
Performance Tuning Guide
Sun™ ONE Application Server

Version7

817-2180-10
March 2003

Copyright 2003 Sun Microsystems, Inc. All rights reserved.

Sun, Sun Microsystems, the Sun logo, Java, Solaris, Sun ONE, iPlanet, and all Sun, Java, and Sun ONE based trademarks and logos
are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.

UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.

Netscape is a trademark or registered trademark of Netscape Communications Corporation in the United States and other countries.

Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms and Conditions

The product described in this document is distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of the product or this document may be reproduced in any form by any means without prior written authorization of Sun
Microsystems, Inc. and its licensors, if any.

THIS DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

__

Copyright 2003 Sun Microsystems, Inc. Tous droits réservés.

Sun, Sun Microsystems, le logo Sun, Java, Solaris, Sun ONE, et iPlanet sont des marques de fabrique ou des marques déposées de
Sun Microsystems, Inc. aux Etats-Unis et d’autre pays.

UNIX est une marque enregistree aux Etats-Unis et dans d'autres pays et licenciée exclusivement par X/Open Company Ltd.

Netscape est une marque de Netscape Communications Corporation aux Etats-Unis et dans d'autres pays.

Le produit décrit dans ce document est distribué selon des conditions de licence qui en restreignent l'utilisation, la copie, la
distribution et la décompilation. Aucune partie de ce produit ni de ce document ne peut être reproduite sous quelque forme ou par
quelque moyen que ce soit sans l’autorisation écrite préalable de Sun Microsystems, Inc. et, le cas échéant, de ses bailleurs de licence.

CETTE DOCUMENTATION EST FOURNIE “EN L'ÉTAT”, ET TOUTES CONDITIONS EXPRESSES OU IMPLICITES, TOUTES
REPRÉSENTATIONS ET TOUTES GARANTIES, Y COMPRIS TOUTE GARANTIE IMPLICITE D'APTITUDE À LA VENTE, OU À
UN BUT PARTICULIER OU DE NON CONTREFAÇON SONT EXCLUES, EXCEPTÉ DANS LA MESURE OÙ DE TELLES
EXCLUSIONS SERAIENT CONTRAIRES À LA LOI.

3

Contents

About This Guide . 7

Overview . 7
Platform Edition . 7
Standard Edition . 8
Enterprise Edition . 8

Using the Documentation . 8
Documentation Conventions . 11

General Conventions . 11
Conventions Referring to Directories . 12

Product Support . 13
What’s in this Guide . 14
What You Should Know . 14
How This Guide is Organized . 14

Chapter 1 Server Components . 15
Application Server Processes . 15
Databases . 16

Server Architecture . 17
Server Tools . 18

Server Administration Interface . 19
Sun ONE Studio 4 . 20

Chapter 2 Why Tune Application Server? . 23
Understanding Operational Requirements . 24

Application Architecture . 25
Security Requirements . 26

4 Sun ONE <Product Name> <Release> • <Book Title> • <Release Date>

User Authentication and Authorization . 26
Encryption . 26

Application Usage . 28
Hardware Resources . 28
Administration . 29

Capacity Planning . 30
Performance Tuning Sequence . 32
Configuration Files . 33
Logging and Performance . 34

Chapter 3 Java Programming Guidelines . 37
J2EE Programming Guidelines . 39

Servlet and JSP Programming Guidelines . 39
EJB Programming Guidelines . 40

EJB Pool and Cache . 41
Transactions . 42
JDBC and Database Access . 43
JMS . 43
References . 44

Chapter 4 HTTP Server Tuning . 45
Enabling Statistics with stats-xml . 46
Monitoring Current Activity Using the perfdump Utility . 49

Installing the perfdump Utility . 49
Using Statistics to Tune Your Server . 53

Connection Queue Information . 54
HTTP Listener Information . 55
Keep-Alive/Persistent Connection Information . 59
Session Creation Information . 63
Cache Information . 64
Thread Pools . 66
DNS Cache Information . 71

Busy Functions . 75
Using Performance Buckets . 75

Configuration . 76
Performance Report . 77

Configuring the File Cache . 78
Using the nocache Parameter . 81
File Cache Dynamic Control and Monitoring . 82

Tuning the ACL User Cache . 84
ACL User Cache Directives . 85
Verifying ACL User Cache Settings . 85

5

Using Quality of Service . 86
Threads, Processes, and Connections . 88

HTTP listener Acceptor Threads . 89
Maximum Simultaneous Requests . 89

Improving Java Performance . 91
Using an Alternate Thread Library . 91
Using Pre-compiled JSPs . 91
Configuring Class Reloading . 91

Miscellaneous init.conf Directives . 91
 AcceptTimeOut Information . 92
CGIStub Processes (Unix/Linux) . 92
Buffer Size . 93

Miscellaneous obj.conf Parameters . 93
find-pathinfo-forward . 94
nostat . 94

Scaling Your Server . 95
Processors . 95
Memory . 95
Disk Space . 96
Networking . 96

Connection Pool Tuning . 96
JDBC Connection Pool Tuning . 99

JSP and Servlet Tuning . 101
Suggested Coding Practices for JSP's and Servlets . 101
Configuration Settings that Affect JSP/Servlet Performance . 101

Performance Tuning for EJBs . 102
Performance Tuning the EJB Container . 103
Guide to Using Tunables . 103
EJB Descriptor Properties . 104
Tuning the EJB Pool . 106
Tuning the EJB Cache . 108

Performance Considerations for Various Types of EJBs . 109
Related Considerations . 113

Commit Options . 115
ORB Tuning . 120

How a Client Connects to the ORB . 120
Performance Tuning the ORB . 121

ORB Tunables . 121
ORB Properties . 122
Non-standard ORB Properties and Functionality . 124

Guide to using Tunables . 126
Thread Pool Sizing . 127

Related Considerations . 128

6 Sun ONE <Product Name> <Release> • <Book Title> • <Release Date>

Examining IIOP Messages . 128
Fragmented Messages . 129
Local Interfaces for EJB's . 129

Tuning the Transaction Manager . 129
automatic-recovery . 130
keypoint-interval . 130
Transaction Manager Monitoring . 131
References . 132

Chapter 5 Using Alternate Threads . 133
Managing Memory and Allocation . 134

Tuning the Garbage Collector . 134
Tracing Garbage Collection . 135

Footprint . 136
Specifying Other Garbage Collector Settings . 136
Tuning the Java Heap . 137

Guidelines for Java Heap Sizing . 137
Sample Heap Configuration on Solaris . 139
Sample Heap Configuration on Windows . 139

HotSpot Virtual Machine Tuning Options . 139

Chapter 6 Tuning Parameters . 141
Solaris File Descriptor Setting . 143
Linux Configuration . 143

Chapter 7 check-acl Server Application Functions . 147
Low-Memory Situations . 148
Under-Throttled Server . 148
Cache Not Utilized . 148
Keep-Alive Connections Flushed . 149
Log File Modes . 150

Index .151

7

About This Guide

Overview
Sun ONE Application Server 7 is a J2EE 1.3 specification-compatible application
server which supports Java Web Services standards as well as standard HTTP
server programming facilities. Three editions of the application server are offered
to suit a variety of needs for both production and development environments:

• Platform Edition

• Standard Edition

• Enterprise Edition

Platform Edition
Platform Edition forms the core of the Sun ONE Application Server 7 product line.
This, free for production use, product offers a high-performance, small-footprint
J2EE 1.3 specification-compatible runtime environment that is ideally suited for
basic operational deployments, as well as for embedding in third-party
applications. Web-services ready, the Platform Edition includes technologies
derived from the Sun ONE Web Server, Sun ONE Message Queue, and the J2EE
Reference Implementation.

Platform Edition deployments are limited to single application server instances (i.e.
single virtual machines for the Java platform (“Java virtual machine” or “JVM™”)).
Multi-tier deployment topologies are supported by the Platform edition, but the
web server tier proxy does not perform load balancing. In Platform Edition,
administrative utilities are limited to local clients only.

Using the Documentation

8 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

Platform Edition is integrated into Solaris 9.

Standard Edition
The Standard Edition layers enhanced, remote-management capabilities on top of
the Platform Edition. Enhanced management capabilities, remote command-line,
and web-based administration are all included as part of the Standard Edition. This
edition also includes the ability to partition web application traffic through a web
server tier proxy. Standard Edition supports configuration of multiple application
server instances (JVMs) per machine.

Enterprise Edition
Enterprise Edition enhances the core application server platform with greater high
availability, load balancing, and clustering capabilities suited for the most
demanding J2EE-based application deployments. The management capabilities of
the Standard Edition are extended in Enterprise Edition to account for
multi-instance and multi-machine deployments.

Clustering support includes easy-to-configure groups of cloned application server
instances to which client requests can be load balanced. Both external load
balancers and load balancing web tier-based proxies are supported by this edition.
HTTP session, stateful session bean instance, and Java Message Service (JMS)
resource failover are included in the Enterprise Edition. The patented “Always
On” highly available database technology forms the basis for the HA persistence
store in the Enterprise Edition.

For more product information, see the Sun ONE Application Server page at
http://www.sun.com/software/products/appsrvr/home_appsrvr.html.

Using the Documentation
The Sun ONE Application Server documentation is available as online files in
Portable Document Format (PDF) and Hypertext Markup Language (HTML)
formats at:

http://docs.sun.com/

The following table lists tasks and concepts described in the Sun ONE Application
Server documentation. The left column lists the tasks and concepts, and the right
column lists the corresponding document.

http://www.sun.com/software/products/appsrvr/home_appsrvr.html
http://docs.sun.com/

Using the Documentation

About This Guide 9

Table 1 Sun ONE Application Server Documentation Roadmap

For information about See the following

Late-breaking information about the software and the
documentation

Release Notes

Supported platforms and environments Platform Summary

Introduction to the application server, including new features,
evaluation installation information, and architectural overview.

Getting Started Guide

Installing Sun ONE Application Server and its various
components (sample applications, Administration interface,
Sun ONE Message Queue).

Installation Guide

Creating and implementing J2EE applications that follow the
open Java standards model on the Sun ONE Application Server
7. Includes general information about application design,
developer tools, security, assembly, deployment, debugging,
and creating lifecycle modules.

Developer’s Guide

Creating and implementing J2EE applications that follow the
open Java standards model for web applications on the Sun
ONE Application Server 7. Discusses web application
programming concepts and tasks, and provides sample code,
implementation tips, and reference material.

Developer’s Guide to Web Applications

Creating and implementing J2EE applications that follow the
open Java standards model for enterprise beans on the Sun
ONE Application Server 7. Discusses EJB programming
concepts and tasks, and provides sample code, implementation
tips, and reference material.

Developer’s Guide to Enterprise JavaBeans
Technology

Creating clients that access J2EE applications on the Sun ONE
Application Server 7

Developer’s Guide to Clients

Creating web services Developer’s Guide to Web Services

J2EE features such as JDBC, JNDI, JTS, JMS, JavaMail,
resources, and connectors

Developer’s Guide to J2EE Features and
Services

Creating custom NSAPI plugins Developer’s Guide to NSAPI

Using the Documentation

10 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

Performing the following administration tasks:

• Using the Administration interface and the command line
interface

• Configuring server preferences

• Using administrative domains

• Using server instances

• Monitoring and logging server activity

• Configuring the web server plugin

• Configuring the Java Messaging Service

• Using J2EE features

• Configuring support for CORBA-based clients

• Configuring database connectivity

• Configuring transaction management

• Configuring the web container

• Deploying applications

• Managing virtual servers

Administrator’s Guide

Editing server configuration files Administrator’s Configuration File Reference

Configuring and administering security for the Sun ONE
Application Server 7 operational environment. Includes
information on general security, certificates, and SSL/TLS
encryption. HTTP server-based security is also addressed.

Administrator’s Guide to Security

Configuring and administering service provider
implementation for J2EE CA connectors for the Sun ONE
Application Server 7. Includes information about the
Administration Tool, DTDs and provides sample XML files.

J2EE CA Service Provider
Implementation Administrator’s Guide

Migrating your applications to the new Sun ONE Application
Server 7 programming model from the Netscape Application
Server version 2.1, including a sample migration of an Online
Bank application provided with Sun ONE Application Server

Migrating and Redploying Server
Applications Guide

Using Sun ONE Message Queue. The Sun ONE Message Queue
documentation at:

http://docs.sun.com/?p=/coll/S1_Mess
ageQueue_30

Table 1 Sun ONE Application Server Documentation Roadmap (Continued)

For information about See the following

http://docs.sun.com/?p=/coll/S1_Mess

Documentation Conventions

About This Guide 11

Documentation Conventions
This section describes the typographical conventions used throughout this guide:

• General Conventions

• Conventions Referring to Directories

General Conventions
The following general conventions are used in this guide:

• File and directory paths are given in UNIX® format (with forward slashes
separating directory names). For Windows versions, the directory paths are the
same, except that backslashes are used to separate directories.

• URLs are given in the format:

http://server.domain/path/file.html

In these URLs, server is the server name where applications are run; domain is
your Internet domain name; path is the server’s directory structure; and file is
an individual filename. Italic items in URLs are placeholders.

• Font conventions include:

❍ The monospace font is used for sample code and code listings, API and
language elements (such as function names and class names), file names,
pathnames, directory names, and HTML tags.

❍ Italic type is used for code variables.

❍ Italic type is also used for book titles, emphasis, variables and placeholders,
and words used in the literal sense.

❍ Bold type is used as either a paragraph lead-in or to indicate words used in
the literal sense.

• Installation root directories for most platforms are indicated by install_dir in
this document. Exceptions are noted in “Conventions Referring to Directories”
on page 12.

By default, the location of install_dir on various product distributions are:

❍ Solaris 8 non-package-based Evaluation installations:

user-specified directory/sun/appserver7

http://server.domain/path/file.html

Documentation Conventions

12 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

❍ Solaris unbundled, non-evaluation installations:

/opt/SUNWappserver7

❍ Windows, all installations:

C:\Sun\AppServer7

For the platforms listed above, default_config_dir and install_config_dir are
identical to install_dir. See “Conventions Referring to Directories” on page 12
for exceptions and additional information.

• Instance root directories are indicated by instance_dir in this document, which
is an abbreviation for the following:

default_config_dir/domains/domain/instance

• UNIX-specific descriptions throughout this manual apply to the Linux
operating system as well, except where Linux is specifically mentioned.

Conventions Referring to Directories
By default, when using the Solaris 8 and 9 package-based installation and the
Solaris 9 bundled installation, the application server files are spread across several
root directories. These directories are described in this section.

• For Solaris 9 bundled installations, this guide uses the following document
conventions to correspond to the various default installation directories
provided:

❍ install_dir refers to /usr/appserver/, which contains the static portion of
the installation image. All utilities, executables, and libraries that make up
the application server reside in this location.

❍ default_config_dir refers to /var/appserver/domains, which is the default
location for any domains that are created.

❍ install_config_dir refers to /etc/appserver/config, which contains
installation-wide configuration information such as licenses and the
master list of administrative domains configured for this installation.

• For Solaris 8 and 9 package-based, non-evaluation, unbundled installations,
this guide uses the following document conventions to correspond to the
various default installation directories provided:

Product Support

About This Guide 13

❍ install_dir refers to /opt/SUNWappserver7, which contains the static
portion of the installation image. All utilities, executables, and libraries
that make up the application server reside in this location.

❍ default_config_dir refers to /var/opt/SUNWappserver7/domainswhich is
the default location for any domains that are created.

❍ install_config_dir refers to /etc/opt/SUNWappserver7/config, which
contains installation-wide configuration information such as licenses and
the master list of administrative domains configured for this installation.

Product Support
If you have problems with your system, contact customer support using one of the
following mechanisms:

• The online support web site at:

http://www.sun.com/supportraining/

• The telephone dispatch number associated with your maintenance contract

Please have the following information available prior to contacting support. This
helps to ensure that our support staff can best assist you in resolving problems:

• Description of the problem, including the situation where the problem occurs
and its impact on your operation

• Machine type, operating system version, and product version, including any
patches and other software that might be affecting the problem

• Detailed steps on the methods you have used to reproduce the problem

• Any error logs or core dumps

This guide is intended for advanced administrators of Sun ONE Application
Server. This guide helps you tune Sun ONE Application Server for maximum
performance and reliability. It is recommended that you backup your
configuration files, before changing the configuration settings on Sun ONE
Application Server.

http://www.sun.com/supportraining/

What’s in this Guide

14 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

What’s in this Guide
This guide discusses the various subsystems, features, and tools inside the Sun
ONE Application Server and how to tune them for maximum performance and
reliability. This guide is intended for server administrators, J2EE developers,
network administrators, and evaluators.

What You Should Know
Before you begin, you should already be familiar with the following topics:

• Internet and World Wide Web

• Java programming

• J2EE application model

• Application Servers

• Solaris™ or Windows NT/2000 operating systems

How This Guide is Organized
This guide is organized as follows:

“About Sun ONE Application Server” gives an overview of Sun ONE Application
Server features and components.

“About Sun ONE Application Server Performance” describes the techniques and
processes involved in tuning Sun ONE Application Server.

“Tuning Your Application” describes practices and configuration settings you can
use with your applications to ensure maximum performance.“Tuning Sun ONE
Application Server” describes how you can configure the application server for
your needs.“Tuning the Java Runtime System” describes how you can configure
the Java Virtual Machine to work optimally with the Sun ONE Application Server.

“Tuning Operating System” describes how you can configure your operating
system to work optimally with the Sun ONE Application Server.

“Common Performance Problems” describes common performance problems
users face when the Sun ONE Application Server is used as a classic web server.An
“Index” is provided for quick reference lookups to key performance terms.

15

Chapter 1

About Sun ONE Application Server

Sun ONE Application Server provides a reliable and scalable web services
deployment platform. Application programmers can focus on implementing
business logic with well-engineered software components and rely on the services
offered by Sun ONE Application Server for production scale deployment.

This chapter includes the following topics:

• Server Components

• Server Architecture

• Server Tools

Server Components
Sun ONE Application Server includes various components that need to interact
with each other. These components can be tuned for optimum performance in both
production and development environments.

This section describes the following topics:

• Application Server Processes

• Databases

Application Server Processes
The Sun ONE Application Server runs within a single process called appservd.

Server Components

16 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

The Sun ONE Application Server process is invoked by running the startserv
script which reads the configuration information specified in the server.xml and
launches the server instance and starts:

• the built-in ORB

• the built-in HTTP server

• Any deployed applications and components are loaded to their respective
containers

• the logging service

Databases
Oracle, Sybase, Informix and DB2 are some of the databases supported by Sun
ONE Application Server. Using Sun ONE Application Server, you can also
configure third party JDBC drivers for databases. For more information on
configuring the datasources and connection pools, refer to the Sun ONE Application
Server Administration Guide.

Server Architecture

Chapter 1 About Sun ONE Application Server 17

Server Architecture

Figure 1-1 Sun ONE Application Server Component Architecture

The Sun ONE Application Server provides the foundation for high performance
web request handling, security, and administration. The main components within
the application server are shown in the above figure.

Application Server instances form the basis of an application server deployment.
J2EE 1.3 web and EJB containers are included in each application server instance. A
proven, high performance HTTP server is positioned in front of the web container
while a built in ORB forms the underpinning of the EJB container. In support of
access to backend systems, applications can leverage J2EE Connector Architecture
support and third party Resource Adapters; JMS with either the built-in JMS
provider or third-party providers; and any combination of popular third-party
JDBC drivers. Access to backend systems can be managed within the scope of
distributed transactions using the built-in, all-Java Transaction Manager.

Server Tools

18 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

The Administrative Server houses the core administrative application and an
SNMP agent. All remote management activity flows through the administrative
server. Both command-line and web browser based administrative clients access
the administrative server directly through HTTP or securely through HTTPS.

Web Sever Proxy Plugins enable you to deploy the application server behind one
or more web servers housed in a demilitarized zone (DMZ) that is bracketed by
one or more layers of firewalls. The plugins provide a means for the front-end web
server tier to direct incoming HTTP/S traffic received from the internet to one or
more application servers housed in a backend application server tier.

A variety of client applications can access business services deployed to the
application server. Web services and browser-based clients can use either HTTP or
HTTPS to access the Java Web Services and J2EE web applications. Java application
clients can be deployed in a standalone mode or within a standard Application
Client Container. They can use Java Remote Method Invocation over Internet
Inter-ORB Protocol Technology (Java RMI-IIOP Technology) to access EJBs
deployed to the application server. C++ language clients can use Java IDL/IIOP to
access EJBs as well.

The basic component of Sun ONE Application server is the appservd process
which is managed by a watchdog process. The Application code runs in the
multi-threaded process created by the appservd process. The Java Virtual Machine
(VM) is also started within the appservd.

The system is managed through the Administration Server. There is also a facility
available to configure a web server installed on a separate system to act as a proxy
and forward the requests to the application server instance.

Server Tools
The Sun ONE Application Server provides two tools for administering and
deploying applications to the application server. The Administration interface is
available as a web-based tool. Additionally, there is a command line interface (CLI)
to administer the server through the command-line. Both the web-based tool and
the CLI provide all the administration capabilities.

Sun ONE Studio 4, when configured with the Sun ONE Application Server,
provides application assembly and deployment capabilities.

Server Tools

Chapter 1 About Sun ONE Application Server 19

Server Administration Interface

Figure 1-2 Sun ONE Application Server Administration interface

The Sun ONE Application Server Administration interface, as shown in the above
figure, runs as a web application deployed in the administration server instance
and can be accessed from anywhere using a browser. This allows the user to
configure the application server instance.

As shown in the following figure, the Administration server can also be accessed
through the Command-line interface (CLI). The CLI allows the user to configure
the application server instance through the command-line instead of through the
web-based interface.

Server Tools

20 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

Figure 1-3 Command-line interface for the Sun ONE Application Server

This chapters guide discusses how to use the Sun ONE Application Server
Administration interface to tune server processes and application deployment
descriptors to enhance performance. Refer to the Sun ONE Application Server 7
Administration Guide for further details on using the Administration interface.

Sun ONE Studio 4
The Sun ONE Studio 4 Integrated Development Environment (IDE) is used to
develop, assemble, and deploy Java 2 Enterprise Edition (J2EE) applications to the
Sun ONE Application Server. Within Sun ONE Studio, J2EE application
components are archived into modules according to the container that will receive
them upon deployment. You can archive these J2EE application components into
an EJB JAR module (archived with a .JAR extension), or a Web Application module
(archived with a WAR extension). Each module contains a J2EE descriptor and a
Sun ONE Application Server specific deployment descriptor saved to XML files.
Refer to the Sun ONE Studio 4 Developer Guide for further details.

When using Sun ONE Studio with the Sun ONE Application Server, enterprise
developers benefit from many features that combine to give seamless integration
between the IDE and the application server:

Server Tools

Chapter 1 About Sun ONE Application Server 21

Table 1-1 Seamless Integration between Sun ONE Studio and the Sun ONE Application
Server

Studio Feature Sun ONE Application Server Extension

CMP Mapping Developers can browse database tables, select related tables and
automatically generate Container Managed Persistence (CMP) EJBs.

Server Runtime Control Developers can easily register both local and remote application
servers and start and stop application server instances.

