and mechanisms for versioning shared objects,
from their initial construction through several common update scenarios.

Naming Conventions
A shared object follows a naming convention that includes a major number file suffix.
See “Naming Conventions” on page 98. Within this shared object, one or more version
definitions can be created. Each version definition corresponds to one of the following
categories:

283

� It defines an industry-standard interface (for example, the System V Application
Binary Interface).

� It defines a vendor-specific public interface.

� It defines a vendor-specific private interface.

� It defines a vendor-specific change to the internal implementation of the object.

The following version definition naming conventions help indicate which of these
categories the definition represents.

The first three of these categories indicate interface definitions. These definitions
consist of an association of the global symbol names that make up the interface, with a
version definition name. See “Creating a Version Definition” on page 127. Interface
changes within a shared object are often referred to as minor revisions. Therefore,
version definitions of this type are suffixed with a minor version number, which is
based on the file names major version number suffix.

The last category indicates a change having occurred within the object. This definition
consists of a version definition acting as a label and has no symbol name associated
with it. This definition is referred to as being a weak version definition. See “Creating
a Weak Version Definition” on page 130. Implementation changes within a shared
object are often referred to as micro revisions. Therefore, version definitions of this
type are suffixed with a micro version number based on the previous minor number to
which the internal changes have been applied.

Any industry standard interface should use a version definition name that reflects the
standard. Any vendor interfaces should use a version definition name unique to that
vendor. The company’s stock symbol is often appropriate.

Private version definitions indicate symbols that have restricted or uncommitted use,
and should have the word “private” clearly visible.

All version definitions result in the creation of associated version symbol names. The
use of unique names and the minor/micro suffix convention reduces the chance of
symbol collision within the object being built.

The following version definition examples show the possible use of these naming
conventions:

SVABI.1
Defines the System V Application Binary Interface standards interface.

SUNW_1.1
Defines a Solaris public interface.

SUNWprivate_1.1
Defines a Solaris private interface.

SUNW_1.1.1
Defines a Solaris internal implementation change.

284 Linker and Libraries Guide • December 2003

Defining a Shared Object’s Interface
When establishing a shared object’s interface, you should first determine which global
symbols provided by the shared object can be associated to one of the three interface
version definition categories:

� Industry standard interface symbols conventionally are defined in publicly
available header files and associated manual pages supplied by the vendor, and are
also documented in recognized standards literature.

� Vendor public interface symbols conventionally are defined in publicly available
header files and associated manual pages supplied by the vendor.

� Vendor private interface symbols can have little or no public definition.

By defining these interfaces, a vendor is indicating the commitment level of each
interface of the shared object. Industry standard and vendor public interfaces remain
stable from release to release. You are free to bind to these interfaces safe in the
knowledge that your application will continue to function correctly from release to
release.

Industry-standard interfaces might be available on systems provided by other
vendors. You can achieve a higher level of binary compatibility by restricting your
applications to use these interfaces.

Vendor public interfaces might not be available on systems provided by other
vendors. However, these interfaces remain stable during the evolution of the system
on which they are provided.

Vendor private interfaces are very unstable, and can change, or even be deleted, from
release to release. These interfaces provide for uncommitted or experimental
functionality, or are intended to provide access for vendor-specific applications only. If
you want to achieve any level of binary compatibility, you should avoid using these
interfaces.

Any global symbols that do not fall into one of the above categories should be reduced
to local scope so that they are no longer visible for binding. See “Reducing Symbol
Scope” on page 49.

Versioning a Shared Object
Having determined a shared object’s available interfaces, the associated version
definitions are created using a mapfile and the link-editor’s -M option. See “Defining
Additional Symbols” on page 44 for an introduction to this mapfile syntax.

Appendix B • Versioning Quick Reference 285

The following example defines a vendor public interface in the shared object
libfoo.so.1:

$ cat mapfile
SUNW_1.1 { # Release X.

global:
foo2;
foo1;

local:
*;

};

$ cc -G -o libfoo.so.1 -h libfoo.so.1 -z text -M mapfile foo.c

The global symbols foo1 and foo2 are assigned to the shared object’s public interface
SUNW_1.1. Any other global symbols supplied from the input files are reduced to
local by the auto-reduction directive “*”. See “Reducing Symbol Scope” on page 49.

Note – Each version definition mapfile entry should be accompanied by a comment
reflecting the release or date of the update. This information helps coordinate multiple
updates of a shared object, possibly by different developers, into one version definition
suitable for delivery of the shared object as part of a software release.

Versioning an Existing (Non-versioned) Shared
Object
Versioning an existing, non-versioned shared object requires extra care. The shared
object delivered in a previous software release has made available all its global
symbols for others to bind with. Although you can determine the shared object’s
intended interfaces, others might have discovered and bound to other symbols.
Therefore, the removal of any symbols might result in an application’s failure on
delivery of the new versioned shared object.

The internal versioning of an existing, non-versioned shared object can be achieved if
the interfaces can be determined, and applied, without breaking any existing
applications. The runtime linker’s debugging capabilities can be useful to help verify
the binding requirements of various applications. See “Debugging Library”
on page 90. However, this determination of existing binding requirements assumes
that all users of the shared object are known.

If the binding requirements of an existing, non-versioned shared object cannot be
determined, then you should create a new shared object file using a new versioned
name. See “Coordination of Versioned Filenames” on page 142. In addition to this new
shared object, the original shared object must also be delivered so as to satisfy the
dependencies of any existing applications.

286 Linker and Libraries Guide • December 2003

If the implementation of the original shared object is to be frozen, then maintaining
and delivering the shared object binary might be sufficient. If, however, the original
shared object might require updating then an alternative source tree from which to
generate the shared object can be more applicable. Updating might be necessary
through patches, or because its implementation must evolve to remain compatible
with new platforms.

Updating a Versioned Shared Object
The only changes that can be made to a shared object that can be absorbed by internal
versioning are compatible changes. See “Interface Compatibility” on page 126. Any
incompatible changes require producing a new shared object with a new external
versioned name. See “Coordination of Versioned Filenames” on page 142.

Compatible updates that can be accommodated by internal versioning fall into three
basic categories:

� Adding new symbols
� Creating new interfaces from existing symbols
� Internal implementation changes

The first two categories are achieved by associating an interface version definition
with the appropriate symbols. The latter is achieved by creating a weak version
definition that has no associated symbols.

Adding New Symbols
Any compatible new release of a shared object that contains new global symbols
should assign these symbols to a new version definition. This new version definition
should inherit the previous version definition.

The following mapfile example assigns the new symbol foo3 to the new interface
version definition SUNW_1.2. This new interface inherits the original interface
SUNW_1.1.

$ cat mapfile
SUNW_1.2 { # Release X+1.

global:
foo3;

} SUNW_1.1;

SUNW_1.1 { # Release X.
global:

foo2;

Appendix B • Versioning Quick Reference 287

foo1;
local:

*;

};

The inheritance of version definitions reduces the amount of version information that
must be recorded in any user of the shared object.

