Migrating and Redeploying
Server Applications Guide

Sun™ ONE Application Server

Version 7

817-2181-10
March 2003

Copyright © 2003 Sun Microsystems, Inc. Some preexisting portions Copyright © 2003 Netscape Communications Corporation. All rights
reserved.

Sun, Sun Microsystems, and the Sun logo, iPlanet, and the iPlanet logo are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. Netscape and the Netscape N logo are registered trademarks of Netscape Communications Corporation in the
U.S. and other countries. Other Netscape logos, product names, and service names are also trademarks of Netscape Communications Corporation,
which may be registered in other countries.

This product includes software developed by Apache Software Foundation (http://www.apache.org/). Copyright (c) 1999 The Apache Software
Foundation. All rights reserved.

This product includes software developed by the University of California, Berkeley and its contributors. Copyright (c) 1990, 1993, 1994 The
Regents of the University of California. All rights reserved.

Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms and Conditions

The product described in this document is distributed under licenses restricting its use, copying, distribution, and decompilation. No part of the
product or this document may be reproduced in any form by any means without prior written authorization of the Sun-Netscape Alliance and its
licensors, if any.

THIS DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

Copyright © 2003 Sun Microsystems, Inc. Pour certaines parties préexistantes, Copyright © 2003 Netscape Communication Corp. Tous droits
réserveés.

Sun, Sun Microsystems, et the Sun logo, iPlanet, and the iPlanet logo sont des marques de fabrique ou des marques déposées de Sun Microsystems,
Inc. aux Etats-Unis et d’autre pays. Netscape et the Netscape N logo sont des marques déposées de Netscape Communications Corporation aux
Etats-Unis et d’autre pays. Les autres logos, les noms de produit, et les noms de service de Netscape sont des marques déposées de Netscape
Communications Corporation dans certains autres pays.

Le produit décrit dans ce document est distribué selon des conditions de licence qui en restreignent 'utilisation, la copie, la distribution et la
décompilation. Aucune partie de ce produit ni de ce document ne peut étre reproduite sous quelque forme ou par quelque moyen que ce soit sans
I’autorisation écrite préalable de 1’ Alliance Sun-Netscape et, le cas échéant, de ses bailleurs de licence.

CETTE DOCUMENTATION EST FOURNIE “EN L'ETAT”, ET TOUTES CONDITIONS EXPRESSES OU IMPLICITES, TOUTES
REPRESENTATIONS ET TOUTES GARANTIES, Y COMPRIS TOUTE GARANTIE IMPLICITE D'APTITUDE A LA VENTE, OU A UN
BUT PARTICULIER OU DE NON CONTREFACON SONT EXCLUES, EXCEPTE DANS LA MESURE OU DE TELLES EXCLUSIONS
SERAIENT CONTRAIRES A LA LOI.

http://www.apache.org/

Contents

About This Guidet i i it it ettt a s a s a e a e nnns 7
What You Should Know 7
How This Guide is Organizedttt e e e e 8
Documentation CONVENTIONSt . vttt ettt e e e e e e e e e e e e e e ettt e 8
Chapter 1 About Sun ONE Application Server7c it 1
Sun ONE Application Server 7 Architectureottt e e e 11
J2EE Component Standardsttt e 13
Development ENVITONMENTSottt ettt e e e et e e e e e e e 15
Sun ONE Application Server 6.0/6.5 Development Environment 15
Sun ONE Application Server 7 Development Environment, 15
Administration TOOIS 16
Sun ONE Application Server 6.0 Administration Tools 17
Sun ONE Application Server 6.5 Administration Tools 17
Sun ONE Application Server 7 Administration Tools 18
Database CONNECLIVILY . . . o\ vttt ettt et e e e e e e e e e e e e e e e e 20
Database Support in Sun ONE Application Server 6.0 20
Database Support in Sun ONE Application Server 6.5 21
Database Support in Sun ONE Application Server 7t e 21
J2EE Application Components and Migrationo.ioneineunenn e, 22
Migration and Redeploymentt e 23
Why is Migration NECESSATYo v vttt ettt e e et et e e e e e e e e e e 24
What Needs to be Migratedt e 24
What is Redeployment 25
Chapter 2 Migration Considerations and Strategies 27
About Sun ONE Application Server 6.0/6.5 27

Migration Issues From Sun ONE Application Server 6.Xt0 7ttt 29

Migrating JDBC Code 30
Establishing Connections Through the DriverManager Interface 30
Using JDBC 2.0 Data SOUICESottt e ettt ettt e e e e e e e e e e e 32

Migrating Java Server Pages and JSP Custom Tag Libraries, 35

Migrating ServIEtsttt 36
Obtaining a Data Source from the INDI Contextiiiirnini ... 37
Declaring EJBs in the INDI COntexto vttt et e e ettt e 37

EJB MIGrationttt e e e e e e e e e e e e 37

EJB Changes Specific to Sun ONE Application Server 7, 38

Migrating Web AppliCationsttt e e 39
Migrating Web Application Modules i e 40
Particular setbacks when migrating servletsand JSPs i 41

Migrating Enterprise EJB Modules 42

Migrating Enterprise AppliCationsttt 43
Application root context and access URL i 44
Migrating Proprietary EXtensions oottt e 44

Migrating Example: iBank 45

Manual Migration of iBank Application it 46
Web application Changes i 46
EIB Changesottt e e e e e e 48
Assembling Application for Deployment i 70
Deploying iBank application on Sun ONE Application Server 7 using the asadmin utility 70

Migrating iBank using Sun ONE Studio forJava 4.0 i 70
Creating a Web application module in Sun ONE Studio forJava 73
Converting CMP Entity EIBsfrom 1.1t02.0 e 78
Creating an EJB module in Sun ONE Studio forJava 91
Creating an enterprise application in Sun ONE Studio forJava 114
Deploying an application in Sun ONE Application Server 7 c.oiiiiii... 117

Migration from BEA WebLogic Server v6.1 and IBM WebSphere v4.0 118
Chapter 3 Migration from KIVA/NAS 4.1to SUnONEAS 7t 119

INntroduction 119

Migration Preparationttt e e e 119
Migration Process OVEIVIEWo vttt ettt e e e e e e e e et 119
Preparing your Working Environment it e 121
Preparing a Project for Automated Migrationottt 121
Preparing the GXR file o e 122
Before Running the Extraction Tool e 123

Migrating OnlineBankSample 123
Running the Migration ToolboX e e 124
Create a TOOIDOXt e 125

Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Chapter 4 Migration from NetDynamics to SUnONEAS7ccviuvnnt. 151

INtrodUCtiOnt e e 151
Migration Preparationttt et e e e 152
Migration Process OVEIVIEWo vttt ettt et e e e e e et et 152
Preparing your Working Environmentt 152
Preparing a Project for Automated Migrationttt 154
Migrating ToolBox Sample Applicationttt 156
Running the Migration ToolboX e 156
Create a Toolbox Builder e 157
Chapter 5 Automating Migration it iiannnns 171
Sun ONE Migration Tool for Application SETVETSttt e e 171
Sun ONE Migration Toolbox (formerly iPlanet Migration Toolbox), 172
Redeploying Migrated Applicationsottt e e e e 172
Appendix A iBank Application specification 173
Tools used for the development of the application, 174
Sun ONE Studio Enterprise Edition for Java, Release 4.0 i, 174
Oracle 81 8.1.6t 174
Database SChemao 174
Application navigation and 10@IC e 178
Application COMPONEILS v\ttt ettt e ettt e e e e e ettt et ettt 182
Fitness of design choices with regard to potential migration issuesc....o.... 185
SOTVIOS . . oot 185

Java Server Pages 185

JD B 186
Enterprise Java Beans e 186
Application Packaging i 187
Appendix B Sun ONE Migration Toolbox i, 189
Supported Platformso e 189
MIGLAtION . . o ettt ettt e e e e e e e e e e e 189
Toolbox Builder e 190
Kiva Migration Toolbox Builder 190
Invoking the TOOIS i e 193

Tools Created by Kiva Migration Toolbox Builder 194
NetDynamics Migration Toolbox Builder i 194
Invoking the ToOls ot e 197

Tools Created by Kiva Migration Toolbox Builder i, 197

Tools and TOOIDOXESottt et e et e e e e e e e 201
Creating New ToolSt e e e e e e e e 201
Cloning TOOISottt e e e 201

Deleting ToolS ...ttt e e e 201

Importing & Exporting Tools e 201
TOOIDOX METGING . . o\ ottt ettt e e e e e e e e e e e e e e e 202
TroubleShOOtingt e 202
Toolbox Installation & Configurationttt 202
EXIractionottt 203
General ISSUESottt 203
Non-Fatal Error During EXtraction i 204

Fatal Error During EXtractionttt 204
Translationo 205
POSt-MIGIationttt ettt e e et e e e e e e 205
Appendix C MigratingfromEJB1.1toEJB2.0............ ... it iiiiiirnnnnnn. 207
EJB Query Languagettt e 207
Local INterfacest e 208
EJB 2.0 Container-Managed Persistence (CMP) i 209
Defining Persistent Fields i e 209
Defining Entity Bean Relationships o 210
Message-Driven Beans e 210
Migrating EJB Client Applicationsttt e e 210
Declaring EJBs in the INDI CONtextottt e e e e 210
Recap on Using EJB INDI Referencesottt 212
Placing EJB References in the INDI Contextottt 212
Global INDI context versus local INDI contextttt 212
Migrating CMP Entity EJBs e 212
Migrating the Bean Classt e 213
Migration of ejb-jar.Xml 216
Custom Finder Methods e e e 216

T = 219

Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

About This Guide

This Migrating and Redeploying Server Applications Guide describes how J2EE
applications are migrated from earlier versions of the Sun™ ONE Application Server
(formerly known as ‘iPlanet Application Server’) to Sun ONE Application Server 7.

In addition, this guide describes how NetDynamics applications and applications from the
Netscape Application Server (NAS) are migrated to the Sun ONE Application Server 7.

This manual is intended for system administrators, network administrators, application
server administrators and web developers who have an interest in migration issues.

What You Should Know

Before you begin, you should already be familiar with the following topics:

HTML

Application Servers

Client/Server programming model

Internet and World Wide Web

Windows 2000 and/or Solaris™ operating systems

Java programming

Java APIs as defined in specifications for EJBs, Java Server Pages (JSP)
Java Database Connectivity (JDBC)

Structured database query languages such as SQL

Relational database concepts

Software development processes, including debugging and source code control

How This Guide is Organized

How This Guide is Organized

This guide is organized as follows:

* About Sun ONE Application Server 7 - describes the architecture of the Sun ONE
Application Server 7 and the differences between J2EE standards and application
components implemented with this version of the Sun ONE Application Server versus
previous versions.

* Migration and Redeployment - describes those application components that need to be
migrated and why, as well as the redeployment process for migrated applications.

* Migration Considerations and Strategies - describes considerations and strategies for
migrating applications from competing platforms and from previous versions of the
Sun ONE Application Server. There are also sample migration applications included
that provide an end-to-end description of the migration process.

* Automating Migration - describes the available automation tools used to migrate
applications from competing platforms and earlier versions of the Sun ONE
Application Server.

* Redeploying Migrated Applications - describes how migrated applications are
redeployed to the Sun ONE Application Server.

Documentation Conventions

File and directory paths are given in Windows format (with backslashes separating
directory names). For Unix versions, the directory paths are the same, except forward
slashes are used instead of backslashes to separate directories.

This guide uses URLs of the form: ht t p: / / ser ver . donmai n/ pat h/ fil e. ht m , where:
» server is the name of the server where you are running the application.

* domain is your internet domain name.

* path is the directory structure on the server.

« file is an individual filename.

The following table shows the typographic conventions used throughout Sun ONE
documentation

8 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

http://server.domain/path/file.html

Table 1 Typographic Conventions

Documentation Conventions

Typeface Meaning Examples
Monospaced The names of files, directories, sample code, Open Hel | 0. ht nl file.
and code listings; and HTML tags <HEAD1> creates a top level heading.
Italics Book titles, variables, other code See Chapter 2 of the Migrating and
placeholders, words to be emphasized, and Redeploying Server Applications Guide.
words used in the literal sense Enter your UseriD.
Enter Login in the Name field.
Bold First appearance of a glossary term in the Templates are page outlines.

text

About This Guide 9

Documentation Conventions

10 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Chapter 1

About Sun ONE Application Server 7

This chapter describes the architecture of the Sun™ ONE Application Server 7 and the
J2EE components that are integral to the server environment. In addition, the differences
between the Sun ONE Application Server 7 environment and earlier Sun ONE Application
Server environments are described.

The following topics are addressed:

* Sun ONE Application Server 7 Architecture

* J2EE Component Standards

* Development Environments

* Administration Tools

* Database Connectivity

* J2EE Application Components and Migration

* Migration and Redeployment

Sun ONE Application Server 7 Architecture

Application servers provide the framework for a client to connect to a backend source,
execute the application logic, and return the result to the client. The application server
occupies the middle-tier in the three-tier computing model.

The Sun ONE Application Server 7 is a Java application server and is fully compliant with
the Java 2 Enterprise Edition (J2EE™) specifications. J2EE provides a complete, secure
foundation and describes a rich set of standards for security, development, deployment,
code re-use and portability that allows the enterprise to create applications that are portable
and vendor independent.

11

Sun ONE Application Server 7 Architecture

The Sun ONE Application Server 7 provides a robust J2EE platform for the development,
deployment, and management of e-commerce application services to a broad range of
servers, clients, and devices.

Sun ONE Application Server 7 is a J2EE 1.3 compliant application server.

The key goals of this architecture are horizontal and vertical scalability, high availability,
reliability, performance, and standards compliance. Sun ONE Application Server 7 is also a
significant architectural departure from the first generation of Sun ONE application server
products. By combining existing and strong Sun ONE products and technologies with the
J2EE 1.3 standards, Sun ONE Application Server 7 architecture is built upon a proven
framework of technologies.

Figure 1-1 Sun ONE Application Server 7 Architecture

Admin Server
ke =

Admin | 2 | Admin | | SHMP |
cuvcel (™ App Agent

Application Server Instance

i
JZEE Resource
HTTP Server Web Container Connnecior Adapiers L

Web Server Web ;
]_ HTTP i _&
Pluging /}"* Listenars Sevicw Message — :rz:‘;gl:s |
T . Hee= Service
EJB JDBC
ORH Container Persistence
F M diji
Java ! Cee g OB J Lifeeyele
1" |Listeners e Ti
0P Cionts ransaction
ien I0PS Clagzes Manager
App Client le cese, Thread ManagementRuntime Control |

Conitaln er

[Java2 Standard Edition, 1.4]

The Sun ONE Application Server architecture is graphically represented in the figure Sun
ONE Application Server 7 Architecture. The architecture shows the Sun ONE Application
Server components, sub-systems, access paths and how external entities interface with the
core server.

12 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

J2EE Component Standards

Sun ONE Application Server 7 architecture, is highly componentised which results in a
very highly manageable architecture. All the services required by the J2EE specification are
present with well-defined standard interfaces to invoke them from within applications.

The web user interface, new in Sun ONE Application Server 7, provides for easy remote
server management. In fact, the server is designed such that one administration server could
be used to administer multiple numbers of administered servers. The task of creating a new
administered server instance has been greatly simplified in this new version.

Support for the type 2 JDBC drivers bundled along with the earlier versions of Sun ONE
Application Server has been withdrawn. As a result of this, the platform has moved towards
a more standardized approach to JDBC resource management.

By using the JDK 1.4 for the server operation, Sun ONE Application Server utilizes the
enhanced abilities of this newer version of JDK to its advantage.

A typical J2EE application is composed of an n-tier system in which a client obtains
processed information from a Web server or an application server. The servers in turn
access the information from enterprise systems such as RDBMS or ERP, process them by
using contained business logic, and deliver the processed information to the client in an
appropriate format. These layers can be designated as client layer (Web browser or rich
Java client), middle layer (Web servers and application servers), and the back-end layer or
data layer (enterprise systems such as databases).

The J2EE application model within the Sun ONE Application Server allows developers to
focus on the business logic while J2EE components handle all the low level details.
Therefore, applications and services can be easily enhanced and rapidly deployed, allowing
business to quickly react to competitive changes. By providing an open standard
architecture through the J2EE Platform, Sun ONE Application Server solves the problem of
the cost and complexity in developing multi-tiered services that are scalable, highly
available, secure and reliable.

J2EE Component Standards

Sun ONE Application Server 7 is a J2EE v1.3 compliant server based on the component
standards developed by the Java community for Servlets, Java Server Pages (JSPs), and
Enterprise JavaBeans (EJBs).

In contrast to Sun ONE Application Server 7, Sun ONE Application Server 6.0/6.5 is a
J2EE v1.2 compliant server. Between the two J2EE versions, there are considerable
differences with the J2EE application component APIs.

Chapter 1 About Sun ONE Application Server 7 13

J2EE Component Standards

The following table characterizes the differences between the component APIs used with
the J2EE v1.3 compliant Sun ONE Application Server 7 and the J2EE v1.2 Sun ONE
Application Server 6.0/6.5.

Table 1-1 Application Server Version Comparison of APIs for J2EE Components
IComponent APl [Sun ONE Application Server Sun ONE Application Server 7
6.0/6.5

UDK 1.2.2 1.4

Servlet 2.2 2.3

USP 1.1 1.2

UDBC 2.0 2.0

EJB 1.1 2.0

UNDI 1.2 1.2

UMS 1.0 2.0

UTA 1.0 1.01

In addition, the two products support a number of technologies connected with XML
standards and Web Services which, while not part of the J2EE specification, are mentioned
in the following table due to the increasing usage of these standards in enterprise
applications.

Table 1-2 Additional Application Server Supported Technologies

API and XML parser)

Technology Sun ONE Application Sun ONE Application
Server 6.0/6.5 Server 7
XML document processing UAXP 1.0,Apache Xerces UAXP 1.1

Services

SOAP/Java support for Web

SOAP 1.1 (IBM SOAP4J
framework)

IApache SOAP 2.2,
JAX-RPC 1.0, JAXM 1.1,
UAXR 1.0

14 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide

March 2003

Development Environments

Development Environments

This section characterizes the differences between the development environments for the
Sun ONE Application Server 6.0/6.5 and the Sun ONE Application Server 7. The following
topics are described:

* Sun ONE Application Server 6.0/6.5 Development Environment

* Sun ONE Application Server 7 Development Environment

Sun ONE Application Server 6.0/6.5
Development Environment

Sun ONE Application Server 6.0/6.5 offers an evaluation version of Sun ONE Studio for
Java, which is especially geared towards application development for this version of the
Sun ONE Application Server.

It is a very complete development environment in Java, based on the NetBeans platform.
This IDE provides an extremely rich range of features for designing and developing Java
applications and EJB components. It also integrates through a plug-in with Sun ONE
Application Server for assembly, deployment, and debugging of the various J2EE
components of an application. It is available in both Windows and Solaris.

Of the third-party vendor solutions available on the market, the recently released Borland
JBuilder 6 Enterprise is an extremely mature, comprehensive product, with the added
advantage of being available on several platforms (Windows, Solaris, Linux, and MacOS
X). In addition to its Java development features (servlets, JSP pages, EJB components,
graphic applications), JBuilder also caters for UML design, unit testing, collaborative
development, and XML development. Moreover, JBuilder integrates perfectly with
mainstream application servers (including the Sun ONE Application Server) for assembly,
deployment and debugging of Web applications and EJB components.

Sun ONE Application Server 7 Development
Environment

The availability of a fully integrated development solution is key to the success of the Sun
ONE Application Server 7. Sun ONE Studio for Java Enterprise Edition 4 is the Sun ONE
strategic tool for Sun ONE application development.

Sun ONE Studio for Java 4 is provided with Sun ONE Application Server.

Some of the key features of Sun ONE Studio for Java Enterprise Edition 4 are:

Chapter 1 About Sun ONE Application Server 7 15

Administration Tools

Ability to build EJBs quickly and easily

Ability to assemble applications from EJBs and package applications for deployment
Application server integration for deployment

Ability to develop and publish web services

Sun ONE studio for java enterprise service presentation toolkit

Ability to integrate with the Sun ONE Application Server 7

As shown in the figure Sun ONE Studio Enterprise Edition and Sun ONE Application
Server 7 Integration, the Sun ONE Application Server 7 integration module relies upon the
NetBeans Open Source modules that are implemented from the Sun ONE Studio Close
Source.

Figure 1-2 Sun ONE Studio Enterprise Edition and Sun ONE Application Server 7 Integration

Sun ONE Studio for Java IDE (Close Source)

NetBeans
Open Source

_—
I/

Administration Tools

This section characterizes the differences between the administration tools for the Sun ONE
Application Server 6.0, Sun ONE Application Server 6.5, and the Sun ONE Application
Server 7. The following topics are described:

16 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Administration Tools

Sun ONE Application Server 6.0 Administration Tools
Sun ONE Application Server 6.5 Administration Tools

Sun ONE Application Server 7 Administration Tools

Sun ONE Application Server 6.0 Administration
Tools

Sun ONE Application Server 6.0 features a full set of graphical administration tools, which
cover all the aspects of server management and administration

Sun ONE Console - the main administration control panel. Sun ONE console gives
fast access to the Administration Server Console, the Directory Server, and the
Administration Tool.

Administration Server Console - used to define event-logging options and to create
SSL security certificates.

Sun ONE Directory Server Console - used for administration of the Sun ONE
Directory Server. The Directory Server is used to administer the two main information
directory trees, the user directory (user and organizational unit administration), and the
configuration directory (server configuration).

Sun ONE Administration Tool - used to administer one or more instances of Sun
ONE Application Server 6.0, along with the applications deployed. It also enables
JDBC drivers and data sources to be configured.

Sun ONE Registry Editor (kregedit) - is a graphical tool similar to the windows
registry editor (regedit). It is used to adjust certain parameters specific to the Sun ONE
Application Server, stored in a specific registry.

Sun ONE Application Server 6.5 Administration
Tools

Sun ONE Application Server 6.5 can be administered using integrated Administration Tool,
Sun ONE registry editor and command line tools, which are described below:

Sun ONE Application Server Administration Tool - a stand-alone java application
with a graphical user interface that allows you to administer one or more instances of
Sun ONE Application Server along with administering application components.

Chapter 1 About Sun ONE Application Server 7 17

Administration Tools

* Command line tools - can be run from the command-line prompt on Windows and the
shell prompt on Solaris. You can perform a variety of tasks using the command line
tools, right from basic configuration to deploying an application. To get a complete
description of any command-line tool, type [conmand] - hel p at the command
prompt. For ease of use, most of the command-line tools have been integrated with the
Sun ONE Application Server Administration Tool and the Sun ONE Application
Server Deployment Tool.

* Sun ONE Registry Editor (kregedit) - a stand-alone GUI tool similar to the Windows
Registry editor (regedit). It can display and edit registry information for Sun ONE
Application Server.

Sun ONE Application Server 7 Administration
Tools

The Administration Server in Sun ONE Application Server 7 is a special instance of the
Server that serves the Administrative interface and controls some global settings common
to all server instances. It is a web-based server that contains the forms used to configure the
Sun ONE Application Server.

This graphical tool allows you to manage your application server including viewing error
and access logs, monitoring server usage, creating and editing virtual servers, apply
configuration changes and start or stop server instances.

When you installed the Sun ONE Application Server, you chose a port number for the
Administration Server, or used the default port of 4848. To access the Administrative
interface, in a web browser type:

http://hostname:port/admin

You are prompted for the configured user name and password. Upon entering this
information and clicking the OK button, the home page of the Administrative interface is
displayed, as shown in the figure "Administrative Interface Home Page".

The left pane is a tree view of all items you can configure in the Sun ONE Application
Server. To use the Administrative interface, click an item in the left pane. The right pane
displays the page associated with that item.

You can access help for any page in the Administrative interface by clicking the Help
button in the banner at the top of the Administrative interface. The online help describes the
use of the page you are accessing and gives information about what to enter in the fields on
the page.

18 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

http://hostname:port/admin

Administration Tools

Figure 1-3 Administrative Interface Home Page

Home D

QSun \sumone npptmun Server

Domaing > domainl

o= (B admen Server =]
© "5 App Server Instances

Configuratio

& @ servarl Name Application Root Statws Changes

& [Appkestions
e JDBC | gamverl CySunfippServer?/appseryidomaing fdomainl fserverlfappiications running o
3 Persistencs Manager:
o & M5
(@ lava Mad Seszions
& INDI
& & Containers
& (3 Security
o Transaction Servce
oﬁ HTTP Server
& JJ 0FS

Pending

Sun ONE Application Server 7 contains a command line interface. You can use a utility and
commands to perform the same set of tasks as you can perform in the Administrative
interface. You can use these commands either from a command prompt in the shell, or you
can call them from other scripts and programs. Using these commands you can automate
administration tasks that otherwise might become repetitive.

Sun ONE Application Server 7 has a command line utility asadmin, which can be run from
the command-line prompt on Windows and the shell prompt on Solaris. The asadmin utility
has a set of commands used to perform administrative tasks. You can use these commands
to perform all the same tasks that are performed from the Administrative Interface, from
basic configuration to deploying an application. To get a complete description of any
command, type help after entering the asadmin utility.

You can run asadmin either in singlemode or multimode. In singlemode you run one
command at a time from the command prompt. In multimode you can run multiple
commands without needing to reenter environment-level information.

Chapter 1 About Sun ONE Application Server 7 19

Database Connectivity

Database Connectivity

This section describes type of drivers included in the Sun ONE Application Server 6.0, Sun
ONE Application Server 6.5 and Sun ONE Application Server 7. This section also
describes the database(s) supported by each type of driver.

The following topics are included:

» Database Support in Sun ONE Application Server 6.0
» Database Support in Sun ONE Application Server 6.5
+ Database Support in Sun ONE Application Server 7

Database Support in Sun ONE Application
Server 6.0

Sun ONE Application Server 6.0 includes a series of type 2 JDBC drivers (which require
installation of native client libraries for access to the corresponding DBMSs), which
provide connectivity to the following main market database back-ends:

« DB26.1,7.1

e Informix 7.3,9.1.4,9.2
e Oracle 8.0.5, 8i, 91

e Sybase 11.9.2, 12

* Microsoft SQL Server 7
* PointBase 3.5

It is possible to use third-party Type 4 JDBC drivers, by declaring them via the Sun ONE
Application Server Administration Tool, or via a specific, separate utility: db_setup.sh in
Solaris, jdbcsetup in Windows.

JDBC data sources and connection pool properties can be added and configured from the
Sun ONE Application Server Administrative interface, or from the iasdeploy command line
utility. For the latter, an XML file is passed which defines the properties of the data source
to be defined.

20 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Database Connectivity

Database Support in Sun ONE Application
Server 6.5

Sun ONE Application Server 6.5 provides a JDBC type 2 driver which supports a variety of
databases, including:

+ DB25.1and 6.1 and client version 7.1

e Informix 7.3, 9.1.4, 9.2 and client version SDK 2.40
e Oracle 8i, 91

e Sybase 12

e Microsoft SQL Server 7

Configuration of native JDBC drivers on Solaris can be done via a specific utility,
db_setup.sh. On Windows, native drivers are automatically configured during installation if
the database client libraries are present in your machine. If you install a database client
library after Sun ONE Application Server installation, then restart Sun ONE Application
Server to automatically configure the native drivers.

It is possible to use third-party Type 4 JDBC drivers, by declaring them via the Sun ONE
Application Server Administration Tool, on Solaris as well as on Windows.

Sun ONE Application Server allows you to adjust database connectivity through connection
parameters via the Sun ONE Application Server Administrative interface. The connection
parameters are grouped in the following categories:

¢ Connection
e Threads, and

¢ Database cache

Database Support in Sun ONE Application
Server 7

Sun ONE Application Server 7 has Type 2 and Type 4 XA capable JDBC 2.0 style drivers,
which provide connectivity to the main market database back-ends:

« DB2v7
e Oracle 8.1.7

e Sybasevll

Chapter 1 About Sun ONE Application Server 7 21

J2EE Application Components and Migration

* PointBase version 4.2RE
All external JDBC compliant drivers are supported by Sun ONE Application Server.

JDBC data sources and connection pool properties can be added and configured from the
Sun ONE Application Server Administration interface, or from the asadmin command line
utility.

For details on configuring JDBC Data sources and connection pools, refer to the section
“Using JDBC 2.0 Data Sources”.

J2EE Application Components and Migration

J2EE simplifies development of enterprise applications by basing them on standardized,
modular components, providing a complete set of services to those components, and
handling many details of application behavior automatically, without complex
programming. J2EE v1.3 architecture includes several component APIs. Prominent J2EE
components include:

* Servlets

e Java Server Pages (JSPs)

* EJBs, including Message Driven Beans (MDBs)
e Java Database Connectivity (JDBC)

» Java Transaction Service (JTS)

* Java Naming and Directory Interface (JNDI)

+ Java Message Service (JMS)

J2EE components are packaged separately and bundled into a J2EE application for
deployment. Each component, its related files such as GIF and HTML files or server-side
utility classes, and a deployment descriptor are assembled into a module and added to the
J2EE application. A J2EE application is composed of one or more enterprise bean(s), Web,
or application client component modules. The final enterprise solution can use one J2EE
application or be made up of two or more J2EE applications, depending on design
requirements.

22 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Migration and Redeployment

A J2EE application and each of its modules has its own deployment descriptor. A
deployment descriptor is an XML document with an .xml extension that describes a
component’s deployment settings. An enterprise bean module deployment descriptor, for
example, declares transaction attributes and security authorizations for an enterprise bean.
Because deployment descriptor information is declarative, it can be changed without
modifying the bean source code. At run time, the J2EE server reads the deployment
descriptor and acts upon the component accordingly.

A J2EE application with all of its modules is delivered in an Enterprise Archive (EAR) file.
An EARfile is a standard Java Archive (JAR) file with an .ear extension. The EAR file
contains EJB JAR files, application client JAR files and/or Web Archive (WAR) files. The
characteristics of these files are as follows:

« Each EJB JARfile contains a deployment descriptor, the enterprise bean files, and
related files

» Each application client JAR file contains a deployment descriptor, the class files for the
application client, and related files

» Each WARfile contains a deployment descriptor, the Web component files, and related
resources

Using modules and EAR files makes it possible to assemble a number of different J2EE
applications using some of the same components. No extra coding is needed; it is just a
matter of assembling various J2EE modules into J2EE EAR files.

The migration process is concerned with moving J2EE application components, modules,
and files.

For more information on migrating various J2EE components please refer to Chapter 2,
section “Migration Issues From Sun ONE Application Server 6.x to 7.”

For more background information on J2EE, see the following references:
* J2EE tutorial - http://java.sun.com/j2ee/tutorial/
* J2EE overview - http://java.sun.com/j2ee/overview.html

» J2EE topics - http://java.sun.com/j2ee

Migration and Redeployment

This section describes the need to migrate J2EE applications and the particular files that
will need to be migrated. Following successful migration, a J2EE application can be
redeployed to the Sun ONE Application Server. Redeployment is also described within this
section.

Chapter 1 About Sun ONE Application Server 7 23

http://java.sun.com/j2ee/tutorial/
http://java.sun.com/j2ee/overview.html
http://java.sun.com/j2ee

Migration and Redeployment

The following topics are addressed:
* Why is Migration Necessary
* What Needs to be Migrated

e What is Redeployment

Why is Migration Necessary

Although J2EE specifications broadly cover requirements for applications, it is nonetheless
an evolving standard. It either does not cover some aspects of applications or leaves
implementation details as the responsibility of application providers.

These product implementation-dependent aspects manifest as differences in the way
application servers are configured and also in the deployment of J2EE components on
application servers. The array of available configuration and deployment tools for use with
any particular application server product also contribute to the product implementation
differences.

The evolutionary nature of the specifications itself presents challenges to application
providers. Each of the component APIs in turn are separately evolving. This leads to a
varying degree of conformance by products. In particular, an emerging product such as Sun
ONE Application Server, has to contend with differences in J2EE application components,
modules, and files deployed on other established application server platforms. Such
differences require mappings between earlier implementation details of the J2EE standard
such as file naming conventions, messaging syntax, and so forth.

Moreover, product providers usually bundle additional features and services with their
products. These features are available as custom JSP tags or proprietary Java API libraries.

Usage of such proprietary features render these applications non-portable.

What Needs to be Migrated

For migration purposes, the J2EE application consists of the following file categories:
* Deployment descriptors (XML files)
« JSP source files that contain Proprietary API’s

» Java source files that contain Proprietary API’s

24 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Migration and Redeployment

Deployment descriptors (XML files)

Deployment is accomplished by specifying deployment descriptors (DDs) for EJBs
(ejb-jar), front-end web components (war) and enterprise applications (ear). Deployment
descriptors are used to resolve all external dependencies of the J2EE
components/applications. The J2EE specification for DDs is common across all application
server products. However, the specification leaves several deployment aspects of
components pertaining to an application dependent on product-implementation.

JSP source files

J2EE specifies how to extend JSP by adding extra custom tags. Product vendors include
some custom JSP extensions in their products, simplifying some tasks for developers.
However, usage of these proprietary custom tags results in non-portability of JSP files.
Additionally, JSP can invoke methods defined in other Java source files as well. The JSP’s
containing proprietary API’s needs to be rewritten before they can be migrated.

Java source files

The Java source files can be Servlets, EJBs or other helper classes. The Servlets and EJBs
can invoke standard J2EE services directly. They can also invoke methods defined in helper
classes. Java source files are used to encode the business layer of applications such as
EJBs.Vendors bundle several services and proprietary Java API with their products. The
usage of proprietary Java API is the major source of non-portability in applications. Since
J2EE is an evolving standard, different products may support different versions of J2EE
component APIs. This is another aspect that migration will address.

Files within the above file categories need to be migrated to Sun ONE Application Server.
The details on how to migrate each of the indicated file categories are provided in Migration
Issues From Sun ONE Application Server 6.x to 7.

What is Redeployment

Redeployment refers to deploying a previously deployed application from an earlier version
of Sun ONE Application Server, or from applications that were previously deployed, but
migrated, from a competing application server platform.

The act of redeploying an application typically refers to using the standard deployment
actions outlined in the Sun ONE Application Server Administrator’s Guide. However,
when migration activities are performed with automated tools, such as the Sun ONE
Migration Tool for Application Servers (for J2EE applications) or the Sun ONE Migration
Toolbox (for NetDynamics and Netscape Application Servers), there might be
post-migration or pre-deployment tasks that are needed (and defined) prior to deploying the
migrated application.

For more information about the available migration tools, refer to Automating Migration.

Chapter 1 About Sun ONE Application Server 7 25

Migration and Redeployment

26 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Chapter 2

Migration Considerations and
Strategies

This chapter describes the considerations and strategies that are needed when moving J2EE
applications from Sun™ ONE Application Server 6.0 and 6.5 to Sun ONE Application
Server 7.

This section also describes specific migration tasks at the component level.
The following topics are addressed:

e About Sun ONE Application Server 6.0/6.5

* Migration Issues From Sun ONE Application Server 6.x to 7

* Migrating Example: iBank

About Sun ONE Application Server 6.0/6.5

Sun ONE Application Server version 6.0 is a multi-platform application server based
entirely on the J2EE 1.2 specification. Supported platforms include Windows NT and 2000,
Solaris, AIX, and HP-UX.

In addition, Sun ONE Application Server 6.0 integrates with many Web servers through
specific Web connector plug-ins that it ships with. These connectors enable it to be coupled
with Sun ONE Web Server, Microsoft IIS, or Apache.

The Sun ONE Application Server 6.0/6.5 architecture is shown in the following figure.

27

About Sun ONE Application Server 6.0/6.5

Figure 2-1 Sun ONE Application Server 6.0/6.5 Architecture

As shown in the figure "Sun ONE Application Server 6.0/6.5 Architecture", there are four
internal servers, which are often called engines or processes. These processes are
responsible for all the processing in the Sun ONE Application Server. The four internal
servers of the Sun ONE Application Server 6.0/6.5 are:

Executive Server - provides most system services (some services are managed by the
Administrative Server).

Administrative Server - provides system services for Sun ONE Application Server
Administration and failure recovery.

Java Server - provides services to java applications.
C++ Server - components written in C++ are hosted in C++ server.

When a web server forwards requests to Sun ONE Application Server 6.0/6.5, the requests
are first received by the Executive Server process (KXS). The KXS process forwards the
request either to a Java Server process (KJS) or to a C++ Server process (KCS). A KJS
process runs Java programming logic, whereas a KCS process runs C++ programming
logic. Each KJS and KCS process maintains a specified number of threads and runs the
programming logic to completion on those threads. The results are returned to the web
server and sent on to the client browser.