Resource Configuration Before deploying applications, developers can register J2EE
resources in any of the registered application servers. JDBC
resources and connection pools, JMS resources, and a variety of
other resources can be configured from within the Studio

Application Deployment Developers can select from the list of registered application servers
and leverage the dynamic ("hot") deployment and redeployment
features supported in Sun ONE Application Server 7.

Debugging and Log Viewing Debugging against deployed applications on both local and remote
application server instances is simple. No manual configuration of
the application servers is necessary. While debugging their
applications, developers can also view the server event log files
from within the Studio.

Server Tools

22 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

23

Chapter 2

About Sun ONE Application Server
Performance

In this chapter, the following topics are discussed:

• Why Tune Application Server?

• Understanding Operational Requirements

• Capacity Planning

• Performance Tuning Sequence

• Configuration Files

Why Tune Application Server?
Performance can be significantly enhanced by adjusting a few deployment
descriptor settings or server configuration file modifications. However, it is
important to understand the environment and performance goals. An optimal
configuration for a production environment may not necessarily be optimal for a
development environment. This guide helps you to understand the tuning and
sizing options available, providing you the capabilities and practices to obtain the
best performance out of your Sun ONE Application Server.

The process architecture of Sun ONE Application Server is represented in the
following figure:

Understanding Operational Requirements

24 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

Figure 2-1 Sun ONE Application Server Process Architecture for a Single Domain

Understanding Operational Requirements
Before you begin to deploy and tune your application on the Sun ONE application
Server, it is important to clearly define the operational environment. The
operational environment is determined by high-level constraints and requirements
such as:

• Application Architecture

• Security Requirements

• Application Usage

• Hardware Resources

• Administration

Understanding Operational Requirements

Chapter 2 About Sun ONE Application Server Performance 25

Application Architecture
The J2EE Application model, as shown in the following figure, is very flexible;
allowing the application architect to split application logic functionally into many
tiers. The presentation layer is typically implemented using servlets and JSPs and
executes in the web container.

Figure 2-2 J2EE Application Model

It is not uncommon to see moderately complex enterprise applications developed
entirely using Servlets and JSPs. More complex business applications are often
implemented using EJBs. The Sun ONE Application Server integrates the web and
EJB containers, in a single process. Local access to EJBs from Servlets is very
efficient. However, some application deployment may require EJBs to execute in a
separate process; and be accessible from standalone client applications as well as
servlets. Based on the application architecture, the server administrator can employ
Sun ONE Application Server in multiple tiers, or simply host both the presentation
and business logic on a single tier.

It is important that the server administrator understand the application
architecture before designing a new application server deployment, or while
deploying a new business application to an existing application server
deployment.

Understanding Operational Requirements

26 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

Security Requirements
Most business applications require security. The various security considerations
and available choices are discussed in this section.

User Authentication and Authorization
Application users must be authenticated. Sun ONE Application Server provides
three different choices for user authentication.

The default file based security realm is suitable for developer environments, where
new applications are being developed and tested. At deployment time, the server
administrator can choose between the LDAP or Unix security realms.

LDAP stands for Lighweight Directory Access Protocol. Many large enterprises
use LDAP based directory servers to maintain employee and customer profiles.

Small to medium enterprises that do not already use a directory server, may also
find that it is advantageous to leverage their investment in Solaris security
infrastructure.

More information on how to integrate with various security realms, can be found
in the Sun ONE Application Server Administrator’s Guide to Security.

The type of authentication mechanism chosen may require additional hardware for
the deployment. Typically a Directory server executes on a separate server, and
may also require, a backup for replication and high availability. Refer to Sun ONE
Directory Server documentation for more information on deployment, sizing, and
availability guidelines.

An authenticated user’s access to various application functions may also need
authorization checks. If the application uses the role based J2EE authorization
checks, some additional checking is performed by the application server. This
places additional overheads, which need to be accounted for while doing capacity
planning.

Encryption
For security reasons, sensitive user inputs and application output must be
transmitted in an encrypted form. Most business oriented web applications
encrypt all or some of the communication flow between the browser and
Application server, if required. Online shopping applications, typically do not
encrypt traffic, except when the user is completing a purchase or supplying private
data. Portal applications such as news and media typically do not employ
encryption. SSL is the most common security framework on internet, and is
supported by many browsers and application servers.

Understanding Operational Requirements

Chapter 2 About Sun ONE Application Server Performance 27

Sun ONE Application Server supports SSL 2.0 and 3.0 and contains software
support for various cipher suites. It also supports integration of hardware
encryption cards for even higher performance. Security considerations,
particularly when using the integrated software encryption, will impact hardware
sizing and capacity planning. While considering the encryption needs for a
deployment, the administrator needs to consider the following:

• What is the nature of the applications, with respect to security? Do they
encrypt all or only a part of the application inputs and output? What is the
percentage of information that needs to be securely transmitted?

• Are the applications going to be deployed on an application server that is
directly connected to the internet? Will a Web server exist in a demilitarized
zone (DMZ) separate from the application server tier and backend enterprise
systems? A DMZ style deployment is recommended when the deployment has
high security requirements. It is also useful when the application has a
significant amount of static text and image content (which need not be
encrypted in most cases and is served from the web server deployed in DMZ)
and has a small but significant amount of business logic which executes on the
Application server, behind the most secure firewall. Secure reverse proxy
plugins are supplied with Sun ONE Application Server to enable popular web
servers to integrate with Sun ONE Application Server. Since Sun ONE
Application Server is also a full fledged web server, it can be deployed and
used as a web server in DMZ.

• Is encryption required between the Web servers in the DMZ and application
servers in the next tier? The Reverse Proxy Plugins supplied with Sun ONE
Application Server support SSL encryption between the web server and
application server tier. If this is enabled the administrator needs to perform
hardware capacity planning based on the encryption policy and mechanisms.

• If software encryption is to be employed, what is the expected performance
overhead, at every tier in the system, given the security requirements.

• If hardware encryption is to be employed, what are the performance and
throughput characteristics of various choices?

NOTE For information on how to encrypt the communication between
Web servers and Sun ONE Application Server, please refer to Sun
ONE Application Server Administrator’s Guide.

Understanding Operational Requirements

28 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

Application Usage
Every application user will have some expectations with respect to application
performance. Often they can be numerically quantified. The server administrator
must understand these expectations clearly, and use them in capacity planning to
ensure that the deployment will meet customer needs, when completed.

With regard to performance, you need to consider the following:

• What are the required average response times expected by the end users for
various interactions with the application? What are the most frequent
interactions? Are there any extremely time critical interactions? What is the
length of each transaction, including think time? In many cases, empirical user
studies may need to be performed to come up with good estimates.

• What are the anticipated steady state and peak user loads? Are there are any
particular times of the day, week or year when load peaks are observed? While
there may be several million registered customers for an online business,
typically only a fraction of them are logged in and performing business
transactions, at any point in time. A common mistake during capacity planning
is to use the total size of customer population as the basis and not the average
and peak numbers for concurrent users. The number of concurrent users, also
may exhibit interesting time based patterns.

• What is the average and peak amount of data transferred per request? This is
also very application specific. Good estimates for content size, combined with
other usage patterns, will help the administrator anticipate network capacity
needs.

• What is the expected growth in user load over the next 12 months? Planning
ahead for the future, will help avoid crisis situations and system downtimes
for upgrades.

Hardware Resources
The type and quantity of hardware resources at the disposal of the administrator
greatly influence performance tuning and site planning.

Sun ONE Application Server provides excellent vertical scalability. It can scale to
efficiently utilize up to 12 high performance CPUs, using just one application
server process. The smaller number of application server instances provides ease of
maintenance and lowered administration costs. Also, deploying several related

Understanding Operational Requirements

Chapter 2 About Sun ONE Application Server Performance 29

applications on fewer application servers, can lead of performance improvements,
due to better data locality, and reuse of cached data between collocated
applications.Such servers must also contain large amounts of memory, disk and
network capacity in order to cope with increased load.

Sun ONE Application Server can also be deployed on large “farms” of smaller
hardware units. Business Applications can be partitioned across various server
instances. By employing one or more external load balancers, user access can be
efficiently spread across all the application server instances. A horizontal scaling
approach may improve availability, lower hardware costs and is certainly suitable
for certain types of applications. However, greater number of application server
instances and hardware nodes need to be administered

Administration
A single Sun ONE Application Server installation on a server can be used to
created several instances. One or more instances are administered by a single
Administration Server, and this grouping of the Administration server and
administered instances is called a “Domain.” Several administrative domains can
be created to permit different people to independently administer groups of
application server instances.

A single instance domain may be created to create a “sandbox” for a particular
developer in a developer environment. In this scenario, each developer administers
his/her own application server, without interfering with other application server
domains. A small development group may choose to create multiple instances in a
shared administrative domain, for collaborative development.

In a deployment environment, the server administrator could create administrative
domains based on application and business function. For example, internal Human
Resources applications may be hosted on one or more servers in one
Administrative domain, while external customer applications are hosted on several
administrative domains, in a server farm.

Sun ONE Application Server supports Virtual Server capability for web
applications. A web application hosting service provider, may wish to host
different URL domains on a single Sun ONE Application Server process, for
efficient administration. The server administrator must determine, if they need to
or want to use this capability.

At this point, the server administrator should be able to list all the applications, and
their broad performance characteristics, security requirements and sketch the
deployment environment, at a high level. The next step is to understand how to
predict performance and do capacity planning.

Capacity Planning

30 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

Capacity Planning
The previous discussion guides the administrator towards defining a preferred
deployment architecture. However, the actual size of the deployment is
determined by a process called capacity planning.

How does one predict either the capacity of a given hardware configuration or
predict the hardware resources required to sustain a specified application load and
customer criteria? This is done by a careful performance benchmarking process,
using the real application and with realistic data sets and workload simulation.The
basic steps are briefly described below.

1. Determine performance on a single CPU

You need to first determine the largest load that can be sustained with a known
amount of processing power. You can obtain this figure by measuring the
performance of the application on a uniprocessor machine. You can either
leverage the performance numbers of an existing application with similar
processing characteristics or, ideally, use the actual application and workload,
in a testing environment. Make sure that the application and data resources are
configured in a tiered manner, exactly as they would be in the final
deployment.

2. Determine vertical scalability

You need to know exactly how much additional performance is gained when
you add processors. That is, you are indirectly measuring the amount of shared
resource contention that occurs on the server for a specific workload. You can
either obtain this information based on additional load testing of the
application on a multiprocessor system, or leverage existing information from
a similar application that has already been load tested. Running a series of
performance tests on one to eight CPUs, in incremental steps, generally
provides a sense of the vertical scalability characteristics of the system. Make
sure that the application, application server and backend database resources,
operating system etc., are properly tuned so that they not skew the results of
this study.

3. Determined horizontal scalability

If sufficiently powerful hardware resources are available, a single hardware
node may meet the performance requirements. However for better service
availability, two or more systems may be clustered. Employing an external
load balancers and workload simulation, determine the performance benefits
of replicating one well tuned application server node, as determined in step (2).

The following table describes the steps in capacity planning:

Capacity Planning

Chapter 2 About Sun ONE Application Server Performance 31

Table 2-1 Factors That Affect Performance - Applying Concepts

Concept Applying the Concept Measurement Value Sources

User Load Concurrent Sessions at Peak
Load

Transactions Per
Minute (TPM)

Web Interactions Per
Second (WIPS)

((Number of Concurrent Users at
Peak Load) * Expected Response
Time) / (Time between clicks)

For example, (100 Concurrent
Users * 2 seconds Response Time)
/ (10 seconds between clicks) = 20.

Performance Tuning Sequence

32 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

Performance Tuning Sequence
Tuning a deployment may be performed in the following sequence:

Application
Scalability

Transaction Rate measured on
one CPU

TPM or WIPS Measured from workload
benchmark. Needs to be
performed at each tier.

Scalability within a server
(additional performance for
additional CPU)

Percentage gain per
additional CPU

Based on curve fitting from
benchmark. Perform tests while
gradually increasing the number
of CPUs. Identify the “knee” of
the curve, where additional CPUs
are providing uneconomical gains
in performance. Requires tuning
as described in later chapters of
this guide. Needs to be performed
at each tier and iterated if
necessary. Stop here if this meets
performance requirements.

Scalability within a cluster
(additional performance for
additional server)

Percentage gain per
additional server
process and/or
hardware node.

Use a well tuned single
application server instance, as in
previous step. Measure how much
each additional server instance
and/or hardware node improves
performance.

Safety
Margins

High Availability
Requirements.

If system should
cope with failures,
size the system to
meet performance
requirements
assuming that one or
more application
server instances are
non functional

Different equations used if High
Availability is required.

Slack for unexpected peaks It is desirable to
operate a server at
less than its
benchmarked peak,
for some safety
margin

80% system capacity utilization at
peak loads, may work for most
installations. Measure your
deployment under real and
simulated peak loads.

Table 2-1 Factors That Affect Performance - Applying Concepts (Continued)

Configuration Files

Chapter 2 About Sun ONE Application Server Performance 33

• Tuning Your Application

• Tuning Sun ONE Application Server

• Tuning the Java Runtime System

• Tuning Operating System

Configuration Files
The files init.conf, obj.conf, and server.xml are Sun ONE Application Server
configuration files containing many attributes that can be modified to improve
performance. They are frequently mentioned within this guide and can be found in
the directory:

<APPSERVER_HOME>/appserv/domains/<DOMAIN_NAME>/<SERVER_NAME>/con
fig/

APPSERVER_HOME is the installation directory for the Sun ONE Application Server.
DOMAIN_NAME and SERVER_NAME refer to the domain and server names for the
server instance to be configured.

The following figure shows the configuration file for a given instance.

Logging and Performance

34 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

Figure 2-3 Sun ONE Application Server Configuration Files

The config/backup directories contain a replica of the server configuration files.
These files are created by the administration server instance. In general, users
should not change these files by hand. If the config files are edited by hand, make
a copy of the files and place them in the backup directory. Additionally, the server
instance should be restarted.

Logging and Performance
The Sun ONE Application Server produces log messages and exception stack trace
output that gets written to the log file. These log messages and exception stacks can
be found in the logs directory of the instance. Naturally, the volume of log activity
can impact server performance; particularly in benchmarking situations.

Logging and Performance

Chapter 2 About Sun ONE Application Server Performance 35

By default, the log level is set to INFO. The log level can be set for all the server
subsystems by changing the attribute level in the log_service element. You can
override the logging level by adjusting it at a particular subsystem. For example,
mdb_container can produce log messages at a different lever than server default
by adjusting the log_level attribute under the mdb_container element. To get
more debug messages, set the log level to FINE, FINER, or FINEST. Under
benchmarking conditions, it may be appropriate to set the log level to SEVERE.

Logging and Performance

36 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

37

Chapter 3

Tuning Your Application

The following sections provide a comprehensive guide to tuning your applications
for maximum performance. A complete guide to writing high performance Java
and J2EE applications is beyond the scope of this document.

The following topics are discussed in this chapter:

• Java Programming Guidelines

• J2EE Programming Guidelines

Java Programming Guidelines
This section covers issues related to Java coding and performance. The guidelines
outlined are not specific to Sun ONE Application Server, but are general rules that
are useful in many situations. For a complete discussion of Java coding best
practices, refer to the Java BluePrints at
http://java.sun.com/blueprints/performance/index.html.

• Avoid serialization and deserialization, if possible

In Java, serialization and deserialization of objects is a CPU-intensive
procedure and is likely to slow down your application. Use the transient
keyword to reduce the amount of data serialized. Customized readObject()

and writeObject() methods may be beneficial, in some cases.

• Use StringBuffer.append() instead of the "+" operator

In Java, Strings are immutable — they never change after creation. For
example, the following sequence

String str = "testing";

str = str + "abc";

http://java.sun.com/blueprints/performance/index.html

Java Programming Guidelines

38 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

is understood by the compiler as:

String str = "testing";

StringBuffer tmp = new StringBuffer(str);

tmp.append("abc");

str = tmp.toString();

Therefore, copying is inherently expensive and can become a significant factor
in hindering performance in case it is overused. Instead, the use of
StringBuffer.append() is recommended.

• Explicitly assign a null value to variables which are no longer needed

Doing this helps the garbage collector to easily identify the parts of memory
that can be safely reclaimed. While Java automates memory management, it
does not prevent usage of excessive amounts of memory or memory leaks. An
application may induce memory leaks by holding on to objects without
releasing references. This prevents the Java garbage collector from reclaiming
those objects, and results in increasing amounts of memory being used.
Explicitly nullifying references to unnecessary variables, after each transaction,
allows the garbage collector to reclaim memory. One way to detect memory
leaks is to employ profiling tools and take memory snapshots after each
transaction. A memory leak free application, in steady state, will show a steady
active heap memory, after garbage collections.

• Only when necessary, declare methods as final. Modern optimizing dynamic
compilers can perform inlining and other inter-procedural optimizations, even
if Java methods are notfinal. Use the keyword as it was originally intended
i.e., for program architecture and maintainability reasons. If you are absolutely
certain that a method must not be overridden, use the final keyword.

• Use static final when declaring constants. The dynamic compiler can
perform some constant folding optimizations easily, when the hint is provided.

• Adding finalizers to your code makes the garbage collector more expensive
and unpredictable. The virtual machine does not guarantee the time at which
finalizers are run. Finalizers may not always be executed, before the program
exits. Releasing critical resources in finalize() methods may lead to
unpredictable application behavior.

• Declare method arguments final if they are not modified in the method. In
general, declare all variables final if they are not modified after being
initialized or set to some value.

J2EE Programming Guidelines

Chapter 3 Tuning Your Application 39

• Don't synchronize code blocks or methods unless synchronization is required.
Keep synchronized blocks or methods as short as possible to avoid scalability
bottlenecks. Use the Java Collections Framework for unsynchronized data
structures instead of more expensive alternatives such
asjava.util.HashTable.

J2EE Programming Guidelines
The J2EE model defines a framework for enterprise application development. It
defines containers for the basic software components (JSPs, servlets and EJBs) and
container services (JAAS, JDBC, JNDI, and JTA for example). While all parts of the
J2EE model have their uses, the following sections discuss issues to keep in mind
while designing the application architecture.

Servlet and JSP Programming Guidelines
Many applications running on the Sun ONE Application Server are serviced by
JSPs or servlets in the presentation tier. Servlets and JSPs are entry points to EJBs,
on which more complex transactional business logic is implemented. It is not
uncommon to see moderately complex transactional business applications coded
entirely using Servlets and other J2EE APIs.

• In the case of the servlet multithread model which is the default model, a single
instance of a servlet is created for each application server instance. All requests
for a servlet on that application instance share the same servlet instance. This
can lead to thread contention, if there are synchronization blocks in the servlet
code. So, the use of shared modified class variables should be avoided as it
creates the need for synchronization.

• Session creation is not for free. If a session is not required do not create one.
Invalidate sessions when they are no longer needed.

• Use the directive <%page session="false"%> to prevent HTTP Sessions from
being automatically created when they are not necessary in JSPs.

• Do not store large objects graphs inside an HttpSession. This forces Java
serialization and adds computational overhead.

J2EE Programming Guidelines

40 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

• Note that HttpSession access is not transactional. Do not use it as a cache of
transactional data, which is typically kept in the database and accessed using
Entity beans. Transactions will rollback, upon failures, to their original state.
However, stale and inaccurate data may remain in HttpSession objects. Sun
ONE Application Server provides “read-only” bean managed persistence
entity beans for more cached access to read only data.

EJB Programming Guidelines
The following guidelines can improve performance of EJB components in J2EE
Applications. For more information, see Sun ONE Application Server Developer’s
Guide to Enterprise Java Beans Technology.

• To avoid a JNDI lookup for every request, cache EJB references at the servlet.

• Cache the EJBHomes in the servlet's init() method. Repeated lookups to an
often use home interface and can be expensive.

• Use the setSessionContext() or ejbCreate() method to cache bean
specific resources. This is again an example of using bean lifecycle methods to
perform application actions, only once, where possible. Do not forget to place
code to release acquired resources in the ejbRemove() method.

• Reduce the database transaction isolation level when appropriate. Reduced
isolation levels reduce work in the database tier, and could lead to better
application performance. However, this must be done after carefully analyzing
the database table usage patterns. Sun ONE Application Server allows
database isolation level to be set under <jdbc-connection-pool> in server
configuration file. For more details on server configuration see the Sun ONE
Application Server Administrators Guide and the Sun ONE Application Server
Administrator’s Configuration File Reference.

• The Sun ONE Application Server ORB provides a mechanism for optimizing
calls made from clients which are co-hosted in the same Java Virtual Machine
as the server. For example, a servlet code calls an Enterprise Java Bean or one
Enterprise Java Bean calling another enterprise bean located on the same server
instance. When the servlets and EJB's are running in the same Java virtual
machine, run the rmic compiler without the -nolocalstubs flag. This is the
default setting i.e -nolocalstubs does not appear in the server configuration
file.

J2EE Programming Guidelines

Chapter 3 Tuning Your Application 41

If the application architecture is such that EJBs are hosted on a remote
Application Server, the default behavior must be changed. This can be done via
the administration command-line interface asadmin, on the server instance
where the application is going to be deployed. The rmic options appear under
the JVM Settings tab of the browser based administration interface. Use of local
stubs gives significant performance enhancements and is the default behavior
of the stub generator.

• If the application developer is sure about the access paths to the underlying
data, then the beans can be configured to use pass by reference. This avoids
argument copying on method invocations and result copying on method
return. However, problems will arise if the data is modified by another source,
during the invocation. This value can be set in the sun-ejb-jar.xml
deployment descriptor as follows:
<pass-by-reference>true</pass-by-reference>, on a per EJB granularity.

• Remove Stateful session beans when they are no longer needed. This avoids
passivation of the Stateful Session beans, and disk I/O operations.

EJB types are listed below, from the highest performance to the lowest:

❍ Stateless Session Beans and Message Driven Beans

❍ Stateful Session Beans

❍ Entity Beans, with bean managed persistence, configured as read only

❍ Entity Beans with Container Managed Persistence (CMP)

❍ Entity Beans with Bean Managed Persistence (BMP)

EJB Pool and Cache

Both stateless session beans and entity beans can be pooled to improve server
performance. In addition, both stateful session beans and entity beans can be cached
to improve performance.

Table 3-1 Bean Type Pooling or Cacheing

Bean Type Pooled Cached

Stateless Session Yes No

Stateful Session No Yes

Entity Yes Yes

J2EE Programming Guidelines

42 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

The difference between a pooled bean and a cached bean is that pooled beans are
all equivalent and indistinguishable from one another. Cached beans, on the
contrary, contain conversational state in the case of Stateful Session beans, and are
associated with a primary key in the case of Entity beans. Entity beans are removed
from the pool and added to the cache on ejbActivate() and removed from the
cache and added to the pool on ejbPassivate(). ejbActivate() is called by the
container when a needed Entity bean is not in the cache. ejbPassivate() is called
by the container when the cache grows beyond its configured limits.

Here are some steps you can take when tuning the EJB pool and cache settings:

• The EJB pool is used by Stateless Session and Entity EJBs. Keeping in mind
how you use Stateless Session EJBs and the amount of traffic your server
handles, tune the pool size to prevent excessive creation and deletion. Refer to
the bean-pool sun-ejb-jar.xml deployment descriptor.