Internal Implementation Changes
Any compatible new release of the shared object that consists of an update to the
implementation of the object, for example, a bug fix or performance improvement,
should be accompanied by a weak version definition. This new version definition
should inherit the latest version definition present at the time the update occurred.

The following mapfile example generates a weak version definition SUNW_1.1.1.
This new interface indicates that the internal changes were made to the
implementation offered by the previous interface SUNW_1.1.

$ cat mapfile
SUNW_1.1.1 { } SUNW_1.1; # Release X+1.

SUNW_1.1 { # Release X.
global:

foo2;
foo1;

local:
*;

};

New Symbols and Internal Implementation
Changes
If both internal changes and the addition of a new interface have occurred during the
same release, both a weak version and an interface version definition should be
created. The following example shows the addition of a version definition SUNW_1.2
and an interface change SUNW_1.1.1, which are added during the same release cycle.
Both interfaces inherit the original interface SUNW_1.1.

$ cat mapfile
SUNW_1.2 { # Release X+1.

global:
foo3;

} SUNW_1.1;

SUNW_1.1.1 { } SUNW_1.1; # Release X+1.

SUNW_1.1 { # Release X.

288 Linker and Libraries Guide • December 2003

global:
foo2;
foo1;

local:
*;

};

Note – The comments for the SUNW_1.1 and SUNW_1.1.1 version definitions indicate
that they have both been applied to the same release.

Migrating Symbols to a Standard Interface
Occasionally, symbols offered by a vendor’s interface become absorbed into a new
industry standard. When creating a new standard interface, make sure to maintain the
original interface definitions provided by the shared object. Create intermediate
version definitions on which the new standard, and original interface definitions, can
be built.

The following mapfile example shows the addition of a new industry standard
interface STAND.1. This interface contains the new symbol foo4 and the existing
symbols foo3 and foo1, which were originally offered through the interfaces
SUNW_1.2 and SUNW_1.1 respectively.

$ cat mapfile
STAND.1 { # Release X+2.

global:
foo4;

} STAND.0.1 STAND.0.2;

SUNW_1.2 { # Release X+1.
global:

SUNW_1.2;
} STAND.0.1 SUNW_1.1;

SUNW_1.1.1 { } SUNW_1.1; # Release X+1.

SUNW_1.1 { # Release X.
global:

foo2;
local:

*;
} STAND.0.2;

Subversion - providing for
STAND.0.1 { # SUNW_1.2 and STAND.1 interfaces.

global:
foo3;

};
Subversion - providing for

STAND.0.2 { # SUNW_1.1 and STAND.1 interfaces.

Appendix B • Versioning Quick Reference 289

global:
foo1;

};

The symbols foo3 and foo1 are pulled into their own intermediate interface
definitions, which are used to create the original and new interface definitions.

The new definition of the SUNW_1.2 interface has referenced its own version
definition symbol. Without this reference, the SUNW_1.2 interface would have
contained no immediate symbol references and hence would be categorized as a weak
version definition.

When migrating symbol definitions to a standards interface, any original interface
definitions must continue to represent the same symbol list. This requirement can be
validated using pvs(1). The following example shows the symbol list of the
SUNW_1.2 interface as it existed in the software release X+1.

$ pvs -ds -N SUNW_1.2 libfoo.so.1
SUNW_1.2:

foo3;
SUNW_1.1:

foo2;

foo1;

Although the introduction of the new standards interface in software release X+2 has
changed the interface version definitions available, the list of symbols provided by
each of the original interfaces remains constant. The following example shows that
interface SUNW_1.2 still provides symbols foo1, foo2 and foo3.

$ pvs -ds -N SUNW_1.2 libfoo.so.1
SUNW_1.2:
STAND.0.1:

foo3;
SUNW_1.1:

foo2;
STAND.0.2:

foo1;

An application might only reference one of the new subversions. In this case, any
attempt to run the application on a previous release results in a runtime versioning
error. See “Binding to a Version Definition” on page 132.

An application’s version binding can be promoted by directly referencing an existing
version name. See “Binding to Additional Version Definitions” on page 138. For
example, if an application only references the symbol foo1 from the shared object
libfoo.so.1, then its version reference is to STAND.0.2. To enable this application
to be run on previous releases, the version binding can be promoted to SUNW_1.1
using a version control mapfile directive.

$ cat prog.c
extern void foo1();

main()

290 Linker and Libraries Guide • December 2003

{
foo1();

}
$ cc -o prog prog.c -L. -R. -lfoo
$ pvs -r prog

libfoo.so.1 (STAND.0.2);

$ cat mapfile
libfoo.so - SUNW_1.1 $ADDVERS=SUNW_1.1;
$ cc -M mapfile -o prog prog.c -L. -R. -lfoo
$ pvs -r prog

libfoo.so.1 (SUNW_1.1);

In practice, you rarely have to promote a version binding in this manner. The
introduction of new standards binary interfaces is rare, and most applications
reference many symbols from an interface family.

Appendix B • Versioning Quick Reference 291

292 Linker and Libraries Guide • December 2003

APPENDIX C

Establishing Dependencies with
Dynamic String Tokens

A dynamic object can establish dependencies explicitly or through filters. Each of these
mechanisms can be augmented with a runpath, which directs the runtime linker to
search for and load the required dependency. String names used to record filters,
dependencies and runpath information can be augmented with the reserved dynamic
string tokens:

� $ISALIST
� $OSNAME, $OSREL and $PLATFORM
� $ORIGIN

The following sections provide examples of how each of these tokens may be
employed.

Instruction Set Specific Shared Objects
The dynamic token $ISALIST is expanded at runtime to reflect the native instruction
sets executable on this platform, as displayed by the utility isalist(1). This token is
available for filter (DT_FILTER), auxiliary filter (DT_AUXILIARY) or runpath
(DT_RUNPATH) definitions.

Any string name that incorporates the $ISALIST token is effectively duplicated into
multiple strings. Each string is assigned one of the available instruction sets.

The following example shows how the auxiliary filter libfoo.so.1 can be designed
to access an instruction set specific filtee libbar.so.1.

$ LD_OPTIONS=’-f /opt/ISV/lib/$ISALIST/libbar.so.1’ \
cc -o libfoo.so.1 -G -K pic -h libfoo.so.1 -R. foo.c
$ dump -Lv libfoo.so.1 | egrep "SONAME|AUXILIARY"
[1] SONAME libfoo.so.1

[2] AUXILIARY /opt/ISV/lib/$ISALIST/libbar.so.1

293

Or alternatively the runpath can be used.