28 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Migration Issues From Sun ONE Application Server 6.x to 7

Migration Issues From Sun ONE Application
Server6.xto 7

This section describes the issues that will arise while migrating the main components of a
typical J2EE application from Sun ONE Application Server 6.0 and 6.5 to Sun ONE
Application Server 7.

The migration issues described in this section are based on an actual migration that was
performed for a J2EE application called iBank, a simulated online banking service, from
Sun ONE Application Server 6.0 and 6.5 to Sun ONE Application Server 7. This
application reflects all aspects that comprise a traditional J2EE application.

The following sensitive points of the J2EE specification covered by the iBank application
include:

* Servlets, especially with redirection to JSP pages (model-view-controller architecture)
» JSP pages, especially with static and dynamic inclusion of pages

e JSP custom tag libraries

* Creation and management of HTTP sessions

» Database access through the JDBC API

» Enterprise JavaBeans: Stateful and Stateless session beans, CMP and BMP entity
beans.

* Assembly and deployment in line with the standard packaging methods of the J2EE
application

The iBank application is presented in detail in Appendix A - iBank Application
Specification.

The following migration processes are described:

* Migrating JDBC Code

* Migrating Servlets

* Migrating Java Server Pages and JSP Custom Tag Libraries
* Obtaining a Data Source from the INDI Context

* EJB Migration

» EJB Changes Specific to Sun ONE Application Server 7

* Migrating Web Applications

Chapter 2 Migration Considerations and Strategies 29

Migration Issues From Sun ONE Application Server 6.x to 7

* Migrating Enterprise EJB Modules

* Migrating Enterprise Applications

Migrating JDBC Code

With the JDBC API, there are two methods of database access:
» Establishing Connections Through the DriverManager Interface

(JDBC 1.0 API), by loading a specific driver and providing a connection URL. This
method is used by other Application Servers, such as IBM’s WebSphere 4.0

* Using JDBC 2.0 Data Sources

The Data Source interface (JDBC 2.0 API) can be used via a configurable connection
pool. According to J2EE 1.2, a data source is accessed through the INDI naming
service

Establishing Connections Through the DriverManager Interface

Although this means of accessing a database is not recommended, as it is obsolete and is not
very effective, there may be some applications that still use this approach.

In this case, the access code will be similar to the following:

public static final String driver =
"oracl e.jdbc.driver. O acleDriver”;

public static final String url =
"jdbc:oracle:thin:tnb_user/tnb_user @ben: 1521: t rhank";

Cl ass. forNane(driver). new nstance();

Properties props = new Properties();

props. set Property("user”, "tnb_user");

props. set Property("password", "tmb_user");

Connection conn = DriverManager. get Connection(url, props);

This code can be fully ported from Sun ONE Application Server 6.0/6.5 to Sun ONE
Application Server 7, as long as Sun ONE Application Server is able to locate the classes
needed to load the right JDBC driver. In order to make the required classes accessible to the
application deployed in Sun ONE Application Server 7, you should:

* Place the archive (JAR or ZIP) for the driver implementation in the //ib directory of the
Sun ONE Application Server 7 installation directory.

30 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Migration Issues From Sun ONE Application Server 6.x to 7

* Modify the CLASSPATH by setting the path for the driver through the GUI of the
admin server. Click the server instance “serverl” and then click the tab “JVM Settings”
from the right pane. Now click the option Path Settings and add the path in the
classpath suffix text entry box. Once you make the changes, click “Save” and then
apply the new settings. Restart the server to modify the configuration file,
server. xm .

The figure Using the JVM Settings to Set the Classpath Suffix shows adding the path of the
driver in the classpath suffix through GUI.

Figure 2-2 Using the JVM Settings to Set the Classpath Suffix

Hatng Oocumentaion | Help

Q51 | sur-oNe Appiication Server

Domains > domaini = serverl
"General VM Settings | Logging Monitoring ' Advanced

e® admin Server General | Path Settings | JvM Ogtions | Profiler
¢ @ App Server Instances
9 & serverl

e[applications _
9 % JOBC

& O JDBC Resources

¢ @ Connection Pools Classpath - fSundne/AppServer?/appserv/. /pointbase/clhent_toolsAbfp 2
& O Persistence Manage Sufﬁ;{?a h:ﬁnHEH?Eflg;]E'ar fRpesEnL 17 olent_toosfit/p B
&3 IMS

& Java Mail Sessions
e "E JNDI =
& @ Containers
e Security é%r;clnre v

Transaction Service Classpath:

& HTTP Server _
& COFRB Mative zl
Lib. Path
Prafiy:
4

Chapter 2 Migration Considerations and Strategies 31

Migration Issues From Sun ONE Application Server 6.x to 7

Using JDBC 2.0 Data Sources

Using JDBC 2.0 data sources to access a database provides performance advantages such as
transparent connection pooling, enhances productivity by simplifying code and
implementation, and provides code portability.

Using a data source in an application requires an initial configuration phase followed by a
registration of the data source in the JNDI naming context of the application server. Once
the data source is registered, the application will easily be able to obtain a connection to the
database by retrieving the corresponding DataSource object from the JNDI context. The
actions are described in the following topics:

* Configuring a Data Source

* Looking Up the Data Source Via JNDI To Obtain a Connection

Configuring a Data Source

In Sun ONE Application Server 6.0 data sources and their corresponding JDBC drivers are
configured from the server's graphic administration console. Connection pools are managed
automatically by the application server, and the administration tool can be used to configure
their properties. With integrated type 2 JDBC drivers, the connection pooling properties are
defined on a per-driver basis, and common to all data sources using a given driver.

On the other hand, for third-party JDBC drivers, connection pool properties are defined on a
per-data source basis. Third-party JDBC drivers can be configured either from the
administration tool, or from a separate utility (db_set up. sh in Sun Solaris, and

j dbcset up in Windows NT/2000). Moreover, the command line utility i asdepl oy can be
used to configure a data source from an XML file describing its properties. These utilities
are all located in the / bi n/ sub-directory of the Sun ONE Application Server installation
root directory.

In Sun ONE Application Server 7, data sources can be configured from the server's graphic
administration console or through the command line utility asadmin. The command line
utility asadmin can be invoked by executing asadmin.bat in windows and asadmin file in
Solaris kept at Sun ONE Application Server 7 installation’s bin directory. Then on the
asadmin prompt, following commands would create connection pool and JNDI resource.

The syntax for calling the asadmin utility to create a connection pool is as follows:

asadm n>cr eat e-j dbc- connecti on-pool -u usernane -w password -H
hostnane -p adnminport [-s] [--instance instancenane]

- -dat asour cecl assnane cl assnanme [-- st eadypool si ze=8]

[- - maxpool si ze=32] [--nmaxwai t =60000] [-- poolresize=2]
[--idletimeout=300] [--isconnectvalidatereq=fal se]
[--validationmethod=auto-comit] [--validationtable tablenane]
[--failconnection=false] [--description text] [--property
(name=val ue) [: nane=val ue] *] connecti onpoolid

32 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Migration Issues From Sun ONE Application Server 6.x to 7

For example:

asadm n>cr eat e-j dbc- connecti on-pool -u admin -w password -H cl1
-p 4848 —instance serverl --datasourcecl assnane

oracl e.j dbc. pool . Oracl eConnecti onPool Dat aSour ce --property
(user - nanme=i bank_user): (passwor d=i bank_user) oracl epool

Here JDBC connection pool ‘oraclepool’ for oracle database is created using database
schema having the username ‘ibank_user’ and password ‘ibank_user’.

The syntax to create a JDBC resource is as follows:

asadm n>creat e-j dbc-resource -u usernane -w password -H host nane
-p adminport [-s] [--instance instancenane] --connectionpoolidid
[--enabl ed=true] [--description text] [--property

(name=val ue) [: nane=val ue] *] j ndi nane

For example:

asadm n>create-jdbc-resource -u adnmin -w password -H cl1 -p 4848
--instance serverl --connectionpoolid oracl epool jdbc/|BANK

Here jdbc resource is created for the connection pool created above with the JNDI name
‘jdbc/IBANK.

Here is the procedure to follow when registering a data source in Sun ONE Application
Server 7 through graphical interface.

1. Register the data source classname

a. Place the archive (JAR or ZIP) for the data source class implementation in the /lib
directory of the Sun ONE Application Server 7 installation directory.

b. Modify the CLASSPATH by setting the path for the driver through the GUI of the
admin server. Click at the server instance “serverl” and then click at tab “JVM
Settings”, now click at path settings and add the path at the classpath suffix
column. Once you make the changes save it and then apply these new settings.
Restart the server, which would modify the configuration file, server.xml.

2. Register the data source

In Sun ONE Application Server 7, data sources and their corresponding JDBC drivers are
configured from the server's graphic administration interface.

The left pane is a tree view of all items you can configure in the Sun ONE Application
Server. Click on the item Connection pool at the left pane, the right pane would display the
page associated with it where the relevant entries can be made.

Chapter 2 Migration Considerations and Strategies 33

Migration Issues From Sun ONE Application Server 6.x to 7

34

Figure 2-3 Configuring Connection Pool through GUI

Horre

Documendation | Heip

Domains > gomain =l

@[3 Admin Server
& 3 App Server Instances
o B serverl
& 2] Applications
@ ¥ I0BC
O IDBC Resources
] Connection Pools
[Persistence Managers
& [0 IM5
[Java Mail Sessions
& “F INDI
& [Containers
&) Security
29 Transaction Service
& § HTTP Server
&] ORE

[

serverl: JDBC: Connection Pools: New

General

Enter the Connaction Pool name, select a Database Vendor, and click Hext.
Properties for the selected Database Vendor will be displayed

Mame:* OraclePoal
Global

Transaction [Enabled
Support:

el T

€ Back

* Indicates Required Field

Similarly now click at the item Data source, right pane would show the entries required for

data source setup.

Sun ONE Application Server 7 specific deployment descriptor sun-web.xml has to be
modified accordingly.

For example if a new data source is configured for the iBank Application, the sun-web.xml
would have following entries.

<! DOCTYPE web-app PUBLIC '-//Sun M crosystens, Inc.//DTD Wb
Application 2.3//EN 'Http://Iocal host: 8000/ sun-web-app_2_3.dtd"' >

<sun- web- app>

<resource-ref>

<res-ref-nanme>j dbc/i Bank</res-ref - name>

<j ndi - name>j dbc/ i Bank</j ndi - nane>

<def aul t -resour ce- princi pal >

<name>i bank_user </ nane>

Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Http://localhost:8000/sun-web-app_2_3.dtd'

Migration Issues From Sun ONE Application Server 6.x to 7

<passwor d>i bank_user </ passwor d>
</ def aul t -resour ce-pri nci pal >
</resource-ref>
</ sun-web- app>
Looking Up the Data Source Via JNDI To Obtain a Connection
To obtain a connection from a data source, the process is as follows:
* Obtain an initial INDI context
* Obtain a reference to the data source by using a JNDI lookup
* Obtain a connection using this referen
1. Obtaining the initial JNDI context

To guarantee portability between different environments, the code used to retrieve an
InitialContext object (in a servlet, in a JSP page, or an EJB), should be simply, as
follows:

Initial Context ctx = new Initial Context();
2. Obtaining a data source reference

To obtain a reference to a data source bound to the INDI context, look up the data
source's JNDI name from the initial context object. The object retrieved in this way
should then be cast as a DataSource type object:

ds = (Dat aSource)ct x. | ookup(Jndi Dat aSour ceNane) ;
3. Obtaining the connection
This operation is very simple, and requires the following line of code:
conn = ds. get Connection();

Sun ONE Application Server 6.0/6.5 and 7 both follow the above technique for obtaining a
connection form data source. So to summarize migration does not require any modification
to be made to the code.

Migrating Java Server Pages and JSP Custom
Tag Libraries

Sun ONE Application Server 6.0/6.5 complies with the JSP 1.1 specification and Sun ONE
Application Server 7 complies with the JSP 1.2 specification.

Chapter 2 Migration Considerations and Strategies 35

Migration Issues From Sun ONE Application Server 6.x to 7

JSP 1.2 specification contains many new features as well as corrections and clarifications of
areas that were not quite right in JSP 1.1 specification.

The most significant changes are

« JSP 1.2 is based on Servlet 2.3 and Java 2. JSP 1.2 applications will not run on
platforms that only support JDK 1.1. JSP 1.2 is backward compatible with JSP 1.1, so
JSP 1.1 application should run without any tweaking in a JSP 1.2 complaint container.

e The definition of XML syntax for a JSP page has been finalized. So a JSP 1.2
complaint container must accept files in both JSP 1.1 format and the new XML format
called as JSP Document.

» Tag libraries can make use of Servlet 2.3 event listeners.

* A new type of validation has been added, for the tag libraries, which validates JSP
pages.
* New options for tag library distribution and deployment have been added.

These changes are basically enhancements and are not required to be made, while migrating
JSP pages from JSP API 1.1 to 1.2.

The implementation of JSP custom tag libraries in Sun ONE Application Server 6.0 and 6.5
complies with the J2EE specification. Consequently, migration of JSP custom tag libraries
to Sun ONE Application Server 7 does not pose any particular problem, nor require any
modifications to be made.

Migrating Servlets

Sun ONE Application Server 6.0 and 6.5 support the Servlet 2.2 API whereas Sun ONE
Application Server 7, supports the Servlet 2.3 APIL.

Servlet API 2.3 actually leaves the core of servlets relatively untouched; most changes are
concerned with adding new features outside the core.

The most significant features are:

* Servlets now require JDK 1.2 or later

* A filter mechanism has been created

* Application lifecycle events have been added

* New internationalization support has been added
* New error and security attributes have been added

« The HttpUtils class has been deprecated

36 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Migration Issues From Sun ONE Application Server 6.x to 7

* Several DTD behaviors have been expanded and clarified

These changes are basically enhancements and are not required to be made while migrating
servlets from Servlet API 2.2 to 2.3.

However, if the servlets in the application use JNDI to access resources of the J2EE
application (such as data sources, EJBs, and so forth), some modifications may be needed in
the source files or in the deployment descriptor.

These modifications are explained in detail in the following sections:
e Obtaining a Data Source from the JNDI Context
* Declaring EJBs in the INDI Context

One last scenario may mean modifications are required in the servlet code, naming conflicts
may occur with Sun ONE Application Server if a JSP page has the same name as an
existing Java class. In this case, the conflict should be resolved by modifying the name of
the JSP page in question, which may then mean editing the code of the servlets that call this
JSP page. This issue is resolved in Sun ONE Application Server 7 as it uses new class
loader hierarchy as compared to Sun ONE Application Server 6.0/6.5. In this new scheme,
for a given application, one class loader loads all EJB modules and another class loader
loads web module. As these two loaders do not talk with each other, there would be no
naming conflict.

Obtaining a Data Source from the JNDI Context

To obtain a reference to a data source bound to the INDI context, look up the data source's
JNDI name from the initial context object. The object retrieved in this way should then be
cast as a DataSource type object:

ds = (Dat aSource)ct x. | ookup(Jndi Dat aSour ceNane) ;

For detailed information, refer to section “Migrating JDBC Code” in the previous pages.

Declaring EJBs in the JNDI Context
Please refer to section Declaring EJBs in the JNDI Context from Appendix C.

EJB Migration

As mentioned in About Sun ONE Application Server 7, while Sun ONE Application Server
6.0 and 6.5 support the EJB 1.1 specification, Sun ONE Application Server 7 also supports
the EJB 2.0 specification. The EJB 2.0 specification introduces the following new features
and functions to the architecture:

* Message Driven Beans (MDBs)

Chapter 2 Migration Considerations and Strategies 37

Migration Issues From Sun ONE Application Server 6.x to 7

Improvements in Container-Managed Persistence (CMP)
Container-managed relationships for entity beans with CMP
Local interfaces

EJB Query Language (EJB QL)

Although the EJB 1.1 specification will continue to be supported in Sun ONE
Application Server 7, the use of the EJB 2.0 architecture is recommended to leverage its
enhanced capabilities.

To migrate EJB 1.1 to EJB 2.0, please refer to Appendix C.

EJB Changes Specific to Sun ONE Application
Server 7

Migrating EJB’s from Sun ONE Application server 6.0/6.5 to Sun ONE Application Server
7 would not require any changes in the EJB code. The following DTD changes are required.

Session Beans:

The <!DOCTYPE definition should be modified to point to the latest DTD url in case
of J2EE standard DDs, like ej b-j ar. xm .

Replace the i as-ej b-j ar. xm with modified version of this file, named
sun-ej b-jar. xm created manually according to the DDs. See url

<! DOCTYPE sun-ejb-jar PUBLIC'-//Sun Mcrosystens, Inc.//DID Sun
ONE Application Server 7 EIJB 2.0//EN

"http://ww. sun. conf sof t war e/ sunone/ appserver/dtds/sun-ejb-jar_2
_0-0.dtd" >

for details.

Insun-ej b-jar. xm , the INDI name for all the EJB’s, should prepend ‘ej b/ * in all
the INDI names. This is required as in Sun ONE Application Server 6.5, the JNDI
name of the EJB could only be “ej b/ <ej b- name>" where <ej b- nane> is the name
of the EJB as declared inside ej b-j ar . xm . In Sun ONE Application Server 7 this has
changed as a new tag has been introduced in sun-ejb-jar.xml inside which the JNDI
name of the EJB can be declared. Because of this flexibility provided by Sun ONE
Application Server 7 we advice that the INDI name of the EJB should be declared as
“ej b/ <ej b- name>" inside the <j ndi - nanme> tag to avoid changing JNDI names
throughout the application.

Entity Beans:

38 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

http://www.sun.com/software/sunone/appserver/dtds/sun-ejb-jar_2

Migration Issues From Sun ONE Application Server 6.x to 7

The <! DOCTYPE definition should be modified to point to the latest DTD url in case of
J2EE standard DDs, like ej b-j ar. xm .

Insert <cmp-version> tag with value 1.1 for all CMPs in] b-j ar . xm .

Replace all the <ej b- name>-i as- cnp. xnl files with one sun- cnp- mappi ngs. xm
file, which is created manually. See url

<! DOCTYPE sun-cnp-nmappi ngs PUBLIC '-//Sun M crosystens,
Inc.//DTD Sun ONE Application Server 7 OR Mapping //EN
"http://ww. sun. cont sof t war e/ sunone/ appser ver/ dt ds/ sun- cnp_mappi
ng_1 0.dtd' >

for details.

Generate dbschema by using the capture-schema utility in the Sun ONE Application
Server 7 installation’s bin directory and place it above META- | NF folder for the Entity
beans.

i as-ej b-jar.xm should be replaced with its new version named
sun-ej b.jar.xnl in Sun ONE Application Server 7.

In Sun ONE Application Server 6.5, the finders sql was directly embedded inside the
<ej b- name>-i as- cnp. xni , in Sun ONE Application Server 7 this has changed such
that now mathematical expressions are used to declare the <query-filt er> for the
various finder methods.

Migrating Web Applications

Sun ONE Application Server 6.0 and 6.5 support servlets (Servlet API 2.2), and JSPs (JSP
1.1). Sun ONE Application Server 7 on the other hand supports servlets (Servlet API 2.3)
and JSPs (JSP 1.2).

Within these environments it is essential to group the different components of an
application (servlets, JSP and HTML pages and other resources) together within an archive
file (J2EE-standard Web application module) before you can deploy it on the application
server.

According to the J2EE 1.3 specification, a Web application is an archive file ((WAR file)
with the following structure:

a root directory containing the HTML pages, JSP pages, images and other "static"
resources of the application.

a META-INF/ directory containing the archive manifest file (MANIFEST.MF)
containing the version information for the SDK used and, optionally, a list of the files
contained in the archive.

Chapter 2 Migration Considerations and Strategies 39

http://www.sun.com/software/sunone/appserver/dtds/sun-cmp_mappi

Migration Issues From Sun ONE Application Server 6.x to 7

* a WEB-INF/ directory containing the application deployment descriptor (web.xml file)
and all the Java classes and libraries used by the application, organized as follows:

* aclasses/ sub-directory containing the tree-structure of the compiled classes
of the application (servlets, auxiliary classes...), organized into packages.

» alib/directory containing any Java libraries (.jar files) used by the
application.

Migrating Web Application Modules

Migrating applications from Sun ONE Application server 6.0/6.5 to Sun ONE Application
Server 7 would not require any changes in the Java/JSP code. The following changes are,
however, still required.

e web.xml

Sun ONE Application Server 7 adheres to J2EE 1.3 standards, according to which, the
web. xm file inside a WAR should adhere to the revised DTD available at
http://java. sun. com dt d/ web- app_2_3. dt d. This DTD fortunately, is a
superset of the previous versions’ DTD, hence only the <! DOCTYPE definition needs
to be changed inside the web. xm , which is to be migrated. The modified <! DOCTYPE
declaration should look like:

<! DOCTYPE web-app PUBLIC "-//Sun M crosystens, |Inc.//DTD Wb
Application 2.3//EN'" "http://java.sun.conl dtd/ web-app_2_3.dtd">

* ias-web.xml
In Sun ONE Application Server 7 the name of this file is changed to sun- web. xm .

This XML file is required to declare the Sun ONE Application Server 7 specific
properties/resources that will be required by the web application.

Note: See the next section for some important inclusions to this file.

Ifthe i as- web. xm of the Sun ONE Application Server 6.5 application is present and
does declare Sun ONE Application Server 6.5 specific properties, then this file needs to
be migrated to Sun ONE Application Server 7 standards. The file name has to be
changed to sun- web. xnl and other details are available at

<! DOCTYPE sun-web-app PUBLIC '-//Sun M crosystens, Inc.//DTD Sun
ONE Application Server 7 Servlet 2.3//EN

"http://ww. sun. com sof t war e/ sunone/ appser ver/ dtds/ sun- web-app_2
_3-0.dtd' >

40 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

http://java.sun.com/dtd/web-app_2_3.dtd
http://java.sun.com/dtd/web-app_2_3.dtd
http://www.sun.com/software/sunone/appserver/dtds/sun-web-app_2

Migration Issues From Sun ONE Application Server 6.x to 7

Once the web. xnl and i as- web. xm are migrated in the above-mentioned fashion, the
Web application (WAR archive) can be deployed from the Sun ONE Application Server
7’s GUI interface of the admin server or from the command line utility asadmin, where the
deployment command should mention the type of application as web.

The command line utility asadmin can be invoked by running asadni n. bat file kept at
Sun ONE Application Server 7 installation’s bin directory.

The command at asadmin prompt would be:

asadm n> depl oy -u usernanme -w password -H hostnanme -p adm nport
--type web [--contextroot contextroot] [--force=true] [--nane
conponent -nane] [--upl oad=true] [--instance instancenane]
filepath

Deployment can also be done from the Sun ONE Studio development environment as
explained in section "Deploying an application in Sun ONE Application Server 7".

Particular setbacks when migrating servlets and JSPs

The actual migration of the components of a Servlet / JSP application from Sun ONE
Application Server 6.0/6.5 to Sun ONE Application Server 7 will not require any
modifications to be made to the component code.

In case if the web-application is using a server resource, for example, a DataSource, then
Sun ONE Application Server 7 requires that this resource be declared inside the web. xni
and correspondingly inside sun- web. xm . For declaring a DataSource called jdbc/iBank,
the <resource-ref> tag as declared inside the web. xm would look like this:

<resource-ref>
<res-ref-nane>j dbc/i Bank</res-ref - name>
<res-type>j avax. sql . XADat aSour ce</res-type>
<r es- aut h>Cont ai ner </ r es- aut h>
<res-shari ng- scope>Shar eabl e</res-shari ng- scope>
</resource-ref>
Corresponding declaration inside the sun- web. xnl will look like this:
<?xm version="1.0" encodi ng="UTF-8"?>

<! DOCTYPE FI X ME: need confirmation on the DID to be used for this
file

<sun- web- app>

<resource-ref>

Chapter 2 Migration Considerations and Strategies 41

Migration Issues From Sun ONE Application Server 6.x to 7

<res-ref-nanme>j dbc/i Bank</res-ref - name>
<j ndi - name>j dbc/ i Bank</ j ndi - name>
</resource-ref>

</ sun-web- app>

Migrating Enterprise EJB Modules

Sun ONE Application Server 6.0 and 6.5 support the EJB 1.1 API whereas Sun ONE
Application Server 7 supports the EJB 2.0 API. Thereby, both can support:

« Stateful or Stateless Session Beans.

* Entity beans with bean managed persistence (BMP), or container managed persistence
(CMP).

EJB 2.0 API however, introduces a new type of enterprise bean, called a message-driven
bean in addition to the session and entity beans.

J2EE 1.3 specification dictates that the different components of an EJB must be grouped
together in a JAR file with the following structure:

* META- I NF/ directory with an XML deployment descriptor named ejb-jar.xm!

* The . cl ass files corresponding to the home interface, remote interface, the
implementation class, and the auxiliary classes of the bean with their package.

Sun ONE application servers observe this archive structure. However, the EJB 1.1
specification leaves each EJB container vendor to implement certain aspects as they see fit:

» Database persistence of CMP EJBs (particularly the configuration of mapping between
the bean's CMP fields and columns in a database table).

* Implementation of the custom finder method logic for CMP beans.

As we might expect, Sun ONE Application Server 6.0 or 6.5 and Sun ONE Application
Server 7 diverge on certain points, which means that when migrating an application certain
aspects require particular attention. Some XML files have to be modified:

* The <! DOCTYPE definition should be modified to point to the latest DTD url in case of
J2EE standard DDs, like ej b-j ar. xm .

* Replace the i as-ej b-j ar. xm with modified version of this file, i.e.,
sun-ej b-jar. xm created manually according to the DTDs. See url

42 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Migration Issues From Sun ONE Application Server 6.x to 7

<! DOCTYPE sun-ejb-jar PUBLIC '-//Sun M crosystens, Inc.//DID Sun
ONE Application Server 7 EJB 2.0//EN

"http://wwmw. sun. com sof t war e/ sunone/ appserver/dtds/sun-ejb-jar_2
_0-0.dtd"' >

* Replace all the <ej b- nane>-i as- cnp. xn files with one sun- cnp- mappi ngs. xmi

file, which is created manually. See url

<! DOCTYPE sun-cnp-nmappi ngs PUBLIC '-//Sun M crosystens,
Inc.//DTD Sun ONE Application Server 7 OR Mapping //EN
"http://ww. sun. cont sof t war e/ sunone/ appser ver/ dt ds/ sun- cnp_mappi
ng_1 0.dtd' >

* Only for CMP entity beans: Generate dbschema by using the capture-schema utility in
the Sun ONE Application Server 7 installation’s bin directory and place it above
META- | NF folder for the Entity beans.

Migrating Enterprise Applications

According to the J2EE specifications, an enterprise application is an EAR file, which must
have the following structure:

* aMETA-I NF/ directory containing the XML deployment descriptor of the J2EE
application called application.xml

e the .JAR and .WAR archive files for the EJB modules and Web module of the
enterprise application, respectively.

In the application deployment descriptor, we define the modules that make up the enterprise
application, and the Web application's context root.

Sun ONE Application server 6.0/6.5 and 7 primarily supports the J2EE model wherein
applications are packaged in the form of an enterprise archive (EAR) file (extension .ear).
The application is further subdivided into a collection of J2EE modules, packaged into Java
archives (JAR, extension .jar) for EJBs and web archives (WAR, extension .war) for
servlets and JSPs.

It is therefore essential to follow the steps listed here before deploying an enterprise
application:

* Package EJBs in one or more EJB modules,
« Package the components of the Web application in a Web module,
* Assemble the EJB modules and Web modules in an enterprise application module

* Define the name of the enterprise application's root context, which will determine the
URL for accessing the application.

Chapter 2 Migration Considerations and Strategies 43

http://www.sun.com/software/sunone/appserver/dtds/sun-ejb-jar_2
http://www.sun.com/software/sunone/appserver/dtds/sun-cmp_mappi

Migration Issues From Sun ONE Application Server 6.x to 7

Note: Sun ONE Application Server 7 uses a new class loader hierarchy as compared to Sun
ONE Application Server 6.0/6.5. In the new scheme of things, for a given application, one
class loader loads all EJB modules and another class loader loads web modules. These two
are related in a parent child hierarchy where the JAR module class loader is the parent
module of the WAR module class loader. Hence all classes loaded by the JAR class loader
are available/ accessible to the WAR module but the reverse is not true. Hence, suppose
there is a certain class which is required by the JAR as well as the WAR, then it should be
packaged inside the JAR module only. If this guideline is not followed it would lead to class
conflicts hence ClassCastException.

Application root context and access URL

There is one particular difference between Sun ONE Application Server 6.0/6.5 and Sun
ONE Application Server 7, concerning the applications access URL (root context of the
application's Web module):

If AppName is the name of the root context of an application deployed on a server called
hostname, then the access URL for this application will differ depending on the application
server used:

* With Sun ONE Application Server 6.0 or 6.5, which is always used jointly with a Web
front-end, the access URL for the application will take the following form (assuming
the Web server is configured on the standard HTTP port, 80):

htt p: // host name/ NASApp/ AppNane/

* With Sun ONE Application Server 7, the URL will take the form:
http:// host name: port/ AppNamne/

The TCP port used as default by Sun ONE Application Server 7 is port 80.

Although the difference in access URLs between Sun ONE Application Server 6.0/6.5 and
Sun ONE Application Server 7 may appear minor, it can however be problematical when
migrating applications that make use of absolute URL references. In such cases, it will be
necessary to edit the code to update any absolute URL references so that they are no longer
prefixed with the specific marker used by the Web Server plug-in for Sun ONE Application
Server 6.0/6.5.

Migrating Proprietary Extensions

A number of classes proprietary to the Sun ONE Application Server 6.0/ 6.5 environment
may have been used in applications. Some of the proprietary Sun ONE packages used by
Sun ONE Application Server 6.x are listed below:

* com.iplanet.server.servlet.extension

e com.kivasoft.dlm

44 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

http://hostname/NASApp/AppName/
http://hostname:port/AppName/

Migrating Example: iBank

* com.iplanetiplanet.server.jdbc

* com.kivasoft.util

* com.netscape.server.servlet.extension
* com.kivasoft

* com.netscape.server

These APIs are not supported in Sun ONE Application Server 7. Applications using any
classes belonging to the above package will have to be re written such that the applications
use standard J2EE APIs. Applications using Custom JSP tags and UIF framework also
needs to be rewritten to use standard J2EE API.

Migrating Example: iBank

In this section we describe the process for migrating the main components of a typical J2EE
application from Sun ONE Application Server 6.0 and 6.5 to Sun ONE Application Server
7. For each aspect we highlight any problems posed by migration, and suggest practical
solutions to overcome these.

For this migration process, the J2EE application presented is called ‘iBank’ and is based on
the actual migration of the iBank application from the Sun ONE Application Server 6.0 and
6.5 versions to Sun ONE Application Server 7. iBank simulates an online banking service
and covers all of the aspects traditionally associated with a J2EE application.

The sensitive points of the J2EE specification covered by the iBank application are
summarized below:

* Servlets, especially with redirection to JSP pages (model-view-controller architecture)
* JSP pages, especially with static and dynamic inclusion of pages

* JSP custom tag libraries

* Creation and management of HTTP sessions

» Database access through the JDBC API

» Enterprise JavaBeans: Stateful and Stateless session beans, CMP and BMP entity
beans.

* Assembly and deployment in line with the standard packaging methods of the J2EE
application

The iBank application is presented in detail in Appendix A - iBank Application
specification.

Chapter 2 Migration Considerations and Strategies 45

Migrating Example: iBank

The iBank Application can be migrated to Sun ONE Application Server 7 by manually
changing the deployment descriptors or using Sun ONE Studio or using Sun ONE
Migration Tool. The recommended process among the above three is the Sun ONE
Migration Tool. If the migration has to be carried out without converting CMP’s to 2.0, then
follow the section "Manual Migration of iBank Application" or use Sun ONE Migration
Tool.

In this guide the Manual Migration process and the migration using Sun ONE Studio are
discussed. The Automatic migration procedure, using Sun ONE Migration Tool for iBank
example, is discussed in the documentation provided with the Migration Tool itself.

Manual Migration of iBank Application

The manual migration does not require any major changes in the source code as Sun ONE
Application Server 7 supports CMP 1.1. However manual migration of the application
would require a few changes to be made in the following aspects:

Web application changes

Migrating iBank from Sun ONE Application server 6.0/6.5 to Sun ONE Application Server
7 would not require any changes in the web application part of the iBank application. Delete
the i as-web. xn file from the source directory, as there is no information in this file that
can go inside its counterpart in the Sun ONE Application Server 7 Deployment descriptor,
the sun-web. xm file. The web. xm requires no changes.

However, generically speaking, if there is some information inside the web.xml that needs
to be mapped to the Server specific resources, then a declaration in sun- web. xm would
have been required in that case. For example, if the web.xml file had declared a
javax.sql.Datasource type resource reference, it would be mandatory to map it to the JNDI
name of the actual DataSource on the Sever, inside the sun-web.xml.

The migrator needs to create the new sun-web.xml. The creation process is outlined below:
1. Create a new XML file which has the following DOCTYPE definition on top:

<! DOCTYPE sun-web-app PUBLIC '-//Sun M crosystens, Inc.//DTD Sun
ONE Application Server 7 Servlet 2.3//EN

"http://ww. sun. contf sof t war e/ sunone/ appser ver/ dt ds/ sun- web- app_2
_3-0.dtd"' >

Save this file as “sun- web. xm ”.

46 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

http://www.sun.com/software/sunone/appserver/dtds/sun-web-app_2

Migrating Example: iBank

The root tag of this XML file, as evident from the DOCTYPE definition, is sun- web.
In the DTD, this element is defined as

<! ELEMENT sun-web-app (security-rol e-mappi ng*, servlet*,
session-config?, resource-env-ref*, resource-ref*, ejb-ref*,
cache?, cl ass-1oader?, jsp-config?, |ocale-charset-info?,

property*)>

From the above declaration it is clear that all tags are optional so a default
sun-web. xm would look something like:

<! DOCTYPE sun-web- app SYSTEM
"http://ww. sun. contf sof t war e/ sunone/ appser ver/ dt ds/ sun- web- app_2
_3-0.dtd">

</ sun- web- app>
For declaring any resource references, the element declaration would be:

<! ELEMENT resource-ref (res-ref-nane, jndi-nane,
def aul t -resource-princi pal ?) > where the sub el enents are:

<! ELEMENT res-ref-nane (#PCDATA) >
<! ELEMENT def aul t-resource-principal (name, password)>
<! ELEMENT j ndi - name (#PCDATA) >
In case of ibank, resource reference details, sun- web. xm would be:
<sun- web- app>
<resource-ref>
<res-ref-nanme>j dbc/ | Bank</res-ref - nane>
<j ndi - name>j dbc/ | Bank</j ndi - nane>
<def aul t -resource-princi pal >
<name>i bank_user </ nane>
<passwor d>i bank_user </ passwor d>
</ def aul t -resour ce-princi pal >
</resource-ref>

</ sun- web- app>

Chapter 2 Migration Considerations and Strategies 47

http://www.sun.com/software/sunone/appserver/dtds/sun-web-app_2

Migrating Example: iBank

EJB Changes

Migrating iBank from Sun ONE Application server 6.5 to Sun ONE Application Server 7
would not require any changes in the EJB code.

Session Beans:

Inej b-j ar. xnl : The <! DOCTYPE definition should be modified to point to the latest
DTD url in case of ej b-j ar. xm . This new definition should look like this:

<! DOCTYPE ej b-jar PUBLIC '-//Sun Mcrosystenms, Inc.//DTD Enterprise
JavaBeans 2.0//EN 'http://java.sun.conm dtd/ejb-jar_2_0.dtd"' >

Inias-ejb-jar.xm : Theias-ejb-jar.xnl in Sun ONE Application server 6.5 has
been replaced by sun-ej b-j ar. xm in Sun ONE Application server 7. Since the DTDs
for these two XML files are radically different, the migrator needs to create the new
sun-ej b-jar. xm by extracting relevant information from the ej b-j ar. xm and

i as-ej b-jar.xm . The creation process is outlined below:

1. Create a new XML file which has the following DOCTYPE definition on top:

<! DOCTYPE sun-ejb-jar PUBLIC'-//Sun M crosystens, Inc.//DID Sun
ONE Application Server 7 EIJB 2.0//EN

"http://ww. sun. com sof t war e/ sunone/ appserver/dtds/sun-ejb-jar_2
_0-0.dtd"' >

Save this file as “sun- ej b-j ar. xm ”, along with the modified ej b-j ar. xni .