• The Cache is used by Stateful Session EJBs. Keeping in mind how your
applications uses Stateful Session EJBs and the amount of traffic your server
handles, tune the EJB cache size and time-out settings to minimize the number
of activations and passivations. Refer to the bean-cache element in the
sun-ejb-jar.xml deployment descriptor.

• Allow Stateful Session EJB's to be removed from the container cache by
explicitly calling of the remove() method in the client.

• Entity Beans use both the EJB pool and cache settings. Tune the entity EJB’s
pool size to minimize the creation and destruction of beans. Prepopulating the
pool with a non-zero steady size is useful to get better response for initial
requests.

• Use the setEntityContext() method to cache bean specific resources and
release them from the unSetEntityContext() method.

• Use Lazy Loading to avoid unnecessary preloading of child data.

• Configure read-only entity beans for read only operations.

Transactions
Here are some steps you can take when using transactions:

• To avoid resources being held unnecessarily for long periods, a transaction
should not encompass user input or user think time.

• Container managed transactions are preferred for consistency, and provide
better performance.

J2EE Programming Guidelines

Chapter 3 Tuning Your Application 43

• Declare non-transactional methods of session EJB's with 'NotSupported' or
'Never' transaction attributes. These attributes can be found in the
ejb-jar.xml deployment descriptor file. Transactions should span the
minimum time possible since they lock database rows.

• For very large transaction chains, use the transaction attribute TX_REQUIRED.
To ensure EJB methods in a call chain, use the same transaction.

• Use the lowest cost locking available from the database that is consistent with
any transaction. Commit the data after the transaction completes rather than
after each method call.

• When multiple database resources, connector resources and/or JMS resources
are involved in one transaction, a distributed or global transaction needs to be
performed. This requires XA capable resource managers and data sources. Use
XA capable data sources, only when two or more data source are going to be
involved in a transaction. If a database participates in some distributed
transactions, but mostly in local or single database transactions, it is advisable
to register two <jdbc-resource> elements in server configuration file and
use the appropriate resource in the application.

JDBC and Database Access
Here are some steps you can take when tuning the JDBC Connection Pool:

• When dealing with large amounts of data, such as searching a large database,
use JDBC directly rather than using Entity EJB's.

• Combine business logic with the Entity EJB that holds the data needed for that
logic to process.

• To ensure that connections are returned to the pool, always close the
connections after use.

JMS
Here are some steps you can take when using JMS:

• Tune the Message-Driven EJB's pool size to optimize the concurrent processing
of messages.

• Use the setMesssageDrivenContext() or ejbCreate() method to cache bean
specific resources, and release those resources from the ejbRemove() method.

J2EE Programming Guidelines

44 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

References
• For details on performance guidelines regarding Java, see

http://java.sun.com/blueprints/performance/index.html

• For details on optimizing EJB's, see

http://developer.java.sun.com/developer/technicalArticles/ebeans/sevenru
les/

NOTE Keep in mind that decomposing an application into a moderate to
large number of separate EJBs can create an application
performance degradation and more overhead. EJBs, unlike
JavaBeans, are not simply Java objects. EJBs are higher level entities
than Java objects. They are components with remote call interface
semantics, security semantics, transaction semantics, and properties.

http://java.sun.com/blueprints/performance/index.html
http://developer.java.sun.com/developer/technicalArticles/ebeans/sevenru

45

Chapter 4

Tuning Sun ONE Application Server

This chapter describes some ways to tune the Sun ONE Application Server for
optimum performance. It is separated into the following sections:

• HTTP Server Tuning

• Connection Pool Tuning

• JSP and Servlet Tuning

• Performance Tuning for EJBs

• Performance Considerations for Various Types of EJBs

• ORB Tuning

• Related Considerations

• Tuning the Transaction Manager

HTTP Server Tuning
Monitoring and tuning the HTTP server instances that handle client requests are
important parts of ensuring peak Sun ONE Application Server performance. This
section covers the following topics related to HTTP Server Tuning:

• Enabling Statistics with stats-xml

• Monitoring Current Activity Using the perfdump Utility

• Using Statistics to Tune Your Server

• Busy Functions

• Using Performance Buckets

HTTP Server Tuning

46 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

• Configuring the File Cache

• Tuning the ACL User Cache

• Using Quality of Service

• Threads, Processes, and Connections

• Improving Java Performance

• Miscellaneous init.conf Directives

• Miscellaneous obj.conf Parameters

• Scaling Your Server

Enabling Statistics with stats-xml
Users must enable statistics with stats-xml when they wish to use existing
monitoring tools like perfdump or create similar customized tools.

To enable the statistics using stats-xml, follow these steps:

1. Under the default object in obj.conf, add the following line:

NameTrans fn="assign-name" from="/stats-xml/*" name="stats-xml"

2. Add the following Service function to obj.conf:

<Object name="stats-xml">
Service fn="stats-xml"
</Object>

The following figure shows a sample init.conf which has stats-init Server
Application Function (SAF) included.

HTTP Server Tuning

Chapter 4 Tuning Sun ONE Application Server 47

Figure 4-1 statsxml-obj in <instancename>-obj.conf

3. Add the stats-init Server Application Function (SAF) to init.conf

Here's an example of stats-init in init.conf:

Init fn="stats-init" update-interval="5" virtual-servers="2000"
profiling="yes"

The following figure shows a sample <instance_name>-obj.conf file which
has stats-xml enabled.

HTTP Server Tuning

48 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

Figure 4-2 Enabling Statistics with stats-xml

The above example shows you can also designate the following:

• update-interval. The period in seconds between statistics updates. A higher
setting (less frequent) will be better for performance. The minimum value is 1;
the default value is 5.

• virtual-servers. The maximum number of virtual servers for which you track
statistics. This number should be set equal to or higher than the number of
virtual servers configured. Smaller numbers result in lower memory usage.
The minimum value is 1; the default is 1000.

HTTP Server Tuning

Chapter 4 Tuning Sun ONE Application Server 49

• profiling. Enable NSAPI performance profiling. The default is "no" which
results in slightly better server performance.

For more information on editing the configuration files, see the Sun ONE
Application Server NSAPI Programmer's Guide.

Monitoring Current Activity Using the perfdump
Utility
The perfdump utility is an SAF built into Sun ONE Application Server. It collects
various pieces of performance data from the Application Server internal statistics
and displays them in ASCII text. The perfdump utility allows you to monitor a
greater variety of statistics.

Installing the perfdump Utility
The following figure provides a sample of the <instancename>-obj.conf file with
the perfdump utility configured.

HTTP Server Tuning

50 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

Figure 4-3 Sample <instance-name>-obj.conf file with perfdump Configured

To install perfdump, you need to make the following modifications in
<instancename>-obj.conf file:

1. Add the following object to your <instancename>-obj.conf file after the
default object:

<Object name="perf">
Service fn="service-dump"
</Object>

2. Add the following to the default object:

NameTrans fn=assign-name from="/.perf" name="perf"

HTTP Server Tuning

Chapter 4 Tuning Sun ONE Application Server 51

3. If not already enabled, enable stats-xml.

If you need to enable stats-xml, see “Enabling Statistics with stats-xml”.

4. Restart your server software.

5. Access perfdump by entering this URL:

http://yourhost/.perf

6. You can request the perfdump statistics and specify how frequently (in
seconds) the browser should automatically refresh. This example sets the
refresh to every 5 seconds:

http://yourhost/.perf?refresh=5

The following figure shows a sample perfdump output.

http://yourhost/.perf
http://yourhost/.perf?refresh=5

HTTP Server Tuning

52 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

Figure 4-4 Sample perfdump Output

For more information on editing the configuration files, see the Sun ONE
Application Server Developer’s Guide to NSAPI.

HTTP Server Tuning

Chapter 4 Tuning Sun ONE Application Server 53

Using Statistics to Tune Your Server
This section describes the information available through the perfdump utility and
discusses how to tune some parameters to improve your server's performance. The
default tuning parameters are appropriate for all sites except those with very high
volume. The only parameters that large sites may regularly need to change are
RqThrottle, MaxKeepAliveConnections, and KeepAliveTimeout, which can be
tuned by using the web-based Administration interface or by directly editing the
<instancename>-obj.conf file. The following figure shows the Administration
interface for tuning the HTTP Server.

Figure 4-5 Performance Tuning the Server using the Administration Interface

HTTP Server Tuning

54 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

The perfdump utility monitors statistics in the following categories:

• Connection Queue Information

• HTTP Listener Information

• Keep-Alive/Persistent Connection Information

• Session Creation Information

• Cache Information

• Thread Pools

• DNS Cache Information

Connection Queue Information
Connection queue information shows the number of sessions in the queue, and the
average delay before the connection is accepted.

Following is an example of how these statistics are displayed in perfdump:

ConnectionQueue:

Current/peak/limit queue length 0/48/5000

Total connections queued 3753

Average queueing delay 0.0013 seconds

Current /peak /limit
Current/peak/limit queue length shows, in order:

• The number of connections currently in the queue.

• The largest number of connections that have been in the queue simultaneously.

• The maximum size of the connection queue.

Tuning

If the peak queue length is close to the limit, you may wish to increase the
maximum connection queue size to avoid dropping connections under heavy load.

You can increase the connection queue size by:

• Setting or changing the value of ConnQueueSize from the web-based
Administration interface. Follow the path
http-server-Advanced-performance.

HTTP Server Tuning

Chapter 4 Tuning Sun ONE Application Server 55

• Editing the ConnQueueSize directive in init.conf.

Total Connections Queued
Total connections queued is the total number of times a connection has been
queued. This includes newly accepted connections and connections from the
keep-alive system.

This is a gathered statistic and is not tunable.

Average Queuing Delay
Average queueing delay is the average amount of time a connection spends in the
connection queue. This represents the delay between when a request connection is
accepted by the server, and a request processing thread (also known as a session)
begins servicing the request.

This is a gathered statistic and is not tunable.

HTTP Listener Information
The HTTP listener information includes the IP address, port number, number of
acceptor threads, and the default virtual server for the HTTP listener. For tuning
purposes, the most important field in the HTTP listener information is the number
of acceptor threads.

You can have many listeners enabled for virtual servers, but you will at least have
one (usually http://0.0.0.0:80) enabled for your default server instance.

Http listeners1:

Address http://0.0.0.0:1890

Acceptor threads 1

Default virtual server test

Tuning

CAUTION Setting the connection queue too high can degrade server
performance. It was designed to prevent the server from becoming
overloaded with connections it cannot handle. If your server is
overloaded and you increase the connection queue size, the latency
of request handling will increase further, and the connection queue
will fill up again.

http://0.0.0.0:80
http://0.0.0.0:1890

HTTP Server Tuning

56 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

You can create and configure HTTP listeners through the web-based
Administration interface. For more information, see Sun ONE Application Server
Administration Guide.

If you have created multiple HTTP Listeners, perfdump displays them all.

Set the TCP/IP listen queue size for all HTTP Listeners by:

• Editing the ListenQ parameter in init.conf.

• Entering the value in the Listen Queue Size field of the Performance Tuning
page of the web-based Administration interface.

Address
This field contains the base address that this listener is listening on. It contains the
IP address and the port number.

If your HTTP listener listens on all IP addresses for the machine, the IP part of the
address is 0.0.0.0.

Tuning

This setting is tunable when you edit a listen socket. If you specify an IP address
other than 0.0.0.0, the server will make one less system call per connection. Specify
an IP address other than 0.0.0.0 for the best possible performance.

The following figure shows the Administration interface for the HTTP Listener.

HTTP Server Tuning

Chapter 4 Tuning Sun ONE Application Server 57

Figure 4-6 Tuning the HTTP Listener using the Administration Interface

Acceptor Threads
Acceptor threads are threads that wait for connections. The threads accept
connections and put them in a queue where they are then picked up by worker
threads. Ideally, you want to have enough acceptor threads so that there is always
one available when a user needs one, but few enough so that they do not put too
much of a burden on the system. A good rule is to have one acceptor thread per
CPU on your system. You can increase this value to about double the number of
CPUs if you find indications of TCP/IP listen queue overruns.

HTTP Server Tuning

58 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

Tuning

You can tune the number of acceptor threads by selecting the HTTP listener node
and changing the number of acceptor threads on the right hand side of the
Advanced category.

The following figure shows the Administration interface for the acceptor threads.

Figure 4-7 Tuning the Acceptor Threads using the Administration Interface

HTTP Server Tuning

Chapter 4 Tuning Sun ONE Application Server 59

Default Virtual Server
Software virtual servers work using the HTTP 1.1 Host header. If the end user's
browser does not send the host header, or if the server cannot find the virtual
server specified by the Host header, Sun ONE Application Server handles the
request using a default virtual server. Also, for hardware virtual servers, if the
application server cannot find the virtual server corresponding to the IP address, it
displays the default virtual server. You can configure the default virtual server to
send an error message or serve pages from a special document root.

Tuning

You can specify a default virtual server for an individual listen socket and the
server instance. If a given HTTP listener does not have a default virtual server, the
server instance's default virtual server is used.

You can specify a default virtual server for a listen socket using the web-based
Administration interface. You can set or change the default virtual server
information using the Edit HTTP Listener page on the Preferences Tab of the
web-based Administration interface for the HTTP server. The settings for the
default virtual server are on the Connection Group Settings page that appears
when you click Groups.

Keep-Alive/Persistent Connection Information
This section provides statistics about the server's HTTP-level keep-alive system.

The following example shows the keep-alive statistics displayed by perfdump:

KeepAliveInfo:

KeepAliveCount 1/256

KeepAliveHits 4

KeepAliveFlushes 1

KeepAliveTimeout 30 seconds

NOTE The name "keep-alive" should not be confused with TCP
"keep-alives." Also, note that the name "keep-alive" was changed to
"Persistent Connections" in HTTP/1.1, but the .perf continues to
refer to them as "KeepAlive" connections.

HTTP Server Tuning

60 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

Both HTTP 1.0 and HTTP 1.1 support the ability to send multiple requests across a
single HTTP session. A web server can receive hundreds of new HTTP requests per
second. If every request was allowed to keep the connection open indefinitely, the
server could become overloaded with connections. On Unix/Linux systems, this
could easily lead to a file table overflow.

To deal with this problem, the server maintains a "Maximum number of ‘waiting’
keep-alive connections" counter. A ‘waiting’ keep-alive connection has fully
completed processing the previous request, and is waiting for a new request to
arrive on the same connection. If the server has more than the maximum waiting
connections open when a new connection waits for a keep-alive request, the server
closes the oldest connection. This algorithm keeps an upper bound on the number
of open waiting keep-alive connections that the server can maintain.

Sun ONE Application Server does not always honor a keep-alive request from a
client. The following conditions cause the server to close a connection even if the
client has requested a keep-alive connection:

• KeepAliveTimeout is set to 0.

• MaxKeepAliveConnections count is exceeded.

• Dynamic content, such as a CGI, does not have an HTTP content-length

header set. This applies only to HTTP 1.0 requests. If the request is HTTP 1.1,
the server honors keep-alive requests even if the content-length is not set.
The server can use chuncked encoding for these requests if the client can
handle them (indicated by the request header transfer-encoding:chunked).
For more information regarding chuncked encoding, see the Sun ONE
Application Server Developer’s Guide to NSAPI.

• Request is not HTTP GET or HEAD.

• The request was determined to be bad. For example, if the client sends only
headers with no content.

KeepAliveThreads
You can configure the number of threads used in the keep-alive system by:

• Editing the KeepAliveThreads parameter in init.conf.

• Setting or changing the KeepAliveThreads value in the web-based
Administration interface. Follow the path: HTTP Server, Advanced Tab,
Keep-Alive sub-menu.

KeepAliveCount
This setting has two numbers:

HTTP Server Tuning

Chapter 4 Tuning Sun ONE Application Server 61

• Number of connections in keep-alive mode

• Maximum number of connections allowed in keep-alive mode simultaneously

Tuning

You can tune the maximum number of sessions the server allows to wait at one
time before closing the oldest connection by:

• Editing the MaxKeepAliveConnections parameter in the init.conf file.

• Setting or changing the MaxKeepAliveConnections value in the web-based
Administration interface.

KeepAliveHits
The number of times a request was successfully received from a connection that
had been kept alive.

This setting is not tunable.

KeepAliveFlushes
The number of times the server had to close a connection because the
KeepAliveCount exceeded the MaxKeepAliveConnections.

This setting is not tunable.

KeepAliveTimeout
Specifies the number of seconds the server allows a client connection to remain
open with no activity. A web client may keep a connection to the server open so
that multiple requests to one server can be serviced by a single network
connection. Since a given server can handle a finite number of open connections, a
high number of open connections will prevent new clients from connecting.

Tuning

You can change KeepAliveTimeout by:

• Editing the KeepAliveTimeout parameter in init.conf

NOTE The number of connections specified by MaxKeepAliveConnections

is divided equally among the keep-alive threads. If
MaxKeeepAliveConnections is not equally divisible by
KeepAliveThreads, the server may allow slightly more than
MaxKeepAliveConnections simultaneous keep-alive connections.

HTTP Server Tuning

62 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

• Setting or changing the KeepAliveTimeout value in the web-based
Administration interface

• Entering the value in the HTTP Persistent Connection Timeout field of the
Performance Tuning page in the web-based Administration interface.

KeepAliveQueryMeanTime
This parameter determines the intervals between the polling of Connections being
handled by the KeepAlive Subsytem. If this parameter is set to a value N
milliseconds, the Response time seen by a client which has requested persistent
connections will have an overhead ranging from 0 to N milliseconds. This value is
set by default to 1 millisecond (if unspecified in init.conf). This value works well
if you expect a concurrent load of no more than about 300 KeepAlive connections.
The default value can severely affect the scalability with higher concurrent loads. It
is suggested that this be appropriately increased for higher connection load.

Tuning

You can change KeepAliveQueryMeanTime by editing the
KeepAliveQueryMeanTime parameter in init.conf.

UseNativePoll
For Unix /Linux users, this parameter should be enabled for maximum
performance.

To enable native poll for your keep-alive system from the web-based
Administration interface, follow these steps:

1. Select the HTTPServer node for the server instance that needs to have this
option turned on.

2. Select the Advanced Tab on the right hand side of the pane.

3. Select the Keep alive page tab.

4. Use the drop-down list to set UseNativePoll to ON.

5. Click OK.

6. Select the server instance tab from the tree view.

7. Select Apply Changes.

8. Restart the instance to cause your changes to take effect.

The following figure shows how to configure the keep-alive subsystem.

HTTP Server Tuning

Chapter 4 Tuning Sun ONE Application Server 63

Figure 4-8 Tuning the Keep-Alive/Persistent Connections using the Administration
Interface

Session Creation Information
Session creation statistics are only displayed in perfdump. Following is an example
of SessionCreationInfo displayed in perfdump:

SessionCreationInfo:

Active Sessions 1

Total Sessions Created 48/512

Active Sessions shows the number of sessions (request processing threads)
currently servicing requests.

HTTP Server Tuning

64 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

Total Sessions Created shows both the number of sessions that have been created
and the maximum number of sessions allowed.

Reaching the maximum number of configured threads is not necessarily
undesirable. It is not necessary to automatically increase the number of threads in
the server. Reaching this limit means that the server needed this many threads at
peak load. As long as it was able to serve requests in a timely manner, the server is
adequately tuned. However, at this point connections will queue up in the
connection queue, potentially overflowing it. If you check your perfdump output
on a regular basis and notice that total sessions created is often near the
RqThrottle maximum, you should consider increasing your thread limits.

Tuning

You can increase your thread limits by:

• Editing the RqThrottle parameter in init.conf.

• Setting or changing the RqThrottle value via the web-based Administration
interface.

• Entering the value in the Maximum Simultaneous Requests field of the
Performance Tuning page in the web-based Administration interface.

Cache Information
The Cache information section provides statistics on how your file cache is being
used. The file cache caches static content so that the server handles requests for
static content quickly.

Following is an example of how the cache statistics are displayed in perfdump:

CacheInfo:

enabled yes

CacheEntries 5/1024

Hit Ratio 93/190 (48.95%)

Maximum age 30

enabled
If the cache is disabled, the rest of this section is not displayed.

Tuning

The cache is enabled by default. You can disable it by:

HTTP Server Tuning

Chapter 4 Tuning Sun ONE Application Server 65

• Unselecting it from the File Cache Configuration page under File Caching Tab
in the web-based Administration interface for the HTTP Server instance.

• Editing the FileCacheEnable parameter in the nsfc.conf file. For more
information, see the Sun ONE Application Server Developer’s Guide to NSAPI.

CacheEntries
The number of current cache entries and the maximum number of cache entries are
both displayed. A single cache entry represents a single URI.

Tuning

You can set the maximum number of cached entries by:

• Entering a value in the Maximum Number of Files field on the File Cache
Configuration page under Preferences in the Server Manger.

• Creating or editing the MaxFiles parameter in the nsfc.conf file. For more
information, see the Sun ONE Application Server Developer’s Guide to NSAPI.

Hit Ratio (CacheHits / CacheLookups)
The hit ratio gives you the number of file cache hits versus cache lookups.
Numbers approaching 100% indicate the file cache is operating effectively, while
numbers approaching 0% could indicate that the file cache is not serving many
requests.

This setting is not tunable.

Maximum Age
The maximum age displays the maximum age of a valid cache entry. This
parameter controls how long cached information is used after a file has been
cached. An entry older than the maximum age is replaced by a new entry for the
same file.

Tuning

If your web site's content changes infrequently, you may want to increase this
value for improved performance. You can set the maximum age by:

• Entering or changing the value in the Maximum Age field of the File Cache
Configuration page in the web-based Admin Console for the HTTP server
node and selecting the File Caching Tab.

• Editing the MaxAge parameter in the nsfc.conf file. For more information, see
the Sun ONE Application Server Developer’s Guide to NSAPI.

HTTP Server Tuning

66 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

The following figure shows the Administration interface for configuring the file
cache system.

Figure 4-9 Tuning the File Cache Information using the Administration Interface

Thread Pools
The following figure shows Administration interface for configuring the thread
pools.

HTTP Server Tuning

Chapter 4 Tuning Sun ONE Application Server 67

Figure 4-10 Tuning the Thread Pools using the Administration Interface

Three types of thread pools can be configured through the web-based
Administration interface:

• Thread Pools (Unix /Linux)

• Native Thread Pools (NT)

• Generic Thread Pools (NT)

Thread Pools (Unix /Linux only)
Since threads on Unix/Linux are always operating system (OS)-scheduled, as
opposed to user-scheduled, Unix/Linux users do not need to use native thread
pools. Therefore, this option is not offered in a Unix/Linux user interface.
However, you can edit the OS-scheduled thread pools and add new thread pools, if
needed, using the web-based Administration interface.

HTTP Server Tuning

68 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

Native Thread Pools (NT only)
On NT, the native thread pool (NativePool) is used internally by the server to
execute NSAPI functions that require a native thread for execution.

Native pools:

NativePool:

Idle/Peak/Limit 1/1/128

Work queue length/Peak/Limit 0/0/0

Windows NT users can edit their native thread pool settings using the web-based
Administration interface.