$ LD_OPTIONS=’-f libbar.so.1’ \
cc -o libfoo.so.1 -G -K pic -h libfoo.so.1 -R’/ot/ISV/lib/$ISALIST’ foo.c
$ dump -Lv libfoo.so.1 | egrep "RUNPATH|AUXILIARY"
[1] RUNPATH /opt/ISV/lib/$ISALIST

[2] AUXILIARY libbar.so.1

In either case the runtime linker uses the platform available instruction list to
construct multiple search paths. For example, the following application is dependent
on libfoo.so.1 and executed on a SUNW,Ultra-2:

$ ldd -ls prog
.....
find object=libbar.so.1; required by ./libfoo.so.1
search path=/opt/ISV/lib/$ISALIST (RPATH from file ./libfoo.so.1)
trying path=/opt/ISV/lib/sparcv9+vis/libbar.so.1
trying path=/opt/ISV/lib/sparcv9/libbar.so.1
trying path=/opt/ISV/lib/sparcv8plus+vis/libbar.so.1
trying path=/opt/ISV/lib/sparcv8plus/libbar.so.1
trying path=/opt/ISV/lib/sparcv8/libbar.so.1
trying path=/opt/ISV/lib/sparcv8-fsmuld/libbar.so.1
trying path=/opt/ISV/lib/sparcv7/libbar.so.1

trying path=/opt/ISV/lib/sparc/libbar.so.1

Or an application with similar dependencies is executed on an MMX configured
Pentium Pro:

$ ldd -ls prog
.....
find object=libbar.so.1; required by ./libfoo.so.1
search path=/opt/ISV/lib/$ISALIST (RPATH from file ./libfoo.so.1)
trying path=/opt/ISV/lib/pentium_pro+mmx/libbar.so.1
trying path=/opt/ISV/lib/pentium_pro/libbar.so.1
trying path=/opt/ISV/lib/pentium+mmx/libbar.so.1
trying path=/opt/ISV/lib/pentium/libbar.so.1
trying path=/opt/ISV/lib/i486/libbar.so.1
trying path=/opt/ISV/lib/i386/libbar.so.1

trying path=/opt/ISV/lib/i86/libbar.so.1

Reducing Filtee Searches
The use of $ISALIST within a filter enables one or more filtees to provide
implementations of interfaces defined within the filter.

Any interface defined in a filter can result in an exhaustive search of all potential
filtees in an attempt to locate the required interface. If filtees are being employed to
provide performance critical functions, this exhaustive filtee searching can be
counterproductive.

294 Linker and Libraries Guide • December 2003

A filtee can be built with the link-editor’s -z endfiltee option to indicate that it is
the last of the available filtees. This option terminates any further filtee searching for
that filter. From the previous SPARC example, if the sparcv9 filtee existed, and was
tagged with -z endfiltee, the filtee searches would be:

$ ldd -ls prog
.....
find object=libbar.so.1; required by ./libfoo.so.1
search path=/opt/ISV/lib/$ISALIST (RPATH from file ./libfoo.so.1)
trying path=/opt/ISV/lib/sparcv9+vis/libbar.so.1

trying path=/opt/ISV/lib/sparcv9/libbar.so.1

System Specific Shared Objects
The dynamic tokens $OSNAME, $OSREL and $PLATFORM are expanded at runtime to
provide system specific information. These tokens are available for filter
(DT_FILTER), auxiliary filter (DT_AUXILIARY), runpath (DT_RUNPATH), or
dependency (DT_NEEDED) definitions.

$OSNAME expands to reflect the name of the operating system, as displayed by the
utility uname(1) with the -s option. $OSREL expands to reflect the operating system
release level, as displayed by uname -r. $PLATFORM expands to reflect the
underlying hardware implementation, as displayed by uname -i.

The following example shows how the auxiliary filter libfoo.so.1 can be designed
to access a platform specific filtee libbar.so.1.

$ LD_OPTIONS=’-f /usr/platform/$PLATFORM/lib/libbar.so.1’ \
cc -o libfoo.so.1 -G -K pic -h libfoo.so.1 -R. foo.c
$ dump -Lv libfoo.so.1 | egrep "SONAME|AUXILIARY"
[1] SONAME libfoo.so.1

[2] AUXILIARY /usr/platform/$PLATFORM/lib/libbar.so.1

This mechanism is used in the Solaris operating environment to provide platform
specific extensions to the shared object /usr/lib/libc.so.1.

Locating Associated Dependencies
Typically, an unbundled product is designed to be installed in a standalone, unique
location. This product is composed of binaries, shared object dependencies, and
associated configuration files. For example, the unbundled product ABC might have
the layout shown in the following figure.

Appendix C • Establishing Dependencies with Dynamic String Tokens 295

ABC

bin libetc

abc libA.so.1
libB.so.1
libC.so.1

abc.conf

FIGURE C–1 Unbundled Dependencies

Assume that the product is designed for installation under /opt. Normally, you
would augment the PATH with /opt/ABC/bin to locate the product’s binaries. Each
binary locates their dependencies using a hard-coded runpath within the binary. For
the application abc, this runpath would be:

% dump -Lv abc
[1] NEEDED libA.so.1

[2] RUNPATH /opt/ABC/lib

and similarly for the dependency libA.so.1 this would be:

% dump -Lv libA.so.1
[1] NEEDED libB.so.1

[2] RUNPATH /opt/ABC/lib

This dependency representation works until the product is installed in some directory
other than the recommended default.

The dynamic token $ORIGIN expands to the directory in which an object originated.
This token is available for filter (DT_FILTER), auxiliary filter (DT_AUXILIARY),
runpath (DT_RUNPATH), or dependency (DT_NEEDED) definitions. Use this technology
to redefine the unbundled application to locate its dependencies in terms of $ORIGIN:

% dump -Lv abc
[1] NEEDED libA.so.1

[2] RUNPATH $ORIGIN/../lib

and the dependency libA.so.1 can also be defined in terms of $ORIGIN:

% dump -Lv libA.so.1
[1] NEEDED libB.so.1

[2] RUNPATH $ORIGIN

If this product is now installed under /usr/local/ABC and the user’s PATH is
augmented with /usr/local/ABC/bin, invocation of the application abc result in a
pathname lookup for its dependencies as follows:

% ldd -s abc
.....
find object=libA.so.1; required by abc
search path=$ORIGIN/../lib (RPATH from file abc)

296 Linker and Libraries Guide • December 2003

trying path=/usr/local/ABC/lib/libA.so.1
libA.so.1 => /usr/local/ABC/lib/libA.so.1

find object=libB.so.1; required by /usr/local/ABC/lib/libA.so.1
search path=$ORIGIN (RPATH from file /usr/local/ABC/lib/libA.so.1)
trying path=/usr/local/ABC/lib/libB.so.1

libB.so.1 => /usr/local/ABC/lib/libB.so.1

Dependencies Between Unbundled Products
Another issue related to dependency location is how to establish a model whereby
unbundled products express dependencies between themselves.

For example, the unbundled product XYZ might have dependencies on the product
ABC. This dependency can be established by a host package installation script. This
script generates a symbolic link to the installation point of the ABC product, as shown
in the following figure.