2. The root tag of this XML file, as evident from the DOCTYPE definition, is
sun- ej b-j ar . In the DTD, this element is defined as

<! ELEMENT sun-ej b-jar (security-rol e-mappi ng*, enterprise-beans) >

The security-role-mapping tag is meant for mapping the security roles declared in the
ej b-j ar. xnl . As in the iBank application, there is no security declared in the
ejb-jar.xml file, we will skip the security-role-mapping optional tag and focus on the
enterprise-beans tag. Right now, the sun- ej b-j ar. xm file should look like.

<sun-ej b-jar>
<enterprise-beans>
</ enterprise-beans>
</ sun-ej b-jar>

NOTE: We have not included the header part of the document, namely the XML
declaration and DOCTYPE definition, here for brevity.

48 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

http://java.sun.com/dtd/ejb-jar_2_0.dtd'
http://www.sun.com/software/sunone/appserver/dtds/sun-ejb-jar_2

Migrating Example: iBank

The enterprise-beans element is defined in the DTD as

<! ELEMENT enterpri se-beans (nanme?, unique-id?, ejb*,
pm descriptors?, cnp-resource?)>

The optional name element should contain the canonical name of the enterprise-beans.
You may give it some name. We will skip this tag.

The unique-id element is used by the Sun ONE Application Server and is inserted by
the Application Server automatically at the time of application deployment. We will
skip this tag.

The EJB element is the tag in which we are interested. This is the element describing
runtime bindings for a single EJB. It is defined in the DTD as

<! ELEMENT ejb (ejb-name, jndi-name?, ejb-ref*, resource-ref*,
resource-env-ref*, pass-by-reference?, cnp?, principal?,

ndb- connecti on-factory?, jns-durabl e-subscription-nane?,

j me- max- nessages-| oad?, ior-security-config?,

i s-read-onl y-bean?, refresh-period-in-seconds?, conmt-option?,
gen-cl asses?, bean-pool ?, bean-cache?)>

In our case, the ejb element will contain the ejb-name element. The ejb-name element
will contain the canonical name of the EJB. This name should be the same as declared
inside the ejb-name element of the ej b-j ar . xm for that EJB. It will also contain the
jndi-name of the EJB. One of the differences between Sun ONE Application Server 6.5
and 7 is the flexibility of the latter in providing freedom to the bean developer to have
different ejb-name and jndi-name of an EJB. In Sun ONE Application Server 6.5, the
jndi name of an EJB by default was ej b/ <ej b- nanme>.

To allow for smooth migration, we need to keep the jndi-names of the EJB and all other
resources to be same as they were on Sun ONE Application Server 6.5. Hence, we
declare the ejb-name of all the EJBs’ to be ej b/ <ej b- nanme>.

Using the logic described above, the sun- ej b-j ar . xm now should look like
<sun-ej b-jar>
<enterpri se-beans>
<ej b>
<ej b- name>BankTel | er </ ej b- name>
<j ndi - name>ej b/ BankTel | er </ j ndi - nane>
</ ej b>

<ej b>

Chapter 2 Migration Considerations and Strategies 49

Migrating Example: iBank

<ej b- name>I nt er est Cal cul at or </ ej b- name>
<j ndi - name>ej b/ | nt er est Cal cul at or </ j ndi - nane>
</ ej b>
</ enterprise-beans>
</ sun-ej b-jar>

4. For each <ej b-r ef > element inside the ej b-j ar. xm , there should be a
corresponding <ej b- r ef > element inside the sun- ej b-j ar. xnl . The <ej b-ref >
element inside the ej b-j ar. xm is used to declare all the EJBs referenced from
inside the bean class of that EJB. While the bean class code will reference the EJB by

50 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Migrating Example: iBank

using its <ej b- r ef - name>, this <ej b- r ef - name> has to be mapped to the actual
<j ndi - nane> of the bean on the Application Server. Hence, this serves as a
mechanism to add a layer of abstraction between the name referenced by the EJB
implementation and the actual JNDI name of the bean.

Using the logic explained above, let us examine the BankTeller EJB. In the

ej b-j ar. xnl , there are two <ej b- r ef > declarations inside this EJB. The first one is
for the Customer EJB (an entity bean in the Entity Bean module). As we have
explained in point #3 above, the INDI names of all EJBs will be kept as

ej b/ <ej b- name>, we will add this declaration inside the sun- ej b-j ar. xm

<sun-ej b-j ar>
<enterpri se-beans>
<ej b>
<ej b- name>BankTel | er </ ej b- name>
<j ndi - nanme>ej b/ BankTel | er </ j ndi - nane>
<ej b-ref>
<ej b-r ef - name>Cust oner </ ej b-r ef - nane>
<j ndi - name>ej b/ Cust oner </ j ndi - name>
</ejb-ref>
</ ej b>
<ej b>
<ej b- name>I nt er est Cal cul at or </ ej b- name>
<j ndi - name>ej b/ | nt er est Cal cul at or </ j ndi - nane>
</ ej b>
</ enterprise-beans>
</ sun-ej b-jar>

Similarly, we will add a similar <ej b- r ef > tag for Account EJB. Since the
InterestCalculator bean does not have a <ej b- r ef > tag inside the ej b-j ar. xm , itis
not required inside the sun- ej b-j ar. xnl also. By now, the sun- ej b-j ar. xni
should look like this

<sun-ej b-jar>

<enterprise-beans>

Chapter 2 Migration Considerations and Strategies 51

Migrating Example: iBank

<ej b>
<ej b- name>BankTel | er </ ej b- name>
<j ndi - name>ej b/ BankTel | er </ j ndi - nane>
<ej b-ref>
<ej b-r ef - nane>Cust oner </ ej b-r ef - nane>
<j ndi - nane>ej b/ Cust oner </ j ndi - name>
</ejb-ref>
<ej b-ref>
<ej b-ref - name>Account </ ej b-r ef - name>
<j ndi - name>ej b/ Account </ j ndi - nane>
</ejb-ref>
</ ej b>
<ej b>
<ej b- name>I nt er est Cal cul at or </ ej b- name>
<j ndi - name>ej b/ | nt er est Cal cul at or </ j ndi - nane>
</ ej b>
</ enterprise-beans>
</ sun-ej b-jar>

5. The ejb element would contain element pass-by-reference <! ELEMENT
pass- by-reference (#PCData).

pass-by-reference elements controls use of Pass by Reference semantics. The EJB
specification requires pass by value, which will be the default mode of operation. This
can be set to true for non-compliant operation and possibly higher performance. It can
apply to all the enclosed EJB modules. Allowed values are true and false. Default will
be false.

52 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Migrating Example: iBank

The ejb element would also have element bean-cache.

<IELEMENT bean-cache (max-cache-size?, is-cache-overflow-allowed?,
cache-idle-timeout-in-seconds?, removal-timeout-in-seconds?,
victim-selection-policy?)>

This element is used only for stateful session beans and entity beans. In iBank, only
BankTeller session bean would have this entry.

In this tag, max-cache-size defines the maximum number of beans in the cache.
cache-idle-timeout-in-seconds specifies the maximum time that a stateful session bean
or entity bean is allowed to be idle in the cache. After this time, the bean is passivated
to backup store. This is a hint to server. Default value for
cache-idle-timeout-in-seconds is 10 minutes.

The amount of time that the bean remains passivated (i.e. idle in the backup store) is
controlled by removal-timeout-in-seconds parameter. Note that if a bean was not
accessed beyond removal-timeout-in-seconds, then it will be removed from the backup
store and hence will not be accessible to the client. The Default value for
removal-timeout-in-seconds is 60min.

With the above entries, sun- ej b-j ar. xm should look like this:
<sun-ej b-jar>
<ent erpri se- beans>
<ej b>
<ej b- name>BankTel | er </ ej b- nanme>
<j ndi - name>ej b/ BankTel | er </ j ndi - nane>
<ej b-ref>
<ej b-r ef - name>Cust oner </ ej b-r ef - nane>
<j ndi - name>ej b/ Cust oner </ j ndi - nanme>
</ ejb-ref>
<ej b-ref>
<ej b-ref - name>Account </ ej b-r ef - nane>
<j ndi - name>ej b/ Account </ j ndi - nane>
</ejb-ref>
<pass- by-reference>fal se</ pass-by-reference>

<bean- cache>

Chapter 2 Migration Considerations and Strategies 53

Migrating Example: iBank

<cache-idl e-ti meout -i n- seconds>
0
</ cache-idl e-ti meout-in-seconds>
<renoval - ti nmeout -i n- seconds>
0
/renoval -ti meout -i n- seconds>
</ bean- cache>
</ ej b>
<ej b>
<ej b- name>| nt er est Cal cul at or </ ej b- nane>
<j ndi - name>ej b/ | nt er est Cal cul at or </ j ndi - name>
<pass- by-ref erence>f al se</ pass-by-reference>
</ ej b>
</ enterprise-beans>

</ sun-ejb-jar>

54 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Migrating Example: iBank

The element used only for Stateless session bean and message-driven bean pools is
bean-pool.

<! ELEMENT bean- pool (steady-pool-size?, resize-quantity?,
max- pool - si ze?, pool -idle-tineout-in-seconds?,
max-wait-tinme-in-mllis?)>

steady-pool-size specified the initial and minimum number of beans that must be
maintained in the pool.

resize-quantity specifies the number of beans to be created or deleted when the pool is
being serviced by the pool manager.

max-pool-size specifies the maximum pool size. Valid values are from 0 to
MAX_INTEGER.

max-pool-size spiffiest the maximum pool size.

pool-idle-timeout-in-seconds specifies the maximum time that a stateless session bean
or message-driven bean is allowed to be idle in the pool.

Finally the sun-ej b-jar.xm would having following shape:
<sun-ej b-jar>
<enterpri se-beans>
<ej b>
<ej b- name>BankTel | er </ ej b- name>
<j ndi - nanme>ej b/ BankTel | er </ j ndi - nane>
<ej b-ref>
<ej b-r ef - name>Cust oner </ ej b-r ef - nane>
<j ndi - name>ej b/ Cust oner </ j ndi - name>
</ejb-ref>
<ej b-ref>
<ej b-ref - name>Account </ ej b-r ef - nanme>
<j ndi - name>ej b/ Account </ j ndi - name>
</ ejb-ref>
<pass- by-ref erence>f al se</ pass- by-reference>

<bean- cache>

Chapter 2 Migration Considerations and Strategies 55

Migrating Example: iBank

<cache-idl e-ti meout -i n- seconds>
0
</ cache-idl e-ti meout-in-seconds>
<renoval - ti nmeout -i n- seconds>
0
</renoval -ti neout -i n- seconds>
</ bean- cache>
</ ej b>
<ej b>
<ej b- name>| nt er est Cal cul at or </ ej b- nane>
<j ndi - name>ej b/ | nt er est Cal cul at or </ j ndi - name>
<pass- by-ref erence>f al se</ pass-by-reference>
<bean- pool >
<pool -idl e-ti neout -i n-seconds>
0
</ pool -i dl e-ti meout -i n- seconds>
</ bean- pool >
</ ej b>
</ enterprise-beans>
</ sun-ejb-jar>

Entity Beans:

Inej b-j ar. xm : The <! DOCTYPE definition should be modified to point to the latest DTD
url in case of ej b-j ar . xml . This new definition should look like this:

<! DOCTYPE ej b-jar PUBLIC '-//Sun M crosystens, Inc.//DTD
Enterprise JavaBeans 2.0//EN
"http://java.sun.comdtd/ejb-jar_2_0.dtd >

Insert <cnp- ver si on> tag with value 1.1 for all CMPs beans in ej b-j ar. xni .
Entry for entity bean would look like:

<entity>

56 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

http://java.sun.com/dtd/ejb-jar_2_0.dtd'

Migrating Example: iBank

<descri pti on>Account CMP entity bean</description>

<ej b- name>Account </ ej b- name>

<home>com sun. bank. ej b. enti ty. Account Home</ hone>

<r enot e>com sun. bank. ej b. enti ty. Account </ r enot e>

<ej b-cl ass>com sun. bank. ej b. entity. Account EJB</ e b-cl ass>
<per si st ence-t ype>Cont ai ner </ per si st ence-type>

<pri m key-cl ass>com sun. bank. ej b. entity. Account PK</ pri m key-cl a
ss>

<r eent r ant >Fal se</reentrant >
<cnp-ver si on>1. x</ cnp-ver si on>
<cnp-field>
<fi el d- nane>br anchCode</fi el d- name></cnp-fiel d>
<cnp-field>
<fi el d- nane>accTypel d</fi el d- nane></cnp-fi el d>
<cnp-field>
<fi el d- nane>accBal ance</fi el d- name></cnp-fiel d>
<cnp-field>
<fi el d- nane>cust No</ fi el d- name></cnp-fiel d>
<cnp-field>
<fi el d- nane>accNo</fi el d- nane></cnp-fi el d>
</entity>
similarly all the CMP beans would have this entry.

Similar to Session Beans, the i as- ej b-j ar. xnml in Sun ONE Application server 6.5 has
been replaced by sun- ej b-j ar. xm in Sun ONE Application server 7. Since the DTDs
for this two XML files are radically different, the migrator needs to create the new
sun-ej b-jar. xm by extracting relevant information from the ej b-j ar. xm and

i as-ej b-jar.xm . The creation process is outlined below:

Chapter 2 Migration Considerations and Strategies 57

Migrating Example: iBank

Create a new XML file which has the following DOCTYPE definition on top:

<! DOCTYPE sun-ejb-jar PUBLIC '-//Sun M crosystens, Inc.//DID Sun
ONE Application Server 7 EJB 2.0//EN
"http://ww. sun. conf sof t war e/ sunone/ appserver/dtds/sun-ejb-jar_2

_0-0.dtd" >

Save this file as “sun- ej b-j ar. xm ”, along with the modified ej b-j ar. xni .

The root tag of this XML file, as evident from the DOCTYPE definition, is
sun- ej b-j ar . In the DTD, this element is defined as

<! ELEMENT sun-ej b-jar (security-rol e-mapping*, enterprise-beans)
>

The security-role-mapping tag is meant for mapping the security roles declared in the
ej b-j ar. xnl . As in the iBank application, there is no security declared in the

ej b-j ar. xnl file, we will skip the security-role-mapping optional tag and focus on
the enterprise-beans tag. Right now, the sun- ej b-j ar. xm file should look like.

<sun-ej b-jar>
<ent erpri se- beans>
</ enterprise-beans>
</ sun-ej b-jar>

NOTE: We have not included the header part of the document, namely the XML
declaration and DOCTYPE definition, here for brevity.

58 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

http://www.sun.com/software/sunone/appserver/dtds/sun-ejb-jar_2

Migrating Example: iBank

The enterprise-beans element is defined in the DTD as

<! ELEMENT enterpri se-beans (nanme?, unique-id?, ejb*,
pm descriptors?, cnp-resource?)>

The optional name element should contain the canonical name of the enterprise-beans.
You may give it some name. We will skip this tag.

The unique-id element is used by the Sun ONE Application Server and is inserted by
the Application Server automatically at the time of application deployment. We will
skip this tag.

The ejb element is the tag in which we are interested. This is the element describing
runtime bindings for a single EJB. It is defined in the DTD as

<! ELEMENT ejb (ejb-name, jndi-name?, ejb-ref*, resource-ref*,
resource-env-ref*, pass-by-reference?, cnp?, principal?,

ndb- connecti on-factory?, jns-durabl e-subscription-nane?,

j me- max- nessages-| oad?, ior-security-config?,

i s-read-onl y-bean?, refresh-period-in-seconds?, conmt-option?,
gen-cl asses?, bean-pool ?, bean-cache?)>

In our case, the ejb element will contain the ejb-name element. The ejb-name element
will contain the canonical name of the EJB. This name should be the same as declared
inside the ejb-name element of the ej b-j ar . xm for that EJB. It will also contain the
jndi-name of the EJB. One of the differences between Sun ONE Application Server 6.5
and 7 is the flexibility of the latter in providing freedom to the bean developer to have
different ejb-name and jndi-name of an EJB. In Sun ONE Application Server 6.5, the
JNDI name of an EJB by default was ej b/ <ej b- name>.

To allow for smooth migration, we need to keep the jndi-names of the EJB and all other
resources to be same as they were on Sun ONE Application Server 6.5. Hence, we
declare the ejb-name of all the ejbs’ to be ej b/ <ej b- nanme>.

Using the logic described above, the sun- ej b-j ar. xm now should look like
<sun-ej b-jar>
<enterpri se-beans>
<ej b>
<ej b- name> Account </ ej b- nanme>
<j ndi - name> ej b/ Account </ j ndi - nanme>
</ ej b>

<ejb> --- </ejb>

Chapter 2 Migration Considerations and Strategies 59

Migrating Example: iBank

<ejb> --- </ejb>
other ejb’'s
<ejb> --- </ejb>
<ejb> --- </ejb>
</ enterprise-beans>
</ sun-ej b-jar>

4. The ejb element would contain element pass-by-reference <! ELEMENT
pass- by-reference (#PCData).

pass-by-reference elements control use of Pass by Reference semantics. EJB spec
requires pass by value, which will be the default mode of operation. This can be set to
true for non-compliant operation and possibly higher performance. It can apply to all
the enclosedEJBmodules. Allowed values are true and false. Default will be false.

60 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Migrating Example: iBank

In case of CMP entity beans, element cmp is declared, which describes runtime
information for a CMP EntityBean object for EJB1.1 and EJB2.0 beans.

<! ELEMENT cnp (mappi ng-properties?, is-one-one-cnp?,
one-one-finders?)>

In this mapping-properties contains the location of the persistence vendor specific O/R
mapping file. is-one-one-cmp field is used to identify CMP 1.1 with old descriptors.
This contains the boolean true if it is CMP 1.1. one-one-finders contains the finders for
CMP 1.1.

This root element finder contains the finder for CMP 1.1 with a method-name and
query parameters.

<! ELEMENT fi nder (nethod-nane, query-parans?, query-filter?,
query-vari abl es?) >

Element method-name contains the method name for the query field. Element
query-params contains the query parameters for CMP 1.1 finder.

query-filter is an optional element which contains the query filter for CMP 1.1 finder.
After making the above entries in iBank, sun-ejb-jar would look like:
<sun-ej b-j ar>
<enterpri se-beans>
<ej b>
<ej b- name> Account </ ej b- nane>
<j ndi - nanme> ej b/ Account </ j ndi - name>
<pass- by-reference>fal se</ pass-by-reference>
<cnp>
<mappi ng- properties>
VETA- | NF/ sun- cnp- mappi ngs. xmi
</ mappi ng- properties>
<i s-one-one-cnp>true</is-one-one-cnp>
<one-one-fi nders>
<fi nder>

<net hod- nane>

Chapter 2 Migration Considerations and Strategies 61

Migrating Example: iBank

fi ndOr der edAccount sFor Cust omrer
</ met hod- nane>
<query- parans>i nt cust No</ query- parans>
<query-filter>
cust No == cust No
</query-filter>
</finder>

</ one- one-fi nder s>

</ cnp>
</ ej b>
<ejb> --- </ejb>
<ejb> --- </ejb>
other ejb’'s
<ejb> --- </ejb>
<ejb> --- </ejb>

</ enterprise-beans>
</ sun-ej b-jar>

Account is the only entity bean having a finder other than primary key. So the finder
entry shown above would only be in the case of Account bean.

6. The <! ELEMENT conmit-option (#PCDATA)> specifies option for committing.

62 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Migrating Example: iBank

The ejb element would also have an element bean-cache.

<! ELEMENT bean-cache (max-cache-size?,
i s-cache-overfl ow al | owed?, cache-idle-tinmeout-in-seconds?,
renoval -ti meout -i n-seconds?, victimselection-policy?)>

This element is used only for stateful session beans and entity beans. In this tag,
max-cache-size defines the maximum number of beans in the cache.
cache-idle-timeout-in-seconds specifies the maximum time that a stateful session bean
or an entity bean is allowed to be idle in the cache. After this time, the bean is
passivated to backup store. This is a hint to server. Default value for
cache-idle-timeout-in-seconds is 10 minutes.

The amount of time that the bean remains passivated (i.e. idle in the backup store) is
controlled by removal-timeout-in-seconds parameter. Note that if a bean was not
accessed beyond removal-timeout-in-seconds, then it will be removed from the backup
store and hence will not be accessible to the client. The Default value for
removal-timeout-in-seconds is 60min.

With the above entries, sun- ej b-j ar. xm should look like this:
<sun-ej b-jar>
<ent erpri se- beans>
<ej b>
<ej b- name> Account </ ej b- nanme>
<j ndi - name> ej b/ Account </ j ndi - name>
<pass- by-ref erence>f al se</ pass- by-reference>
<cnp>
<mappi ng- properti es>
META- | NF/ sun- chp- mappi ngs. xm
</ mappi ng- properties>
<i s- one- one- cnp>true</i s- one- one- cnp>
<one-one-finders>
<finder>
<nmet hod- name>
fi ndOr der edAccount sFor Cust oner

</ met hod- nane>

Chapter 2 Migration Considerations and Strategies 63

Migrating Example: iBank

<query-parans>i nt cust No</ query- par ans>
<query-filter>
cust No == cust No
</query-filter>
</finder>
</ one-one-fi nder s>
</ cnp>
<conmmi t - opti on>C</ conmi t - opti on>
<bean- cache>
<max- cache- si ze>60</ nax- cache- si ze>
<cache-idl e-ti meout-in-seconds>
0
</ cache-idl e-ti meout-in-seconds>

</ bean- cache>

</ ej b>
<ejb> --- </ejb>
<ejb> --- </ejb>
other ejb’'s
<ejb> --- </ejb>
<ejb> --- </ejb>

</ enterprise-beans>

</ sun-ejb-jar>

64 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Migrating Example: iBank

In <! ELEMENT enterprise-beans (nane?, unique-id?, ejb*,
pmdescriptors?, cnp-resource?)>

Element pm-descriptors would be <! ELEMENT pm descri ptors
(pm descri ptor+, pminuse)> Persistence Manager descriptors contain one or
more pm descriptors, but only of them must be in use at any given time.

pm-descriptor describes the properties for the persistence manager associated with
entity bean. pm-identifier element describes the vendor who provided the PM
implementation. pm-version further specifies which version of PM vendor product to
be used. pm-config specifies the vendor specific config file to be used.
pm-class-generator specifies the vendor specific concrete class generator. This is the
name of the class specific to a vendor. pm-mapping-factory specifies the vendor
specific mapping factory. This is the name of the class specific to a vendor. pm-insue
specifies whether this particular PM must be used or not.

Element cmp-resource contains the database to be used for storing CMP beans in an
ejb-jar. <! ELEMENT cnp-resource (jndi-nang,
def aul t - resour ce- pri nci pal ?) >

Element jndi-name Specifies the JNDI name string. Element
default-resource-principal has element name and password to be used when none are
specified while accessing a resource.

<! ELEMENT def aul t-resource-principal (nane, password)>

Finally sun- ej b-j ar. xm would look like:

<sun-ej b-jar>

<ent erpri se- beans>
<ej b>
<ej b- name> Account </ ej b- nanme>
<j ndi - name> ej b/ Account </ j ndi - name>
<pass- by-ref erence>f al se</ pass- by-reference>
<cnmp>
<mappi ng- properti es>
META- | NF/ sun- cp- mappi ngs. xm
</ mappi ng- properti es>
<i s-one-one-cnp>true</is-one-one-cnp>

<one-one-fi nder s>

Chapter 2 Migration Considerations and Strategies 65

Migrating Example: iBank

<finder>
<net hod- name>
fi ndOr der edAccount sFor Cust omrer
</ met hod- nanme>
<query- parans>i nt cust No</ query- parans>
<query-filter>
cust No == cust No
</query-filter>
</ finder>
</ one- one- fi nder s>
</ cnp>
<conmi t - opti on>C</ conmi t - opti on>
<bean- cache>
<max- cache- si ze>60</ max- cache- si ze>
<cache-idl e-ti meout -i n- seconds>
0
</ cache-idl e-ti meout-in-seconds>

</ bean- cache>

</ ej b>
<ejb> --- </ejb>
<ejb> --- </ejb>
other ejb’s
<ejb> --- </ejb>
<ejb> --- </ejb>

<pm descri pt or s>
<pmdescri pt or>
<pmidentifier> PLANET</ pmidentifier>

<pm ver si on>1. 0</ pm ver si on>

66 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Migrating Example: iBank

<pm cl ass- gener at or >
com i pl anet.i as. persi stence.
internal.ejb.ejbc. IDOCodeGener at or
</ pm cl ass- gener at or >
<pm mappi ng- f act ory>
comiplanet.ias.cnp. Null Factory
</ pm mappi ng- f act ory>
</ pm descri pt or >
<pm i nuse>
<pmidentifier> PLANET</ pmidentifier>
<pm versi on>1. 0</ pm ver si on></ pm i nuse>
</ pm descri pt or s>
<cnp- r esour ce>
<j ndi - nanme>j do/ pnf </ j ndi - nane>
</ cnp-resource>
</ enterprise-beans>
</ sun-ejb-jar>

Generate dbschema by using the capture-schema utility in the Sun ONE Application Server
7 installation’s bin directory. Execute capture-schema.bat file kept in bin directory and
specify the valid inputs for the database URL, username, password and specify the tables
for which schema has to be generated. By default, schema has to be generated for all the
tables used by the application. In case of iBank, there are five tables for which schema has
to be generated. Name this schema file as nyschema. dbschena. The tables used in iBank
are:

ACCOUNT
ACCOUNT_TYPE

BRANCH

CUSTOVER

TRANSACTI ON_HI STORY
TRANSACTI ON_TYPE

Pl ace this file nyschema. dbschema above META-INF fol der for the
Entity beans.

Chapter 2 Migration Considerations and Strategies 67

Migrating Example: iBank

In <ej b- nane>-i as- cnp. xm : Replace all the <ej b- nane>-i as- cnp. xm files in Sun
ONE Application Server 6.0/6.5 with one sun- cnp- mappi ngs. xni file. This file maps (at
least one) set of beans to tables and columns in a specific db schema. Since the DTDs for
this two XML files are radically different, the migrator has to actually create a new file
following the steps given below:

1. Create a new XML file which has the following DOCTYPE definition on top:

<! DOCTYPE sun-cnp- mappi ngs PUBLIC '-//Sun M crosystens,
Inc.//DTD Sun ONE Application Server 7 OR Mapping //EN
"http://ww. sun. cont sof t war e/ sunone/ appser ver/ dt ds/ sun- cnp_mappi
ng_1_0.dtd"' >

Save this file as “sun- cnp- mappi ngs. xm ”.

2. The root tag of this XML file, as evident from the DOCTYPE definition, is
sun-cmp-mappings. In the DTD, this element is defined as:

<! ELEMENT sun-cnp- mappi ngs (sun-cnp- mappi ng+) >

El enent sun-cnp- mappi ng woul d be :

<! ELEMENT sun-cnp-mappi ng (schemm, entity-mappi ng+) >
Here element schema is the path name to the schema file.

A cmp bean has a name, a primary table, one or more fields, zero or more relationships,
and zero or more secondary tables, plus flags for consistency checking. Element
entity-mapping has following elements

<! ELEMENT entity-nappi ng (ej b-name, tabl e-nane,
cnp-fiel d- mappi ng+, cnr-fiel d-mappi ng*, secondary-tabl e*,
consi stency?) >

Element ejb-name is the EJB name from standard EJB-jar DTD. Element table-name is
the name of the database table. A cmp-field-mapping has a field, one or more columns
that it maps to cmr-field mapping. A cmr field has a name and one or more column
pairs that define the relationship. Element secondary-table is for secondary table used.
In case of iBank, no secondary table is used.

Right now, the sun- cnp- mappi ngs. xnm file with entries for Account entity bean
should look like:

<sun- cnp- nmappi ng>
<schema>nySchema</ scherma>
<entity- mappi ng>

<ej b- name>Account </ ej b- nane>

68 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

http://www.sun.com/software/sunone/appserver/dtds/sun-cmp_mappi

Migrating Example: iBank

<t abl e- name>ACCOUNT</ t abl e- nane>
<cnp-fi el d- mappi ng>
<fi el d- name>cust No</fi el d- nanme>
<col um- name>CUST_NO</ col um- nane>
</ cnp-fi el d- mappi ng>
<cnp-fi el d- mappi ng>
<fi el d- name>br anchCode</fi el d- nanme>
<col um- nane>BRANCH_CODE</ col um- nane>
</ crp-fi el d- mappi ng>
<cnp-fi el d- mappi ng>
<fi el d- nane>accTypel d</fi el d- nane>
<col um- nanme>ACCTYPE_I D</ col umm- nane>
</ cmp-fi el d- mappi ng>
<cnp-fi el d- mappi ng>
<fi el d- nane>accNo</fi el d- nane>
<col um- name>ACC_NO</ col umm- nane>
</ cnp-fi el d- mappi ng>
<cnp-fi el d- mappi ng>
<fi el d- name>accBal ance</fi el d- name>
<col um- nane>ACC_BALANCE</ col um- nane>
</ crp-fi el d- mappi ng>
</ entity- mappi ng>
</ sun- cnp- nappi ng>

NOTE: We have not included the header part of the document, namely the XML
declaration and DOCTYPE definition, here for brevity.

Entries for all the CMP entity beans have to be made.

The above changes can be referenced in file i BankW t hCMP1. 1. zi p provided with this
guide.

Chapter 2 Migration Considerations and Strategies 69

Migrating Example: iBank

Assembling Application for Deployment

Sun ONE Application server 7 primarily supports the J2EE model wherein applications are
packaged in the form of an enterprise archive (EAR) file (extension .ear). The application is
further subdivided into a collection of J2EE modules, packaged into Java archives (JAR,
extension .jar) for EJBs and web archives (WAR, extension .war) for servlets and JSPs.

So all the JSPs and Servlets should be packaged into WAR file, all EJBs into the JAR file
and finally the WAR and the JAR file together with the deployment descriptors in to the
EAR file. This EAR file is a deployable component.

Deploying iBank application on Sun ONE Application Server 7 using
the asadmin utility

The last stage is to deploy the application on an instance of Sun ONE Application Server 7.
The process for deploying an application is described below:

The Sun ONE Application Server 7 asadmin includes a help section on deployment that is
accessible from the Help menu.

The command line utility asadmin can be invoked by executing asadni n. bat file in
windows and asadni n file in solaris kept at Sun ONE Application Server 7 installation's
bin directory. i.e., <l nstal | _di r >/ AppSer ver 7/ appser v/ bi n.

At asadmin prompt, the command for deployment would be:

asadmin> deploy -u username -w password -H hostname -p adminport [--type
application|ejb|web|client|connector] [--contextroot contextroot] [--force=true] [--name
component-name] [--upload=true] [--instance instancename] filepath

Restart the server instance and then test the application on the browser by typing the url
*hitp://<machine_name>:<port_number>/IBank’. Test by giving one of the available user
name and password, say username as 'jatkins' and password as 'Monday'. This should show
the main menu page of the ibank application.

Migrating iBank using Sun ONE Studio for Java
4.0

The sample application we defined is called 'iBank' and simulates a basic online banking
service with the following functionality:-

* log on to the online banking service
» view/edit personal details and branch details

* summary view of accounts showing cleared balances

70 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Migrating Example: iBank

facility to drill down by account to view individual transaction history
money transfer service, allowing online transfer of funds between accounts

compound interest earnings projection over a number of years for a given principal and
annual yield rate.

The major steps to be followed for migrating the iBank application would be as follows:

The first and the foremost requirement of this migration is to install Sun ONE
Application Server 7 and Sun ONE Studio.

Extract the application, which is in a zip format in a local directory.

The source for the iBank application (i Bank65. zi p) can be found at the migration
site http://www.sun.com/migration/sunonetools.html. Unzipping the file
“i Bank65. zi p” would create following directory structure:

It would have 4 sub directories ‘Docr oot °, ‘Sessi onCont ent ’, ‘Enti t yContent’
and ‘Scripts’.

n ‘Docr oot ’ would contain Html, Jsp’s and Image files in its root. It would also
contain the source files for servlets, EJBs, etc in the sub-folder WEB- | NF\ classes
following the package structure com.sun.bank.*. War file would be generated
through the contents of this directory.

= ‘Sessi onCont ent > would contain the source code for Session beans following
the package structure com.sun.bank.ejb.session. This directory would form the
EJB module for session beans.

. ‘EntityContent’ would contain the Entity beans following the package
structure com.sun.bank.ejb.entity. This directory would form the EJB module
for Entity beans.

m ‘Scripts’ contain the sql scripts for the database setup.

Setup the schema for iBank application by executing the sql scripts provided in the
‘Scri pt s’ folder. These scripts are for oracle database. These scripts would create
user, create tables and insert data into the tables. Execute the scripts in the following
order

» 01_iBank_CreateUser.sql

= 02_iBank_CreateTables.sql

= 03_iBank_InsertData.sql

Manual migration would involve following steps:

a. Migrate Servlets, JSPs and JSP Custom tag libraries.

Chapter 2 Migration Considerations and Strategies 71

http://www.sun.com/migration/sunonetools.html

Migrating Example: iBank

b. Migrate Session Beans.
c. Migrate Entity Beans.
d. Migrate JDBC code.

These steps have to be carried out manually and is explained as and when required in
the following sections. If migration tool is used as an option, it has to be carried out at
this point itself. If manual approach is followed then changes have to be done as and
when specified in following sections.

Prepare Sun ONE Studio for assembling and deploying sample application ‘iBank’

Sun ONE Studio can be invoked through the r uni de. exe file (r uni de. sh in case of
Solaris) kept in the <Sun ONE App Server ROOT>/ <AppSer v>/ <SUN ONE
STUDI O FOR JAVA_ROOT>/ bi n directory.

(Note: Sun ONE Application Server 7 should be up and running before following the
steps below)

n In the explorer window,

» Click at the Runtime tab

n Click ‘Server Registry’

m Click ‘installed servers’

n Choose Sun ONE Application Server.

= Setup admin server by right clicking at the Sun ONE Application Server and then
selecting ‘Add Admin Server’

= Enter details for host (local machine name), port number (by default its 4848),
username and password.

n Once the admin server is setup, click on it to get the server instance installed.

= Set the server instance as default server by right clicking on the server instance and
selecting option for setting it as default.

Create web module by following the instructions given in "Creating a Web application
module in Sun ONE Studio for Java".

Migrate EJBs manually if migration tool is not used as an option for migrating the
application. Follow the section on "EJB Migration", for the manual migration. This
step can be carried out by opening the source code for the EJB’s in Sun ONE Studio
and modifying it.

Migrate the JDBC code if migration tool is not used as an option to migrate the
application by following the section on "Migrating JDBC Code".

72 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Migrating Example: iBank

* iBank application has Entity Beans with CMP 1.1, so they have to be converted to
CMP 2.0 by following the manual procedure explained in the section on "Migrating
CMP Entity EJBs" if the application is not migrated using the tool.

If application is migrated through the tool, all the entity beans are migrated except one,
i.e., “Account’ entity bean as it has Enumeration used in its code. The code for this has
to be changed manually following the instructions given in section, "Migrating CMP
Entity EJBs". Refer section, "Converting CMP Entity EJBs from 1.1 to 2.0" for an
example of changes to be carried out for converting CMPs from 1.1 to 2.0.

* Create separate EJB modules for the Entity Beans and the Session Beans by following
the instructions given in section, "Creating an EJB module in Sun ONE Studio for
Java".

» Create Enterprise application by following the instructions given in section, "Creating
an enterprise application in Sun ONE Studio for Java", which would include the web
module as well as the EJB modules. The final output of this step would be .ear file,
which can be deployed.

* Deploy .ear file on Sun ONE Application server 7 by following the instructions given
in section, "Deploying an application in Sun ONE Application Server 7".

Creating a Web application module in Sun ONE Studio for Java

To create a Web application module in Sun ONE Studio for Java, follow the procedure
below:

1. Mount the directory containing the source files i.e, ‘Docroot’ in the Sun ONE Studio
for Java “FileSystems Explorer” window by right clicking at the Filesystem and
choosing option for mount.

2. Create an empty directory, say ‘WarContent’ for the web module in the root directory
structure containing the source files.

3. Mount the newly created directory ‘WarContent’ in the Sun ONE Studio for Java
“FileSystems Explorer” window by right clicking at the Filesystem and choosing
option for mount.

4. Mount the other directories containing the EJBs in the source file directory structure.
i.e., ‘EntityContent’ and ‘SessionContent’.

5. Convert the FileSystem (WarContent) into a Web Module by right clicking at the
folder name and then selecting tools where there is an option for converting it into
WebModule.

6. Copy the source JSP, HTML and image files to the web application root. i.e., to the
directory ‘WarContent’ from the directory ‘Docroot’.

Chapter 2 Migration Considerations and Strategies 73

Migrating Example: iBank

7. Copy servlets and auxiliary class sources to the WEB- | NF/ classes directory. i.e., copy
the sub folder ‘com’ in the ‘Docroot’ directory to the VEB- | NF/ classes directory of
‘WarContent’ directory.