Sun ONE Application Server uses NSPR, which is an underlying portability layer
providing access to the host OS services. This layer provides abstractions for
threads that are not always the same as those for the OS-provided threads. These
non-native threads have lower scheduling overhead, so their use improves
performance. However, these threads are sensitive to blocking calls to the OS, such
as I/O calls. To make it easier to write NSAPI extensions that can make use of
blocking calls, the server keeps a pool of threads that safely support blocking calls.
This usually means it is a native OS thread. During request processing, any NSAPI
function that is not marked as being safe for execution on a non-native thread is
scheduled for execution on one of the threads in the native thread pool.

If you have written your own NSAPI plug-ins such as NameTrans, Service, or
PathCheck functions, these execute by default on a thread from the native thread
pool. If your plug-in makes use of the NSAPI functions for I/O exclusively or does
not use the NSAPI I/O functions at all, then it can execute on a non-native thread.
For this to happen, the function must be loaded with a NativeThread="no" option,
indicating that it does not require a native thread.

To do this, add the following to the "load-modules" Init line in the init.conf
file:

Init funcs="pcheck_uri_clean_fixed_init"
shlib="C:/Netscape/p186244/P186244.dll" fn="load-modules"
NativeThread="no"

The NativeThread flag affects all functions in the funcslist, so if you have more
than one function in a library, but only some of them use native threads, use
separate Init lines.

HTTP Server Tuning

Chapter 4 Tuning Sun ONE Application Server 69

Generic Thread Pools (NT only)
On NT, you can set up additional thread pools using the web-based Admin
Console. Use thread pools to put a limit on the maximum number of requests
answered by a service function at any moment. Additional thread pools are a way
to run thread-unsafe plug-ins. By defining a pool with a maximum number of
threads set to 1, only one request is allowed into the specified service function.

Idle/Peak/Limit
Idle indicates the number of threads that are currently idle. Peak indicates the peak
number in the pool. Limit indicates the maximum number of native threads
allowed in the thread pool, and is determined by the setting of
NativePoolMaxThreads.

Tuning

You can modify the NativePoolMaxThreads by:

• Editing the NativePoolMaxThreads parameter in init.conf

• Entering or changing the value in the Maximum Threads field of the Native
Thread Pool page in the Performance tab for the Http server node via the
administration interface

Work Queue Length /Peak /Limit
These numbers refer to a queue of server requests that are waiting for the use of a
native thread from the pool. The Work Queue Length is the current number of
requests waiting for a native thread.

Peak is the highest number of requests that were ever queued up simultaneously
for the use of a native thread since the server was started. This value can be viewed
as the maximum concurrency for requests requiring a native thread.

Limit is the maximum number of requests that can be queued at one time to wait
for a native thread, and is determined by the setting of NativePoolQueueSize.

Tuning

You can modify the NativePoolQueueSize by:

• Editing the NativePoolQueueSize parameter in init.conf

• Entering or changing the value in the Queue Size field of the Native Thread
Pool page in the Performance tab for the HTTP server node via the web-based
Administration interface.

HTTP Server Tuning

70 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

NativePoolStackSize (NT only)
The NativePoolStackSize determines the stack size in bytes of each thread in the
native (kernel) thread pool.

Tuning

You can modify the NativePoolStackSize by:

• Editing the NativePoolStackSize parameter in init.conf

• Setting or changing the NativePoolStackSize value in the Performance tab
for the HTTP server node via the web-based Administration interface.

NativePoolQueueSize (NT only)
The NativePoolQueueSize determines the number of threads that can wait in the
queue for the thread pool. If all threads in the pool are busy, the next
request-handling thread that needs to use a thread in the native pool must wait in
the queue. If the queue is full, the next request-handling thread that tries to get in
the queue is rejected, and a busy response is returned to the client. It is then free to
handle another incoming request instead of being tied up waiting in the queue.

Setting The NativePoolQueueSize lower than the RqThrottle value causes the
server to execute a busy function instead of the intended NSAPI function whenever
the number of requests waiting for service by pool threads exceeds this value. The
default returns a "503 Service Unavailable" response and logs a message if
LogVerbose is enabled. Setting The NativePoolQueueSize higher than
RqThrottle causes the server to reject connections before a busy function can
execute.

This value represents the maximum number of concurrent requests for service
which require a native thread. If your system is unable to fulfill requests due to
load, letting more requests queue up increases the latency for requests and could
result in all available request threads waiting for a native thread. In general, set this
value to be high enough to avoid rejecting requests by anticipating the maximum
number of concurrent users who would execute requests requiring a native thread.

The difference between this value and RqThrottle is the number of requests
reserved for non-native thread requests, such as static HTML and image files.
Keeping a reserve and rejecting requests ensures that your server continues to fill
requests for static files, which prevents it from becoming unresponsive during
periods of very heavy dynamic content load. If your server consistently rejects
connections, this value is either set too low, or your server hardware is overloaded.

Tuning

You can modify the NativePoolQueueSize by:

HTTP Server Tuning

Chapter 4 Tuning Sun ONE Application Server 71

• Editing the NativePoolQueueSize parameter in init.conf

NativePoolMaxThreads (NT only)
NativePoolMaxThreads determine the maximum number of threads in the native
(kernel) thread pool.

A higher value allows more requests to execute concurrently, but has more
overhead due to context switching, so "bigger is not always better." Typically, you
will not need to increase this number, but if you are not saturating your CPU and
you are seeing requests queue up, you should increase this number.

Tuning

You can modify the NativePoolMaxThreads by editing the
NativePoolMaxThreads parameter in init.conf.

NativePoolMinThreads (NT only)
Determines the minimum number of threads in the native (kernel) thread pool.

Tuning

You can modify the NativePoolMinThreads by:

• Editing the NativePoolMinThreads parameter in init.conf

• Setting or changing the NativePoolMinThreads value in the Performance tab
for the HTTP server node via the web-based Administration interface.

DNS Cache Information
The DNS cache caches IP addresses and DNS names. Your server's DNS cache is
disabled by default. In the DNS Statistics for Process ID All page under Monitor in
the web-based Administration interface the following statistics are displayed:

enabled
If the DNS cache is disabled, the rest of this section is not displayed.

Tuning

By default, the DNS cache is off. You can enable DNS caching by:

• Adding the following line to init.conf:

Init fn=dns-cache-init

• Setting the DNS value to “Perform DNS lookups on clients accessing the
server” via the web-based Administration interface.

HTTP Server Tuning

72 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

CacheEntries (CurrentCacheEntries / MaxCacheEntries)
The number of current cache entries and the maximum number of cache entries. A
single cache entry represents a single IP address or DNS name lookup. The cache
should be as large as the maximum number of clients that will access your web site
concurrently. Note that setting the cache size too high will waste memory and
degrade performance.

Tuning

You can set the maximum size of the DNS cache by:

• Adding the following line to the init.conf file:

Init fn=dns-cache-init cache-size=1024

The default cache size is 1024

• Entering or changing the value in the Size of DNS Cache field of the
Performance Tuning page in the web-based Administration interface.

HitRatio (CacheHits / CacheLookups)
The hit ratio displays the number of cache hits versus the number of cache lookups.

This setting is not tunable.

Caching DNS Entries
You can also specify whether to cache the DNS entries. If you enable the DNS
cache, the server can store hostname information after receiving it. If the server
needs information about the client in the future, the information is cached and
available without further querying. You can specify the size of the DNS cache and
an expiration time for DNS cache entries. The DNS cache can contain 32 to 32768
entries; the default value is 1024. Values for the time it takes for a cache entry to
expire can range from 1 second to 1 year specified in seconds; the default value is
1200 seconds (20 minutes).

Limit DNS Lookups to Asynchronous
It is recommended that you do not use DNS lookups in server processes because
they are so resource-intensive. If you must include DNS lookups, be sure to make
them asynchronous.

NOTE If you turn off DNS lookups on your server, host name restrictions
will not work and hostnames will not appear in your log files.
Instead, you'll see IP addresses.

HTTP Server Tuning

Chapter 4 Tuning Sun ONE Application Server 73

enabled
If asynchronous DNS is disabled, the rest of this section will not be displayed.

Tuning

You can enable asynchronous DNS by:

• Adding AsyncDNS ON in the init.conf file.

• Setting the AsyncDNS value to ON in the web-based Administration interface.

• Selecting Async DNS Enabled from the Performance Tuning page under
Preferences in the Server Manger.

NameLookups
The number of name lookups (DNS name to IP address) that have been done since
the server was started.

This setting is not tunable.

AddrLookups
The number of address loops (IP address to DNS name) that have been done since
the server was started.

This setting is not tunable.

LookupsInProgress
The current number of lookups in progress.

This setting is not tunable.

The following figure shows the Administration interface for configuring the DNS
cache information.

HTTP Server Tuning

74 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

Figure 4-11 Tuning the DNS Cache Information using the Administration Interface

HTTP Server Tuning

Chapter 4 Tuning Sun ONE Application Server 75

Busy Functions
The default busy function returns a "503 Service Unavailable" response and logs a
message if LogVerbose is enabled. You may wish to modify this behavior for your
application. To better troubleshoot performance problems, it is useful to specify
your own busy functions for any NSAPI function in the
<instancename>-obj.conf file by including a service function in the
configuration file in this format:

busy="<my-busy-function>"

For example, you could use this sample service function:

Service fn="send-cgi" busy="service-toobusy"

This allows different responses if the server becomes too busy in the course of
processing a request that includes a number of types (such as Service, AddLog,
and PathCheck). Note that your busy function will apply to all functions that
require a native thread to execute when the default thread type is non-native.

To use your own busy function instead of the default busy function for the entire
server, you can write an NSAPI init function that includes a func_insert call as
shown below:

extern "C" NSAPI_PUBLIC int my_custom_busy_function(pblock *pb,
Session *sn, Request *rq);

my_init(pblock *pb, Session *, Request *)

{

func_insert("service-toobusy", my_custom_busy_function);

}

Busy functions are never executed on a pool thread, so you must be careful to
avoid using function calls that could cause the thread to block.

Using Performance Buckets
Performance buckets allow you to define buckets, and link them to various server
functions. Every time one of these functions is invoked, the server collects
statistical data and adds it to the bucket. For example, send-cgi and
NSServletService are functions used to serve the CGI and Java servlet requests
respectively. You can either define two buckets to maintain separate counters for

HTTP Server Tuning

76 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

CGI and servlet requests, or create one bucket that counts requests for both types of
dynamic content. The cost of collecting this information is little and impact on the
server performance is usually negligible. The following information is stored in a
bucket:

• Name of the bucket. This name is used for associating the bucket with a
function.

• Description. A description of the functions associated with the bucket.

• Number of requests for this function. The total number of requests that
caused this function to be called.

• Number of times the function was invoked. This number may not coincide
with the number of requests for the function because some functions may be
executed more than once for a single request.

• Function latency or the dispatch time. The time taken by the server to invoke
the function.

• Function time. The time spent in the function itself.

The default-bucket is pre-defined by the server. It records statistics for the
functions not associated with any user defined bucket.

Configuration
You must specify all the configuration information for performance buckets in the
init.conf and <instancename>-obj.conf files. Only the default bucket is
automatically enabled.

The following examples show how to define new buckets in init.conf:

Init fn="define-perf-bucket" name="acl-bucket" description="ACL
bucket"

Init fn="define-perf-bucket" name="file-bucket"
description="Non-cached responses"

Init fn="define-perf-bucket" name="cgi-bucket" description="CGI
Stats"

The prior example creates three buckets: acl-bucket, file-bucket, and
cgi-bucket. To associate these buckets with functions, add bucket=bucket-name to
the obj.conf function for which you wish to measure performance. For example:

PathCheck fn="check-acl" acl="default" bucket="acl-bucket"
...
Service method="(GET|HEAD|POST)" type="*~magnus-internal/*"
fn="send-file" bucket="file-bucket"

HTTP Server Tuning

Chapter 4 Tuning Sun ONE Application Server 77

...
<Object name="cgi">
ObjectType fn="force-type" type="magnus-internal/cgi"
Service fn="send-cgi" bucket="cgi-bucket"
</Object>

Performance Report
The performance buckets information is located in the last section of the report that
perfdump returns.

For more information, see “Enabling Statistics with stats-xml” and “Using
Performance Buckets”.

The report contains the following information:

• Average, Total, and Percent columns give data for each requested statistic.

• Request Processing Time is the total time required by the server to process all
the requests it has received so far.

• Number of Requests is the total number of requests for the function.

• Number of Invocations is the total number of times that the function was
invoked. This differs from the number of requests in that a function can be
called multiple times while processing one request. The percentage column for
this row is calculated in reference to the total number of invocations for all the
buckets.

• Latency is the time, in seconds, that the Sun ONE Application Server takes to
prepare for calling the function.

• Function Processing Time is the time, in seconds, that the Sun ONE
Application Server spent inside the function. The percentage of Function
Processing Time and Total Response Time is calculated with reference to the
total Request processing time.

• Total Response Time is the sum, in seconds, of Function Processing Time and
Latency.

The following is an example of the performance bucket information available
through perfdump:

Performance Counters:

--

Average Total Percent

HTTP Server Tuning

78 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

Total number of requests: 474851

Request processing time: 0.0010 485.3198

Default Bucket (default-bucket)

Number of Requests: 597 (0.13%)

Number of Invocations: 9554 (1.97%)

Latency: 0.0000 0.1526 (0.03%)

Function Processing Time: 0.0256 245.0459 (50.49%)

Total Response Time: 0.0257 245.1985 (50.52%)

Configuring the File Cache
The Sun ONE Application Server uses a file cache to serve static information faster.
The file cache contains information about files and static file content. The file cache
also caches information that is used to speed up processing of server-parsed
HTML.

The file cache is turned on by default. The file cache settings are contained in a file
called nsfc.conf. You can use the web-based Administration interface to change
the file cache settings.

The following figure shows the Administration interface for configuring the file
cache settings.

HTTP Server Tuning

Chapter 4 Tuning Sun ONE Application Server 79

Figure 4-12 Tuning the File Caching using the Administration Interface

To configure the file cache:

1. Select the File Caching tab of the HTTP server.

2. Check Enable File Cache, if not already selected.

HTTP Server Tuning

80 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

3. Choose whether or not to transmit files.

When you enable Transmit File, the server caches open file descriptors for files
in the file cache, rather than the file contents. PR_TransmitFile is used to send
the file contents to a client. When Transmit File is enabled, the distinction
normally made by the file cache between small, medium, and large files no
longer applies since only the open file descriptor is being cached. By default,
Transmit File is enabled on NT, and not enabled on Unix. On Unix, enable
Transmit File for platforms that have native OS support for PR_TransmitFile,
which currently includes HP-UX and AIX. It is not recommended for other
Unix/Linux platforms.

4. Enter a size for the hash table.

The default size is twice the maximum number of files plus 1. For example, if
your maximum number of files is set to 1024, the default hash table size is 2049.

5. Enter a maximum age in seconds for a valid cache entry.

By default, this is set to 30.

This setting controls how long cached information will continue to be used
once a file has been cached. An entry older than MaxAge is replaced by a new
entry for the same file, if the same file is referenced through the cache.

Set the maximum age based on whether the content is updated (existing files
are modified) on a regular schedule or not. For example, if content is updated
four times a day at regular intervals, you could set the maximum age to 21600
seconds (6 hours). Otherwise, consider setting the maximum age to the longest
time you are willing to serve the previous version of a content file after the file
has been modified.

6. Enter the Maximum Number of Files to be cached.

By default, this is set to 1024.

HTTP Server Tuning

Chapter 4 Tuning Sun ONE Application Server 81

7. (Unix /Linux only) Enter medium and small file size limits in bytes.

By default, the Medium File Size Limit is set to 525000 (525 KB).

By default, Small File Size Limit is set to 2048.

The cache treats small, medium, and large files differently. The contents of
medium files are cached by mapping the file into virtual memory (Unix/Linux
platforms). The contents of "small" files are cached by allocating heap space
and reading the file into it. The contents of "large" files (larger than "medium")
are not cached, although information about large files is cached.

The advantage of distinguishing between small files and medium files is to
avoid wasting part of many pages of virtual memory when there are lots of
small files. So the Small File Size Limit is typically a slightly lower value than
the VM page size.

8. (Unix /Linux only) Set the medium and small file space.

The medium file space is the size in bytes of the virtual memory used to map
all medium sized files. By default, this is set to 10000000 (10MB).

The small file space is the size of heap space in bytes used for the cache,
including heap space used to cache small files. By default, this is set to 1MB for
Unix/Linux.

9. Click OK.

10. Click Apply.

11. Select Apply Changes to restart your server.

Using the nocache Parameter
You can use the parameter nocache for the Service function send-file to specify that
files in a certain directory not be cached. For example, if you have a set of files that
changes too rapidly for caching to be useful, you can put them in a directory and
instruct the server not to cache files in that directory by editing the
<instancename>-obj.conf file.

For example:

<Object name=default>

...

NameTrans fn="pfx2dir" from="/myurl" dir="/export/mydir"
name="myname"

...

HTTP Server Tuning

82 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

Service method=(GET|HEAD|POST) type=*~magnus-internal/*
fn=send-file

...

</Object>

<Object name="myname">

Service method=(GET|HEAD) type=*~magnus-internal/* fn=send-file
nocache=""

</Object>

In the above example, the server does not cache static files from /export/mydir/

when requested by the URL prefix /myurl.

File Cache Dynamic Control and Monitoring
You can add an object to <instancename>-obj.conf to dynamically monitor and
control the nsfc.conf file cache while the server is running. To do this:

Add a NameTrans directive to the default object:

NameTrans fn="assign-name" from="/nsfc" name="nsfc"

Add an nsfc object definition:

<Object name="nsfc">
Service fn=service-nsfc-dump
</Object>

This enables the file cache control and monitoring function (nsfc-dump) to be
accessed via the URI, "/nsfc." By changing the "from" parameter in the NameTrans
directive, a different URI can be used.

The following is an example of the information you receive when you access the
URI:

Sun ONE Application Server File Cache Status (pid 7960)

The file cache is enabled.

Cache resource utilization

Number of cached file entries = 1039 (112 bytes each, 116368
total bytes)

Heap space used for cache = 237641/1204228 bytes

Mapped memory used for medium file contents = 5742797/10485760
bytes

HTTP Server Tuning

Chapter 4 Tuning Sun ONE Application Server 83

Number of cache lookup hits = 435877/720427 (60.50 %)

Number of hits/misses on cached file info = 212125/128556

Number of hits/misses on cached file content = 19426/502284

Number of outdated cache entries deleted = 0

Number of cache entry replacements = 127405

Total number of cache entries deleted = 127407

Number of busy deleted cache entries = 17

Parameter settings

HitOrder: false

CacheFileInfo: true

CacheFileContent: true

TransmitFile: false

MaxAge: 30 seconds

MaxFiles: 1024 files

SmallFileSizeLimit: 2048 bytes

MediumFileSizeLimit: 537600 bytes

CopyFiles: false

Directory for temporary files:
/tmp/netscape/https-axilla.mcom.com

Hash table size: 2049 buckets

You can include a query string when you access the "/nsfc" URI. The following
values are recognized:

• ?list - Lists the files in the cache.

• ?refresh=n - Causes the client to reload the page every n seconds.

• ?restart - Causes the cache to be shut down and then restarted.

• ?start - Starts the cache.

• ?stop - Shuts down the cache.

HTTP Server Tuning

84 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

If you choose the ?list option, the file listing includes the file name, a set of flags,
the current number of references to the cache entry, the size of the file, and an
internal file ID value. The flags are as follows:

• C - File contents are cached.

• D - Cache entry is marked for delete.

• E - PR_GetFileInfo() returned an error for this file.

• I - File information (size, modify date, etc.) is cached.

• M - File contents are mapped into virtual memory.

• O - File descriptor is cached (when TransmitFile is set to true).

• P - File has associated private data (should appear on shtml files).

• T - Cache entry has a temporary file.

• W - Cache entry is locked for write access.

For sites with scheduled updates to content, consider shutting down the cache
while the content is being updated, and starting it again after the update is
complete. Although performance will slow down, the server operates normally
when the cache is off.

Tuning the ACL User Cache
The ACL user cache is ON by default. Because of the default size of the cache (200
entries), the ACL user cache can be a bottleneck, or can simply not serve its
purpose on a site with heavy traffic. On a busy site, more than 200 users can hit
ACL-protected resources in less time than the lifetime of the cache entries. When
this situation occurs, the Sun ONE Application Server has to query the LDAP
server more often to validate users, which impacts performance.

This bottleneck can be avoided by increasing the size of the ACL cache with the
ACLUserCacheSize directive in init.conf. Note that increasing the cache size will
use more resources; the larger you make the cache the more RAM you'll need to
hold it.

There can also be a potential (but much harder to hit) bottleneck with the number
of groups stored in a cache entry (by default four). If a user belongs to five groups
and hits five ACLs that check for these different groups within the ACL cache
lifetime, an additional cache entry is created to hold the additional group entry.
When there are two cache entries, the entry with the original group information is
ignored.

HTTP Server Tuning

Chapter 4 Tuning Sun ONE Application Server 85

While it would be extremely unusual to hit this possible performance problem, the
number of groups cached in a single ACL cache entry can be tuned with the
ACLGroupCacheSize directive.

ACL User Cache Directives
To adjust the ACL user cache values you will need to manually add the following
directives to your init.conf file:

• ACLCacheLifetime

• ACLUserCacheSize

• ACLGroupCacheSize

ACLCacheLifetime
Set this directive to a number that determines the number of seconds before the
cache entries expire. Each time an entry in the cache is referenced, its age is
calculated and checked against ACLCacheLifetime. The entry is not used if its age
is greater than or equal to the ACLCacheLifetime. The default value is 120 seconds.
If this value is set to 0, the cache is turned off. If you use a large number for this
value, you may need to restart the Sun ONE Application Server when you make
changes to the LDAP entries. For example, if this value is set to 120 seconds, the
Sun ONE Application Server might be out of sync with the LDAP server for as long
as two minutes. If your LDAP is not likely to change often, use a large number.

ACLUserCacheSize
Set this directive to a number that determines the size of the User Cache (default is
200).

ACLGroupCacheSize
Set this directive to a number that determines how many group IDs can be cached
for a single UID/cache entry (default is 4).

Verifying ACL User Cache Settings
With LogVerbose you can verify that the ACL user cache settings are being used.
When LogVerbose is running, you should expect to see these messages in your
error log when the server starts:

User authentication cache entries expire in ### seconds.

User authentication cache holds ### users.

Up to ### groups are cached for each cached user.

Tuning

HTTP Server Tuning

86 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

You can turn LogVerbose ONby editing the LogVerbose parameter in init.conf.

Using Quality of Service
The quality of service features let you limit the amount of bandwidth and number
of connections for a server instance, class of virtual servers, or individual virtual
server. You can set these performance limits, track them, and optionally enforce
them.

The following figure shows the Administration interface for configuring the
Quality of Service.

CAUTION Do not turn on LogVerbose on a production server. Doing so
degrades performance and increases the size of your error logs.

HTTP Server Tuning

Chapter 4 Tuning Sun ONE Application Server 87

Figure 4-13 Tuning the Quality of Service using the Administration Interface

For more information, see “Using Quality of Service” in the Sun ONE Application
Server Administrator's Guide.