XYZ

bin ABClib

abc libX.so.1
libY.so.1
libZ.so.1

ABC

bin libetc

abc libA.so.1
libB.so.1
libC.so.1

abc.conf

FIGURE C–2 Unbundled Co-Dependencies

The binaries and shared objects of the XYZ product can represent their dependencies
on the ABC product using the symbolic link. This link is now a stable reference point.
For the application xyz, this runpath would be:

% dump -Lv xyz
[1] NEEDED libX.so.1
[2] NEEDED libA.so.1

[3] RUNPATH $ORIGIN/../lib:$ORIGIN/../ABC/lib

and similarly for the dependency libX.so.1 this runpath would be:

% dump -Lv libX.so.1
[1] NEEDED libY.so.1
[2] NEEDED libC.so.1

Appendix C • Establishing Dependencies with Dynamic String Tokens 297

[3] RUNPATH $ORIGIN:$ORIGIN/../ABC/lib

If this product is now installed under /usr/local/XYZ, its post-install script would
be required to establish a symbolic link of:

% ln -s ../ABC /usr/local/XYZ/ABC

If the user’s PATH is augmented with /usr/local/XYZ/bin, then invocation of the
application xyz result in a pathname lookup for its dependencies as follows:

% ldd -s xyz
.....
find object=libX.so.1; required by xyz
search path=$ORIGIN/../lib:$ORIGIN/../ABC/lib (RPATH from file xyz)
trying path=/usr/local/XYZ/lib/libX.so.1
libX.so.1 => /usr/local/XYZ/lib/libX.so.1

find object=libA.so.1; required by xyz
search path=$ORIGIN/../lib:$ORIGIN/../ABC/lib (RPATH from file xyz)
trying path=/usr/local/XYZ/lib/libA.so.1
trying path=/usr/local/ABC/lib/libA.so.1
libA.so.1 => /usr/local/ABC/lib/libA.so.1

find object=libY.so.1; required by /usr/local/XYZ/lib/libX.so.1
search path=$ORIGIN:$ORIGIN/../ABC/lib \

(RPATH from file /usr/local/XYZ/lib/libX.so.1)
trying path=/usr/local/XYZ/lib/libY.so.1
libY.so.1 => /usr/local/XYZ/lib/libY.so.1

find object=libC.so.1; required by /usr/local/XYZ/lib/libX.so.1
search path=$ORIGIN:$ORIGIN/../ABC/lib \

(RPATH from file /usr/local/XYZ/lib/libX.so.1)
trying path=/usr/local/XYZ/lib/libC.so.1
trying path=/usr/local/ABC/lib/libC.so.1
libC.so.1 => /usr/local/ABC/lib/libC.so.1

find object=libB.so.1; required by /usr/local/ABC/lib/libA.so.1
search path=$ORIGIN (RPATH from file /usr/local/ABC/lib/libA.so.1)
trying path=/usr/local/ABC/lib/libB.so.1

libB.so.1 => /usr/local/ABC/lib/libB.so.1

Security
In a secure process, the expansion of the $ORIGIN string is allowed only if it expands
to a trusted directory. The occurrence of other relative path names, poses a security
risk.

A path like $ORIGIN/../lib apparently points to a fixed location, fixed by the
location of the executable. However, the location is not actually fixed. A writable
directory in the same file system could exploit a secure program that uses $ORIGIN.

298 Linker and Libraries Guide • December 2003

The following example shows this possible security breach if $ORIGIN was arbitrarily
expanded within a secure process.

% cd /worldwritable/dir/in/same/fs
% mkdir bin lib
% ln $ORIGIN/bin/program bin/program
% cp ~/crooked-libc.so.1 lib/libc.so.1
% bin/program

..... using crooked-libc.so.1

You can use the utility crle(1) to specify trusted directories that enable secure
applications to use $ORIGIN. Administrators who use this technique should ensure
that the target directories are suitably protected from malicious intrusion.

Appendix C • Establishing Dependencies with Dynamic String Tokens 299

300 Linker and Libraries Guide • December 2003

APPENDIX D

New Linker and Libraries Features
and Updates

This appendix provides an overview of new features and updates that have been
added to the Solaris operating environment and indicates the release to which they
were added:

Solaris 9 12/03 Release
� Performance improvements within ld(1) may significantly reduce the link-edit

time of very large applications.

Solaris 9 8/03 Release
� dlsym(3DL) symbol processing can be reduced using a dlopen(3DL) handle

created with the RTLD_FIRST flag. See “Obtaining New Symbols” on page 87.

� The signal used by the runtime linker to terminate an erroneous process can be
managed using the dlinfo(3DL) flags RTLD_DI_GETSIGNAL, and
RTLD_DI_SETSIGNAL.

301

Solaris 9 12/02 Release
� String table compression is provided by the link-editor. This can result in reduced

.dynstr and .strtab sections. This default processing can be disabled using the
link-editor’s -z nocompstrtab option. See “String Table Compression”
on page 54.

� The -z ignore option has been extended to eliminate unreferenced sections
during a link-edit. See “Remove Unused Material” on page 113.

� Unreferenced dependencies can be determined using ldd(1). See the -U option.

� Support for extended ELF sections is provided by the link-editors. See “ELF
Header” on page 176, Table 7–12, “Sections” on page 183, Table 7–16 and “Symbol
Table Section” on page 216.

� Greater flexibility in defining a symbols visibility is provided with the protected
mapfile directive. See “Defining Additional Symbols” on page 44.

Solaris 9 Release
� Thread-Local Storage (TLS) support is provided. See “Thread-Local Storage

Section” on page 225, Table 7–14, “Special Sections” on page 194, Table 7–23, Table
7–36 and Table 7–44.

� The -z rescan option provides greater flexibility in specifying archive libraries to
a link-edit. See “Position of an Archive on the Command Line” on page 30.

� The -z ld32 and -z ld64 options provide greater flexibility in using the
link-editor support interfaces. See “32–Bit and 64–Bit Environments” on page 146.

� Additional link-editor support interfaces ld_input_done(),
ld_input_section(), ld_input_section64() and ld_version() have
been added. See “Support Interface Functions” on page 147.

� Environment variables interpreted by the runtime linker can now be established
for multiple processes by specifying them within a configuration file. See the -e
and -E options of crle(1).

� Support for more than 32,768 procedure linkage table entries within 64–bit SPARC
objects has been added. See “SPARC: 64–bit Procedure Linkage Table” on page 259.

� An mdb(1) debugger module enables you to inspect runtime linker data structures
as part of process debugging. See “Debugger Module” on page 93.

� The bss segment declaration directive makes the creation of a bss segment easier.
See “Segment Declarations” on page 266.

302 Linker and Libraries Guide • December 2003

Solaris 8 07/01 Release
� Unused dependencies can be determined using ldd(1). See the -u option.
� Various ELF ABI extensions have been added. See “Initialization and Termination

Sections” on page 34, “Initialization and Termination Routines” on page 73, Table
7–4, Table 7–7, Table 7–14, Table 7–15, “Group Section” on page 199, Table 7–16,
Table 7–24, Table 7–43, Table 7–44, and “Program Loading (Processor-Specific)”
on page 236.