8. Copy the tag library present in the WEB- | NF of the ‘Docroot’ directory to the VEB- | NF
of “WarContent’ directory.

9. Edit the source code wherever required to migrate it to Sun ONE Application Server 7
(if it has not been modified through the migration tool), by following the steps below:

n Figure out the JSPs that have to be changed.
n Figure out if any custom JSP tags are used in the application.

n Open the selected JSP code in Sun ONE Studio by right clicking at the file and
selecting option to open.

= Follow the steps given in section "Migrating Java Server Pages and JSP Custom
Tag Libraries" to modify the source.

» Similarly migrate the servlets by following the details in section, "Migrating
Servlets".

10. Assemble the application and fill in the deployment descriptor web. xm (in the
WEB- | NF/ directory). Click on the web. xml file and edit the properties of it, i.e,
During this assembly phase, configure each servlet, JSP page and JSP tag library, as
well as the EJB or data source references used in the Web application.

The following screen shots illustrate how this assembly phase is carried out using Sun ONE
Studio for Java:

Configuring a Servlet
In the web module, click on web and then view the properties window.

Click at the deployment tab of the properties window of web. xm . Further click on the
servlets for configuring servlets.

A property editor is displayed, click at ‘Add’ button to add new servlet.

For each servlet in the Web application, you specify the name of the servlet, the full name
of its implementation class by clicking at the ‘Browse’ button, the mapping elements for the
servlet by clicking at ‘Mappings’, and any initialization parameters.

74 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Migrating Example: iBank

Figure 2-4 Configuring Servlet
Add Serviet
Serviet Nawe 3 [LogirServiet Heppings : Ahecklogin | ...
Display Name : [Lngm‘ieru].:-r_] Small leon (16:xiE) 1 | [ess
Description § [Large lcon {32432) 1 | I ees
Servlet Class @ [rvlets.LoginServlet Brouse ... | Fun Az
Load On Startup : [Order 3| Role Mame : |
Dezcription : |7|
Init Paraneters @)
Init Param Name Description | Init Param Valus |
Add ... |
Security Role References i
Raole Ref Hone | Description Rale Ref Link]
hdd ..
[ok]| casl || help

The list of servlets and their mappings in iBank application are:

Table 2-1 Servlets and Mappings

Serviet Name Display Name Mapping
LoginServlet LoginServlet /CheckLogin
CheckTransferServlet CheckTransferServlet /CheckTransfer
CustomerProfileServlet CustomerProfileServlet /CustomerProfile
DataSourceTestServlet DataSourceTestServlet /DataSourceTest
HelloWorldServlet HelloWorldServlet /HelloWorld
LookUpDataSourceTestServlet LookUpDataSourceTestServlet /LookUpDataSourceTest
ProjectEarningsServlet ProjectEarningsServlet /ProjectEarnings

Chapter 2

Migration Considerations and Strategies 75

Migrating Example: iBank

Table 2-1 Servlets and Mappings

Serviet Name Display Name Mapping
ShowAccountSummaryServlet ShowAccountSummaryServlet /ShowAccountSummary
TestContextServlet TestContextServlet /TestContext
TransferFundsServlet TransferFundsServlet /TransferFunds
UpdateCustomerDetailsServlet UpdateCustomerDetailsServlet /UpdateCustomerDetails

All the above servlets have to be configured such that web. xnl has entries for all of them.
Finally the ‘deployment’ tab should show 11 servlets mappings and 11 servlets.

Configuring a JSP tag library

Click on the Deployment tab of the web. xml properties window. Click at the Tag
Libraries to set the Tag lib.

To define a JSP tag library in the Web application deployment descriptor, specify the URI
of the library (the identifier which the JSP pages will use to access it), and the path to the
library's deployment descriptor (.tld file).

In iBank, there is one JSP Tag library TMBHi st 0. t | d. The deployment descriptor is kept
in VEB- | NF. Following entries have to be made.

- AdTagib |

Taglib URL:

THETranzactionHistary

JHEB-TNF/ THEHisto. t14] Brouse ...

Taglib Location:

Figure 2-5 Configuring Tag lib

Add Resource Reference

Click at the references tab of the web. xm Properties window. Click at the Resource
Reference to add a new resource. Following screen shot shows adding a new Resource for
Data source in iBank i.e., j dbc/ i Bank

76 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Migrating Example: iBank

Namez [jefoc A TBard [

Description: [TBank Data Source |

Tupes |javax.aq1 JataSource I:l

Ruthorization: |Container =

Sharing Scope: |Sharsable |

Figure 2-6 Adding Resource Reference

Click at the Sun ONE App Server tab and set the JNDI name as 'j dbc/ | Bank' and also set
the User name and Password depending on the database schema you are using.

INDT Name: [sdbe/ TBank |
User Information {(if needed);

User Mame: |ibank_user |
Password: [msckmsninny] |

[ok]| concer || metp |

Chapter 2 Migration Considerations and Strategies 77

Migrating Example: iBank

Figure 2-7 Adding Resource Reference entry for Sun ONE Application Server

Add Context Param
Add entry for context parameter for the JNDI name to lookup iBank data source.

Following screen shot shows the entry for context param, which can be done by clicking at
the context param in the Properties window at the Deployment tab of web. xni .

Jontext Parameter

Param Name: |[BankDSH

Param Yalue: [Bank

Description: |TBank ISH|

Figure 2-8 Adding Context Parameter

Specify the Welcome File

Specify the welcome file in the properties window by clicking at the Welcome Files.

In case of iBank, i ndex. j sp is the welcome file so that has to be mentioned.

Converting CMP Entity EJBs from 1.1 to 2.0

Referring to the manual process described in section, "Migrating CMP Entity EJBs", Here
is an example of Account Entity bean being converted from CMP 1.1 to CMP 2.0.

The related files for Account bean are:

Account . j ava

Account EJB. j ava

Account Horre. j ava

Account PK. j ava

The details of the changes done are described below:

e Account.java:

78 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Migrating Example: iBank

There are no major changes in the code except for commenting out the setters for the
primary key. The other setters are kept as it is.

Following is the code before modification:

public String getBranchCode()
t hr ows Renot eExcepti on;

public void setBranchCode(String branchCode)
t hr ows Renot eExcepti on;

public String get AccNo()
t hr ows Renot eExcepti on;

public void set AccNo(String accNo)

t hr ows Renot eExcepti on;

----- other getters and setters----

After commenting the setters for the primary keys, i.e., branchCode and accNo, the
same code would be:

public String getBranchCode()

t hr ows Renot eExcepti on;

/* public void setBranchCode(String branchCode)

t hrows Renot eException; */

public String get AccNo()

t hr ows Renot eExcepti on;

/* public void set AccNo(String accNo)

t hrows Renot eException; */

Chapter 2 Migration Considerations and Strategies 79

Migrating Example: iBank

----- other getters and setters----

e AccountEJB java:

The changes incorporated in the bean class are as follows:

m

Prepend the bean class declaration with the key word abstract.

Before modification:

public class AccountEJB inplenments EntityBean

After modification:

public abstract class AccountEJB inplenents EntityBean

Comment all the cmp fields and Prefix the accessor methods with the keyword
abstract, thus the line of code in the methods would be commented and postfix the
methods with a semicolon. Thus replace the given code below Before modification
with the code given below After modification.

Before modification:
public String branchCode;
public String accNo;

public int custNo;

80 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Migrating Example: iBank

public String accTypel d;

publ i ¢ doubl e accBal ance;

public String accTypeDesc;

publ i c doubl e accTypel nterestRate;

private EntityContext context;

public String getBranchCode() {

return(branchCode);

public void setBranchCode(String branchCode) {
t hi s. branchCode = branchCode;

}

public String getAccNo() {

return(accNo);

public void set AccNo(String accNo) ({

this.accNo = accNo;

}

public int getCustNo() {

return(cust No);

public void setCustNo(int custNo) {

Chapter 2 Migration Considerations and Strategies 81

Migrating Example: iBank

this.custNo = cust No;

public String getAccTypeld() {

return(accTypel d);

public void setAccTypel d(String accTypeld) {

this.accTypeld = accTypel d;

public BigDeci mal get AccBal ance() {

return new Bi gDeci mal (accBal ance) ;

public void setAccBal ance(Bi gDeci mal accBal ance) ({

t hi s. accBal ance = accBal ance. doubl eVal ue();

After modification:

private EntityContext context;

public abstract void setBranchCode(String branchCode);
public abstract String getBranchCode();

public abstract void set AccNo(String accNo);

public abstract String getAccNo();

public abstract void setCustNo(int custNo);

82 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

m

public abstract
public abstract
public abstract
public abstract

public abstract

Migrating Example: iBank

int getCustNo();

voi d set AccTypeld(String accTypeld);
String getAccTypel d();

voi d set AccBal ance(Bi gDeci mal accBal ance);

Bi gDeci nal get AccBal ance();

Read up all the ej bCr eat e() method bodies (there could be more than one
ej bCr eat e). Look for the pattern '<crp- f i el d>=sone val ue or | ocal

vari abl e', and replace
nane(same val ue or

Before modification :

public void set

cont ext

it with the expression 'abst ract nutat or nmethod
| ocal vari abl e)'. Hence the code changes would be:

EntityContext (EntityContext ec) {

= €ec,

public void unsetEntityContext() {

this.con

text = null;

public void ejbActivate() {

t hi s. branchCode =
((com sun. bank. ej b. entity. Account PK)

cont ext. get Pri maryKey()) . branchCode;

this.acc

No = ((com sun. bank. ej b. enti ty. Account PK)

Chapter 2 Migration Considerations and Strategies 83

Migrating Example: iBank

cont ext. get Pri maryKey()).accNo;

public void ejbPassivate() {

public void ejbLoad() {

public void ejbStore() {

public Account PK ej bCreate(String branchCode,
String accNo, int custNo, String accTypeld,

Bi gDeci nal accBal ance) {

t hi s. branchCode = branchCode;
this.accNo = accNo;
this.custNo = cust No;

this.accTypeld = accTypeld,;

accBal ance. doubl eVal ue() ;

t hi s. accBal ance

return null;

public void ejbPostCreate(String branchCode,
String accNo, int custNo, String accTypeld,

Bi gDeci nal accBal ance) {

84 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Migrating Example: iBank

public void ej bRenove() ({

}

After modification:

public void setEntityContext(EntityContext ec) {

context = ec;

public void unsetEntityContext() {

this.context = null;

public void ejbActivate() {

public void ejbPassivate() {

public void ejbLoad() {

public void ejbStore() {

public Account PK ej bCreate(String branchCode,

Chapter 2 Migration Considerations and Strategies 85

Migrating Example: iBank

String accNo, int custNo, String accTypeld,
Bi gDeci nal accBal ance) {

set BranchCode(br anchCode) ;

set AccNo(accNo) ;

set Cust No(cust No) ;

set AccTypel d(accTypel d);

set AccBal ance(accBal ance) ;

return null;

public void ejbPostCreate(String branchCode,
String accNo, int custNo, String accTypeld,

Bi gDeci mal accBal ance) {

public void ej bRenpbve() {

}

¢ AccountPK java
No changes required in this file.
* AccountHome.java

In the home interface of the bean, changes are required to be made only if the return
type of any finder methods is of type java.util. Enumeration.In case of Account bean,
the home interface has a finder findOrderedAccountsForCustomer which has a return
type as Enumeration. In such cases, the return type has to be changed to Collection and
also the code affected by this change, i.e, the code in the session bean which uses this
finder method has to be changed such that it has provision to accept the result of this
finder method in a Collection.

The changes done in the home interface is shown below:

Before Modification:

86 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Migrating Example: iBank

public interface Account Home extends EJBHone

{
public Account findByPrimaryKey(AccountPK key)
t hrows Fi nder Exception, RenoteException;
public Enuneration findOr deredAccount sFor Cust oner (i nt
cust No)
t hrows Fi nder Excepti on, RenoteExcepti on;
}
After Modification:

public interface Account Home extends EJBHone

{
public Account findByPri maryKey(Account PK key)
t hrows Fi nder Excepti on, RenoteExcepti on;
public Collection findO deredAccount sFor Cust oner (i nt
cust No)
throws Fi nder Exception, RenoteException;
}

Due to the above changes, Session bean BankTeller which accesses this finder method
also needs to incorporate changes to accept the result of the finder method in a
Collection.

Following code snippet shows the changes made to the BankTel | er EJB. j ava

Consider method getAccountSummary which uses finder method
findOrderedAccountsForCustomer

Before modification:

publ i ¢ Account Sunmary get Account Sunmary()

Chapter 2 Migration Considerations and Strategies 87

Migrating Example: iBank

t hrows EJBException

{
i nt custNo =0
Enuner ati on accEnum = nul | ;

Account Sunmary accSum = new Account Sunmary();

try
{
Account Home hone=(Account Hone) Port abl eRenpt ehj ect .

nar r om accHoneHandl e. get EJBHone(),
Account Hone. cl ass) ;

Account TypeHone accTypeHone = (Account TypeHone)
Por t abl eRenpt eQbj ect . narr om accTypeHoneHandl e. get EJBHome() ,
Account TypeHore. cl ass) ;
accEnum = (Enumeration) hone.
fi ndOr der edAccount sFor Cust oner (t hi s. cust No) ;

Account TypePK accTypePK = new Account TypePK();

Account accRef = null;

Account Type accTypeRef = null;
String accTypeDesc = null;
int i =0;

whi | e(accEnum hasMor eEl enent s())

{

i ++;
accRef = (Account) accEnum nextEl ement () ;
accTypePK. accTypeld = accRef. get AccTypel d();

accTypeRef = (Account Type) Portabl eRenpt eObj ect.

88 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Migrating Example: iBank

narrow(accTypeHone. fi ndByPri mar yKey(accTypePK),
Account Type. cl ass) ;
accTypeDesc = accTypeRef. get AccTypeDesc();
accSum addEl enent (
accRef . get BranchCode(),
accRef . get AccNo(),
accRef . get AccBal ance(),

accTypeDesc
)i

After Modification:
publi ¢ Account Sunmary get Account Sunmary()
t hrows EJBException
{
int custNo = 0;
// Enuner ati on accEnum = nul | ;
Col | ection accEnum = nul | ;

Account Sunmary accSum = new Account Sunmary() ;

try

Chapter 2 Migration Considerations and Strategies 89

Migrating Example: iBank

Account Home hone = (Account Honme) Port abl eRenpt ehj ect .
nar r owm accHormeHandl e. get EJBHonme(), Account Horne. cl ass);
Account TypeHore accTypeHone = (Account TypeHone)
Por t abl eRenpt eObj ect . narr om accTypeHoneHandl e.
Get EJBHone(), Account TypeHone. cl ass) ;
/1 accEnum = (Enumeration) hone.
/1 findO deredAccount sFor Cust omer (t hi s. cust No) ;
accEnum = (Col |l ection) hone.
fi ndOr der edAccount sFor Cust oner (t hi s. cust No) ;

Account TypePK accTypePK = new Account TypePK();

Account accRef = null;
Account Type accTypeRef = null;
String accTypeDesc = null;
int i =0;

Iterator iterator = accEnumiterator();
/1 whil e(accEnum hasMor eEl enent s())
whil e(iterator.hasNext())
{

i ++;
/| accRef = (Account) accEnum next El ement () ;
accRef = (Account) Portabl eRenot ehj ect .
narrowmiterator.next(), Account.class);
accTypePK. accTypeld = accRef. get AccTypel d();

accTypeRef = (Account Type) Portabl eRenot eQbj ect.

narr ow accTypeHone. fi ndByPri mar yKey(accTypePK),

Account Type. cl ass) ;

90 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Migrating Example: iBank

accTypeDesc = accTypeRef. get AccTypeDesc();
accSum addEl enent (
accRef . get BranchCode(),
accRef . get AccNo(),
accRef . get AccBal ance(),

accTypeDesc
)

Creating an EJB module in Sun ONE Studio for Java

The procedure described below explains how to create an EJB module in Sun ONE Studio

for Java, using existing source files:

Creating Module for Session Beans

1. Directory for Session Beans 'SessionContent' has following in it.

There would be bean class and interfaces for the following Session Beans:

BankTeller

InterestCalculater

In addition to this, it will also contain Exception classes.

Chapter 2

Migration Considerations and Strategies

91

Migrating Example: iBank

Create the new EJBs from existing source files.
In Sun ONE Studio for Java, it is possible to create an EJB from existing source files.

Select mounted directory 'SessionContent', walk through the sub folders there to finally
reach the package 'session’, right click here and select option for new J2EE and finally
click at 'Session EJB', which shows a new EJB wizard.

After specifying the main characteristics of the EJB (i.e., session, stateful or stateless),
and defining the name and package for the EJB, you match the existing source files and
the different components of the EJB: implementation class, home and remote
interfaces. In order to make the match with existing source files, use the "Modify"
button in the dialog box and select "Select an existing source file."

All the session beans have to be created in similar fashion.

Following screen shot shows the creation of Session Bean BankTeller which is a
Stateful Session bean. So the State specified should be Stateful whereas
InterestCalculator session bean is Stateless, so while creating InterestCalculator bean,
the state specified should be stateless. Click at the browse button to specify the
package.

92 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Migrating Example: iBank

Session Bean Mame snd Properties
EJB Nawa: [BakTel Lor|

Packege: com.sun.bark.sjb.session Erowss...
State Transaction Tups
) Stateless (# Contadner=Hanaged
m Stateful 1 Bean-Hanaged

Comporant Interfaces

im Remots Interface Only (Defsultd
(3 Local Interface Only

() Bath Remote and Local Interfaces

< Hack _' Finish || Cancal || Halp

Chapter 2 Migration Considerations and Strategies 93

Migrating Example: iBank

Figure 2-9 Creation of new Session Bean

Following screen shot (click ‘Next>’ when you are done) shows specifying the bean
class, the home interface and the remote interface. Clicking on the modify button and
selecting option for using existing class would show up the existing files, which can be
selected.

Mew Wizard = 5

Sazsion Basry Clazs Files

Baan Class
Bean Class: com.sun.bank.ejb,.session,BarkTellerEJE 'm
(| Implement. SessionSynchronizaticn Interface
Resote Client Interfaces

Home Ipiterface: bank . jb, seasion, BankTellertions [Modify Intecface.,..

Bemote Interface: |sun,bank.e)b.session.BankTeller [Hodify Interface,..

< Back | [Emeh | Cancor || pele

Figure 2-10 Specifying the Bean class, Home Interface and the Remote Interface

Create the InterestCalculator session bean in similar fashion.

94 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

3. Edit the properties of the EIBs

Migrating Example: iBank

By editing the properties of an EJB, you can declare the EJB Resource references;
specify an EJB's environment entries.

Properties of BankTeller (E)B)

com,.sun.bank..ejb.session.BankTellerEJH

Stataful

Remots

com,sun, bank .= jb, session, BankTel lerHome

com,sun, bank .= jb,zession, BarkTeller

Chapter 2

Migration Considerations and Strategies

95

Migrating Example: iBank

Figure 2-11 Properties window of the Session Bean BankTeller

The following screenshot shows the declaration of an environment entry for the
BankTeller session bean. InterestCalculator bean does not require this entry.

Click at the Environment Entries in the 'References' tab and then click on Add to add
new entry for the DSN.

fdd Environment Entry

Name: [[BankDSN I

Deszcription: |[Bank Data Source Mame |

Tupes |java,lang.String ¥ |

Value: Lidbc/ 1Bank| |
[]| concel || tep |

Figure 2-12 Adding Environment Entry to BankTeller Session Bean

At the references tab of the Properties window for BankTeller Session bean, click at the
Resource Reference to add a new resource. Following screen shot shows adding a new
Resource for Data source in iBank i.e., j dbc/ i Bank.

Add Resource Reference

| Standerd | Sun ONE App Server | J2EE RI |

Hame: [jdoc/ 1Bark |

Description: [IBank Dats Sowrce |

Tupez |Jauax .=ql DataSource [1[

Authorization: |Container =

Sharing Scope: |Shareable |

| ok || cancel || melp |

96 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Migrating Example: iBank

Figure 2-13 Adding Resource Reference

Click at the Sun ONE App Server tab to set the JNDI name as 'j dbc/ i Bank' and
username and password depending on the database schema used.

InterestCalculator bean does not require this entry.

JNDT Name: |jde TBark |
User Information (if needed);

User Mame: |ibank_user |
Password:] |

[ox]| concer || meln |

Chapter 2 Migration Considerations and Strategies 97

Migrating Example: iBank

Figure 2-14 Adding Resource Reference for Sun ONE Application Server

At the references tab of the Properties window, click at the Ejb Reference to
addEJBreferences. Following screen shot shows adding EJB Reference for the
BankTeller session bean. BankTeller session bean has references to Entity bean
'Account' and 'Customer'. So entries have to be made for both the entity beans.

Home and Remote interfaces have to be specified by clicking at the modify button and
then selecting existing source for the beans.

add E|E Reference

Reference Nanea: Accaunt.

Description: I
Lee: [Enity v
Home Interface; lcom. zun, bank . &b, ent 1ty Fecount Homes | Browss... |

Remote Interface: |com.sun.bank.cjb.ent ity.Recount | Browe... |

ok || concet || Help |

98 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Migrating Example: iBank

Figure 2-15 Adding EJB Reference

Now click at the 'Sun ONE App Server' tab in the EJB Reference, to specify the INDI
name. Following screen shot shows the INDI entry to be made for the Account entity
bean i.e., 'ej b/ Account'. Similarly whenEJBreference for 'Cust ormer ' bean is added
the JNDI name specified at the Sun ONE App Server tab would be 'j ndi / Cust orrer .

#Add EJE Reference

Standard | Sun DNE dpp Server | JEEERI |

Ml Hame s eJh.'H:comt|

o || canesl || melp

Figure 2-16 Adding EJB Reference entry for Sun ONE Application Server

4. Compile the source files

Chapter 2 Migration Considerations and Strategies 99

Migrating Example: iBank

Create an EJB module and assemble the EJBs within it.

In accordance with the J2EE 1.2 specification, in Sun ONE Application Server 7 you
must group EJBs together in an EJB module. Create new EJB Module i.e.,
SessionModule at the root directory i.e., 'Sessi onCont ent ' by right clicking the
folder and selecting option for New and then selecting J2EE and then finally selecting
New EJB Module. After creation add the Session EJB's into it.

The screen shot below shows how the BankTeller and InterestCalculator EJBs are
added to an EJB module SessionModule.

&dd EJB to EJE Module
Select. the EJB(s) to add to thiz EJB Hodule,

(d Filesustens
& @ Smazsdidespas/Entitulontent
P @ Snazzl/despaz/Seszionlontent
93 com
@ =un
© 3 bank
o3 ejb
® S session
@ BankTeller (EJH
& @ InterestCalculator (EJB
@ O javabeans
e @ naning
@ SmazzlSdespas/darContent
@@ Smazsi/deepas/TBank
@ @ Sbackup/sunil
& @ /backupdsunilleblontent
@ Jbackup/sunillimport-hel loappiclasses
= @ /backup/sunilimport-hel loapp/ import-web

o[oo

Figure 2-17 Adding Session Beans to EJB Module

100 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Migrating Example: iBank

Creating Module for Entity Beans

1.

Directory for Entity Beans would contain following.
Bean class, Remote and Home interface for the following Entity Beans:
a. Account
b. AccountType
c. Branch
d. Customer
e. Transaction
f. TransactionType
Customer entity bean is Bean managed and others are Container managed.
Configure the JDBC driver

In the Runtime view of the Explorer, in Databases / Drivers / Add Driver: specify the
driver name, implementation class, and the prefix of the relevant URL. The
corresponding JAR or ZIP for the driver must be accessible to Sun ONE Studio for
Java, and must therefore be copied into the <SUN ONE STUDI O FOR

JAVA _ROOT>/ | i b/ ext directory.

To place the driver classes in the appropriate Sun ONE Studio for Java directory in
Solaris, run the following command from the shell (sh or ksh):

cp $ORACLE_HOVE/ j dbc/lib/classesl12.zip <SUN ONE STUDI O FOR
JAVA _ROOT>/ | i b/ ext

Chapter 2 Migration Considerations and Strategies 101

Migrating Example: iBank

102

3. Define the database connection properties

In the Runtime view of the Explorer, in Databases / Add Connection... indicate the
driver used, the full connection URL, the user name, the related password, and lastly

the appropriate database schema:

Wew Database Connection

Name: Oracle thin -

Iriver: oracle, jobo,driver, Oraclelriver
Database URL: [jdbcioracle:thin@10,100,20,124:1521 sunlab
User Mame: libark _user
Password: [rrra——
] Remenber passuord during this session

Basic setting | Advanced |

Figure 2-18 Configuring a database connection (Oracle) in Sun ONE Studio for Java

4. Create the new EJBs from existing source files.

In Sun ONE Studio for Java, it is possible to create an EJB from existing source files.
Select the mounted directory 'Ent i t yCont ent ', walk through the directory till you
reach 'ent i t y' sub-folder. Right click and select option for new J2EE and finally click

at'Entity EJB(CMP/ BMP)', which shows a new EJB wizard.

After specifying the main characteristics of the EJB (entity, BMP or CMP), and
defining the name and package for the EJB, you match the existing source files and the
different components of the EJB: implementation class, home and remote interfaces. In
order to make the match with existing source files, use the "Modify" button in the
dialog box and select "Select an existing source file." Entity beans require an extra step

Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Migrating Example: iBank

of specifying the mappings of the cmp fields with the table. In the Explorer Filesystems
view, after selecting the option New CMP Entity Bean, Select option, table from
Database connection in order to be able to specify the database table to be used for
persistence of the EJB fields:

New Wizard = CMP Entity EJE

(M Ertity Besr Hams and Properties

EJB Mamei [Rccoanit
Package: com.zun,bank.ejb.entity Browse...

Source for Entities and Fields

® Table from Databass Conrction

' Table from Databsse Schema Object
i Create from scratch

Component. Inbarfsoss
& Bencts Interface Only
Local Interface Omly {Default}
: Both Femots and Local [nterFaces

ik ([Mo > || ginish || Cacsl || el |

Chapter 2 Migration Considerations and Strategies 103

Migrating Example: iBank

Figure 2-19 Creation of an Entity bean with container-managed persistence.

The following screen enables you to select the right connection from the list of
database connections defined.

Once the connection is selected, list of tables accessible from this connection are
shown, and select the appropriate table:

New Wizard — CMP Entity EJB

Tabls from Dstsbase Comneckion

il Datsbasas
L ! pdbctorecleithini @10, 100 30 174: 1501 jaunlab [ibank _user on [BS8_LEER]
& | Tables
o[ACCONT
&=] CCOUNT_TYFE
o F e
o= [CUETOHER
U'i TRENCEL T [DR_H]STIEEY
= [TREANSACT IDN_TVPE
[E’ pdbe t pointhase s server S ocalhost 29090/ cample [phpublic om PEPUBLEC]

fidd Conresction, ..

104 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide +« March 2003

Migrating Example: iBank

Figure 2-20 Choosing a table for mapping CMP bean fields.

The next screen is used to configure mapping between the columns of the table selected
and the CMP fields of the bean. Particular care should be taken to correctly indicate the

names of the bean fields and associated Java types.

Mew Wizard = CMP Entity EIE

CHF Fields
Datshass Colimns Jaun Fislds

: LBV Tupen [Pl |- Tupe
|BRARCH_LDDE CHAR branchlods Jann.] ang, St ing
FCC_HO CHAR oo Javea_ lang, String
CUST_MD DECTHAL custho Jaws_math, Bighec imal

In CHeR }-:uTu-ld Jmrs lang. String
FLL_TAlAhCE DECT L _accB-:l-:ncr Java_math, Biglecimal

Edit...| |
« Back et > || B (| coeeel || wele |

Chapter 2 Migration Considerations and Strategies 105

Migrating Example: iBank

Figure 2-21 Mapping between table columns and CMP fields of the bean

The next screen shot shows, specifying the source files for the Entity Bean.

lZzard — CMP EnTiTy EJE
CHF Entity Bean Closs Files
Bean Class

Bean Claas; com,sun.bank.ejb.ent ity fccountETE | Hodify Class,..
Remots Clisnt Interfaces
Hows Interface; vy, bark e b, enk]ty Aocount Homs] Hodify Interface...

Remote Intsrface: |com.sun.bank.ejb.entdty.Account Hodify Intarface...

Prinsry Key Clazss

Primery Koy Class: com,zun.bank,sjb.ent ity AccountPy Bodify Clazs...

Cho | (o][eacet | [ot

106 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide +« March 2003

Migrating Example: iBank

Figure 2-22 Specifying the source files for the Entity Bean

The next step involves informing Sun ONE Studio for Java that you want to create the
EJB from existing source files, which can be specified by clicking at the '"Modify Class'
button.

If you get any error while pointing to the existing source files, it may have caused
because you made a mistake in the previous steps or the source is not migrated
properly. Such errors should be handled by making changes as and when reported.

The next screen shot shows selecting existing source file for EJB bean class.

Modify EJB Bean Class

Specify the new Bean Clazz to be created or chooze an existing Bean Class

() Specify a new class

w Select an existing user defined class

[Filesystems |~
® & smazszdddespassEntituContent i
@ 3 com ;3

® < bark =

@ = ejb S

@ entity o

& B "™ fccountETH 5

&= FccountPlk Z
@& [B " fccountTupeEJEB :E'
@ [@ AccountTypePK Pl
&= [@ " BranchEJR =
&= [# BranchPl S
& [&¥ CustomerE]R E
&= & CustomerPk
©= [B* TransactionE B
&= TranzactionPk
- TranzactionTupeEJR =
- v Y - - R

K || Ccancel

Chapter 2 Migration Considerations and Strategies 107

Migrating Example: iBank

Figure 2-23 Specifying EJB Bean class by selecting option for Existing Source files

The next stage involves editing the properties of the new EJB wherever required.
All the entity beans have to be created in similar fashion.

(Note: This might give some errors giving option to select the existing class or using
another one, click on to 'using same class'. Sun ONE Studio might show some
unexpected results, in such condition, exit Sun ONE Studio and then reload it again.)

5. Edit the properties of the EJBs.

Select the new EJB in the explorer window so that its properties are displayed in the
properties inspector.

In the properties window, select the Ref er ences tab, click on the text zone to the right
of the "Resource References" label, then on the button showing suspension points
("...") on the right hand edge of this text zone.

Following properties have to be set for the entity bean Customer only.
Following screen shot shows adding Resource reference for the Entity Bean Customer.

In the "Standard" tab, give the full name of the data source

("j dbc/ DataSourceName"), the resource type (j avax. sql . Dat aSour ce), and
select "Container" from the drop-down list of options for managing access to this
resource ("Authorization").

Add Resource Reference
| Standsrd | Sun ONE App Serwer | JZEE RI |

Mame; [jdbe TBark |

Description: [TRank Dats Source |

Tupe: |J' avax,zql, JataSource | - |
At

horization: |Container W
Sharing Scope: |5har*ad:|19 - |

o[cwont []

108 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide +« March 2003

Figure 2-24 Adding Resource Reference

Migrating Example: iBank

Once the declaration has been made, select the "Sun ONE App Server" tab, and specify
the JNDI name of the data source "j dbc/ i Bank" in the JNDI Name column of the
entry that corresponds to the resource reference defined previously. Also specify the

username and password.

INDT Name: {1 TBark |

User Information (if needed};

User Mame: |ibank_user |

Passuword: [Brrnrenens] |
[ok]| comcer || pelp |

Figure 2-25 Editing Resource Reference

In the properties window select the 'Sun ONE AS' tab Click on the 'Reference Resource
Mapping' and choose the data source i.e, j dbc/ | Bank on the server instance which has
to be used. Following screen shot would dipict the same

Property Editor: R

Resource Reference Name

FMIM

Lichc: [hank (serverd:10,100,9,20:4648) | w |

|| comcel || tele |

Chapter 2

Migration Considerations and Strategies 109

Migrating Example: iBank

Figure 2-26 Resource Reference Mapping for Sun ONE Application Server

6. Set EJB QL for finders other than findByPrimaryKey method.

EJB QL has to be specified for finders. As per the CMP 2.0 specification, the finders
will use EJB QL.

In iBank application the entity bean that would require this type of editing is Account

bean. Select the AccountEJB node in the Sun ONE Studio explorer window and expand
the finder methods in it. Click on any finder method other than the findByPrimaryKey
to open its properties window:

Properties of findOrderedaccountsForCustomerlintd

Additionsl Exceptions

EJBOL Query |
HodlLFiers public

Name £ inddrderediccount sForCustoner
Paramatars int custho

Raquired Extept o Jon, Pl . Ptk SE ot i, ava. b ih . F ing
Return Tupe Callection

| Properties (Interface Method) |

110 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Migrating Example: iBank

Figure 2-27 Properties of Finder Method

Click at the EJBQL Query to enter the query. Following screen shot shows the query
entered:

'—]Property Editor: E)JBOL Query (class cc

Description: | |

EJE OL

Select |OBJECT (A |

From ficcount. f |

Hhere

A custMo = 71 |

[o | cacel || hele |

Figure 2-28 Editing EJB QL for the Finder

7. Create an EJB module and assemble the EJBs within it.

Create new EJB module named EntityModule and add all Entity beans into this module
by right clicking on the EJB module and selecting the option to add EJB's. As per the
J2EE 1.2 specification, you must group EJBs together in a EJB module.

8. Create new Database Schema

From the file menu click new and then select new Database Schema. Provide the
connection information for the database from which schema has to be captured.

Chapter 2 Migration Considerations and Strategies 111

Migrating Example: iBank

112

9. Map the database entries for Sun ONE Application Server 7.

Select a EJB node in the EJB module, right click the node to choose the properties
window and select Sun ONE AS tab. Specify the database schema and primary table

name for this particular entity bean. Repeat the process for other Entity Beans in the
EJB Module.

Following screen shot shows selection of primary table for the entity bean Account

bean Account = Map to Database

Select Tablels} (2 of 3]

. Tablels) Hlse the Browss... button to select the prisery table (from s currently sourted detshsss
Field Happings

schens) to shich you want to sep your bean, Then, UF you want to mep sdditions] tsbles
to thiz bean. click the Add... button to add a secondary table,

Bean: Bt
Frimary Tahle: RCDENT - Brouis, , .
Schena: mytcheng

Secondary Tebleted dpbioeslds

| cmer o> || B [cweal Halp

Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Migrating Example: iBank

Figure 2-29 Database Mapping

Click on ‘Next >” for specifying the mappings for the cmp fields of bean with the table

fields.

Now select the Sun ONE Mapping Tab from the properties window and re-enter the
mappings.

Following screen shot shows mappings for the Account EJB

s =] | (e
acchal ance ACCOUNT ACT_BALANCE.
acchio HCCOUNT RCC_NO
Typel RCCOUNT ACCTYPE_ID
branchlods TRCCOUNT , ERAHCH_COLE
custho RCOOUNT ,CLST_ND

Figure 2-30 Properties of entity bean ‘Account’
Similarly mappings for all the Entity beans have to be set.

See Appendix A for the details on the mapping of particular Entity bean to
corresponding database table field.

Chapter 2 Migration Considerations and Strategies

113

Migrating Example: iBank

10. Add CMP resource

Select EntityModule and view its properties, click at Sun ONE AS tab, and now click
at CMP Resource to configure the Persistence manager factory.

Following screen shot shows the configuration:

F‘mperty Editor: CMP Resour:
Indi Name |jdo/pnf

Defailt Resource Principal
Hame:

|
Paszuord | _
[| conest |

Figure 2-31 Adding CMP Resource

Creating an enterprise application in Sun ONE Studio for Java

After creating the Web application and EJB files, the next step is to create an enterprise
application, which groups all the modules together. The process for creating an enterprise
application is as follows:

1. Create a new enterprise application module in a new directory say 'IBank' under the
same package available for the source.

114 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide +« March 2003

2,

Migrating Example: iBank

Add the Web module and EJB modules to the enterprise application module

The following screen shots show an enterprise application called iBank, containing a
Web module called WarContent and EJB module called SessionModule and
EntityModule.

Add Module to Application
Select the Module(s) to add to this Application,

@ Filesystens

& @ Snossdidecpas/Entitulontent
e 3O con
& [2] Entitutodule

§ @ Smass2idespasiSessionfontent
= [con
& [g] SessionHodule

§ @ SmassdddespasHarontent
& o] WEB-INF

B @ Swass?idespasd1Rank

[® || cancal

Chapter 2 Migration Considerations and Strategies 115

Migrating Example: iBank

Figure 2-32 Adding Modules to the Application

Following screen shot shows Application iBank having 3 modules in it.