HTTP Server Tuning

88 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

Threads, Processes, and Connections
In the Sun ONE Application Server, acceptor threads on an HTTP Listener accept
connections and put them onto a connection queue. Session threads then pick up
connections from the queue and service the requests. More session threads are
posted if required at the end of the request. The policy for adding new threads is
based on the connection queue state:

• Each time a new connection is returned, the number of connections waiting in
the queue (the backlog of connections) is compared to the number of session
threads already created. If it is greater than the number of threads, more
threads are scheduled to be added the next time a request completes.

• The previous backlog is tracked, so that another ThreadIncrement number of
threads are scheduled to be added of the following are true:

❍ The number of threads are seen to be increasing over time.

❍ The increase is greater than the ThreadIncrement value.

❍ The number of session threads minus the backlog is less than the
ThreadIncrement value.

• The process of adding new session threads is strictly limited by the
RqThrottle value.

• To avoid creating too many threads when the backlog increases suddenly
(such as the startup of benchmark loads), the decision whether more threads
are needed is made only once every 16 or 32 times a connection is made based
on how many session threads already exist.

The following directives affect the number and timeout of threads, processes, and
connections can be tuned in the web-based Admin Console or init.conf:

• ConnQueueSize

• HeaderBufferSize

• AcceptTimeOut

• KeepAliveThreads

• KeepAliveTimeout

• KernelThreads

• ListenQ

• MaxKeepAliveConnections

HTTP Server Tuning

Chapter 4 Tuning Sun ONE Application Server 89

• MaxProcs (Unix Only)

• PostThreadsEarly

• RcvBufSize

• RqThrottle

• RqThrottleMin

• SndBufSize

• StackSize

• TerminateTimeout

• ThreadIncrement

• UseNativePoll (Unix only)

For more information about these directives, see the Sun ONE Application Server
Developer’s Guide to NSAPI.

HTTP listener Acceptor Threads
You can specify how many threads you want in accept mode on a listen socket at
any time. It is a good practice to set this to less than or equal to the number of CPUs
in your system.

Tuning

You can set the number of HTTP listener acceptor threads by:

• Editing the server.xml file

• Selecting the http-listener node of the web-based Administration interface.

Maximum Simultaneous Requests
The RqThrottle parameter in the init.conf file specifies the maximum number
of simultaneous transactions the web server can handle. The default value is 128.
Changes to this value can be used to throttle the server, minimizing latencies for
the transactions that are performed. The RqThrottle value acts across multiple
virtual servers, but does not attempt to load-balance.

HTTP Server Tuning

90 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

To compute the number of simultaneous requests, the server counts the number of
active requests, adding one to the number when a new request arrives, subtracting
one when it finishes the request. When a new request arrives, the server checks to
see if it is already processing the maximum number of requests. If it has reached
the limit, it defers processing new requests until the number of active requests
drops below the maximum amount.

In theory, you could set the maximum simultaneous requests to 1 and still have a
functional server. Setting this value to 1 would mean that the server could only
handle one request at a time, but since HTTP requests for static files and generally
have a very short duration (response time can be as low as 5 milliseconds),
processing one request at a time would still allow you to process up to 200 requests
per second.

However, in actuality, Internet clients frequently connect to the server and then do
not complete their requests. In these cases, the server waits 30 seconds or more for
the data before timing out. You can define this timeout period using the
AcceptTimeOut directive in init.conf. The default value is 30 seconds. Also,
some sites do heavyweight transactions that take minutes to complete. Both of
these factors add to the maximum simultaneous requests that are required. If your
site is processing many requests that take many seconds, you may need to increase
the number of maximum simultaneous requests. For more information on
AcceptTimeOut, see AcceptTimeOut Information.

Suitable RqThrottle values range from 100-500, depending on the load.

RqThrottleMin is the minimum number of threads the server initiates upon
start-up. The default value is 48. RqThrottle represents a hard limit for the
maximum number of active threads that can run simultaneously, which can
become a bottleneck for performance. The default value is 128.

Tuning

You can tune the number of simultaneous requests by:

• Editing RqThrottleMin and RqThrottle in the init.conf file.

NOTE If you are using older NSAPI plug-ins that are not re-entrant, they
will not work with the multi-threading model described. To
continue using them, revise them so they are re-entrant. If this is not
possible, configure your server to work with them by setting
RqThrottle to 1, and use a high value for MaxProcs, such as 48 or
greater. This will adversely impact your server's performance.

HTTP Server Tuning

Chapter 4 Tuning Sun ONE Application Server 91

• Entering the desired value in the Maximum Simultaneous Requests field from
the Performance Tuning page under Preferences in the web-based
Administration interface.

Improving Java Performance
There are a number of ways you can improve Java performance on Sun ONE
Application Server. These include:

• Using Alternate Thread Library

• Using Pre-compiled JSPs

• Configuring Class Reloading

Using an Alternate Thread Library
On Solaris 8 and above, using an alternate thread library such as libthread or
/usr/lib/lwp, gives optimal performance. This libthread is enabled by default.

Using Pre-compiled JSPs
Compiling JSPs is a resource intensive and time-consuming process. You will
improve performance if you pre-compile your JSPs before installing them into your
server.

Configuring Class Reloading
The configuration for flag for dynamic reloading should be disabled for better
performance. This can be accomplished by editing the server.xml and setting
dynamic-reload-enabled="false"

Miscellaneous init.conf Directives
The following sections discuss init.conf directives you can use to configure your
server to function more effectively:

• AcceptTimeOut Information

• CGIStub Processes (Unix/Linux)

• Buffer Size

HTTP Server Tuning

92 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

 AcceptTimeOut Information

Use AcceptTimeOut to specify the number of seconds the server waits between
accepting a connection to a client and receiving information from it. The default
setting is 30 seconds. Under most circumstances you should not have to change
this setting. By setting it to less than the default 30 seconds, you can free up threads
sooner. However, you may also disconnect users with slower connections.

Tuning

You can set the AcceptTimeOut by:

• Editing the AcceptTimeOut parameter in init.conf.

• Modifying the value in the performance sub-menu of the Advanced tab in the
web-based Administration interface.

CGIStub Processes (Unix/Linux)
You can adjust the CGIStub parameters on Unix/Linux systems. In Sun ONE
Application Server, the CGI engine creates CGIStub processes as needed. On
systems that serve a large load and rely heavily on CGI-generated content, it is
possible for the CGIStub processes to consume all system resources. If this is
happening on your server, the CGIStub processes can be tuned to restrict how
many new CGIStub processes can be spawned, their timeout value, and the
minimum number of CGIStub processes that will be running at any given moment.

The four directives and their defaults that can be tuned to control CGI stubs are:

• MinCGIStubs

• MaxCGIStubs

• CGIStubIdleTimeout

• CGIExpirationTimeout

MinCGIStubs controls the number of processes that are started by default. The first
CGIStub process is not started until a CGI program has been accessed. The default
value is 2. If you have an init-cgi directive in the init.conf file, the minimum
number of CGIStub processes are spawned at startup.

NOTE If you have an init-cgi function in the init.conf file and you are
running in multi-process mode, you must add LateInit = yes to
the init-cgi line.

HTTP Server Tuning

Chapter 4 Tuning Sun ONE Application Server 93

MaxCGIStubs controls the maximum number of CGIStub processes the server can
spawn. This specifies the maximum concurrent CGIStub processes in execution,
not the maximum number of pending requests. The default value shown should be
adequate for most systems. Setting this too high may actually reduce throughput.
The default value is 10.

CGIStubIdleTimeout causes the server to kill any CGIStub processes that have
been idle for the number of seconds set by this directive. Once the number of
processes is at MinCGIStubs it does not kill any more processes. The default is 45.

CGIExpirationTimeout limits the maximum time in seconds that CGI processes
can run.

Tuning

You can configure all of the directives for CGI Stub processes by:

• Editing the init.conf file

• Modifying the value in the CGI sub-menu of the Advanced tab in the
web-based Administration interface.

Buffer Size
You can specify the size of the send buffer (SndBufSize) and the receiving buffer
(RcvBufSize) at the server's sockets. For more information regarding these buffers,
see your Unix/Linux documentation.

Tuning

You can set the buffer size by:

• Editing the SndBufSize and RcvBufSize parameters in init.conf.

• Setting or changing the SndBufSize and RcvBufSize values in the
Performance sub-menu of the Advanced tab in the web-based Administration
interface.

Miscellaneous obj.conf Parameters
You can use some obj.conf function parameters to improve your server's
performance. In addition to the ones listed below, see “Using the nocache
Parameter” for additional information.

For more information on using obj.conf, see the Sun ONE Application Server
Developer’s Guide to NSAPI.

HTTP Server Tuning

94 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

find-pathinfo-forward
The parameter find-pathinfo-forward for the PathCheck function
find-pathinfo and the NameTrans functions pfx2dir and assign-name can help
you improve your performance. This parameter instructs the server to search
forward for PATH_INFO in the path after ntrans-base, instead of backward from
the end of path in the server function find-pathinfo.

For example:

NameTrans fn="pfx2dir" find-pathinfo-forward="" from="/cgi-bin"
dir="/export/home/cgi-bin" name="cgi"

NameTrans fn="assign-name" from="/perf" find-pathinfo-forward=""
name="perf"

This feature can improve performance for certain URLs by doing fewer stats in the
server function find-pathinfo. On Windows NT, you can also use this feature to
prevent the server from changing "\" to "/" when using the PathCheck server
function find-pathinfo.

nostat
You can specify the parameter nostat in the NameTrans function assign-name to
prevent the server from doing a stat on a specified URL whenever possible. Use the
following syntax:

nostat=virtual-path

For example:

<Object name=default>

NameTrans fn="assign-name" from="/nsfc" nostat="/nsfc"
name="nsfc"

</Object>

<Object name=nsfc>

Service fn=service-nsfc-dump

</Object>

NOTE The server ignores the find-pathinfo-forward parameter if the
ntrans-base parameter is not set in rq->vars when the server
function find-pathinfo is called. By default, ntrans-base is set.

HTTP Server Tuning

Chapter 4 Tuning Sun ONE Application Server 95

In the above example, the server does not stat for path /ntrans-base/nsfc and
/ntrans-base/nsfc/* if ntrans-base is set. If ntrans-base is not set, the server does not
stat for URLs /nsfc and /nsfc/*. By default ntrans-base is set. The example
assumes the default PathCheck server functions are used.

When you use nostat= virtual-path in the assign-nameNameTrans, the server
assumes that stat on the specified virtual-path will fail. Therefore, use nostat only
when the path of the virtual-path does not exist on the system, for example, in
NSAPI plug-in URLs. Using nostat on those URLs improves performance by
avoiding unnecessary stats on those URLs.

Scaling Your Server
This section examines subsystems of your server and makes some
recommendations for optimal performance:

• Processors

• Memory

• Disk Space

• Networking

Processors
On Solaris and Windows NT, Sun ONE Application Server transparently takes
advantage of multiple CPUs. In general, the effectiveness of multiple CPUs varies
with the operating system and the workload. Dynamic content performance
improves as more processors are added to the system. Because static content
involves mostly IO, and more primary memory means more caching of the content
(assuming the server is tuned to take advantage of the memory) more time is spent
in IO rather than any busy CPU activity. Our study of dynamic content
performance on a four-CPU machine indicate a 40-60% increase for NSAPI and
about 50-80% increase for servlets., by doubling the number of CPUs.

Memory

Sun ONE Application Server requires a minimum of 256 MB RAM on Solaris and
Windows. These values apply to the application server running on a system that is
not running Sun ONE Studio. Please refer to the Sun ONE Application Server
Installation Guide on the Sun Microsystems documentation web site.

Connection Pool Tuning

96 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

Disk Space
You need to have enough disk space for your OS, document tree, and log files. In
most cases 2GB total is sufficient.

Put the OS, swap/paging file, Sun ONE Application Server logs, and document
tree each on separate hard drives. Thus, if your log files fill up the log drive, your
OS will not suffer. Also, you'll be able to tell whether, for example, the OS paging
file is causing drive activity.

Your OS vendor may have specific recommendations for how much swap or
paging space you should allocate. Based on our testing, Sun ONE Application
Server performs best with swap space equal to RAM, plus enough to map the
document tree.

Networking
For an Internet site, decide how many peak concurrent users you need the server to
handle, and multiply that number of users by the average request size on your site.
Your average request may include multiple documents. If you're not sure, try
using your home page and all its associated sub-frames and graphics.

Next decide how long the average user will be willing to wait for a document, at
peak utilization. Divide by that number of seconds. That's the WAN bandwidth
your server needs.

For example, to support a peak of 50 users with an average document size of 24kB,
and transferring each document in an average of 5 seconds, we need 240 KBs (1920
kbit/s). So our site needs two T1 lines (each 1544 kbit/s). This also allows some
overhead for growth.

Your server's network interface card should support more than the WAN it's
connected to. For example, if you have up to three T1 lines, you can get by with a
10BaseT interface. Up to a T3 line (45 Mbit/s), you can use 100BaseT. But if you
have more than 50 Mbit/s of WAN bandwidth, consider configuring multiple
100BaseT interfaces, or look at Gigabit Ethernet technology.

For an intranet site, your network is unlikely to be a bottleneck. However, you can
use the same calculations as above to decide.

Connection Pool Tuning
This section advises how users can tune their JDBC Connection Pools.

Connection Pool Tuning

Chapter 4 Tuning Sun ONE Application Server 97

For database intensive applications, the JDBC Connection Pools managed by the
Sun ONE Application Server can be tuned for optimum performance. These
connection pools maintain numerous live physical database connections that can
be reused in order reduce the overhead of opening and closing database
connections.

JDBC Resources are defined as <jdbc-resource> elements in the Sun ONE
Application Server configuration file server.xml and are configured to point to a
<jdbc-connection-pool> . J2EE applications use JDBC Resources to obtain
connections that are maintained by the JDBC Connection Pool. More than one
JDBC Resource is allowed to point to the same JDBC Connection Pool. In such a
case, the physical connection pool is shared by all the resources.

JDBC Connection Pools can be defined and configured by using the web-based
Admin Console or by editing the jdbc-connection-pool element in the
server.xml file. Though each defined pool is instantiated at server start-up, the
pool is only populated with physical connections when accessed for the first time.

The following are the attributes that can be specified for a JDBC connection pool:

Table 4-1 JDBC Connection Pool Attributes

Name Description

name Unique name of the pool definition.

datasource-
classname

Name of the vendor supplied JDBC datasource resource manager. An XA or global
transactions capable datasource class will implement javax.sql.XADatasource
interface. Non XA or Local transactions only datasources will implement
javax.sql.Datasource interface.

res-type Datasource implementation class could implement one or both of
javax.sql.DataSource, javax.sql.XADataSource interfaces. This optional
attribute must be specified to disambiguate when a Datasource class implements both
interfaces. An error is produced when this attribute has a legal value and the indicated
interface is not implemented by the datasource class. This attribute has no default value.

steady-pool-
size

Minimum and initial number of connections created.

max-pool-size Maximum number of connections that can be created.

max-wait-time
-in-millis

Amount of time the caller will wait before getting a connection timeout. The default is
60 seconds. A value of 0 will force caller to wait indefinitely.

Connection Pool Tuning

98 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

pool-resize-
quantity

Number of connections to be removed when idle-timeout-in-seconds timer
expires. Connections that have idled for longer than the timeout are candidates for
removal. When the pool size reaches steady-pool-size, the connection removal
stops.

idle-timeout-
in-seconds

Maximum time in seconds that a connection can remain idle in the pool. After this time,
the pool implementation can close this connection. Note that this does not control
connection timeouts enforced at the database server side.

Administrators are advised to keep this timeout shorter than the database server side
timeout (if such timeouts are configured on the specific vendor's database), to prevent
accumulation of unusable connection in Application Server.

transaction-
isolation-
level

Specifies the Transaction Isolation Level on the pooled database connections. This
setting is optional and has no default.

If left unspecified the pool operates with default isolation level provided by the JDBC
Driver.

A desired isolation level can be set using one of the standard transaction isolation levels:
read-uncommitted, read-committed, repeatable-read, serializable.

is-isolation-
level-guarant
eed

Applicable only when a particular isolation level is specified for
transaction-isolation-level. The default value is true.

This assures that every time a connection is obtained from the pool, it is guaranteed to
have the isolation set to the desired value.

This setting can have some performance impact on some JDBC drivers. It can be set to
false by that administrator when they are certain that the application does not change
the isolation level before returning the connection.

is-connection
-validation-
required

If true, connections are validated (checked to find out if they are usable) before being
given out to the application. Also, the connection-validation-type specifies the
type of validation to be performed. The default is false. Types of validation supported:

1) using connection.autoCommit(),
2) using connection.getMetaData()
3) performing a query on a user specified table (see validation-table-name).

The possible values are one of: auto-commit, or meta-data.

The table validation-table-name attribute specifies the table name to be used to
perform a query to validate a connection. This parameter is mandatory, if
connection-validation-type is set to table. Verification by accessing a user
specified table may become necessary for connection validation, particularly if database
driver caches calls to setAutoCommit() and getMetaData().

fail-all-conn
ections:

Indicates if all connections in the pool must be closed should a single validation check
fail. The default is false. One attempt will be made to re-establish failed connections.

Table 4-1 JDBC Connection Pool Attributes

Connection Pool Tuning

Chapter 4 Tuning Sun ONE Application Server 99

JDBC Connection Pool Tuning
The following performance tuning practices are recommended for JDBC
Connection Pools:

• Use the default isolation level provided by the driver rather than calling the
setTransactionIsolationLevel(); unless you are certain that your
application behaves correctly and performs better at a different isolation level.

• Set the idle time out to 0 seconds. This directive ensures that the connections
which are idle will not be removed at all. This ensures that there is normally no
penalty in creating new connections and disables the idle monitor thread.
However, there is a risk that the connection unused for too long is reset by the
database server.

• When sizing connection pools, keep the following pros and cons in mind:

• Set the max-wait-time-in-millis to 0. This essentially blocks the client
thread until a connection becomes available. Also, this allows the server to
alleviate the task of tracking the elapsed wait time for each request and
increases performance.

• As previously noted, avoid modifying the transaction-isolation-level. If
that is not possible, consider setting the is-isolation-level-guaranteed
flag to false and make sure applications do not programmatically alter the
connections' isolation level.

Table 4-2 Connection Pool Sizing Pros and Cons

Connection pool Pros Cons

Small Connection pool • faster access on the connection
table.

• not enough connections to
satisfy requests.

• most requests will spend more
time in the queue.

Large Connection pool • more connections to fulfill
requests.

• less (or no) time in the queue

• slower access on the
connection table.

Connection Pool Tuning

100 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

• Setting theis-connection-validation-required parameter to true forces
the server to apply the connection validation algorithm every time a
connection is returned from the pool. This adds overhead to the latency of
getConnection(). If the database connectivity is reliable, validation can be
skipped.

The following figure shows the Administration interface for configuring the
connection pools.

Figure 4-14 Tuning the JDBC Connection Pools using the Administration Interface

JSP and Servlet Tuning

Chapter 4 Tuning Sun ONE Application Server 101

JSP and Servlet Tuning
This section advises how users can tune JSP and Servlet applications by following
several coding practices and checking several relevant Sun ONE Application
Server configuration settings.

Suggested Coding Practices for JSP's and
Servlets
The following coding practices are recommended for JSP and Servlet applications:

1. Do not store large objects as HttpSession variables

2. Use javax.servlet.http.HttpSession.invalidate() to release HTTP
Sessions when they are no longer needed.

3. Use the JSP directive <%page session="false"%> to prevent HTTP Sessions
from being automatically created when they are not necessary.

4. Minimize Java synchronization in Servlets.

5. Don't use the single thread model for Servlets.

6. Use the servlet's init() method to perform expensive one time initialization.

7. Avoid the use of System.out.println() calls.

Configuration Settings that Affect JSP/Servlet
Performance
The following configuration settings will improve performance. It is important to
remember that they are intended for production environments as some of the
settings make developing JSP and Servlets impractical.

1. In the server CLASSPATH setting, avoid excessive directories to improve class
loading time. Package application related classes into JAR files.

2. HTTP settings - connections, keep-alive subsystem settings: the response times
are dependent on how the keep-alive subsystem and the HTTP server is tuned
in general. Please refer to the section on HTTP Server Tuning for more
information.

3. Set the recompile reload interval to -1 to prevent JSP recompilation.

Performance Tuning for EJBs

102 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

4. Use mtmalloc for SSL. Functions in this library provide a collection of malloc
routines that provide concurrent access to heap space. Obtain the patch from
http://www.sunsolve for libmtmalloc. Edit the startserv script, located in
/bin/startserv, for the server instance in question and prepend the location
of the so file to LD_LIBRARY_PATH.

5. JSP Servlet caching configuration. For more information, see the Sun ONE
Application Server 7 Developer’s Guide to Web Applications specifically, the
chapter titled Using Servlets subsection on Caching Features.

6. Deploy applications that do not contain EJB's as a WAR file rather than an EAR
file.

7. The security manager is expensive. This is because all the calls to the required
resources will have to go through a doPrivileged() method call. This also
involves checking the resource in question with the server.policy file. If
there is an option where having server.policy doesn't make sense for the
application, and under the assumption that no malicious code will be run on
the server, then the user can disable the server.policy by commenting out
the line in server.xml.

For example, you can comment out the server.policy as follows:

<!-- jvm-options>
-Djava.security.policy=/export/home/software/ias70_gold3/domains
/domain1/server1/config/server.policy

</jvm-options -->

Performance Tuning for EJBs
The Sun ONE Application Server's high performance EJB Container provides
various tunables, with default values, that can be modified in the server.xml
configuration file, and in each bean's descriptors. The values in server.xml apply
to all EJBs unless they are also specified in the bean's deployment descriptors.
Properties set in a bean's descriptors always override any settings in the
server.xml. For a detailed description of <ejb-container> element in the
server.xml file, see the Sun ONE Application Server Configuration File Reference.

Some properties that are in the EJB 2.0 deployment descriptor are also a good
source of tuning. The default settings for the <ejb-container> element in the
server.xml file are set for a single processor computer system. A user may want to
change the default settings in order to derive the desired behavior from the
container. The desired effects after tuning are for:

http://www.sunsolve

Performance Tuning for EJBs

Chapter 4 Tuning Sun ONE Application Server 103

• Speed: Response times can be decreased effectively by caching as many beans
in the EJB caches as possible. This saves several CPU-intensive operations (as
explained below). However, one can have only finite memory as a resource, as
the caches become large, house-keeping for these caches (including garbage
collection) takes longer.

• Memory consumption: Beans in the pools or caches consume memory from the
Java Virtual Machine heap. Exceedingly large pools and caches are detrimental
to performance due to longer and frequent garbage collection cycles.

• Functional properties: (such as user timeout, commit options, security and
transaction options, etc.) - Most of these properties are related to the
functionality and configuration of the application in the J2EE server. It is not
recommended to compromise functionality for performance, though some
suggestions will be made to help make choices in case such a situation arises.

Performance Tuning the EJB Container
The EJB specification formally defines the life cycle of various types of beans. This
document assumes that you are familiar with bean lifecycle events. Active beans in
the container process requests and are cached or pooled for better performance.
Tuning the cache and pool properties is a significant part of tuning for performance

Depending on the type of a bean, some of the suggested tuning tips may not apply
to a particular container.