� Greater flexibility in the use of link-editor environment variables has been
provided with the addition of _32 and _64 variants. See “Environment Variables”
on page 21.

Solaris 8 01/01 Release
� The symbolic information available from dladdr(3DL) has been enhanced with

the introduction of dladdr1().
� The $ORIGIN of a dynamic object can be obtained from dlinfo(3DL).
� The maintenance of runtime configuration files created with crle(1) has been

simplified. Inspection of a configuration file displays the command-line options
used to create the file. An update capability is provided with the -u option.

� The runtime linker and its debugger interface have been extended to detect
procedure linkage table entry resolution. This update is identified by a new version
number. See rd_init() under “Agent Manipulation Interfaces” on page 163. This
update extends the rd_plt_info_t structure. See rd_plt_resolution()
under “Procedure Linkage Table Skipping” on page 168.

� An application’s stack can be defined non-executable using the new mapfile
segment descriptor STACK. See “Segment Declarations” on page 266.

Solaris 8 10/00 Release
� The environment variable LD_BREADTH is ignored by the runtime linker. See

“Initialization and Termination Routines” on page 73.
� The runtime linker and its debugger interface have been extended for better

runtime and core file analysis. This update is identified by a new version number.
See rd_init() under “Agent Manipulation Interfaces” on page 163. This update

Appendix D • New Linker and Libraries Features and Updates 303

extends the rd_loadobj_t structure. See “Scanning Loadable Objects”
on page 164.

� You can now validate displacement relocated data in regard to its use, or possible
use, with copy relocations. See “Displacement Relocations” on page 56.

� 64–bit filters can be built solely from a mapfile using the link-editor’s -64 option.
See “Generating a Standard Filter” on page 103.

� The search paths used to locate the dependencies of dynamic objects can be
inspected using dlinfo(3DL).

� dlsym(3DL) and dlinfo(3DL) lookup semantics have been expanded with a new
handle RTLD_SELF.

� The runtime symbol lookup mechanism used to relocate dynamic objects can be
significantly reduced by establishing direct binding information within each
dynamic object. See “External Bindings” on page 53 and “Direct Binding”
on page 68.

Solaris 8 Release
� The secure directory from which files can be preloaded is now /usr/lib/secure

for 32–bit objects and /usr/lib/secure/64 for 64–bit objects. See “Security”
on page 77.

� Greater flexibility in modifying the runtime linker’s search paths can be achieved
with the link-editor’s -z nodefaultlib option, and runtime configuration files
created by the new utility crle(1). See “Directories Searched by the Runtime
Linker” on page 33 and “Configuring the Default Search Paths” on page 65.

� The new extern mapfile directive enables you to use -z defs with externally
defined symbols. See “Defining Additional Symbols” on page 44.

� The new $ISALIST, $OSNAME, and $OSREL dynamic string tokens provide greater
flexibility in establishing instruction set specific, and system specific dependencies.
See “Dynamic String Tokens” on page 65.

� The link-editor options -p and -P provide additional means of invoking runtime
link auditing libraries. See “Recording Local Auditors” on page 154. The runtime
link auditing interfaces la_activity() and la_objsearch() have been added.
See “Audit Interface Functions” on page 154.

� A new dynamic section tag, DT_CHECKSUM, enables you to coordinate ELF files
with core images. See Table 7–43.

304 Linker and Libraries Guide • December 2003

Solaris 7 Release
� The 64–bit ELF object format is now supported. See “File Format” on page 173 for

details. Link-editor extensions and differences for 64–bit processing include the use
of /usr/lib/64 (see “Directories Searched by the Link-Editor” on page 31,
“Directories Searched by the Runtime Linker” on page 33, and “Naming
Conventions” on page 98), the environment variable LD_LIBRARY_PATH_64 (see
“Using an Environment Variable” on page 32, and “Directories Searched by the
Runtime Linker” on page 62), and the runtime linker /usr/lib/64/ld.so.1
(see Chapter 3).

� You can build shared objects with optimized relocation sections using the
link-editor’s -z combreloc option. See “Combined Relocation Sections”
on page 117.

� The new $ORIGIN dynamic string token provides greater flexibility in establishing
dependencies within unbundled software. See “Dynamic String Tokens”
on page 65.

� The loading of a shared object can now be deferred until the object is actually
referenced by the running program. See “Lazy Loading of Dynamic Dependencies”
on page 110.

� The new SHT_SUNW_COMDAT section type enables the elimination of
multiply-defined symbols. See “COMDAT Section” on page 199.

� The new SHT_SUNW_move section type enables partially initialized symbols. See
“Move Section” on page 202.

� The runtime link auditing interfaces la_symbind64(), la_sparcv9_pltenter
(), and la_pltexit64(), together with a new link-auditing flag
LA_SYMB_ALTVALUE, have been added. See “Audit Interface Functions”
on page 154.

Solaris 2.6 Release
� Weak symbol references can trigger archive member extraction by using the

link-editor’s -z weakextract option. Extracting all archive members can be
achieved using the -z allextract option. See “Archive Processing” on page 27.

� Shared objects specified as part of a link-edit that are not referenced by the object
being built can be ignored, and hence their dependency recording suppressed,
using the link-editor’s -z ignore option. See “Shared Object Processing”
on page 28.

Appendix D • New Linker and Libraries Features and Updates 305

� The link-editor generates the reserved symbols _START_ and _END_ to provide a
means of establishing an object’s address range. See “Generating the Output File”
on page 54.

� Changes have been made to the runtime ordering of initialization and finalization
code to better accommodate dependency requirements. See “Initialization and
Termination Routines” on page 73.

� Symbol resolution semantics have been expanded for dlopen(3DL). See “Symbol
Lookup” on page 81, RTLD_GROUP in “Isolating a Group” on page 86, and
RTLD_PARENT in “Object Hierarchies” on page 86.

� Symbol lookup semantics have been expanded with a new dlsym(3DL) handle
RTLD_DEFAULT. See “Default Symbol Lookup Model” on page 82.

� Extensions have been made to filter processing that allow more than one filtee to be
defined, and provide for forcibly loading filtees. See “Shared Objects as Filters”
on page 103.

� You can record additional version dependencies using the mapfile file control
directive $ADDVERS. See “Binding to Additional Version Definitions” on page 138.

� A runtime linker audit interface provides support for monitoring and modifying a
dynamically linked application from within the process. See “Runtime Linker
Auditing Interface” on page 151.

� A runtime linker debugger interface provides support for monitoring and
modifying a dynamically linked application from an external process. See
“Runtime Linker Debugger Interface” on page 160.

� Additional section information is supported. See Table 7–11 for SHN_BEFORE and
SHN_AFTER. See Table 7–14 for SHF_ORDERED and SHF_EXCLUDE.