3@ Filesystens

B @ /mass2/deepas/EntityContent
B =@ Jmassd/deecpas/Sessionfontent
@ /nasslidespas/Harlontent

P @ Jnassdideepas/[Bank

¢ W bk

a-% Sessiontodule

|-
-]

EritityHodule
Harlontent

Figure 2-33 File System showing Application ‘iBank’ having different modules

116 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Migrating Example: iBank

3. Edit the enterprise application properties.

The property editor allows you to set the different properties of the enterprise
application module. In particular, this is where the root context name is defined for the
Web module of the enterprise application:

Properties of WarContent

gk v B @

EJH References Mo EJE References

EJB References Mo EJE Local References
| Envirarment Entries Mo Environment. Entries
Meb Contest Bk

1 Properties [JRE RI | Gun OV /6 |

Figure 2-34 Specifying the Web Context

4. Export EAR file.

Export EAR file by right clicking the Enterprise application and selecting option for
exporting EAR file. This EAR file would contain JAR files, WAR file and XML files.
This EAR file has all the Sun ONE specific XML files required for the deployment on
Sun ONE Application Server 7. This EAR file can now be deployed.

Deploying an application in Sun ONE Application Server 7

The last stage is to deploy the application on an instance of Sun ONE Application Server 7.
The process for deploying an application is described below:

Chapter 2 Migration Considerations and Strategies 117

Migration from BEA WebLogic Server v6.1 and IBM WebSphere v4.0

Deploying an application on Sun ONE server 7 instance from Sun ONE Studio for Java

Right click on the EAR file and select option ‘Deploy’. This would deploy the
application on the default server instance. Restart the server instance and then test the
application.

Deploying an application on an Sun ONE Application Server 7 instance using Sun
ONE Application Server 7 asadmin utility

An alternative to using Sun ONE Studio for Java to deploy enterprise applications on
an Sun ONE server instance is to use the Sun ONE Application Server 7 asadmin
utility, after creating and exporting the application EAR archive from Sun ONE Studio
for Java.

For instructions on deploying the iBank application using the asadmin deployment
utility, please refer to "Deploying iBank application on Sun ONE Application Server 7
using the asadmin utility" section under "Manual Migration of iBank Application"
topic.

Migration from BEA WebLogic Server v6.1 and
IBM WebSphere v4.0

118

The detailed J2EE application migration process and the sample application migration for
BEA WebLogic v6.1 and IBM WebSphere v4.0 is part of another guide which can be found
at the Migration Site.

Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Chapter 3

Migration from KIVA/NAS 4.1 to Sun
ONE AS 7

Kiva/NAS 4.1 Java AppLogic applications can be migrated to J2EE web modules using
iPlanet Migration Toolkit (iMT 1.2.3). The resulting web modules leverage JATO and a
thin KFC (Kiva Foundation Classes) adaption layer to support running the AppLogic code
on any J2EE web container.

Introduction

Before starting the migration process, be sure you have read the release notes so that you
are aware of the latest information and any issues that might be relevant to you and your
environment. Also refer to %M GTBX_HOVEY bi n/ r eadne. t xt file. This file also
describes proper installation and configuration of the Migration Toolbox and its
environment, which must be complete before beginning the migration process described in
later sections.

%M GTBX_HOME% represents the directory in which you installed/unzipped the Sun ONE
Migration Toolbox (S1MT).

Migration Preparation

Migration Process Overview

There are two main phases to full migration of a proprietary AppLogics application to its
J2EE equivalent. These phases are the automated migration phase and the manual
migration phase. The automated migration itself consists of two steps called extraction and
translation.

119

Automated Migration Phase

This phase consists of preparing the AppLogic application source for migration and then
using the SIMT to perform automated extraction and translation. The input to this phase is
a user provided archive (JAR/ZIP) containing the original application source files
(AppLogic files, GXR, query files, templates, static content and regular Java source and
properties). This file is called the application extract archive. Using a standard Java archive
(JAR/ZIP) to package the existing application and NOT requiring a NAS/iAS runtime
environment allows the migration environment to be more flexible; migration may even be
performed remote from the customer site since the runtime infrastructure (databases, web
servers, app servers) is only needed during manual migration for unit testing. Essentially,
this archive is just the targeted contents of the ./nas/APPS directory of the application server
and document root of the web server. The Extraction Tool for KIVA AppLogics will read
this archive and create the application descriptor. iMT v1.2.3 now supports the automatic
creation of the application extract archive (See the Kiva Migration Toolbox Builder 'Addin'
from the 'Addin' menu).

The application descriptor (an XML file) is used to guide the Translation Tool on the
disposition of each file in the archive. The migrator may need to adjust the application
descriptor. See Technote on editing the application descriptor. After running the Translation
Tool the result is a partially (or in some cases, fully) migrated application consisting
entirely of J2EE-compliant components based on JATO and the KIVA Migration library
composed in a web application archive (deployment descriptor, servlets, JSPs, Command,
query files).

The output from the translation process entirely transforms HTML templates to JSPs and
converts GX tags to new JSP tags used with the KIVA migration library. AppLogic source
files are adjusted to use the KIVA migration library (minimal change mostly to import
statements). The translation process also creates the web application infrastructure
including all the components of the JATO application and direct command invocation
module. However, the translation phase does not automatically port code written to
proprietary KFC APIs which are "non-targeted" in the KIVA migration library. This porting
will be the primary task during the manual migration phase. iMT v1.2.3 now supports the
automatic migration of static documents specifically with help in fixing URLs.(See the
Kiva Migration Toolbox Builder 'Addin' from the 'Addin' menu) and the new Kiva
Document Translation Tool.

Manual Migration Phase

In general, the manual migration phase consists of reviewing the automatically migrated
application output and porting non-targeted KFC API code to J2EE-specific code.
Understand that this process does not typically require a redesign of the application or its
architecture. In many cases, code which needs manual attention is clearly outlined in a
deprecated compile using the MIGRATION version of the KIVA Migration library

[ki vaM GRATI ON. j ar]

120 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Preparing your Working Environment

Before going further, ensure you've done the following:
1. Make sure you've installed the iPlanet Migration Toolbox

e Unzip the distribution archive into the desired target directory. Follow the
directions in the readmne. t xt file.

» Test the installation by trying to start the Toolbox application. Run
t ool box. bat in the %V GTBX_HOVE% bi n directory. An empty Toolbox
should appear after a few moments. If nothing appears, check that the
Migration Toolbox was installed properly and that all appropriate
environment settings have been set in %M GTBX_HOVE% bi n/ set env. bat .

2. To avoid class version issues, it is strongly recommended that you remove all JAR files
from your JDK's extension directory (Y AVA_HOVEY j r e/ | i b/ ext) while running
the Toolbox application. All the classes necessary for running the Toolbox are included
with the distribution. Please note that simply renaming the JAR files in the extension
directory is not sufficient; you must move them to a different location.

3. Identify the AppLogic based application which is to be migrated.

4. Generate the application extract archive. In the simplest case, it is a ZIP or JAR file
containing all files and directories under . / nas/ APPS which are related to the
application. The iMT for AppLogics DOES NOT actually load or run any Java classes
or libraries from your application. All extraction and translation is done at the source
level so it is not a problem if the archive does not contain all dependent classes or
libraries - these will only be needed while compiling after automated migration.

5. At this point, you may also want to install Sun™ ONE Application Server 7 (known as
S1AS), Forte for Java 4.0 EE or another J2EE-compliant servlet/JSP container.

¢ Follow the installation instructions for the server or container

» Test the installation by starting the server or container and trying to load the
default home or index page. If an error occurs, troubleshoot the installation
process before continuing

Preparing a Project for Automated Migration

Because AppLogic and the KFC allowed developers immense latitude and practically no
prescription, there is no way for the iMT to account for all possible permutations. For this
reason, it is strongly recommended that customers engage Sun Professional Services to
assist in preparing projects for migration

Chapter 3 Migration from KIVA/NAS 4.1 to SunONEAS 7 121

iMT Kiva BETA customers discovered that during manual migration procedures portions
of the existing code caused obstacles in compiling the code in the JDK 1.3.1 an J2EE
environment. The following is a list of considerations and activities which should be
performed before a migration is attempted.

You have to prepare the application code for J2EE environment before using the iMT. The
code should be compiled against JDK 1.3 (or at least JDK 1.2.2) and the J2EE APIs. For
instance, the iMT comes with the kf cj dk11. j ar library for the KFC. This is provided so
that customers may compile their existing application in an advanced J2EE capable IDE
like Forte for Java (FFJ). A standard AppLogic application should be able to compile in FFJ
by simply adding the kf c¢j dk11.j ar to the classpath (FileSystems). Prior to compiling,
the deprecate flag should be set (TRUE) to expose deprecated code.

When customers are already using JDBC it is highly recommended that the database
services be re-factored for the latest third party drivers (JDBC, Oracle, and Sybase) as
recommended by the vendors for the new JDK.

In order for exact migration tasks to be identified and sourced, all special considerations
would need to be assessed first. In simpler terms, we need to identify anything “out of the
ordinary” which may be in the code. This includes code patterns or use of Java services
which conflict with a concurrent server pattern of the J2EE container contract with the
developer. For instance, if the code used java.lang. Thread directly or shared resources, this
code will need to be inspected for suitability in J2EE.

Some customers use other third party Java services which may themselves may not be ready
for J2EE even though the customers code is. For instance, an old version of CORBA (e.g.
Visibroker for Java, or lona) may need to be upgraded.

J2EE has the requirement that logical applications shall be deployed into separate web
applications as WARs. It is easier to isolate logical applications and common libraries
before migration proceeds.

Customers need to prepare for the change of external URLs. No matter what technique is
used to migrate to J2EE, URLs will change and therefore a strategy is required for
bookmarks and previously published URLs. The iMT v1.2.3 release provides some support
for automated migration of static documents URLs. Nevertheless, customers will need to
survey the existing system to account for all the changes which will need to be managed.

Preparing the GXR file

In order for the extraction phase to perform accurately when generating the application
descriptor, a GXR file is needed to identify the AppLogic files and the AppLogic names
used during NameTrans and URLs. Most applications use at least one GXR file or at least
one for each package in the application. The extraction phase requires one (1) single GXR
file in the application extract archive. If you have more than one GXR file, combine them.
If you do not have a GXR file you will need to compose one using proper GXR syntax; the

122 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide +« March 2003

source data can be acquired by dumping the KIVA registry (. / nas/ bi n/ kreg -save

t enp. out SOFTWARE). In short, the extraction tool uses the GXR file to determine which
files in the application extract archive are AppLogic source files and also develops a
mapping of GUID to AppLogic name to AppLogic class name.

Before Running the Extraction Tool

If your AppLogic application is entirely based on app server side Java and material (query
files, HTML templates, AppLogic source, support Java source, etc.) then you can usually
create the application extract archive by zipping up the relevant contents of the

. I nas/ APPS directory. However, if the application also contains static content then you
have some additional work to do. It is common and more efficient to have static content
located on the Netscape Enterprise web server and leave the dynamic content on the
application server side (AppLogics and templates). Depending upon your J2EE server
vendor, you may benefit from this separation or it may be helpful to combine the static
content and dynamic application resources. The static content may be added to the WAR
during or after automated migration - this is usually the easiest.

There is one important consideration when migrating from original AppLogics application
to J2EE JATO using the iMT. URLs which invoke AppLogics (POST/GET) are absolute
URLs (e.g. ht t p: / / host / cgi - bi n/ gx. cgi / AppLogi c+Hel | oWr | d) After migration,
the URLs become relative to a context defined by the ServletContext and therefore absolute
URLSs should be avoided. The transformation of URLs is different for static content and
dynamic content (HTML templates). The iMT maps all AppLogics to JATO Command
implementations in a special JATO module called the direct command invocation module.
Since all translated AppLogics are invoked from the same path within the ServletContext,
the intra-AppLogic invocations (URLs) in the resulting HTML markup are the most
predictable. Therefore, all AppLogic invocation URLs are translated as if intra-AppLogic is
in order. When there is static content among the HTML templates in the application extract
archive, the AppLogic URLs will need to be adjusted since the context of the static content
will most likely NOT match the path in the ServletContext for the direct command
invocation module (ModuleServlet). The OnlineBankSample application migration
demonstrates the need to make this adjustment and utilizes the automatic translation of
static documents using the Kiva Document Translation Tool.

Migrating OnlineBankSample

This section describes the automated and manual migration procedures of the
onlineBankSample to J2EE.

Chapter 3 Migration from KIVA/NAS 4.1 to Sun ONEAS 7 123

http://host/cgi-bin/gx.cgi/AppLogic+HelloWorld

Running the Migration Toolbox

Install iMT 1.2.3, if you have not installed it already and refer to "Migration Preparation"
section for details on installing and starting iMT. Make sure that you edit the
9%V GTBX_HOVE% bi n\ set env. bat to account for the installation location of the iMT and

the JDK home dir.

124 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Create a Toolbox
1. Select the Kiva Migration Toolbox Builder from the Addin:Migration menu.

f-:JlPI anet Migration Toolbox =0 =]

£F NetDynamics Migration Toolbox Buldes

JATO »
Micellansous # #
Migrate Nefi-. ke the Kiva Migration Toobox Buiker Add-n
Ernpk BReload Add-n List : 1
&5 Console Output

S e e

L

T

A modal dialog wizard will appear.

Kiva Migration Toolbox Builder x|

Welcome 1o the Kiva Migration Tookox Bullder,

Thiz food hefps you creste a set of fools tailored for your Kiva micgration by
prompting you for several tems of informetion. Once you enter thiz
ritormation, several pre-configured toolz will be automatically cresded inoyour
current toolkos.

It wou wish to proceed, press OF
If you wish to return to the Toolbox, press Cancel,

Select OK to proceed to the first step of the wizard.

Chapter 3 Migration from KIVA/NAS 4.1 to SunONEAS 7 125

126

Input Application Package EI

Enter the new spplicafion package. This package is the root package in
wvkici your ey JIEEAIATO application will be created, and thus should be
application specific. The existing packsaging of the original zources stays the
zame but new code reguired to support JATO frord controber and various
imfraztructure for the web application will be placed in & new package. The
niew package may be within the existing application package strochure.

DEFALLT: example package far the OnlineBankSample application

“alue | com iplanet migration samples onlinebank] |
[ok]| canca |

2. Automated iMT migration will produce some J2EE infrastructure including new Java
JATO files. These new files must be assigned a package. Although existing Java source
in the original application will retain packaging, we still need to assign a package for
these new files. There is no restriction on the package name. The default value is
provided for the OnlineBankSample application.

Enter a package and select OK to display the next step in the wizard.

Input Migration Dutput Directory El

Erter the name of the directory under vwhich vour migrafed spphoation and
accompanying files will be created Inmost cases | we recommend using the
detault location specified hare, wiich will place thess fles inthe
Morkioutputionfinebank drectory under your BT installation root .

Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

3. Enter the directory where all materials generated by the iMT will be stored. The default
is usually satisfactory and is used in this example. Select OK to display the next step in
the wizard.

Input Migration Dutput Directory EI

Enter the name of the direciory under which your migraed appbcation and
accompanying files will be created. In most cases, we recommend using the
detault location specified here, wiich will place these fles in the
Ferorkioutputioninebank directory under your BAT installation root.

Chapter 3 Migration from KIVA/NAS 4.1 to SunONEAS 7 127

4. The Automatic Application Extract Archive wizard will help create tools to
automatically build the archive. If you choose OK then proceed to Step (5) otherwise
Cancel will show the Extract Archive selection dialog (see below)

Automatic Application Extract Archive Wizard

3

The application extract archive is & zip or jar file which contains the
zource code for the application you want to migrate. The application
enctract archive is the prmary input to Kiva Migeation Extraction and
Tranzlation tools .

PAPORTANT: Automated creation of the archive is optional if you hawe
manualy crested your appbestion exdract archives For some comples
applications, cobecting all the source material is more difficull and miest be
dore marwally 1 you wish 1o manual creste your own archiee then do 2o
navwe ahid refurn 1o the wizard wiach will prompt youl for this file.

[oK][cocel |

R

which allows you to specify the manually created archive. This is useful if you already
have invested time in the extract archive and you are just building a new Toolbox.

If you choose OK to the Automatic Application Extract Archive wizard you will see
the following dialog:

Applogic Application Source Directory

Enter fhe fully gqualified dirsctory name where the source code iz located
for the appication you want to migrate In most cases, you may simgphy
enter the Kiahlos 'APPE directory of the application server development
environment. In some cazes, # iz a directory elzewhere on the fiesytem
wlere your source code control iz stored.

it LA N Y

MPORTANT: thiz diractory should be the direct parent directory of the
application's Java packages. For instance, if your application source i in
the package [com.name spos onlinestore] then the drectory erlered here |

ke | ${mighc home fiwork\ApeL ogic Apps OnineBankSampleisrciapps| |
0K || Cancel |

128 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide +« March 2003

5.

6.

Select OK to accept the default and display the next step.

x|
Enter the application's top level Java packages which are located within | =
[F{mictie: home PeseorkWGpplogicAons OnineBankSample'srciapps). For
nstance, it all of your application source i in the package

|com reame spps onlinestora] then enter thiz value, If there are difterent

top level packages then enter them all comme delmited.

Original Application Top Level Packages

DEFALLT: blank in which case everything under
[Fmiglk: home frworkapplLoge ApnsOnineBankSampleisrclapns] i
e, ThiS iS 8 Qo0d ChOICE iT YU Sre N0t SUre BECRUSS you may

alue: || |

Select OK to accept the default BLANK list and display the next step in the wizard.

Included extensions x|

Enter the comma delimted izt of fle extensions which wil be included in the
extract archive,

DEFAULT: comimon extenzions for migration

Ve | *.0ur 0 gxa, i js, java,tnl et * properties,* 14, htri| I
ok || cancel |

Chapter 3 Migration from KIVA/NAS 4.1 to Sun ONE AS 7

129

7. Select OK to accept the default, generate three new tools for the toolbox and display
the next step in the wizard.

:i—"]ll'—‘l.’lnPl Migration Toolbox - [Mew]
He Jod fddhr Help

e Y JU

@ Toolbox Conterts

9 e Toolbos - [New

© &7 Task Tool :
3 CreatetppE stractiachive-orlineb
@ g Copy Ditectory Tool i

s

[e TSl ST SRR U Jawa File Character Encoding t x|
® L Ja Tool :
© JaEstsctonlinebank Erder lthe nlwact.er u'ncnd!ng uged by the Java source _ﬂes (tefault I.s ASCE)
(addlitional encodings sactions may be added manuslly inthe appication
€ Console Dutput escriptor XML following Extraction).
wanse: | ASCH |

oKk || Concel |

130 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide *« March 2003

The OnlineBankSample only contains Java source which is ASCII encoded so accept
the default. When you are migrating your own application, if you have Java source
using another character encoding (e.g. Japanese Shift_JIS) then be sure to specify the
encoding used. Select OK to display the next step in the wizard.

Query File Character Encoding LI

Enter the character encoding used by the Query files (detfault iz ASCI)
(additional encodings sections may be added manslly in the applcation
descriptor XML following Extraction)

walue: | AsCi

o]| coen |

The OnlineBankSample only contains Query files which are ASCII encoded so accept
the default. When you are migrating your own application, if you have Query files
using another character encoding (e.g. Japanese Shift_JIS) then be sure to specify the
encoding used. Select OK to create the Kiva Extraction and Translation tools in the
toolbox and display the next step in the wizard.

Automatic Static Document Translation Wizard

Document transtation |z an optional component to Kiva Apglogic migration
JREELIATO migration will affect the URLs used to invoke Applogic
commands inthe final JREEUATO web application. Inmost cazes,
changes o the static contert will be done offline from sutomstic migration
(especially if there s vast quaniies of content in & complex configuration).
In cases where there is minmal static content then the IMT provides
assistance in fixing the URL: and merging the static content inta the
docunent root of the web spplication (war file). When this feslure iz
uzed the URL: for Applogics are (ranslated to direct command

rreocation URLE relstive to an arbitary serdet content. in other words,
tha te g latord ciable conkart e e denlnueeed] s et ol e VAR e and

st e |

Cancel

Chapter 3 Migration from KIVA/NAS 4.1 to Sun ONEAS 7 131

10. iMT v1.2.3 now provides assistance automatically translating static HTML documents
and combining them with the WAR file. If you choose the skip this feature the wizard
exits and the toolbox is complete. For the OnlineBankSample, we will Select OK and
use the automated feature.

Applogic Application Document Directory

Erter the fully qualified directory name where the static content is located
for the appication you want to migrate In most cases, you may simghy
enter the htpd document root directory of the web server development
environment. In some cazes, § iz a directory elzewhere on the fiezytem
wihere your source code control iz stored.

IMPORTANT: thig directory should be réprezentative of the docurment roof.

DEFALULT. the Iocation of the OnlineBankSample apphcalion docs drectory

Value. | ${migib home flvorkiappLogicAppsiOriineBankSampielsrcidocs |
0K || Cancel |

132 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide + March 2003

11. Select OK to accept the default location of the document directory for the
OnlineBankSample and proceed to add four (4) new tools to the toolbox and exit the
wizard.

[JPianet Migration Tookox ew] IS8
File Tool Addin Help
TWe 8 S4

a Toolbox Cortents b

@ (& Tookbon - [New] '
@ & Tak Tool

) CreatedppE stractérchive-onbnet -

) O FisStalicDaocs-onlebank Kiva Migration Toolbox Builder = _Z‘_,I
@ W& Apphcaton Extrachion Tool —
0 Extract-onlinebarik: Thie Kiva Migration Tooko: Builder hias completed generation of the tools | =)
@ i KIVA Applcaiion Translation Taol |"SESS5arY for the sutomated portion of your apalication migration, i
T late-anlinebank
- co 'S“ e °T R MPORTANT. please review the Appication Extract Archive jar fle i
@ g Copy Directoy Tool procuced ky the Task tool, —-
() CopySicAll-onlinebank
0 CopyDocs2w ar-onlinebark MPORTANT: please review the Appication Descriptor XML file produced
@ 4 Ja Tool by the Extraction tool to werify file dispositions .
O JarEstact-cnlinebark
3 JaDocs-oninebank IMPORTAMNT: Kiva Mgration azsumes that the existing Java code inthe —
icatine alkaadu oomellac in fha lows 2RO cthansios fhio cocla il :

% Al Kivia Application Dacument Transla

& TranzlateD ocsonfinebank

- Console Qutput

Cancel

Click ‘OK’ to complete the generation of the necessary tools. The result of the Addin is
a complete Toolbox consisting of an Extraction and Translation tool and the optional
tools to automatically create the application extract archive and translate the
documents. Please remember to select the 'branch' for each tool to display the detailed
Help for each tool in the right frame. The Help explains each property in the tool. Click
on each 'instance' of the tools to display the bean property panel in the right frame. Both
the basic and expert properties may be edited.

The Task Tools simply cause a list of other tools to be executed in order. It is usually
more informative to run the tools separately so that you can carefully watch the console
output.

The Extraction tool properties are shown here:

Chapter 3 Migration from KIVA/NAS 4.1 to SunONEAS 7 133

134

:.-Illl-‘l.-iurr Migration Toolbos - [th] .-Jnlﬂ
fie Tod Addin Help
Qe 8 F4
4 . .
[} Ve b Tool Properties
? a Tockan - [New] = = IV Applicabion Estraction T ool - Extract-onfinebank
@ & Tack Tool :
€] ?ﬁ;ﬂuﬁfﬂmchhcﬁ () Basic Properties [ckck bo hite properties] (| %
(p FeStaticDocs-on -
9) KIva Appication Exi e —
o # i |' Clac: coun.iplanet moko.nas tools KrvaEsdractTool
@ & EIVA Applcation Teanelsti ExcludeE denzions clasz bk mf
(& Translste-onlnebank JavaFileCharacterE ncoding | ASCH
© ig Copy Direcion Tool Motes
€] Enwsfﬂ";:‘rﬁ’* OuiputDiuectory ${migikoe home frorkiceputionlinebank appdess |
O CopyDocsawar OvervrieFie: False

@ 3 Jar Tool

d

@ JaEstract-orfinebank
3 JaDocs-onkrebank
¢ & KA Appication D
0 TraretsteDocs-online g
~ Conzole Output =E
] Ik

QuenFileChaacterEncoding | ASC

SourceTipFile

$lmm.mmmmm¢mmmu| |

TemplateE dersons

Hitml e

IErIraclsa HAS Y & application to an KL descripbion file

=i

The Translation tool properties are shown here:

Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

E':JIPL:III:'. Migration Toolbox - [Mew] | =lal =]
Fle ool Addin Hep

Qe »¥ 4
@ Toolbox Cortents
® (b Tookbax - [Mew|
@ B Task Tool
(CrealebppE dractirchi

Tool Properties

I Appbcation Translation Tool - Translate-onlnebars

oo W

(7 FinStaticDocz-onling i HE [elick to fids propertes] |':
o KIVA Application Exlract r AppDezcnphionDir F{migt: home frwork outputiondnebankappdese

O Evhoctorlinebank | /| SpRDessRiontle ${migtezc home Jiwork cedpeiarinebank appciescion . |
Q ﬁ K& Apphication Translab : _qi_?f ________________ coim |planet moko nes tools KivaTransisteTool

€ Translate-oninebank| | | Modulehlane emd

§ g Copy Diectory Tool
(» CopySicAll-anbinebark.
2 CopyDocs 2w ar-onl

Mewd pplicabionPackageh ame | com.iplaret migration samples.onlinsbank

ST
E

T T T T T T T T

® &3 Jar Todl OutprtDirectory Fimighbee home frarorkiouipationlinebank migrated J
@ JaE strachoniinabank Uvenitebies Faise v
& JarDocs-orinebank SourcesipFie Fimigtio home frvorkioutputioninetankarchivelanlil ...
Q ﬁ KIvA Application Docum ‘WorkingDirectory Fmiglbe: home frarorkoutputionlinetank working |
& TranslateD ocs-onineb {| & Expert Properies [k to show properes)
é Console Output - r
1 OE -
[Transiates 8 NASKTYA application description to J2EEMATO o

12. Invoke the Create AppExtractArchive-onlinebank Task tool. This tool runs the
CopySrcAll-onlinebank and JarExtract-onlinebank tools one after the other to produce
the application extract archive

91 GTBX_HOVE% wor k\ onl i nebank\ ar chi ve\ onl i nebankApps. j ar

13. Invoke the Extract-onlinebank. This tool runs very quickly. The trace of the tool
execution is shown in the Console frame. It will introspect the application extract
archive, concentrating on GXR files to produce the application descriptor XML file.
You must review the application descriptor and sometimes edit it so that the files are
organized properly so that the Translation tool clearly understand the disposition of

Chapter 3 Migration from KIVA/NAS 4.1 to SunONEAS 7 135

each file (including the proper encoding) in the archive. For iMT 1.2.3 the Extraction
tool will automatically discern the encoding of the HTML templates. Please review the
application descriptor to ensure that the proper encoding was selected for each
template. The location of the application descriptor is

9%V GTBX_HOVE% wor k\ onl i nebank\ appdesc\ onl i nebank. xm

and it is helpful to use an XML editor to navigate and edit this file carefully. Here is a
view of a portion of this file in XML Spy.

136 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

A a;ﬁinﬁnn
= defautCommandPalh GXAppOnineBankSample
« applogicFiles

= encoding ASCI
) * applogicFile
« gueryfFiles
= encoding A5CH
} * queryFile
« ptherFiles -
= destination {} otherFile
1 foarNEB-MFiclazzes | ¥ otherFile
| 2 Jfexchude = otherFile
& temnplateFiles |
= encoding {} templateFile
1 DEFAULT_EMCCOING & templateFile
= File
1 GRAppOnineBankSampletemplatesienBstances himl
2 GrAppOnlineBankSampletemplatesieniCust Mml
3 GXappOrineBankSampletemplatesienfustomerivenu Himl
§ GRAppOnineBankSampletemplatesienExiMessage himl
§ GAppCrineBankSampletemplatesienFindCust him
§ GXApp/OnineBankSampletemplatesiendlist Custs himl
T GRAppOndneBankSampletemplatesienfew Cust himl
B GrappDnineBankSampletemplatesien/0BLogIn Himl
9 GHAppOnineBankSampletemplatesienfephdenu himl
10 GrappiColineBankSampletemplatesienfSuccesshiessane himl
11 GRAppiOnlineBankSampletemplatesfeniTrans himl
12 GRAppOnineBankSampletemplatesienTransfer himl
1 13 GRAppCrineBankSampletemplate sienValidaionError Fml
2 Shift_As a femplateFile /"3

= file
GRAppiCrlineBankSampletemplatesjaBalances Himl

GRAppOnineBankSampletemplatessjaiCust himl
GHAppOnineBankSampletemplatesfailCustomer Menu bl

(=R

14. Invoke the Translate-onlinebank tool. It takes a little longer than extraction and the
time will depend on the number of AppLogic source files, Java files and Html
templates you have in the archive. ALWAYS review the Console output when
Translating to see if errors are reached. The Translation tool will usually skip past
errors and continue to translate the rest of the application. It is easy to miss a
WARNING or ERROR in the large trace output. You may change the expert properties

Chapter 3 Migration from KIVA/NAS 4.1 to Sun ONEAS 7 137

138

15.

to enable debugging and verbose tracing to see the real detail of the translation
including use of the internal calls to Regular Expression mapping rules and element
processing. The results of translation are placed in the 'migrated' directory under output
directory

= aukput
Sk orlinebarlk
] 1 appdesc
i 1 archive
=11 migrated
& exclude
=) war
=21 Gxapp
=1 onlineBankSample
=00 remglates
ZJen
i | ja
=11 WEB-INF
=] classes
=1 com
=1 iplanet
=] rlgration
=1 (1 samples
= orlinebank,
3 cmd
=1 [Gxrapp
3 onlineBanksample
b
= queries
=1 Gxapp
=l-__1 SnlineBankSample
! [queries
2R | arigsrc
IR | wiorking

A complete J2EE JATO Web Application is created under 'migrated/war'.

Invoke the FixStaticDocs-onlinebank Task tool. This task will call in order the
JarDocs-onlinebank, TranslateDocs-onlinebank and CopyDocs2War-onlinebank so
that the static content URLs for AppLogics are fixed and the content is copied to the
document root of the WAR.

At this point, automated migration is complete and manual migration starts.

The easiest way to proceed in manual migration is to load the web application into a
J2EE IDE. Forte for Java EE (FFJ) is used in this example.

Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

16. Start FFJ 4.0 and create a new Project called OnlineBank. Make sure there are no

existing file systems in the new project. Select [Project] from menu and click [Project
Manager].

Ll S it FE
o Busld Priject Chil*Shift-Fi1
By Set Project Main Class... Gk kit

F Execite Project Clrl* S hift &
Chil+ShifF5

=[G Propenicss

Chapter 3 Migration from KIVA/NAS 4.1 to SunONEAS 7 139

17. On the Project Manager window, click New and put a project name (OnlineBank).

= Project Manager .EI
Existing Projects:

O Project Defaut | Mew ...

= Create New Project ,zl

140 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide +« March 2003

18. Right click [Filesystem] icon and select [Mount Directory] on the Explorer panel.
Select ${ m gt box_homne}\ wor k\ out put \ onl i nebank\ m gr at ed\ war and click
OK. Forte should recognize this directory as a standard WAR directory and create a
WAR view in the Explorer.

'f-}_lrurte for Java 4, Enterprise Edition [Project DnlineBank]
File Edié Y“iew Project Buld Debug ‘ersioning Tools Window Help

DaEefaE XDadad2e @aaqy
_Editing | GUlElting | Running | Debugaing | Project OrineBani opencd

B Explorer [Fiesystems] :

Filesyst——————————
El == Find... ChrlF

| Mourt P| O3 version Cortrol b

| Customize 3 Local Directory |
L archive (JAR, Ti)

FFJ uses the term FILESYSTEM to refer to an entry in the CLASSPATH for a project.
Upon mounting the WAR directory not only will the . / war / WEB- | NF/ cl asses
directory be AUTOMATICALLY part of the CLASSPATH because its a 'war' file, but
each library under . / war / VVEB- | NF/ | i b will also be added (ZIPs and JARs). See the
Filesystems for the OnlineBank project below

Here is the document root of the new web application (see below). Notice that some
static content has been translated to JSPs and the HTML templates have been translated
to JSPs.

Chapter 3 Migration from KIVA/NAS 4.1 to SunONEAS 7 141

142

©x Project OnlineSank_1
@ Ceotimt-=1_2_3-rcd workoutputioninebank migrated vear
® @ Document Baze

@ S cHapp
@ S OnlineBarkSamps
& [Images
© 3 en
[8] oBLogin
e .
@ 3 templales
@ en
E Balances
e Cust
A CustomerMen
g ExitMaz=zags
;ﬂﬂ FindCust
B ustcusts
B MewCust
;ﬂ OfBLogin
Q Rephlenu
B successmessage
B Trans
5; Transfer
;ﬂ WalidationError
@[] ja
g nidex
ﬂ reasme
@ @l WEBINF
3 b

] iate1_2_2-devd jar
L1 kiva-sdapt-mig-1_0_2-rct jar
© A queries
§ 3 oxapp
© 5 OnlineBankSample
® o queries
_1 SelCust gy
J: SelCustaccis g
] SelustTrans.gug
& %5 GHMigration
&= Clasies
& %3 jato
ety i
= =3 Classes
e 0 &b
@ webooml

Here is the new layout of Java classes in the web application (see below). Notice that
the original Java source retains original packaging. The AppLogics are translated to

Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

JATO commands and very little code is affected. The new JATO source files are
placed in the new package specified as a property in the Translation tool.

3 Project OndneBank_1
= 2! Drimt =1 _2_3-rod wvorkout put onlinebank migrated wear
@ @ Docunent Base
9 2 Classes
@ = oHApp
® S OndneBankSample
& @' Basetpplogic
& [@ " CreateCust
@ @ " CustFarmApplogic
@ [@ " FindCust
& [@ ¥ oBD8Dets
@ @ = CELagin
@ (@ CBLogout
@ [@* oBssssion
® (@ Show BalancesPage
@ [@ ¥ showCustPage
@ [@* showFindCustPage
@ @™ showheruPage
@ [@® ShowNewCustPage
@ @ ShowTransPage
@ [§ ™ showTransterPage
@ [Transter
O B Updstecust
@ 3 com
® 3 iplanst
® 3 rmigration
2 zamples
© 3 onlinebank
® 3 omd
& [@ CmadServiet
& [@ ™ commandTypahiapimpl

& B KivaCommandTypetdapimgl
& [KivatueryFileCachelmpl
E= @)™ Mode| Typebapimpl

o] OnlinebarkServietBase
&= SolConnectiorManagerimpl
@& 3 lib
E’.E.l sk il

The Java source will need to be compiled. It is very important to enable 'deprecation’
flag in the compiler. The Translation tool automatically placed the debug or 'migration’
version of the KFC adaption library in the WAR. When you compile your translated
application using this library and the 'deprecation’ flag is enabled, the compile will
produce a report of each line of code which uses a 'non-targeted' API. The intention
here is to reach a complete compilation as quickly as possible and produce a report on
the tasks required for manual migration. Even if the application uses 'non-targeted'

Chapter 3 Migration from KIVA/NAS 4.1 to Sun ONE AS7 143

144

APIs, as long as it compiles it will run; although it may not function properly since
non-targeted API are non-functional (e.g. return null or GXE.FAILURE). This is
valuable because the migrator may incrementally migrate portions of the application
and test these portions without being burdened with having to totally migrate the
application. In other words, the migrated AppLogic JATO Commands may be tested
one at a time. Another value proposition is that the deprecation report is a nice way to
determine how much work there is to do.

19. Edit Project properties (Compiler: External Compiler:) and set deprecation to TRUE.
Select [Tools] from menu and click [Options]. Expand the ‘Building’ and then
‘Compiler Types’ nodes and set [deprecation] as True for External Compilation on
Options window as shown below:

= options o &
ET—— ::' kK] =] [7=] =] |a
q) ﬂ Eilding — '_{; Detug True I
@ Compiler Types] 5/}' Deprecation Falze 7

5% Exdernal Compliation o g Ereable JOK 1.4 source Tre

2% Internal Compllation 2 False bookean

3% Fastlavsc Complation | 2 Encodng

4% Jikes Complation] g | Error Expression Sun javac

2% RM Stub Compiler | g Exdernal Compiler {ictk home K kind Njavac {debid

3% RMI Stub Compder (10P) _ L i i hame Extowrvel Compliation

& EJB 20 Compiler] é”' .