Guide to Using Tunables
The following table illustrates the cache and bean tunables for each type of EJB.

Performance Tuning for EJBs

104 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

EJB Descriptor Properties
The following properties are available to tune for each bean in EJB Container:

• steady-pool-size: steady-pool-size specifies the initial and minimum
number of beans that must be maintained in the pool. Valid values are from 0
to MAX_INTEGER. This value is specified at the server instance level. The bean
specific counterpart to this is also the same. Note that for all the variables
below, if there is a setting specified at the bean level (in the sun-ejb-jar.xml),
the values specified at the bean level are used.

Table 4-3 Cache and Bean Tunables for EJBs

Cache Tunables Pool Tunables

T
yp

e
o

f
B

ea
n

ca
ch

e-
re

si
ze

-q
u

an
ti

ty

m
ax

-
ca

ch
e-

si
ze

ca
ch

e-
id

le
-t

im
eo

u
t-

in
-s

ec
o

n
d

s

re
m

o
va

l-
ti

m
eo

u
t-

in
-s

ec
o

n
d

s

vi
ct

im
-s

el
ec

ti
o

n
-p

o
lic

y

re
fr

es
h

-p
er

io
d

-i
n

-s
ec

o
n

d
s

st
ea

d
y-

p
o

o
l-

si
ze

p
o

o
l-

re
si

ze
-q

u
an

ti
ty

m
ax

-p
o

o
l-

si
ze

p
o

o
l-

id
le

-t
im

eo
u

t-
in

-s
ec

o
n

d
s

Stateful
Session

X X X X X

Stateless
Session

X X X X

Entity
(BMP/CM
P)

X X X X X X X X X

Entity
(BMP)
ReadOnly

X X X X X X X X X X

Message
Driven
Bean

X X X

Performance Tuning for EJBs

Chapter 4 Tuning Sun ONE Application Server 105

• pool-resize-quantity: pool-resize-quantity specifies the number of
beans to be created or deleted when the pool is being serviced by the server.
Valid values are from 0 to MAX_INTEGER and subject to maximum size limit).
Default is 16. The corresponding attribute in the sun-ejb-jar.xml is
resize-quantity.

• max-pool-size: max-pool-size specifies the maximum pool size. Valid
values are from 0 to MAX_INTEGER. Default is 64. A value of 0 means that the
size of the pool is unbounded. The potential implication is that the JVM heap
will be filled with objects in the pool. The corresponding attribute in the
sun-ejb-jar.xml is max-pool-size in the <bean-pool> element.

• max-wait-time-in-millis (deprecated)

• pool-idle-timeout-in-seconds: pool-idle-timeout-in-seconds specifies
the maximum time that a stateless session bean, entity bean, or message-driven
bean is allowed to be idle in the pool. After this time, the bean is destroyed if
the bean in case is a stateless session bean or a message driver bean. This is a
hint to server. Default value for pool-idle-timeout-in-seconds is 600
seconds. The corresponding attribute in the sun-ejb-jar.xml is
pool-idle-timeout-in-seconds in the <bean-pool> element.

• cache-resize-quantity: cache-resize-quantity specifies the number of
beans to be created or deleted when the cache is being serviced by the server.
Valid values are from 0 to MAX_INTEGER and subject to maximum size limit.
Default is 16. The corresponding attribute in the sun-ejb-jar.xml is
resize-quantity in the <bean-cache> element.

• max-cache-size: max-cache-size defines the maximum number of beans in
the cache. Should be greater than 1. Default is 512. Avalue of 0 indicates the
cache is unbounded. The size of the cache, in this case, is governed by
cache-idle-timeout-in-seconds and cache-resize-quantity. The corresponding
attribute in the sun-ejb-jar.xml is max-cache-size in the <bean-cache>
element.

• cache-idle-timeout-in-seconds: cache-idle-timeout-in-seconds
specifies the maximum time that a stateful session bean or entity bean is
allowed to be idle in the cache. After this time, the bean is passivated to backup
store. Default value for cache-idle-timeout-in-seconds is 600 seconds. The
corresponding attribute in the sun-ejb-jar.xml is
cache-idle-timeout-in-seconds in the <bean-cache> element.

• is-cache-overflow-allowed (deprecated)

Performance Tuning for EJBs

106 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

• removal-timeout-in-seconds: The amount of time that a stateful session
bean remains passivated (i.e. idle in the backup store) is controlled by
removal-timeout-in-seconds parameter. Note that if a bean was not
accessed beyond removal-timeout-in-seconds, then it will be removed from
the backup store and hence will not be accessible to the client. The Default
value for removal-timeout-in-seconds is 60min. The corresponding
attribute in the sun-ejb-jar.xml is removal-timeout-in-seconds in the
<bean-cache> element.

• victim-selection-policy: victim-selection-policy specifies the
algorithm to use to pick victims to be removed from the stateful session bean
cache. Possible values are FIFO | LRU | NRU. Default is NRU, which is actually
pseudo-random selection policy. The corresponding attribute in the
sun-ejb-jar.xml is victim-selection-policy in the <bean-cache>
element.

• commit-option: values are either "B", or "C". Default is "B". These reflect
commit-options for transactions as per the EJB specification.

• refresh-period-in-seconds: (for BMP/ Read Only Beans only)
refresh-period-in-seconds specifies the rate at which the read-only-bean
must be refreshed from the data source. 0 (never refreshed) and positive
(refreshed at specified intervals). Default is 600 seconds.

Tuning the EJB Pool
A bean in the pool represents the pooled state in the EJB lifecycle. This means that
the bean does not have an identity. The advantage of having beans in the pool is
that the time to create a bean may be saved for a request. The container has
mechanisms that create pool objects in the background, to save the time of bean
creation on the request path.

Set the steady-pool-size to a number that is indicative of a moderately loaded
system. It is recommended that steady-pool-size be greater than 0, as it ensures
that there is always a pooled instance to process an incoming request.

Set the max-pool-size to be representative of the anticipated high load of the
system. An excessively large pool wastes memory and can slow down the system.
A very small pool is also inefficient due to contention.

Performance Tuning for EJBs

Chapter 4 Tuning Sun ONE Application Server 107

A good rule to remember when changing the <max-pool-size> is to also
re-calibrate the <pool-resize-quantity>. This quantity is the number of beans
that will be reclaimed by the periodic cleaner. An increase in the max size should
mean an appropriate increase in the resize quantity to maintain a good
equilibrium.

Another important tunable is the <pool-idle-timeout-in-seconds> value. In
case there are more beans in the pool than the <steady-pool-size>, the pool will
be drained back to <steady-pool-size> in steps of <pool-resize-quantity>,
every <pool-idle-timeout-in-seconds> seconds. If the resize quantity is too
small and the idle timeout large, the user would not see the pool draining back to
steady size quick enough; this should be expected or corrected.

The following figure shows the Administration interface for tuning the EJB pool for
the server instance.

Figure 4-15 Tuning the EJB Pool using the Administration Interface

Performance Tuning for EJBs

108 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

Tuning the EJB Cache
A bean in the cache represents the ready state in the EJB lifecycle. This means that
the bean has an identity (e.g. primary key or session ID) associated with it. Beans
moving out of the cache have to be passivated or destroyed according to the EJB
lifecycle. Once passivated, a bean has to be activated to come back into the cache.
Entity beans are generally stored in databases and use some form of query
language semantics to load and store data. Session beans have to be serialized
when storing them upon passivation onto the disk or a database; and similarly
have to be deserialized upon activation.

Any incoming request using these 'ready' beans from the cache avoids the
overheads of creation, setting identity, and potentially, activation. So, theoretically,
it is good to cache as many beans as possible. However, there are downsides to
caching extensively:

• memory consumed by all the beans affect the heap available in the Virtual
Machine,

• increasing objects and memory taken by cache means longer, and perhaps
more frequent, full Garbage Collection,

• application server might run out of memory (unless the heap is carefully tuned
for peak loads).

The periodic cleaner will remove all beans in the cache that have reached the
<cache-idle-timeout-in-seconds>.

The following figure shows the Administration interface for tuning the EJB cache
for the container as a whole.

Performance Considerations for Various Types of EJBs

Chapter 4 Tuning Sun ONE Application Server 109

Figure 4-16 Tuning the EJB Cache using the Administration Interface

Performance Considerations for Various Types of
EJBs

The following figure shows an example of possible bean descriptors for an
individual bean pool and cache.

Performance Considerations for Various Types of EJBs

110 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

Figure 4-17 Bean Descriptors for Individual

The following are performance related discussions of various bean types:

• Entity beans: Depending on the usage of a particular entity bean, one should
tune max-cache-size so that beans that are used less (e.g. an order that is
created and never used after the transaction is over) are cached less, and beans
that are used frequently (e.g. an item in the inventory that gets referenced very
often), are cached more in numbers. Please see the section titled Commit
Options for other ways of tuning the entity container.

• Stateful session beans: In case a stateful bean represents a user, a healthy
max-cache-size of beans could be the expected number of concurrent users
on the application server process. If this value is too low (in relation to the
steady load of users), beans would be frequently passivated and activated,
causing a negative impact on the response times, due to CPU intensive
serialization and deserialization as well as disk I/O. Another important
variable for tuning is cache-idle-timeout-in-seconds where at periodic
intervals of cache-idle-timeout-in-seconds, all the beans in the cache that
have not been accessed for more than cache-idle-timeout-in-seconds time,

Performance Considerations for Various Types of EJBs

Chapter 4 Tuning Sun ONE Application Server 111

are passivated. Similar to an HttpSession inactivity/ idle timeout, the bean is
removed after it has not been accessed for removal-timeout-in-seconds.
Passivated beans are stored on disk in serialized form. A large number of
passivated beans could not only mean many files on the disk system, but also
slower response time as the session state has to be deserialized before the
invocation.

• Stateless session beans: There is no state associated with stateless session
beans and they are more readily pooled than entity or the stateful session
beans. Appropriate values for steady-pool-size, pool-resize-quantity
and max-pool-size are the best tunables for these type of beans. Set the
steady-pool-size to greater than zero if you want to pre-populate the pool.
This way, when the container comes up, it creates a pool with
steady-pool-size number of beans. By pre-populating the pool you can
avoid the object creation time during method invocations. Setting the
steady-pool size to a very large value may cause unwanted memory growth
and may result in large GC times. pool-resize-quantity determines the rate
of growth as well as the rate of decay of the pool. Setting it to a small value will
be better as the decay will behave like an exponential decay. Setting a small
max-pool-size may cause excessive object destruction (and as a result
excessive object creation) as instances will be destroyed from the pool if the
current pool size exceeds max-pool-size.

• Read only entity beans: If you have a regular BMP bean that never updates the
database, try using a read-only bean in its place. By default, a read-only bean
will work correctly only if the database row(s) represented by this bean are not
being changed in the background. In the Sun ONE application server,
read-only beans are supported only for bean managed persistence (BMP). A
read-only bean never updates the database (i.e., ejbStore is never called).
Consequently, there is a significant performance gain between a BMP bean and
a read-only bean. If a read-only bean's method is accessed with a transaction
(because the method descriptor in ejb-jar.xml is TX_REQUIRED or
TX_REQUIRES_NEW), the ejbLoad() is always called. You may want to access a
read-only bean method with a transaction if you want the cached data to
always be in sync with the database. Its the non-transactional accesses where
read-only beans perform at their best by avoiding the overhead of ejbLoad().
An important tunable to consider in this case is refresh-period-in-seconds.
The current implementation of the container for these beans is a pull-cache, i.e.
if for any beans instance, more than refresh-period-in-seconds time has
passed, a user access to this bean instance will first invoke a ejbLoad() on the
bean before executing any business methods. Tune this time to an appropriate
value, typically in minutes, where you anticipate the data to change. A good
example is when hosting a stock quote with 5 minute periods, i.e. 300 seconds
set as the refresh-period-in-seconds.

Performance Considerations for Various Types of EJBs

112 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

• Message driven beans: The container of these beans is a bit different than the
ones for the entity and session beans. In the MDB container of the current
version of the application server, session and threads are attached with the
beans in the MDB pool. This is a good pattern to pool the threads for executing
message driven requests in the container. Thus the bean pool should be given
an appropriate value, considering all the parameters of the server (taking other
applications into perspective). e.g. values greater than 500 will be
inappropriate.

The following figure shows the Administration interface for tuning the pool for
message driven beans.

NOTE If you have a regular BMP bean that updates the data cached by a
read-only bean, then consider using the programatic refresh feature
described in the Sun ONE Application Server Developer’s Guide to EJB
Technology.

NOTE If the beans are developed and deployed onto the application server
using Sun ONE Studio, then the user needs to edit the individual
bean descriptor settings for bean pool and bean cache. These
settings may not be suitable for production level deployment.

Performance Considerations for Various Types of EJBs

Chapter 4 Tuning Sun ONE Application Server 113

Figure 4-18 Configuring Message Driven Bean Container using the Administration
Interface

Related Considerations
Here are related considerations to keep in mind when using EJB’s.

• Remote vs Local interfaces

An EJB can have remote and local interfaces. Remote clients which are not
co-located in the same application server instance use the remote interface to
access the bean. Calls to the remote interface are more expensive as it involves
argument marshalling, transportation of the marshalled data over the network
and unmarshaling and dispatch at the receiving end. Local clients which are
co-located in the same application server instance can use the local interface of
a bean if provided. Using the local interface is more efficient as it does not
involve any argument marshalling, transportation and unmarshalling. The
arguments are passed by reference and this means that the passed objects are

Performance Considerations for Various Types of EJBs

114 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

shareable by the caller and callee (hence they need to be implemented
appropriately so that they are shareable). If a bean is written to be used only by
co-located clients then it makes sense to just provide the local interface for the
bean and have the clients use the local interface. If on the other hand the bean
is to be written in a location independent manner then both the remote and
local interface can be provided so that remote clients use the remote interface
and local clients can use the local interface for efficiency.

• Pass-by-value vs Pass-by-reference semantics

Using the remote and local interface appropriately it should be possible to
write beans that can be accessed by clients efficiently. But there may be some
instances where it may not be possible to use the local interface:

• The application predates EJB 2.0 specification and was written without any
local interfaces.

• There are bean to bean calls and the client beans are written without making
any co-location assumptions about the called beans.

For these cases Sun ONE Application Server 7.0 provides a pass-by-reference
option which can be used to indicate that when making calls to the remote
interface of the bean a co-located client can pass arguments by reference. By
default Sun ONE Application Server uses pass-by-value semantics for calling
the remote interface of a bean even if it is co-located. This can be quite
expensive as pass-by-value semantics involves making copies of the argument
before passing them. The pass-by-reference option can be specified at the entire
application level or on a per bean basis. If if is specified at the application level
then pass-by-reference semantics is used when passing arguments to the
remote interface of all beans in the application. If this option is specified at a
bean level then calls to the remote interface of the specified bean use the
pass-by-reference semantics. Please refer to Sun ONE Application Server EJB
Developers guide and Sun ONE Application Server Developers guide for more
details about the pass-by-reference flag.

• Transaction isolation levels:

With a clear idea on the application semantics with respect to transactions, one
can choose the correct isolation level for optimum performance. The following
are the transaction isolation levels listed in the order of performance from best
for performance to worst:

a. READ_UNCOMMITTED

b. READ_COMMITTED

c. REPEATABLE_READ

Performance Considerations for Various Types of EJBs

Chapter 4 Tuning Sun ONE Application Server 115

d. SERIALIZABLE

These values can be specified as a attribute of the database connection pool
(jdbc-connection-pool).

• From the EJB container point of view, the following transaction attributes can
be specified again from the following list. Options are listed in the order that is
best for performance to worst.

a. NEVER

b. TX_NOTSUPPORTED

c. TX_MANDATORY

d. TX_SUPPORTS

e. TX_REQUIRED

f. TX_REQUIRESNEW

Commit Options
Commit option controls the action taken by the container on a bean when the
transaction that the bean participated completes. Commit option has no effect on
the bean code (the bean developer need not worry about the commit options).
Commit option, however, has a significant impact on performance.

Sun ONE Application Server supports commit option B and commit option C.

Before we explain when to use the various commit options, let us describe what the
container does when these commit options are used.

In Commit option B, when a transaction completes, the bean is kept in the cache
and retains its identity. This means that the next invocation for the same primary
key can use the instance that is in the cache. Of course, the bean's ejbLoad will be
called before the method invocation to sync up with the database.

In case of Commit option C, when a transaction completes, the bean's
ejbPassivate() method is called, then the bean is disassociated from its primary
key and then it is returned to the free pool.This means that the next invocation for
the same primary key will have to grab a free bean from the pool, set the
PrimaryKey on this instance, and then call ejbActivate on the instance. Again, the
bean's ejbLoad will be called before the method invocation to sync up with the
database.

Performance Considerations for Various Types of EJBs

116 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

It is clear that Commit Option B avoids ejbAcivate and ejbPassivate calls. So,
in most cases commit option-B should perform better than commit option-C since
it avoids ejbActivate, ejbPassivate and some overhead in acquiring and
releasing objects back to pool. However, there are some cases where commit
option-C can do better. If the beans in the cache are very rarely reused and if beans
are constantly added to the cache, then it makes no sense to cache beans.

Commit option C does exactly that. When commit option C is used, the container
puts beans back into the pool (instead of caching the instance) after method
invocation or on transaction completion. This way instances are reused better and
the number of live objects in the VM is reduced resulting in smaller GC cycle.

How would you decide whether to use Commit option B or commit option C? First
take a look at the cache-hits value using the monitoring command for the bean. If
the cache-hits are very high compared to cache-misses, then commit-B option is an
appropriate choice. You may still have to change the max-cache-size and
cache-resize-quantity to get the best result. If the cache hits are too low and
cache misses are very high, then the application is not reusing the bean instances
and hence increasing the cache size (using max-cache-size) will not help
(assuming that the access pattern remains the same). In this case you may want to
use commit option-C. If there is no great difference between cache-hits and
cache-misses then you may have to tune max-cache-size, and probably
cache-idle-timeout-in-seconds.

The following figure shows the commit option settings.

Figure 4-19 Commit Option Settings

Performance Considerations for Various Types of EJBs

Chapter 4 Tuning Sun ONE Application Server 117

At any given instance of time, if monitoring is enabled for ejb-container, the
statistics for the individual beans can be examined and analyzed based on the bean
pool and cache settings can be tuned. The pool settings are valid for stateless
session and entity beans while the cache settings are valid for stateful session and
entity beans. The configuration for the container can be done at the server instance
level, via setting the properties in the server.xml file. These values can be
overwritten by specifying the values for the individual beans in the sun-ejb-jar.xml.
For a description of the tunables below, please refer to the EJB Descriptor
Properties section.

The settings that can be specified at the server instance level are:

• steady-pool-size

• pool-resize-quantity

• max-pool-size

• cache-resize-quantity

• max-cache-size

• pool-idle-timeout-in-seconds

• cache-idle-timeout-in-seconds

• removal-timeout-in-seconds

• victim-selection-policy

• commit-option

• log-level

• monitoring-enabled

The settings for the pool that can be specified at the bean level are:

• steady-pool-size

• resize-quantity

• max-pool-size

• pool-idle-timeout-in-seconds

The settings for cache that can be specified at the bean level are:

• max-cache-size

• resize-quantity

Performance Considerations for Various Types of EJBs

118 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

• is-cache-overflow-allowed

• cache-idle-timeout-in-seconds

• removal-timeout-in-seconds

• victim-selection-policy

The monitoring command below gives the Bean Cache statistics for a stateful
session bean. The following is a sample of the monitoring output:

$./asadmin get --user admin --password netscape --host e4800-241-a
--port 4848 -m
specjcmp.application.SPECjAppServer.ejb-module.supplier_jar.statefu
l-session-bean.BuyerSes.bean-cache.*

resize-quantity = -1

cache-misses = 0

idle-timeout-in-seconds = 0

num-passivations = 0

cache-hits = 59

num-passivation-errors = 0

total-beans-in-cache = 59

num-expired-sessions-removed = 0

max-beans-in-cache = 4096

num-passivation-success = 0

The monitoring command below gives the bean pool statistics for a Entity bean:

$./asadmin get --user admin --password netscape --host e4800-241-a
--port 4848 -m
specjcmp.application.SPECjAppServer.ejb-module.supplier_jar.statefu
l-entity-bean.ItemEnt.bean-pool.*

idle-timeout-in-seconds = 0

steady-pool-size = 0

total-beans-destroyed = 0

num-threads-waiting = 0

num-beans-in-pool = 54

max-pool-size = 2147483647

pool-resize-quantity = 0

Performance Considerations for Various Types of EJBs

Chapter 4 Tuning Sun ONE Application Server 119

total-beans-created = 255

The monitoring command below gives the bean pool statistics for a stateless bean.

$./asadmin get --user admin --password netscape --host e4800-241-a
--port 4848 -m
test.application.testEjbMon.ejb-module.slsb.stateless-session-bean.
slsb.bean-pool.*

idle-timeout-in-seconds = 200

steady-pool-size = 32

total-beans-destroyed = 12

num-threads-waiting = 0

num-beans-in-pool = 4

max-pool-size = 1024

pool-resize-quantity = 12

total-beans-created = 42

Tuning the bean involves charting out the behavior of the cache and pool for the
bean in question over a period of time. Some of the observations that can be made
are:

• If too many passivations are happening and the VM heap remains fairly small,
then the max-cache-size can be increased or the
cache-idle-timeout-in-seconds can be increased.

If too many GCs are happening and the pool size is growing, but the cache hit rate
is small, then the pool-idle-timeout-in-seconds can be reduced to destroy the
instances.

NOTE Specifying the max-pool-size as 0 means that the pool is
unbounded. The pooled beans remain in memory unless they are
removed by specifying a small interval for the
pool-idle-timeout-in-seconds. For production systems,
specifying the pool as unbounded is NOT recommended.

ORB Tuning

120 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

ORB Tuning
The Sun ONE Application Server includes a high performance and scalable
CORBA ORB (Object Request Broker). The ORB is the foundation of the EJB
Container on the server. Most of the functionality of the ORB is utilized when
exercising Enterprise Java Beans via:

1. RMI/ IIOP path from an application client (or rich client) using Application
client container.

2. RMI/ IIOP path from another Sun ONE Application Server instance ORB

3. RMI/ IIOP path from another vendor’s ORB

4. In-process path from the web/ MDB (message driven beans) container

When a connection is made from a server instance to another server instance ORB,
the first instance starts and acts as a client-side ORB. SSL over IIOP uses an
optimized transport that is one of the fastest, and utilizes native implementations
of cryptography algorithms to deliver high performance.

How a Client Connects to the ORB
A rich client Java program performs a new initialContext() call which creates a
client side ORB instance. This in turn creates a socket connection to the Sun ONE
Application Server IIOP port. The reader thread is started on the server ORB to
service IIOP requests from this client. Using the initialContext, the client code
does a lookup of an EJB deployed on the server. An IOR which is a remote
reference to the deployed EJB on the server is returned to the client. Using this
object reference, the client code invokes remote methods on the EJB.