� A new dynamic section tag, DT_1_FLAGS, is supported. See Table 7–45 for the
various flag values.

� A package of demonstration ELF programs is provided. See Chapter 7.

� The link-editors now support internationalized messages. All system errors are
reported using strerror(3C).

� The new eliminate mapfile directive, or the -B eliminate option, enable
you to elimination local symbol table entries. See “Symbol Elimination”
on page 53.

306 Linker and Libraries Guide • December 2003

Index

Numbers and Symbols
$ADDVERS, See versioning
$ISALIST, See search paths
$ORIGIN, See search paths
$OSNAME, See search paths
$OSREL, See search paths
$PLATFORM, See search paths
32–bit/64–bit, 31, 33, 61, 62, 63, 65, 77, 80, 98,

101, 112, 146, 153, 160, 175, 176, 181, 183, 206,
224, 281
introduction, 21

A
ABI, See Application Binary Interface
Application Binary Interface, 20, 105, 125
ar(1), 27
archives, 29

inclusion of shared objects in, 100
link-editor processing, 27
multiple passes through, 27
naming conventions, 29

as(1), 18
atexit(3C), 74
auxiliary filters, 103, 106

B
base address, 234
binding, 17

dependency ordering, 102

binding (Continued)
direct, 54, 67, 68, 81, 117
lazy, 69, 81, 92
to shared object dependencies, 99, 132
to version definitions, 132
to weak version definitions, 139

C
CC(1), 25
cc(1), 18, 25
COMDAT, 149, 199
COMMON, 36, 46, 48, 184
compilation environment, 19, 29, 97

See also link-editing and link-editor
compiler driver, 25
compiler options

-K PIC, 112
-K pic, 111, 280
-xF, 113, 199, 269
-xpg, 122
-xregs=no%appl, 281

crle(1), 65, 77, 121, 155, 254, 255, 302, 303,
304

crle(1) options
-E, 302
-e, 121, 302
-l, 65
-s, 77
-u, 303

307

D
data representation, 175
debugging aids

link-editing, 57
runtime linking, 90

demonstrations
prefcnt, 159
sotruss, 159
symbindrep, 159
whocalls, 159

dependency
groups, 80, 82

dependency ordering, 102
direct binding, 54, 67, 68, 81, 117
dladdr(3DL), 303
dladdr1(3DL), 303
dlclose(3DL), 74, 79
dldump(3DL), 35
dlerror(3DL), 79
dlfcn.h, 79
dlinfo(3DL), 301, 303, 304
dlmopen(3DL), 152

See also dlopen(3DL)
dlopen(3DL), 62, 79, 85, 107, 135, 145, 146

effects of ordering, 84
group, 82

dlopen(3DL)
group, 80

dlopen(3DL)
modes

RTLD_GLOBAL, 80, 85
RTLD_GROUP, 86
RTLD_LAZY, 81
RTLD_NOLOAD, 152
RTLD_NOW, 69, 76, 81
RTLD_PARENT, 86

of a dynamic executable, 85
dlopen(3DL)

of a dynamic executable, 80
dlopen(3DL)

shared object naming conventions, 98
dlsym(3DL), 62, 79, 87, 89, 136, 146

special handle
RTLD_DEFAULT, 43, 87
RTLD_NEXT, 87
RTLD_SELF, 304

dump(1), 21, 63, 66, 109, 111
dynamic executables, 18, 19

dynamic information tags
NEEDED, 63, 99
RUNPATH, 63
SONAME, 99
SYMBOLIC, 121
TEXTREL, 111

dynamic linking, 20
implementation, 205, 239

E
ELF, 17, 23, 98, 108, 145

See also object files
elf(3E), 21, 145
environment variables, 21

LD_AUDIT, 78, 153
LD_BIND_NOT, 92
LD_BIND_NOW, 69, 76, 92, 258, 262, 264
LD_BREADTH, 76
LD_CONFIG, 78
LD_DEBUG, 91
LD_DEBUG_OUTPUT, 91
LD_LIBRARY_PATH, 32, 64, 77, 80, 102, 153
LD_LOADFLTR, 107
LD_NOAUDIT, 154
LD_NOAUXFLTR, 107
LD_NODIRECT, 68
LD_NOLAZYLOAD, 73
LD_NOVERSION, 135, 138
LD_OPTIONS, 25, 58
LD_PRELOAD, 68, 71, 78
LD_PROFILE, 121
LD_PROFILE_OUTPUT, 122
LD_RUN_PATH, 34
LD_SIGNAL, 78
SGS_SUPPORT, 146

error messages
link-editor

illegal argument to option, 26
illegal option, 26
incompatible options, 26
multiple instances of an option, 26
multiply-defined symbols, 40
relocations against non-writable

sections, 111
shared object name conflicts, 101
soname conflicts, 101

308 Linker and Libraries Guide • December 2003

error messages, link-editor (Continued)
symbol not assigned to version, 51
symbol warnings, 39
undefined symbols, 41
undefined symbols from an implicit

reference, 42
version unavailable, 137

runtime linker
copy relocation size differences, 57, 120
relocation errors, 70, 135
unable to find shared object, 64, 80
unable to find version definition, 134
unable to locate symbol, 88

exec(2), 23, 61, 174
executable and linking format, See ELF

F
filters, 103

auxiliary, 103, 106
platform specific, 295
system specific, 295

standard, 103

G
generating a shared object, 42
generating an executable, 41
generating the output file image, 54
global offset table, 55, 66, 111, 197, 209, 243, 247,

255
SPARC, 212
x86, 214, 215, 262

global symbols, 36, 125, 218, 221
.got, See global offset table

I
initialization and termination, 25, 34, 73
input file processing, 26
interface

private, 125
public, 125, 283

interposition, 38, 50, 67, 71, 89, 126

interpreter, See runtime linker

L
lazy binding, 69, 81, 92, 151
ld(1), 17
LD_AUDIT, 78, 153
LD_BIND_NOT, 92
LD_BIND_NOW, 69, 76, 92, 258, 262, 264
LD_BREADTH, 76
LD_CONFIG, 78
LD_DEBUG, 91
LD_DEBUG_OUTPUT, 91
LD_LIBRARY_PATH, 64, 77, 80, 102, 153
LD_LOADFLTR, 107
LD_NOAUDIT, 154
LD_NOAUXFLTR, 107
LD_NODIRECT, 68
LD_NOLAZYLOAD, 73
LD_NOVERSION, 135, 138
LD_OPTIONS, 25, 58
LD_PRELOAD, 68, 71, 78
LD_PROFILE, 121
LD_PROFILE_OUTPUT, 122
LD_RUN_PATH, 34
LD_SIGNAL, 78
ld.so.1(1), See runtime linker
ldd(1), 21, 63, 64, 67, 70, 107, 134, 135
ldd(1) options