B At Script Compistion . it Falce

[Ep wdirect At Compilstion || Tonat e

[5P & Serviets Seftings 2
B e setings =
@ [Code Docursentation
& [Debugging snd Executing
& [Custributed Appheation Support 3
|| Properties | Expert |
Close | Help

Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

20. In the project view in the Explorer, select the Classes branch and right click to menu
and choose Compile ALL. All the migrated code (AppLogics, etc.) in

${m gt box_hore}\ wor k\ out put\ onl i nebank\ m gr at ed\ war \ VEB- | NF\ c| as
ses\

and the new generated JATO infrastructure in

${ m gt box_hone}\ wor k\ out put \ onl i nebank\ m gr at ed\ war\ WEB- | NF\ cl as
ses\com

Everything should compile immediately.

G Project OnlineBank_1

@' .gi D=1 _2_ 3-ro wworkoutpuanlinsbankmigratedvy ar
@ = Document Baze
B =2 Clazzes

= [ik Explore From Here Chil0
Ggl webxm| Find. CHkF
Refrazh Foldsr
Compie FQ
Comgie Al cti-Fo
Bluibch AH-Fa i
Builed AN ChileAaltFQ !
]

Chapter 3 Migration from KIVA/NAS 4.1 to Sun ONEAS 7 145

146

2 Cwutput Window [Compiler]

GApp /OnlineBankSauple /BaseApplogic. java [44:1] warning: createSsssion(int,int,java. lang

E

-

FApp/InlineBankSanple /0BLogin. java [123:1] warning: saveSession(com.iplanet.migration.k

currentiession = createfession(GESESSION. GXSESSION_DISTRIE, 0, appName,

A

int rc = zaveSession(null):

Ghpp/0nlineBankSanple /0BLogout. java [27:1] warning: destroySession(com.iplanet.migratio

GHApp/OnlineBank Sasple/CreataCust, java [173:1] warning: cobmlt(int) in com. iplanst.migrs

descroy3ession(nall) ;

-

newCustTrans. commit (0) ;

FApp/InlineBankSanple/Transfec. java [1T2:1] warning: commit(int) in com.iplanet.migrati

-~

transferTrans. commit (0) ;

Flapp/inlineBankSanple/UpdateCust. java [158:1)] warning: commitiint) in com.iplanet.migrs

o o e o M M AR e e

updCustTrans. cormit (0) ;

9 warnings
Finished.

| [t

A e D D A

T

-

R
A

i

B
R

[F

R | b

There are six uses of NON-TARGETED SESSION KFC API's in the
OnlineBankSample and three uses of the NON-TARGETED "commit" method of
ITrans in the version of the iMT.

The 'session' APIs are the most commonly found non-targeted APIs. In the KIVA
Application Server and KFC, developers could optionally supply an ISessionIDGen
reference to any of the 'session' APIs. This interface allowed the developer to control
the Session ID and related behavior. There is no such capability in J2EE. Applications
which used [SessionIDGen will need to manually redesign that portion of the
application. Most developers chose not to use this feature by providing a 'null' object
reference to the APIs. Nevertheless, since ALL the KFC 'session’ APIs required this
parameter and the ISessionIDGen type is non-targeted, ALL the KFC 'session' APIs are
non-targeted too. There are alternative APIs provided for most of the non-targeted
methods which do NOT require the ISessionIDGen parameter. The migrator will need
to revise each case of non-targeted 'session' APIs so that the alternative APIs are used
instead. Usually, these 'session' APIs are located in one or few places in the application
so it should not be a costly manual change. Please note that there are two special cases
in the 'session' APIs. The IAppLogic.saveSession(ISessionIDGen) does not provide an
alternative method because there is no concept of 'saving or flushing' HttpSession in
J2EE. This API is eliminated. The IAppLogic.createSession(int, int, String, String,

Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

21.

[SessionIDGen) API provides an alternative API which takes zero parameters. Again,
in J2EE, the Servlet API does not provide any control for the developer like the KFC

API did; although the container vendor may provide value-added configuration or the
HttpSession via deployment descriptor and app server configuration.

The single argument to the ITrans.commit method was never used by KIVA. We have
eliminated this API for an Adapted API which takes zero arguments. You will need to
remove the '0' value in the three commit methods in CreateCust.java Transfer.java and
UpdateCust.java

In the OnlineBankSample application the 'session' APIs are used in
BaseAppLogic.java, OBLogin.java, and OBLogout.java. The changes are shown
below and are required to proceed.

BaseAppLogic.java LINE 38

| Sessi on2 current Session = get Session(); // getSession(0,
appNane, null);

BaseAppLogic.java LINE 44

current Sessi on = createSession();
/] creat eSessi on(GXSESSI ON. GXSESSI ON_DI STRI B, 0, appNane,
null, null);

OBSession.java LINE 52

/1 result = mlogic.saveSession(null);
OBLogin.java LINE 123

int rc = GXE. SUCCESS; // saveSession(null);
OBLogout.java LINE 27

destroySession(); // destroySession(null);

There will usually be manual modifications needed on the HTML source or even the
HTML Template source (now JSPs). The modifications will be different for every
application. The iMT alleviates most of the manual work for systematic tasks.
Customers may find repeatable patterns and leverage the Regular Expression mapping
tool to help automate their efforts. In most cases, the maintenance on the markup is in
the area of URL paths. Links to static content from the dynamics content may suffer
from invalid absolute paths caused by the addition of the web application context.

Chapter 3 Migration from KIVA/NAS 4.1 to Sun ONE AS7 147

22. edit both parallel versions of the ExitMessage.jsp. The absolute reference to static
content from the dynamic content are broken because we have moved the static content
into the WAR file. These references would be correct if the content was deployed
outside of the WAR file. Notice the [..] characters added to the beginning of the
absolute URL. Because the ExitMessage.jsp is rendered from the context of the [/cmd]
servlet mapping within the servlet context, we can get back to the document root of the
servlet context by just moving one segment up in the path.

/ GXApp/ Onl i neBankSanpl e/ t enpl at es/ en/ Exi t Message. j sp
/ GXApp/ Onl i neBankSanpl e/ t enpl at es/j a/ Exi t Message. j sp
LINE 15 (html -> jsp links and path) (see snippet below for English version)

href =". ./ GXApp/ Onl i neBankSanpl e/ en/ OBLogi n. html "> Back to Login
Page </ a>

23. Optional edit /| VEB- | NF/ web. xm to allow for automatic startup when the root context
is requested (see snippet below) You need to add welcome file elements between the
servlet mappings and the taglib elements

</ servl et - mappi ng>

<wel cone-file-1ist>

<wel cone-fil e>

GXApp/ Onl i neBankSanpl e/ i ndex. ht m
</wel come-file>

</wel come-file-list>

<tagli b>

A major effort required during manual migration will be to verify URLs within the
application. Links between static and dynamic content will usually need to be updated
for the relative paths required for portable J2EE deployment. Also, JavaScript may
need to be revised.

The manual migration effort is completed and the final web application may be
deployed on any J2EE web container. In FFJ you may export a WAR file and deploy
on iAS 6.5. You may also run the web application directly in FFJ using the built-in
TomCat server.

148 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

24. Add a Server Module Group in FFJ. Right click on WEB-INF branch in Explorer,
select [New]->[JSP&Servlet]->[Web Module Group] and add a server group. Accept
the default on the wizard screen and simply chose 'Finish'. A new element under
WEB-INF in the Explorer appears called 'ServerConfiguration'. Add the current web
application by right clicking on [Server Configuration] branch in Explorer and select
[Add Web Module]. Provide a servlet context name on [Add Web Module] window.
For example "Demo".

&0
@ [queries
G @3 GXMigration
e [@ [EerverConfigurationl
& 3 Classes] Add ek misdile
B 43 jato T
El R Execute Fii
L=
w5 jtojer Execute (Force Reload)
5 kivaMGRATION jor Desioy

@ @ wesnE ‘H

25. Execute in FORTE by right clicking on [Server Configuration] branch in Explorer and
select [Execute].

Chapter 3 Migration from KIVA/NAS 4.1 to Sun ONE AS7 149

150 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide +« March 2003

Chapter 4

Migration from NetDynamics to Sun
ONE AS 7

NetDynamics applications can be migrated to J2EE web modules using iPlanet Migration
Toolkit (iMT 1.2.3). The resulting web modules can be deployed and executed on any J2EE
web container.

Introduction

Before continuing, be sure you have read the % GTBX_HOVE% bi n/ r eadne. t xt file so
that you are aware of the latest information and any issues that might be relevant to you and
your environment. The readme file also describes proper installation and configuration of
the Migration Toolbox and its environment, which must be complete before beginning the
migration process described in this document.

[9V GTBX_HOVE% represents the directory in which you installed/unzipped the iPlanet
Migration Toolbox (iMT)].

This document covers the minimal process of migrating a NetDynamics application to
J2EE. It is not intended to be an exhaustive reference for the migration process, in large part
because there are only a few common aspects between any two migrations. Instead, this
document provides the information necessary to understand the basic migration process
using the iPlanet Migration Toolbox (iMT).

151

152

Migration Preparation

Migration Process Overview

There are two main phases to full migration of a NetDynamics proprietary project to its
J2EE equivalent. These phases are the automated migration phase and the manual
migration phase. The automated migration itself consists of two steps called extraction and
translation.

Automated Migration Phase

This phase consists of manually preparing a NetDynamics project for migration and then
using the iMT to perform automated extraction and translation. The input to this phase is a
proprietary NetDynamics project or set of projects, and the result is a partially (or in some
cases, fully) migrated application consisting entirely of non-proprietary J2EE-compliant
components (servlets and JSPs).

The output from the translation process entirely replicates the component structure present
in the original NetDynamics project. This process also uses the declarative property
information present in the project's INTRP files to generate equivalent features in the
migration application. However, the translation phase does not (currently) automatically
port code written to the NetDynamics Spider API to its J2EE equivalent. This porting will
be the primary task during the manual migration phase. The process does, however, place
the original source code in the appropriate location in the new output. For example, code
from the NetDynamics onBef or eDi spl ay event handlers is placed in the analogous event
handler methods in the migrated application.

Manual Migration Phase

The degree of application migration accomplished in the automated phase is directly related
to the amount of declarative versus API features used in the original application. In those
rare cases where a project used entirely declarative features, that project can frequently be
automatically migrated fully and be immediately deployable and runnable in a J2EE
container without any manual work. Consequently, projects that use fewer declarative
features will require more manual work to become functional as J2EE applications.

In general, the manual migration phase consists of reviewing the automatically migrated
application output and porting Spider-API-specific code to J2EE-specific code. Understand
that this process does not typically require a redesign of the application or its architecture;
rather, it is largely a straightforward 1-to-1 mapping of API calls. This is possible because
of the use of JATO, a powerful J2EE-compliant web application foundation targeted by the
automated translation process.

Preparing your Working Environment

Before going further, ensure you've done the following:

Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

1. Make sure you've installed the iPlanet Migration Toolbox.

e Unzip the distribution archive into the desired target directory. Follow the
directions in the r eadne. t xt file.

» Test the installation by trying to start the Toolbox application. Run
t ool box. bat inthe % GTBX_HOVE% bi n directory. An empty Toolbox
should appear after a few moments. If nothing appears, check that the
Migration Toolbox was installed properly and that all appropriate
environment settings have been set in % GTBX_HOVE% bi n/ set env. bat .

2. To avoid class version issues, we strongly recommend that you remove all JAR files
from your JDK's extension directory (Y AVA_HOVEY j r e/ | i b/ ext) while running
the Toolbox application. We have included all the classes necessary for running the
Toolbox with the distribution. Please note that simply renaming the JAR files in the
extension directory is not sufficent; you must move them to a different location.

3. Copy the NetDynamics project(s) you wish to migrate into the
%M GTBX_HOVE% wor k/ NDPr oj ect s directory (or any other convenient directory).
This directory will be referred to as the NetDynamics projects directory below. This
directory is not necessarily the actual project directory used by a NetDynamics
installation on the same machine (although it could be). Instead, it is the directory in
which you will place the NetDynamics projects to be migrated. Note that NetDynamics
need not be installed on the machine running the Migration Toolbox. However, if
NetDynamics is installed on the machine that will be used to run iMT, you must be sure
that the installed NetDynamics does not interfere with the iMT. This will happen if the
installed ND's classpath is referenced in the system environment variable called
CLASSPATH. When iMT is started, it appends its own necessary classpaths to the end of
the system classpath. If the installed ND's classpath is part of the system classpath, then
the iMT will not operate properly.

4. At this point, you may also want to install Sun™ ONE Application Server 7 or another
J2EE-compliant servlet/JSP container

* Follow the installation instructions for the server or container

» Test the installation by starting the server or container and trying to load the
default home or index page. If an error occurs, troubleshoot the installation
process before continuing

Chapter 4 Migration from NetDynamics to Sun ONE AS 7 153

Preparing a Project for Automated Migration

Because NetDynamics allowed developers immense latitude (with both positive and
negative consequences), there is no way for iMT to account for all possible project
permutations. This is particularly true of projects that use non-standard portions of the
NetDynamics Spider API, or use this API in an unorthodox or undocumented way.
Therefore, some applications will require manual preparation before being migrated by the
iMT. In some cases, this preparation may be significant if a particular problematic feature is
widespread throughout a project or set of projects.

Of the two automated phases, you are more likely to encounter initial difficulties during
project extraction. This is normal, and is simply a consequence of the issues noted above.
The good news is that many projects will not encounter any difficulties during extraction,
and once an application description has been extracted from a project, it should be
translatable with little or no difficulty.

Differences Between the Project Extraction Runtime and NetDynamics
Runtime Environments

The iMT uses an embedded NetDynamics Connection Processor (CP) to instantiate and
then extract information from a project. From the project's perspective, it is being
instantiated inside a normal NetDynamics 5.x server environment. However, the extraction
runtime environment differs substantially from that present in a NetDynamics server.
Specifically, the JDBC Service, the PE Service, and PACs are not available to applications
instantiated within the iMT's embedded runtime, nor are they necessary to extract the
necessary information.

We have found that some project objects perform tasks that depend on these runtime
features in their constructors, static initializers, initialization events, or non-Spider threads.
The iMT automatically suppresses the firing of the NetDynamics 4/5.x-style

onBeforel nit and onAfterlnit events so that customer code in those events will not
execute during the initialization. However, other initialization-time methods, such as static
initializers, overridden i ni t () methods, and NetDynamics 3.x-style onBef or el ni t and
onAfterlnit events may still execute. You may need to comment out code in these
methods if that code attempts to perform behaviors that cannot complete successfully
within the iMT runtime. (You may leave the code in the original location and it will be
automatically moved to the correct target location during translation). One can normally
identify these problematic cases most easily from error messages and exceptions generated
by the Extraction Tool.

154 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Before Running the NetDynamics Extraction Tool

For the reasons given above, we generally advocate running the Extraction Tool on your
project with only minimal preparation. Although it is more likely that the extraction will fail
with an error, doing so will typically save you time in the overall migration process, it is
usually easier and faster to detect and rectify problems using the diagnostic error
information than trying to find and fix potential problems preemptively (unless potential
problems are well-known).

However, to avoid several other common sources of extraction difficulties, we recommend
you perform the following tasks before running the NetDynamics Extraction Tool:

* We have found instances of NetDynamics projects that appeared normal when opened
with the Studio or run in the NetDynamics server, but in reality contained corrupted
references and project objects that were only detected upon closer inspection. In other
cases, we have found corrupted class files that prevented the embedded NetDynamics
runtime from loading the corresponding project object and caused it to throw
seemingly unrelated exceptions. Therefore, we strongly recommend you follow these
steps to prevent trouble before beginning migration:

= If the project came from another source (such as a client or colleague), ensure the
projects | i nks directory is present and contains a number of . si d files. You may
open several of these files in a text editor and ensure that the objects named in the
file correspond to the names of the project objects. Also ensure that all necessary
external classes were included with the project.

n The project must have been converted to NetDynamics 5 using the Studio's
automated conversion process. This process entails opening the project in the
NetDynamics 5 Studio and following the upgrade prompts. During conversion, the
Studio upgrades object properties and converts DataObjects to NetDynamics
5.x-compatible versions. IMPORTANT: Note that the project need not actually
run under NetDynamics 5.x0simply using the Studio to convert the project is
sufficient.

n Open the projects you will be migrating in the NetDynamics 5.x Studio and inspect
them for completeness and validity. Also inspect the project directory itself. For
example, you should have one <pr oj ect >. spj (or <pr oj ect >Pr oj ect . spj)
and <pr oj ect >. cl ass file, one <page>. spg, <page>. cl ass, and
<page>. ht nl file per NetDynamics page, and one <dat aobj ect >. sdo and
<dat aobj ect >. cl ass file per Dat atbj ect .

Chapter 4 Migration from NetDynamics to Sun ONE AS 7 155

» Deleteall. cl ass and . ser files from the project directory and fully recompile
the project. The project must be compiled against the NetDynamics 5.x binaries.
The easiest way to do this is to use the "Compile All" command in the Studio. You
may also be able to use the Java Compilation Tool in the Migration Toolbox
application to compile a project using the NetDynamics 5 binaries, though this is
not recommended and may require substantially more configuration.

* Ifpossible, test run the project in NetDynamics 5.x. A project that runs successfully in
the server is more likely to be migratable without trouble. If you have a running copy of
NetDynamics, configure the CP to preload the projects you will be migrating. Use the
Command Center to stop or remove the JDBC Service, the PE Service, and all PACs
from the current configuration. Restart the CP. After the CP starts successfully, check
the NetDynamics log and the Service Manager (SM) log to determine if any exceptions
were thrown. Projects that throw exceptions at this point are likely to throw exceptions
during extraction.

Migrating ToolBox Sample Application

This section describes the automated and manual migration procedures of the ToolBox
sample application.

Running the Migration Toolbox

If you don't have the Toolbox application currently running, please follow the instructions
given in section Preparing your Working Environment to setup your toolbox.

156 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Create a Toolbox Builder

1. Start the toolbox and choose "Migrate an application" option in the Welcome dialog
and press OK. With the Toolbox running, be sure that you have an empty (New)
toolbox. Select the menu option Add-1n -> Mgration -> NetDynamics
M gration Tool box Buil der.

E'I'JIP'-:"It'. Migration Toolbox (=] 53]

Fie Tool

| Q o > || 7 otDynamics igaon Toobe Bukdr
@ Toobe| pcolanocus b ﬂm“mntammmmsmumemxmmm|
@ ﬂ L —
11 Bsoad hddinin
e Conzale Dulput

A L T o

S SAA S

A modal dialog wizard will appear.

Chapter 4 Migration from NetDynamics to Sun ONE AS 7 157

NetDynamics Migration Toolbox Builder

Wielcome to the NetDynamics Migration Toolbox Buslder,

Thiz tool helps you create a set of fools tailored for your NetDynamics

magy ation by prompting you for several tems of information. Once you enter
thiz information, several pre-configured tools will be sutcmatically crested in
wour current toolbo.

It you wish bo procesd, press OF
If wou wish to return to the Toolbox, press Canceal,

|__ok || cocal |

Select OK to proceed to the first step of the wizard.

Input Application Mame zl

Enter the bogical appboation nesme. This name is only used to provide
irteligent defauls later in this process and while cresting the fools inihe
Toolbox. & has no mpact on the migrated appication code.

Vo | Migtoalhos Sample |

158 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide +« March 2003

2. Enter the name of the application you will be migrating in the “Input Application
Name” dialog box, for e.g. ‘MigtoolboxSample’. Select OK to proceed to the next step.

Input Migration Output Directory ﬂ

Erter the name of the drectory under which your migrated application and
accompanying files wil be created. Inmost cases, we recommend using the
defaull location specified here, which will place thase files nthe
Fevorlfoutput Migtoolbox Samgle directory wnder your iMT nstallstion root,

e, | Bttt home evarkisutputMigtockoxSampe| |
[o || cancel |

3. Enter the directory where all materials generated by the iMT will be stored. The default
is usually satisfactory and is used in this example. Select OK to display the next step in
the wizard

Input Application Package EI

Enter the new application package. This package is the root package in
which your nesw application will be created, and thus should be applcation
zpecific. Each NetDynamics project inthis applicaton wil be created az a
zsub-package of thiz application package,

Ve | MigtoolboxSamgie] |

Chapter 4 Migration from NetDynamics to Sun ONEAS 7 159

160

4. Automated iMT migration will produce some J2EE infrastructure including new Java
JATO files. These new files must be assigned a package. Although existing Java source
in the original application will retain packaging, we still need to assign a package for
these new files. There is no restriction on the package name. The default value is
provided for the MigtoolboxSample application.

Enter a package and select OK to display the next step in the wizard.

Input Project Mames EI

Enter the NetDrynamics project name you wart to migrate. I you wani to
include multiple projects in this apphcation, enter the project names separated
oy commas, All projects specified here wil become modules of the current
application. & module is & subdivision of your application that represents
logically related cbjects.

Ve | MigtoolboxSamgie] |
[ok]| cencel |

5. Enter the project name you want to migrate. This project should be located in
‘{ M GTBX_HOVE} \ wor k\ NDPr oj ect s\ ’ folder.

Input WAR File Name zl

Enter the name of web application archive (WAR) file nlo which you wish to
package your application. The set of gererated tools will confsin seversl
tools that will help you package your application so that it is ready fo deploy
ir your J2EE container. In general, we recommend that wour VWAR file name
ditfer from the name of vour application packags or any of itz modules.

Vaiue | MigtoalboxSamgleviar war |

Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

6.

Enter the name of the web application archive (WAR) file into while you want to

package to your application. The default value is provided for this application. Select

OK to proceed to the next step.

Input WAR Dutput Directory

x|

It yeour J2EE container aliovs an appication 1o be deployed by conying 8
VAR file 10 a deplosement directory, provide the fully oualified name of that
directory here. Qtherwise, chooze a direciory inwhich the final ViAR file
wvill be= created,

vl | F{migiie: home Pevorkiudpud Migtoolbox Sampleideploy

[ok]| concel

Enter the output directory name where iMT will generate the WAR file. When you

select OK on the dialog box, the toolbox builder will generate a set of tools necessary

for the automated portion of the application migration process.

MetDynamics Migration Toolbox Builder

The MetDryramics Migration Toolbox Bullder has completed generation of
the tools necessary for the automated portion of your application
megration, Two task tools were also created to help you more easiy get
started, The tool "Migrate MigtoolboxSample Appication” will perform the
automated pordion of your application migration. The tool "Create
MigtoolboxSamphe WAR File" wil create a\WAR fie from yolr magrated
application in one step.

MPORTANT: Remembier, in order to have & working application, yeu must

2l manualky migrate the Jeva code inside your application ater
re lsirus Bhus o @) R it g SRS TN it: i i v ido o

[o<][coma |

Chapter 4 Migration from NetDynamics to Sun ONE AS 7

161

162

8. Select OK to exit the NetDynamics Migration Toolbox Builder wizard. The result of
the Addin is a complete Toolbox consisting of an Extraction and Translation tool and
the optional tools to automatically create the application extract archive and translate
the documents. When you select the ‘branch’ for each tool on the left frame, it will
display the detailed help for each tool in the right frame. The help explains each
property in the tool. Click on each ‘instance’ of the tools to display the bean property
panel in the right frame. Both the basic and expert properties may be edited.

The Task Tools simply cause a list of other tools to be executed in order. It is usually
more informative to run the tools separately so that you can carefully watch the console
output. The extraction tool properties are shown here:

Liaix
Fie Tool Adddn Help
Ue 9 A4
Is. Toolbox Contents '_: D TOOI Properties
Toolbos - [New] = S HeDypnamic: Exraction Tool - Extact-Miglookoes ample
& Tazk Tool 3
@ Migrate MigtoolbonS ample: Applic %: @ Basic Propedtes chok o hide propedtie
© Creste MigtookouSample WAR F:EE Lppll ezcnphanFilet ame: | Mgt oclbox Samghe ml
[i] MetDyramics Extraction Toel = L = .
(2 [Estract MigloobosS amgle o |
ﬁk Apphcation Translation Tool g;- MevdbpplicationPackage | MgtookoxSampie
(2 TrarslateMigtoolboxS ample g: Mioles _
%% Java Compiler Tool _:ﬁ;_ Dutputlirectory Fimigtbx home Pevork\output Migtoclbox Sampletappdesc | .
. (» Compile-MighoolboxS ample %E Projecitiames Mgt noibo Sample)
i} Copy Directory Tool 2 EEErE Simigthx home fovork NDProjects
0 CopyDepDesc-Migiookhons amgph -‘-';.': S .
£ Copplatolar-MigoobanSample | |
(& CopwlatoT LD-MigloolboxS ample
£ CopwSP-MigtoolbonSample
(» CopyllazsesMigtoolboxSample ||
. |-
(T Ttieiiag] v
Extracts MetDynamics projects to an XML description fis

The Translation tool properties are shown here:

Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

E‘ﬂiPIan&t Migration Toolbox - [New] . =10] x|

Fie Tool Adddn Help
e 9 A4
IS, Toolbox Contents

Toolbox - [Mew)
& Task Todl

(» Migrate MigtoolboxS ample A

(» Cieate MigtoolboxS ample W,
Iﬂ MetDyriarmacs Extraction Toal

@ Extract-Miglookons ample
Qk Apphcation Translation Tool

(2 Translate-MigtoolboxS ample
£ Java Compiler Tool

(» Compile-MigtoolboxS ample
igh Copy Directory Tool

(» CopyDegDesc-Migioobonsy |1

(» CopwlatolarMigtootbons amg || @ Experl Fropeities ik to sho propenie

(» CopwlatoTLD-MigtoolbowSard |

{(» Copwul5SP-MigtoolboxSample |

{» CopyllassesMigtoolboxSam ™.

@ Tnul Propemes

- . -
slion Transkation Tool - Translate-igookbaox S ample

I:i Basic Propettes ch-k to hide propsiis
i AppDescnphonFile storkouputiMigtoolbocSampletlappde e bhigioclboSampd -
Clazs § ¥ "

E mtesipriseP ack ageh sme

Motes

DutputDmecion F{migle home frevarkioutputiMigtoolboxSamplemigrated | .
OrwrepwmteFile: Falz= I -
‘whorkingDieeciony Fimigike: home feevorkoutputibligloolbox S amglebw orking .

Nz

Transtates a MetDrynamics appbcstion description to J2EELNATO

10.

Invoke the Migrate MigtoolboxSample Application Task tool. This tool will inturn
invoke Extract-MigtoolboxSample, Translate-MigtoolboxSample and
MapSpider2JATO-MigtoolboxSample tools one after the other to produce the migrated
code and the application description file(M gt ool boxSanpl e. xm).

Invoke the Create MigtoolboxSample War File Task tool. This tool will invoke the
following tools to produce a Web Application Archive(WAR) file to enable automatic
deployment of the application to a J2EE container. This WAR file will be the only file
you will need to deploy your application to the J2EE container.

CopyDepl Desc- M gt ool boxSanpl e, CopyJat oJar- M gt ool boxSanpl e,
CopyJat oTLD- M gt ool boxSanpl e, CopyJSP- M gt ool boxSanpl e,
Copyd asses- M gt ool boxSanpl e, CopySour ce- M gt ool boxSanpl e,
Jar War Fi | e- M gt ool boxSanpl e

Chapter 4 Migration from NetDynamics to Sun ONEAS 7 163

11. Invoke the Compile-MigtoolboxSample tool to compile the JATO Foundation classes
and the new J2EE application components. This tool simply invokes the j avac
command line tool provided with the JDK.

At this point, automated migration is complete and manual migration if any starts.

The easiest way to proceed in manual migration is to load the web application into a
J2EE IDE. Forte for Java EE (FFJ) is used in this example.

12. Start FFJ 4.0 and create a new Project called OnlineBank. Make sure there are no

existing file systems in the new project. Select [Project] from menu and click [Project
Manager].

Ctrk+S et F&r

Chrl»ShiftFi1

o COHeS ik hi
Clrl*ShifFE

Chil+ShifhF5

sliG BTopEnEs=

13. On the Project Manager window, click New and put a project name
(MigtoolboxSample).

4| Create New Project EI

Project Name: |MitookoxSamiie] |

[ox]| conca |

164 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

14. Right click [Filesystem] icon and select [Mount Directory] on the Explorer panel.
Select ${ m gt box_hone} \ wor k\ out put \ M gt ool boxSanpl e\ war and click OK.
Forte should recognize this directory as a standard WAR directory and create a WAR
view in the Explorer.

#IForte for Java 4, Enterprise Edition [Project MigtoolboxSample]

Fle Edt View Project Buld Debug Versioning Tools Window Help
Ramda YbawIEe @AF BB
Edinrglwmlmml

[Explorer [Filesystems] e |
[Files
Find.. Chi-F
Mot P| O3 version Contral |
Customize =) Local Directory |
5 archive (JAR, Zip) |

FFJ uses the term FI LESYSTEM to refer to an entry in the CLASSPATH for a project.
Upon mounting the WAR directory not only will the . / war / WVEB- | NF/ c| asses
directory be AUTOMATICALLY part of the CLASSPATH because its a 'war' file, but
each library under ./ war/WEB- | NF/ | i b will also be added (ZIPs and JARSs).

The Java source will need to be compiled. It is very important to enable 'deprecation’
flag in the compiler. When you compile your translated application and the 'deprecation’
flag is enabled, the compile will produce a report of each line of code which uses a
'non-targeted' API. The intention here is to reach a complete compilation as quickly as
possible and produce a report on the tasks required for manual migration.

Chapter 4 Migration from NetDynamics to Sun ONE AS 7 165

15. Edit Project properties (Compiler: External Compiler:) and set deprecation to TRUE.
Select [Tools] from menu and click [Options]. Expand the ‘Building’ and then
‘Compiler Types’ nodes and set [deprecation] as True for External Compilation on
Options window as shown below:

= options

Options
E.’.« Cptians
@ S Buikding
© m Compiler Types
s External Compiiation

Internal Compllation
Fa=tlavac Cotapllation
Jikez Cornpiation
RMI Stub Compiler
RMI Stub Compiler (I0F)
EJB 20 Compiler
Ant Script Compilation
Indirect Al Compilation

b 0P 2 Serviets Seftings

B ant setings
@ O Code Docurmertation
& [Debugging snd Executing
@ @ Distributed Appication Support
. -

[E L]

3

166 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide + March 2003

16. In the project view in the Explorer, select the Classes branch and right click to menu
and choose Compile ALL. All the migrated code in

${m gt box_hore}\ wor k\ out put\ M gt ool boxSanpl e\ war\ VEB- | NF\ c| asses

\

and the new generated JATO infrastructure in

${m gt box_hone}\ wor k\ out put\ M gt ool boxSanpl e\ war\ WEB- | NF\ cl asses

\

Everything should compile immediately.

B Filesystems

& [0 wigtookoxSample

P @ CoproedsWGRATION_GUIDEM-1_2_3-re3rworkoupuMitooboxSample

& B ModelMypehapipl

9 o vesaE
L=
@ <3 | ExploreFromHere Cti0
® ¢ Find.., Cti-F
Refresh Folder
Campile L T —
| Compless swmra
Buikd Fi1 0
Build Al ShiftF11
Cut Chrl- 2
Copy Chil-C gl
Faste cti !
il
Delete [ralote Tiled Viewr
Farame .
[p [Dean
pated] TiledView
Tools b wBean
Properties N
& & WigtooborSanpleApnServietBase

The compiler generates some warnings, they are shown here:

Chapter 4

Migration from NetDynamics to Sun ONE AS 7

167

(3 Oulput Window: [Compiler]

I |E

MigtoolboxSanpleipp /MigtoolboxSanple /ViewCustonerPageVievBean, jave [27:1] warning: include|jeva. lang. Stri
public class ViewCustomwerPageViewBean extends ViewBeanBase

MigtoolbhoxSanpleipp/MigtoolboxSanple /ViewCustonerPageVievBean. jave [27:1] warning: forward|jawa. Lang. 5tri
public class ViewCustomerPageViewBean extends ViewBeanBase

MigtoolbhoxZanpleipp MigtoolboxSanple ViewCustonerPageVievBean, jave [564:1) warning: ACTION PREV in com.ip
this.handleWebdction (WebdctionHandler.ACTION PREV):

Higtoolbox3anpleipp /MigtoolboxSanple /IndexPageViewBean, java [27:1] warning: include|jawva. lang.3tring,com.
public clazs IndexPage¥iewBean extends ViewBeanBase

Higtoolbox3anpleipp /MigtoolboxSanple /IndexPageViewBean, java [27:1] warning: Eorward(jawva.lang.3tring,com.
public class IndexPageViewBean extends ViewBeanBase

19 warnings
Finighed.

| LIE T ; R ;)

17. These warnings should be fixed to complete the manual migration of the application.
The final web application may be deployed on any J2EE web container. In FFJ you
may export a WAR file and deploy on Sun ONE Application Server 7. You may also
run the web application directly in FFJ using the built-in TomCat server.

168 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide +« March 2003

18. Add a Server Module Group in FFJ. Right click on WEB-INF branch in Explorer,
select [New]->[JSP&Servlet]->[Web Module Group] and add a server group. Accept
the default on the wizard screen and simply chose 'Finish'. A new element under
WEB-INF in the Explorer appears called 'ServerConfiguration'. Add the current web
application by right clicking on [Server Configuration] branch in Explorer and select

[Add Web Module]. Provide a servlet context name on [Add Web Module] window.
For example "Demo".

[E] Filegystems

@ @ CprojectsWIGRATION _GUDEint-1_2_3-rc IworkioutpulbigtoolboxSampla Ap
LN | MigtoolboSampleApp

@ @] wESINF

& S Classes

eEd b

&3 src

€ @1 ServerCon

& © o Add web module |

@ lig) web Execute Fé

& 5 jeto-1_2_2devijor | Exseuts (Fores Reioad)

Deploy
Cut cil-x
Copy G
Delete [relete
Rename...
Tools 3
Properties

19. Execute in FORTE by right clicking on [Server Configuration] branch in Explorer and
select [Execute].

Chapter 4 Migration from NetDynamics to Sun ONE AS 7 169

170 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide +« March 2003

Chapter 5

Automating Migration

This chapter describes the use of available migration tools that can be used to automate the
migration process from both earlier versions of Sun™ ONE Application Server and from
other application server providers.

The following migration tools are available:
* Sun ONE Migration Tool for Application Servers

e Sun ONE Migration Toolbox (formerly iPlanet Migration Toolbox)

Sun ONE Migration Tool for Application Servers

The Sun ONE Migration Tool for Application Servers migrates J2EE[tm] applications from
other server platforms to Sun ONE Application Server (version 6.5 / 7).

For Sun ONE Application Server 6.5 the following source platforms are supported:
* WebSphere Application Server (WAS) 4.0

* WebLogic Application Server (WLS) 5.1

For Sun ONE Application Server 7 the following source platforms are supported:

* WebLogic Application Server (WLS) 5.1, 6.0, 6.1

* WebSphere Application Server (WAS) 4.0

* J2EE Reference Implementation Application Server (RI) 1.3

* Sun ONE Application Server 6.x

* Sun ONE Web Server 6.0

171

Sun ONE Migration Toolbox (formerly iPlanet Migration Toolbox)

The Migration Tool specifications and migration process change from time to time, so the
sample migration using the tool is not included in this guide. The migration process of a
sample application is discussed in the docuemntation for this tool. The latest version of the
Sun ONE Migration Tool for Application Servers can be downloaded from Sun Download
center. For the latest on Sun ONE Migration Tool please visit,
http://www.sun.com/migration/sunonetools.html

Sun ONE Migration Toolbox (formerly iPlanet
Migration Toolbox)

For information on Sun ONE Migration Toolbox, please refer to Appendix B.

Redeploying Migrated Applications

172

Most of the applications that are migrated automatically through the use of the available
migration tools will utilize the standard deployment tasks described in the Sun ONE
Application Server Administrator’s Guide.

In some cases, the automatic migration will not be able to migrate particular methods or
syntaxes from the source application. When this occurs in the case of the Sun ONE
Migration Tool for Application Servers, you are notified of the steps that will be needed to
complete the migration. Once you complete the post-migration manual steps, you will be
able to deploy the application in the standard manner described in the Sun ONE Application
Server Administrator’s Guide.

Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

http://www.sun.com/migration/sunonetools.html

Appendix A

iBank Application specification

The sample application we defined is called 'iBank' and simulates a basic online banking
service with the following functionality:

log on to the online banking service

view/edit personal details and branch details

summary view of accounts showing cleared balances

facility to drill down by account to view individual transaction history
money transfer service, allowing online transfer of funds between accounts

compound interest earnings projection over a number of years for a given principal and
annual yield rate.

The application is designed after the MVC (Model-View-Controller) model where:

EJBs are used to define the business and data model components of the application
Java Server Pages handle the presentation logic and represent the View.