InitialContext lookup for the bean and the method invocations translate the
marshalling application request data in Java into IIOP message(s) that are sent on
the socket connection that was created earlier on to the server ORB. The server then
creates a response and sends it back on the same connection. This data in the
response is then unmarshalled by the client ORB and given back to the client code
for processing. The Client ORB shuts down and closes the connection when the
rich client application exits.

ORB Tuning

Chapter 4 Tuning Sun ONE Application Server 121

Performance Tuning the ORB
A user may want to change the default setting, as well as add some non-standard
options in order to derive certain behavior from the configuration such as high
performance and scalability. The main components of the ORB that can be tuned
are:

• Inter-ORB Communication Infrastructure

• Server ORB thread pool

Response time can be decreased by leveraging load-balancing, multiple shared
connections, finely tuned server thread pool and message fragment size. Scalability
can be achieved by using multiple ORB servers and load balancing between them
from the client, and tuning the number of connection between the client and the
server(s).

ORB Tunables
The following sets of tunables are available on the ORB:

1. Inter-ORB Communication Infrastructure: The infrastructure allows for
tuning the message size, load balancing (in cases of heavy load), better
throughput, and high performance.

2. Server ORB Thread Pool: The ORB thread pool facilitates quick and
simultaneous job execution through configuration-controlled multi-threading.
Pooling threads mean that one can avoid overheads such as thread creation,
thread stack allocation, associated GC, etc. In some cases, excessive thread
creation and removal can lead to OutOfMemoryError, which the thread pool
prevents, by providing thresholds.

The ORB thread pool contains a task queue and a pool of threads. Tasks or jobs are
inserted into the task queue and free threads pick tasks from this queue for
execution. It is not advisable to always size a thread pool size such that the task
queue is always empty. It is normal for an intense application to have 1:10 ratio of
'current task queue size': max-thread-pool-size at any time. The thread pool has
capability to shrink to the steady size if current size is larger and when
max-thread-pool-size > steady-thread-pool-size is the configured setting.
The steady-thread-pool-size should be set to the average number of threads
needed at a steady (RMI/ IIOP) load.

In the current Application Server version, the ORB thread pool is used in two main
activities:

1. execution of every ORB request, and

ORB Tuning

122 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

2. trimming of EJB pools and caches.

Thus even when one is not using ORB for remote-calls (i.e. via RMI/ IIOP), the
thread pool should be sized so that cleaning-up activity of the EJB pools and caches
can be facilitated.

ORB Properties
The properties for tuning the ORBcan be managed using the Administration
interface.

Figure 4-20 Tuning the ORB Properties using the Administration Interface

The following standard properties are available to tune on the ORB:

ORB Tuning

Chapter 4 Tuning Sun ONE Application Server 123

• message-fragment-size: CORBA GIOPv1.2 messages (15.4.9) larger than this
size in bytes will be fragmented. All sizes should be multiples of 8. In GIOP
v1.2, a Request, Reply, LocateRequest and LocateReply message can be broken
into multiple fragments. The first message is a regular Request or Reply
message with more fragments bit in the flags field set to true. When inter-ORB
messages are mostly larger than the default size (1024 bytes), one can increase
this size to decrease latencies on the network due to fragmentation.

• steady-thread-pool-size: The minimum number of threads in the ORB
thread pool, should be close to the active number of thread needed to work on
requests (and EJB cleanup) at server's steady state (i.e. in steady load
conditions).

• max-thread-pool-size: The maximum number of threads in the ORB thread
pool.

• idle-thread-timeout-in-seconds: Timeout when an idle thread is removed
from pool. Allows shrinking of the thread pool.

• max-connections: Maximum number of incoming connections at any time, on
all listeners. Protects the server state by allowing finite number of connections.
This value equals also the the maximum number of threads that will be
actively reading from the connection.

• iiop-listener: Property to add a listener (SSL/ HTTP) to the ORB, specifying
the listener host and port. An enabled ORB listener translates to a thread
actively listening on the server socket for incoming connection connect
requests.

The following figure shows the Administration interface for the IIOP listener.

ORB Tuning

124 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

Figure 4-21 Tuning the ORB Listener using the Administration Interface

Non-standard ORB Properties and Functionality
The following values are specified as -D arguments when launching the client
program:

Controlling connections between client and server ORB
When using the default JDK ORB on the client, a connection is established from the
client ORB to the application server ORB every time an initial context is created.
One may wish to pool or share these connections when they are opened from the
same process by adding to the configuration on the client ORB -

-Djava.naming.factory.initial=com.sun.appserv.naming.S1ASCtxFactory

ORB Tuning

Chapter 4 Tuning Sun ONE Application Server 125

Using multiple connections for better throughput
When using the Sun One context factory,
(com.sun.appserv.naming.S1ASCtxFactory) an important tunable is to specify
the number of connections to open to the server from the client ORB (default is 1).
This feature is seen to produce better throughput to and from the server for
network intense application traffic. The configuration changes are specified on the
client ORB(s) by adding the following jvm-options:

-Djava.naming.factory.initial=com.sun.appserv.naming.S1ASCtxFactory

-Dcom.sun.appserv.iiop.orbconnections=[number]

Load balancing on server-side using configured DNS
One or multiple client ORBs can balance the load by utilizing a specially
configured DNS. This DNS is configured such that it internally contains a list for a
given host-name, so that every time an nslookup call is made, it iterates on the list
of IP-addresses, giving intrinsic load balancing feature. The user can also use the
connection pool specified in section 2.3.2 to specify the number of connections to
use. The configuration changes are specified on the client ORBs by adding the
following jvm-options:

-Djava.naming.factory.initial=com.sun.appserv.naming.S1ASCtxFactory

-Djava.naming.provider.url.pkgs=com.sun.enterprise.naming

-Djava.naming.provider.url=iiop://${SERVER_HOST}:${ORB_PORT}

Load-balancing on server-side using client configured server instances
One or multiple client ORBs can balance the load by a simple round-robin scheme
on multiple ORB listeners (or multiple distinct ORB processes). This configuration
is recommended in B2B scenarios, where there are controlled number of clients
generating load on the server(s) via the RMI/ IIOP path. The user can also use the
connection pool specified in section 2.3.2 to specify the number of connections to
use. The configuration changes are specified on the client ORBs by adding the
following jvm-options:

-Djava.naming.factory.initial=
com.sun.appserv.naming.S1ASCtxFactory

-Djava.naming.provider.url.pkgs=com.sun.enterprise.naming 5.

-Dcom.sun.appserv.iiop.loadbalancingpolicy=roundrobin,host1:port1,h
ost2:port2,... ,host[n]:port[n]

ORB Tuning

126 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

High performance CORBA Util Delegate class
When using JDK-bundled ORB or Sun ONE Application Server ORB, users can
benefit from a high performance CORBA Util Delegate implementation, that can be
used by adding to the configuration (server.xml)

<jvm-options>-Djavax.rmi.CORBA.UtilClass=com.iplanet.ias.util.orbut
il.IasUtilDelegate</jvm-options>

An important consideration when tuning the client ORB for load-balancing and
connections, is to consider the number of connections opened on the server ORB. It
is always advisable to start from a lower number of connections and grow
upwards to observe any performance benefits. A connection to the server
translated to an ORB thread reading actively from the connection (these threads are
not pooled, but exist currently for the lifetime of the connection).

Guide to using Tunables
The following table helps you identify the ORB modules and Server tunables
involved in tuning your application.

Table 4-4 Using Tunables

Path ORB modules involved Tunables involved on server

RMI/ IIOP from application
client to application server

communication
infrastructure, thread
pool

steady-thread-pool-size,
max-thread-pool-size,
idle-thread-timeout-in-seconds

RMI/ IIOP from Sun ONE
(server) ORB to Sun ONE
Application Server

communication
infrastructure, thread
pool

steady-thread-pool-size,
max-thread-pool-size,
idle-thread-timeout-in-seconds

RMI/ IIOP from a vendor ORB parts of communication
infrastructure, thread
pool

steady-thread-pool-size,
max-thread-pool-size,
idle-thread-timeout-in-seconds

In-process thread pool steady-thread-pool-size,
max-thread-pool-size,
idle-thread-timeout-in-seconds

ORB Tuning

Chapter 4 Tuning Sun ONE Application Server 127

Thread Pool Sizing
After examining the number of inbound and outbound connections as explained
above, users can tune the size of the thread pool appropriately. This can affect
performance and response times to a large degree.

The size computation should take into account the number of client requests to be
processed concurrently, the resource (number of cpus/memory) available on the
machine and the response times required for processing the client requests. Setting
the size to a very small value can affect the ability of the server to process requests
concurrently thus affecting the response times of requests as they will be sitting
longer in the task queue waiting for a worker thread to process it. On the other
hand having a large number of worker threads to service requests can also be
detrimental because more system resources are used up because of the large
number of threads, which- increases concurrency. This can mean that threads take
longer to acquire shared structures in the EJB container, thus affecting response
times The Worker thread pool is also used for the EJB containers house keeping
activity such as trimming the pools and caches. This activity needs to be accounted
for also when determining the size.

Having too many ORB worker threads is detrimental for performance since the
server has to maintain all these threads. The idle threads are destroyed after the
idle-thread-time-out-in-seconds. Below is a snipet from the server.xml. This
includes the section for iiop-service.

<iiop-service>

<orb message-fragment-size=1024

steady-thread-pool-size=10

max-thread-pool-size=200

idle-thread-timeout-in-seconds=300

max-connections=1024

monitoring-enabled=false />

<iiop-listener id=orb-listener-1 address=0.0.0.0 port=3700
enabled=true>

</ioop-listener>

Related Considerations

128 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

Related Considerations
Please refer to the Performance Tuning the EJB Container section for Pass-by-value
vs Pass-by-reference semantics considerations.

Examining IIOP Messages
It is sometimes useful to examine the contents of the IIOP messages being passed
by the Sun ONE Application Server. The option
-Dcom.sun.CORBA.ORBDebug=giop can be passed as jvm-options in server.xml to
get dumps of the messages. The dumps are produced in server.log. The same
option can also be used on the client ORB.

A sample output is as follows:

[29/Aug/2002:22:41:43] INFO (27179): CORE3282: stdout:
++++++++++++++++++++++++++++++

[29/Aug/2002:22:41:43] INFO (27179): CORE3282: stdout:
Message(Thread[ORB Client-side Reader, conn to
192.18.80.118:1050,5,main]):

createFromStream: type is 4 <

[29/Aug/2002:22:41:43] INFO (27179): CORE3282: stdout:
MessageBase(Thread[ORB Client-side Reader, conn to
192.18.80.118:1050,5,main]): Message GIOP version: 1.2

[29/Aug/2002:22:41:43] INFO (27179): CORE3282: stdout:
MessageBase(Thread[ORB Client-side Reader, conn to
192.18.80.118:1050,5,main]): ORB Max GIOP Version: 1.2

[29/Aug/2002:22:41:43] INFO (27179): CORE3282: stdout:
Message(Thread[ORB Client-side Reader, conn to
192.18.80.118:1050,5,main]): createFromStream: message construction
complete.

[29/Aug/2002:22:41:43] INFO (27179): CORE3282: stdout:
com.sun.corba.ee.internal.iiop.MessageMediator(Thread[ORB
Client-side Reader, conn to 192.18.80.118:1050,5,main]): Received
message:

[29/Aug/2002:22:41:43] INFO (27179): CORE3282: stdout: ----- Input
Buffer -----

[29/Aug/2002:22:41:43] INFO (27179): CORE3282: stdout: Current
index: 0

[29/Aug/2002:22:41:43] INFO (27179): CORE3282: stdout: Total length
: 340

Tuning the Transaction Manager

Chapter 4 Tuning Sun ONE Application Server 129

[29/Aug/2002:22:41:43] INFO (27179): CORE3282: stdout: 47 49 4f 50
01 02 00 04 0 0 00 01 48 00 00 00 05 GIOP.......H....

Fragmented Messages
In this sample output above, the "createFromStream" type is shown as 4. This
implies that the message is a fragment of a bigger message. One could change the
fragment size to avoid fragmented messages. This would mean that messages
would be sent as one unit and not as fragments thus saving the overhead of
sending multiple messages and corresponding processing at the receiving end to
piece the messages together. It might be more efficient to increase the fragment size
if most messages being sent in the application turn out to be fragmented because of
a low fragment size specification. On the other hand if only a few messages are
fragmented, it might be more efficient to have a lower fragment size as this would
mean smaller buffers would be allocated for writing messages and only the
occasional message would end up getting fragmented.

Local Interfaces for EJB's
It is important to remember that the ORB is not used when using Local Interfaces
for EJB's. In this situation, all arguments are passed by reference and no object
copying is involved.

Tuning the Transaction Manager
A distributed transactional system writes transactional activity into transaction
logs so that they can be recovered later. But writing transactional logs will
have some performance penalty. This property can be used to disable the
transaction logging, where the performance is of utmost importance more than the
recovery. This property, by default, won’t exist in the server.xml.

The automatic-recovery and key-point-interval attributes have an impact on
performance when using the transaction manager. When automatic-recovery is
set to true, disable-distributed-transaction-logging will not be considered
and transaction logging will always happen. If automatic-recovery is set to false,
disable-distributed-transaction-logging will be considered to determine
whether to write transaction logs or not.

NOTE The flag -Dcom.sun.CORBA.ORBdebug=giop generates many debug
messages in the logs. This should be used only when the user
suspects message fragmentation.

Tuning the Transaction Manager

130 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

automatic-recovery
This value, together with disable-distributed-transaction-logging attribute,
has some impact on performance. Here is how it works.

1. If automatic-recovery is true, transaction logs will always be written.

2. If automatic recovery is false and
disable-distributed-transaction-logging is off (default case), then the
logs will be written.

3. If automatic recovery is false and
disable-distributed-transaction-logging is on, then the transaction logs
will not be written. This will give approximately 20% improvement in
performance but at the cost of not recovering as there won't be any transaction
logs. In other words, transaction logging in case 1and 2 results in
approximately 20% impact. All these results apply only to global transactions
intensive tests. Gains in real applications may be less.

keypoint-interval
The default value of this attribute is 2048. Key pointing prevents the physical log
for a process from growing indefinitely by defining the frequency at which the log
file may be cleaned up by removing entries for completed transactions. Frequent
checkpointing is deritmental for performance. In most of the cases, the default
value is good enough.

The following figure shows the Administration interface for configuring the
transaction manager.

Tuning the Transaction Manager

Chapter 4 Tuning Sun ONE Application Server 131

Figure 4-22 Tuning the Transaction Service using the Administration Interface

Transaction Manager Monitoring
Users can monitor the Transaction Manager to obtain performance statistics. To
generate these statistics, use the following command using the asadmin utility:

asadmin>export AS_ADMIN_USER=admin AS_ADMIN_PASSWORD=password
AS_ADMIN_HOST=localhost
asadmin>get -m server1.transaction-service.*

The following is the sample output of the above command:

Tuning the Transaction Manager

132 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

********** Stats for JTS ************

total-tx-completed = 244283

total-tx-rolled-back = 2640

total-tx-inflight = 702

isFrozen = False

inflight-tx =
Transaction Id , Status, ElapsedTime(msec)

000000000003C95A_00, Active, 999

References
• For details on profiling, see the Sun ONE Application Server Developer’s Guide,

chapter on Developing J2EE Applications; specifically the section titled Profiling
Tools.

• For more details on SNMP monitoring see the Sun ONE Application Server
Administrator’s Guide, the chapter on Monitoring and Managing Sun ONE
Applications.

• for more details on the server.xml file see the Sun ONE Application Server
Configuration File Reference

133

Chapter 5

Tuning the Java Runtime System

The Solaris operating environment, by default, supports a two level thread model
(up to Solaris 8). Application level Java threads are mapped to user level Solaris
threads, which are multiplexed on a limited pool of light weight processes (LWPS).
Often, we need only as many LWPS as there are processors on the system, leading
to conserved kernel resources and greater system efficiency. This helps when there
are hundreds of user level threads. Fortunately (or unfortunately), you can choose
from multiple threading models and different methods of synchronization within
the model, but this varies from VM to VM. Adding to the confusion, the threads
library will be transitioning from Solaris 8 to 9, eliminating many of the choices.
Although we have a 2 level model, in the 1.4 VM, we have an effectively 1-to-1
thread/lwp model since the VM used LWP based sync by default.

The following topics are discussed in this chapter:

• Using Alternate Threads

• Managing Memory and Allocation

Using Alternate Threads
You can try to load the alternate libthread.so in /usr/lib/lwp/ on Solaris 8 by
changing your LD_LIBRARY_PATH to include /usr/lib/lwp before /usr/lib. Both
give better throughput and system utilization for certain applications; especially
those using fewer threads.

By default, the Sun ONE Application Server uses /usr/lib/lwp. You can change
the default settings to not use the LWP by removing /usr/lib/lwp from the
LD_LIBRARY_PATH in the startserv script, but should be avoided unless required.

Managing Memory and Allocation

134 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

For applications using many threads, /usr/lib/libthread.so is the best library
to use. Of course, see using -Xconcurrentio for applications with many threads as
this will not only turn on LWP based sync, the default in 1.4, but also turn off
TLABS, or thread local allocation buffers, which can chew up the heap and cause
premature gcs.

To further examine the threading issues on Solaris with Java, see
http://java.sun.com/docs/hotspot/threads/threads.html

Managing Memory and Allocation
The efficient running of any application depends on how well memory and
garbage collection are managed. The following sections provide information on
optimizing memory and allocation functions:

• Tuning the Garbage Collector

• Specifying Other Garbage Collector Settings

• Tracing Garbage Collection

• Tuning the Java Heap

• HotSpot Virtual Machine Tuning Options

Tuning the Garbage Collector
Garbage collection reclaims the heap space previously allocated to objects no
longer needed.The process of locating and removing the dead objects can stall any
application while consuming as much as 25 percent throughput.

Almost all Java Runtime Environments come with a generational object memory
system and sophisticated garbage collection algorithms. A generational memory
system divides the heap into a few carefully sized partitions called generations. As
these objects accumulate a low memory condition occurs forcing garbage collection
to take place. The efficiency of a generational memory system is based on the
observation that most of the objects are short lived.The heap space is divided into
the old and the new generation.

The new generation includes the new object space (Eden), and two survivor spaces.
New objects allocate in eden. Longer lived objects are moved from the new
generation and tenured to the old generation.

http://java.sun.com/docs/hotspot/threads/threads.html

Managing Memory and Allocation

Chapter 5 Tuning the Java Runtime System 135

The young generation uses a fast copying garbage collector which employs two
semi-spaces (survivor spaces) in the eden, copying surviving objects from one
survivor space to the second. Objects that survive multiple young space collections
are tenured -- copied to a tenured generation. The tenured generation is larger and
fills up less quickly. So, it is garbage collected less frequently; and each collection
takes longer than a young space only collection. Collecting the tenured space is
also referred to as doing a full Generation Collection (GC).

The frequent young space collections are quick (few milliseconds), and the
occasional full GC takes a relatively longer time (tens of milliseconds to even a few
seconds, depending upon the heap size).

Other garbage collection algorithms, such as the Train algorithm, are incremental.
They chop down the full GC into several incremental pieces. This provides a high
probability of small garbage collection pauses even when full GC takes affect. This
comes with an overhead and is not required for enterprise web applications.

When the new generation fills up, it triggers a minor collection in which the
surviving objects are moved to the old generation. When the old generation fills
up, it triggers a major collection which involves the entire object heap.

Both HotSpot and Solaris JDK use thread local object allocation pools for lock-free,
fast, and scalable object allocation. User application level object pooling may have
been more beneficial running on earlier generation Java Virtual Machines.
Consider pooling only if the object construction cost is very high and shows up
being significant in the execution profiles.

For detail information on Tuning Garbage Collection, see
http://java.sun.com/docs/hotspot/gc/index.html

Tracing Garbage Collection
Two primary measures of garbage collection performance are Throughput and
Pauses. Throughput is the percentage of the total time spent on other activities
apart from garbage collection.

Pauses are times when an application appears unresponsive due to garbage
collection. Users can have different requirements of garbage collection. A server
centric application may consider throughput to be a metric, but a short pause may
upset a graphical program. There are two other considerations - Footprint and
promptness.

http://java.sun.com/docs/hotspot/gc/index.html

Managing Memory and Allocation

136 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

Footprint
Footprint is the working set of a process, measured in pages and cache lines.
Promptness is the time between when an object becomes dead, and when the
memory becomes available. This is an important consideration for distributed
systems.

A particular generation sizing chooses a trade-off between these considerations. A
very large young generation may maximize the throughput, but does so at the
expense of footprint and promptness. Pauses can be minimized by using a small
young generation and incremental collection.

Pauses due to Generation Collection are inspected by diagnostic output of the Java
Virtual Machine. The command line argument "-verbose:gc" prints information
at every collection. Below is a sample output of the information generated when
this flag is passed to the Java Virtual Machine.

[GC 50650K->21808K(76868K), 0.0478645 secs]
[GC 51197K->22305K(76868K), 0.0478645 secs]
[GC 52293K->23867K(76868K), 0.0478645 secs]
[Full GC 52970K->1690K(76868K), 0.54789968 secs]

The numbers before and after the arrows indicate the combined size of live objects
before and after the collection. The number in the parenthesis is the total available
space, which is the total heap minus one of the survivor spaces. In this sample,
there are three minor collections and one major collection. In the first GC, 50650 KB
of objects existed before collection and 21808 KB of objects after collection. This
means that 28842 KB of objects were dead and collected. The total heap size is
76868 KB. The collection process required 0.0478645 seconds.

Specifying Other Garbage Collector Settings
For applications which dynamically generate and load classes, permanent
generation is not relevant to the GC performance. For applications which
dynamically generate and load classes (JSP's), the permanent generation is relevant
to the GC performance, as filling the permanent generation can trigger a Full GC.
The maximum permanent generation can be tuned with -XX:MaxPermSize option.

Applications can interact with the garbage collection by invoking collections
explicitly through the System.gc() call. But, relying on the application to manage
the resources is a bad idea since these force major collections, and inhibit scalability
on large systems. This can be disabled by using the flag -XX:+DisableExplicitGC.

Managing Memory and Allocation

Chapter 5 Tuning the Java Runtime System 137

The Sun ONE Application Server uses RMI in the Administration module for
monitoring. Garbage cannot be collected in RMI based distributed applications
without occasional local collections, so RMI forces a periodic full collection. The
frequency of these collections can be controlled with the property
-sun.rmi.dgc.client.gcInterval. For example, - java
-Dsun.rmi.dgc.client.gcInterval=3600000 specifies explicit collection once
per hour instead of the default rate of once per minute.

To specify the attributes for the Java virtual machine:

• Edit the server.xml by hand and manually add <jvm-config>vm

tunable</jvm-config> where vm tunable is the tuning that the user wants to
apply.

• Using the administration interface and JVM settings | JVM options.

Tuning the Java Heap
This section discusses topics related to tuning the Java Heap for performance.

• Guidelines for Java Heap Sizing

• Sample Heap Configuration on Solaris

• Sample Heap Configuration on Windows

Guidelines for Java Heap Sizing
You can control the heap size using various parameters.