-d, 57, 70, 120
-i, 75
-r, 57, 70, 120
-u, 28
-v, 134

libdl.so.1, 79
libelf.so.1, 147, 173
libldstab.so.1, 146
libraries

archives, 29
naming conventions, 29
shared, 205, 239

link-editing, 18, 216, 239
adding additional libraries, 29
archive processing, 27
binding to a version definition, 132, 136
dynamic, 205, 239
input file processing, 26

Index 309

link-editing (Continued)
library input processing, 27
library linking options, 27
mixing shared objects and archives, 30
position of files on command line, 30
search paths, 31
shared object processing, 28

link-editor, 17, 23
debugging aids, 57
direct binding, 54
error messages

See error messages
invoking directly, 24
invoking using compiler driver, 25
overview, 23
sections, 23
segments, 23
specifying options, 25

link-editor options
-64, 21, 105
-a, 280
-B direct, 53, 67, 281, 282
-B dynamic, 30
-B eliminate, 53
-B group, 82, 86, 253
-B local, 52
-B reduce, 47, 52
-B static, 30, 280
-D, 57
-d n, 279, 282
-d y, 280
-e, 55
-F, 103
-f, 103
-G, 97, 280, 282
-h, 63, 99, 143, 281
-i, 32
-L, 31, 279
-l, 27, 29, 98, 142, 279
-M, 24, 44, 45, 126, 127, 136, 265, 281, 285
-m, 29, 38
-P, 154
-p, 154
-R, 33, 101, 281, 282
-r, 25, 280
-S, 146
-s, 53, 54
-t, 39, 40

link-editor options (Continued)
-u, 44, 45
-Y, 32
-z allextract, 27
-z combreloc, 281
-z defaultextract, 27
-z defs, 42, 46, 153, 281
-z endfiltee, 254
-z finiarray, 34
-z groupperm, 254
-z ignore, 28, 113, 281
-z initarray, 34
-z initfirst, 253
-z interpose, 68, 253
-z lazyload, 72, 254, 281, 282
-z ld32, 146
-z ld64, 146
-z loadfltr, 107, 253
-z muldefs, 40
-z nocompstrtab, 54, 302
-z nodefaultlib, 33, 254
-z nodefs, 41, 70
-z nodelete, 253
-z nodlopen, 253
-z nodump, 254
-z nolazyload, 72
-z nopartial, 204
-z noversion, 51, 128, 134
-z now, 69, 76, 81
-z record, 113
-z rescan, 31
-z text, 111, 280
-z verbose, 56
-z weakextract, 27, 219

link-editor output
dynamic executables, 18
relocatable objects, 18
shared objects, 18
static executables, 18

link-editor support interface (ld-support), 145
ld_atexit(), 149
ld_atexit64(), 149
ld_file(), 147
ld_file64(), 147
ld_input_done(), 149
ld_input_section(), 148
ld_input_section64(), 148
ld_section(), 148

310 Linker and Libraries Guide • December 2003

link-editor support interface (ld-support)
(Continued)

ld_section64(), 148
ld_start(), 147
ld_start64(), 147
ld_version(), 147

local symbols, 36, 218, 221
lorder(1), 28, 59

M
mapfiles, 265

defaults, 274
example, 272
map structure, 275
mapping directives, 270
segment declarations, 266
size-symbol declarations, 272
structure, 265
syntax, 265

mdb(1), 302
mmap(2), 23, 54, 61, 108
multiply-defined data, 115, 199
multiply-defined symbols, 28, 38, 199

N
Namespace, 152
naming conventions

archives, 29
libraries, 29
shared objects, 29, 98

NEEDED, 63, 99
nm(1), 21, 109

O
object files, 17

base address, 234
data representation, 175
global offset table

See global offset table
note section, 204, 205
preloading at runtime, 71

object files (Continued)
procedure linkage table

See procedure linkage table
program header, 231, 234
program interpretor, 242
program loading, 236
relocation, 205, 255
section alignment, 186
section attributes, 190, 199
section group flags, 200
section header, 183, 199
section names, 199
section types, 186, 199
segment contents, 236
segment permissions, 235
segment types, 232, 234
string table, 215, 216
symbol table, 216, 223

P
packages

SUNWosdem, 159, 162, 173
SUNWtool, 160

paging, 236, 239
performance

allocating buffers dynamically, 115
collapsing multiple definitions, 115
improving locality of references, 116, 121
maximizing shareability, 114
minimizing data segment, 114
position-independent code

See position-dependent code
relocations, 116, 121
the underlying system, 110
using automatic variables, 115

PIC, See position-independent code
platform specific auxiliary filters, 295
.plt, See procedure linkage table
position-independent code, 111, 248, 255
preloading objects, See LD_PRELOAD
procedure linkage table, 55, 69, 111, 197, 209,

243, 247, 248, 256
64–bit SPARC, 259
SPARC, 212, 256, 259
x86, 214, 215, 262

profil(2), 122

Index 311

program interpreter, 242
See also runtime linker

pvs(1), 21, 128, 130, 132, 133

R
relocatable objects, 18
relocation, 65, 116, 120, 205

copy, 56, 118
displacement, 56
immediate, 68
lazy, 68
non-symbolic, 66, 116
runtime linker

symbol lookup, 66, 69, 81, 92
symbolic, 66, 116

RTLD_DEFAULT, 43
See also dependency ordering

RTLD_GLOBAL, 80, 85
RTLD_GROUP, 86
RTLD_LAZY, 81
RTLD_NEXT

See also dependency ordering
RTLD_NOLOAD, 152
RTLD_NOW, 69, 76, 81
RTLD_PARENT, 86
runpath, 33, 63, 80, 101
RUNPATH, See runpath
runpath, security, 78
runtime environment, 19, 29, 97
runtime linker, 19, 61, 242

direct binding, 67, 68, 81, 117
initialization and termination routines, 73
lazy binding, 69, 81, 92
link-maps, 152
loading additional objects, 71
namespace, 152
programming interface