Servlets play the role of Controllers and handle application logic, taking charge of
calling the business logic components and accessing business data via EJBs (the
Model), and dispatching processed data for display to Java Server Pages (the View).

For packaging and deployment of application components, standard J2EE methods are
used, and include definition of deployment descriptors, and packaging of application
components within archive files:

a WAR archive file for the Web application including HTML pages, images, Servlets,
JSPs and custom tag libraries, and ancillary server-side Java classes.

EJB-JAR archive files for the packaging of one or more EJBs, including deployment
descriptor, bean class and interfaces, stub and skeleton classes, and other helper classes
as required.

173

* an EAR archive file for the packaging of the enterprise application module that
includes the Web application module and the EJB modules used by the application.

The use of standard J2EE packaging methods will be useful in pointing out any differences
between Sun™ ONE Application Server 6.0/6.5 and Sun ONE Application Server 7, and
any issues arising thereof.

Tools used for the development of the
application

Sun ONE Studio Enterprise Edition for Java, Release 4.0

As Sun ONE Application Server 7 supports both the EJB 1.0 and EJB 1.1 standard, the
other EJBs in the iBank application (2 session EJBs and the BMP entity bean) were
developed with Sun ONE Studio for Java, and then packaged and deployed in Sun
ONE Application Server 7 using the supplied Application Assembly Tool. This
approach enabled us to test usage of a third-party IDE for developing 1.1 EJBs in Sun
ONE Application Server 7. Moreover, the approach also gave us the chance to
experiment with migrating 1.1 EJBs developed for Sun ONE Application Server 6.5 to
Sun ONE Application Server 7.

The Sun ONE Studio for Java development environment was also used to migrate EJB
components in the iBank application to Sun ONE Application Server (code adapted
from EJB 1.0 standard to EJB 1.1, O/R mapping for CMP entity beans, configuration of
deployment properties and packaging of the application's different modules).

Oracle 8i 8.1.6

The database was developed with Oracle 8i (version 8.1.6) and the JDBC driver used to
access the database was the thin Oracle driver (type 4).

Database schema

* The iBank database schema is derived from the following business rules:
* The iBank company has local Branches in major cities
* A Branch manages all customers within its regional area.

* A Customer has one or more accounts held at their regional branch.

174 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

* A customer Account is uniquely identified by the branch code and account no., and
also holds the no. of the customer to which it belongs. The current cleared balance
available is also stored with the account.

* Accounts are of a particular Account Type that is used to distinguish between several
kinds of accounts (checking account, savings account, etc.)

* Each Account Type stores a number of particulars that apply to all accounts of this type
(regardless of branch or customer) such as interest rate and allowed overdraft limit.

» Every time a customer receives or pays money into/from one of their accounts, the
transaction is recorded in a global transaction log, the Transaction History.

* The Transaction History stores details about individual transactions, such as the
relevant branch code and account no., the date the transaction was posted (recorded), a
code identifying the type of transaction and a complementary description of the
particular transaction, and the amount for the transaction.

» Transaction types allow different types of transactions to be distinguished, such as cash
deposit, credit card payment, fund transfer between accounts, and so on.

These business rules are illustrated in the entity-relationship diagram below:

Appendix A iBank Application specification 175

TMBank -- Database schema I

Cusomer Aecouni Account_Type

o cust_Mo = cust_Mo aceTipe_kd = "
cusi_Mo - - branch_Code acType_ld aceType_ld
bmnch_Code ace Mo acType_Desc
cust_Lkername Lust Mo accType reresiRake
cust_Pas swond aooType o
cust_Emal acc_Baance
cust_TEk -
cust_Glvenilames
cust_Surmame
cust_Address 1
cust_Address2
cust_Ciky
cust_Zp
cust_Stabs i
brarch_Code = brarch_Cods
brEnch_Code = branch_Code axe_Mo = acc_Mo
b
Branch TransaciionHisiory t:""_"';F‘“”u' . Transaciion_Type
ans
;::‘:l:‘_::r:: irans_ld - RS iransType_ld
branch_tdrees 1 3;‘:"‘::.'5 Cazs fransTyps_Besc
branch_sAddress2 l":m_:T}'pﬂ i
b".nm—E'":" rans Fnsu_:i.tn
branch_Zi Irans_Dese
branch_Stata brans_A mount
Figure A-1 Database Schema
The database model translates as the series of table definitions below, where primary key
columns are printed in bold type, while foreign key columns are shown in italics.
BRANCH
BRANCH_CODE CHAR(4) NOT NULL 4-digit code identifying the branch
BRANCH_NAME VARCHAR(40) NOT NULL Name of the branch

BRANCH_ADDRESSI VARCHAR(60) NOT NULL Branch postal address, street address, 1st line

BRANCH_ADDRESS2 VARCHAR(60) Branch postal address, street address, 2nd line

176 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

BRANCH_CITY VARCHAR(30) | NOT NULL | Branch postal address, City
BRANCH_ZIP VARCHAR(10) | NOT NULL | Branch postal address, Zip code
BRANCH_STATE CHAR(2) NOT NULL | Branch postal address, State abbreviation
CUSTOMER

CUST_NO INT NOT NULL iBank customer number (global)
BRANCH_CODE CHAR(4) NOT NULL References this customer's branch
CUST_USERNAME VARCHAR(16) NOT NULL Customer's login username
CUST_PASSWORD VARCHAR(10) NOT NULL Customer's login password

CUST_EMAIL VARCHAR(40) Customer's e-mail address

CUST_TITLE VARCHAR(3) NOT NULL Customer's courtesy title
CUST_GIVENNAMES VARCHAR(40) NOT NULL Customer's given names

CUST_SURNAME VARCHAR(40) NOT NULL Customer's family name

CUST_ADDRESS1 VARCHAR(60) NOT NULL Customer postal address, street address, 1st line
CUST_ADDRESS2 VARCHAR(60) Customer postal address, street address, 2nd line
CUST_CITY VARCHAR(30) NOT NULL Customer postal address, City

CUST_ZIP VARCHAR(10) NOT NULL Customer postal address, Zip code
CUST_STATE CHAR(2) NOT NULL Customer postal address, State abbreviation
ACCOUNT_TYPE

ACCTYPE_ID CHAR(3) NOT NULL 3-letter account type code

ACCTYPE_DESC VARCHAR(30) NOT NULL Account type description
ACCTYPE_INTERESTR | DECIMAL(4,2) DEFAULT Annual interest rate

ATE 0.0

ACCOUNT

BRANCH_CODE CHAR(4) NOT NULL branch code (primary-key part 1)

Appendix A iBank Application specification

177

ACC_NO CHAR(8) NOT NULL account no. (primary-key part 2)
CUST_NO INT NOT NULL Customer to whom accounts belongs
ACCTYPE_ID CHARQ3) NOT NULL Account type, references ACCOUNT_TYPE
ACC_BALANCE DECIMAL(10,2) DEFAULT Cleared balance available

0.0
TRANSACTION_TYPE
TRANSTYPE_ID CHAR(4) NOT NULL A 4-letter transaction type code
TRANSTYPE_DESC VARCHAR(40) NOT NULL Human-readable description of code
TRANSACTION_HISTORY
TRANS_ID LONGINT NOT NULL Global transaction serial no
BRANCH_CODE CHAR(4) NOT NULL key referencing ACCOUNT part 1
ACC_NO CHAR(8) NOT NULL key referencing ACCOUNT part 2
TRANSTYPE_ID CHAR(4) NOT NULL References TRANSACTION_TYPE
TRANS_POSTDATE TIMESTAMP NOT NULL Date & time transaction was posted
TRANS_DESC VARCHAR(40) Additional details for the transaction
TRANS_AMOUNT DECIMAL(10,2) NOT NULL Money amount for this transaction

Application navigation and logic

High-level view of application navigation

178 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide + March 2003

Detailed application logic

* Login Process

login i une, with irk
bk o login page

e View / edit details

inde
ndexjsp Login Serviet
Laogin page. Attempts o authenticate
Form with username & the user with the
pee=word fiekds and BarnkTeller EIB
submit buttan
Failed
avhericaion Sucoe=il
avhenicaton
LoginEmarjsp T T
Prirts indicatio nof Main Menu displayirg

al aailable opliors

Appendix A

BankTellar

o authenticate the user
by finding a Customer

ard password

aut Hoheckl) -- atempts

with maching LEemamea

Cal indermeihod:
lndE?Cud Usamarred|

Customer

Cretamer BWMP enfity
bean

iBank Application specification

179

UserMenu jsp

Kain Mem displaying
all availab e optiom

defals «

« Wiew/Ediimy

—

|r" CustamerP of laSa v lat

Gied branch defals Branch

Retriewve user & branczh
datails

Branch CMP
enily bean

details

T Re=iun 1o main menu

Cu stomerP rafile.js p

Customer

CusiomerBMP

* Formdisplaying:

- editable wser details

- nan-adiable branch
details.

* Subm it buiion 1o update
uszer details.

Try again

DetailsUpdataFailed.jsp

180

Prims indication of reason
for failure, with links back 1o
1he delaik updale form and
main menu page

Update CustamerDetailsServiet Update enlily bean
T cusiomer
e m il
d;_ﬂs ’ Checks user entry and altempd details
1o update CustomerEJB with
new details
Succe==i|
updaie
Invalid user
eniry ar ermar UpdatedDetails.jsp

Prim= indication of

successiul update of delaik
and link back 1o me i page

* Account summary and Transaction history

- = Summary wiew ol my
e e Fcounts « 1Accour Sum HankTe lle r
) .) Showlcoo uniSummary Serv et
hain Menu displaying getAcocoun U rmmanyt) :
al avalabl=opdion=s R=trizwe izl ol customer accounts
Builds alisi o accouns
finder method 1hai belong 40 e
cumerd cusiomer
.
A
Reurmn 1o main menu Call finder metiod:
indOrdere dAccoumsFoiC ustormen
AccouniSummary. jsp - ShowTransactianHistary jsp
Click on Accaun
: m £
Table dizplaying:- accau Uses a cusiorn1ag ibrary o Accourd CMP
- it a4 ink prif 2 table showing individua ertity beart
diiling deown fransaction Famacions o he s=lecked
history accour
- accouni fype
= bzl TMET ransactionHistary \
JEP1ag library

¢ Fund Transfer

Aocezses the ThBank daiabaze hougha JIBC

data source o Eintin tabuar fom e dedals for
al ¥anzacions kora pariala branch mdey

accouning.

Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

- marderfuds
b S My 30c oUnks =

Lize [MEnUL s p

MaEn Kenu
displaying all
avalable cpims

I

TransferFundce 5e wiet

{ Faitewve lis ol cusiomer acooun £

f Rshurn b rmain meanu

Tranafer Funds |sp

-

CreckT ransterse viet

gar.l': counESurmmany T

trarefer Fundss)|

Trangker sslacion rmwiih:-

Chedk fransier satlings and

BankTelier

gebi cooLrt SLmmar) :
Bulldslist of ac oounts
detalls for the cumart
CLEmar

ransfor Funds i

attermptsto ransfer
fund shebween byo
accounts

CalfAindermathed

r InterestCalculator

projectEarming=(:
@lculate samings on a
jear-by-year baslstor a
given start principal and
e parod

AndOrdereds coounts Fas ustomen)

ShowP roject ion Res ults s p

Prinl projecion resutsin
1abular o

- ligt Tochocss fra’ aocoln 1 pocesdil O
- lig fochooes 9d accouni
- fddio enfar ancuni
SLCCeTT
Input erroror
proceing
Transfer CheckFalled jsp faure TrarefersLocess Jap
PriM an ndicaton as 10wy Primt acar maion message
und rareter sging: are showing e detdls lor he
incomee!, or why The ranzaclion haiwas
oparaion 1alled successiuly cam ed ol
* Interest Calculation
= per fomn capital growth
pro@dions -
UssrMenujsp | o Ineme stCake ap
LAl Lz Form disp aying ek s 1o emer:
displaying 4l - starl prin dpal
DA - Interest rale
- year pal ad
and submil bution projectEamingsi
Ead IntCaleinput,|sp r~
P 1o ectEarnings Seviet
rvalid imput -
Print an indication as o paramaters Cheek Inpu1 parameters, and i Suecess
i L) s i corect, perlomn projectian and i
refriewve resu s
. A
Appendix A

iBank Application specification

181

Application Components

* Data Components

Each table in the database schema is encapsulated as an entity bean:

Entity Bean Database Table

Account ACCOUNT table

AccountType ACCOUNT_TYPE table

Branch BRANCH table

Customer CUSTOMER table

Transaction TRANSACTION_HISTORY table
TransactionType TRANSACTION_TYPE table

All entity beans use container-managed persistence (CMP), except Customer, which uses
bean-managed persistence (BMP).

Currently, the application only makes use of the Account, AccountType, Branch, and
Customer beans.

* Business components
Business components of the application are encapsulated by session beans-

The BankTeller bean is a stateful session bean that encapsulates all interaction between
the customer and the system. BankTeller is notably in charge of:

¢ authenticating a customer through the aut hCheck() method

» giving the list of accounts for the customer through the
get Account Summar y() method

» transferring funds between accounts on behalf of the customer through the
transf er Funds() method.

The InterestCalculator bean is a stateless session bean that encapsulates financial
calculations. It is responsible for providing the compound interest projection calculations,
through the pr oj ect Ear ni ngs() method.

* Application logic components (servlets)

182 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Component name Purpose

LoginServlet Authenticates the user with the BankTeller session bean (authCheck()
method), creates the HTTP session and saves information pertaining
to the user in the session.Upon successful authentication, forwards
request to the main menu page (UserMenu.jsp)

CustomerProfileServlet | Retrieves customer and branch details from the Customer and Branch
entity beans and forwards request to the view/edit details page
(CustomerProfile.jsp)

UpdateCustomerDetails | Attempts to effect customer details changes amended in

Servlet CustomerProfile.jsp by updating the Customer entity bean after
checking validity of changes.Redirects to UpdatedDetails.jsp if
success, or to DetailsUpdateFailed.jsp in case of incorrect input.

ShowAccountSummary | Retrieves the list of customer accounts from the BankTeller session
Servlet bean (getAccountSummary() method) and forwards request to
AccountSummary.jsp for display

TransferFundsServlet Retrieves the list of customer accounts from the BankTeller session
bean (getAccountSummary() method) and forwards request to
TransferFunds.jsp allowing the user to set up the transfer operation.

CheckTransferServlet Checks the validity of source and destination accounts selected by the
user for transfer and the amount entered. Calls the transferFunds()
method of the BankTeller session bean to perform the transfer
operation. Redirects the user to CheckTransferFailed.jsp in case of
input error or processing error, or to TransferSuccess.jsp if the
operation was successfully carried out

ProjectEarningsServlet Retrieves the interest calculation parameters defined by the user in
InterestCalc.jsp and calls the projectEarnings() method of the
InterestCalculator stateless session bean to perform the calculation,
and forwards results to the ShowProjectionResults.jsp page for
display. In case of invalid input, redirects to BadIntCalcInput.jsp

* Presentation logic components (JSP Pages)

Component name Purpose

index.jsp Index page to the application that also serves as the login page.

Appendix A iBank Application specification 183

LoginError.jsp

Login error page displayed in case of invalid user credentials
supplied. Prints an indication as to why login was unsuccessful.

Header.jsp

Page header that is dynamically included in every HTML page of the
application

CheckSession.jsp

This page is statically included in every page in the application and
serves to verify whether the user is logged in (i.e. has a valid HTTP
session). If no valid session is active, the user is redirected to the
NotLoggedIn.jsp page

NotLoggedIn.jsp

Page that the user gets redirected to when they try to access an
application page without having gone through the login process first.

UserMenu.jsp

Main application menu page that the user gets redirected to after
successfully logging in. This page provides links to all available
actions.

CustomerProfile.jsp

Page displaying editable customer details and static branch details.
This page allows the customer to amend their correspondence address

UpdatedDetails.jsp

Page where the user gets redirected to after successfully updating
their details.

DetailsUpdateFailed.jsp

Page where the user gets redirected if an input error prevents their
details to be updated.

AccountSummaryPage.j
sp

This page displays the list of accounts belonging to the customer in
tabular form listing the account no, account type and current balance.
Clicking on an account no. in the table causes the application to
present a detailed transaction history for the selected account

ShowTransactionHistor
y.Jsp

This page prints the detailed transaction history for a particular
account no. The transaction history is printed using a custom tag
library.

TransferFunds.jsp

This page allows the user to set up a transfer from one account to
another for a specific amount of money.

TransferCheckFailed.jsp

When the user chooses incorrect settings for fund transfer, they get
redirected to this page.

TransferSuccess.jsp When the fund transfer set-up by the user can successfully be carried
out, this page will be displayed, showing a confirmation message.
InterestCalc.jsp This page allows the user to enter parameters for a compound interest

calculation.

Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide «

March 2003

BadIntCalcInput.jsp If the parameters for compound interest calculation are incorrect, the

user gets redirected to this page.

ShowProjectionResults.j | When an interest calculation is successfully carried out, the user is

sp redirected to this page that displays the projection results in tabular
form.

Logout.jsp Exit page of the application. This page removes the stateful session
bean associated with the user and invalidates the HTTP session.

Error.jsp In case of unexpected application error, the user will be redirected to

this page that will print details about the exception that occurred.

Fitness of design choices with regard to potential
migration issues

While many of application design choices made are certainly debatable especially in a
"real-world" context, care was taken to ensure that these choices enabled the sample
application to encompass as many potential issues as possible as one would face in the
process of migrating a typical J2EE application.

This section will go through the potential issues that one can face when migrating a J2EE
application, and the corresponding component of iBank that was included to check for this
issue during the migration process:-

With respect to the selected migration areas to address, the white paper specifically looks at
the following technologies:

Servlets

iBank includes a number of servlets, that enable us to detect potential issues with:
The use of generic functionality of the Servlet API.

Storage/retrieval of attributes in the HTTP session and HTTP request.

Retrieval of servlet context initialisation parameters.

Page redirection.

Java Server Pages

With respect to the JSP specification, the following aspects have been addressed:

¢ Use of JSP declarations, scriptlets, expressions, and comments.

Appendix A iBank Application specification 185

186

¢ Static includes (<%@ i ncl ude file=".."" %): notably tested with the
inclusion of the CheckSessi on. j sp file in every page).

¢ Dynamic includes (<j sp: i ncl ude page=.../>): this is catered for by the
dynamic inclusion of Header . j sp in every page.

* Use of custom tag libraries: a custom tag library is used in
ShowTr ansacti onHi story. j sp.

» Error pages for JSP exception handling: the Err or . j sp page is the
application error redirection page.

JDBC

The iBank application accesses a database via a connection pool and data source, both
programmatically (BMP entity bean, BankTeller session bean, custom tag library) and
declaratively (with the CMP entity beans).

Enterprise Java Beans

iBank uses a variety of Enterprise Java Beans:
Entity beans:
Bean-managed persistance ("Customer" bean): that allows us to test:
e JNDI lookup of initial context
¢ pooled data source access via JDBC
e definition of a BMP custom finder ("f i ndByCust User name() ")
Container-managed persistence ("Account" and "Branch" beans): that allow us to test:

e Object/Relational mapping with the development tool and within the
deployment descriptor

e Use of composite primary keys ("Account")

e Definition of custom CMP finders (with the "Account" bean, and its
"f i ndOr der edAccount sFor Cust oner () " method). This is the occasion to
look at differences in declaring the query logic in the deployment descriptor,
and also to have a complex example returning a collection of objects.

Session beans:
Stateless session beans: InterestCalculator allows us to test:
* using and deploying a stateless session bean

« calling a business method for calculations

Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Stateful session beans: BankTeller allows us to test:

looking up various interfaces using JNDI and initial contexts
using JDBC to perform database queries

using various transactional attributes on bean methods

using container-demarcated transactions

maintaining conversational state between calls

business methods acting as front-ends to entity beans (e.g., the
"get Account Sunmar y() " method)

Application Packaging
iBank is packaged following J2EE standard procedures, using;:-

a Web application archive file for the Web application module, and EJB-JAR

archives for EJBs.

an Enterprise application archive file (EAR file) for the final packaging of the

Web application and EJB modules.

Appendix A iBank Application specification

187

188 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Appendix B

Sun ONE Migration Toolbox

Sun ONE Migration Toolbox (S1MT) is used primarily to migrate applications built on
NetDynamics or Kiva/NAS platforms to Sun™ ONE Application Server or any J2EE
compatible containers. The main interface for the Sun ONE Migration Toolbox is what we
call the Toolbox application, or the Toolbox GUI. This application can be invoked by
running the %M GTBX_HOVE% bi n/ t ool box. bat script (provided the set env. bat file
has been customized appropriately, see README. t xt for more information).

Supported Platforms

Microsoft Windows NT 4.0 and Windows 2000 currently support SIMT. Although it is
expected that the application can be run on other Win32 platforms (Windows 95/98/Me),
these platforms have not been tested and may require additional configuration beyond that
specified in the SIMT installation documentation.

The Toolbox require atleast JavaSoft JDK 1.2.2 (JDK 1.3.1 has been tested) to run
successfully.

Migration

The toolbox is set of tools which perform different aspects of migration. SIMT 1.2.3
support migration from NetDynamics and Kiva/NAS platforms. Each platform has its own
Toolbox Builder which when executed will create a set of tools used to migrate a
application. Kiva Migration Toolbox Builder creates tools for Kiva/NAS application
migration and similarly NetDynamics Migration Toolbox Builder is used for migrating
NetDynamics applications. The following figure shows you how to invoke a toolbox
builder.

189

Migration

BiPlanet Migration Toolbox] -|0O| xI

Fie Tool [Addn| Help

S0 &) Migrstien F| & NetDynamics Migration Toobax Builder
- JATO ¥ -
. 5’ Kiva Migration Toolbox Bulder
IS, oolb |:| Mi . = [

& Mgl e Kiva Migration Tookox Builder Add-in |

? G Teo Reload Addin List

2 Corgole Dulpul

Toolbox Builder

You will use the same basic set of tools for each migration you perform, but each tool will
need to be customized to that particular migration. Creating each of these tools can be a
tedious task and prone to inconsistencies in naming conventions and layout of directory
structures. Therefore, we've created a toolbox add-in (a pre-configured, ready-to-run tool)
to simplify the process of creating these tools and setting their properties appropriately.
Many of the tools have similar or even the same properties where consistency is important
to the success of your migration.

Kiva Migration Toolbox Builder

The following are the steps for creating a new toolbox using the Kiva Migration Toolbox
Builder add-in:

1. Ifyou don't have the Toolbox application currently running, start the Toolbox and
select the menu option Add- I n| M gration| Kiva M gration Tool box
Bui | der .

190 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Migration

After a few moments, you will be prompted by a series of dialog boxes that will request
some information. This information will be used by the Toolbox Builder to fill property
values for the tools it generates. Some of the properties that you are not prompted for
will contain defaults that may or may not need to be modified after the tools are created
by the Toolbox Builder.

First, you are prompted for the package which the new JATO Application will be
placed in. The best way to understand what this means is to run the OnlineBankSample
migration and learn how a new package is created under . / war / VEB- | NF/ classes to
contain the JATO material. Although all the existing Java code is left in the same
package, there is a need to create some new Java code for the JATO Application
infrastructure. The new package is for this code. Please note that ALL Java source from
the original application may remain in the same package. It is only the new Java source
for the JATO resources which need a new package defined. No matter what package
you choose (e.g. com.iplanet.migration.samples.onlinebank), the last name in the
package will be used as the default directory name for the migration results. You can
override this directory location in the next panel; we recommend taking all the default
values.

Next, you are provided the choice of using the Automatic Application Extract Archive
Wizard. This wizard will help create tools for creating the application extract archive.
If you choose Cancel then you are simply asked for the application extract
archive (ZI P/ JAR) path name. This is the name of the zip or JAR file which
contains all the source for the application. In this case the archive must have been
created manually beforehand and the wizard continues with encoding specifications.

If you choose OK for the Automatic Application Extract Archive Wizard then you are
asked to enter the root directory to the application source (this is normally the
./ nas/ APPS directory).

Next, you are asked to provide a list of top level packages in the application source
directory pertinent to this migration. If all the source in the directory is included then
you can skip specifying a value.

Next, you are asked to provide a list of file extensions which will be included in the
Application Extract Archive.

If you choose OK for the Automatic Application Extract Archive Wizard then you will
see a Task tool and Copy Directory tool and Java tool added to the toolbox.

There are two (2) panels which ask for the character encodings for Java source and
query files. There are many customers who have Java source in an alternate character
encoding (not ASCII). For instance, it is common for Asian developers/customers to
use double-byte character source files. In a change from the SIMT BETA, only one (1)
encoding value is allowed for file type. It is assumed that there is a common encoding
standard within an application. If there are varying encodings then the application

Appendix B Sun ONE Migration Toolbox 191

Migration

192

10.
1.

12

13.

descriptor XML file may be edited accordingly after Extraction. Please note that SIMT
1.2.3 attempts to automatically discover character encoding of HTML templates by
inspecting the <met a> tags in the source files. However, the migrator should carefully
review the application descriptor XML file for encoding dispositions to ensure proper
translation.

At this point the Kiva Extraction and Translation Tools are added to the toolbox.

Lastly, you are provided the choice of using the Automatic Static Document
Translation Wizard. This wizard will help create tools for assembling the static
document content and translating appropriate documents fixing the URLs for
AppLogic invocation and copying the documents to the result WAR directory
structure.

If you choose CANCEL then the builder exits. If you choose OK, you are asked to
enter the location of the document root for the application and another Task tool, JAR
tool, Document Translation tool and Copy Directory tool are added to the toolbox.

Save the toolbox to disk by selecting the menu option Fi |] Save and give it a name.

Tools generated by Kiva Toolbox Builder are shown here:

Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Tirlanet Migration Toolbox - [C:\projects’ MIGRAT

Fie Too Addin Heip

= S o
Ig. ook Conbents N

© (i Tookox - [C\projects\MIGRATION_GUIDE\imt-1_2_
9 B Task Toal
(3 CreatedppEstiactischve-oninebark
3 FishaticDocs-oninebank
® [E]) KA dpplication Extraction Tool
(3 Estract-ariinebark
-] ﬁ EINA Appheation Transistion Toeol
(3 Tranzlate-onlinebank
@ g Copy Directom Tool
) CopySrcéll-onlirebanlk
(3 CopyDoce2w ar-onlinebank
8 3 Jar Tool
0 JaiE sract-onlinebank
0 JaDocs-onlinebank
@ fil KA Apglcation Document Teanslation Tool
0 TranslsteDocs-onlinebank

e Conzole Output

Mo selechon

Mo selettion:

=10/ %]

Invoking the Tools

Migration

You are now ready to migrate your application by invoking the generated tools; extraction
first and then translation. Before invoking each tool, inspect its properties first and make

adjustments as needed. In general, if you've provided desirable initial values to the Toolbox
Builder, none of the properties will need to be adjusted.

NOTE The Toolbox Builder created one Task Tool in your toolbox which you can

use to invoke all of the other generated tools at once. However, we

recommend invoking each tool individually until you have migrated one or

two applications and become familiar with each tool's output.

Appendix B

Sun ONE Migration Toolbox 193

Migration

Tools Created by Kiva Migration Toolbox Builder

1.

KIVA Application Extraction Tool

This tool reads a zip or JAR file called the application extract archive containing Kiva
application files and creates an XML document called an application description file.
The application description file contains high level information describing the
application including disposition of each file found in the application extract archive.

This tool assumes, as input, the pre-existence of a zip file containing all of the original
NAS/KIVA application source (i.e. templates, applogic java files, other application
specific resources). The zip file need not contain the actual original class files since the
migration effort will be altering the source files.

Creation of the application description file is the first step in the automated migration
process. Although this file may be useful for other purposes, its main use is as input to
the application translation process using the Kiva Application Translation Tool
(com.iplanet.moko.nas.tools.KivaTranslateTool).

KIVA Application Translation Tool

This tool reads both a zip or JAR file called the application extract archive containing
Kiva application files and also an XML document called an application description file.
This tool takes as input an application description file and uses it to generate a set of
equivalent J2EE components and files. The application description file (an XML
document) is produced as the result of using the Kiva Extraction Tool
(com.iplanet.moko.nas.tools.KivaExtractTool) to extract information from a set of
source Kiva projects. Use of the translation tool is the second step in performing the
automated migration of a Kiva application.

Copy Directory Tool
Copies the contents of a source directory to a target directory
JAR Tool

JARs all files in the source directory and all subdirectories

NetDynamics Migration Toolbox Builder

The following are the steps for creating a new toolbox using the NetDynamics Migration
Toolbox Builder add-in:

1.

If you don't have the Toolbox application currently running, start the Toolbox and
choose the "Migrate an application” option in the Welcome dialog and press OK. With
the Toolbox running, be sure that you have an empty (New) toolbox. Select the menu
option Add- | n| M grati on| Net Dynani cs M grati on Tool box Buil der.

194 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Migration

After a few moments, you will be prompted by a series of dialog boxes that will request
some information. This information will be used by the Toolbox Builder to fill property
values for the tools it generates. Some of the properties that you are not prompted for
will contain defaults that may or may not need to be modified after the tools are created
by the Toolbox Builder.

First prompt: Enter the | ogi cal application nane. This is the name of the
entire application, which may include more than one NetDynamics project. If the
application is only one project, then it is not recommended to use the project name as
the application name. For example, if your project is called f 0o, then call your
application f ooapp rather than just plain f 0o. This will prevent confusion with other
similar properties and avoid difficulties later during deployment.

After you've entered an application name, the Toolbox Builder will prompt you for
more information, providing default values when possible. We recommend taking all
the default values.

Appendix B Sun ONE Migration Toolbox 195

Migration

5. Once you have finished entering information, The Toolbox Builder will create several
tools in your current toolbox. Save the toolbox to disk by selecting the menu option
Fi | e| Save and give it a name. Using the application name (the value from the first
pr onpt 6f ooapp in our example here) as the name of the toolbox is recommended.

Tools generated by NetDynamics Toolbox Builder are shown here:

© G Tookow - [ChproectAMIGRATION_GUIDE Simt-1_2_3-rc34MighaolbosS ample. tookios]

@ 5 Task Tod
& Migiste MiglookoxS ample Apphcalion
O Create Migtoolbox’ ample WiaR File
@ [F] NetDynamics Extrachon Tool
9 Extract-MigloolboxS ample
© i Apphcation Translstion Tool
@ Translate-tigtookoxS ample
® 45 Java Compder Tool
¢ Compile-MigioolbonsS ampls
@ g Copy Directory Tool
& CopyDeplDesc-MighoolboxS ample
@ Copw atolar-MigtookoxS ample
& Copw ataTLD-MiglookbaxS ample
@ CopwSP-MigiooboxS amgple
(3 CopyClasses-tigtoolboxSample
3 CopySource-Migtookoxs ample
@ B4 Jar Tool
& JaiwaFile-Miglookboxs ample
@ d Feqular Expiession Mapping Tool
(2 MapSpide2) 4T 0-Mighoolbox S ample
2 Conzale Output

Ev'ﬂrPl-::ltt Migration Toolbox - [C:hprojects\ MIGRATION GUIDE imt-1_2 _ﬂlglﬂ
File Tool Adddn Help
Qe a8 7214
q
@& Tookos Contents ol ne sel..

| Tocis losded succestuly

196 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide +« March 2003

Migration

Invoking the Tools

You are now ready to migrate your NetDynamics application by invoking several of the
generated tools. Before invoking each tool, inspect its properties first and make adjustments
as needed. In general, if you've provided desirable initial values to the Toolbox Builder,
none of the properties will need to be adjusted. (NOTE: The Toolbox Builder created one
or more Task Tools in your toolbox which you can use to invoke several of the other
generated tools at once. However, we recommend invoking each tool individually until you
have migrated one or two applications and become familiar with each tool's output.)

Tools Created by Kiva Migration Toolbox Builder

1.

NetDynamics Extraction Tool

This tool gathers as much information as possible from the source NetDynamics
project or projects and then writes this information to an XML file called the
application description file. This application description will serve as the input to the
Application Translation Tool.

Before invoking this tool, check the following properties for accuracy:

Proj ect sDi r ect ory is the path to the NetDynamics projects directory used
during extraction. The default value is %8 GTBX_HOVE% wor k/ NDPr oj ect s. We
recommend placing all the NetDynamics projects you intend to migrate in this
directory.

All other properties should be fine with their current values unless you made an error
during the prompting stages of the Toolbox Builder add-in. The other properties will be
discussed in detail later in this document.

Save the toolbox if you made any changes and invoke the tool. The XML output file
(the application description) will be written to the location specified by the
Qut put Di r ect ory property.

You may open and browse the application description file if you wish to understand the
details of the project extraction. Using an XML browser like XML Spy is
recommended. We highly discourage editing this file as mistakes introduced here may
significantly affect the translation phase, causing it to fail completely or generate faulty
output

Appendix B Sun ONE Migration Toolbox 197

Migration

Application Translation Tool

This tool uses the application description file generated by the NetDynamics Extraction
Tool to output a set of J2EE-compliant components that accurately reflect the structure
of the behavior of the original NetDynamics application.

All other properties should be fine with the current values unless you made an error
during the prompting stages of the Toolbox Builder add-in. The other properties will be
discussed in detail later in this document.

Save the toolbox if you made any changes and invoke the tool. The new J2EE
components will be written to the location specified by the Qut put Di r ect ory

property.

Additionally, this tool places a migration log file (M gr at i onLog. csv) in the
translation output directory. This file indicates various items that were identified during
translation as requiring additional or special migration attention. Our reason for
generating this file is to alert migration developers to those items that were not
automatically handled by the translation, and to record information that was otherwise
not carried forward during translation. This file generally serves as a minimal task list
for the manual portion of the migration (there will likely be other tasks as well not
related directly to the translation).

198 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Migration

Regular Expression Mapping Tool

This tool, also known as the Regexp Tool, uses a set of XML-specified match and
replace specifications to effect changes within files (note, this tool uses the Perl 5
regular expression syntax). The Toolbox Builder generates a Regexp Tool that is
preconfigured to replace common Spider API Java constructs with equivalent JATO
constructs in your migrated Java source files.

Before invoking this tool, check the following properties for accuracy:

Sour ceDi r ect ory is the location of your migrated application code. Please make
sure that this directory does not also contain the JATO source files, as the processing of
those files may cause unexpected problems.All other properties should be fine with the
current values unless you made an error during the prompting stages of the Toolbox
Builder add-in.

Save the toolbox if you made any changes and invoke the tool. The migrated source
files will be processed and any changes that occur will be written to the console. Before
any file is modified, the tool will backup the original file in its original location with a
. ori g file extension.

IMPORTANT: At this point, you have completed the automated migration phase, and
must now port the Java code in the migrated application to use the J2EE/JATO API
instead of the NetDynamics Spider API. The remaining tools described below will be
useful for packaging and deploying your application once manual migration has been
completed, with one exception: the migrated application should compile successfully at
this point and minimally run if deployed (pages can be invoked); however, the
application may not be functional if you've used any of the NetDynamics Spider API.
Therefore, unless you want to simply make a sanity check or check the migration of
non-Spider dependent features, we recommend porting at least part of the migrated
application before continuing.

Java Compiler Tool

This tool is a convenient way to compile the JATO Foundation Classes and the new
J2EE application components with one click. This tool simply invokes the j avac
command line tool provided with the JDK.

There should be no properties that need adjusting in this tool unless changes were made
to the output directory properties of the previous tools. All of the properties will be
discussed in detail later in this document.

Save the toolbox if you made any changes and invoke the tool. All of the java class
source files (.java) under the directory specified by the Sour ceDi r ect ory will be
compiled.

Appendix B Sun ONE Migration Toolbox 199

Migration

Copy Directory Tools (Create WAR File Directory Structure)

This tool copies directories/files from one location to another with a file filter
capability. The goal of the generated tools of this type is to create a "WAR file ready”
directory structure. Running the first four Copy Directory Tools will copy the
deployment descriptor, tag lib definition, JSPs, and Java classes into the appropriate
directories so that the Jar Tool can be used to create a WAR file to be deployed in your
J2EE container.

The instance of the Copy Directory Tool labeled Copy Sour ce is optional. The source
files are not needed in your production WAR file, but you may find it helpful to keep a
copy of the source files with your deployed application to ensure proper version control
(these may also come in handy if a quick fix is necessary at the deployment site). These
source files will not be visible to any application clients, and will therefore remain safe
on your deployment server.

All of the properties should be fine with the current values unless you made changes to
the output directory properties of the previous tools. All of the properties will be
discussed in detail later in this document.