The -Xms and -Xmx parameters defines the minimum and maximum heap sizes.
Since collections occur when the generations fill up, throughput is inversely
proportional to the amount of the memory available. By default, the JVM grows or
shrinks the heap at each collection to try to keep the proportion of free space to the
living objects at each collection within a specific range. This range is set as a
percentage by the parameters -XX:MinHeapFreeRatio=<minimum> and
-XX:MaxHeapFreeRatio=<maximum>; and the total size bounded by -Xms and -Xmx.

Server side applications set the values of -Xms and -Xmx equal to each other for a
fixed heap size. When the heap grows or shrinks, the JVM must recalculate the old
and new generation sizes to maintain a predefined NewRatio.

Managing Memory and Allocation

138 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

The NewSize and MaxNewSize parameters control the new generation's minimum
and maximum size. You can regulate the new generation size by setting these
parameters equal. The bigger the younger generation, the less often minor
collections occur. By default, the young generation is controlled by NewRatio. For
example, setting -XX:NewRatio=3 means that the ratio between the old and young
generation is 1:3, the combined size of eden and the survivor spaces will be fourth
of the heap. In order to be safe, set the NewSize/MaxNewSize to the same value.

By default, the Sun ONE Application Server is invoked with the Java HotSpot
Server JVM. The default NewRatio for the Server JVM is 2, the old generation
occupies 2/3 of the heap while the new generation occupies 1/3. The larger new
generation can accommodate many more short lived objects, decreasing the need
for slow major collections. The old generation is still sufficiently large enough to
hold many long-lived objects.

The following are important guidelines for sizing Java heap.

• Decide the total amount of memory you can afford to the JVM. Accordingly,
graph your own performance metric against young generation sizes to find the
best setting.

• Make plenty of memory available to the young generation, the default for 1.4 is
calculated from NewRatio and the -Xmx setting.

• Larger Eden or younger generation spaces increase the spacing between full
garbage collections. But young space collections could take a proportionally
longer time. In general, you could keep the eden size between 1/4th and 1/3rd
the maximum heap size.

Old generation must be typically larger than the new generation.

Survivor Ratio Sizing
The SurvivorRatio parameter controls the size of the two survivor spaces. For
example, -XX:SurvivorRatio=6 sets the ratio between each survivor space and
eden to be 1:6, each survivor space will be one eighth of the young generation.
With JDK 1.4, the Solaris default is 32. If survivor spaces are too small, copying
collection overflows directly into the old generation. If survivor spaces are too
large, they will be empty. At each garbage collection, the JVM chooses a threshold
number of times an object can be copied before it is tenured.

This threshold is chosen to keep the survivors half full.

The option -XX:+PrintTenuringDistribution can be used to show the threshold
and ages of the objects in the new generation. It is useful for observing the lifetime
distribution of an application.

Managing Memory and Allocation

Chapter 5 Tuning the Java Runtime System 139

For up-to-date defaults, refer to
http://java.sun.com/docs/hotspot/VMOptions.html

Sample Heap Configuration on Solaris

This is a sample heap configuration used by Sun ONE Application server for heavy
server-centric applications, on Solaris, as set in the server.xml file.

<jvm-options> -Xms3584m </jvm-options>

<jvm-options> -Xmx3584m </jvm-options>

<jvm-options> -verbose:gc </jvm-options>

<jvm-options> -Dsun.rmi.dgc.client.gcInterval=3600000
</jvm-options>

Sample Heap Configuration on Windows
This is a sample heap configuration used by Sun ONE Application server for heavy
server-centric applications, on Windows, as set in the server.xml file.

<jvm-options> -Xms1400m </jvm-options>

<jvm-options> -Xmx1400m </jvm-options>

HotSpot Virtual Machine Tuning Options
HotSpot is a just-in-time byte-code compiler to improve the performance of Java
applications. It can be highly tuned for performance. When using the Sun ONE
Application Server examine the HotSpot documentation to see if the JVM is tuned
appropriately.

The following web pages are recommended:

• Java HotSpot VM Options
http://java.sun.com/docs/hotspot/VMOptions.html

• Frequently Asked Questions About the Java HotSpot Virtual Machine
http://java.sun.com/docs/hotspot/PerformanceFAQ.html

http://java.sun.com/docs/hotspot/VMOptions.html
http://java.sun.com/docs/hotspot/VMOptions.html
http://java.sun.com/docs/hotspot/PerformanceFAQ.html

Managing Memory and Allocation

140 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

141

Chapter 6

Tuning Operating System

Tuning Solaris TCP/IP settings benefits programs that open and close many
sockets. The Sun ONE Application Server operates with a small fixed set of
connections and the performance gain may not be as significant on the Application
Server node. Improvements for the Web Server, configured as a Web front-end to
Sun ONE Application Server, can have significant benefits. The following topics
are discussed:

• Tuning Parameters

• Solaris File Descriptor Setting

• Linux Configuration

Tuning Parameters
The following table shows the operating system tuning, for Solaris, used when
benchmarking for performance and scalability. These values are an example of
how you may tune your system to achieve the desired result.

Table 6-1 Tuning the Solaris Operating System

Parameter Scope Default Value Tuned Value Comments

rlim_fd_max /etc/system 1024 8192 Process open file descriptors
limit; should account for the
expected load (for the associated
sockets, files, pipes if any).

rlim_fd_cur /etc/system 1024 8192

Tuning Parameters

142 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

sq_max_size /etc/system 2 0 Controls streams driver queue
size; setting to 0 makes it infinity
so the performance runs wont be
hit by lack of buffer space. Set on
clients too.

tcp_close_wait_interval ndd /dev/tcp 240000 60000 Set on clients as well.

tcp_time_wait_interval ndd /dev/tcp 240000 60000

tcp_conn_req_max_q ndd /dev/tcp 128 1024

tcp_conn_req_max_q0 ndd /dev/tcp 1024 4096

tcp_ip_abort_interval ndd /dev/tcp 480000 60000

tcp_keepalive_interval ndd /dev/tcp 7200000 900000 For high traffic web sites lower
this value.

tcp_rexmit_interval_initial ndd /dev/tcp 3000 3000 If retransmission is greater than
30-40%, you should increase this
value.

tcp_rexmit_interval_max ndd /dev/tcp 240000 10000

tcp_rexmit_interval_min ndd /dev/tcp 200 3000

tcp_smallest_anon_port ndd /dev/tcp 32768 1024 Set on clients too.

tcp_slow_start_initial ndd /dev/tcp 1 2 Slightly faster transmission of
small amounts of data.

tcp_xmit_hiwat ndd /dev/tcp 8129 32768 To increase the transmit buffer.

tcp_recv_hiwat ndd /dev/tcp 8129 32768 To increase the transmit buffer.

tcp_conn_hash_size ndd /dev/tcp 512 8192 The connection hash table keeps
all the information for active
TCP connections (ndd -get
/dev/tcp tcp_conn_hash). This
value does not limit the number
of connections, but it can cause
connection hashing to take
longer. To make lookups more
efficient, set the value to half of
the number of concurrent TCP
connections that you expect on
the server (netstat -nP tcp|wc -l,
gives you a number). It defaults
to 512. This can only be set in
/etc/system and becomes
effective at boot time.

Table 6-1 Tuning the Solaris Operating System (Continued)

Solaris File Descriptor Setting

Chapter 6 Tuning Operating System 143

Solaris File Descriptor Setting
On Solaris, setting the maximum number of open files property using ulimit has
the biggest impact on your efforts to support the maximum number of RMI/IIOP
clients.

To increase the hard limit, add the following command to /etc/system and reboot
it once:

set rlim_fd_max = 8192

You can verify this hard limit by using the following command:

ulimit -a -H

Once the above hard limit is set, you can increase the value of this property
explicitly (up to this limit) using the following command:

ulimit -n 8192

You can verify this limit by using the following command:

ulimit -a

For example, with the default ulimit of 64, a simple test driver can support only 25
concurrent clients, but with ulimit set to 8192, the same test driver can support
120 concurrent clients. The test driver spawned multiple threads, each of which
performed a JNDI lookup and repeatedly called the same business method with a
think (delay) time of 500ms between business method calls, exchanging data of
about 100KB.

These settings apply to RMI/IIOP clients (on Solaris). Refer to Solaris
documentation on the Sun Microsystems documentation web site
(www.docs.sun.com) for more information on setting the file descriptor limits.

Linux Configuration
The following parameters must be added to the /etc/rc.d/rc.local file that gets
executed furing system start-up.

<-- begin

#max file count updated ~256 descriptors per 4Mb. Based on the
amount of RAM you have on the system, specify the number of file
descriptors.
echo “65536“ > /proc/sys/fs/file-max

Linux Configuration

144 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

#inode-max 3-4 times the file-max
#file not present!!!!!
#echo “262144“ > /proc/sys/fs/inode-max

#make more local ports available
echo 1024 25000 > /proc/sys/net/ipv4/ip_local_port_range

#increase the memory available with socket buffers
echo 2621143 > /proc/sys/net/core/rmem_max
echo 262143 > /proc/sys/net/core/rmem_default

#above configuration for 2.4.X kernels
echo 4096 131072 262143 > /proc/sys/net/ipv4/tcp_rmem
echo 4096 13107262143 > /proc/sys/net/ipv4/tcp_wmem

#disable “RFC2018 TCP Selective Acknowledgements,“ and “RFC1323 TCP
timestamps“
echo 0 > /proc/sys/net/ipv4/tcp_sack
echo 0 > /proc/sys/net/ipv4/tcp_timestamps

#double maximum amount of memory allocated to shm at runtime
echo “67108864“ > /proc/sys/kernel/shmmax

#improve virtual memory VM subsystem of the Linux
echo “100 1200 128 512 15 5000 500 1884 2“> /proc/sys/vm/bdflush

#we also do a sysctl
sysctl -p /etc/sysctl.conf

-- end -->

Additionally, create an /etc/sysctl.conf file and append it with the following
values:

<-- begin
#Disables packet forwarding
net.ipv4.ip_forward = 0
#Enables source route verification
net.ipv4.conf.default.rp_filter = 1
#Disables the magic-sysrq key
kernel.sysrq = 0
fs.file-max=65536

vm.bdflush = 100 1200 128 512 15 5000 500 1884 2

net.ipv4.ip_local_port_range = 1024 65000
net.core.rmem_max= 262143
net.core.rmem_default = 262143

net.ipv4.tcp_rmem = 4096 131072 262143
net.ipv4.tcp_wmem = 4096 131072 262143
net.ipv4.tcp_sack = 0
net.ipv4.tcp_timestamps = 0

Linux Configuration

Chapter 6 Tuning Operating System 145

kernel.shmmax = 67108864

Linux Configuration

146 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

147

Chapter 7

Common Performance Problems

This section discusses a few common web site performance problems to check for:

• check-acl Server Application Functions

• Low-Memory Situations

• Under-Throttled Server

• Cache Not Utilized

• Keep-Alive Connections Flushed

• Log File Modes

check-acl Server Application Functions
For optimal performance of your server, use ACLs only when required.

The default server is configured with an ACL file containing the default ACL
allowing write access to the server only to `all', and an es-internal ACL for
restricting write access for `anybody'. The latter protects the manuals, icons, and
search UI files in the server.

The default obj.conf file has NameTrans lines mapping the directories that need to
be read-only to the es-internal object, which in turn has a check-acl SAF for the
es-internal ACL.

The default object also contains a check-acl SAF for the "default" ACL.

You can improve your server's performance by removing the aclis properties from
virtual server tags in server.xml. This stops any ACL processing.

Low-Memory Situations

148 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

You can also improve performance by removing the check-acl SAF from the
default object for URIs that are not protected by ACLs.

Low-Memory Situations
If you need Sun ONE Application Server to run in low-memory situations, reduce
the thread limit to a bare minimum by lowering the value of RqThrottle. Also,
you may want to reduce the maximum number of processes that the Sun ONE
Application Server will spawn by lowering the value of the MaxProcs value.

Under-Throttled Server
The server does not allow the number of active threads to exceed the thread limit
value. If the number of simultaneous requests reaches that limit, the server stops
servicing new connections until the old connections are freed up. This can lead to
increased response time.

In Sun ONE Application Server, the server's default RqThrottle value is 128. If
you want your server to process more requests concurrently, you need to increase
the RqThrottle value.

The symptom of an under-throttled server is a server with a long response time.
Making a request from a browser establishes a connection fairly quickly to the
server, but on under-throttled servers it may take a long time before the response
comes back to the client.

The best way to tell if your server is being throttled is to see if the number of active
sessions is close to, or equal to, the maximum number allowed via RqThrottle. To
do this, see Maximum Simultaneous Requests.

Cache Not Utilized
If the cache is not utilized, your server is not performing optimally. Since most sites
have lots of GIF or JPEG files that should always be cacheable, you need to use
your cache effectively.

Keep-Alive Connections Flushed

Chapter 7 Common Performance Problems 149

Some sites, however, do almost everything through CGIs, SHTML, or other
dynamic sources. Dynamic content is generally not cacheable, and inherently
yields a low cache hit rate. Don't be too alarmed if your site has a low cache hit rate.
The most important thing is that your response time is low. You can have a very
low cache hit rate and still have very good response time. As long as your response
time is good, you may not care that the cache hit rate is low.

Check your Hit Ratio using statistics from perfdump or the Monitor Current
Activity page of the web-based Admin Console. The hit ratio is the percentage of
times the cache was used with all hits to your server. A good cache hit rate is
anything above 50%. Some sites may even achieve 98% or higher.

In addition, if you are doing a lot of CGI or NSAPI calls, you may have a low cache
hit rate. If you have custom NSAPI functions, you may have a low cache hit rate.

Keep-Alive Connections Flushed
A web site that might be able to service 75 requests per second without keep-alive
connections, may be able to do 200-300 requests per second when keep-alive is
enabled. Therefore, as a client requests various items from a single page, it is
important that keep-alive connections are being used effectively. If the
KeepAliveCount exceeds the MaxKeepAliveConnections, subsequent keep-alive
connections will be closed, or `flushed', instead of being honored and kept alive.

Check the KeepAliveFlushes and KeepAliveHits values using statistics from
perfdump or the Monitor Current Activity page of the web-based Admin Console.
On a site where keep-alive connections are running well, the ratio of
KeepAliveFlushes to KeepAliveHits is very low. If the ratio is high (greater than
1:1), your site is probably not utilizing keep-alive connections as well as it could.

To reduce keep-alive flushes, increase the MaxKeepAliveConnections value in the
init.conf file or the web-based Admin Console. The default value is 200. By raising
the value, you keep more waiting keep-alive connections open.

CAUTION On Unix/Linux systems, if you increase the MaxKeepAliveConnections
value too high, the server can run out of open file descriptors. Typically 1024
is the limit for open files on Unix/Linux, so increasing this value above 500
is not recommended.

Log File Modes

150 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

Log File Modes
Keeping the log files on verbose mode can have a significant affect of performance.
You can set LogVerbose to any level higher than FINE using the web-based Admin
Console.

Section A

Index 151

Index

A
Acceptor Threads 57, 89
AcceptTimeOut 92
ACL 147
ACL User Cache 84
ACLCacheLifetime 85
ACLGroupCacheSize 85
aclis properties 147
ACLUserCacheSize 85
Address 56
AddrLookups 73
Alternate Thread Library 91
Application Design and Implementation 32
appservd 15, 18
Arrays 37
Average Queuing Delay 55

B
Busy Functions 75

C
Cache 64
cache hit rate 149
Cache Not Utilized 148
cached bean 42
CacheEntries 65, 72
cache-idle-timeout-in-seconds 105
cache-resize-quantity 105
CGIStub 92
check-acl Server Application 147
CMP Mapping 21
command line interface 18
Commit options 115
commit-option 106
configured DNS 125
Connection Pool Tuning 96
ConnQueueSize 54
context factory 125
CORBA 126
Current /peak /limit 54

D
database servers

tuning 141

Section E

152 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

datasource-classname 97
DB2 16
DNS Cache 71
DNS Lookups 72

E
EJB 40
EJB Cache 108
EJB Container 102, 103
EJB Descriptor Properties 104
EJB Pool and Cache 41
Entity beans 110
es-internal object 147
Examining IIOP Messages 128

F
fail-all-connections 98
File Cache 78
finalizers 38
find-pathinfo-forward 94
Footprint 136
Fragmented Messages 129

G
Garbage Collector 134
generational object memory 134
Generic Thread Pools 69

H
Hit Ratio 65, 149
HitRatio 72

HotSpot 135, 139
HTTP Listener Information

tuning 55
Http Listener Information 55
HTTP server instances 45
HttpSession 101

I
Idle/Peak/Limit 69
idle-thread-timeout-in-seconds 123
idle-timeout-in-seconds 98
Informix 16
Inter-ORB Communication Infrastructure 121
iop-listener 123
is-cache-overflow-allowed 105
is-connection-validation-required 98
is-isolation-level-guaranteed 98

J
J2EE Programming Guidelines 39
Java Coding Guidelines 37
Java Heap 137
Java Performance 91
JDBC 43
JDBC Connection Pools 96
JMS 43
JSP 39
JSP and Servlet Tuning 101

K
Keep-Alive Connections 149
Keep-Alive/Persistent Connection 59
KeepAliveCount 60, 149
KeepAliveFlushes 61, 149

Section L

Index 153

KeepAliveHits 61, 149
KeepAliveQueryMeanTime 62
KeepAliveThreads 60
KeepAliveTimeout 61

L
light weight processes 133
Load balancing 125
Local Interfaces 129
Log File Modes 150
LogVerbose 150
long response time 148
LookupsInProgress 73
low-memory situations 148
lwps 133

M
max-cache-size 105
max-connections 123
Maximum Age 65
MaxKeepAliveConnections 149
MaxNewSize 138
max-pool-size 97, 105
MaxProcs 148
max-thread-pool-size 123
max-wait-time-in-millis 97, 105
Message driven beans 112
message-fragment-size 123

N
name 97
NameLookups 73
NameTrans 147
Native Thread 68

NativePoolMaxThreads 71
NativePoolMinThreads 71
NativePoolQueueSize 70
NativePoolStackSize 70
NewRatio 137
NewSize 138
-nolocalstubs flag 40
nostat 94
NSAPI functions 149
NSAPI performance profiling 49
NSPR 68

O
open file descriptors 149
operational requirements 24
Oracle 16
ORB Properties 122
ORB tuning 120

P
Pass-by-reference 114
Pass-by-value 114
Pauses 135
perfdump 46, 49, 54, 56, 63
performance

general guidelines 31
Performance Buckets 75
Performance Report 77
pooled bean 42
pool-idle-timeout-in-seconds 105
pool-resize-quantity 98, 105
Pre-compiled JSPs 91
profiling 49

Section R

154 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

R
Read only beans 111
refresh-period-in-seconds 106
Remote vs Local interfaces 113
removal-timeout-in-seconds 106
res-type 97
rlim_fd_cur 141
rlim_fd_max 141
rmic 40
RqThrottle 148

S
Safety Margins 32
serialization 37
Server ORB Thread Pool 121
server.xml 97
servlets 39
Session Creation 63
simultaneous requests 148
Solaris JDK 135
sq_max_size 142
Stateful session beans 110
statefull session beans 41
Stateless session beans 111
stateless session beans 41
stats-xml 46
steady-pool-size 97, 104
steady-thread-pool-size 123
Sun customer support 13
Sun ONE Studio 4 18
-sun.rmi.dgc.client.gcInterval 137
Survivor Ratio Sizing 138
Sybase 16
System.gc() 136

T
tcp_close_wait_interval 142
tcp_conn_hash_size 142
tcp_conn_req_max_q 142
tcp_conn_req_max_q0 142
tcp_ip_abort_interval 142
tcp_keepalive_interval 142
tcp_recv_hiwat 142
tcp_rexmit_interval_initial 142
tcp_rexmit_interval_max 142
tcp_rexmit_interval_min 142
tcp_slow_start_initial 142
tcp_smallest_anon_port 142
tcp_time_wait_interval 142
tcp_xmit_hiwat 142
thread limit 148
Thread Pool Sizing 127
Thread Pools 66
Throughput 135
Total Connections Queued 55
Transaction management for CMT 114
transaction-isolation-level 98
Transactions 42

U
ulimit 143
Under-Throttled Server 148
update-interval 48
UseNativePoll 62
User Load 31

V
victim-selection-policy 106
virtual-servers 48

Section W

Index 155

W
Work Queue Length 69

X
-Xms 137
-Xmx 137
-XX

+DisableExplicitGC 136
MaxHeapFreeRatio 137
MaxPermSize 136
MinHeapFreeRatio 137

Section X

156 Sun ONE Application Server 7 • Performance Tuning Guide • March 2003

	Performance Tuning Guide
	Contents
	About This Guide
	Overview
	Platform Edition
	Standard Edition
	Enterprise Edition

	Using the Documentation
	Documentation Conventions
	General Conventions
	Conventions Referring to Directories

	Product Support
	What’s in this Guide
	What You Should Know
	How This Guide is Organized

	About Sun ONE Application Server
	Server Components
	Application Server Processes
	Databases

	Server Architecture
	Server Tools
	Server Administration Interface
	Sun ONE Studio 4

	About Sun ONE Application Server Performance
	Why Tune Application Server?
	Understanding Operational Requirements
	Application Architecture
	Security Requirements
	Application Usage
	Hardware Resources
	Administration

	Capacity Planning
	Performance Tuning Sequence
	Configuration Files
	Logging and Performance

	Tuning Your Application
	Java Programming Guidelines
	J2EE Programming Guidelines
	Servlet and JSP Programming Guidelines
	EJB Programming Guidelines

	Tuning Sun ONE Application Server
	HTTP Server Tuning
	Enabling Statistics with stats-xml
	Monitoring Current Activity Using the perfdump Utility
	Using Statistics to Tune Your Server
	Busy Functions
	Using Performance Buckets
	Configuring the File Cache
	Tuning the ACL User Cache
	Using Quality of Service
	Threads, Processes, and Connections
	Improving Java Performance
	Miscellaneous init.conf Directives
	Miscellaneous obj.conf Parameters
	Scaling Your Server

	Connection Pool Tuning
	JDBC Connection Pool Tuning

	JSP and Servlet Tuning
	Suggested Coding Practices for JSP's and Servlets
	Configuration Settings that Affect JSP/Servlet Performance

	Performance Tuning for EJBs
	Performance Tuning the EJB Container
	Guide to Using Tunables
	EJB Descriptor Properties
	Tuning the EJB Pool
	Tuning the EJB Cache

	Performance Considerations for Various Types of EJBs
	Related Considerations

	ORB Tuning
	How a Client Connects to the ORB
	Performance Tuning the ORB
	Guide to using Tunables
	Thread Pool Sizing

	Related Considerations
	Tuning the Transaction Manager
	automatic-recovery
	keypoint-interval
	Transaction Manager Monitoring
	References

	Tuning the Java Runtime System
	Using Alternate Threads
	Managing Memory and Allocation
	Tuning the Garbage Collector
	Tracing Garbage Collection
	Specifying Other Garbage Collector Settings
	Tuning the Java Heap
	HotSpot Virtual Machine Tuning Options

	Tuning Operating System
	Tuning Parameters
	Solaris File Descriptor Setting
	Linux Configuration

	Common Performance Problems
	check-acl Server Application Functions
	Low-Memory Situations
	Under-Throttled Server
	Cache Not Utilized
	Keep-Alive Connections Flushed
	Log File Modes

	Index