See also dlclose(3DL), dldump(3DL),
dlerror(3DL), dlmopen(3DL), and
dlopen(3DL)

relocation processing, 65
search paths, 33, 62
security, 77
shared object processing, 62
version definition verification, 134

runtime linker support interfaces
(rtld-audit), 145, 151
la_activity(), 155
la_i86_pltenter(), 157
la_objclose(), 158
la_objopen(), 156
la_objseach(), 155
la_pltexit(), 158
la_preinit(), 156
la_sparcv8_pltenter(), 157
la_sparcv9_pltenter(), 157
la_symbind32(), 156
la_symbind64(), 156
la_version(), 155

runtime linker support interfaces
(rtld-debugger), 145, 160
ps_global_sym(), 171
ps_pglobal_sym(), 172
ps_plog(), 171
ps_pread(), 171
ps_pwrite(), 171
rd_delete(), 164
rd_errstr(), 164
rd_event_addr(), 167
rd_event_enable(), 167
rd_event_getmsg(), 168
rd_init(), 163
rd_loadobj_iter(), 166
rd_log(), 164
rd_new(), 163
rd_objpad_enable(), 170
rd_plt_resolution(), 169
rd_reset(), 163

runtime linking, 19

S
SCD, See Application Binary Interface
search paths

link-editing, 31
runtime linker, 33, 62

$ISALIST token, 293
$ORIGIN token, 296
$OSNAME token, 295
$OSREL token, 295
$PLATFORM token, 295

section flags, 191

312 Linker and Libraries Guide • December 2003

section flags (Continued)
SHF_ALLOC, 191, 197, 198
SHF_EXCLUDE, 149, 193
SHF_EXECINSTR, 191
SHF_GROUP, 192, 200
SHF_INFO_LINK, 192
SHF_LINK_ORDER, 184, 192
SHF_MASKOS, 192
SHF_MASKPROC, 193
SHF_MERGE, 191
SHF_ORDERED, 193
SHF_OS_NONCONFORMING, 192
SHF_STRINGS, 192
SHF_WRITE, 191
SHT_TLS, 192

section names
.bss, 23, 118
.data, 23, 114
.dynamic, 55, 61, 121
.dynstr, 54
.dynsym, 54
.fini, 34, 74
.fini_array, 34, 74
.got, 55, 66
.init, 34, 73
.init_array, 34, 73
.interp, 61
.picdata, 115
.plt, 55, 69, 121
.preinit_array, 34, 73
.rela.text, 23
.rodata, 114
.strtab, 23, 54
.SUNW_reloc, 118, 281
.SUNW_version, 226
.symtab, 23, 53, 54
.text, 23

section numbers, 183, 225
SHN_ABS, 184, 213, 220, 222
SHN_AFTER, 184, 192, 193
SHN_BEFORE, 184, 192, 193
SHN_COMMON, 184, 219, 222, 223
SHN_HIOS, 184
SHN_HIPROC, 184
SHN_HIRESERVE, 185
SHN_LOOS, 184
SHN_LOPROC, 184
SHN_LORESERVE, 184

section numbers (Continued)
SHN_UNDEF, 179, 184, 190, 200, 222
SHN_XINDEX, 185

section types, 188
SHT_DYNAMIC, 188, 243
SHT_DYNSTR, 188
SHT_DYNSYM, 188
SHT_FINI_ARRAY, 189
SHT_GROUP, 189, 192, 200
SHT_HASH, 188, 201, 243
SHT_HIOS, 189
SHT_HIPROC, 190
SHT_HIUSER, 190, 277
SHT_INIT_ARRAY, 189
SHT_LOOS, 189
SHT_LOPROC, 190
SHT_LOUSER, 190, 277
SHT_NOBITS, 186, 188, 196, 198, 236, 267
SHT_NOTE, 188, 204
SHT_NULL, 188
SHT_PREINIT_ARRAY, 189
SHT_PROGBITS, 188, 243
SHT_REL, 188
SHT_RELA, 188
SHT_SHLIB, 189
SHT_STRTAB, 188
SHT_SUNW_COMDAT, 149, 189, 199
SHT_SUNW_move, 189, 202
SHT_SUNW_syminfo, 189
SHT_SUNW_verdef, 190, 226, 228
SHT_SUNW_verneed, 190, 226, 228
SHT_SUNW_versym, 190, 226, 227, 228
SHT_SYMTAB, 188, 220
SHT_SYMTAB_SHNDX, 189

sections, 23, 108
See also section flags, section names, section

numbers and section types
security, 77
segments, 23, 108

data, 108, 110
text, 108, 110

SGS_SUPPORT, 146
shared libraries, See shared objects
shared objects, 17, 18, 19, 62, 97

as filters, 103
dependency ordering, 102
explicit definition, 42
implementation, 205, 239

Index 313

shared objects (Continued)
implicit definition, 42
link-editor processing, 28
naming conventions, 29, 98
recording a runtime name, 99
with dependencies, 101

size(1), 108
Solaris ABI, See Application Binary Interface
Solaris Application Binary Interface, See

Application Binary Interface
SONAME, 99
SPARC Compliance Definition, See Application

Binary Interface
standard filters, 103
static executables, 18
strings(1), 115
strip(1), 53, 54
SUNWosdem, 159, 162, 173
SUNWtoo, 160
support interfaces

link-editor (ld-support), 145
runtime linker (rtld-audit), 145, 151
runtime linker (rtld-debugger), 145, 160

symbol reserved names, 55
_DYNAMIC, 55
_edata, 55
_end, 55
END, 55
_etext, 55
_fini, 34
_GLOBAL_OFFSET_TABLE_, 55, 112, 256
_init, 34
main, 55
_PROCEDURE_LINKAGE_TABLE_, 55
_start, 55
START, 55

symbol resolution, 36, 54
complex, 39
fatal, 40
interposition, 67
multiple definitions, 28
search scope

group, 82
simple, 37
symbol visibility, 218, 220

global, 82
local, 82

SYMBOLIC, 121

symbols
absolute, 46, 184
archive extraction, 27
auto-elimination, 53
auto-reduction, 46, 128, 286
COMMON, 36, 46, 48, 184
defined, 36
definition, 27, 40
elimination, 53
existence test, 43
global, 36, 37, 125, 218, 221
local, 36, 218, 221
multiply-defined, 28, 38, 199
ordered, 184
private interface, 125
public interface, 125
reference, 27, 40
registers, 223
runtime lookup, 81, 90

deferred, 69, 81, 92
scope, 81, 85
symbol visibility, 82
tentative, 27, 36, 44, 46, 48, 184

ordering in the output file, 44
realignment, 48

type, 219
undefined, 27, 36, 40, 41, 42, 184
visibility, 218, 220
weak, 27, 37, 43, 218, 221

system specific auxiliary filters, 295
System V Application Binary Interface, 284

See Application Binary Interface

T
tentative symbols, 27, 36, 46, 48
TEXTREL, 111
Thread Local Storage, 302
tsort(1), 28, 59

U
undefined symbols, 40
/usr/ccs/bin/ld, See link-editor
/usr/ccs/lib, 31
/usr/lib, 31, 33, 62, 63, 80

314 Linker and Libraries Guide • December 2003

/usr/lib/64, 31, 33, 62, 63, 80
/usr/lib/64/ld.so.1, 61, 160
/usr/lib/ld.so.1, 61, 160
/usr/lib/secure, 77, 153
/usr/lib/secure/64, 77, 153

V
versioning, 125

base version definition, 128
binding to a definition, 132, 136

$ADDVERS, 136
defining a public interface, 51, 127
definitions, 126, 127, 132
file control directive, 136
file name, 127, 287
generating definitions within an image, 45,

51, 127
normalization, 134
overview, 125
runtime verification, 134, 135

virtual addressing, 236

W
weak symbols, 37, 218, 221

undefined, 27, 43

Index 315

316 Linker and Libraries Guide • December 2003