Save the toolbox if you made any changes and invoke the first four copy directory tools
(CopyDepl Desc, CopyTLD, CopyJSP, Copyd asses). Invoke the fifth copy
directory tool (CopySour ce) if this makes sense for your environment. Once these
tools have been invoked, the appropriatly filtered files will be written to the directory
specified by each of the tools' respective Qut put Di r ect or y property. The application
is now ready to be "WAR'ed".

Jar Tool

This tool uses the JAR command line tool from the JDK to create a WAR file using the
directory structure created by the previous copy directory tools. This WAR file will be
the only file you will need to deploy your application to the J2EE container. (The iAS
deployment procedure is discussed in the JATO Deployment Guide). Each container
generally has its own deployment procedure; please follow the instructions for your
container.

All of the properties should be fine with the current values unless you made changes to
the output directory properties of the previous tools. All of the properties will be
discussed in detail later in this document.

Save the toolbox if you made any changes and invoke the tool. The WAR file will be
created and written to the location specified by the Qut put Di r ect or y property. The
application is ready to be deployed.

200 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Tools and Toolboxes

Tools and Toolboxes

Toolboxes are persisted to disk in the format of a toolbox file (. t ool box). Individual tools
of the toolbox are contained in the toolbox file in a serialized object format. These
individual tools can exist outside of the toolbox file as a tools file (. t ool s) in a similar
format. There are several menu commands that allow you to create, copy, delete, and merge
two toolboxes together, as well as import and export individual or groups of tools.

Creating New Tools

To create a new instance of any tool, use the Tool | Newmenu option and select the type of
tool you would like to create (Extraction, Translation, Compilation, etc.). You will notice
the new tool will be added to currently opened toolbox in the toolbox tree. It will be
grouped with other tools of its type and will have a default name of the form

<Tool Type><##>, like CopyDi r ect or yTool 7. You can triple-click the tool name or
press F2 to rename it as you wish. Spaces are allowed in tool names.

Cloning Tools

To create a copy of a current tool, use the Tool | G one menu option and a new tool of the
same type will be created with the same properties as the original. Rename and adjust
properties as needed.

Deleting Tools

To delete a tool, use the Tool | Del et e menu option and the tool will be removed from the
toolbox. You will be prompted verify your delete tool command, but there is no undo
action. You may select several tools to delete at once by holding down the Ct r | or Shi f t
keys while selecting additional tools.

Importing & Exporting Tools

You may have many different toolboxes (. t ool box files) that are focused on different
NetDynamics application migrations. With the import and export commands, you can
export a tool to a . t ool s file and then import it into another toolbox (. t ool box file).

Appendix B Sun ONE Migration Toolbox 201

Troubleshooting

To export a tool, open the toolbox with the tool you wish to export, select the tool or tools in
the toolbox tree, then use the Fi | e|] Export menu option and name the . t ool s file to
export the tool. The tool will not be removed from the current toolbox.

To import the tool into another toolbox, open the toolbox you wish to be imported, then use
the Fi | e| | npor t menu option, browse to the location of the . t ool s file you wish to
import, then save the toolbox.

Toolbox Merging

If you have two separate toolboxes and would like to merge them into single toolbox you
use the merge toolbox feature of the Open Tool box menu option. To merge two toolboxes
into one toolbox, open one of the toolboxes, and while it is open, open the other toolbox.
You will be prompted to replace the existing toolbox, merge the new toolbox with the
already-open toolbox, or cancel the operation.

Troubleshooting

IMPORTANT: Before continuing, make sure you have the latest SIMT patches available
from the Sun ONE Migration Website. We will be releasing patches regularly as we
discover and diagnose difficulties. We will release most of these patches to address
problems found by users of the SIMT. Please submit any problems you encounter to the
SIMT team so that we can diagnose the problem and issue a patch if necessary.

Toolbox Installation & Configuration

If you have difficulty running the Toolbox application, consult the following:

* Ensure that all the 90 GTBX_HOME% bi n/ set env. bat script is customized for your
environment. Because of limitations of the JDK, you may not install the SIMT in a
path containing directory names with spaces. For example, do not unpack the archive in
your C: \ Program Fi | es directory. We recommend unpacking the archive either in
c:\iPlanet or c:\.

* There are known problems using older versions of WinZip to unpack archives created
with the JDK's zip/jar tools. Doing so will cause files to be truncated during unpacking,
resulting in file lengths of zero bytes. Therefore, please ensure that you are using the
latest version of WinZip when unpacking the SIMT archive (http://www.winzip.com).

202 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

http://www.winzip.com).

Troubleshooting

To avoid class version issues, we strongly recommend that you remove all JAR files
from your JDK's extension directory (Y AVA_HOVEY j r e/ | i b/ ext) while running
the Toolbox application. We have included all the classes necessary for running the

Toolbox with the distribution. Please note that simply renaming the JAR files in the

extension directory is not sufficent; you must move them to a different location.

Because many development machines have several installed copies and/or versions of
the JDK, be sure you know which copy of the JDK you are using. Set the JAVA HOVE
environment variable in the ¥ GTBX_HOVE% bi n/ set env. bat file to ensure you
are running the preferred copy with the Toolbox application.

Extraction

For the most part, as we've mentioned above, extraction of an application description is the
most likely step in which you will encounter errors or difficulties. Also as we've already
mentioned, this is frequently a normal part of the migration process and shouldn't
discourage you if you are following the steps in previous sections. If you are having
difficulties not covered above, consult the following tips.

General Issues

During extraction, ensure that all external classes (non-NetDynamics project classes)
are present on the Toolbox's classpath. The easiest way to make these classes available
is to place JAR files or unpackaged classes in the %8V GTBX_HOVE% | i b/ ext
directory. Classes and JARs in this directory will automatically be added to the
Toolbox classpath upon startup. If this solution is unsatisfactory, you may either add
the classes to your classpath or edit the 9 GTBX_HOVEY bi n/ set cl asspat h. bat
file.

Note the summary at the end of the output from the extraction and translation tools to
determine if any project objects failed the automated process.

Because of a limitation inherent in using the embedded NetDynamics runtime,
exceptions thrown during extraction may not impact the reported tool status, and
therefore the tool may report success when in fact the extraction failed. Therefore, we
caution users to note and investigate all exceptions thrown during extraction. In some
cases, we have seen seemingly innocuous exceptions cause side effects which
significantly impacted the fidelity of extracted project information. For example,
during one extraction, we encountered a ClassNotFoundException from the
NetDynamics runtime looking for a (seemingly) non-critical class. This exception later
prevented certain DataObject properties from being extracted, resulting in a
non-functional migrated application. Therefore, to ensure the best possible migration,
always be sure to eliminate all sources of exceptions during the extraction phase before
continuing.

Appendix B Sun ONE Migration Toolbox 203

Troubleshooting

Note that because of a feature of the embedded NetDynamics CP, two copies of a
project are instantiated during project extraction, one before extraction and one after.
This is generally harmless, but if the project throws exceptions during instantiation,
you will see two sets of stack traces in the Toolbox's console log.

Non-Fatal Error During Extraction

If only part of the automated migration succeeds (or fails), we recommend the following:

Find and correct the cause of the failure using the tips in the above Sections and re-run
the extraction or translation

If a problem occurs with NetDynamics migration, create a new project in the
NetDynamics Studio and import the problematic objects. Simplify them until you can
get this project to run through the appropriate tool(s). Introduce these files back into the
original, now-migrated project.

Migrate the failed objects by hand. This is not as hard as it may sound. The JATO
framework was also designed for manual application authoring. Using the templates in
the appl i cati on package, follow the example of a migrated object of the same type.
Documentation has been created to assist in creating new JATO objects manually.
Check the "Files" location of the JATO eGroups forum.

Diagnose the problem as thoroughly as possible and consult the discussion forums or
the SIMT team.

Fatal Error During Extraction

Ensure the following items are not factors in the failure (in approximate order of
likelihood):

1.

Incorrect environment settings. Check the settings of your
9 GTBX_HOVEY bi n/ set env. bat file and ensure they are appropriate for your
machine.

Missing external classes

Incorrect tool property settings. Ensure that the Extraction Tool has valid property
settings

Use of non-existent runtime feature in a critical location (such as a class initializer or
initialization of non-Spider threads to perform background tasks)

Non-present | i nks directory or corrupted class files

Use of incorrect JDK version or platform

204 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Troubleshooting

7. Conflicting class file versions in boot classpath (such as those present in the JDK's
extension directory)

If none of the above items are discernable factors in the problem, you may have
encountered a bug in the SIMT. We reiterate that because of the latitude NetDynamics
allowed during project development, Sun ONE cannot anticipate all possibilities and thus
ensure a trouble-free migration for all customers. However, the SIMT is committed to
making the migration process as painless as possible. Please report any problems to the
SIMT team and/or the discussion forums so that we may address them and issue patches as
necessary.

Translation

If you encounter an error during application translation, do the following first:

* Ensure that your application description file looks complete and is valid XML. Use a
tool like XMLSpy or Internet Explorer to open the document and view it.

* Ensure that the Translation Tool settings are correct

* Verify your environment settings in the %V GTBX_HOVE% bi n/ set env. bat file and
ensure they are appropriate for your machine

* Ensure that you have a complete Toolbox installation

If none of the above items are discernable factors in the problem, you may have
encountered a bug in the SIMT. We reiterate that because of the latitude NetDynamics
allowed during project development, Sun ONE cannot anticipate all possibilities and thus
ensure a trouble-free migration for all customers. However, the SIMT is committed to
making the migration process as painless as possible. Please report any problems to the
SIMT team and/or the discussion forums so that we may address them and issue patches as
necessary.

Post-Migration

Some problems may arise after migration or during testing. In general, such problems will
need to be posted to the discussion forums or discussed with the SIMT team. However,
before contacting others, note the following:

* The module URLs for each servlet and display URLs for each view bean are set to
certain defaults during project translation. These defaults will likely be correct for your
deployment environment, but may not be in some cases. Please consult the JATO
Deployment Guide or the discussion forums for information on how to configure these
URLs differently for deployment.

Appendix B Sun ONE Migration Toolbox 205

Troubleshooting

* There are inconsistencies in the way JDBC drivers treat certain column types. JATO
contains a number of options that may need to be modified in order for your application
to work against your specific database. If you are having difficulty running the
migrated application against your target database, please consult the Sun ONE
Migration website and discussion forums for information on specific database-related
tweaks.

206 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Appendix C

Migrating from EJB 1.1 to EJB 2.0

Although the EJB 1.1 specification will continue to be supported in Sun™ ONE
Application Server 7, the use of the EJB 2.0 architecture is recommended to leverage its
enhanced capabilities.

To migrate EJB 1.1 to EJB 2.0 a number of modifications will be required, including within
the source code of components.

Essentially, the required modifications relate to the differences between EJB 1.1 and EJB
2.0, all of which are described in the following topics.

* EJB Query Language

* Local Interfaces

* EJB 2.0 Container-Managed Persistence (CMP)
* Defining Persistent Fields

* Defining Entity Bean Relationships

* Message-Driven Beans

EJB Query Language

The EJB 1.1 specification left the manner and language for forming and expressing queries
for finder methods to each individual application server. While many application server
vendors let developers form queries using SQL, others use their own proprietary language
specific to their particular application server product. This mixture of query
implementations causes inconsistencies between application servers.

207

The EJB 2.0 specification introduces a query language called EJB Query Language, or EJB
QL to correct many of these inconsistencies and shortcomings. EJB QL is based on SQL92.
It defines query methods, in the form of both finder and select methods, specifically for
entity beans with container-managed persistence. EJB QL's principal advantage over SQL
is its portability across EJB containers and its ability to navigate entity bean relationships.

Local Interfaces

In the EJB 1.1 architecture, session and entity beans have one type of interface, a remote
interface, through which they can be accessed by clients and other application components.
The remote interface is designed such that a bean instance has remote capabilities; the bean
inherits from RMI and can interact with distributed clients across the network.

With EJB 2.0, session beans and entity beans can expose their methods to clients through
two types of interfaces: a remote interface and a local interface. The 2.0 remote interface is
identical to the remote interface used in the 1.1 architecture, whereby, the bean inherits
from RMI, exposes its methods across the network tier, and has the same capability to
interact with distributed clients.

However, the local interfaces for session and entity beans provide support for lightweight
access from EJBs that are local clients; that is, clients co-located in the same EJB container.
The EJB 2.0 specification further requires that EJBs that use local interfaces be within the
same application. That is, the deployment descriptors for an application's EJBs using local
interfaces must be contained within onc ej b-jar file.

The local interface is a standard Java interface. It does not inherit from RMI. An enterprise
bean uses the local interface to expose its methods to other beans that reside within the same
container. By using a local interface, a bean may be more tightly coupled with its clients
and may be directly accessed without the overhead of a remote method call.

In addition, local interfaces permit values to be passed between beans with pass by
reference semantics. Because you are now passing a reference to an object, rather than the
object itself, this reduces the overhead incurred when passing objects with large amounts of
data, resulting in a performance gain.

Setting up a session or entity bean to use a local interface rather than a remote interface is
simple. The local interface through which the bean's methods are exposed to clients extends
EJBLocal Obj ect rather than EJBObj ect . Similarly, the bean's home interface extends
EJBLocal Hone rather than EJBHonme. The implementation class extends the same
EntityBean or SessionBean interface.

208 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

NOTE A bean destined to be remote in EJB 2.0 extends EJBObj ect in its remote
interface and EJBHome in its home interface, just as it did in EJB 1.1.

EJB 2.0 Container-Managed Persistence (CMP)

The EJB 2.0 specification has expanded CMP to allow multiple entity beans to have
relationships among themselves. This is referred to as Container-Managed Relationships
(CMR). The container manages the relationships and the referential integrity of the
relationships.

The EJB 1.1 specification presented a more limited CMP model. The 1.1 architecture
limited CMP to data access that is independent of the database or resource manager type. It
allowed you to expose only an entity bean's instance state through its remote interface; there
is no means to expose bean relationships. The 1.1 version of CMP depends on mapping the
instance variables of an entity bean class to the data items representing their state in the
database or resource manager. The CMP instance fields are specified in the deployment
descriptor, and when the bean is deployed, the deployer uses tools to generate code that
implements the mapping of the instance fields to the data items.

You must also change the way you code the bean's implementation class. According to the
2.0 specification, the implementation class for an entity bean that uses CMP is now defined
as an abstract class.

Defining Persistent Fields

The EJB 2.0 specification lets you designate an entity bean's instance variables as CMP
fields or CMR fields. You define these fields in the deployment descriptor. CMP fields are
marked with the element cnp- f i el d, while container-managed relationship fields are
marked with the element cnr - fi el d.

In the implementation class, note that you do not declare the CMP and CMR fields as public
variables. Instead, you define get and set methods in the entity bean to retrieve and set the
values of these CMP and CMR fields. In this sense, beans using the 2.0 CMP follow the
JavaBeans model: instead of accessing instance variables directly, clients use the entity
bean's get and set methods to retrieve and set these instance variables. Keep in mind that
the get and set methods only pertain to variables that have been designated as CMP or
CMR fields.

Appendix C Migrating from EJB 1.1 to EJB 2.0 209

Migrating EJB Client Applications

Defining Entity Bean Relationships

As noted previously, the EJB 1.1 architecture does not support CMRs between entity beans.
The EJB 2.0 architecture does support both one-to-one and one-to-many CMRs.
Relationships are expressed using CMR fields, and these fields are marked as such in the
deployment descriptor. You set up the CMR fields in the deployment descriptor using the
appropriate deployment tool for your application server.

Similar to CMP fields, the bean does not declare the CMR fields as instance variables.
Instead, the bean provides get and set methods for these fields.

Message-Driven Beans

Message-driven beans are another new feature introduced by the EJB 2.0 architecture.
Message-driven beans are transaction-aware components that process asynchronous
messages delivered through the Java Message Service (JMS). The JMS API is an integral
part of the J2EE 1.3 platform.

Asynchronous messaging allows applications to communicate by exchanging messages so
that senders are independent of receivers. The sender sends its message and does not have
to wait for the receiver to receive or process that message. This differs from synchronous
communication, which requires the component that is invoking a method on another
component to wait or block until the processing completes and control returns to the caller
component.

Migrating EJB Client Applications
This section includes the following topics:
* Declaring EJBs in the JNDI Context
* Recap on Using EJB JNDI References

Declaring EJBs in the JNDI Context

In Sun ONE Application Server 7, EJBs are systematically mapped to the INDI sub-context
"ejb/". If we attribute the INDI name "Account" to an EJB, then Sun ONE Application
Server 7 will automatically create the reference "ejb/Account" in the global INDI context.
The clients of this EJB will therefore have to look up "ejb/Account" to retrieve the
corresponding home interface.

210 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Migrating EJB Client Applications

Let us examine the code for a servlet method deployed in Sun ONE Application Server
6.0/6.5,

The servlet presented here calls on a stateful session bean, BankTeller, mapped to the root
of the JNDI context. The method whose code we are considering is responsible for
retrieving the home interface of the EJB, so as to enable a BankTeller object to be
instantiated and a remote interface for this object to be retrieved, in order to make business
method calls to this component.

| **
* Look up the BankTell erHome interface using JNDI.
*/
private BankTel | er Hone | ookupBankTel | er Hone(Cont ext ct x)
t hrows Nami ngException

try
{
Ooj ect hone = (BankTel | er Hone) ctx. | ookup("ejb/BankTeller");

return (BankTel | er Hone) Port abl eRenpot eCbj ect. narr ow hone,
BankTel | er Hone. cl ass) ;

}
catch (Nam ngException ne)
{
| og(" 1 ookupBankTel | er Hore: unabl e to | ookup BankTel | er Home" +
"with JNDI nane 'BankTeller': " + ne.getMessage());
t hr ow ne;
}

As the code already uses ejb/BankTeller as an argument for the lookup, there is no need for
modifying the code to be deployed on Sun ONE Application Server 7.

Appendix C Migrating from EJB 1.1to EJB 2.0 211

Migrating CMP Entity EJBs

Recap on Using EJB JNDI References

This section summarizes the considerations when using EJB JNDI references. Where noted,
the consideration details are specific to a particular source application server platform.

Placing EJB References in the JNDI Context

It is only necessary to modify the name of the EJB references in the JNDI context
mentioned above (moving these references from the JNDI context root to the sub-context
"ejb/") when the EJBs are mapped to the root of the JNDI context in the existing WebLogic
application.

If these EJBs are already mapped to the JNDI sub-context ej b/ in the existing application,
no modification is required.

However, when configuring the INDI names of EJBs in the deployment descriptor within
the Forté for Java IDE, it is important to avoid including the prefix ej b/ in the INDI name
of an EJB. Remember that these EJB references are automatically placed in the INDI ej b/
sub-context with Sun ONE Application Server 7. So, if an EJB is given to the JNDI name
"BankTeller" in its deployment descriptor, the reference to this EJB will be "translated" by
Sun ONE Application Server into ej b/ BankTel | er, and this is the JNDI name that client
components of this EJB must use when carrying out a lookup.

Global JNDI context versus local JNDI context

Using the global JNDI context to obtain EJB references is a perfectly valid, feasible
approach with Sun ONE Application Server 7. Nonetheless, it is preferable to stay as close
as possible to the J2EE specification, and retrieve EJB references through the local INDI
context of EJB client applications. When using the local JNDI context, you must first
declare EJB resource references in the deployment descriptor of the client part (web. xm
for a Web application, ej b-j ar. xm for an EJB component).

Migrating CMP Entity EJBs

This section describes the steps to migrate your application components from the EJB 1.1
architecture to the EJB 2.0 architecture.

In order to migrate a CMP 1.1 bean to CMP 2.0, we first need to verify if a particular bean
can be migrated. The steps to perform this verification are as follows.

212 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Migrating CMP Entity EJBs

1. Fromthe ej b-jar.xm file, gotothe <cnp-fi el ds> names and check if the
optional tag <pri m key- f i el d> is present in the ej b-j ar.xm and has an
indicated value, if yes, go to next step.

Look for the <pri m key-cl ass> field name in the ej b-j ar. xnl , get the class
name and get the public instance vari abl es declared in the class. Now see if
the signature (name and case) of these variables matches with the <cnp-fi el d>
names above. Segregate the ones that are found. In these segregated fields, check if
some of them start with an upper case letter. If any of them do, then migration cannot
be performed.

2. Look into the bean class source code and obtain the java types of all the <cnp- fi el d>
variables.

3. Change all the <cnp- fi el d>names to lowercase and construct accessors from
them. For example if the original field name is Nane and its java type is St ri ng, the
accessor method signature will be:

Public void set Nane(String nanme)
Public String getNanme()

4. Compare these accessor method signatures with the method signatures in the bean
class. If there is an exact match found, migration is not possible.

5. Get the custom finder methods signatures and their corresponding SQLs. Check if there
is a ‘Join’ or ‘Outer join’ or an ‘OrderBy’ in the SQL, if yes, we cannot migrate, as EJB
QL does not support ‘joins’, ‘Outer join’ and ‘OrderBy’.

6. Any CMP 1.1 finder, which used j ava. uti | . Enumer ati on, should now use
java.util. Col | ection.Change your code to reflect this. CMP2.0 finders cannot
return java. uti | . Enumerati on.

The next topic, "Migrating the Bean Class", performs to migration process.

Migrating the Bean Class

This section describes the steps required to migrate the bean class to Sun ONE Application
Server.

Appendix C Migrating from EJB 1.1to EJB 2.0 213

Migrating CMP Entity EJBs

Prepend the bean class declaration with the keyword abstract. For example if the bean
class declaration was:

Public cl ass Cabi nBean inplenents EntityBean // before
nodi fi cation

abstract Public class Cabi nBean inplenents EntityBean // after
nodi fi cation

Prefix the accessors with the keyword abstract.

Insert all the accessors after modification into the source(.java) file of the bean class at
class level.

Comment out all the cnp fields in the source file of the bean class.

Construct protected instance variable declarations from the cnp- f i el d names in
lowercase and insert them at the class level.

Read up all the ej bCr eat e() method bodies (there could be more than one

ej bCr eat e). Look for the pattern ‘<cnp- f i el d>=some value or local variable’, and
replace it with the expression ‘abstract mutator method name (same value or local
variable)’. For example, if the ej bCr eat e body (before migration) is like this:

public M/PK ejbCreate(int id, String nane)
{
this.id = 10*id;
Nanme = nane;//1
return null;
}
The changed method body (after migration) should be:

public M/PK ejbCreate(int id, String nanme)
{
setld(10*id);
set Nane(nane);//1

return null;

}

214 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Migrating CMP Entity EJBs

NOTE The method signature of the abstract accessor in / / 1 is as per the Camel

Case convention mandated by the EJB 2.0 spec. Also, the keyword ‘this’
may or may not be present in the original source, but it has to be removed
from the modified source file.

All the protected variables declared in the ej bPost Cr eat e() methods in Step 5 have
to be initialized. The protected variables will be equal in number with the

ej bCr eat e() methods. This initialization will be done by inserting the initialization
code in the following manner:

protected String nane;//fromstep 5

protected int id;//fromstep 5

public void ejbPostCreate(int id, String nanme)
{

name /*protected variable*/ = getNane();/*abstract accessor*/
/linserted in this step

id /*protected variable*/ = getld();/*abstract accessor*/
/linserted in this step

}

Inside the ej bLoad method, you have to set the protected variables to the beans
database state. So insert the following lines of code:

public void ejbLoad()
{
name = getNanme();//inserted in this step
id=getld(); //inserted in this step
....... . //already present code

}

Similarly, you will have to update the beans’ state inside ej bSt or e() so that its
database state gets updated. But remember, you are not allowed to update the setters
that correspond to the primary key outside the ej bCr eat (), so do not include them
inside this method. Insert the following lines of code:

public void ejbStore()
{

set Nane(nane);//inserted in this step

Appendix C Migrating from EJB 1.1to EJB 2.0 215

Migrating CMP Entity EJBs

/1 setld(id);//Do not insert this if it is a part of the
primary key

............. ./l already present code

}

10. As a last change to the bean class source (. j ava) file, examine the whole code and
replace all occurrences of any <cnp- f i el d> variable name with the equivalent
protected variable name (as declared in Step 5).

If you do not migrate the bean, at the minimum you need to insert the

<cnp- ver si on>1. x</ cnp- ver si on> tag inside the ej b-j ar. xm at the
appropriate place, so that the unmigrated bean still works on Sun ONE Application
Server.

Migration of ejb-jar.xml

To migrate the file ej b-j ar. xm to Sun ONE Application Server perform the following
steps:

1. Intheej b-j ar.xnl, convert all <cnp- fi el ds> to become lowercase.

2. Intheejb-jar.xm file, insert the tag <abst r act - schenma- nane> after the
<r eent r ant > tag. The schema name will be the name of the bean as in the

2

< ej b- nane> tag, prefixed with “ias_".
3. Insert the following tags after the <pri nkey- fi el d> tag:

<security-identity><use-caller-identity/></security-identity>
4. Use the SQL’s obtained above to construct the EJB QL from SQL.

5. Insert the <quer y> tag and all its nested child tags with all the required information in
the ej b-j ar. xn , just after the <securi ty-identity>tag.

Custom Finder Methods

The custom finder methods are the f i ndBy... methods (other than the default

fi ndByPri mar yKey method) which can be defined in the home interface of an entity bean.
As the EJB 1.1 specification does not stipulate a standard for defining the logic of these
finder methods, EJB server vendors are free to choose their implementations. As a result,
the procedures used to define the methods vary considerably between the different
implementations chosen by vendors.

Sun ONE Application Server 6.0 and 6.5 use standard SQL to specify the finder logic.

216 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Migrating CMP Entity EJBs

Information concerning the definition of this finder method is stored in the EJB's
persistence descriptor (Account - i as-cnp. xnl) as follows:

<bean- property>
<property>
<nanme>f i ndOr der edAccount sFor Cust onmer SQL</ nane>
<type>j ava. | ang. Stri ng</type>
<val ue>
SELECT BRANCH_CODE, ACC_NO FROM ACCOUNT where CUST_NO = ?
</ val ue>
<delimter> </delinmter>
</ property>
</ bean- property>
<bean- pr operty>
<property>
<nane>f i ndOr der edAccount sFor Cust oner Par ns</ nane>
<type>j ava. | ang. Vect or </t ype>
<val ue>Cust No</ val ue>
<delimter> </delinter>
</ property>

</ bean- property>

Each f i ndXXX finder method therefore has two corresponding entries in the deployment
descriptor (SQL code for the query, and the associated parameters).

In Sun ONE Application Server the custom finder method logic is also declarative, but is
based on the EJB query language EJB QL.

The EJB-QL language cannot be used on its own. It has to be specified inside the file

ej b-jar.xm ,in the <ej b- gl > tag. This tag is inside the <quer y> tag, which defines a
query (finder or select method) inside an EJB. The EJB container can transform each query
into the implementation of the finder or select method. Here's an example of an <ej b- gl >
tag:

Appendix C Migrating from EJB 1.1to EJB 2.0 217

Migrating CMP Entity EJBs

<ej b-jar>
<ent er pri se- beans>
<entity>
<ej b- name>hot el EJB</ €] b- nane>

<abstract - schema- nane>TMBankSchenaNane</ abst r act - schema- nanme>
<cnp-field>. ..
<query>
<query- met hod>
<met hod- nane>f i ndByCi t y</ net hod- nane>
<met hod- par ans>
<met hod- par anpj ava. | ang. St ri ng</ nmet hod- par an»
</ net hod- par ans>
</ query- met hod>
<ej b-ql >
<! [CDATA[SELECT OBJECT(t) FROM TMBankSchemaNarme AS t WHERE
t.city = ?1]1]1>
</ ej b-ql >
</ query>
</entity>

</enterprise-beans>

</ejb-jar>

218 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

A

About Sun ONE Application Server 6.0/6.5 27
About Sun ONE Application Server 7 11
About This Guide
How This Guide is Organized 8
What you should know 7
Administration Server 18
Administration Tool 17
Administration Tools 16
Sun ONE Application Server 6.0 17
Sun ONE Application Server 6.5 17
Sun ONE Application Server 7 18

application client JAR 23

AppLogic 119

Architecture 11, 12
Sun ONE Application Server 6.0/6.5 architecture 27
Sun ONE Application Server 7 Architecture 11

asadmin 19, 41, 70, 118

Automated Migration Phase 120, 152
automated tools 25

Automating Migration 8§, 171

B

BEA WebLogic Server v6.1 118
BMP 42

Section A

Index

C

CMP 38, 42
CORBA 122

D

data sources 32

Database Connectivity 20
Database Support in Sun ONE Application Server
6.0 20
Database Support in Sun ONE Application Server
7 21

db_setup.sh 20

DB2 20

Deploy 118

Deployment descriptors 23, 24

Development Environments 15
Sun ONE Application Server 6.0/6.5 15
Sun ONE Application Server 7 15

DriverManager 30

E

EAR files 23

Index 219

Section F

EIB 37
EJB 1.1 to EJB 2.0
Defining Entity Bean Relationships 210
EJB 2.0 Container-Managed Persistence (CMP) 209
EJB Query Language 207
Message-Driven Beans 210
Migrating CMP Entity EJBs
Custom Finder Methods 216
Migrating the Bean Class 213
Migration of ejb-jar.xml 216
Migrating EJB Client Applications 210
Declaring EJBs in the JNDI Context 210
Migration of ejb-jar.xml 216
EJB Changes Specific to SIAS 7 38
EJB JAR 23
EJB Migration 37
EJB QL 38
ejbCreate 83
enterprise application 114

Enterprise Applications 43
Application root context and access URL 44
Migrating Proprietary Extensions 44

Enterprise EJB Modules 42
Enterprise JavaBeans 13
Entity Beans 38

Extraction Tool 155
Extraction tool 133

F

format
URLs, in manual 8
Forte for Java (FFJ) 122

G

GXR 122

H

home interface 94

iasdeploy 20
iBank 29, 45
Migrating iBank using Sun ONE Studio for Java
4.0 70
Converting CMP Entity EJBs from 1.1 to 2.0 78
Creating a Web application module 73
Creating an EJB module 91
Creating an enterprise application 114
Deploying the application 117
iBank Application specification
Application Components 182
Application navigation and logic 178
Database schema 174
Fitness of design choices with regard to potential
migration issues 185
Tools used for the development of the application 174
IBM WebSphere v4.0 118
Informix 20
Iona 122

J

J2EE 13
J2EE Application Components and Migration 22

J2EE applications
components 22

J2EE Component Standards 13
J2EE JATO 138

JATO 126, 143

JavaServer Pages 13

JDBC Code 30
Using JDBC 2.0 Data Sources 32
Configuring a Data Source 32
Looking Up the Data Source Via JNDI 35
JDBC drivers 20

220 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

Section K

jdbcsetup 20 N
JNDI context 35

JSP 1.2 specification 36

JSP’s and JSP Custom Tag Libraries 35

NAS 4.1 119
NetDynamics 152
automated migration phase 152
extraction 152
translation 152
Create a Toolbox Builder 157

K Extraction Tool 154, 155
manual migration phase 152
KFC (Kiva Foundation Classes) 119 Migrating ToolBox Sample Application 156
Kiva 119 Migration Preparation 152
automated migration phase 119 igration Process Overview 152
extraction 119 Preparing a Project for Automated Migration 154
translation 119 Preparing your Working Environment 152
manual migration phase 119 Running the Migration Toolbox 156
Kiva Migration Toolbox Builder 189 NetDynamics Migration Toolbox Builder 189
Kiva/NAS 4.1 NetDynamics to Sun ONE AS 7 151

Migration Preparation 119
Before Running the Extraction Tool 123
Migration Process Overview 119
Preparing a Project for Automated Migration 121
Preparing the GXR file 122 0
Preparing your Working Environment 121
KIVA/NAS 4.1 to Sun ONE AS 7 119

Obtaining a Data Source from the JNDI Context 37
onAfterlnit 154
onBeforelnit 154
OnlineBankSample 123
Create a Toolbox 125
M Running the Migration Toolbox 124

le 2
Manual Migration of iBank Application 46 Oracle 20

Assembling Application for Deployment 70

EJB Changes 48

Web application changes 46
Manual Migration Phase 120, 152 P
MDB 37
Migrating From S1AS 6.x to SIAS 7 29
Migration and Redeployment 23

What is Redeployment 25

What Needs to be Migrated 24

Why is Migration Necessary 24

PointBase 20
Project Manager 140

Migration Considerations and Strategies 27 R

Registry Editor 17
remote interface 94

Index 221

Section S

S

SIMT 119, 120
Servlets 13, 36
Session Beans 38
setenv.bat 153
SQL Server 20
Sun ONE Console 17
Sun ONE Migration Tool 25
Sun ONE Migration Tool for Application Servers 171
Sun ONE Migration Toolbox 25, 119, 189
Migration 189
Kiva Migration Toolbox Builder 190
NetDynamics Migration Toolbox Builder 194
Toolbox Builder 190
Supported Platforms 189
Tools and Toolboxes 201
Cloning Tools 201
Creating New Tools 201
Deleting Tools 201
Importing & Exporting Tools 201
Toolbox Merging 202
Troubleshooting 202
Extraction 203
Post-Migration 205
Toolbox Installation & Configuration 202
Translation 205
Sun ONE Studio 15, 71
Sybase 20

T

Task Tools 133
toolbox 130

Toolbox application 189
Toolbox GUI 189
Translation tool 134
type 2 20

Type 4 20

U

URLs
format, in manual 8

\'

Visibroker for Java 122

w

WAR 23,122

Web Applications 39
Migrating Web Application Modules 40
Particular setbacks when migrating servlets and
JSPs 41

Web module 115
web.xml 74
WEB-INF 74
Welcome File 78

222 Sun ONE Application Server 7 « Migrating and Redeploying Server Applications Guide « March 2003

	Migrating and Redeploying Server Applications Guide
	Contents
	About This Guide
	What You Should Know
	How This Guide is Organized
	Documentation Conventions

	About Sun ONE Application Server 7
	Sun ONE Application Server 7 Architecture
	J2EE Component Standards
	Development Environments
	Sun ONE Application Server 6.0/6.5 Development Environment
	Sun ONE Application Server 7 Development Environment

	Administration Tools
	Sun ONE Application Server 6.0 Administration Tools
	Sun ONE Application Server 6.5 Administration Tools
	Sun ONE Application Server 7 Administration Tools

	Database Connectivity
	Database Support in Sun ONE Application Server 6.0
	Database Support in Sun ONE Application Server 6.5
	Database Support in Sun ONE Application Server 7

	J2EE Application Components and Migration
	Migration and Redeployment
	Why is Migration Necessary
	What Needs to be Migrated
	What is Redeployment

	Migration Considerations and Strategies
	About Sun ONE Application Server 6.0/6.5
	Migration Issues From Sun ONE Application Server 6.x to 7
	Migrating JDBC Code
	Migrating Java Server Pages and JSP Custom Tag Libraries
	Migrating Servlets
	EJB Migration
	EJB Changes Specific to Sun ONE Application Server 7
	Migrating Web Applications
	Migrating Enterprise EJB Modules
	Migrating Enterprise Applications

	Migrating Example: iBank
	Manual Migration of iBank Application
	Migrating iBank using Sun ONE Studio for Java 4.0

	Migration from BEA WebLogic Server v6.1 and IBM WebSphere v4.0

	Migration from KIVA/NAS 4.1 to Sun ONE AS 7
	Introduction
	Migration Preparation
	Migrating OnlineBankSample

	Migration from NetDynamics to Sun ONE AS 7
	Introduction
	Migration Preparation
	Migrating ToolBox Sample Application

	Automating Migration
	Sun ONE Migration Tool for Application Servers
	Sun ONE Migration Toolbox (formerly iPlanet Migration Toolbox)
	Redeploying Migrated Applications

	iBank Application specification
	Tools used for the development of the application
	Database schema
	Application navigation and logic
	Application Components
	Fitness of design choices with regard to potential migration issues

	Sun ONE Migration Toolbox
	Supported Platforms
	Migration
	Toolbox Builder
	Kiva Migration Toolbox Builder
	NetDynamics Migration Toolbox Builder

	Tools and Toolboxes
	Creating New Tools
	Cloning Tools
	Deleting Tools
	Importing & Exporting Tools
	Toolbox Merging

	Troubleshooting
	Toolbox Installation & Configuration
	Extraction
	Translation
	Post-Migration

	Migrating from EJB 1.1 to EJB 2.0
	EJB Query Language
	Local Interfaces
	EJB 2.0 Container-Managed Persistence (CMP)
	Defining Entity Bean Relationships
	Message-Driven Beans
	Migrating EJB Client Applications
	Declaring EJBs in the JNDI Context
	Recap on Using EJB JNDI References

	Migrating CMP Entity EJBs
	Migrating the Bean Class
	Migration of ejb-jar.xml
	Custom Finder Methods

	Index

